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Abstract

Multifractal analysis offers a number of advantages to measure spatial economic segrega-

tion and inequality, as it is free of categories and boundaries definition problems and is

insensitive to some shape-preserving changes in the variable distribution. We use two data-

sets describing Kyoto land prices in 1912 and 2012 and derive city models from this data to

show that multifractal analysis is suitable to describe the heterogeneity of land prices. We

found in particular a sharp decrease in multifractality, characteristic of homogenisation,

between older Kyoto and present Kyoto, and similarities both between present Kyoto and

present London, and between Kyoto and Manhattan as they were a century ago. In addition,

we enlighten the preponderance of spatial distribution over variable distribution in shaping

the multifractal spectrum. The results were tested against the classical segregation and

inequality indicators, and found to offer an improvement over those.

Introduction

Reardon et al. [1] pointed out the necessity for new spatial economic segregation and inequal-

ity measures insensitive to the choice of category thresholds, boundary definitions, and shape-

preserving changes in the variable distribution. Despite improving the situation, we have iden-

tified that the new measures proposed in the same article still face boundary definition biases

(a common issue in spatial statistics usually referred to as the Modifiable Areal Unit Problem,

or MAUP) and are unsatisfactorily insensitive to all changes in the variable distribution,

including non shape-preserving ones. Multifractal analysis could offer a good alternative, free

of all the aforementioned problems, for sets obeying a number of scaling conditions.

It is well known that scaling often emerges in self-organized complex systems, and the frac-

tality of urban structures in particular is well documented [2–4]. It has been argued that a sin-

gle fractal exponent may not be sufficient to fully characterize urban systems, and that land

prices could be better described by multifractals [5, 6]. The purpose of this article is to make

use of two highly detailed land-prices datasets for Kyoto spanning over a hundred years [7–

10], and of urban simulated models based on this data to confirm that multifractals are indeed

a relevant description of the spatial heterogeneity of land price measures in this case, and to set

a basis for the interpretion of multifractal spectra in terms of inequality and segregation. The
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information obtained from multifractal analysis is compared in detail to the information

resulting from classical inequality and segregation measures (such as Gini, Theil, Neighbour-

hood Sorting, Ordinal Information Theory and Ordinal Variation Ratio indices). We show

that the information from classical tools is recovered using multifractal analysis, and that some

additional information is gained.

The main factual results are a sharp decrease in multifractality for present Kyoto compared

to Taisho era Kyoto (a trend for modern cities in line with other studies [11, 12]), and a strik-

ing similarity both between present Kyoto and present London, and between Kyoto and Man-

hattan as they were a century ago. From the way the multifractal spectrum shrank, we can

infer an increase in local homogeneity for the modern city and hints at densification. Further-

more, we show that for this data the resulting spectra are primarily dictated by the shape of the

spatial distribution rather that the shape of the price distribution, a characteristic highly sought

after by Reardon et al. [1].

We first introduce the methodology and its interpretation for the analysis of inequality,

together with a recap of the technical choices made to suit the methods to the current data. We

then present the main results, first for Taisho era Kyoto and its associated simulated models,

second for present Kyoto and its associated models, and third we compare the two timestamps

between themselves and with data for present Manhattan and London. The final section is a

discussion mainly focused on the comparison between the multifractal methodology and clas-

sical inequality tools.

Methodology

We first present a formal definition of multifractality, then a heuristic interpretation and an

illustration of the main variables. We explain next how the methodology was adapted to suit a

real estate context, and how the data was prepared to mitigate its imperfections. The technical

details on the actual computation can be found in Appendix A1 in S1 Appendix.

Multifractal measures

Multifractal theory [13–15] can be used to study the heterogeneity and irregularity of measures

defined on sets that are too irregular for classical geometric tools, when those measures present

two separate scaling properties. Consider a measure μ defined on a set A, it is required that

1. locally around any point x of the set A, the measure is scaling with a local exponent αx;

2. the set formed by all points around which the measure scales with the same local exponent

αx is a fractal set of dimension f(αx).

There are several more or less equivalent definitions of “fractal” sets. Here, we will consider

fractal any set for which a box-counting dimension can be computed (regardless of whether

said dimension is a fraction or not, or whether the set is self-similar in a strict sense or not).

The curve f(α) against α is called the multifractal spectrum. It gives, roughly speaking, the “frac-

tal dimension” f(α) of sets where the measure scales locally with the same exponent α.

Formally, denoting μr(x) the measure in a ball of radius r around x and N(α) the number of

times an αx falls inside the interval [α, α + dα], the two scaling properties mentioned above can

then be written

1. mrðxÞ / rax for some αx around any x 2 A when r is small enough;

2. N(αx)/ r−f(αx), for some function f and any x 2 A.
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The goal is to find all the αx and f(αx) values in the system. To this end, we will use the clas-

sical moment method [16–18], and in particular its multiplier variant (see [19, 20]). The data

is divided into a grid whose squares are numbered. Denoting μi(r) the measure of a Moore

neighbourhood of radius r around square i, the quantity Z(q, r) is defined for any real number

q by

Zðq; rÞ≔
X

i

miðrÞ
q
/
X

i

raiq

/
X

a

NðaÞraq

/
X

a

raq� f ðaÞ:

ð1Þ

For each q, when r! 0, only the value of α that minimizes αq − f(α) makes a significant contri-

bution to the sum, so that the α and f(α) values can be deduced from a Legendre transform of

the quantity

tðqÞ≔ aðqÞq � f ðaðqÞÞ � lim
r!0

log ðZðq; rÞÞ
log ðrÞ

: ð2Þ

Going through all q inR yields all α and f(α) values. When using the multiplier and gliding

box variant, boxes of some minimal size r0 and some other size rk are glided along the grid.

The τ(q) and α(q) values are then directly computed from the expressions

tðqÞ þ d � �
log ð1=N

P
iM

q
i Þ

log ðrk=r0Þ
; ð3Þ

aðqÞ � �
P

iM
q
i log ðMiÞP

iM
q
i log ðrk=r0Þ

; ð4Þ

where i is the grid cell corresponding to the centre of the box while it is glided, Mi: = μi(r0)/

μi(rk), N is the number of non zero values of Mi, and d is the dimension of the physical support

A. In a sense, the multiplier method infers the underlying power law from the way the measure

grows between two scales. A very detailed explanation of its working principles can be found

in [19].

Spectrum interpretation

In order to get a heuristic idea of what the α values represent, assume that we want to study the

multifractality of a non-negative signal ϕ defined on a one-dimensional space, say R. We can

create a measure μ from this signal by defining for any a < b 2 R

mð½a; bÞÞ ¼
Z b

a
�ðxÞdx: ð5Þ

In particular, the first scaling rule μ([0, r))/ rα translates into ϕ(x)/ xα−1 on the interval

[0, r). Assuming there is a reflectional symmetry around 0, this formalization allows us to illus-

trate the typical limiting behaviour of a multifractal signal around a point corresponding to

some particular α when r! 0 (see Fig 1a). Note that choosing to place the point in 0 and the

vertical scaling are both arbitrary in this example.

If we were to consider instead a perfectly isotropic two-dimensional signal, then the cross-

cut along any particular direction would be the same as the curves above at the condition of
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adding 1 to the corresponding α. A representation of such a signal for particular α values can

be found in Fig 1b. The real signal does not have to be isotropic, for example “bumps” on one

side of a circle of radius r0 can be compensated by “holes” on the other side of the same circle.

It must be emphasized that α values represent the rate at which a signal, and more generally

any measure considered, grows around a point in contrast to the actual height of its point

value. However, the α values are not completely invariant through vertical translation of the

signal. Assume that a signal is of the form rβ + k for some β and a real constant k> 0. Then,

once integrated, the measure will be either of the form rα + k � r or rα + k � r2 for one-dimen-

sional or two-dimensional signals respectively. The noise introduced by k is therefore negligi-

ble for α values below 1 or 2 (resp.) when r! 0, while the measure is negligible compared to

the noise for α values greater than 1 or 2 (resp.) when r! 0. As a matter of fact, the standard

moment method applied to real data sometimes seems to fail for α values greater than 1 or 2

(e.g. [5, 11, 20]).

The basic moment method may fail for other reasons, such as the presence of underlying

large-scale structures in the data. This has been extensively discussed in [21, 22]. In contrast,

the multiplier method ignores the potential noise and large-scale biases by inferring a true

local power-law around each point from the way the signal grows around it at two different

scales. In particular, for α values greater than 1 or 2, it extends the local behaviour of the

Fig 1. Meaning of the α values. (a) Idealized local behaviour of a one-dimensional signal around a point of strength α.

(b) Idealized behaviour of a two-dimensional signal around a point whose strength α is indicated on the scale below.

https://doi.org/10.1371/journal.pone.0196737.g001
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measure as if it would reach 0 in 0 despite the noise k. In a sense, the multiplier process can be

thought of as a way of “calculating the best multifractal fit” for the measure.

The f(α) values may mean slightly different things depending on how they have been

defined. Here, they are assimilated to the box-counting dimension of the set formed by all

squares in a grid whose measure shares the same strength α. This is illustrated in Fig 2. On the

top left, the land price distribution for Kyoto in 1912 is represented in a blue continuous loga-

rithmic scale applied over a 512x512 grid. In the three other images, the 4x4 squares corre-

sponding respectively to a strength of α = 3, α = 6, and α� 7 (counting clockwise) are

highlighted in red. The values f(α = 3), f(α = 6), and f(α� 7) are the box-counting dimension

of each highlighted zone. Those values were obtained by fitting directly power laws around the

centre of neighbourhoods of size 4x4. The true α values require to take the limit when the

neighbourhoods size approaches 0. The ones shown here are for illustrative purposes only.

Since lower and higher α values mean sharper growth, while values around 1 for one-

dimensional measures and around 2 for two-dimensional measures are a sign of local homoge-

neity (with only isolated singularities), some non-intuitive insights on segregation can be

deduced from the repartition of the α values. Indeed, if the α distribution is narrow and cen-

tred around 1 or 2, while the spread of the measure is high, it means that the prices are clus-

tered into groups of locally similar α values (for which the f(α) dimension is close to 2), while

the lower and higher α values represent the sharper edges of the clusters (for which the f(α)

Fig 2. Meaning of the f(α) values. Top left: real price distribution for Kyoto in 1912 in a log-scale. The other figures

represent the corresponding non-rigorous α distribution with: top right: α = 3 highlighted in red; bottom left: α = 6

highlighted in red; and bottom right: α� 7 highlighted in red. For each α value, the dimension f(α) is akin to the box-

counting dimension of the highlighted zone.

https://doi.org/10.1371/journal.pone.0196737.g002
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dimension is closer to 1). In contrast, if both the measure spread and the α distribution are

narrow, then segregation is low.

In particular, it has been evidenced by Murcio et al. [11] that there is a loss of multifractality

over time in modern cities, which translates into a shrinking of the spread of α values. The

remark above encourages to pay extra attention to the symmetries of the shrinking, rather

than to its extent alone.

Application to measuring land ownership inequality and datasets

As the input for the multifractal moment methods needs to be a mathematical measure,

continuous densities cannot be used directly, and a suitable base unit had to be chosen to

count the measure. For real estate, several units inferring different interpretations can be

considered.

To describe the spatial distribution of land value, the unit could be each square meter of

land. In order to describe property value instead of land value, the mathematical definition of

a measure imposes to consider the total housing value carried by each unit of land. In the case

of a multi-storey building, one should therefore count the total available floorspace per unit of

land, rather than the average value on that unit of land. For example, if a square meter of land

l1 is underneath a 15 stories building at an average sqm price p1 and another square meter of

land l2 is underneath a one storey house at a sqm price p2, then the total property value carried

by l1 is 15 × p1, and the total property value carried by l2 is p2. Considering p1 instead of 15 × p1

for l1 would underestimate the real impact of price p1 in the city compared to price p2.

To study housing inequality, each accommodation can be considered as a unit of its own,

independently of its size. The results would then give information on the affordability of suit-

able housing assets and on the spatial repartition of each price category. Adopting the point of

view of policy makers, one could choose a set number of people as the base unit and try to cal-

culate the cost of accommodating that number of people.

Unfortunately, the data available may have the final word on deciding the unit. For early

20th century Kyoto, we have based our work on the digitalization of a cadastral map first pub-

lished in 1912 (first year of Taisho era) by Yano et al. [8–10]. At the smallest level, all land is

divided into 64486 lots registered to a single owner for which price, category, and area are

known. We used the total price of each lot marked as residential as the base unit for the analy-

sis. Assuming that the land lots are not meant to be divided, it represents accurately all existing

residential land assets in the city. We could have considered lots of categories other than resi-

dential to represent assets for future development of the city, but given that the other datasets

do not contain non-residential values, we focus exclusively on built land to be consistent. For

the record, non-residential land represents 18% of all unique lots. The dataset is available in S1

Dataset.

For present Kyoto, the data available is presented as land tax assessed value by road valua-

tion around 2012, as found on the Kyoto Open Data website provided by Kyoto City. The

price is given as mean land price per square meter along each road segment, where a road seg-

ment is defined as any part of a road included between two street intersections (or dead ends).

Most road segments are edges of a block, and some are smaller intra-block streets. Making the

unavoidable assumption that the difference in depth between different residential buildings is

negligible compared to the length of the roads segment, we have multiplied the mean price

along each segment by the length of said segment. The result are values proportionate to the

sum of all land lot prices along each segment. There is a total of 41524 values. Since multifrac-

tals are invariant under a linear transformation, those values can be seen as approximations

comparable to 1912 lot values (although at a broader scale). Both the full extent of modern

Inequality and the multifractality of land prices in Kyoto

PLOS ONE | https://doi.org/10.1371/journal.pone.0196737 April 30, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0196737


Kyoto (S2 Dataset) and its intersection with the extent of 1912 Kyoto (12000 values, S3 Data-

set) will be considered. All study areas are represented in Fig 3.

For both datasets, values have been paired with the centroids of their corresponding lots or

road segments. The data is processed as a matrix representing a grid overlay over the Kyoto

map. Due to the relatively broad scale (especially for present Kyoto), to the interference created

by simplification during the price assessment process, and to the messy nature of real estate,

we do not expect that the data will be a clean multifractal with definite self-similarity at all

scales. For that reason we use the multiplier method to calculate in a sense the “best fit” spec-

trum. Even if the data is not exactly self-similar at all scales, the multifractal methodology

allows nonetheless a consistent comparison of the variety and spatial partitioning of prices

between different city models as long as the data shares a similar resolution and structure. The

results for present Kyoto are to be taken with more caution than those for Taisho era Kyoto

because of the difference in data quality. Similarly, as evidenced in the previous section, the

part of the spectra for α values below 2 is more reliable and expected to be in better accordance

with more “rigid” multifractal methods than the part for α values greater than 2.

Results

Urban models were used to analyse the influence of changing the spatial distribution or the

price distribution on the resulting multifractal spectra. We first present a detailed analysis for

Taisho era Kyoto and its associated models, then a more concise analysis for present Kyoto

due to the less appealing shape of the data. We finally make a temporal comparison between

both datasets, and use the PLUTO database for New York and Land Registry house transac-

tions database for London to compare the results with these two cities. Technical aspects of the

urban models creation and isolated spectra for each type of model are provided in more detail

in Appendix A1 in S1 Appendix. While we focus here on the multifractal spectra alone, the so-

Fig 3. Study areas. (a) Kyoto, 1912 extent; (b) Kyoto, 2012 extent; (c) 2012 Kyoto cropped to the 1912 extent. All prices are

expressed in Yen (1 Yen of 1912 is worth approximately 2000 Yens of 2012).

https://doi.org/10.1371/journal.pone.0196737.g003
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called generalized dimension usually associated to multifractal analysis is indicated in Appen-

dix A2 in S1 Appendix.

City models: 1912 data

A first batch of models is built by changing the spatial pattern while the price distribution is

kept identical to the true distribution. Three types of spatial distributions are chosen to supple-

ment the true pattern: uniform, polycentric, and diffusion-limited aggregation (DLA). The

first one is used as a null model, the second one as a representation of how modern megacities

develop [23–25], and the third one as a multifractal reference since it is known to generate

strong multifractality [26–29]. All these models are plotted in Fig 4 alongside the true distribu-

tion. The latter is represented in the top left image. Next to it is the price distribution drawn

uniformly. The four figures on the bottom left are DLA models with either 1 or 3 centres exert-

ing different levels of attraction. Finally, the nine models on the right are polycentric models

with different number of centres exerting varying levels of attraction. The true spatial distribu-

tion uses a logarithmic overlay of the real price distribution, while all other images use an over-

lay representing the rank of each point in the price distribution after it has been drawn into the

space. All images are represented in a grid of resolution 256x256.

The uniform distribution has been drawn 50 times. To generate the polycentric models, a

number of centre coordinates (between 1 and 30) are chosen randomly in the grid. Then, all

the cells in the grid are ranked according to the formula

si ¼
X

k

bk=dg

ik; ð6Þ

Fig 4. Spatial models. Top left: logarithmic overlay of the real price distribution over the real Kyoto pattern in a grid of resolution 256x256. Next to it:

corresponding rank distribution drawn uniformly. Bottom left: rank distribution overlayed over four DLA models with 1 or 3 centres and different

levels of attraction. Right: rank distribution overlayed over nine polycentric models with different number of centres and levels of attraction.

https://doi.org/10.1371/journal.pone.0196737.g004
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where si represents the strength of cell i, bk a weight given to centre k, dik the distance between

point i and centre k, and γ a global “attractivity” parameter. The number of centres and value

of γ for each case are given in the appendix. Similarly, the DLA models are generated by first

choosing randomly either one or three “anchor” coordinates in the grid. Then, the cells are

ranked by introducing “particles” carrying a rank tag (lowest ranks first) into the system. Each

particle operates a random walk until it encounters an anchor or a cluster of particles attached

to an anchor, and attaches to it with a probability of either 1 or 0.5. The results of the DLA pro-

cess are available in S4, S5, S6 and S7 Datasets.

Once all the cells in the grid have been ranked (ties are resolved by a random draw), the

prices are mapped over the points by rank order, so that the most expensive prices are closer to

the centres or anchors. A noise is previously introduced in the ranked price distribution, by

redrawing the price ranks according to a probability distribution

rp
i =
P

rp
i ; ð7Þ

where ri is the current rank in the distribution, and p is a power set to 2 for the polycentric

models, and either 1 or 8 for the DLA models. See the appendix for additional parameter

choices compared to the selection presented here.

A second batch of models is built by changing the price distribution while the spatial pat-

tern is kept identical. Three distributions are considered: uniform, truncated normal, and

Pareto. The uniform distribution is taken as a null model, while the normal and Pareto distri-

butions are the most recurrent distributions observed in urban science (in particular, the

Pareto distribution is usually associated to the distribution of wealth). The true distribution is

log-normal. To create the distributions, range, mean and standard deviation can be adjusted.

Since it is by construction impossible to match all three parameters for each distribution, pri-

ority was given to matching the range with the true distribution. When the exceptionally high

priced imperial palace is removed, this range consists of values between 0 and 10000 yens.

These three distributions are plotted in Appendix A1 in S1 Appendix. In addition to the price

distributions being laid over the true spatial pattern, they have also been laid over the uniform

spatial distribution for reference.

The spectra resulting from the first batch of models plotted against the true Kyoto distribu-

tion can be seen in the top of Fig 5. Only the most relevant cases were selected, and some addi-

tional curves for each type of model can be found in Appendix A1 in S1 Appendix. We have in

total: six polycentric models (referred to as C− in the legend, where − is the number of centres),

fifty iterations of the uniform draw (U in the legend), and two fully ranked one-centre DLA

models with normal and halved centre attraction weights and fifty iterations of each DLA

model with a noise added to it (respectively Dr, D.5r, Dn, and D.5n). We can immediately

observe that the real distribution (red circles) seems to maximize the width of the spectrum,

while minimizing its height. Only some of the DLA models with added noise could create a

wider right-spectrum and remain close on the left side. Polycentric models generate fairly

weak multifractality, especially considering that the multiplier method tends to artificially

widen the spectrum in weak cases. The uniform distribution lays between the polycentric and

DLA distributions.

Since the price distribution is the same for all models, we can conclude that the spatial dis-

tribution has a large impact on shaping the width of the spectrum. This is further corroborated

by the second batch of models for which several price distributions are mapped over the true

distribution and over the uniform distribution (Fig 6). In the first case, there is almost no dif-

ference in the left part of the spectra, while the right part are very similar, with Pareto distribu-

tion giving the widest spectrum. However, the price distribution does have an impact on the
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Fig 5. Spectra for 1912 Kyoto price distribution mapped over several spatial models. The models are polycentric

(C-, where—is the number of centres), ranked DLA (Dr), ranked DLA with half centre attraction (D.5r), uniform (U,

50 draws), DLA with a noise (Dn, 50 draws), DLA with half centre attraction and a noise (D.5n, 50 draws), and true

distribution (True). The corresponding idealized two-dimensional signal is added below the α axis for reference.

https://doi.org/10.1371/journal.pone.0196737.g005

Fig 6. Spectra for 1912 Kyoto and price models. (a) Uniform (U), truncated normal (TN), Pareto (P) and true (red circles) distributions mapped over 1912 Kyoto

true spatial distribution. (b) Same distributions and true price distribution (K) uniformly drawn into space.

https://doi.org/10.1371/journal.pone.0196737.g006
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spectrum, as evidenced by the second case, where all four price distributions have been

drawn randomly in space. The uniform and truncated normal distributions present almost no

multifractality, the very narrow spectrum being identifiable to an artefact of the multiplier

method. The Pareto and the real distributions produce more convincing spectra, close to one

another.

City models: 2012 data

Recall that for present Kyoto, the processed data consists of centroid coordinates for each road

segment in Kyoto. To each centroid is attributed the mean square meter price multiplied by

the length of each corresponding segment. Instead of constructing many less reliable and

redundant models compared to the ones built for Taisho era Kyoto, we focus on shuffling ran-

domly the price distribution in a space where all the actual locations of road segment centroids

are preserved. Fifty iterations of this process were done and produced the spectra that can be

seen in the top of Fig 7. Contrary to the 1912 case, the real placement seems to minimize the

spectrum width.

The price distribution for 2012 Kyoto is almost log-normal, akin to the price distribution

for 1912, although it is less symmetrical and only spans over two orders of magnitude com-

pared to four in the previous case. Similarly, we generated 50 iterations of some corresponding

uniform, normal and Pareto distributions. The spectra for each distribution can be found

mapped over the true spatial pattern in Fig 8a, and uniformly drawn into space in Fig 8b. The

results are similar to those obtained for 1912. In the true pattern case on the left, the spectra

follow the same ranking in width as for 1912, with only slightly more pronounced differences.

In the uniform pattern case on the right, the actual price distribution gives results closer to the

uniform distribution, while the Pareto distribution provides significantly wider results. This is

coherent with the narrower range and higher maximum of the true price distribution, reflected

in a more dispersed corresponding Pareto distribution.

Fig 7. Spectra for 2012 Kyoto and shuffling. Spectra for 2012 Kyoto price distribution shuffled inside the true spatial

pattern (50 draws) compared to the true 2012 distribution (blue triangles).

https://doi.org/10.1371/journal.pone.0196737.g007
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Comparing Kyoto across time, and with data from other cities

To be able to compare accurately Kyoto in 1912 and in 2012, it would have been preferable to

use the same resolution in both cases. Unfortunately, the road valuation data for 2012 creates

undesired “gaps” between data points when plotted at the resolution used in the 1912 case.

Those gaps do not describe real land value well, as price lots should be contiguous or almost

contiguous, with only big natural obstacles (such as the Kamo river for Kyoto) representing an

actual empty space. To tackle this problem, the resolution used for present Kyoto has been

reduced by 4 to obtain a relatively compact grid. A first map was created representing the full

extent of the present city at a resolution of 512x512, the same resolution that was used for the

1912 extent of the city, despite the new city being roughly four times bigger than the old city. A

second map was created to represent the evolution of the old city alone. It comprises only the

roads that are fully included in the boundaries of the 1912 city. This map is at a resolution of

256x256, i.e. four times lower than for the 1912 map, despite the geographical extent being

identical. The study areas for each case are illustrated in Fig 3.

The spectra for both maps are plotted against the 1912 spectrum in Fig 9a. It could be

hypothesized that the increase in spectrum height for the modern city is representative of den-

sification. Indeed, the eastern half of the city is much more compact in 2012 than it was in

1912. Unfortunately, it can also be an artefact of the lower resolution, so no definite conclu-

sions can be drawn.

The evolution of the width of the spectrum is more interesting. Since summing measures

defined on disjoint supports will result in a spectrum for which f(α) is the maximum of the

f(α) in the spectrum of each independent measure, it was expected that the spectrum corre-

sponding to the 1912 boundaries map would be narrower than the spectrum for the full pres-

ent city. Adding newly developed zones to the old centre can only add variety and make the

spectrum wider. The fact that it is only slightly narrower indicates that there is no significant

discrepancy in the development of new neighbourhoods compared to how the old city

evolved.

Comparing the 2012 spectrum to the 1912 spectrum, there is an observable loss of extreme

α values, corresponding to the steepest spatial increase in price, while the relatively homoge-

neous zones, i.e. those around α = 2, are of higher f(α) dimensions in the 2012 case. This is rep-

resentative of a noticeable increase in local homogeneity. It can also be noted that the shape is

Fig 8. Spectra for 2012 Kyoto and price models. (a) Uniform (U), truncated normal (TN), Pareto (P) and true (blue triangles) distributions mapped over Kyoto true

spatial distribution in 2012. (b) Same distributions and true price distribution (K) uniformly drawn into space.

https://doi.org/10.1371/journal.pone.0196737.g008
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more symmetric in 1912 compared to 2012, with a rounder left half of the spectrum. It means

that the diversity in 2012 is created more by (small) local “bumps”, and less by (small) local

“gaps” compared to 1912.

The 2016 PLUTO database for New York contains the assessed tax value for each of the 43k

lots in Manhattan for the 2017 fiscal year. According to the documentation, it is “calculate[d]

by multiplying the tax lot’s estimated full market land value, determined as if vacant and unim-

proved, by a uniform percentage for the property’s tax class” by the Department of Finance. It

is quite similar to the assessed land lot value from the Kyoto 1912 dataset. The resulting spec-

trum can be found in Fig 9b. It can be observed that it is surprising close in width to the spec-

trum for 1912 Kyoto, particularly on the right side. It is also similar in height to 2012 Kyoto. A

look at the values from year to year in the PLUTO database (which starts in 2002), indicates

that the prices are quite stable through time, with only small readjustments from one year to

another. It can be hypothesize that the 2017 assessed land prices distribution is in reality close

to the early 20th century’s distribution, explaining the similarity with 20th century Kyoto. On

the other hand, the D0 value representing the fractal dimension of the physical city, is closer to

present Kyoto.

Another dataset containing all the house transactions that happened in London in 2016 can

be obtained from the Land Registry. For that year, there were a little under 100k transactions.

Although house transactions are not directly comparable to land prices, it gives an idea of the

real estate market in London for that particular year. The resulting spectrum is plotted in Fig

9. While Manhattan data produced a spectrum close to Taisho era Kyoto, the data for London

in 2016 produces a result that is convincingly close to present Kyoto, particularly for the left

(most stable) half of the spectrum. This trend of multifractal loss in modern cities has already

been observed for road networks [11, 12, 30].

Overall, the wide spectrum obtained for the real cases and the ability to discriminate

between situations, indicate that the multifractal methodology can provide informative

insights when applied to land prices measures. It can be interesting to relate the results with

the information (or entropy) dimension which corresponds to the point of the curve for

which α = f(α). The information dimension can be related to Shannon’s entropy and provides

information on the density evenness (or sparseness) in the data, with smaller values corre-

sponding to more heterogeneities. As can be seen from the curves, where it corresponds to the

Fig 9. Kyoto through time and compared to London and New York. (a) Comparison between Kyoto price distribution in 1912 and in 2012 (blue triangles for the full

extent, orange crosses for the 1912 boundaries). (b) Comparison between Kyoto land price distribution in 1912, Kyoto road valuation in 2012, Manhattan land price

distribution in 2016, and London house transaction prices in 2016.

https://doi.org/10.1371/journal.pone.0196737.g009
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intersection with the dashed identity line, this dimension is consistent with the spread of the

curves. The entropy dimension is part of the generalized dimension, and has also been calcu-

lated by a direct approach in appendix A2 in S1 Appendix. All the values calculated in that way

are consistent (in particular the striking similarities between Kyoto, London and New York),

except for the uniform model that unexpectedly has the smallest value. It must finally be noted

that the results are in accordance with Hu et al. [5] who also found multifractality for land

price distributions in Wuhan City in China. We will show in the next section that the results

agree with classical inequality indicators, legitimating its use in an urban inequality context.

Discussion

We compare the results obtained from multifractal analysis with the results obtained when the

classical inequality and segregation indicators are applied to the data. We also point out the

necessity to contextualize the analysis with inter-measure comparison instead of inter-city

comparison alone.

Comparison with classical indicators

In their review of existing economic segregation measures, Reardon et al. [1] (see also [31])

distinguish three different groups of measures. The first group, category-based measures, does

not take into account the ordinal nature of the variable, and is irrelevant to our study (see [32])

for an extensive compilation of such indices). The second group, variation-ratio measures,

such as the Neighbourhood Sorting Index (NSI) [33, 34], compares the ratio of the between-

neighbourhood variation compared to the total population variation for some definitions of

variation [35–37]. The third group, spatial measures, such as an adapted version of geographi-

cal autocorrelation [38, 39], takes into account the spatial patterning of the variables. It is the

most interesting and least well developed one according to them.

The multifractal methodology would pertain to this last group and would not be concerned

with the flaws underlined by Reardon et al for the other measures. Indeed, it is not subject to

the arbitrary nature of the definition of geographical unit or categorical thresholds, and it is

insensitive to linear transformations (and moderately sensitive to affine transformations using

the multiplier method) in the variable distribution. To avoid these flaws, Reardon et al. had

developed new spatial measures based on the variation-ratio idea, among which are the Ordi-

nal Information Theory Index (OITI) and Ordinal Variation Ratio Index (OVRI). We will try

to demonstrate the advantages of the multifractal approach over these measures.

In addition to the segregation NSI, OITI and OVRI indices, we consider three a-spatial

inequality measures: the relative dispersion (RD), the popular Gini coefficient, and the Theil

index [40]. The formal definitions for all six indices can be found in the supporting informa-

tion Appendix A3 in S1 Appendix. For the practical computation, Kyoto is arbitrarily divided

in 100 square neighbourhoods.

The results for 1912 Kyoto are shown in Table 1 for the full residential land price distribu-

tion (Tot.), for a partial price distribution (Part.) that excludes a few outstandingly expensive

lots (such as the Imperial palace), as well as for the uniform (Unif.), truncated normal (TN)

and Pareto (Pareto) price distributions mapped over the true spatial distribution. In accor-

dance with the multifractal analysis, the RD, Gini, Theil and NSI coefficients provide similar

values between the partial and Pareto distributions on the one side, and between the truncated

normal and uniform distribution on the other side. Also in accordance with the multifractal

analysis, the RD and Gini coefficients indicate more distributional variety for the partial

and Pareto distributions than for the uniform and truncated normal ones. According to a

remark in the methodology part, this translates into higher levels of spatial segregation for the
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truncated normal and uniform distributions, which is indicated both by the spectra of Fig 6

and the values of the NSI coefficient. It is noteworthy that the NSI coefficient is made irrele-

vant for the full price distribution. Indeed, its definition offers no counter to the Imperial pal-

ace making all other lots negligible compared to it. In contrast, multifractal analysis is more

resilient to unique outstanding value, which can only add to the total variety. Finally, the OITI

and OVRI indicate no difference between all price models. This insensitivity is by construc-

tion. We prefer the multifractal analysis ability to pick up differences between price distribu-

tions even if the spatial pattern is the dominant element determining the shape of the

spectrum.

Another set of results is presented in Table 2. The partial 1912 distribution has been

mapped over the uniform spatial distribution (Unif.), over one centre and five centres polycen-

tric models (C1A4 and C5A1B3), and over one seed and three seeds DLA models (DLA1 and

DLA3). None of the indicators show segregation for the uniform distribution, which is

expected. OITI and OVRI failed to distinguish between C1A4, DLA1 and DLA3 models, and

NSI between C1A4 and DLA1 models. The C5A1B3 model shows significantly less segregation

than the C1A4 model because it is made roughly of 5 copies of the same concentric distribu-

tion, even though the repartition would feel identical from an inhabitant perspective. This

shows that these measures are not completely free from the modifiable areal unit problem

(MAUP), contrary to the multifractal analysis.

The results for 2012 Kyoto are shown in Table 3 for the entire dataset (Tot.), for the part of

the dataset that corresponds to the extent of the 1912 city (Part.), for a shuffling of the full

Table 2. Classical inequality measures for different space distributions (Kyoto, 1912).

Indicator Part. Space: Unif. C1A4 C5A1B3 DLA1 DLA3

NSI 0.234 0.043 0.530 0.396 0.451 0.241

OITI 0.147 0.004 0.480 0.170 0.488 0.451

OVRI 0.165 0.002 0.442 0.155 0.511 0.476

https://doi.org/10.1371/journal.pone.0196737.t002

Table 1. Classical inequality measures for different price distributions (Kyoto, 1912).

Indicator Tot. Part. Price: Unif. Price: TN Price: Pareto

RD 0.998 0.904 0.498 0.402 0.905

Gini 0.666 0.606 0.332 0.281 0.610

Theil 1.833 0.786 0.192 0.133 0.734

NSI 0.033 0.234 0.500 0.502 0.338

OITI 0.147 0.147 0.147 0.147 0.147

OVRI 0.166 0.165 0.166 0.166 0.166

https://doi.org/10.1371/journal.pone.0196737.t001

Table 3. Classical inequality measures for different space distributions (Kyoto, 2012).

Indicator Tot. Part. Shuffled Price: Unif. Price: TN Price: Par.

RD 0.701 0.768 0.701 0.498 0.282 0.991

Gini 0.479 0.520 0.479 0.332 0.199 0.661

Theil 0.400 0.479 0.400 0.192 0.067 1.02

NSI 0.267 0.376 0.044 0.251 0.260 0.203

OITI 0.041 0.074 0.002 0.041 0.041 0.041

OVRI 0.043 0.079 0.002 0.043 0.043 0.043

https://doi.org/10.1371/journal.pone.0196737.t003
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dataset (Shuffled), and for the uniform (Price: Unif.), truncated normal (Price: TN), and

Pareto (Price: Par.) distributions mapped over the real city. As found previously and as

expected, the OITI and OVRI coefficients are invariant through change of price distribution,

while the RD, Gini and Theil coefficients are invariant through shuffling. Overall, the same

decrease of inhomogeneity between 1912 and 2012 is picked up by all coefficients, especially

the spatial ones (NSI, OITI, OVRI). Contrary to the multifractal analysis, the shuffled distribu-

tion appears more homogeneous than the real distribution, which is true at the broader scale

used to compute the NSI, OITI and OVRI coefficients, but not at the microscale used for mul-

tifractal analysis. Also contrary to the multifractal analysis, the partial distribution is slightly

more unequal than the total one. This is due to the property of multifractal analysis that the

spectrum of the total measure must be wider than the spectrum of a part of it. In a sense, multi-

fractality “adds” all the variety in the measure whereas the classical indicators are “rescaled”

inside each subset. Finally, the ranking between price distributions is similar to the one found

in Fig 8.

Overall, almost all conclusions that could be drawn from the classical indicators are in

accordance and could also be found with the multifractal analysis. The latter also allowed us to

obtain more information and was found to be better at distinguishing some of the spatial mod-

els (in particular the polycentric one) and at giving a result more coherent with the intuitive

perception of those places.

The need to relate results to other measures

Contrary to intuition, a narrower spectrum, which means less variety, is not necessarily equiv-

alent to less inequality. As a matter of fact, a narrow spectrum with a wide price range means

important segregation, since it indicates that the many price bands are all grouped in locally

relatively homogeneous environments. Furthermore, it could appear better suited that the

land price distribution matches the income distribution to ensure maximum affordability

instead of a situation where all prices are equally unaffordable. Unfortunately, income data

tends to be scarcer and usually comes divided into broad categories that are unsuitable for

multifractal analysis. Nonetheless, the multifractal results are in accordance with recent

research suggesting that segregation in modern Japanese cities is expected to be particularly

low. Some social explanations (that are beyond the scope of this article) have been proposed by

Fujita and Hill [41], an article that was thoroughly reviewed by Fielding [42].

It would also be interesting to relate accessibility to land prices. Whether a wider or nar-

rower spectrum should be aimed for accessibility would depend on the variable considered: a

node network with a wider spectrum offers more option to travel from one point to another

with effective hubs, while a time length network should be as narrow and centred over α = 2 as

possible to avoid exponentially long journeys to particular places.

Supporting information

S1 Appendix. Technical precisions and additional descriptors. Contains details on the tech-

nical implementation of the analysis, tables showing the generalized dimension for the city

models, and the formal definitions of the inequality indicators.

(PDF)

S1 Dataset. 1912 Kyoto land prices.

(CSV)

S2 Dataset. 2012 Kyoto land prices.

(CSV)

Inequality and the multifractality of land prices in Kyoto

PLOS ONE | https://doi.org/10.1371/journal.pone.0196737 April 30, 2018 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196737.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196737.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196737.s003
https://doi.org/10.1371/journal.pone.0196737


S3 Dataset. 2012 Kyoto cropped to the 1912 extent land prices.

(CSV)

S4 Dataset. DLA model with 1 centre.

(CSV)

S5 Dataset. DLA model with 1 centre and a sticky probability of 0.5.

(CSV)

S6 Dataset. DLA model with 3 centres.

(CSV)

S7 Dataset. DLA model with 3 centres and a sticky probability of 0.5.

(CSV)

S1 Codes. Txt transcript of the R codes used for the analysis.

(TXT)

Acknowledgments

We acknowledge Dr. Clementine Cottineau for her guidance in the comparison with classical

inequality and segregation indicators.

Author Contributions

Conceptualization: Hadrien Salat, Roberto Murcio, Elsa Arcaute.

Data curation: Keiji Yano.

Formal analysis: Hadrien Salat.

Methodology: Hadrien Salat.

Software: Hadrien Salat.

Supervision: Roberto Murcio, Elsa Arcaute.

Writing – original draft: Hadrien Salat.

Writing – review & editing: Elsa Arcaute.

References
1. Reardon SF, Firebaugh G, O’Sullivan D, Matthews S. A New Approach to Measuring Socio-Spatial

Economic Segregation. In: 29th General Conference of The International Association for Research in

Income and Wealth. Joensuu, Finland; 2006.
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