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ABSTRACT
When modelling the ionization of gas in the intergalactic medium after reionization, it is
standard practice to assume a uniform radiation background. This assumption is not always
appropriate; models with radiative transfer show that large-scale ionization rate fluctuations
can have an observable impact on statistics of the Lyman α forest. We extend such calculations
to include beaming of sources, which has previously been neglected but which is expected to
be important if quasars dominate the ionizing photon budget. Beaming has two effects: first,
the physical number density of ionizing sources is enhanced relative to that directly observed;
and secondly, the radiative transfer itself is altered. We calculate both effects in a hard-edged
beaming model where each source has a random orientation, using an equilibrium Boltzmann
hierarchy in terms of spherical harmonics. By studying the statistical properties of the resulting
ionization rate and H I density fields at redshift z ∼ 2.3, we find that the two effects partially
cancel each other; combined, they constitute a maximum 5 per cent correction to the power
spectrum PH I(k) at k = 0.04 h Mpc−1. On very large scales (k < 0.01 h Mpc−1) the source
density renormalization dominates; it can reduce, by an order of magnitude, the contribution
of ionizing shot noise to the intergalactic H I power spectrum. The effects of beaming should
be considered when interpreting future observational data sets.

Key words: radiative transfer – diffuse radiation – large-scale structure of Universe –
cosmology: theory.

1 IN T RO D U C T I O N

Intergalactic neutral hydrogen can be detected in the spectra of
background quasars; absorption at the rest-frame Lyman α tran-
sition gives rise to a ‘forest’ with hundreds of distinct absorp-
tion lines corresponding to neutral hydrogen at different redshifts
(Weymann, Carswell & Smith 1981). On small scales, between 1
and 40 h−1 Mpc comoving, the forest can be used as a statistical
tracer of the distribution of matter (Viel et al. 2005).

In fact hydrogen in the intergalactic medium (IGM) at z < 5 is
highly ionized by ultraviolet (UV) background radiation produced
by stars and quasars (Croft 2004; Viel et al. 2005), leaving only
a trace of H I. This UV background is therefore an essential ele-
ment in simulations of the forest (Cen et al. 1994). When modelling
Lyman α absorption, the neutral hydrogen density is assumed to
be in ionization equilibrium with a uniform ionizing background
(e.g. Katz, Weinberg & Hernquist 1996; Haehnelt et al. 2001;
McDonald 2003; Croft 2004). Theoretical and observational ar-
guments both show that this assumption can fail in various limits
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and a fluctuating UV background ought at least in principle to be
included in analyses of the forest (Maselli & Ferrara 2005).

Recently, some attention has been devoted to understanding H I

fluctuations on scales approaching the mean-free-path of an ioniz-
ing photon (Gontcho A Gontcho, Miralda-Escudé & Busca 2014;
Pontzen 2014; Pontzen et al. 2014; Bautista et al. 2017). In this
large-scale limit, the correlation of H I with cosmological density
progressively weakens and eventually reverses sign because the
clustering of the radiation field becomes stronger than the cluster-
ing of intergalactic hydrogen. Additionally, if quasars contribute
significantly to the photon production budget, an uncorrelated shot-
noise component is added to the power due to their intrinsic rarity.

A number of factors have been neglected from radiative transfer
calculations to date, however. These include beaming of sources,
variable heating from high-frequency photons and time dependence.
In this paper, we tackle the first of these simplifications and explore
the effect of quasar beaming on the shot-noise contribution to the
large-scale diffuse H I power spectrum. We estimate the correction to
the radiation fluctuations when emission is not isotropic but beamed
for a random distribution of quasars.

The plan for the remainder of this paper is as follows. In
Section 2, we derive the emissivity power spectrum accounting
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Figure 1. Geometry of our source model, which represents a quasar with
variable beam width. The probability of detecting a quasar is proportional
to the beam area A1 and A2. These in turn are determined by the opening
angle, here parametrized by θ1 with 0 < θ1 ≤ π/2. The isotropic case is
recovered when θ1 = π/2.

for a population of sources with fixed beam widths but random
orientations. In Section 3, we discuss the radiation transfer equa-
tion appropriate for this distribution (with further detail in the Ap-
pendix). We present the resulting power spectrum of the radiation
and H I fluctuations in Section 4 and summarize in Section 5.

2 FLUCTUATIONS IN THE EMISSIVITY

2.1 Correcting the number density of sources n̄

The simplest effect of source beaming is that the underlying number
density n̄ is no longer directly measured by observations. The ob-
served number density n̄obs must be corrected for the probability of
being detected. This probability is given by the area of the emission
(the beam) divided by the total area of a sphere, assuming a random
orientation. We assume a hard-edged beam with opening angle 2θ1;
see Fig. 1. The chance of any given quasar to be seen is then

p(seen) = (A1 + A2)

4πr2
= 1 − cos θ1, (1)

in which A1 and A2 are the areas of two axisymmetric beams. The
isotropic case is recovered when the angle θ1 is equal to π/2. In the
limit that θ1 approaches zero, the emission becomes a pencil-beam
and the likelihood of observation becomes extremely small.

The number of density sources we detect, n̄obs, is the true mean
density n̄ times the probability for observing each one:

n̄obs = n̄(1 − cos θ1). (2)

In Pontzen (2014; henceforth P14), it was assumed that these two
densities are equal; for the results in this work, we fix n̄obs at the
value estimated by P14, meaning that the underlying density n̄

varies. We emphasize that n̄obs is itself highly uncertain, but that for
the purpose of understanding the effects of beaming it is simplest
to keep it fixed.

2.2 Definitions required for the emissivity derivation

In the remainder of Section 2, we will calculate the effects of beam-
ing on the emissivity power spectrum from discrete sources. A
fraction of photons comes from recombination of the IGM, but
following the approach of P14 we account for those through an
appropriate additional term in the radiative transfer equation (see
Section 3). Here, we can therefore focus on the discrete sources
alone.

We start from a rate of emission of photons in a narrow band at
frequency ν, in a small volume around comoving position x and in
an interval around the direction vector n; this is denoted jν(x, n).
As in P14, we simplify to a frequency-averaged quantity j (x, n)
where

j (x, n) =
∫

jν(x, n)σH I(ν)dν. (3)

The goal is to model fractional variations of j around its mean value
〈 j 〉, motivating the definition

δj (x, n) = j (x, n)

〈j〉 − 1. (4)

We assume that variations on sufficiently large scales can be related
to the cosmological matter overdensity δρ multiplied by a constant
bias bj, plus a Gaussian white-noise field to represent shot noise
from the the rarity of sources. The variations of the emissivity, δj,
on large scales is therefore written:

δj (x, n) = bj δρ(x) + δj,SN(x, n), (5)

where δρ is the fractional matter overdensity at position x. Accord-
ing to equation (5), we need only to consider the component δj, SN

in the present work; by construction all angle-dependence arises in
the shot-noise term and the radiation fluctuations that correlate with
the cosmological density field will not be altered by beaming. As
a final simplification, P14 section II.C argues that the shot-noise
contribution from galaxies is negligible (owing to their very high
number density) and we can assume all contributions to δj, SN arise
from quasars.

In the remainder of this paper, we will often need to work
with Fourier-transformed and spherical harmonic representations
of functions. For any function F (x, n), these are defined, respec-
tively, as

F̃ (k, n) ≡ 1

(2π)3/2

∫
d3x e−ik·x F (x, n) and (6)

F	m(x) ≡
∫

d2n Y ∗
	m(n)F (x, n), (7)

where Y ∗
	m(n) is the complex conjugate spherical harmonic ba-

sis function as defined in Varshalovich, Moskalev & Khersonskii
(1988). The spherical harmonic Fourier modes F̃ 	m(k) follow by
Fourier-transforming equation (7) or, equivalently, taking spherical
harmonics of equation (6).

2.3 Emission of one quasar with a preferred alignment

We want to understand the statistical properties of the j (x, n) field
accounting for anisotropic emission from the sources. To start, con-
sider a single quasar of luminosity L inside a fixed volume V. Adopt-
ing at first an aligned coordinate system such that θ gives the angle
to the symmetry axis, and using the geometry of Section 2.1, we
have

jaligned(θ, φ) = J

⎧⎨
⎩

1 0 < θ < θ1

0 θ1 < θ < π − θ1

1 π − θ1 < θ < π

, (8)

where jaligned(θ , φ) indicates the emissivity for the single quasar in
our preferred coordinate system, the constant J is defined by J =
L/(4πV (1 − cos θ1)), and θ1 is the angle described in Section 2.1
and can have any value in the interval [0, π/2].

To proceed further, we decompose the function jaligned(θ , φ)
into spherical harmonics j	m

aligned according to equation (7). For our
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aligned choice of coordinates, we only need to consider m = 0
terms because of the cylindrical symmetry around the ẑ-axis. In this
case, the spherical harmonic Y	0(θ , φ) can be written in terms of
a Legendre polynomial, Y	0(θ, φ) = √

(2l + 1)/(4π)P	(cos θ ). Us-
ing this result and the recursion relations for P	, we can express the
emissivity variations as

J	 ≡ j	0
aligned = J

⎧⎨
⎩

√
4π(1 − cos θ1) 	 = 0;√

π
2	+1

[
1 − (−1)	+1

]
[P	−1 − P	+1] 	 > 0,

(9)

where for brevity we have written the Legendre polynomials eval-
uated at cos θ1, i.e. Pl−1 ≡ Pl−1(cos θ1) and Pl + 1 ≡ Pl+1(cos θ1).

2.4 Emission of N quasars with no preferred alignment

So far we have derived the emissivity for a single quasar in a volume
V in terms of the spherical harmonics coefficients. However, we now
need to look at the realistic case of N quasars, each with a beam
pointing in an independent random direction. To achieve this, we
first need to drop the assumption of a preferred coordinate system,
even for the single-quasar case N = 1.

The spherical harmonic coefficients j	m
N=1 for a single quasar

pointing in an arbitrary direction are related to the aligned spherical
harmonics via the Wigner D matrix, which expresses a rotation by
Euler angles φ, θ , ψ :

j	m
N=1 =

∑
m′

D	
mm′ (φ, θ, ψ) j	m′

aligned

= D	
m0(φ, θ, ψ) J	.

(10)

We are thus only interested in the value of the D matrix when m′ = 0,
for which case we have the identity (Varshalovich et al. 1988):

D	
m0(φ, θ, ψ) =

√
4π

2	 + 1
Y ∗

	m(θ, φ). (11)

The average emissivity over all possible beam alignment Euler
angles is now given by

〈
j	m
N=1

〉
φ,θ,ψ

≡ 1

8π2

•
dθdφdψ sin θ D	

m0(θ, φ,ψ) J	

=
{

J0 	 = 0;

0 	 �= 0.
(12)

Next, we need to calculate the two-point statistic 〈j	m
N=1j

∗	′m′
N=1 〉. Still

using a single quasar averaged over all possible directions we obtain

〈
j	m
N=1j

∗	′m′
N=1

〉
φ,θ,ψ

= 1

2	 + 1

{
J 2

	 	 = 	′, m = m′;

0 otherwise,
(13)

where we used the orthogonality properties of the spherical har-
monics.

If N sources contribute, the angle-averaged emissivity (12) is
simply scaled up by a factor N. However, the generalization of the
two-point function requires a more careful analysis. The total emis-
sivity j	m

N in this case can be decomposed as the sum of emissivity
due to the individual sources,

j	m
N =

N∑
i=1

j	m
(i) , (14)

where j	m
(i) represents the emission due to the ith source. When

taking an average over all possible orientations, each now has its

own Euler angles φi, θ i, ψ i. Considering the two-point function,

〈
j	m
N j ∗	′m′

N

〉
{φi ,θi ,ψi }

=
N∑

a=1

N∑
b=1

〈
j	m

(a) j
	′m′
(b)

〉
{φi ,θi ,ψi }

, (15)

there are now two types of term. First, there are the single-source
terms where a = b. In these cases, the average over Euler angles
is no different from the N = 1 case. Since there are N such terms
with a = b, they contribute N times the result in equation (13).
Secondly, there are cross-quasar terms where a �= b. These terms
involve separately integrating over the Euler angles for both a and
b. The decoupled integrals are individually of the form (12); each
cross-term (of which there are N2 − N in total) therefore contributes
J 2

0 when 	 = 0 and zero otherwise. Putting together the results above
we find that

〈
j	m
N j ∗	′m′

N

〉
{φi ,θi ,ψi }

= 1

2	 + 1

⎧⎨
⎩

N2J 2
0 	 = 	′ = m = m′ = 0;

NJ 2
	 	 = 	′ �= 0,m = m′;

0 otherwise.

(16)

This is the final result for the case of a fixed number of N quasars
inside a volume V.

2.5 Putting it together: emissivity shot-noise power spectrum

So far we have considered a case where the emissivity inside a
fixed volume V with a known number of quasars N is calculated.
We now need to introduce fluctuations in N. We expect to have
〈N〉 = n̄V quasars, where the average is over all possible values
of N and n̄ is the number density. In the Gaussian limit of Poisson
statistics (which should be appropriate on large scales), we also
know that the variance in N is given by the relation 〈N2〉 − 〈N〉2 =
n̄V . Consequently, the statistics for the emissivity jV in a fixed
volume but with varying N are specified by〈
j	m
V j ∗	′m′

V

〉

= 1

2	 + 1

⎧⎪⎨
⎪⎩

[
n̄V + (n̄V )2

]
J 2

0 	 = 	′ = m = m′ = 0;

n̄V J 2
	 	 = 	′ �= 0, m = m′;

0 otherwise,

(17)

where the average is now over all values of N, as well as over the
Euler angles φi, θ i, ψ i for each quasar.

To make the connection with the statistics of the δj,SN field intro-
duced in equation (5), we now define the fractional variations in j
in a volume V as δj,V where

δj,V (n) ≡ jV (n) − 〈jV 〉
〈jV 〉 , (18)

which implies the spherical harmonic expansion is given by

δ	m
j,V = j	m

V − 〈j	m
V 〉

〈j 00
V 〉

√
4π. (19)

Using this result alongside equation (17), we find that 〈δ	m
j,V 〉 = 0

and〈
δ	m
j,V δ∗	′m′

j,V

〉
= 1

n̄V

4π

2	 + 1

{
(J	/J0)2 	 = 	′, m = m′;

0 otherwise.
(20)

Finally, the expression for the statistics averaged over a volume V
need to be related to the power spectrum of δj,SN. We define the
source shot-noise power spectrum Pj,SN,	(k) via〈

δ̃	m
j,SN(k)δ̃∗	′m′

j,SN (k′)
〉

= Pj,SN,	(k)δD(k − k′)δ		′δmm′ , (21)
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where δD is the Dirac delta function. To make contact between this
required form and the derivation so far, one calculates the fluctuation
averaged over a volume V:

δ	m
j,V ≡ 1

V

∫
V

d3x δ	,m
j,SN(x)

= 1

(2π)3/2V

∫
V

d3x

∫
d3k eik·x δ̃	,m

j,SN(k). (22)

Making the ansatz that Pj,SN,	(k) is in fact independent of k (as
expected for shot noise), we find that〈

δ	m
j,V δ∗	′m′

j,V

〉
= 1

V
Pj,SN,	δ		′δmm′ . (23)

By comparing with equation (20) one obtains the final result:

Pj,SN,	(k) = 4π

n̄

(J	/J0)2

2	 + 1
. (24)

In the case of isotropic emission, J	 = 0 for 	 > 0 and the result (24)
agrees with that from P14. Note that the shot noise always scales
with the inverse of the mean density n̄ (whether or not the emission
is isotropic).

3 R A D I ATI V E TR A N S F E R M E T H O D

In this section, we expand the P14 linearized radiative transfer
equation into a spherical harmonic Boltzmann hierarchy so that
we can use the directional source statistics derived in Section 2.
Starting from the physical number density of photons f (x, n, ν) at
comoving position x travelling in direction n with frequency ν, P14
integrates over the frequency dependence ν by defining

fLL(x, n) =
∫

dν f (x, n, ν)σH I(ν), (25)

analogous to equation (3). We approximate the radiation and ion-
ization to be in equilibrium; this is a good approximation at redshift
z ∼ 2.3 (e.g. Busca et al. 2013). The fractional variations around the
mean value of fLL are denoted δfLL ; by linearizing the Boltzmann
equation, P14 obtained[
i(a κtot,0)−1(n · k) + 1

]
δ̃fLL (k, n) = (1 − βH sciβr)δ̃j (k, n)

+βH Iβr[δ̃nH I
+ δ̃�(k)] − δ̃κtot . (26)

Here, a is the cosmological scalefactor and κ tot an effective opacity
to ionizing photons (composed of both physical absorption and
corrections from effects such as redshifting). The mean effective
opacity is given by κ tot,0 ≡ 〈κ tot〉 while its fractional fluctuations are
specified by δκtot . The inverse of a κ tot, 0 gives the effective comoving
mean free path of an ionizing photon, which can be estimated to
be 350 Mpc at z = 2.3 (see P14 equation 16). The dimensionless
quantities βH I and βr quantify, respectively, the fraction of effective
opacity resulting from physical absorption in the IGM, and the
fraction of H I recombinations that result in an emission of a new
ionizing photon. The appearance of βr is in fact accounting for
ionizing photons re-emitted (isotropically) from the IGM itself as
mentioned at the start of Section 2.2. For full details see P14.

In the same way that equation (5) decomposes the emissivity into
shot noise and cosmological terms, we can decompose the radiation
density fluctuations:

δ̃fLL (k, n) = δ̃fLL,SN(k, n) + bfLL (k̂ · n)δ̃ρ(k), (27)

where bfLL is a scale- and direction-dependent bias. At linear order,
δ̃fLL,SN depends only on δ̃j ,SN, not on the cosmological density δ̃ρ .
In the present analysis, we revise only the shot-noise component.

P14 assumes that δj, SN is independent of n. In our case, we can no
longer make this assumption. Instead we write the direction vector
n = (sin θ cos φ, sin θ sin φ, cos θ ) and, to simplify the analysis, ro-
tate the coordinate system1 such that the wavevector k lies along the
ẑ-axis, i.e. k = (0, 0, k). The product n · k appearing in the radiative
transfer equation then expands to

n · k = k cos θ =
√

4π

3
k Y10(θ, φ). (28)

Using this result in equation (26), we obtain (see the Appendix for
a detailed derivation):

δ̃	m
fLL,SN − βH Iδ

00
fLL,SNδ0	δ0m + ik

a κtot,0

×
{

δ̃	−1,m
fLL,SN

√
(	 + m)(	 − m)

(2	 − 1)(2	 + 1)

+ δ̃	+1,m
fLL,SN

√
(	 + m + 1)(	 − m + 1)

(2	 + 1)(2	 + 3)

}

= (1 − βH iβr)δ̃
	m
j,SN(k), (29)

where the explicit k-dependence of δ̃	m
fLL

has been omitted from the
expression for brevity. The expression can be rewritten schemati-
cally as∑

	′
Mm		′ (k)δ	′m

fLL,SN(k) = (1 − βH Iβr )δ	m
j,SN(k), (30)

where Mm		′ (k) contains the appropriate equilibrium radiation
transfer coefficients from the left-hand side of (29). We can invert
the linear relationship:

δ̃	m
fLL,SN(k) = (1 − βH Iβr)

∑
	′

M−1
m		′ (k)δ̃	′m

j,SN(k), (31)

where the inverse matrix M−1
m satisfies∑

	′
M−1

m		′Mm	′	′′ = δ		′′ . (32)

In our analysis, we are only interested in the overall radiation in-
tensity fluctuations – i.e. the statistical properties of δ̃00

fLL
, or equiva-

lently δ̃� . Therefore, we need to consider only the m = 0 component
of equation (31) since different ms do not couple to each other.

The next step is to solve the inversion (31) numerically. For these
purposes, the hierarchy must be truncated at finite 	max, so that
we solve a 	max × 	max matrix inversion for each k. In practice,
choosing 	max requires a convergence test to ensure that any results
are insensitive to the finite truncation.

In the case of an isotropically radiating source, the solution for
δ̃� was written in closed form by equation (30) of P14, which can
be rearranged (see the Appendix) to provide a test case that is
illustrated in Fig. 2. Specializing our equation (31) to the isotropic
case corresponds to setting δ̃	m

j to zero for 	 �= 0 and m �= 0.

The result for δ� = δ00
fLL

/
√

4π is shown in Fig. 2 as a function of
k/(a κ tot, 0).

1 This freedom is available because we will ultimately consider only scalar
quantities such as the ionization rate and H I density. Statistical isotropy will
then ensure the choice of k̂ direction in the analysis is irrelevant. Note that
our special coordinate system in this section is independent of the alternative
preferred system temporarily adopted in the early parts of Section 2.
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Figure 2. Demonstration of convergence of the numerical solution for shot
noise-induced ionization rate fluctuations δ̃�,SN(k) as a fraction of the un-
derlying source fluctuations δ̃j ,SN(k). We choose an isotropic emission case
where a closed-form analytic solution (shown by the shading) is known
from Pontzen (2014). As 	max increases for test values from 4 to 500, our
numerical hierarchy converges to this solution.

Consider first the closed-form solution from P14, shown by the
shaded band. The function shows how ionization rate fluctuations
trace emissivity fluctuations on large scales (small k) – the function
converges to a fixed, order unity value. On small scales (large k),
the fluctuations in the ionization rate are suppressed: even a point
source of radiation can ionize extended regions of space, so the
small-scale ionization rate fluctuations are damped. The transition
scale between these behaviours is set by the effective mean free
path (a κ tot, 0)−1.

As 	max increases, our new hierarchy solution correctly converges
to the closed-form solution (dotted, dash–dotted, dashed and solid
lines, respectively, for 	max = 4, 10, 50 and 500). The long wave-
length limit (small k), is completely insensitive to 	max, while the
highest k modes are most sensitive. Note that while in this test case
the emission is isotropic, the actual radiation field is not; there is a
net flux of photons away from the plane wave peaks which defines
a preferred direction. This accounts for the sensitivity to 	max; as k
becomes large the spacing between peaks becomes small compared
to the mean free path of a photon. The true photon distribution is
sharply peaked in the k̂ direction and such sharp directionality re-
quires a high 	max for an adequate representation. In the remainder
of this paper, we set 	max = 500; we verified that increasing 	max to
1000 did not change our results.

4 R E S U LT S F O R IO N I Z ATI O N R ATE A N D H I

POWER SPECTRA

We now have everything required to consider the power spectrum
of radiation fluctuations for different source beaming parameters.
Again considering only the shot-noise component, we can write

P�,SN(k) = (1 − βH Iβr )2

4π

∑
	

(M−1
00	(k))2Pj,SN,	(k), (33)

where Pj, SN, 	(k) is given by equation (24) and is in fact indepen-
dent of k. The term M−1

00	(k) refers to the inverse matrix M−1
m	′	 in

equation (32) with m = 0 and 	′ = 0; in general there is no closed
analytic form so, as described in Section 3, the matrix must be
inverted numerically.

Figure 3. Shot-noise power spectrum for radiation fluctuations P�,SN(k),
multiplied by the overall density of sources n̄ (which removes the only
dependence on n̄). For the solid, dashed, and dash–dotted lines the opening
angle for the radiation sources is π/2, π/10 and π/100, respectively. The
low-k radiation fluctuations are independent of the beam angle while at high
k the amplitude of fluctuations are increased for narrow beams.

Fig. 3 plots n̄ P�,SN (k) against the wavenumber for different
values of the beam width θ1 = π/2, π/10 and π/100. These
correspond to opening angles of 180◦, 36◦ and 3.◦6, respectively;
the last of these is exceptionally narrow compared to observa-
tional estimates of �30◦ (Trainor & Steidel 2013) and should
be regarded as an extreme upper limit on the magnitude of
the correction.

Because Pj,SN,	(k) scales inversely proportional to the source den-
sity n̄, the product n̄ P�,SN(k) is independent of n̄ and a function
only of the beam shape. Inspecting this product allows us to isolate
and understand the effect of the beaming.

The first case, θ1 = π/2, is plotted with a solid line and re-
covers the isotropic-emission solution (as previously illustrated in
Fig. 2). As θ1 decreases (dashed and dash-dotted lines, respec-
tively), the radiation emission is increasingly tightly collimated.
The effect of the beaming on n̄ P�,SN(k) is, however, confined
to large k. At low k, where the mean-free path (aκ tot)−1 is small
compared to the wave under consideration, beaming has no effect
because the local ionizing rate scales proportionally to the total
photon output of sources. For smaller wavelengths (higher k), nar-
row beams lead to higher amplitude fluctuations in the ionizing
photon field.

Until now, we have considered only the shot-noise contribution,
but to draw overall conclusions we need to put our revised radiation
shot noise estimates back into the full calculation from P14. Because
the shot noise is uncorrelated with the cosmological fluctuations in
the first-order analysis, the power spectra add linearly:

PH I(k) = b2
H I

(k)Pρ(k) + PH I,SN(k), (34)

where Pρ(k) is the dark matter density power spectrum and bH I is
the linear relationship between H I density and the total density as
a function of scale, which is unchanged from P14. Finally, because
δnH I,SN = −δ�,SN, the shot-noise power spectra for H I and � are
equal and we have

PH I(k) = b2
H I

Pρ(k) + P�,SN(k), (35)

which allows us to use the result obtained in equation (33) for our
beamed shot-noise estimates.
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Figure 4. Power spectrum of the H I fluctuations defined by equation (35),
evaluated at redshift z  2.3 for a fixed observed source density of n̄obs =
10−4 h3 Mpc−3, and for the same range of beam widths θ1 adopted in
Fig. 3. All other parameters are set to the defaults from Pontzen (2014).
The dominant effect of changing θ1 arises from the rescaling of n̄ to match
n̄obs; this can be seen on the largest scales (small k) where shot-noise effects
dominate. The dotted line shows, for reference, the H I power spectrum in
the unphysical limit where there are no UV fluctuations.

Fig. 4 shows the total power spectrum for the three values of
θ1 previously adopted and a fixed density of observed sources
n̄obs = 1 × 10−4 h3 Mpc−3, a value adopted directly from P14. Note
that for our present investigation, we assume that all sources have the
same opening angle (in particular ignoring the distinction between
quasars and galaxies in this respect). Even if galaxies contribute
comparable or larger number of photons to the overall background,
the shot noise is still strongly dominated by quasars (P14) and so
this approximation is likely valid.

As in P14, radiation can be approximated as near-uniform for
the power spectrum on scales below the mean-free path (for k �
0.01 h Mpc−1); consequently the corrections from the fluctuating
ionization always increase towards large scales. On very large scales
(k < 0.01 h Mpc−1), radiation fluctuations actually dominate over
H density fluctuations in the HI power spectrum. At the transi-
tion scale, there is a characteristic dip where the radiation and H
density fluctuations approximately cancel. These basic features are
preserved when beaming is included.

As the source beams narrow, the results in Fig. 4 show that the
primary effect is to reduce the amplitude of shot-noise fluctuations
in the very large-scale regime (k � 0.01 h Mpc−1) through the renor-
malization discussed in Section 2.1. Unlike the direct effect of the
beam, this observational correction to the inferred number densities
applies equally over all scales, making it extremely significant in
the low-k regime where shot noise dominates. However, note that
the constraining effect of current and future surveys is quite poor on
such extreme scales (Pontzen et al. 2014; Bautista et al. 2017). At
scales k ∼ 0.04 h Mpc−1, where reasonable observational precision
can be expected in future pipelines, the effects of beaming are con-
siderably more modest constituting a �5 per cent correction. In this
regime, the decreased power from the source density renormaliza-
tion is partially cancelled by the increased power from the beaming
itself (Fig. 3).

Because the effects are so strongly scale-dependent, and survey
sensitivities are also a steep function of scale, the observability of
beaming will be strongly dependent on details of observing strategy
and pipelines.

5 SU M M A RY A N D D I S C U S S I O N

We have constructed a model to treat fluctuations in the cosmologi-
cal UV background taking into account, for the first time, anisotropy
due to phenomena such as quasar beaming. To do that, we built upon
the monochromatic, equilibrium, large-scale description presented
in Pontzen (2014) but included angle-dependent emission terms.

We first introduced a correction for the observational bias that
individual quasars are less likely to be detected if they are tightly
beamed. This renormalizes the underlying density of quasars in the
Universe. We then derived the emissivity shot-noise power spectrum
corresponding to a distribution of quasars each pointing in a ran-
domized direction. This required adopting an underlying beaming
model; for simplicity we used a hard-edged beam of fixed opening
angle 2θ1 for the entire population (Fig. 1). Finally, we rederived
the radiative transfer for the shot noise taking into account the new
angle-dependence. These results are most naturally expressed in
terms of a hierarchy of spherical harmonic coefficients; because we
are only interested in the overall radiation intensity fluctuations we
ultimately took the 	 = 0, m = 0 component.

We solved the new hierarchy numerically and showed that, for
sufficiently large 	max, the method converges to the known isotropic-
emission case when θ1 = π/2 (see Fig. 2) demonstrating the ac-
curacy of the method. Then, we explored the effects of the quasar
beam width on the shot noise (Fig. 3).

The shot-noise power spectrum of radiation fluctuations P�, SN in
Fig. 3 shows that the fluctuations are not sensitive to the beam angle
at low k. Fluctuation amplitudes do increase at high k for narrower
beams; however the effect is modest even for extreme values of the
beam width θ1.

When combining the new shot-noise solution with the cosmolog-
ical density fluctuations (Fig. 4), we found that the primary effect
of beaming is in fact the first and simplest one: the observational
renormalization of the underlying density of bright sources. This
affects all k modes equally (scaling up and down the overall con-
tribution of shot noise) and therefore is highly significant on large
scales (small k) where the shot-noise potentially dominates over the
cosmological signal.

This paper has focused on clarifying one area where the effects
of radiative transfer on the Lyman α forest were not known. If
future pipelines lead to constraints on the magnitude of this effect
(e.g. Pontzen et al. 2014; Bautista et al. 2017), there are a number
of other possible influences that still require to be understood. For
example, time variability of sources and the effects of patchy heating
still need to be incorporated in a coherent framework and will be
tackled in future work.
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442, 187

Haehnelt M. G., Madau P., Kudritzki R., Haardt F., 2001, ApJ, 549, L151
Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
Maselli A., Ferrara A., 2005, MNRAS, 364, 1429
McDonald P., 2003, ApJ, 585, 34
Pontzen A., 2014, Phys. Rev. D, 89, 083010
Pontzen A., Bird S., Peiris H., Verde L., 2014, ApJ, 792, L34
Trainor R., Steidel C. C., 2013, ApJ, 775, L3
Varshalovich D. A., Moskalev A. N., Khersonskii V. K., 1988, Quantum

Theory of Angular Momentum. World Scientific Publishing Co.
Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005,

Phys. Rev. D, 71, 063534
Weymann R. J., Carswell R. F., Smith M. G., 1981, ARA&A, 19, 41

A P P E N D I X A : D E R I VATI O N O F TH E
R A D I ATI V E TR A N S F E R H I E R A R C H Y FO R
ANISOTROPIC EMISSION

In this Appendix, we present a derivation of our equilibrium hi-
erarchy, equation (29), starting from the Boltzmann equation (26)
which itself was previously derived in P14. As stated in the main
text, we choose a coordinate system in which the wavevector k lies
along the ẑ-axis, allowing us to rewrite n · k in terms of Y 0

1 ; see
equation (28).

To extract the spherical harmonic hierarchy, we expand all angu-
lar dependances; for any function F one has

F (x, n) =
∑
	′,m′

F	′m′
(x)Y	′m′ (n), (A1)

which is the inverse of the defining relation (7). We then multiply
both sides of equation (29) by Y ∗

	′m′ (n) and integrate over all angles
n. The left-hand side becomes

LHS = ik

aκtot,0

√
4π

3

“
d2n

∑
	′,m′

δ̃	′m′
fLL

(k)Y	′m′ (n)Y1,0(n)Y ∗
	m(n)

+ δ	m
fLL

(k), (A2)

where to obtain the last term we have applied the orthogonality re-
lation between spherical harmonics. The first term can be simplified
by applying a special case of the Wigner 3j-symbol (Varshalovich
et al. 1988):

“
d2n YM

L (n)Y 0
1 (n)Y ∗M

L+1(n) =
√

3(L + M + 1)(L − M + 1)

4π(2L + 1)(2L + 3)
.

(A3)

This identity can be used to calculate the integral for two values of
	′ in the sum given by (A2), namely 	′ = 	 ± 1. The 	′ = 	 + 1 case
is obtained by a relabelling of the indices whereas the 	′ = 	 − 1
case is obtained by taking the complex conjugate of equation (A3).
By the triangle condition, integrals for any other value of 	′ vanish.
Consequently, we may write the LHS of our expression as

LHS = ik

a κtot,0

⎧⎨
⎩

√
(	 + m)(	 − m)

(2	 − 1)(2	 + 1)
δ̃	−1,m
fLL

(k)

+
√

(	 + m + 1)(	 − m + 1)

(2	 + 1)(2	 + 3)
δ̃	+1,m
fLL

(k)

⎫⎬
⎭ + δ̃	m

fLL
(k).

(A4)

We now turn to the right-hand side of equation (29), again multi-
plying by Y ∗

	m(n) and integrating over all angles n. Only δ̃j has any
angular dependence on the RHS; the orthogonality of the spherical
harmonics picks out the coefficients δ̃	m

j for this term. For all other
terms, only the 	 = 0, m = 0 case survives the integration. The
result is that

RHS = (1 − βH Iβr )δ̃	m
j (k)

+ δ	0δm0√
4π

[
βH Iβr

(
δ̃nH I

(k) + δ̃�(k)
) − δ̃κtot (k)

]
. (A5)

As expressed by equation (27), we wish to separate the radiation
fluctuations that are correlated with the cosmological density field
δρ from those that are caused by shot noise. To do so, we need to
transform some of the terms on the RHS which mix the two types
of fluctuation as follows.

The terms δ̃nH I
and δ̃� do not have an angular dependence and

their relationships are therefore unchanged compared to P14:

δ̃nH I
= δ̃nH I,u − δ̃�; δ̃κtot = βH Iδ̃nH I

+ βclumpδ̃κclump . (A6)

The first of these relations arises from the fact that nH I is in-
versely proportional to the ionization rate per H I atom, recover-
ing the completely uniform ionizing background in the absence
of any radiative fluctuations, δ̃nHI,u. The effective opacity fluctu-
ations δκtot definition is a linear combination of the intergalactic
medium absorption fluctuations and the self-shielded clump opacity
fluctuations.

We can use these relations to rewrite equation (A5) in terms of
δ̃� , δ̃nH I,u and δ̃κclump . The ionization rate fluctuations δ̃� are defined
by the fluctuations in the photon density δ̃fLL via the relation

δ� = 1

4π

∫
d2n δ̃fLL

(k, n) = 1√
4π

δ̃00
fLL

(k). (A7)

Consequently δ̃� can be split into a correlated and shot-noise com-
ponent, with δ̃�,SN ≡ δ00

fLL,SN/
√

4π.
Using the above transformations, we find the RHS can be written

RHS = (1 − βH Iβr )δ̃	m
j (k) + βH Iδ	0δm0δ̃

00
fLL

(k)

+ (
βH I (βr − 1) δ̃nH I,u(k) − βclumpδ̃κclump

)
δ	0δm0. (A8)

We now apply the decomposition into cosmological and shot-noise
components for δ̃j and δ̃fLL keeping only the shot-noise contribu-
tions. (By linearity, the two types of contribution can be treated in-
dependently and the cosmological terms are unchanged from P14.)
In particular, the terms δnH I,u and δκclump are independent of radiation
fluctuations; consequently they have no shot-noise component and
drop out entirely. Combining equations (A4) and (A8) one reaches
the final equation:

δ̃	m
fLL,SN(k) − βH Iδ

00
fLL,SN(k)δ0	δ0m

+ ik

a κtot,0
×

{√
(	 + m)(	 − m)

(2	 − 1)(2	 + 1)
δ̃	−1,m
fLL,SN(k)

+
√

(	 + m + 1)(	 − m + 1)

(2	 + 1)(2	 + 3)
δ̃	+1,m
fLL,SN(k)

}

= (1 − βH Iβr)δ̃
	m
j,SN(k), (A9)

which agrees with the expression (29) provided in the main text.
In Section 3, we compared the solution to this hierarchy with

the known isotropic limit. For these purposes, we need to extract
the shot-noise-only isotropic solution in a way that was not written
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in P14, although it is implicit in P14 equation (38). Starting from
P14’s equation (30), we apply our equation (A6) and again retain
only those terms which are not correlated with δ̃ρ . This yields

δ̃�,SN,iso(k) = (1 − βH Iβr)S(k)

1 − βH IS(k)
δ̃j ,SN,iso(k),

where S(k) = aκtot,0

k
arctan

k

aκtot,0
, (A10)

for the isotropic comparison case which is plotted as a shaded band
in Fig. 2.
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