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Abstract. We investigate a coupling between the compressible Navier—Stokes—Fourier system
and the full Maxwell-Stefan equations. This model describes the motion of a chemically reacting
heat-conducting gaseous mixture. The viscosity coefficients are density-dependent functions van-
ishing in a vacuum and the internal pressure depends on species concentrations. By several levels
of approximation we prove the global-in-time existence of weak solutions on the three-dimensional
torus.
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1. Introduction. Mathematical modeling of mixtures encounters various prob-
lems due to a wide range of chemical and mechanical aspects that can become im-
portant for a particular phenomenon. It turns out that even for one of the simplest
systems Ho — O9, as many as 20 different reactions can occur involving 8 different
species [40]. Moreover, under certain circumstances, all of these reactions can become
reversible. Therefore, it is important to build a rigorous mathematical theory that
does not impose any specific bounds on the size of initial data, range of temperatures,
form of the pressure, and the extent of the reaction.

The purpose of this paper is to present the first complete existence result for
such models in the case when the pressure depends on the mixture composition, and
when no smallness assumption is postulated. Our particular concern is to perform a
detailed construction leading to a global-in-time weak solution.

Recently, this area of mathematical modeling has attracted a lot of attention. The
issue of so-called multicomponent diffusion has especially become much better under-
stood, mostly due to several works devoted to the Maxwell-Stefan equations. These
equations describe in an implicit way the relation between the diffusion velocities V;
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and the gradients of the molar concentrations of the species X,

n XX
1) VX (%) Viogr =) () ovs - va).
:=d; J#

Here Y; is the mass concentration, 7 is the internal pressure of the mixture, and
D;; > 0 denotes the binary diffusion coeflicient, D;; = Dj;. The first rigorous math-
ematical treatment of this system is due to Giovangigli [17, 18], where various itera-
tive methods for solving the linear system were presented as well as multicomponent
diffusion coefficients for gaseous mixtures were provided. Later on, the proof of local-
in-time existence result in the isobaric (7 = const), isothermal case was proven by
Bothe [2]; see also [21]. Then, Jiingel and Stelzer generalized this result and com-
bined it with the entropy dissipation method to prove the global-in-time existence of
weak solutions [23], still in the case of constant pressure and temperature. Another
interesting result devoted to the global-in-time existence of regular solutions for a
special ternary gaseous mixture is presented in [3]. Recently, the coupling between
the multispecies system and the incompressible system describing the fluid motion
was investigated by Marion and Temam [29] and Chen and Jiingel [9] .

For the case of full systems describing the compressible mixtures (see (4) be-
low), not much is known. The Navier-Stokes-Fourier system coupled with the set
of reaction-diffusion equations for an arbitrary large number of reacting species was
treated by Feiresl, Petzeltovd, and Trivisa [14]. They proved the global-in-time ex-
istence of weak entropy variational solutions for the Fick diffusion law and the state
equation which does not depend on the species concentrations. Several extensions of
this result and asymptotic studies are also available; see [11, 10, 8, 25, 43].

Concerning a general system with physically justified assumptions on the form
of fluxes and transport coefficients, the only global-in-time result, to the best of our
knowledge, is due to Giovangigli [19]. His result is, however, restricted to data suffi-
ciently close to the equilibrium state. The main intention of our paper is to present
a possible extension of this result to the large data case, however, under less general
assumptions.

It should be emphasized that the dependence of the state equation on the species
concentrations results in a much more complex form of diffusion. The Fick approxi-
mation fails in providing a relevant description in this case since it does not take into
account strong cross diffusion that is well known to play an important role [3, 42, 40, 1].
From the mathematical point of view, it interferes with proving that the system pos-
sesses a Liyapunov functional, based on the notion of physical entropy. The integral
form of entropy (in)equality is a source of a majority of a priori estimates being the
corner stone of global-in-time analysis [13, 23, 33].

Although including more general (multicomponent) diffusion in the nonisobaric
systems leads to a thermodynamically consistent model, it makes the analysis much
more complex. The associated reaction-diffusion equations have to take into account
the variation of total pressure, leading to a hyperbolic deviation. In other words, in
the associated Maxwell-Stefan system (1) the second term from the left-hand side
(Lh.s.) cannot be neglected. Note that this additional term is not in conservative
form. To handle it one needs better regularity of the density than follows from the
hyperbolic continuity equation. Recently, Mucha, Pokorny, and Zatorska [33] studied
the system of n reaction-diffusion equations for the chemically reacting species

Oc(0Yy) + div(pYiu) + div(Fy) = owy, k=1,..n,
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where Fy, is the kth species diffusion flux satisfying
Fi. = —Co(0,9) chldl
=1

with the diffusion deriving forces d; defined as in (1). They proved the global-in-time
existence of weak solutions provided the additional regularity information about the
total density o and velocity u is available. This result holds for a particular choice
of matrix C, which corresponds to m;m;D;; = const, in (1). However, the main
argument presented there does not relay on this assumption. Extension of this result
to the case of more general diffusion matrixes C' (see [19, Chapter 7]) is a work in
progress; see, for example, [20].

Such a result creates a possibility of coupling the reaction-diffusion system to the
model of fluid motion, provided the assumptions on the regularity of ¢ and u can be
fulfilled. Tt is well known, that in the usual case of Navier-Stokes(~Fourier) equations
with constant viscosity coefficients [28, 13, 38] such regularity is not expected, except
for some special situations, for example one-dimensional domains [22, 27, 35].

A similar problem appears in the works devoted to analysis of the continuum
mechanics mixture model derived in [39]. This model assigns different velocity fields
(and temperatures) to each of the species. However, usually, a part of the interaction
term (the momentum source) associated with the difference of gradients of species
densities g = oY% is neglected [15, 16]. This simplification leads to the family of
homogeneous (interpenetrating) compressible multifluids models, for which a relevant
existence analysis was recently performed by Kucher, Mamontov, and Prokudin [24].

In the present paper, this problem is solved by assuming that the viscosity coef-
ficients are density-dependent functions. They are subject to a condition introduced
by Bresch and Desjardins [4] and Bresch, Desjardins, and Lin [7] for the Saint-Venant
system. In [30], Mellet and Vasseur proved that the weak solutions to the barotropic
Navier—Stokes equations,

0o + div(pu) =0
Ot(ou) + div(pu ® u) — div(2u(e)D(u)) — V(v(g) divu) + V¥ =0

in (0,7) x Q, with

(2) v(o) = 201’ (0) — 2u(0),

are weakly sequentially stable in the periodic domain Q = T2 and in the whole space
Q =RYN, N =2,3. For possible extension of this result to the case of heat-conducting
flow and other boundary conditions we refer to [5, 6]. The analogous result for the
model of a 2-component mixture was proven by Zatorska [44]. It turns out, however,
that construction of an approximate solution to such kinds of systems is still an open
problem. For the case

(3) u(e) = o, v(o) =0,

corresponding to the shallow water equations, the existence of solutions was proven
recently by Vasseur and Yu in [41]; some other special cases were studied in [6, 31].
The main problem here is the possibility of the appearance of the vacuum regions.
Indeed, even though relation (2) provides a particular structure necessary to improve
the regularity of o, the uniform bound from below for the density is only known to
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be valid in one dimension [31] and for p(p) = o with o < 1/2. As a consequence,
one may have a problem with defining the velocity vector field u (the concentrations
of species and the temperature). So, contrary to the Navier—Stokes equations with
w, v = const [28], where the strong convergence of the density does not follow from
the a priori estimates, here the biggest problem is to prove the compactness of the
sequences approximating the velocity.

In the case of an isothermal model of a two-species mixture with multicomponent
diffusion, this problem was solved by including in the state equation the stabilizing
term in the form of cold pressure [44, 34]. This singular pressure prevents the appear-
ance of vacuum on the sets of nonzero measure. But, when the heat conduction is
taken into account, this term may not be sufficient. The problem is, roughly speaking,
the coupling all the components of the systems due to very strong nonlinearity in the
energy equation and comparatively low regularity of solutions to all “subsystems.”
Even under very special assumptions, the notion of weak solution introduced in [45],
for which the weak sequential stability was established, does not allow us to construct
a desired approximation, at least not immediately. Indeed, the transfer of energy due
to species molecular diffusion and a more complex form of the entropy makes it more
difficult to construct the solution within the variational entropy formulation than
within the usual energy formulation. Note that it is unlike the case of single gas flow
modeled by the Navier—Stokes—Fourier system [36, 37, 32]. There, it is the passage to
the limit in the total energy balance which requires more restrictive assumptions and
thus makes the weak energy solutions harder to get.

Here we focus on presenting the detailed approximation scheme for the full system
with several assumptions on the constitutive relation that will be specified in the next
section. Moreover, we rather concentrate on the model inside the domain than on
realistic modeling of processes at the boundary. Hence, we choose the simplest case
of boundary conditions, and the particular form of thermodynamic functions, which
maybe make our paper less general, but easier to follow.

To summarize, we assume that © is a periodic box in R3, i.e., Q = T3, and we
consider the following system of equations:

Oro + div(ou) =0

O¢(ou) +div(pu®@u) —divS + Vr =0

) 0,F + div(Eu) + div(ru) + divQ — div(Su) = 0
Oror + div(ggu) + div(Fg) = odwi, ke {1,...,n}

in (0,7) x

with the corresponding set of initial conditions. Above, g denotes the density of the
mixture, u is the mean velocity of the mixture, S is the stress tensor, m the total
pressure, I the total energy, Q the heat flux, of the density of the kth constituent,
F}. the multicomponent diffusion matrix, 1 is the temperature of the mixture, and wy,
the chemical source term. The system is supplemented by initial data on density, o;
momentum, m® = p’u’; temperature, ¥°; and densities of species, 0.

Recall that the first equation, usually called the continuity equation, describes
the balance of the mass, the second equation expresses the balance of the momentum,
and the third one the balance of the total energy. The last set of n equations describes
the balance of separate constituents. Note that the system of equations cannot be
independent, the last n equations must sum into the continuity equation (4);. Thus,
here we meet a serious mathematical obstacle: system (4), is degenerate parabolic in
terms of oy.
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The second equation is the balance of momentum, in which the temperature and
the species concentrations appear only in the form of the internal pressure w. The
relation between the density-dependent viscosities appearing in the form of the stress
tensor S enables us to prove better regularity of the density.

The third equation of the above system may be rewritten as the internal energy
balance, since the total energy F is a sum of kinetic and internal energies:

1
E = §Q|u|2 + pe.

The kinetic energy balance is nothing but a consequence of the momentum equation
multiplied by u and integrated over €2, thus we may write the balance of the internal
energy in the form

(5) O¢(0e) + div(geu) + divQ + rdivu — S : Vu = 0.

However, the balance of internal energy together with the momentum equation is
equivalent to the balance of the total energy and the momentum just in case, when
the solutions are sufficiently regular. Hence it is true for classical or strong solutions,
but it might be not true for the weak solution which we introduce below.

The outline of the paper is the following. In section 2 we discuss the constitutive
relations and their consequences. We also introduce the notion of a weak solution and
state our main result—Theorem 1. The rest of the paper is devoted to its proof; it
consists of several levels of approximation and the subsequent limit passages. Section
3 provides a description of the two most important levels of approximation. First we
present the system including only the main regularizing terms, which is marked by a
presence of three main approximation parameters—e, A, and §. The existence result
for this system is stated in Theorem 2. Then we rewrite the approximate system so
that the momentum equation is replaced by its Faedo—Galerkin approximation (de-
noted by N), the total energy equation is replaced by the approximate thermal energy
equation, and the finite-dimensional projections of the species equations with new en-
tropy variables are introduced. Finally, in section 4 the basic level of approximation
is considered with all the necessary regularizations needed to prove the existence of
regular solutions as stated in Theorem 3. After this, in section 5, we let N — oo in
the equations of the approximate system proving Theorem 2 and come back to the
first weak formulation from section 3. Then, in section 6 we perform the limit passage
0 — 0, so that we are left with only two parameters of approximation: ¢ and A. At
this level, derivation of the Bresch-Desjardins (B-D) estimate becomes possible, we
present it in section 7. In section 8 we first present the new uniform bounds arising
from the B-D estimate and then we let the last two approximation parameters go to
0, which finishes the proof of Theorem 1.

2. Constitutive relations and their consequences. Main result. Before
introducing the definition of the weak solution and stating the main result of this
paper, we have to specify the constitutive relations that we are going to use in our
paper. We try to use such relations which are close to models of the real processes;
however, in some cases we have to simplify them in order to be able to prove our main
result.

2.1. Pressure and internal energy. In the above system we use

(6) m=7:(0) + §ﬁ4 + 7m0k, 9), B >0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/15 to 129.31.137.208. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3752 P. B. MUCHA, M. POKORNY, AND E. ZATORSKA

where the latter denotes the internal pressure of the mixture which is determined
through Boyle’s law:
n

(7) Tn(0,01,00) = D e, 06) = 30 V2

k=1 k=1

above, my, is the molar mass of the species k and, for simplicity, we set the gaseous
constant equal to 1. We further assume that 7. is a continuously differentiable function
on (0, 00) satisfying the following growth conditions

I { <1
(8) AR S
c20” for p > 1,

for positive constants c1,co, Y& > 3, and v~ is related to v by the inequality
> 7 . In particular v~ > 5. The lower bounds for v and v~ are mathematical
rather than physu:al

We shall keep in mind that interpretation of the form of 7.(-) for ¢ < 1 implies that
vacuum regions of the fluid are not admissible. The term gﬁ‘* models the radiative
pressure.

The internal energy can be expressed as e = e, + ﬂﬂ—: + e., where

Qem 19 Qk = i i ezt + 19 ﬁSt)Cvk)

de.
92 (Q)

do = 7c(0).

It is convenient to define the internal energy eg of the kth species at zero temper-
ature,
e =eft — 9%y,

where e;’ denotes the formation energy of the kth species at the positive standard
temperature 95t see Giovangigli [19, (2.3.4)]. Here we take without loss of generality
¥** = 1 and assume that this energy is equal for all species; for simplicity, €2 = 0.
In the above formulas ¢, denotes a constant-volume specific heat for the kth species
and it is related to the constant-pressure specific heat (c,x) by the formula

1
9 = Cop + —.
9) Cpk Ck+mk

For the sake of simplicity we take
Cok = Cp = 1.

Hence, since Y,_, ox = o, the molecular part of the internal energy can be reduced
to

0em = 07.

This simplification leads to the following reduction in the form of specific enthalpy of
the kth species with respect to the general form (2.3.6) in Giovangigli [19]:

0
hy =ep, +— = Cpm?.
mg
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2.2. Flux diffusion matrix. A key element of the presented model is the struc-
ture of laws governing chemical reactions. We first define the flux diffusion. We
consider the following special case

(10) Fr=-Co» Cud, k=1,.n,
=1

where Cy, Cj; are multicomponent flux diffusion coefficients and dy = (d},, dz, d3) is
the species k diffusion force

(11) }g =V, <p—k> + <p—k — Q—:) Va, log mp,.

m 7T7n

To fix the idea, we shall concentrate on the following explicit form of C,

Zy -1 ... =Y,
=Y, Zy ... =Y,
-y, =Y. ... Z,

where Vi, = ﬁ and 7 = E%i Y;. We also assume that Cy = Cp(o,9) is a
k=1 Ck i#k
continuous function in both variables such that

(13) Colo,7) = co(0)Co(¥), Coo(l+9) < Colo,9) < Coo(l + V)

for some positive constants Cp, Co. Matrix (12) can be examined in a more general
form. However, it is fixed to reduce the number of technical computations, which
would make our proof more difficult to follow.

Remark 1. Using expressions for the diffusion forces (11) and the properties of C'
one can rewrite (10) into the following form

C Co <
(14) F=—— (Vpr = YiVam) = —— Y CruVpi;
=1

m 7Tm

moreover, y_,_, Fi = 0, pointwisely.
Remark 2. The matrix Dy; = CT’;f is symmetric and positive semidefinite.

2.3. Heat flux. Next, we look at the energy equation (4)s. The heat flux is
given by the Fourier law

(15) Q=) mFr—rVY,
k=1

where hy, stands for partial enthalpies hi(9) = c¢pp¥ and the thermal conductivity
coefficient k = k(p,v) = k(0)&(¥) is a smooth function such that

(16) K(0,9) = Ko + 0+ 00 + BVYP,

where kg = const. > 0, B > 8. Again the last limitation is a consequence of mathe-
matical needs.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/15 to 129.31.137.208. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3754 P. B. MUCHA, M. POKORNY, AND E. ZATORSKA

2.4. Stress tensor (viscous part). The viscous part of the stress tensor obeys
the Newton rheological law

(17) S(e,u) = 2u(e)D(u) + v(p) div ul,

where D(u) = 1 (Vu+ (Vu)T) and the nonnegative viscosity coefficients (o), v(o)
satisfy the Bresch—Desjardins relation

v(o) =21’ (o) — 2u(0)-

In this work we consider only the simplest example of such functions, namely, p = o,
v = 0. This assumption plays an important role in obtaining the uniform estimates
of the pressure gradients (see (128) and (137) below). Handling a more general form
of viscosity coefficients (2) with growth conditions as in [30] would require different
assumptions on Cy in (13) and on the form of the pressure.

2.5. Species production rates. We assume that the species production rates
w1, ..., wy are Lipschitz continuous functions and that there exist positive constants
w and @ such that

(18) —w < wi(o1,...,0n) <@ forall 0<Y,<1, k=1,...,n;
moreover, we suppose that
(19) wr(o1,-..,0n) >0 whenever Y =0.

We also anticipate the mass constraint between the chemical source terms,

(20) Zwk =0.
k=1

Another restriction that we postulate for chemical sources is dictated by the second
law of thermodynamics; it asserts that the entropy production associated with any
admissible chemical reaction is nonnegative. In particular, wy must enjoy the following
condition,

(21) 0 grwi > 0,
k=1

where the gj are the Gibbs functions specified below.

2.6. Entropy. In accordance with the second law of thermodynamics we pos-
tulate the existence of a state function called the entropy. It is defined (up to an
additive constant) in terms of differentials of energy, total density, and species mass
fractions by the Gibbs relation

(22) ¥Ds = De + 7D <1> - ngDYk,
e k=1

where D denotes the total derivative with respect to the state variables ¢, o, Y7,...,Y,,.
The Gibbs function of the kth species is defined by the formula

o

¥
gk = hi, — Vs, = cpp — Plog v + — log
mp mi
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Here s, = si(9, i) are the specific entropies of species and their general form (relation
(2.3.20) from [19]) is the following:

ﬁStQk 45193
pime 3ok

sk = 53¢ + cop(logd — log 9*") — —

In comparison to the general framework we reduce the form of entropy by an
assumption that s = st — ¢, log %" = 0 for all k. Moreover, we set the standard
pressure p*t equal to 1. Therefore

1 4593
(23) skzlogﬁ——log&—kﬂ—
mg  mg 30k
and
(24) 08 = z": okSK = olog? — Z & + —aﬁB
mk ’

k=1 kl

and this expression will be understood as our definition of the entropy.
The evolution of the total entropy of the mixture can be described by the following
equation

(25) 0t (0s) + div(osu) + div < + Z L ) _

where ¢ is the entropy production rate

a:S:ﬁV“ Qw iF v( ) ngwk

n

20Du:Du & |V19|
- 9 + 92 Z_

(26)

(log pk) Z ogkwr > 0.
k=1

Equation (25) follows from the internal energy balance (5) and the assumptions we
posed above.

Remark 3. Note that the above manipulations work only for smooth solutions and
if we know that >, _, ox = o, otherwise the Gibbs formula and the Gibbs functions
must be modified.

2.7. Weak formulation and the main result. In what follows we introduce
the notion of the weak solution to system (4). It is a set of space-periodic functions
(0,u,9,{0k}}_,) such that o >0, 9 >0, o >0, 0=>}_, ok a.e. in (0,7) x £,

0 € L¥(0,T; L7 (), 07" € L®(0,T; L7 (),
Vo € L0, T; WH2(Q)),

Vou € L=(0,T; L*(Q)), /oVu € L*(0,T; L*(Q2)),
¥ € L=(0,T; L*(Q)),9 € L*(0,T; WH(Q)),
97 € L2(0,T; Wh2(Q)),

Vor € L0, T; Wh2(Q)), o, € L™=(0,T; Llog L(9)),

and the following identities are fulfilled:
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e the continuity equation
Oro + div(ou) = 0,

is satisfied pointwisely a.e. on [0,T] x £;
e the momentum equation

//Qu 3t¢d3'dt—/m o d:r—// ou®u): Ve dz dt
//2QDu D¢ dx dt — //Wd1V¢d$ dt=0

holds for any test smooth function ¢ such that ¢(-,7) = 0;
e the species equations

T T
// 0xOrp dx dt+/gg¢(0) dx+// oru- Vo dx dt
0JQ Q 0JQ
T T
+//Fk-V¢ dx dt:—// oYwid dz dt, ke {1,..,n},
0JQ 0JQ

are fulfilled for any smooth function ¢ such that ¢(-,7") = 0;
e the total energy equation

[l (e + golul? Y ous dr v+ [ (e Joul?) 0)000) as
0JQ 2 Q 2
T T
+// (geu+lg|u|2u) Vo dx dt—//Wﬁ-w dx dt
0JQ

+Z//19— Vo dz dt

—|—/0/Q7Tu Vo do dt—/OT/Q@QD(u)u)-VqS dz dt =0

holds for any smooth function ¢ such that ¢(-,7") = 0, where the heat flux term is to
be understood as in the distributional sense.
The main result of this paper reads as follows.

THEOREM 1. Let Q = T2 be a periodic box, v*© > 3, v~ > 5,;’ , B > 8,
ulo) = o, v(e) = 0. Let o® € L /3(Q), 1/0” € LV =D/3(Q), V\/o¥ € LA(Q
042
m° € LY(Q) such that (nz)g) € LY(Q), ¥° € LYQ), o € LlogL(Q). Let T >0 be
arbitrary. Then there exists a weak solution to (4) in the weak sense specified above.
Moreover, the density o > 0 and the temperature 9 > 0 a.e. in (0,T) x Q.

3. Approximation. The aim of this section is to present two levels of approx-
imation (in fact, there will be more of them as intermediate steps, however, we will
not mention all of them explicitly). It is well known that one of the main problems
with the so-called Bresch—Desjardins relation is the question of a good approxima-
tion. This has to allow us to construct a sequence of solutions which are compatible
with the Bresch—Desjardins estimate and the so-called Vasseur—Mellet estimate [30].
This has been done recently for (3) by Vasseur and Yu in [41]. In the case of no
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vacuum regions (as it is here), there is a chance to show the existence of such an
approximation without using the Vasseur—Mellet estimate, however, the problem is
still far from being trivial (in fact, it is more complex than the problem for the full
Navier—Stokes—Fourier system presented in [13]).

First, we take €, 4, and A > 0 and fix s as a sufficiently large positive integer. Our
aim is to consider the regularized problem given below. Note that at the end, after
passing subsequently with §, €, and A to 0%, we recover our original problem (4).

We look for space periodic functions (o, u, 9, {ox}}_,) such that

0 € L*(0,T; W*+22(Q)), 0,0 € L*(0,T; L*(Q2)),
uc L2(0,T; W?+1.2(Q)),
Vv € L?(0,T;WH2(Q)) N LE(0,T; L3B(Q)),
or € LU0, T; L)), q> 2,

(30)

solving the following problem:
e the approximate continuity equation

Oro + div(ou) —eAp =0,

(1) 0(0,) = & ()

is satisfied pointwisely on [0,7] x Q and the initial condition holds in the strong L?

sense; here, 0} € C°°(Q) is a regularized initial condition such that ¢} — ¢° in LY ()
for A\ — OJr such that A||[V257100||3 — 0 for A — 07, and

(32) inf o} (z) > 0;

reQ

e the weak formulation of the approximate momentum equation

33)
/T/ ou- O dz di - /T/ AA*V(ou) : AV (og) dz dt
// ou®u): V¢d3‘dt—//2g”Du D¢da:dt+//7rd1v¢da;dt

—)\//Asdlv(g¢)AS+lgdxdt—a/O/Q(VQ Vu-¢ dz dt

= [ m-4(0) da

holds for any test function ¢ € L2(0, T; W2+12(Q)) n Wt2(0, T; W12(Q)) such that

e the weak formulation of the total energy equality

T 1 A
// (ge + L oap —|v2s+1g|2) O du dt
oJo 2 2
T 1 T
+// <Qeu+ —Q|u|2u> V¢ dx dt—// KV - Vo da dt
0JQ

(34) +Z// (ﬁ——w%— ﬁm)-wdde/T/Qm.wdxdt

my 0
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// 20"D(u)u) - Vo dx dt
T

// ——6195 ¢dxdt+//R57A(Q,19,u,¢) dx dt
0/

1 1
- [ (B4 GBEE 5V RR) 0(0)

with
T T
// KV -V do dt = / (Ko +e0" + 0+ 09%) VI - Vo dz dt
(35) 0JQ
B+1
+B+1//19 tAg dz dt
and
T
€ 7197 9 d d
/0/91%7,\(@ u, ¢) de dt
T
— / / (A (div(eug))A™H g — A® div(ou) A gg) da dt
0JQ
T
—/\// (JA%(V(ou))[?¢ — A*V(ou) : A*V(oug)) dz dt
(36) 0JQ

is satisfied for any ¢ € C>°([0,T] x Q) with ¢(T,-) = 0; here, e = e(03,93), u} = ‘;‘—0

and

(37)

T
— /\// A®div(pu)VA®p- V¢ da dt
0Ja

T T
+Aa//AS+1QVASg-v¢ dx dt—ff/ lu*’Vo - Vo dz dt
0J/Q 2 0/

+£/OT/QVQ-V¢<60(9)+7TCT(Q)) dx dt

9 € C(Q), ¥ — ¥ for A — 0% in L*(Q), and

0 < inf 9§ (x) = 9° < 9°(2) < sup 9 (z) = 99 < oo;
zefd zEQ

0
A

3

note that the regularization terms can be written, provided all quantities are suffi-
ciently smooth, as

e (0,0, 9) = [ — Agu- A**(pu) — Agu - VA*Hp

— AA*V(ou)|? — Ae|AST ]2 + AA*VpA® - Vdiv(ou) — AeA*Vpo - ATV

2
+5Ag“7 +e(Vo-V)u-u—eAp (ec(g) n ”Cé(f’)) - %8”6( ) 1vol?] 6
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e the weak formulation of the kth &k =1, ..., n, species equations

/T/ (510g (&> )&gbd:r dt+// % Ve de dt

(38) // (——5V1 (i—i)—sV(i—i))-Védxdt
// 919“% dz dt—/Q<51n <%>+%> $(0) dz

is fulfilled for any function ¢ € C*°([0,T]; ) such that ¢(-,T) = 0.
Above, we denoted

n o__ . i n
(39) "= o, Ke=_0 + (o, 9),

where m = min{my,...,m,}.
We prove the following result.

3759

THEOREM 2. Under the assumptions of Theorem 1 and the assumptions specified
in this section, for any T > 0, €, §, and X > 0, there exists a solution to problem

(30)—(39) in the sense defined above.

Indeed, the proof of this result is far from obvious. To prove Theorem 2 we have to
introduce another level of approximation, based on regularization of certain quantities
and finite-dimensional projection (Faedo—Galerkin approximation) of the momentum
equation and the species equation as well as on replacing the species densities by
their logarithms. More precisely, we additionally take n € N and look for functions

(0,u,9,{ry}}_,) such that (for the definition of X and Yy see below)

o€ L*(0,T; W?125(Q)), 9,0 € L*(0,T; L*(Q2)),
u e C([O,T];XN),
9 € L((0,T) x ) N L0, T; W2(2)),
ri € C([0,T]; Yn),

(40)

solving the following problem:
e the approximate continuity equation:

Oro + div(ou) —eAp =0,

(41) 0(0,) = & (x)

is satisfied pointwisely on [0,77] x € and the initial condition holds in the strong L?

sense; here of is as above;

e the Faedo—Galerkin approximation for the weak formulation of the momentum

balance: we look for u € C([0,T]; Xn) such that

/Qu( qbdx—/m ~¢ dr — A\ /J oA* L (pu) - ¢ dx dt

(42) /0/ su®u V¢da:dt+/u/s v¢da~dt—/0/7rdw¢da;dt

—)\/0/ QVA2S+1Q-¢dxdt+a/J(v9-V)u-¢dxdt=0
Q Q
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is satisfied for all ¢ € [0,7] for any test function @ € Xy, and Xy = span{¢,}¥ ,,
where {@;}2°, is an orthonormal basis in L?({), such that ¢, € C>°(Q) for all i € N;
e the approximate thermal energy equation:

(00 + B9Y) + div (u (00 + £9Y)) — div (k. V)
+ ; div (ﬁm—k — 59V, — ede” Vrk>

= % —ed® — <7rm + §194> divu + 20" |D(u)|?
1 0w,
Llom (9)|
o o
is fulfilled pointwisely on (0, 7)) x €2, the initial condition 9 is as above;

e the Faedo—Galerkin approximation for the weak formulation of the species mass
balance equations: we look for r = {r;}7 € C([0,T]; Yn)™ such that

/(m +e™)(t)g do — /9(57‘2 +e™)p(0) dz

+ A[A*V (ou)* + Ae|A*H gl + 2

/0/ e u— (0 +ee™)Vry) - Vo dr dt

“ /0/ (Co (0,9 i Vn) -Vo¢ dx dt

t t n
+/O/Q (co(g,ﬁ)vmgﬂ;m(r)) Vo da dt+/ﬂ/ﬂ gnf:’% de dt

is satisfied for each k = 1,...,n and for all ¢t € [0,T] for any test function ¢ € Yy,
and Yy = span{¢;} Y, where {¢;}3°, is an orthonormal basis in L?({2) such that
0
¢i € C*°(Q) for all i € N and the initial condition 7)) = log &
In the system above we introduced the following notation:

(45) o" = kae k
k=1
and
Fip =Fi(o,0,r), Fil(o,9,r)=—Colo,V <Z )V + Vlogﬁsz )
=1 =1
~ ﬁckl(T)
D - kel m — m I’ I m. "
k() wmerkmke e, T (0, 7), T (9, 7) Zﬁe

mye’®

n

Cri(r) =Cri(Y1,...,Y,), where Y, =

which formally coArresponds to the definition of g, above. From the definition it follows
that the matrix Dy, is symmetric, positive semidefinite, and its L norm is bounded
by a constant dependent only on my, ..., mg. In particular,

(46) 0<Du(r)<e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/15 to 129.31.137.208. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

HEAT-CONDUCTING, COMPRESSIBLE MIXTURES 3761

Note that passing to the limit N — oo in (41)-(44) and setting rj, = log 2=, we
formally recover our previous approximate system.

Remark 4. The role of parameter [ is significant in obtaining the weak formula-
tion for the total energy balance. We need it to pass to the limit in Q especially in
the term of the form p¥?V4¥. This in turn is needed to close the B-D estimate.

THEOREM 3 (existence of regular solution). Let N € N, ¢, 6, and A > 0. Let
m?, o}, IV, o) be as above. Under the assumptions of Theorem 1 and assumptions
stated above in this section, for any T > 0, there exists a solution of system (41)—(44)
in the sense specified above.

4. Basic level of approximation. This section is dedicated to the proof of
Theorem 3. The strategy of the proof can be summarized as follows:

o We fix u(t, z) in the space C([0,T]; Xn) and ry in C([0,T]; Yn) and use it to
find a unique smooth solution to (41) o = g(u).

e We regularize functions ry(t,z), k = 1,...,n with respect to time by a con-
volution with a smoothing kernel denoted by ¢ and we find J(u, g, 74,¢), a unique
solution to a regularized version of (43).

e We find the unique local-in-time solution to the momentum equation and the
species equations by a fixed point argument.

o We extend the local-in-time solution for the whole time interval using uniform
estimates.

e We pass to the limit £ — 0™ and thus prove Theorem 3.

4.1. Continuity equation. We first prove the existence of a smooth, unique
solution to the approximate continuity equation in the situation when the vector field
u(z,t) is given and belongs to C([0,T]; Xn).

The following result can be proven by the Galerkin approximation and the well-
known statements about the regularity of linear parabolic systems (for the details of
the proof see [13, Lemma 3.1]).

LEMMA 4. Letu € C([0,T); Xn) for N fized and let ¢S be as above. Then there
exists the unique classical solution to (41), i.e., o € V[g AL where

e [ oeC(0,T)C(Q),
(47) Vior) = { 8th € Cg([O,T];CO’”(Q)))- }

Moreover, the mapping u — o(u) maps bounded sets in C([O,T];XN) into bounded
sets in V[g ) and is continuous with values in C([0,TY; C*(Q), 0< v <v<l,

(48) 9_067 Jo ldivulloedt <52 gy < GOelo Idivulledt g6, 11 + € [0,T], = € Q.
Finally, for fited N € N, the function o is smooth (C°°) in the space variable.

4.2. Temperature equation. The existence of a unique solution to (43) can
be proven as in [13] with the necessary modifications to accommodate the extra terms
due to the dependence of the species concentrations. First, however, we need to
regularize the coefficients of (43) with respect to time. We will consider the following
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system
d(09 + BU*) + div ( (00 + BY*)) — div (k£ V)
+ Z div ( — 0UVry, — eve™ 5Vrk)
(49) R 3
_ 5 4 : n 2
@—819 (wm+§19 >d1vu—|—2g |D(u)]
10w,
+ A AV (ou)|? 4+ Ae|ASH )% 4 Q&r (o )|V 12,

Here & denotes the convolution with the standard regularizing kernel we applied at sev-
eral places to the time variable of function r(t,x) = {r1(t,x),...,r(t, )} (extended
by the initial value to negative times); moreover, we denoted

Re ¢ = 56(97 197 TE)

and

Fk,f = Fk(g,ﬁﬂ', T‘g) = —CQ(Q, <Z Dkl 7‘5 VT‘l + VlogﬁZDkl 7‘5 )

=1 =1

We have the following lemma.

LEMMA 5. Let u € C([0,T]; Xn) be a given vector field, r, € C([0,T];Yn),
k=1,...,n, be given functions, and let p(u) be the unique solution of (41).

Then, (49) with the initial condition ¥ defined above admits a unique strong
solution 9 = ¥(u,r) which belongs to

2 2
V{gT]:{ 89 € L2((0,T) x Q), AY € L2((0,T) x gz) o }

(50) 9 € L0, T;W2(Q), 9,071 € Lo((0,T

Moreover, the mapping (u,r) — Y(u,r) maps bounded sets in C([0,T]; Xn)x
C([0,T); Yn) into bounded sets in V[gj] and the mapping is continuous with values in
L*([0, T[; WH2(92)).

Proof. The rough idea of the proof is to transform and to regularize (49) in such
a way that the classical theory for quasilinear parabolic equations could be applied.
Let us consider the following approximate equation

48094
<9n + (o ) 00 + div((up),9 + ﬁuaf}) —AKye

o [V 0 n_
K n
* Ox; 1 ox; [KE(Q’ S,’r‘g)] + Z [Dkl(T'g)Co(g, 5)] ds
(51) k=1
— Zdlv < Co Qna ZDM 7‘5 Vrl nt OAYAES n+ e EVr), ?7)
=1

€ B .
= —90,0, + o 0,57 - <<7Tm>n(9n,’l"n) + 592) div u, + G, (t, x).

By 1 we denoted mollification of functions in the following sense. For functions o(¢, x),
u(t,x), r(t,x), G(t,z) it is the mollification in the time variable; in the case of en-
ergy, pressure and the transport coefficients it is the mollification with respect to all
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independent variables; the functions are assumed to be extended to the whole space
in the following way:

a(z) if z € (0,00)M,

max{inf,¢ g o0)m a(z),0}, M=12

@) = {

Moreover we set

. NTTE
R VT

and

9 n
Kfﬂ? = Kn(g,’ﬂ,’l“f) :/ I{sg 77_|_ Z Dkl ’I“g OO Q, )] ds,
1 k=1

[Kee]" = e0f + (K), (0n,0n) + 595, [Dii(re)Colo, 8)]" = bkl(r§)<co>n(9na 6,),

1 9m,
G(t,a:) = 2Q"|D(u)|2 + /\|ASV(QU)|2 + /\8|AS+1Q|2 Qaﬂ' ( )

[Vol*.

Now, for &,n, N fixed, we can combine the Ladyzhenskaya—Solonnikov—Uralceva
theorem about the existence and uniqueness of solutions to the quasilinear parabolic
problem [26] together with standard estimates for parabolic equations in order to find
the unique ¢ = 97 solving (51), such that

9" e C([0,T); C2HQ)) NCH[0,T] x Q), 89" € CH/2([0,T); C(Q)).

The following bounds are satisfied uniformly with respect to n:

T
(52) eS&teS(lép - ||19nHW1 2 +/O (||3t19’7||L2(Q)2 + HA’L?nHiz(Q)) dt S C

with the constant ¢ which depends only on the following quantities: ||ul|c(o0,77:xx)>
ol fo,r1 x> 1A olleo,rix), lo™ L= o,myx9); ITllcqo,m,ya ITeller o, va)m
and the initial value |[Jo|lw1.2(q)-

In addition, analogously to [13, Chapter 3], one can prove a comparison principle
in the class of strong supersolutions and subsolutions to (51), which due to the pres-
ence of singular terms 5z——s + >, 9 causes the temperature 9" to stay away from 0 and
be bounded from above by

Hﬁn”LOO((O,T)xQ) + ||(19n)_1HL°°((O,T)><Q) sc.

With these bounds at hand we may let n — 07 in (51) to obtain the unique solution
of (49) belonging to the class (50). Moreover, the uniform estimates from (52) im-
ply compactness of solutions in L2([0,T]; W2(Q)). The continuity of the mapping
(u,r) — Y(u,r) then follows from uniqueness of solutions established above. O
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4.3. Fixed point argument. Having all the necessary elements prepared, we
are ready to apply the fixed point argument. We use the Schauder fixed point theorem
to find a solution to the momentum and the species mass balance equations.

More precisely, we prove that there exists 7 = 7(IN) such that u solves the ap-
proximate momentum equation (42) and r solves the species balance equation (44)
with regularized coefficients,

/(5rk+e%)( ) dx—/g(5rk+e”)(0)¢ dz
/n/ etu— (6 +ee™€)Vry) - Vo do dt

(53) /n/ <Co (0,9 i 1(re) Vrl> - V¢ dx dt

t t n
_/0/ <C’O(g,19)V1Og192f)kl(T§)> Vo da dt+/0/ Qﬂf“% de dt
Q = o Mk

for ¢ € C*°(Q) and t € (0,7]. To this purpose we consider the following mapping

T :C([0,7]; Xn) x C([0,7]; YN) = C([0,7]; Xn) x C([0,7]; YN ),
(54)
T(Vv Z) = (u,r),

which attains a solution to the following problem

u(t) = Mooy [0+ fy PxyN (v, 2)(s)ds] .

(55)
R(®) = Kuygo [ +¢)0 + i Pry Lulv. )(5)ds]
where
W20 = [ (v o) : Vo do— [ 2°D(v): Vg da
(56) + / (9, 0, z) div g dx + )\/ oVAZT . ¢ dx
Q Q
+ )\/Q oA® div(A®V(vp)) - ¢ dx — E/Q(Vg -V)v-¢ dx
and
Mol X = Xy, [ oM, w6 do = (w.d). wid € X
Similarly,

(Lr(v,2),0) = @ ﬁwk(b dx +/ (ez"‘v — (0 + ee®€)Vzy,
o Mk

— Co(p,9 (Z 1(2e VzH—VlogﬁZDkl 2¢ ))~V¢dx

=1 =1
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and
Kol Vy = Vae [ (K b6 do = (1.0). 90 € V.
Next, we consider a ball B in the space C([0,7]; Xn) x C([0,7]; Yn):
B = {(v,2) € C(10,7); Xn) x C([0,7]; Vi) :

Ivllicgoxy) + Z Izl o(o.va) < R}.
k=1

We need to show that the operator 7 is continuous and maps Bpr , into itself,
provided 7 is sufficiently small. First observe that we have

H./\/’(ll, T)”XN
7)< c[(le"lvy + llollz=) (lullk, + [ullxy) + ol + 19170

+ 10" lyw |9 oo () + Nl Lo o) (||QHW4S+3v°°(Q) + HQ||W4S+2’°°(Q)H“”XN)]
and

1Lk, m)llyy <e[(1+[le™ () (lullxy + Irellva + 0" vy 191l ()

58
%) + llellzoe) (19l @I7llya + [19lwr2@)]-

To justify that the higher order gradients of the density are bounded, one needs
to recall that the unique solution p to the approximate continuity equation (41) is
smooth in the space variable. Therefore we can put the term div(pu) to the right-
hand side (r.h.s.) of (41) and then bootstrap the procedure leading to regularity (47);
see, e.g., [26, Chapter IV]. By this argument, the term oVA2?**1p in the approximate
momentum equation makes sense, i.e., it is bounded in L>(0, 7; C*°(Q)).

From estimates (57), (58), the estimates established in Lemmas 4, 5 and from
(55) it follows that for sufficiently small 7, operator 7 maps the ball Br ; into itself.
Moreover, T is a continuous mapping and its image consists of Lipschitz functions,
thus it is compact in Bg . It allows us to apply the Schauder theorem to infer that
there exists at least one fixed point (u,r) solving (42) and (53) on [0, 7].

4.4. Uniform estimates and global-in-time solvability. In order to extend
this solution for the whole time interval [0, 7], we need a uniform bound of the solution.
It follows from (55) that u and r are continuously differentiable functions, therefore,
system (42), (53) may be transformed to the following one:

t
. _ 2s+1 .
/{lﬁt(gu) ¢ dx /\/O/QQA (ou) - ¢ dz dt
(59) —/Q(Qu®u):V¢da:—|—/QS:V¢dx—/Q7rdiv¢da:

t t
—)\/0/ QVA28+1Q-¢dxdt+s/0/(vQ-V)u-¢dxdt=0,
Q Q
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satisfied for any ¢ € X on (0,7), ou(0) = Px,m°, and
/ O (o, + ™) dx :/ (e"u— (6 +ee™)Vry) Vo da
Q Q

A <C() Q, ZDM T¢ VT[) V(b dx
+/ (co(g,ﬁ)vmgﬁzm(rg)) V¢ da
Q

=1

holds for any ¢ € Yy on (0,7) and (dry +e™)(0) = Py, [(679 +¢™)]. Therefore we can
test (59) and (60) by u(t) and r(t), respectively. For the approximate momentum
equation, using the continuity equation, we obtain the kinetic energy balance

d 1, 0 Ay
il - _vs+1 2 . d /
pr Q(2@|u| +2| ol* + oe (9)) T+e LoD

—|—/ (20"D(u)]> + A|A*V (ou) [ + Ae|A*T o) da = / g divu du.
Q Q

o,

|Vo|? dz
(61)

Adding, to this, equality (49) integrated with respect to space and integrating the
resulting sum with respect to time we obtain

[ (3elul? 0+ 319070+ 0e(t)) e+ [ e
_/Ot/ 5 dx dt+/ (%9|u|2(0)+3|V28+19|2(0)+Qe(0)> .

Next taking ¢ = r(t) in (60) and then summing with respect to k = 1,...,n we get
S d r]% Tk Tk
ZE/Q<5§+9, TR — € dx
+Z/ ( (6 + ee™€)|Vri |2 + Colo, ¥ Z 1(re VTlVrk> dx
. 0" Jwg
=— e divu dz + / ri d
> > [

/Co Q, )Vlogﬁ Z Dkl 7‘5 VT‘;@ dx.
l,k=1

(62)

(63)

Since ﬁkl(r) is a symmetric, positive semidefinite matrix, the last term on the Lh.s.
is nonnegative. On the other hand, for ¢ =1 we get from (60)

0"y,

Q Mk

(64) / Du(6rs + o) da = dz;
Q
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multiplying these equations by myg, summing them, and integrating with respect to
time yields

5Zm;€/ ri(t) do + Z/ mye'™(t) do

k=1 @ k=19

= 5ka/ r,(0) da + Z/ mye’™(0) dx
k=1 Q k=179

(65)

for t € (0, 7).

Note that these equalities do not yet provide any uniform bounds for the velocity.
Indeed, proving boundedness of the r.h.s. of (62) and (63) requires an estimate of the
temperature. The next step will be, hence, devoted to derivation of such an estimate
from the so-called entropy balance equation.

4.4.1. Entropy estimate. Our aim now is to derive a fundamental estimate
for our system. It can be viewed as a total global entropy balance. Indeed, using
(24) as a definition of the entropy, we will rearrange the internal energy equation, the
continuity equation, and the species mass balance equations in order to get a relevant
approximation of (25). However, due to the very low regularity of e"*, we can only
hope to have an integral equality rather then a pointwise one.

From Lemma 5 it follows in particular that ¥ = ¥(u,r) is bounded from below
by a constant. Therefore, dividing internal energy equation (49) by ¢ is possible and
the equation

gaﬂﬁ + 0¢ (olog V) + div (uplog¥) + div (%u193>
2
+eAp(1 —log?d) — div (ke(0, 9, re)Viog ) — W,ﬂ

n F
oo (kv

k

Fk & r 3 4
+Z 5V7‘k—5e kévrk V1Og19:@—519
57Tc

20" |Dul? + \|AsV(ou)|? + Ae(A%t1p)?

_ Tk i _—
Ze 1V11+<€ 9

D0 V2 |+

is satisfied on (0,7). In the next step we sum (63) (without summing over k) with
(64) and obtain

% A (e”‘rk + o1y (%k + 1)) dx

:/ <e”‘u— (6 +ee™)\Vr — Co(9, 0 Z 1(re Vrl> -Vry da
Q =1

n n’l9
/ <Co 9, 0) Z 1(re) Vlogﬁ) -V dac—k/Q Qmwk(m—i—l) dz.

k

Summing the above equations with respect to k = 1,...,n and subtracting the
obtained sum from (66) integrated over Q we get
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a 6193+Qlog19 Zewk—zszrk( 1) ] e
dt
+ / div —ﬁu193 + uplog ¥ + uZe”c dz
Q 3

k=1
n

/ <d1v (ke(0,9,7r¢)Viog V) — Z ( — 0V —aer’“5Vrk)> dz
Q

+5/194 dx+6/VQ~Vlog19 dx—Z/(5+seT’“5)Vrk-Vlog19 dx
Q Q -

:/19—1 (20"[Duf? + AA*Y(gu)[? + \e(A19)?) da
Q

ke(0,9,1¢)| VY|
+/Q19— Z g grwy do

+ Z / Co(0,9) Dy (r¢) (Vi + Viogd) (Vi 4+ Viogd) d
k=1

1 om €
+ /54—:‘3@”\& Vrpl2de +¢ | — CVQQdSC-l-/—dLC,
; K )9l S GeVel ot |

since > p_, wr = 0. In order to get uniform estimates we need to control the Lh.s.;
the simplest way to do it is to integrate the above inequality with respect to time and
then to subtract it from the energy balance (62). Hence we get

// 91 (26" Dul’ + \A*Y(ou)? + As(A10)?) da dt

+ Z // C() Q, )Dkl(’l”g)(VTl+V10g19)(v7‘k+V10g19) dx dt
k=1

ke(0,9,7¢) |V T n
+//@Tg)||dxdt—2//ggkwkdgcdt

one
+Z// (6 + ee™€)|Vry |2 d:rdt+a// 200 T |Vg|2 dz dt

—I—//@dxdt—ka//zﬁdxdt
oJa
(67) +/Q <%193( ) + olog ¥(0) kzle”rk —527“1C (%k—kl) (0)) dx

+ [ (Gee) + 51V a0 + 0et)) o
— [ (5ol + 5195702 0) + 0e(0)) @0

+/Q (%W( )+ olog¥(T Ze”rk 5%(2’“ +1) (T)> dz
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+//%dxdt+£//z94dxdt+s// Vo Viegd dz dt
0JQ 0JQ 0JQ
—Z// (0 +ee™¢)Vri - Vlogd dx dt.

k=107

To control the r.h.s. we take adventage of the fact that the heat-conductivity coefficient
depends on the partial densities. We write

E/Vg-Vlogﬁ da:—Z/(5+se”v€)V7’k-Vlog19 dz
Q -

< e\ (09) "' Vol 2o VeIV log 9| 20y + 52 [Vl L2 IV log ¥l 2(a)
=1

+ EZ H\/erk'gvrkHLQ(Q)H\/ e”mVlogﬁHLz(Q)

k=1
Obviously,

€ Z [VerreVrg| 2ol VerreViog ¥ 2(q)

k=1
S € T 2 S € T 2
S;E/Qe 78 Vg dx+;§/§ze“|V10g19| dex,

and the last term is absorbed by the e-dependent part of the heat flux. Indeed, due
0 (39) and (45)

Z / f’k£|Vlog19|2d;r<Z /mkerké|V1og19|2 da:<—/gg|V10g19|2d:r
k=1 "=

To control the positive part of the entropy at time 7 and the negative part of it
at the initial time ¢ = 0 we note that

A(%ﬁg( ) + olog d(r Ze”rk 5;17’;C (%4—1) (7’)) dz

</ (fmax{g 19(7)}3+[910g19(7)]+

n

+Z[ e re(r ++5Z[ ( )(T)}+>dx,

=1

where by [-]+ we denoted the positive part of a function. Hence, on account of (62)
we may write

<%19 (1) + ologI(t Ze”rk —527“k <— )(7)) dz
SC(Q,T)+/S2(ﬂ194()+Q19( 7)) da < e(Q,7) + // da dt.

S

(68)
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On the other hand, we easily verify that

//%dxdt+s//194dxdt§c+//%dxdt+a//z95dxdt,
0919 0JQ 0919 0JQ

which appears on the L.h.s. of (67).
Summarizing, we have shown the following estimate

1 A
sup [ (GaPo) + T 0P + ge(t))
tel0,7] JQ

—|—// 97" (20" Dul? + A|A*V(ou)|* + Ae(A*T9)?) da dt
0/a

+ Z // Col0,9)Dyi(re) (Vry + Viogd) (Vry, + Viogd) da dt
ki=1"70/9

T 9 n T
+//M}ﬂdxdt_2// 0" giop da dt
0Jo =1707/9
+Zn:/T/ (6 + ee™)|Vry|* dz dt+s/T iaﬁc|VQ|2 dz dt
—~ JoJa 0o 0V Do

+//%dxdt+£//ﬁ5dxdt§c.
097‘9 0/Q

Taking s from the density-regularizing term sufficiently large we can show that the
density is separated from 0 uniformly with respect to all approximation parameters
except for A. Indeed, since by the Sobolev embedding [0~ || 1) < ¢|lo™ w1 (o)
and

V30 i < (L4 V20l n2@)? (L + loH nae))*s

where the last term is bounded on account of (69) and the assumption that v~ > 4.
So, provided that 2s 4+ 1 > 3 we have

(70) HQ*1||L°Q((O’T)XQ) <c¢(A) a.e. in (0,7) x €.

4.4.2. Global-in-time existence of solutions. The uniform estimates for u
and 7, can be summarized as follows:

lvoullLe<(0,r;2(0)) + \/X”ASV(QU)HLQ(O,T;L2(Q)) <c
and
\/SHTICHLx(O7T;L2(Q)) =+ \/SHTICHL2(07T;WL2(Q)) <c

Moreover, the density g is bounded from below by a positive constant on account
of (70). By the equivalence of norms on the finite-dimensional spaces Xy and Y we
can thus deduce the uniform bounds for u and 7 in C([0, 7]; Xn) and C([0,7]; YN ),
k =1,...,n, respectively. As the global estimate does not blow up, we can return
to the procedure of construction of the local-in-time solution described in sections
4.1-4.3. By a contradiction argument we get a solution defined on [0, T for arbitrary
but finite 7 > 0, exactly as in [33].

Remark 5. Finally, note that (69) is global in time and independent of . There-
fore it is straightforward to let & — 0, since 74 ¢ — 7 strongly in C'([0,T7], Yn).

This remark completes the proof of Theorem 3. O
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5. Limit passage in the Galerkin approximation (proof of Theorem 2).
The purpose of this section is to let N — oo in the equations of the approximate
system introduced in section 3. We start with summarizing all the estimates that are
uniform with respect to N derived mostly from (69) and its consequences. This will
be done in subsection 5.1, then in subsection 5.2 we use these estimates to extract the
weakly convergent subsequences and to prove that the limit passage N — oo can be
performed.

5.1. Estimates independent of NN. Note that the above estimates are not
only uniform with respect to time but also with respect to N. From (68) and (69) we
get ons(In, on,7n) € L(0,T; LY()); more specifically, we have
(71) llon log In |l Lo o,z (@) + €™ i v | o 0,721 (0)) +017% w2 (0,702 (02)) <

also, from (62), we get that

2 2s+1
lowTantl| Lo 0,721 ey + VAV ol o.riaatan
(72) + llovec(om)| Lo o.7:21(0y) + 189N L= 0,721 (02))
+llonIN | (0,11 () < ¢

In addition, we have the estimates following from boundedness of the entropy pro-
duction rate:
e the velocity estimates

207 A
(73) H”%DHN ﬁ—ASV(QNuN) <
N L2((0,T)xQ) N L2((0,T)xQ)
e the density estimates
As+1 (9 .
(74) Ve | == — 8L <c
VIN L2 0,1)x0) onVn | den L2((0,T)xQ)
e the temperature estimates
Vke(on, 0%, IN)VIN ‘ £
) il
(75) N L2((0,T)xQ) NALE((0,T) <€)
+[|edy ||L1((o Tyxa) S 6
e the species densities estimates
(76) H\/5 + e . NV N‘ <q
L2((0,T)xQ)

moreover, we can write

// Co( QN,ﬁN)Dkl (Vrin +Viogdn) (Vreny + Viogdy) do dt
k=1

T
(77) :Z//M-(Vrkw+v10gﬁ) de dt

mp

n

T
:// T (N, TN) ZF (on,VN,TN) do dt <.

Colon,Vn)IN Pt mpe’k N
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Temperature estimates. One of the main consequences of (69) is (75) which,
for ke(0™, 0,9) satistying (39), provides a priori estimates for the temperature

11+ \/eok + Von)V1og On| L2 (0.1)x9)
+ Ve VIN [l 20,1y xen [V BYI% L2 0.y ey <

where a € [0,£] and B > 8. To control the full norm of 9%, in L*(0,T; W2(£2)) we
combine the above estimates with (72). Therefore, the Sobolev embedding gives

(78)

(79) IVBIN| e 0,182 < €
Estimates of the species densities. From (71) and (76) it follows that
(80) [Ve™ N| < 2|Vy/eTkN |\/eTkN

is bounded in L2?(0,T; L(Q2)), thus, by the Sobolev embedding, €™~ is bounded in
L2(0,T; L7 (). Returning to (80) we get

(81) ||Ver’“NHL3 OTLS(Q)) <6

using once more the Sobolev imbedding theorem and the bound in L°°(0,7; L'(£2))
we end up with

Having this, we return to (80) to deduce ||Ve"*~ ||L4 (OT)xa) = < ¢(e).

Kinetic energy estimate. We now integrate (61) with respect to time to get
1 A
[ (Goxtunt+ 5175 ox? + oveclox) ) (1) o
Q

T

1 0me

+5// —MWQNF de dt
0oJaoo Oon

T
(83) + // (20% D(un)* + A|A*V (onun)|* + Ae|A* T oy [?) do dt
0JQ
r B
= // (mn - —ﬁjlv) divuy dz dt
0JQ 3
1 2 )‘ 2s+1 2
+ §QN|UN| + §|V on|* + onec(on) | (0) d.
Q
From (83) it follows that

| VERDuN | o,y + [ VA4 T (o)

L2((0,T)x)

1 671'0(@]\])

\/_ Aerl
+Voe|| Don

QNHL2 ((0,T)x9) Von

(84)

L2((0,T)xQ)

<c+6//19 |divuy| dz dt+cZ//\/eTkN19|\/eTkNd1qu| dx dt
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and the r.h.s. is bounded. Indeed, we have

B .
§H19§1v divun|lziomyx0) < BIINIT= (01110 IVON L2072 (92))
[Vun || 20,700 < llunllzzomws2@);

and the r.h.s. is bounded provided 2s + 1 > 3. To see it, we write

\%: Von)?3 _
QQQN + ( §4N) > oNuy + QN1V3(QNUN)
N N

(85) Viuy = V3(oy ovun) = (

and boundedness of the r.h.s. follows from (70), (72), and the Cauchy inequality. To
estimate the last term from the r.h.s. of (84), observe that we have

Vere N gy [Versn divuy| < c(e)e™ N 9% 4 ee™ N [Duy|?

and the last term is absorbed by the Lh.s. of (83), whence for the first term we use
the following estimate

Tlc,N”

lle™ ¥ 0% L1 (0, myxe) < lle™ ]|, 5 (0.T)x9) 10N 1750,y

both terms are bounded on account of (79) and (82) by a constant dependent on e.

5.2. Passage to the limit with IN. This subsection is devoted to the limit
passage N — oo. Using estimates from the previous subsection we can extract weakly
convergent subsequences, whose limits satisfy the approximate system. It should be,
however, emphasized that at this level we replace the weak formulation of the thermal
energy by the weak formulation of the total energy.

5.2.1. Strong convergence of the density and passage to the limit in the
continuity equation. From (83) and a procedure similar to (85) we deduce that

(86) uy —u  weakly in L?(0,T; W2+12(Q))
and
(87) onN — 0 weakly in LZ(O,T; W25+272(Q))’

at least for a suitable subsequence. In addition the r.h.s. of the linear parabolic
problem

Oion —elAoy = div(enuy),
QN(Ov f) Qg,)\’

is uniformly bounded in L?(0,7; W?*2(Q)) and the initial condition is sufficiently
smooth, thus, applying the L? — L theory to this problem we conclude that {0,on }5°
is uniformly bounded in L?(0, T; W?252(Q)). Hence, the standard compact embedding
implies oy — 0 a.e. in (0,7") x Q and, therefore, passage to the limit in the approxi-
mate continuity equation is straightforward.
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5.2.2. Strong convergence of the species densities. To show this property
we take advantage of the species mass balance equation; we observe that

Zk 1e k,N Fk QNaﬁerN)
F LON, T \/
| k(QN N N | CO QN719N eT‘kN
on,UN,TN)|

ey |Fx(
onIN Co( QN719N Z VmgnersN

Co(on,Un)esN

ZZ:1 erm N

so, since [|[vonIn|io,r)xe) < IIveonlLeorLs@)lVIn|lLio,riL2(0)), we have
that

(88) ||Fk(QNa19N7TN)HL3((O T)xQ) sé

Having this, we can repeat our reasoning from [34] (since 4/3 > 5/4) to prove the
following lemma providing compactness with respect to time.

LEMMA 6. There exists a constant ¢ depending on the initial data, T, and the
parameter € such that

(89) 10,3 oy 13 ey < ©

Proof. We take any ¢ € W?(Q) c Wh2(Q) such that ||¢[w1s5) < 1 and
decompose it into ¢ = ¢1 + @2, where ¢; is an orthogonal projection of ¢ (with
respect to the scalar product induced by the norm of the space L?(f2)) onto Yy.
Using ¢; as a test function in (60) we show that

(90)
/ O (6rp, N + €™ N)o1 dx
Q

/ (e”‘~”u — (0 + e )
Q

(Il oo e 11, 5

Fk,N) Yy dx—i—/ QN19NOJI€¢1 Az
k

Q my

<o + 3 Vrn 2y + IV g g ) 61 lwoscan

L3

M- 11

e (IFkwll, g g + 1€V, 5 o 1081 2oc@) ) 1w .
=1
Then we have
Ore N s = sup }/37’1@.N i, ¢d$‘
10k, (8 )], ST R S ik, N ()

= sup /&mw ¢1d$ / |0k v (t, )1 | da

peW™h 5(Q Jillell<1

for some @1 € Wol"5(Q) N Yy. Hence

[0k, n (&, )|y, @
91 1
(01) < sup —’ / (6 4 e N BNy N (2, ~)¢dx‘
peW s (@)nYivslsl<1 0
and due to estimate (90) we end up with ||Oyrg N || s < el 0

Liorwri@) = 6
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We now apply the Aubin-Lions lemma to the sequence ry n; we deduce from (71),
(76), and (89) that it is possible to extract a subsequence such that

reN — 1 weakly™ in L°°(0,T; L(12)),
Vren — Ve weakly in L2((0,T) x Q),
Oyry, N — Opr, weakly in L%(O,T; W_l’%(ﬂ)),
ry,N — T, strongly in L2(0,T; LP(Q)), p < 6;

(92)

in particular, there exists a subsequence rj n which converges to ry a.e. on (0,7") x €.
Therefore, also,

e N —e™ ae. on (0,T) x Q.

Moreover, we have

5

Ve~ — Ve™ weakly in L2(0,7; L*(2)) N L1((0,T) x Q),

(93) 5

e N — e™  strongly in LY((0,T) x ), ¢ < 3"

The above considerations imply that the species mass balance equations will be sat-
isfied for N — oo if we validate that the temperature sequence converges strongly.
This is the purpose of the next subsection.

5.2.3. Strong convergence of the temperature. For the temperature we
have

(94) In — 9 weakly in L2(0,T; WH%(Q));

note that at this level, the time compactness can be proved directly from the internal
energy equation (43). Indeed, due to the continuity equation, we have

d(onVn + BIY) = — div(uyontn + Bundy) + div (k=(on, o%, IN)VIN)

n F
— Zdiv (19]\/ N _ 519erk,N — aﬁNVeT‘“’N>
my

k=1
£ Bt Y ai
(95) +19?v edy <7rm7N+ 319N> divuy
1 Om n
4—5—M|VQN|24—291\,|D(u1\;)|2
on OJon

10
+MAV(onun)? + M| A" oy = > T
=1

On account of (75) and (84) the last 7 terms are bounded in L'((0,7) x Q). Then it
follows from (72), (79), and (85) that I; can be estimated as

[unonON | iz 0,7y x0)

< c|lvonun||=(01;L2 ) IVoN L= (0,1:Lo @) 1IN | Lo (0, 7:29(0)) < ¢

HuNﬁjl\/||L3/7(O,T;L8/3(Q)) < cHu||L2(O.,T;L°°(Q))”19;1\/”L8/3((0,T)><Q) <g,
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where we used the interpolation

(96) |‘19NHL32/3((0 T)xQ) < c||19N||Loo(0 T;L4(Q)) ||19N||L8(0 T L24(Q))

hence, the last term is bounded provided B > 8.
For I recall that we have

ke(on, 0, In)VIN = (ko + €0 + on + onV0% + BIN) Vi,

therefore, using estimates (75) and (72), we verify that the most restrictive terms are
bounded. Indeed,

loN VIN | Lr((0,7)x0)

< CZ [V oRViog Un|lr2(0,1)x0)lle™ NH2

(O.T)x Q)H NllLs2/3(0,myx0) <€

with p > 1 on account of (96), further,

lenVINI oo 72 ) S ElVenVINILzo,m) <o Ve ll=(o,75me () < €

2
IVenVinVenINl, g )=t )
< H\/QNHLOO((O,T)XQ)H\/QNVﬁNHLz(O’T;L%(Q))||19NH%B(O,T;L3B(Q)) <c

Finally, since B > 8, 95%! can be bounded using (96). For I3, we have that

[9NF kN | L3227 0,1y x ) < 19N N L3275 0,1y x ) 1F kN [ L4730,y x2) < €5

IONNTIN 2 6 18 0y S IVPRN 2200 <) 19N [ 220 0,5 200)) < 6

19N VerN HL160/143((07T)><Q) < || Ve™ N ”L%((O,T)XQ)HﬁNHLwB((QT)XQ) <ec.
As a conclusion we have that
(97) O (onIn + BON) € LMO0,T; WHP(Q)) U LP(0, T3 W>9(9))

for some p,q > 1. On the other hand, since the time derivative 0;p is uniformly
bounded in L?(0,T; W?252(Q2)), 0 > ¢()\), and ¥ > 0, we have

19:9 N 210,75 1.0 ())ULP (0,75~ 2.(02))
< cl|d(onIn + BIN) | L1 0,110 () ULw (0,75W—2.(2))

thus, an application of the Aubin—Lions lemma gives precompactness of the sequence
approximating the temperature and we have

Oy — ¥ strongly in L” ((0,T) x )

for any 1 < p’ < 32/3.
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5.2.4. Passage to the limit in the momentum equation. Having the strong
convergence of the density, we start to identify the limit for NV — oo in the nonlinear
terms of the momentum equation.

The convective term. First, one observes that

onuy — ou weakly* in L°°(0,T; L*(2)),

due to the uniform estimates (72) and the strong convergence of the density. Next,
one can show that for any ¢ € U2, X the family of functions fQ onun(t)¢ dx is
bounded and equicontinuous in C([0,77]), thus via the Arzela—Ascoli theorem and
density of smooth functions in L?(Q2) we get that

(98) onuy — ou in C([0,T]; L2 .., ().

Finally, by the compact embedding L?(2) ¢ W~12(Q) and the weak convergence of
uy (cf. (86)) we verify that

oNuy @ uy — gu®u  weakly in L?((0,T) x Q).

The capillarity term. We rewrite it in the form

T T
// onVAZF oy ¢ de dt = // A® div (on¢) ATl oy da dt.
0Jo 0JQ

Due to (87) and boundedness of the time derivative of g, we infer that
(99) on — o strongly in L?(0,T; W2T12(Q)),
thus

T T
// As div(on@) AT oy dz dt — // A® div(pd) AT o dz dt
0Ja 0Ja

for any ¢ € C°°((0,T) x Q).
The momentum term. We rewrite it in the form

T T
—/\// onA* T oyuy) - ¢ dx dt = /\// AV (onuy) : A’V (on@) dx dt
0/ 0/

so the convergences established in (86) and (99) are sufficient to pass to the limit here.

The molecular part of the pressure. Passage to the limit here requires, for
example, the weak convergence of the species densities and strong convergence of the
temperature, which are guaranteed on account of the results from previous sections.

Strong convergence of the density and temperature together with the strong
convergence of the species densities enables us to perform the limit passage in the
momentum equation (33) satisfied for any function ¢ € C*([0,T]; X ) such that
¢(T) = 0 and by the density argument we can take all such test functions from
CH([0, T); W2+ (%)),

5.2.5. Passage to the limit in the species equations. As already mentioned,
this passage differs from what was done in the isothermal case studied in [34] only due
to a presence of ¢ in the form of diffusion fluxes Fj;. However, on account of strong
convergence of the temperature and species densities we can write

Co (9 =
Fpn=-— % chle”’N (VTZ,N + VlOgﬁN) — F
=17 =

weakly in L3 ((0,T) x Q).
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5.2.6. Passage to the limit in the internal energy balance equation.
Passage to the limit in the terms 20"|D(u)[?, A\|A*V (ou)|?, and \e|AsT1g|? requires
a sort of strong convergence of these quantities. This will be deduced from the kinetic
energy balance. For this purpose we need to show that u can be used as a test function
in the limit momentum equation. Here it is again important that we have the kinetic
energy estimate (83). Indeed, in (33) all terms are bounded due to estimates above.

Moreover, thanks to the lower bound of ¢ we can verify that u is actually a
continuous function with respect to time and that it is continuously differentiable.
To see this it is enough to differentiate (33) with respect to time and use the kinetic
energy balance.

Now, using u as a test function and taking advantage of the fact that the limit
continuity equation is satisfied pointwisely, we obtain

t
/0/ (20" D(W)|? + AA Y (gu) 2 + Ae]A*02) d di
Q
1 2 A 2s+1 12
(100) [ (Lo 4 22 02) () de
o 2 2

K 1
= /n/ mdivu dz dt+/ (—g|u|2 + i|V28+19|2> (0) dz
Q o \2 2

for any ¢t € [0,T]. On the other hand, due to (61), we have

t
lim /0/ (20% D(un) > + A|A*V (onun)|* + Ae|A* T oy [?) do dt
Q

N—o0

. 1 Ao2s
(101) +A}gn / (§QN|UN|2—|—§|V2 +1QN|2> (t) dz
[ee] Q

t 1
- /O/ = divu dz dt+/ (—Q|u|2 + 5|v25+1g|2> (0) da.
Q o \2 2

The comparison of these two expressions yields

IVerDun 1720,y x0) = IVE™DullZ2((0.1)x0)»
1A on (T2 0,1y x0) = 1A el 201y <)

IVAA*Y (v un) 17207y x0) = IVAA*V (0u) 1720 7y x)»
and for all ¢ € [0, 7] we have that

lonlun ()10 = lelulP @)l L),
HVQSHQN(t)HQH(Q) - HVQSHQ@)HH(Q)-

Having convergences of these norms and the relevant weakly convergent sequences we
deduce the strong convergence. On account of that we are able to perform the limit
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passage in the internal energy equation (43)

T T
//(919+ﬁ194)8t¢dxdt+//u(gﬂ+194)-v¢da:dt
0/ 0/

T
—//ﬁEVﬁ-V¢dxdt

+ Z// <19— — 69V — wvw) V¢ da dt
// ——8195 ¢dx dt+/T/ <7rm+é194) divug dx dt
// (AIAS (ou)|? + Ae| A% g2 + ( )|v |2>¢dx ”

—//2Q"|D(u)|2¢ dz dt—/ (Q19+ﬁ194) (0)p(0) dx
0JQ Q

for any smooth ¢ vanishing at ¢t = T', where the limit of the heat flux term should be
always understood in the following sense

(102)

T
(103) // keVY -V do dt
0Ja

T
:// Ko +e0" + 0+ 09?) VU - V(bdxdt——//ﬁB“A(bdxdt
0 B+1

5.2.7. Limit in the total energy balance equation. Now we use u¢ as a
test function in the limit momentum equation (33), using again the limit continuity
equation and after integrating by parts we get

// g_atqsd dt+// g—u Vé dz dt
_/0/9(2Qn13(u)u_7ru) Ve da dt
(104) _ /OT/Q 20" [D(w)[26 dz dt + )\/OT/Q A*V(ou) : A*V(oug) dz dt
+§/0T/Q|u|2vg-v¢ do dt—/OT/deivw do dt

T 2
As . AS+1 - _ |u| .
+ /\/O/Q div (ouo) o dx dt /QQ—(O)QS(O) dz

We apply to the approximate continuity equation the operator A® and then test it by
Adiv(VA®p¢) in order to obtain

T T
//Q gwASgFato; dz dt + /\//Q A div(eu) A o da dt
0 0
T T
+ 1v(ou 0- x dt — Ae 0 x dt
(105) A A* div(ou)VA®o - Vo do dt — A A*To?¢ da d
0/ 0J0Q

T
A
—)\s// AT VA% -V da dt + 5/ |VA®0|?(0)p(0) dz = 0.
0J0Q Q
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Now, summing (102) with (104) and (105) and using the limit continuity equation to

rewrite the term fo?ﬂ m. divug dz dt, we get the weak formulation of the total energy
plus some terms which will disappear in the subsequent limit passages:

T 1 A
// <Q€ + —olu* + —|V25+1g|2> Org da dt
0Ja 2 2
T 1 T
+// <uge+ —Q|u|2u> V¢ dz dt—// KV - Vo d dt
0JQ 2 0JQ

+ Z// (19—’“ LA aﬂVe”) Ve da dt
j=1 70/ \ T

+ /OT/Q mu- Vo dr di — /OT/QQQ"D(H)U) -Vo¢ dx dt

T R T
:_// —2—5195 gZSdJ’ dt+// Rs,)\(977~97u7¢) dx dt
oJa \ ¥ 0JQ

= [ (2600 + S0 + 5190P0) 0(0) as

(106)

with (103) and

Rex(0,9,u,0) = X [A%(div(oug))A* o — A® div(ou) A* o9

(07)  —AATdiv(ew)VATe- Vo — A[|A%(V(ew))*¢ — ATV (ew) : ATV (oud)]

T AAT QYA Vo — S |u*Vo- Vi +eVe- Vo (ec(g) + —még)> .

Finally we define partial densities in the following way:
or =mpe’™, k=1,...,n,
which finishes the proof of Theorem 2. O
6. Passage to the limit § — 0. From (71) and (76) we can deduce that
0rs >0 ae in (0,7)xQ, k=1,...,n.

We will concentrate here only on the strong convergence of the partial densities and on
the limit passage in the species equations, since the strong convergence of 15, 05, and
us to ¥, o, and u, respectively, can be proven identically as in the previous section.

Passage to the limit in (38) follows the same steps as in [34, Chapter III.C].
Indeed, repeating the procedure leading to (89), we can show that

[0c ks c

<
Liorw i) =
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and, thus, the uniform estimates from section 5.1 and the application of the Aubin—
Lions lemma give rise to the following convergences:

dlog LN strongly in L>(0,T; L*(Q)),
mg
Y 1og% — 0 strongly in L%((0,T) x Q),
k

5

Or,s — ok strongly in LI((0,7T) x Q),q < 3,

Vors — Vor  weakly in L2(0,T; L1og Lycax- () N LE((0,T) x €),
ors — o in C([0,T]; L1og Lyeak~ (£2)).
Moreover,

gro_ ., G strongly in LP((0,T) x Q), p < oo,

Zg:1 Ok,s Z:l Ok

o, >0 ae in(0,7)xQ, k=1,...,n,

and due to strong convergence 95 — 1} we obtain that
Frs — Fr  weakly in L5((0,7) x (Q)),

where Fj, depends on the limit functions o,4, 01, ..., 0n, as specified in (10). Thus
letting 6 — 0 in the approximate equations (38), we verify the following.
LEMMA 7. The limit quantities o, k= 1,...,n, satisfy

(108)  Oror + div(gru) — eAgg + div(Fr (0,9, 01,. .., 0n)) = 0"0w, k=1,..,n,

in the sense of distributions on (0,T") x €.
In addition, summing (108) with respect to k& = 1,...,n, property (20) and
Remark 1 lead to the following equation

Oro" + div(p"u) — eAp™ = 0.

This equation is, due to the previous lemma, satisfied in the same sense as system
(108), together with the initial condition p(0,2) = ¢® = >_;_, 0 () for a.a. = € Q.
Moreover, it is possible to identify o™ with o.—the unique classical positive solution
to the initial-value problem (41) constructed in Lemma 4; see [38, sections 7.6.3-7.6.7]
for more details. In particular, we know that any solution of (108) satisfies

ZQ;.C =p ae. in (0,7) x Q.
k=1

As a corollary we have that Y = % satisfies
(109) IYVilloo(o,myx) <1, k=1,...,n.

Remark 6. Note that at this level we already perform the limit in the total energy
balance (106) rather than in the internal energy balance. The latter will have from
now on an auxiliary character; however, after the limit passage § — 0 we will have to
replace the equality by inequality and we only have
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(110)
n F
dr(0V + BYY) + div(u(ed + pI*)) — div (k- (0, ¥)VV) + Z div (ﬁm—k - 819Ve”“> >
k
k=1
5o - (”m " %9) divu + 20|D(w) > + AA V(o) + Ae| A% g2

in the sense of distributions on (0,7") x Q.

7. Derivation of the B-D estimate. At this level we are left with only two
parameters of approximation: € and A. From the so-far obtained a priori estimates,
only the ones following from (62) and (69) were independent of these parameters.
However having the e-dependent estimate for A*T1p allows us to derive a type of
B-D estimate, from which it will follow that this estimate depends only on A. As a
by-product, we will derive the energy estimate independent of A\. Note that so far in
(84) we were only able to estimate the r.h.s. using the A-dependent bounds for u. We
will prove the following lemma.

LEMMA 8. For any positive constant r > 1, we have

4
dt Jg

+/ V(o) - Vr do + %/ o|Vu — VTu|? dx+2)\/ |ATT o2 da
Q Q Q

1 r—1 A
(el Voo + " ol + VA 4 roec(o)) do

+2(r — 1)/ o/D(u)? dz + 7“/ (Ae|AT o> + A[A*V(ou)|?) da
Q Q

2
V;b| dx

(111)
— ) . Vol
< E/Q(Vg Viu-Vo dx—i—s/ﬂAg

e /Q 0Vé(0) -V (#(0)A0) dz — ¢ / div(ou)¢ (0)Ag dx

Q

—l—r/ <7rm + §ﬁ4> divu dz — 2)\/ AV (ou) : A*V?p dx
Q Q

in D'(0,T), where V(o) = 2Vloge, ec(0) = Jy'y~>me(y) dy > 0.
Proof. The basic idea of the proof is to find the explicit form of the term

d

112 -
(112) i ),

(%Qlul2 +ou-Vo(o) + %ngS(g)F) dz.

The first term can be evaluated by means of the main energy equality, i.e.,

d 1 5 A ) / 107 _ o
= - ZIVAS . d —Zle d
dt/ﬂ<zglul + 2IV o|* + oe (Q)) r+e 200 Vol dz

1)+ / (20D (W) + AIA*V(ow) + Ac|A™ ) de
Q

_ / <7‘rm + éﬁ‘*) divu d.
o 3
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To get a relevant expression for the third term in (112), we multiply the approximate

[Vé(o)|®

continuity equation by 5

and we obtain the following sequence of equalities:

d 1

ot Q§Q|V¢(9)|2 dz
2 2 2
(114) :/Q<gatlv¢£9)l B |V¢§9)| div(gu)+5|v¢;g)| Ag) da
2 2
= [ (e76(0) ¥ @010 - TEEE divion) + GO Ag) o
Using the approximate continuity equation, we get
[ Vo) v (@ 00r0) ar
(115) = [ coVole) V(& (0)80) do— [ oVui Voo @ Volo) do
Q Q

- / 0Vé(0) - V (¢ (0)odivu) do - / ou® V(o) : V26(o) du.
Q Q

Integrating by parts the two last terms from the r.h.s.,
/Q 0V6(0) -V (¢ (0)r0) da
_ / coVé(0) -V (¢ (0)Ag) da / oYU Vo(0) ® V(o) du
(116) @ @
4 / 0|Vé(o) divu dz + / 2¢ (0)Ad(0) divu do

Q Q

+ /Q V6(0)|? div(ug) d + /Q ou - V(V(e) - Vo(o) da.

Combining the three previous equalities we finally obtain

d 1 9
E/Q§Q|V¢(Q)| dx

_ / coVé(0) -V (¢ (0)Ag) da / oVu: V(o) ® Vo(o) da
Q Q
2
_’_/987|V¢2(g)| Ap dx

+/ 0°¢'(0)Ad(p) divu d:c+/ 0|Ve(o)]* divu dz.
Q Q

(117)

In the above series of equalities, each one holds pointwisely with respect to time due
to the regularity of o and V¢. This is not the case of the middle integrand of (112),
for which one should really think of weak-in-time formulation. Denote

V=w*»t2(Q), v=pu, and h=Ve.

We know that v € L2(0,T;V) and its weak derivative with respect to time variable
v/ € L?(0,T;V*), where V* denotes the dual space to V. Moreover, h € L?(0,T;V),
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h' € L%(0,T;W2=%2(Q2)). Now, let v,,, h,, denote the standard mollifications in
time of v and h, respectively. By the properties of mollifiers we know that

Vi, Vi, € C(0,T;V), hy,,hl, € C>®0,T;V),
and
(118) Vi — v in L2(0,T;V), h,, —h in L?(0,T;V),
v, — v in L*0,T; V™), h! —h’' in L%(0,T;V*).

For these regularized sequences we may write

d d
(119) —/ Vm * hm do = _(Vm7 hm)V = (V;na hm)V + (va h;n)v
dt o, dt

Using the Riesz representation theorem we verify that v/, € C°°(0,7T; V') uniquely de-
termines the functional ®,, € V* such that (v, ¢)v (@y/ w>V*’V

fQ vi, - dz Vi € V; for the second term from the r.h.s. of (119) we can simply
replace V = L?(Q) and thus we obtain

T T T
_/ (Vm, hm)le dt = / <V;n, hm>v*_]v'¢/’ dt + / (Vm, h;n)L2(Q)’(/J dt
0 0 0

Vi € D(0,T). Observe that both integrands from the r.h.s. are uniformly bounded in
LY(0,T), thus, using (118), we let m — oo to obtain

d .
E(V’ h)y = (v!,h)y. y + (v -h')2q) inD'(0,T).

Coming back to our original notation, this means that the operation

d
(120) 7 /Q ou-Vo(p) do = <8t(gu),V¢>V*7V + /Q ou-9 Vo dx

is well defined and is nothing but equality between two scalar distributions. By the

fact that 0; V¢ exists a.e. in (0,T) x Q2 we may use the approximate continuity equation
to write

(121) /qu -V dx = /Q(div(gu))z(b’(g) dz — 6/Qdiv(gu)¢’(g)Ag dz,

whence the first term on the r.h.s. of (120) may be evaluated by testing the approxi-
mate momentum equation by V¢(p):

(O(ou), Vo). = —/ 20A¢ (o) divu dz + 2/ Vu: V¢(p) ® Vo dz
Q Q
—2/ V(o) - Vodivu dz — / V(o) - Vrr do
(122) “ @
—/\/ ASToA® div(oV (o)) dx—/\/ AV (ou) : A*V(oV¢) dx
Q Q

—/ V(o) - div(ou ® u) dz — 5/(Vg -V)u- V(o) dz.
Q Q
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Recalling the form of ¢(p) it can be deduced that the combination of (114) with
(120)-(122) yields

d 1

& | (o0 9000 + Savo0P) @

—l—/ Vr-Vo(o) do + 2)\/ |AST1p2 dx
Q Q

—— [ Volo) divleusw do+ [ (div(ew)¢/(0) da

(123) @ @

- 2)\/ A*V(pu) : A°V?p dz — 5/ div(ou)¢’(0)Ap dx
Q Q

+E/9MA@dx—@/g(V@-V)u-V¢(g) dz

e / 0V6(0) -V (¢/(0)Ao) da.

The first two terms from the r.h.s. of (123) can be transformed into
| diven) 26/ (0) = Vo(o) divion o w] da
— [ (@@ w? + 06/ (e)u - Vodivu - o8/ (¢)Velu- Yw) ds
Q

= 2/ (o(divu)? — o(divu)® — pu - Vdivu + 0d;ju;0;u; + ouVdivu) dz
Q

2
:2/ 00;u;0ju; dx:2/ o/Du/? dx—2/ 0 (M> dx
Q Q Q 2

and, thus, the assertion of Lemma 8 follows by adding (113) multiplied by r to
(123). d

In order to deduce the uniform estimates from (111) we need to control all the
nonpositive contributions to the Lh.s. as well as the terms from the r.h.s. The e-
dependent terms can be bounded similarly as in [34], so we focus only on the new
aspects. To this purpose we first derive the uniform bounds for partial pressures.
Denoting

(124) CVup = (Va,p),
where

P1 V1

p= : and Vp= : ,

Pn Vpn
we obtain, for every kth coordinate k& € {1,...,n} and every ith space coordinate
i € {1,2,3}, the following decomposition
(125) (VeiD)k = (Va,D)E 4 ;Y.
Next, multiplying the above expression by mj, and summing over k& € {1,...,n} one
gets

| _aleh) T m(Tapll
ZZ:l mg Yy ZZ:l my Y

Qg
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Returning to (125) we can express the full gradients of partial pressures in terms
of gradients of temperature, density, and the gradient of the “known” part of the
pressure

V(e9) Yo mk(Vp)i) v
D1 MYk D1 MYk
As was stated, we will use the above expression in order to control the molecular part

of the pressure from the Lh.s. of (112).
Estimate of V7 - V¢. Since V¢ = 2V log ¢ and, due to (126), we obtain

(126) Vo= (Vo) + (

2 . 4,
|V ol n 2Vg Vm n 28 VY VQ.
0 0 3 0

(127) V(o) - Vi = 2m;(e)

The first term is nonnegative due to (8), so it can be considered on the Lh.s. of (111)
and we only need to estimate the second and the third one. Since Vr,, =Y 1, (Vp)k
and Y p_;(Y)r = 1, we may use (126) to write

. .\ I 2
Q o Q Zk:l OkMg
Vo -V Vo -S7_ Vp)L
(128) N o Vie . 0 ZAH mi(VP)i .
Q Zk:l Ok Q Zkzl OkM;

4
S
i=1

Note that I5 is nonnegative, so we can put it to the Lh.s. of (111) as well.
Next, I1 and Iy can be estimated in a similar way; we have

2 n 1|2
i) [ S g, o [0 o [ ITEATDUE

Q Jo

so for € sufficiently small, the first term can be controlled by I since 0 < g < p for

all k =1,...,n. Concerning the second integral, from (77) we have
(130) // W’” LT SR <e
o f— Colok
Using (14), the integral may be transformed as follows:
(131) // CO ColCVPE 4 ar < e,
Q 7Tm199k

thus, due to (124) and (13), the integral over time of the r.h.s. of (129) is bounded.
For I3 we verify that

0 2 2
—— | < c(€)o|VI* + €|V /0|7,
ST e (€)o|VI[” + €[ V/ol

and the first term is bounded in view of (78) whereas boundedness of the second one
follows from the Gronwall inequality applied to (111).

‘Vg-Vﬁ
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Finally,

28 V- Vo _
ER

and the first term is bounded for B > 8 while the second one can be estimated
differently in two cases:
(i) 0> 1, then p7! <1 and 97 2|Vg|? < 07|Vp|? which is then bounded by the
Gronwall inequality applied to (111);
(ii) 0 <1, then p=7 > 1 and ep~2|Vo|?> < 07277|V|? < enl(0)o |V o|? which is
absorbed by the analogous term from the L.h.s. of (111) (the first term from
(127)).

Estimate of (7rm + gﬁ‘*) divu. Here we proceed in a little different way than

< c()BIVI 20,y + el VIog el Fz(o,m)xa)

in the case of kinetic energy balance. The problem is that we want to have estimates
uniform with respect to A, so we cannot use the bound for Vu(t) in L*°(£2) any more.
For the molecular part of the pressure we have

/ o divu do
Q

< GH\/_CIIVHHLQ(Q) + C

(132) L@

< dlyadival3ag + c@lel (mwnmm
On account of (79), 9 € L2(O T; L%(92)). Moreover, the term €||\/o div |72 g, is then

absorbed by the Lh.s. (113). Therefore, since the Sobolev embedding theorem
H for 1 < p <6, the Gronwall inequality can be

implies that || gHLg

applied to (111) from which boundedness of (132) follows.
The radiative term is slightly more difficult, however, we still can write

T T
//194|divu| dz dt://194g’1/2|\/§divu| dz dt
0JQ 0JQ

< ”ﬁH%P(O,T;Lq(Q)) ”971/2”[,%* (0,T;L57~ () H\/Ediv uHL2((O,T)><Q)a

where p = f]:l, q= 314]:1. By the interpolation

190 2o o.zzocen) < 191520 2. maga 1900 zszoe ey

fora =2 and G = where G < B provided v~ > 3. Thus, we can estimate

7, —5y
[ #dseul az a <e0 (o1 1912 )y
ivu| dz c(e -
(133) JoJa = Le=(0,1;L4() 1Y LB (0,1;13B(Q))
+elo™ Pl o.ryxa T ellvVedivulliz o ryxa,
and the two last terms are estimated by the Lh.s. of (111) and (113), while the
boundedness of the first one follows from (72) and (79).
Estimate of AMA*V(pu) : A*V2p. We have
2/\/9 |A*V(ou) : A*V?g| dz < C>\|\ASV(QU)H%2((0,T)xQ) + )‘HAS+19”2L2((07T)><Q)7

therefore, for r sufficiently large, such that rA~! > ¢, both terms are bounded by the
r.h.s. of (111).
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8. Estimates independent of e, A\, passage to the limit e, A\ — 0. In
this section we first present the new uniform bounds arising from the estimate of
B-D entropy, performed in section 7, and then we let the last two approximation
parameters go to 0. Note that the limit passage A — 0 and € — 0 could be done in a
single step, however, for the sake of transparency of this proof, we do it separately.

We complete the set of uniform bounds by the following ones:

VA ||AS+1Q||L2((0 Pxy H\/’ﬂg—lvg‘

L2((0,T)xQ)

(134)
* H v ((0,T)x ) =6
moreover,
2541
(135) V|Vt oll poo 0,722y + IV Lo 71220y S €

The uniform estimates for the velocity vector field are the following ones:

(136) VAIA*V(ou) |2 ((0,ryx) + VBV Ul 20,y x0) + | VeI 70l <c

L2((0,T)xQ) —

and the constants from the r.h.s. are independent of € and A.

Estimates of species densities. Finally, we take advantage of the entropy esti-
mate (69) which together with (135) may be used to deduce boundedness of gradients
of all species densities.

LeEMMA 9. We have

(137)

<ec
(0, T)xQ)

1+9

Proof. First, using the form of matrix C' we may write

TmF _ CO|VPI€|2 YkCOVpk VTm " Y2Co|Vmm|?

Covor  mmor? Tm 0k Tm Ok
which is bounded in L'((0,7") x Q) on account of (130). Clearly,
2 Y2
(138) / ColVPR 4 a1 < ¢ 1+// YeColVrml® 4 ar) |
oo Tmord T 0%V

The r.h.s. of the above can be, due to (126), estimated as follows:

2 2
// YeColVrml® o, dt:// YiCol D (VPRI
T Ok Tm 0V
n 2 n 2
SC// Z |nv(919)| -+ |Zk:;mk(CVP)2k|
0Ja Tmeot —1 (Ekzl myY) (> k=1 Mk Yk)

which is bounded thanks to (78), (131), and (134). In consequence, (138) is bounded.
Recalling assumptions imposed on Cy (13) and the form of molecular pressure m,,,
we deduce that

T Ch(1 MAV4 2 T 2
[ QAT oy (1 [ LD
0JQ Ok 0J9Q v

and the r.h.s. is bounded, again by (109) and (78). o

dz dt,
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We now present several additional estimates based on embeddings of Sobolev
spaces and simple interpolation inequalities.
Further estimates of p. From (8) and (134) we deduce that there exist functions

&(p) =0 for o< (1 —=h), & (0) =0for o> 1, and & () =0 for p < 1, &2(0) = o for
> (1 + h), and small parameter h > 0, such that

a_ 7t
va1 ’ HLz((O,T)XQ)v vaf HL2((0,T)xQ) <g;

additionally, in accordance with (72), we are allowed to use the Sobolev embeddings,
thus
(139) H§1 ||L2(OTL6(Q))7 Hfz 220,718 < c.
Remark 7. Note in particular that the first of these estimates implies that
o(t,z) >0 a.e.on (0,T) x Q.
Moreover, by interpolation between (139) and (72) we can check that
(140) loec(o)|| Ls/s(0,myx) < ¢

Similarly, combination of (135) with (72) leads to ||o? o) < c HV\/EHLQ(Q) , and
therefore

(141) lloll o= 0.7:L3(2) < -

Estimate of u. We use the Holder inequality to write
(142) [[Vul| o720 < © (1 + 1610072 oo 0,200 ey ) IVET Ul z2(0,1 000,

where p = %ﬁ, q= 37 +7- Therefore, the Korn inequality together with the Sobolev

embedding imply

(143) [l <e.

2y~ 6y
LA~ +1(0,T;L7~ +1(Q))

Next, by a similar argument
(144) |[ull .. 0,707 (2) = (1 +1161(e)~ 1/2||L2w*(07T;LGW’(Q))) Iveull Lo o,;2(0)

with p’ =297, ¢ =
obtain

= ?w —7- By a simple interpolation between (143) and (144), w

(145) <ec

[lull 10y~ 10y~ )

L3~ 13 (0,T;L 3~ 13 ()
and since v~ > 3, we see, in particular, that |[ul|;s/2(0,7,15/2(q)) < ¢ uniformly with
respect to € and .

Strict positivity of the absolute temperature. We now give the proof of
uniform, with respect to €, positivity of 9. Note that so far this was clear on account
of the bound for e=3 in L*((0,T) x Q) following from (69).

LEMMA 10. We have, uniformly with respect to € and X,

Je(t,z) >0 a.e. on (0,T) x Q.
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Proof. The above statement is a consequence of the following estimate

T
(146) // (|log V|* +[V1og ¥ [*) da dt <c,
0/Ja

which can be obtained by the application of the generalized Korn inequality provided
that we control the L((0,7) x Q) norm of g|logd|. By (69) we have

[ < [ o) an,
Q Q
thus substituting the form of gs from (25) we obtain

—/ 0:log V. (T) da < —Z/ %bg%(T) dx—/(ggsg)o dz
Q /e Q

my my

and the r.h.s. is bounded on account of (109), (141), and the initial condition. On
the other hand, the positive part of the integrand . log 1. is bounded from above by
0.V which belongs to L>(0,T; L(Q2)) due to (62), so we end up with

ess sup /|gslog195(t)| dz <,
te(0,7) J

which completes the proof of (146). O

8.1. Passage to the limit with ¢ — 0 . With the B-D estimate at hand,
especially with the bound on A*™1g. in L?((0,T) x ), which is now uniform with
respect to €, we may perform the limit passage similarly to the previous step. Indeed,
the uniform estimates allow us to extract subsequences such that

eA*Vu,, eVo., eA T o, — 0 strongly in L2((0,T) x Q),
therefore
eVo.Vu. — 0 strongly in L*((0,T) x Q).

The strong convergence of the density as well as the velocity (since g, > ¢(\)) can

be obtained identically to the previous step. Therefore we focus only on the strong

convergence of the temperature and the limit passage in the total energy balance.
Recall that from (69), (78) it follows that

Y. — 9 weakly in L?(0,T; W2(Q))
and
el 02 — 0 strongly in L'((0,T) x Q).

The pointwise convergence of the temperature is to be deduced from the version of
the Aubin-Lions lemma; see [12].

LEMMA 11. Let v. be a sequence of functions bounded in L*(0,T; LY(Q)) and in
L*(0,T; LY(2)), where q > g. Furthermore, assume that

(147) Ove > g in D'((0,T) x Q),
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where

ge is bounded in L*(0,T; W~"™7(Q))

(148) .
for some m >0, r > 1 independently of .

Then there exists a subsequence v. converging to v strongly in L*(0,T; W ~%2(Q)).
We will apply this lemma to v. = g.9 + 9. Then, on account of (110) we can
repeat the estimates following (95) that led to (97) to check that

Opve > ge = — div(ue (-0 + 5193)) + div (ke (0, 9)VV;)

- Fjc 1 dme(o-
=3 div (9.8 ey e ) 4+ — e e 2Ol g, e
pt my v? 0 0o

— <7rm7‘S + gﬁg) divu, + 20:|D(u.)]? + M AV (g.u.)|? + Ae|AsT g |2

Moreover, the r.h.s. is bounded in L(0,T; W ~1P(Q)) U L1(0,T; W~=24(2)) for some
p,q > 1. Therefore, the above lemma and the strong convergence of p. imply in
particular that

92 — 9% strongly in L?(0,T; W~ 12(Q)).

On the other hand, we know also that 9. — ¥ weakly in L?(0,T; W12(Q)), therefore
a simple argument based on the monotonicity of f(x) = 2% implies strong convergence
of ¥, in L4(0,T; L?4(Q)) for any ¢ < B.
Let us finish this subsection with the list of the limit equations:
e the continuity equation
Oro + div(pu) =0

is satisfied pointwisely on [0, 7] x £;
e the momentum equation

—/OT/Q ou- 0y A dt—/ﬂmo.¢(0) dx+/OT/Q AASV(ou) : A*V(06) dar dt
(149) —/OT/Q(Qu@)u):V(bdx dt+/0T/Q2gDu:D¢ da dt—/OT/deiqudx at
A /OT/Q A* div (o) A p da dt = 0

holds for any test function ¢ € L2(0,T; W25H1(Q)) n W12(0,T; W2(Q2)) such that
o(-,T)=0.

e the species equations

T T
// 0x0y¢ dz dt+/gg¢(0) dx+// opu - Vo dz dt
0JQ Q 0JQ

T T
+//Fk-V¢dxdt:—//gﬁwk¢dxdt,
0./ 0Ja

k € {1,...,n}, are fulfilled for any smooth function ¢ such that ¢(-,T") = 0;
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e the total energy equation

T 1 A
// <Q€ + —g|u|2 + —|V25+1g|2> Oy dx dt
0Jo

o [ (oot Solu 292010 01000

(150) // <Qeu+ ~olul*u >-V¢ da dt—/T/ KVY - Vo dz dt
+Z//19— V¢ dx dt+//7ru Vo dz dt
// 20D(u)u) - D¢ dz dt = //RA 0.9,u,¢) dz dt

holds for any smooth function ¢ such that ¢(-,7') = 0; here the heat flux term is to
be understood as in (103) and

Ra(o,9,u,6) = A [A*(div(oue)) A*H o — A* div(ou)A** og]

sy L div(oW)VA*e - Vé — A [|A*(V(0w)) 26 — A*V(ou) : AV (oug)] .

Moreover, using the lower weak semicontinuity of the norm and passing to the
limit in (110),

9 (09 + BIY) + div(u(d + pI*)) — div (kVI) + Z div (ﬁ—)
(152) k=1 M

> — (wm + %94) divu + 20/D(u)|? + A\|A*V(ou)?

is satisfied in the sense of distributions on (0,77) x §.

8.2. Passage with A — 0. In this section we present the argument for the
convergence of a sequence (gx, ux, Uz, 012, --.,0n,x) to a solution (o, u, ¥, 1,...,0n)
as specified at the beginning. Some of the arguments here are repetitions from our
previous works [44, 45, 33], and so we only recall their formulations.

Strong convergence of the density. The strong convergence of a sequence gy
is guaranteed by the following lemma.

LEMMA 12. There exists a subsequence oy such that

Vox = /o a.e. and strongly in L*((0,T) x ).

Moreover pox — o strongly in C([0,T]; L?(Q2)), p < 3.

For the proof, see [44, Lemma 7].

Strong convergence of the species densities. Analogously, we show the
strong convergence of species densities. We have the following.

LEMMA 13. Up to a subsequence the partial densities oy x, k =1,...,n, converge
strongly in LP(0,T;L9(R)), 1 <p < oo,1 < q <3, to . In particular,

ok — ok a.e.in (0,T) x Q.

Moreover og x — ox in C([0,T); L3 ., ().
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For the proof, see [45, Lemma 17].

Convergence of the convective term. First we show under what condition
on 7~ is the convective term gy|uy|? uniformly bounded in LP((0,T) x Q) for some
p > 1. We have

1/3—a «

1/3 _
QA/ |11A| = 0, 0 |11A|20‘|Ul,\|1 2o

and we will use the interpolation inequality for g\ € LOO(O,T;L7+(Q)), oxlupl? €

L(0,T; LY (), and uy € L7751 (0,T; L7 (Q)). So, o/*uy € LP(0,T;L9(Q))
with p,q > 3 if

1 1 v 411
- o) — 1-9 -
(3 a>,y++oa+( @) o <3

meaning that v~ and 4+ must satisfy the following relation

5+_
S =3
,7+_3

Remark 8. Improvement of this condition would require some faster growth at
infinity of the viscosity coefficiet p(g) which is equal to ¢ in our case. Indeed, then
the above interpolation procedure could use only the additional bound of ¢ following
from the B-D estimate, without involving the bound in L*°(0, T L (Q)), similarly to
[5]. However, in the case of chemically reacting mixtures, modification of the viscosity
coefficient would lead to a problem with closing the B-D estimate; see (128). The
above estimate implies that, provided v, 4" fulfill conditions specified above, the
convective term gyuj converges weakly to ou3 in L7((0,T) x Q) for some r > 1. To
identify the limit, we prove the following lemma.

LEMMA 14. We have, up to a choice of subsequence,

3
(153) oxuy — ou in C([0,T] L] 1 (),
(154) Qi/BU)\ — 0'3u  strongly in LP((0,T) x Q) for some p > 3,

(155)  oaDuyuy — gDuu  weakly in L*((0,T) x Q).

Proof. We already know that gy converges to ¢ a.e. on (0,7T) x Q. Moreover, due
to (143), up to extracting a subsequence, uy converges weakly to u in L?(0,T; L4(Q)))
for some p > 2, ¢ > §. Since \/oauy is uniformly bounded in L°°(0,7T; L?(12))
and /oy is uniformly bounded in L*>(0,7T; L%(€2)), the sequence gyuy is uniformly
bounded in L>(0,T; L?(€)). Altogether it implies that

oxux — pu  weakly® in L(0,T; L? ().
Now, we are aiming at improving the time compactness of this sequence. Using the

differential form of (149) and the uniform estimates (134), (135), (137), (139), (142)
we verify that the sequence of functions ¢ — fQ oxuy - ¢ dx is uniformly bounded and
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equicontinuous in C([0,T]), where ¢ € C°(€2). But since the smooth functions are
dense in L3(f2), applying the Arzelad—Ascoli theorem, we show (153).

On the other hand due to (142), u, is uniformly bounded in L?(0,T; W14(Q))
for some P > , q > , S0 it converges to u weakly in this space. Since W14(£2) with
g>2is compactly embedded into L3(2), by (153), we deduce that g|uy|? converges
to plul? strongly in L*((0,77) x Q). We can use this fact and the strong convergence
of the density in order to show that o}/ *uy = g}\/Buxl{mSn} + Q}\/guxg_l/ﬁl{mw}
converges to o'/3u strongly in L'((0,7) x Q). This, in turn, when combined with the
uniform bound on gi/gu,\ in LP((0,T) x Q), p > 3, yields (154). Finally, rewriting
ox(Duy)uy = \/Q_ADuAgi/guAgi/G and using (154), strong convergence of the den-
sity, and a weak convergence of ,/gx(Duy) to \/o(Du) in L*((0,T) x ) we prove
(155). O

Strong convergence of the temperature. The difference with respect to the
previous limit passage is that we cannot use the higher order estimates either for the
velocity or for the density in order to deduce the boundedness of the time derivative
of temperature in an appropriate space. However, the idea of proving compactness of
the temperature is, as previously, to apply Lemma 11 with e = \, v\ = px) + V3.
Therefore, our next aim is to check that its assumptions are satisfied uniformly with
respect to A.

First, let us note that vy is bounded in L2(0,7; L4(2)) and in L>(0,T; L*(Q)),
where ¢ > & =, uniformly with respect to A. Indeed, it follows directly from (72) and
(79). Further from (152) one deduces that d;vy > g, where g has the following
form

F
gx = —div (uy (020 + B93)) + div (r(ox, 92) VD) — Zdw (mﬂ>

(156)
— <7Tm’)\ + gﬁi) divuy + 2QA|D(UA)|2 + /\|ASV(QAU)\)|2

and is bounded in L'(0,7;W~™7(Q)) for some m > 0, r > 1 independently of .
Indeed, this can be estimated similarly to (95)—(97) except for the terms that contain
velocity. For them we may write

[uxexVll iz 0,7y x0)

< cllvoxunll poe 0,72 IvVox | Lo (0,75 @) |9x | Los (0,714 02)) < €
on account of (96) and (145); further,

|\UA19§||L40/31((0,T)xQ) < HuAHL5/2((O,T)><Q)||19§\||L8/3((0,T)XQ) <ec

For the internal pressure we have

||gk’>\19)\ div UA|‘L12/11((07T)><Q)
< cllvoxdivuxllrzo.yxo IvVexll e 1L [9r | L= 0,704 )) < ¢

and the other term 93 divu, is bounded in L'((0,T) x Q) as was shown above in
(133). Since the two last terms in (156) are also uniformly bounded in L!((0,T) x ),
the assumptions of Lemma 11 are satisfied with m = 1, » > 1. Therefore, there exists
a subsequence, vy converging to v strongly in L?(0,T; W~12(£2)), which can be used
to show the strong convergence of ¢, exactly as in the previous section.
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Passage to the limit in the nonlinear terms. The last step in the limit
passage A — 0 is verification of convergence in the nonlinear terms of the system.
The most demanding of them are in the energy equation (150) and (151), and we will
justify the limit passage only there. The correction of energy AV2**t1py — 0 strongly
in L2((0,T) x ), therefore, the energy Ey = oxec(0x) + oxx + B + %Q,\|u>\|2 +
%|V25+1Q)\|2 converges to F due to strong convergence of gy, ¥, and Lemma 14.
Similarly uyoxex, oaus, and 7(ox, 9, 0k,1)un converge weakly to uge, pu?®, and 7u,
respectively, due to uniform bounds in LP((0,7) x ) for p > 1 from above, estimate
(140), the strong convergence of px, U, gk, and Lemma 14.

Limit passage in the heat flux term r(ox,Yx)V¥y can be performed within a
formulation analogous to (103), since it involves only the sequences gy, ¥ which are
strongly convergent and a sequence V1J, which converges to Vi) weakly in L2((0,7") x
). Similarly, we note that 9x\F(ox, Ix, 0k,) is affine with respect to weakly conver-
gent sequences Voy », VU with coefficients that are strongly convergent as A — 0.
Thus, using the uniform bounds from above we verify that up to a subsequence
IFrloxn, O, 06,0) = UF (0,9, 01) weakly in LP((0,T) x Q) for some p > 1. Pas-
sage to the limit in the last term from the r.h.s. of (150) was proven in Lemma 14.

We are now ready to prove that the corrector term Ry converges to 0 strongly in
LY((0,T) x Q) as A — 0 or, rather, that the most demanding terms listed in (151)
vanish when A — 0.

First of all observe that due to (134) (136) we have

/OT/Q [Rx(oxs ur, ¢)| dz dt = /\/OT/Q |(A®V(orun)A%(run)

+ A%(oaup)A%Tloy + A® div(oaun)VA®0y) - V(b‘ dx dt

< ([IVll Lo (0,1 %)) /\[HQAUA”L?(O,T;W?HL?(Q))||9)\UAHL2(O7T;W2Sv2(Q))
+ [loaxun|l 2o, msw2s 2 ) lloall L2 0, w2422 ()

+ HQAuA|‘L2(O,T;W2S+1v2(Q))||9>\||L2(O,T;W25’2(Q))}
< ([IVll Lo (0,1 %)) \/X[HQAHAHLz(o,T;W%ﬂ(Q)) + lloallz20,mw2s 2 ) |5

thus, the task is to show that the term after the last inequality symbol converges to 0.
But this is evident, since one can use the Gagliardo—Nirenberg interpolation inequality
and uniform bounds for gyuy in L>(0,T; L?/%(Q2)) and for gy in L*°(0,T; L3(Q))
together with uniform bounds for v Agyuy and for v/ Aoy in L*(0, T; W2s+1:2(Q)) and
L2(0,T; W25+2:2(Q)), respectively. The proof of the main theorem is finished. O
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