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Summary  of  the  Study:  Improving  Secondary  Students'  Revision  of  Physics  Concepts 

through Computer-mediated Peer Discussion and Prescriptive Tutoring

In this dissertation, I report on the design, implementation, and evaluation of my intervention 

for  the  revision  of  physics  in  a  mainstream public  secondary  school  in  Singapore.   This 

intervention was conducted over a one-year period, and involved students who were taking 

their  GCE  'O'  level  physics  examination  after  immersion  in  the  intervention,  which  was 

conducted as part of their regular physics revision curriculum.  Based on sociocultural theory, 

the intervention changed the practice of how physics revision was conducted in a particular 

secondary physics classroom.  The intervention consisted of a computer-mediated collaborative 

problem-solving (CMCPS) component and a teacher-led prescriptive tutoring (PT) component. 

The CMCPS portion of the intervention required the students to follow basic “ground rules” for 

computer-mediated problem-solving of physics questions with other students, while the PT 

portion  saw  the  teacher  prescriptively  addressing  students'  misconceptions, 

misunderstandings, and other problem-solving difficulties as captured by the discussion logs 

during the CMCPS session.  The intervention was evaluated in two stages.  First, a small-scale 

(pilot)  study  which  utilised  a  control  group  (CG)  /  alternate  intervention  group  (AG)  / 

experimental group (XG) with pre- and post-test research design was conducted in order to 

evaluate whether the intervention was effective in promoting improved learning outcomes of a 

small group of students.  Given the success of the pilot study, a main study involving the entire 

class of students was conducted.  This main study was evaluated by comparing the cohort's 

actual GCE 'O' level physics results with their expected grades (as given by the Singapore 

Ministry of Education based on the students' primary school's results).  Also, the students' 'O' 

level physics results were compared with the average physics results obtained by previous 

cohorts.  The quantitative data indicated that the intervention for physics revision appears to 

be  effective  in  helping  the  entire  class  of  students  revise  physics  concepts,  resulting  in 

improved test scores, while the qualitative data indicated that the students' interest in physics 

had increased over time.  The physics teacher also reflected that the intervention had provided 

her with much deeper insights into her students' mental models.
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CHAPTER ONE

INTRODUCTION AND BACKGROUND

I  start  this  chapter  by  providing  a  discussion  on the  purpose  of  educational  research.   I 

illustrate  that  different  educational  researchers  ascribe  different  goals  to  their  research 

endeavours, and explain that my personal belief and objectives for conducting educational 

research  stem  from  my  historical  sociocultural  interactions  with  innovative  educational 

practices (both as a recipient as well as a contributor).  Next, drawing data from the UK and 

Singapore,  I  highlight  the  need  for  research  to  address  secondary  physics  education, 

emphasising the need for improving pedagogical practices in physics classrooms.  Thereafter, I 

provide a discussion on the use of computers in education for physics teaching and learning 

purposes, and attend to claims that computers cause no significant differences in learning 

outcomes.  I then explicate my overarching research intentions and state my epistemological 

grounding and theoretical  perspective which serve as the lenses through which I  view my 

research work.  Finally, I conclude this chapter by providing an overview of the structure of the 

dissertation.

1.1 The Purpose of Educational Research

1.1.1 Goals of Educational Research

In educational research, there is a vast diversity of educational themes that researchers are 

interested in.  In addition to the diversity of educational themes and the widely accepted view 

that in educational research there is “no canon, there are no core methods” (Schoenfeld, 1999, 

p.167), there are also divergent views on the goals of educational research.  For example, Moll 

and Diaz (1987) proclaimed categorically that the goal of educational research is to “produce 

educational change” (p. 311) and for Pring (2000), “[w]ith few exceptions, the classroom, and 

the transaction between teacher and learner in all its complexity, are what research should 

shed light upon” (p. 26).  Additionally, Hargreaves (1997) argued that “[e]ducational research 

could and should have much more relevance for, and impact on, the professional practice of 
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teachers  than  it  now  has”  (p.  405)  while  for  Mortimore  (1999),  the  main  purpose  of 

“educational research is to further educational improvement” (p. 9).  However, for Hammersley 

(2003), “research, even practical research in the field of education, should always aim at being 

informative rather than educative” (p. 19) and for Badley (2003), the pragmatists (himself 

included)  “see  research  as  only  offering  a  ‘modest  practical  contribution’  to  educational 

practice” (p.304).  Therefore, it appears that educational research crosses different subject 

domains and invokes different methodologies and methods, and involves polar opposite end-

goals (being tied to, or divorced from, practice; see also Clark, 2005; Oancea, 2005; Whitty, 

2006).  For a researcher who must decide on a path and walk down the direction selected, how 

should one choose?

1.1.2 Personal Belief and Objective for Conducting Educational Research

In Antoine de Saint-Exupéry’s The Little Prince, the fox explained to the Little Prince that, “It is 

the time you have wasted for your rose that makes your rose so important”. In other words, 

certain objects, people, and even beliefs are important to us because of our deep sociocultural 

history with it. For me, my 'roses' are computers and education, and the time I have 'wasted 

for'  them  includes  the  thousands  of  hours  spent  designing,  implementing  and  evaluating 

computer-based learning interventions (e.g. Soong, 2001) and writing educational books (e.g. 

Soong, 2006) that I hope would help students learn better. Reflecting back on my yester-

years,  it  is  clear  to  me that  it  is  my  direct  experience  of  learning in  innovative  learning 

environments  and  reading  of  inspiring  educational  books  that  have  made  a  significant 

difference in my life. Hence, it is my belief that there are better ways of teaching and learning, 

and my motivation  is  to  provide  students  with  a similar  experience so that  they may be 

enriched by innovative educational practices, just as I  have. Therefore, it  follows that the 

educational research work I conduct should be tied closely with educational practices, focusing 

on improving them so as to help students learn better.  For me, educational research is tied to 

practice, and the research work described in this dissertation is a reflection of that belief.

Benson Soong Page 2



1.2 The Need for Research to Address Secondary Physics Education

Physics education is in crisis (Zhang & Fuller, 1998; Tseitlin & Galili, 2005; Price, 2006; Cornell, 

2010). For more than a decade, the number of students reading physics has been in decline. 

As early as in 1994, Woolnough reported that in “many countries there is a decline in the 

number of students wishing to continue with physics” (1994, p.368). Almost a decade later, 

Williams et al. (2003) reiterated that we “need no reminders that too few students elect to 

study physics at A-level, and subsequently, as undergraduates” (p.324).  Based on statistics 

published by Cambridge Assessment comparing students' uptake of GCSE subjects in 2000 and 

2006 (see Rodeiro, 2007, p.12), it was found that physics was the least taken up core subject 

in the year 2000, and this situation remained the same in 2006.  In addition, analysis of data 

provided by the Joint Council for Qualifications (JCQ, 2007; JCQ, 2008; JCQ, 2009) revealed 

that in 2007, 2008, and 2009, physics still remained as the least taken up core subject among 

UK secondary school students for the GCSE examinations (I excluded from my analysis the 

combined sciences, since curriculum  changes made in 2007, 2008, and 2009 did not allow me 

to compare like with like).  This sharp decline in students opting to read physics is similar in 

Singapore.  In a recent Straits Times (Singapore's main newspaper) article entitled Why S'pore 

needs  more  people  to  study physics,  Professor  Pao  Chuen Lui  (the  former  Chief  Defence 

Scientist of Singapore) warned that,

...there are dark clouds in the sky.  The enrolment in physics in junior colleges 

has declined from 80 per cent in 2000 to about 40 per cent today. Something 

must be done soon to reverse this, or it will have serious consequences for our 

nation's  economic  development  in  all  technology-related sectors,  as  well  as 

other equally serious consequences for the nation's capabilities in key areas 

such as defence and education. (as cited in Gunasingham, 2009, p. D10)

There  are  both  macro  and  micro  reasons  for  this  decline.   From  a  macro  perspective, 

Woolnough (1994) identified factors such as home background and job attractiveness as key 

factors influencing whether students choose to continue reading physics.  Interestingly, both 
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these factors  were also identified by Lui  as factors contributing to the decline of students 

reading physics in Singapore, as he explained that “[p]arents also play an important role. 

There  is  a  misconception  among  some  parents  about  the  career  prospects  for  physics 

graduates” (as cited in Gunasingham, 2009, p. D10).

From a micro perspective, Williams et al. (2003) found that the predominant reasons offered 

by UK students are that they perceive physics to be a difficult/hard subject and they generally 

do not enjoy the subject.  These results are in-line with the findings of Smithers (2006), who 

related that “Physics [is] in [a] downward spiral as pupils think it is too difficult” (p. 11).  Also, 

Sillitto and MacKinnon (2000) reported that “Physics has an image of being both 'difficult' and 

'boring'” (p. 325).  Similar views were echoed by Lui, who found,

...that there was a perception among students that the subject [physics] was 

difficult to grasp conceptually, as well as one that was difficult to do well in 

during exams. Another reason identified was that teaching methods used may 

not be interesting, resulting in more students dropping physics through upper 

secondary, junior college and university. (as cited in Gunasingham, 2009, p. 

D10)

In order to increase the uptake of physics by students, one key area identified by researchers 

is in improving the teaching and learning of the subject (e.g. see Woolnough, 1994;  Barak & 

Shakhman, 2008; Gunasingham, 2009; see also Ogborn, 2004 and Cahyadi, 2007).  Osborne 

and Hennessy (2003) highlighted the potential role of information communications technology 

(ICT) in transforming the teaching and learning of science in classrooms, while Price (2006) 

identified that computer games can “rescue...[the] crisis in physics education” (p. 1).  In fact, 

there is overwhelming research on the various uses of ICT in science classrooms aimed at 

improving the teaching and learning of physics.  For example, Christian and Belloni (2001; 

2004; see also Novak et al., 1999; Belloni et al., 2006) provides a discussion on how web-

based physics java applets (called physlets) may be used by teachers in order to help students 
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better understand various physics phenomenon by way of animations and visualizations of 

multiple representations.  On a similar track, Sing and Chew (2009) described the positive 

outcomes they obtained when primary school students used web-based interactive learning 

objects for science learning purposes (see also  UCeL, 2009,  MERLOT, 2009, and  CAREO, 

2009 to gauge the extensiveness of such web-based learning objects).  Besides web-based 

learning objects, ICT has also been used in physics classrooms as a tutor (e.g. Gertner & 

VanLehn, 2000; VanLehn et al., 2005), as a laboratory data logger and visualiser (e.g. Trumper 

& Gelbman, 2000; Thornton & Sokoloff, 1998), as a student response system (e.g. Duncan, 

2005;  Caldwell,  2007),  as a  virtual  laboratory  (e.g.  Crosier  et  al.,  2002),  as  a source of 

animated presentations (e.g. Kablan & Erden, 2008), as a homework delivery and grading 

system (e.g.  Roth,  Ivanchenko & Record,  2008) and as a means to encourage “epistemic 

interactions”  between  students  (e.g.  Baker  et  al.,  2001,  p.  89),  amongst  many  others. 

However, do computers really lead to better educational practices and bring about significant 

improvements in learning outcomes?

1.3 Computers and the “No Significant Difference” (NSD) Phenomenon

Since the introduction of the printing press by Johann Gutenberg in the fifteenth century, 

technology has been looked upon as an agent of change (e.g. see Eisenstein, 1980).  Looking 

specifically at technologies introduced into education in the last century, namely, film, radio, 

television, and more recently, computers, several  influential  people have made spectacular 

claims  about  their  transformative  effects.   For  instance,  Cuban  (1986,  p.9)  cited Thomas 

Edison as saying in 1922, “I believe that the motion picture is destined to revolutionise our 

educational system and that in a few years it will supplant largely, if not entirely, the use of 

textbooks”. More recently, Seymour Papert (1984) made a similar claim, predicting that “there 

won't  be  schools  in  the  future....I  think  the  computer  will  blow  up  the  school…”  (p.38). 

However,  as  Cuban  (1986)  pointed  out,  “Radio,  film,  language  laboratories,  programmed 

learning machines, computer assisted-instruction, use of typewriters in the elementary grades

—all  have  been  promoted  as  revolutionizing  instruction  yet  today  seldom appear  in  most 

classrooms” (p. 54). And after more than a decade of further research, he added, “When it 
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comes  to  higher  teacher  and  student  productivity  and  a  transformation  in  teaching  and 

learning…there is little ambiguity.  Both must be tagged as failures.  Computers have been 

oversold and underused, at least for now” (Cuban, 2001, p.179).

Cuban’s observation that the reality of the transformative effects of technology in schools is 

falling  way  short  of  expectations  is  confirmed  and  extended  by  Russell  (2001).   Russell 

evaluated 355 research reports, summaries and papers involving different distance learning 

technologies and found “no significant difference (NSD) in student outcomes between alternate 

modes of education delivery” (p.1, emphasis in original).

However, many researchers disagree with the picture painted by Cuban and Russell.  Ramage 

(2001) questioned Russell’s methods of analysing his data, suggesting that Russell may have 

obtained his NSD findings because he “focused primarily on differences in the media rather 

than the methods employed  via the medium” (p.1, emphasis in original) when Clark (1983, 

1994) had established that media itself will not influence learning outcomes.  In a rebuttal to 

Cuban, Becker and Ravitz (2001) drew on their own research involving over 4,100 teachers in 

over 1,100 schools across the USA to conclude that,

...computers  are  quite  likely  to  take  on greater  importance  in  schoolbased 

learning within  the  next  10 years…Their  exponentially  increasing capacities, 

combined with smaller size, simpler networking, more powerful software, and 

their clear relevance to a constructivist approach to teaching make it very likely 

that computers will become as central to academic education in K-12 settings 

as they are essential  to the productive lives of adults  and college students 

today…such a future is, in fact, more likely than the one which Cuban foresees. 

(p.14)

In my view, reality lies between the NSD-type stance of Russell and Cuban and the all-out 

optimism that computer and software vendors would like us to believe. To paraphrase Salomon 
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(2000), it is the educational rationale and not just the tools that count.  Hence, computer 

usage in classrooms would lead to educational change and improvements in learning outcomes 

only if  they are  well-designed from a  pedagogical  perspective to  mediate specific  learning 

objectives (see Osborne & Hennessy, 2003; Soong, 2008).

1.4 Defining Pedagogy

There exists neither an exact nor universally agreed definition of the term pedagogy (Beetham 

&  Sharpe,  2007).   For  example,  the  Cambridge  Advanced  Learners'  Dictionary  defines 

pedagogy as “the study of the methods and activities of teaching” while Lusted (1986) views 

pedagogy  as  a  process  that  addresses  the  reproduction  (i.e.  construction  by  learners)  of 

knowledge as well as its production (i.e. how one teaches in order to bring its reproduction). 

Hence, “through the prism of pedagogy, it [how one teaches] becomes inseparable from what 

is being taught and crucially, how one learns” (ibid, p.3).  To Alexander (2008), “[p]edagogy is 

the act of teaching together with its attendant discourse of theories, values, evidence and 

justifications. It is what one needs to know, and the skills one needs to command, in order to 

make and justify the many different kinds of decision of which teaching is constituted” (p. 47) 

and is one of several interrelated aspects of the larger educational practice (Alexander, 1992), 

while  Stierer and Antoniou  (2004)  define pedagogy as “the processes and relationships of 

learning and teaching” (p. 277).

In  consideration  of  the  definitions  above,  I  define  pedagogy in  this  dissertation  as  the 

educational practices that teachers orchestrate in order to directly mediate learning.  Hence, 

while pedagogy is primarily a  teacher-initiated endeavour, it is essentially a  student-centred 

activity.

1.5 Overarching Research Intentions

Governments  worldwide  are  putting  unprecedented  amounts  of  money  and  resources  into 

promoting the use of ICT for learning, especially in schools (e.g. see Hennessy & Deaney, 

2004;  Amiel  &  Reeves,  2008).   While  changes  in  pedagogical  approaches  and  classroom 
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practices (especially with the infusion of ICT into the classrooms) have the potential to change 

learning outcomes, this change does not necessarily occur. This finding has also been observed 

by Salomon (2000), who lamented that technology usage in education has been domesticated 

in  the  sense  that  technology  is  only  allowed  to  do  whatever  the  prevailing  educational 

philosophy of learning allows it to do. Since traditional pedagogical approaches and classroom 

practices have always supported the view that knowledge can be abstractly transmitted from 

teacher to students, the role of technology has been domesticated to assist in this transmission 

process (usually  in  the  form of  learning  from computers).   Such findings  have also  been 

supported by Cuban (1993, 2001), who reported that school culture prevails over ICT usage 

and, hence, nothing in education has fundamentally changed as a result of ICT infusion.

Broadly, the research study described in this dissertation aims to assist in bridging the gap 

between ICT-infused physics learning environments and significant differences (improvements) 

in learning outcomes.  I sought to contribute to the field by clarifying the design of an ICT-

infused  (computer-mediated  synchronous  communications)  physics  revision  environment 

(collaborative problem-solving in a classroom-based setting) that would result in significant 

improvements in learning outcomes.  Such a contribution would include the formulation of a 

framework/profile  for  the  use  of  a  discourse-centred  computer-mediated  collaborative 

problem-solving  learning  environment  to  fill  a  'classroom  niche'  of  in-school  revision  for 

physics, somewhat like how the University of Minnesota's Cooperative Group Problem-Solving 

approach is used by the Physics Department for teaching introductory physics (e.g. see Heller 

& Heller, 1999a), or how Harvard University Physics Professor Eric Mazur (e.g. Mazur, 1997; 

2009) uses  Peer Instruction for his large introductory physics lectures.  The study will also 

contribute to the growing number of research studies on the potential of computer-mediated 

discourse for  the purpose of understanding students’  thought processes (e.g.  Hung, 1996, 

1998, 1999; Lund & Baker,  1999; de Vries  et  al.,  2002)  and to  encourage more dialogic 

“science classroom talk” (Mortimer & Scott, 2003, p. 3) between teachers and students, and 

between students themselves.
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In view of the preceding paragraphs, my research study focused on designing, implementing, 

and  evaluating a  computer-mediated  learning  environment  for  secondary  school  physics 

learning.  Specifically, the overarching objective of my research study was to introduce a new 

pedagogical  practice for  physics  revision in a  real-world classroom so  as to help students 

revise better.  Working with the relevant stakeholders in school (i.e. Principal, Vice-Principal, 

teachers,  students,  computer  laboratory  technicians),  I  designed  a  learning  intervention 

(introducing both new technology and pedagogy) targeted at  a  specific  (but also  typically 

mainstream) secondary school classroom in Singapore, and together, we changed the way 

physics revision was done in that classroom.  The key terms of my research intentions are 

defined below:

Pedagogical practice – An approach involving teachers and students (and other 

stakeholders) working with various artefacts in order to mediate learning.

Real-world classroom –  A classroom with no exceptional set-up or privilege, 

operating on the same resource and time constrains as other classrooms.

Revise –  A revision of taught concepts, as opposed to the teaching of new 

content.

Better (when used in the term 'revise better') –  An improvement in students' 

learning outcomes as measured quantitatively by test scores, and qualitatively 

by teachers' and students' perceptions, and students' work submissions.

Based on experience and initial  discussions with the school’s physics teachers, revision for 

physics (and also the other natural sciences) was typically done via the traditional methods of 

repetition-and-regurgitation  and  drill-and-practice.   For  the  most  part,  revision  lessons 

involved teachers providing students with questions posed in past examinations.  Students, 

either individually or in small groups, worked on providing answers to these questions. The 
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teachers would then evaluate the students’ submissions, and based on the correctness of the 

answers provided by the students, would decide whether further revision was necessary. It was 

possible for teachers to provide personalised attention and discuss various physics concepts for 

an individual or a small group of students.  Based on the students’ articulations during these 

personalised sessions, teachers could gain deep insights into the students’ thought processes 

as  they  were  solving  a  problem  or  'thinking  aloud'  about  a  particular  physics  concept. 

However, it was difficult to provide such personalised instruction due to time constraints and as 

a result, the traditional mass approach to revision was still the norm.

A key weakness of the traditional revision method stems from the fact that teachers do not 

have access to students’ thought processes in situ.  This weakness is present because teachers 

are  typically  only  able  to  peep  into  students’  thought  processes  based  on  their  explicit 

articulations  (usually  written or  verbal).  However,  the traditional  revision method – where 

students’ articulations typically involve mainly providing teachers with the main steps (or worst 

still,  only the final  answer) of a proposed solution – does not provide teachers with deep 

enough insights into students’ thought processes. Without deep insights into students’ thought 

processes, teachers would be unable to identify specific students’ cognitive gaps in the subject. 

This deficiency would result in revision lessons not providing the necessary scaffolding students 

need in order to overcome their misconceptions or misunderstandings.

Results of my earlier research (Soong & Chee, 2000; Soong, 2001) suggest that if student-

pairs work collaboratively on solving physics questions via computer-mediated communications 

software technology, the protocol data (i.e. text-chat logs and computer white-board drawings) 

of their problem-solving and knowledge co-construction attempts could provide teachers with 

rich  insights  into  the  thought  processes  of  students  while  they  are  solving  the  physics 

questions posed.  Hence, instead of marking submitted answer scripts and attempting to infer 

where a particular students’ knowledge gap might be, the protocol data (as captured by the 

computer) would provide teachers with microgenetic data that is articulated by the students 

themselves.  Upon analysing this data, teachers can then deliberately and specifically address 
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individual students’ cognitive gaps in the subject, based on their specific misconceptions or 

misunderstandings as manifested in the protocol data.

In view of my earlier research work, I propose that revisions based on using ICT as a means of 

allowing students to learn  through computers could be used as a more effective means of 

physics revision for secondary science students, and my research study explored this claim 

further.

1.6 Epistemological Grounding and Theoretical Perspective

Because  one's  epistemological  grounding  and  theoretical  perspective  serves  as  the  lenses 

through  which  one  views  the  world,  I  shall  provide  a  discussion  on  my  epistemological 

grounding and theoretical perspective upfront in the dissertation.  

In reviewing the literature on conducting research studies, it is apparent that different authors 

propose  different  approaches  to  the  research  process  (e.g.  compare  Creswell,  1994  with 

Crotty, 1998).  As Crotty (ibid) acknowledged, “to add to the confusion, the terminology is far  

from consistent in research literature and social sciences texts.  One frequently finds the same 

term used in a number of different, sometimes even contradictory ways” (p.1).

As a way out of this predicament, I will use Crotty’s framework (p. 4) to provide an elaboration 

of my epistemological grounding and theoretical perspective.  Crotty proposed that a good 

starting point when developing a research proposal is to answer two questions: “First, what 

methodologies and methods will we be employing in the research we propose to do? Second, 

how do we justify this choice and use of methodologies and methods?” (p.2) On answering the 

second question, Crotty explained that,

Justification of our choice and particular use of methodology and methods is something 

that reaches into the assumptions about reality that we bring to our work. To ask about 

these assumptions is to ask about our theoretical perspective.
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It also reaches into the understanding you and I have of what human knowledge is, 

what it entails, and what status can be ascribed to it.  What kind of knowledge do we 

believe will be attained by our research?....These are  epistemological questions. (p.2; 

emphasis added)

My epistemological grounding and theoretical perspectives are as such: I believe that while 

objects may exist outside of the mind,  meaning exist in objects due to our  interactions with 

them. These interactions are  mediated by psychological (e.g. language) or material (e.g. an 

unknotted  handkerchief)  artefacts,  which  we  learn  to  use  as  a  result  of  immersion  in  a 

particular  community  of  practice  (Lave  & Wenger,  1991)  or  interaction  within  a  particular 

culture.  For example, before I bought my dog ('Zouki') from the kennel, both Zouki and I were 

already in independent existence.  If something  tragic had happened to Zouki  before I had 

interacted with him, it would not have been a tragedy to me.  However, upon buying him and 

interacting with him by teaching him to 'sit', 'shake hands', 'beg', 'turn around', 'play dead' and 

taking him for long walks in the park while playing with him 'fetch' with pieces of twigs picked 

up from the grass, even a slight cough would warrant my undivided attention.  In the example 

above, it can be seen that my interaction with Zouki is mediated by language (e.g. “Zouki's a 

good boy!”; a psychological artefact) and the nondescript pieces of twigs (a material artefact) I 

picked from the ground to play 'fetch' with my dog.  I had learnt that it is perfectly acceptable 

to teach Zouki all these 'tricks' (which are not what dogs in the wild would do) because others 

in  my community  have  done the same.   Said differently,  our  culture  dictates the type of 

psychological and material artefacts we use for interacting with objects (living or otherwise), 

and it is our interaction with these objects that give them meaning.  Consequently, we  act 

towards an object in a specific way due to the meaning we ascribe to them as a result of our 

interactions with it.   In other  words,  while  reality may exist  independently  of  one’s  mind 

(realism as an ontology), the implication of that reality is due to the meaning ascribed to it as 

a result of one’s social, cultural, and historical interaction with it.  Therefore, if we sufficiently 

change a  person’s  sociocultural  interaction  with  something,  its  meaning would  change 
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correspondingly.  Given a change in its meaning to us, there would be a subsequent change in 

how we act towards it. 

In view of my emphasis on the sociocultural genesis of an individual’s cognition and behaviour, 

and  the  prominence  I  place  on  psychological  and  material  artefacts  that  mediates  an 

individual’s mind, it  is evident that my epistemology is that of  social constructionism (e.g. 

Crotty,  1998,  p.  42-65)  or  social  constructivism (e.g.  Palinscar,  1998)  and my theoretical 

perspective is that of sociocultural theory as espoused by Vygotsky (e.g. 1978, 1981).  Briefly, 

to have a social constructionism/constructivism epistemology is to subscribe to the belief that 

all meaning is “being constructed in and out of interactions between human beings and their 

world, and developed and transmitted within an essentially social context” (Crotty, 1998, p. 

42), and to have a sociocultural theoretical perspective on learning is to subscribe to the belief 

that,

...all learning originates in social situations, where ideas are rehearsed between people 

mainly through talk.  As the talk proceeds, each participant is able to make sense of 

what is being communicated, and the words used in the social exchanges provide the 

very tools needed for individual thinking. (Mortimer & Scott, 2003, p. 3)

The importance of language and dialogue in Vygotsky’s sociocultural theory is also highlighted 

by Mercer  (2000),  who emphasised,  “Vygotsky proposed that  there is  a  close relationship 

between the use of language as a cultural tool (in social interaction) and the use of language 

as a psychological tool (for organising our own, individual thoughts)” (p. 155). Additionally, 

Wertsch (1991) proposed that sociocultural theory (as espoused by Vygotsky) recognises (i) 

that individual meaning-making “appears twice: first, on the social  level,  and later, on the 

individual  level;  first  between  people  (interpsychological),  and  then  inside  the  child 

(intrapsychological)” (Vygotsky, 1978, p. 57), (ii) that human actions on both the social and 

individual  planes  are  mediated  by  “language;  various  systems  of  counting;  mnemonic 

techniques; algebra symbol systems; works of art; writing; schemes, diagrams, maps and 
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mechanical drawings; all sorts of conventional signs and so on” (Vygotsky, 1981, p. 137, as 

cited in Palinscar, 1998, p. 292), and (iii) that the best way to study meaning-making and 

human actions is via genetic or developmental analysis, since “the process of a given thing’s 

development in all its phases and changes – from birth to death – fundamentally means to 

discover its nature, its essence, for  it  is  only in movement that a body shows what it  is” 

(Vygotsky, 1978, p. 64-65).

Via these lenses, I do not view the research work described in this dissertation as uncovering 

universal rules or formulas (a focus that perhaps someone with an objective epistemology and 

a positivist/post-positivist theoretical perspective would have) that, if followed, would provide 

readers of my dissertation with specific instructions for revamping how science revisions should 

be done in their classrooms.  In fact, I do not even seek to show direct causal relationships 

between specific 'dependent' (e.g. test scores) and 'independent' (e.g. number of hours spent 

studying) variables.  Also, I do not see my work as being a personal narrative of my lived-in, 

at-that-point-in-time experience while operationalising the intervention in school (a focus that 

perhaps someone with a subjective epistemology and a post-modernist theoretical perspective 

would have).  Rather, my research seeks to provide readers with an account of the learning 

environment my intervention provides, focussing on what I believe are the constructs that 

would provide for a change in sociocultural interactions between students and teachers and 

how they revise physics (an inter-personal, or sociocultural, dimension).  In addition, I also 

provide a presentation and discussion of the theoretical  basis for my intervention to bring 

about  change  on  an  intra-personal  level  (i.e.  individual  cognition  such  as  knowledge  and 

understanding,  meta-cognition such as problem-solving strategies).  In so doing, I  aim to 

provide  my  readers  with  a  better  understanding  of  the  context  and  unique  situations 

surrounding my intervention, highlighting how my intervention may be seen as a means to 

change an existing, deep-rooted sociocultural classroom practice of physics revision, thereby 

helping readers to reconstruct their own learning interventions for their own purpose.
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1.7 Overview of Dissertation

This dissertation is structured as such:

• Chapter One (this chapter) provides an introduction and background to my research 

study by explaining that the research work described herein follows the tradition of 

educational research that focuses on improving classroom practices.  It explains the 

need to address secondary school physics education, and argues that computers may 

lead to improved learning outcomes if it has been well-designed from a pedagogical 

perspective to mediate specific learning objectives.  I then state my overarching 'world 

view'  by sharing my epistemological grounding and theoretical perspective.

• Chapter Two provides a discussion on my theoretical foundations that serve as the basis 

for  the  design  of  my  physics  revision  intervention.   I  highlight  the  centrality  of 

sociocultural practices on thought and behaviour, and show how sociocultural practices 

are significantly mediated by language and discourse.  I also accentuate the differences 

between  the  two  most  common  types  of  discourse  and  emphasise  the  unique 

affordances the written text offers over the spoken word . I then provide a discussion 

on science learning environments, and point out that of utmost importance in physics 

education is the explicit need to take into account students' prior knowledge.

• Chapter Three reviews key physics learning interventions.  The review shows that the 

vast  majority  of  physics  interventions  are  based at  a  college/university  level  when 

targeting the primary or secondary level classes would probably yield higher benefits. 

The review also highlights the difficulty in implementing those key physics interventions 

in a Singapore secondary school settings – the middle/high school physics curriculum in 

the USA (where all the reviewed interventions originates) does not match the Singapore 

secondary physics curriculum, and although the college/university curriculum presents 

a closer match, the unique affordances available in a varsity setting makes it difficult to 

replicate in a Singapore secondary school setting.  The review also shows that when 

computers were used in the interventions, their unique affordance of enabling a new 

communications  genre  were  not  exploited.   Finally,  the  review  shows  that  while 

students'  consequences  of  using  the  intervention  were  similar  (improved  learning 
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outcomes), teachers' consequences of being involved in the intervention could differ as 

some interventions were very explicit about teachers attempts at gaining insights into 

students' knowledge base and thought processes, while others were not.

• Chapter  Four  describes  my  physics  revision  intervention  targeted  at  a  typical, 

mainstream  secondary  school  in  Singapore.   I  explain  how  my  physics  revision 

intervention was designed based on the theoretical foundations expounded in Chapter 

Two, and describe the activities that go into each of the two unique processes that 

constitute  the  intervention.   Thereafter,  I  provide  a  discussion  on  my  research 

methodology and explain why design experiments (also termed design-based research) 

is an appropriate research methodology for this study, given my research questions, 

intentions, epistemological grounding, and theoretical perspectives.

• Chapter  Five  provides  a  discussion  of  the  initial,  small-scale  pilot  study  that  was 

conducted in  order  to  gauge  the  overall  effectiveness  of  the  intervention  from the 

perspective of students' learning outcomes.  This pilot study was also conducted to 

ascertain whether the students would be agreeable to take part in the longitudinal main 

study, as well as whether the students' teacher perceived value in the intervention.  The 

chapter also presents the results obtained in the pilot study, and provides a discussion 

of its findings.

• Chapter Six provides a discussion on the main research study, what was allowed to 

commence given the positive results of the pilot study.   I also provide a discussion on 

the changes made to the intervention in order to conduct it during term time and within 

curriculum hours in school based on a whole class setting (as compared to the pilot 

study, which was conducted in school after standard curriculum hours).  I describe the 

procedure  and  time-line  for  the  main  study,  and  provide  a  discussion  on my data 

collection and analysis, elaborating how the research questions were answered in the 

study.  The chapter also presents the results obtained in the main study, and provides a 

discussion of its findings.

• Chapter Seven concludes the dissertation by first mapping out my intervention to the 

C4  Intervention  Evaluation  model  introduced  in  Chapter  Three,   highlighting  the 
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similarities  and  differences  between  my  intervention  and  the  seven  qualified 

interventions.  It then provides a summary of the significant contributions this research 

study  makes  to  educational  research  that  aims  specifically  at  improving  classroom 

practices.  A discussion on the implications of the findings of this research study (as 

well  as future research work that may be conducted) on (i) the practice of physics 

revision in secondary schools, (ii) designing and implementing ICT-based interventions, 

and (iii) designing and implementing dialogic learning environments is also provided.
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CHAPTER TWO

THEORETICAL FOUNDATIONS

In  this  chapter,  I  expound  the  theoretical  foundations  behind  the  design  of  my  learning 

intervention.  These foundations serve as the theoretical pillars of my intervention and provide 

the  explanation  to  why  certain  aspects  feature  strongly  in  the  design  of  my  learning 

environment.  I start the chapter by first highlighting the centrality of sociocultural practices on 

thought and behaviour; ultimately, how we think, act, and feel are a direct result of immersion 

in a particular community of practice or cultural setting.  Next, I indicate how language and 

discourse facilitates the development of higher human mental functions.  Thereafter, I illustrate 

that discourse may be spoken or written, and draw attention to the unique affordances the 

written text has over the spoken word.  Finally, I provide a discussion on constructivist science 

learning environments, and highlight the importance students’ prior knowledge plays in their 

learning of science concepts.

2.1 The Centrality of Sociocultural Practices on Thought and Behaviour

In  his  seminal  ethnographic  piece,  anthropologist  Clifford  Geertz  (1973;  2005)  thickly 

described how established sociocultural practices dictated the behaviours of Balinese men to 

the extent that it governed how they gambled during cock-fights.  He related that,

A man virtually never bets against a cock owned by a member of his own 

kingroup. Usually he will feel obliged to bet for it, the more so the closer the kin 

tie and the deeper the fight. If he is certain in his mind that it will not win, he 

may just not bet at all, particularly if it is only a second cousin's bird or if the 

fight is a shallow one. But as a rule he will feel he must support it and, in deep 

games, nearly always does. Thus the great majority of the people calling “five” 

[betting odds] or “speckled” [specific bird] so  demonstratively are  expressing 

their  allegiance  to  their  kinsman,  not  their  evaluation  of  his  bird,  their  
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understanding of probability theory, or even their hopes of unearned income. 

(2005, p. 74-75; emphasis added)

People's behaviours are dictated by established sociocultural practices; everything from how 

we greet to what we eat are shaped by immersion in a specific sociocultural setting (see also 

Bruner, 2008).  In fact, sociocultural theory (as espoused by Vygotsky) is grounded on the 

tenet that human mental functioning evolves as a result of social and cultural interactions, and 

these interactions are mediated by language and/or other sign systems.  In other words, how 

we think and subsequently act has a sociocultural genesis grounded in talk (Mercer, 2000), 

which Wells (2007) exemplified succinctly when he proclaimed, “Who we become depends on 

the company we keep and on what we do and say together” (p. 100).

Sociocultural  theory has  commonly  been used to  explore  and explain  how changes  to  an 

individual, group, or community occurs.  For example, Arvind (2008) used sociocultural theory 

to explain how Goonga, a 'mute' boy in India,  'regained' his voice as a result of intervention at 

a community school:

To meaningfully integrate him into school processes, teachers encouraged him 

to actively participate in activities like morning assembly, sports, field trips, 

singing and book reading. A continuous engagement with the activities enabled 

Goonga  to  dislodge  his  previously  held  psychological  structures  that  were 

barriers to literacy acquisition; and created possibilities to experience a new 

personal sense and meaning. Learning to read, write and spell emerged as the 

powerful ways to realize this goal–directed conscious behavior. Responding to 

an enabling school culture, the boy rapidly gained school competencies. The 

school teachers rechristened Goonga as Arun – the charioteer of the sun-god. 

As of now, Arun is shaping as a confident boy who loves to play, read and 

debate. He wants to become a teacher. The family is simply marveled at the 

transformatory potential  of  education. A field visit  after  a year affirmed the 
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stability of gains. 

From the perspective  of  socio-cultural  theorizing,  [the]  school’s  pedagogical 

practices provided a therapeutic context to Arun to reconstruct his identity by 

overcoming his  disability  in  a  naturalized  fashion.  The  speech disorder  was 

addressed by drawing out the child into other meaningful activities that not 

only  compensated  for  the  deficient  articulation  skills  but  also  provided  the 

platform to  anchor  literacy  skills.  The  study  established  the  importance  of 

larger socio-cultural context at macro level in shaping psychological processes 

at micro level.  (p. 385)

Since  sociocultural  theory  “attempt[s]  to  theorise  and  provide  methodological  tools  for 

investigating  the  processes  by  which  social,  cultural  and  historical  factors  shape  human 

functioning” (Daniels, 2001, p. 1), it is generally true that sociocultural theory has been largely 

utilised  for  explanatory  purposes  (e.g.  see  Milne  et  al.,  2006;  Komura.  2008)  while  the 

pedagogic  possibilities  of  sociocultural  theory  have  remained  under-theorised  and  under-

researched (Daniels, 2001).  However, increasingly, classroom practices are being looked at as 

sociocultural practices for the purpose of introducing pedagogical change (see also Palincsar & 

Brown,  1984;  Brown  &  Palinscar,  1989).   For  example,  Sato  (2008)  looked  at  Japanese 

language learning in a university foreign language  setting as a sociocultural practice and from 

that perspective, “[i]nstead of viewing language learning as knowledge transmission...[now] 

learners must solve immediate problems together in communities of practice...[and] are not 

only  consumers  of  linguistic  and  cultural  knowledge  but  also  producers”  (p.  2).   Sato 

highlighted the case of one non-Japanese student (Yan) who was made (it was the course 

requirement) to produce linguistic and cultural knowledge by way of creating and maintaining 

a  web  journal  (blog).   On  his  own  accord,  Yan  engaged  in  a  web-based  community  by 

discussing Japanese television dramas via his blog and soon found that, “Now I have been 

reborn as someone who likes writing” (ibid, p. 6).  Sato then suggested that the introduction of 

blogging into language learning could change the sociocultural practice of language learning 
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such that “the teacher shifts out of the traditional role of transmitting knowledge to students...

[into]  one  of  facilitating  activities  and  encouraging  learners  to  communicate  with  people, 

express themselves, and participate in a community” (p. 8-9).  In Sato's study, we see that 

the introduction of an artefact (blog) and pedagogy (engaging in web-based conversations with 

members of the web community) resulted in a new sociocultural practice, with corresponding 

behavioural and attitudinal changes.

In a similar fashion, we can view physics revision lessons in a specific classroom as a particular 

sociocultural  practice.   Students  and  teachers  in  that  classroom think,  act,  and  feel  in  a 

particular way predominately because of the way they interact with each other.  Additionally, 

their  interaction patterns are dictated by the prevailing sociocultural practice.  Hence, if we 

want to change how students and teachers think and behave during physics revision, then we 

need to change the prevailing sociocultural practice.  I propose that we can achieve this goal 

via two mutually reinforcing approaches that are informed by sociocultural theory and its “near 

relative 'activity theory'.  Both traditions are historically linked to the work of L.S. Vygotsky 

and both attempt to provide an account of learning and development as mediated processes” 

(Daniels, 2001, p. 1).  Activity theory (e.g. Leont’ev, 1981;  Engestrom, 1987; Kuutti, 1996) is 

a strand of sociocultural theorising “that seeks to analyze the development of consciousness 

within the practical social activity settings. By dialectically linking the person and the social 

structures, the objective is to gain a perspective on the local pattern of activity and the cultural 

specificities of thought and discourse” (Arvind, 2008, p. 379).  As Daniels (2001) suggested, 

sociocultural and activity theory “are creating new and important possibilities for practices of 

teaching and learning in schools  and beyond. They provide us with theoretical  constructs, 

insights and understandings which we can use to develop our own thinking about the practices 

of education” (p. 2).

Activity theory is commonly used as a framework for analysing activity systems.  For example, 

Barab  et  al.  (2002)  used  “the central  tenets  of activity theory  to  analyze participation  by
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Figure 2.1:  Barab et al's (2002) example of using Activity Theory as a framework to analyse an activity system (p. 

103)

undergraduate  students  and  instructors,  illuminating  the  instances  of  activity  that 

characterized course dynamics”  (p. 76) and Figure 2.1 provides their depiction of the systemic 

tensions of a course activity of students via the activity theory framework.  Similarly, Hardman 

(2008)  analysed pedagogical  practices  in  classrooms along activity  theory  dimensions  and 

Figure 2.2 provides her depiction of a specific episode of a teacher's pedagogic practice.

Figure 2.2: Hardman's (2008) example of using Activity Theory as a framework to analyse an activity systems  (p. 89)
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In my opinion, using activity theory as a framework for analysing activities may not yield a 

complete picture of a given activity as it  is  often difficult  to specifically point towards one 

specific objective for, and outcome of, the object of an activity.  In fact, an object at the core of 

a  seemingly  straight-forward activity  may serve multiple  objectives with  multiple  intended 

outcomes.   For  instance,  recently  I  was  comfortably  seated  by  my  desk  working  on  my 

dissertation when I felt thirsty.  Instead of asking my wife to get me a glass of water (as I  

usually do), I got up, walked to the kitchen, poured myself a glass of water and brought it 

back to my desk, where I quenched my thirst and then continued working.  The objective of 

my activity appears straight forward – I wanted to quench my thirst and, hence, the described 

activity ensued.  If I use activity theory to analyse the activity described above, the results 

may be summarised in Figure 2.3.

Figure 2.3: Using Activity Theory to analyse a 'simple' activity

As summarised in Figure 2.3, the object of the activity was water, and the objective of getting 

water was to quench my thirst.  The artefact that mediated this activity was a cup, and the 

underlying contextual factors, such as the rules in the house, our household community, and 

our  division of labour are provided in Figure 2.3.  On one level, it could be argued that the 
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dimensions of activity theory provided a comprehensive framework for analysing the described 

activity.  However, at a deeper level, this might not be so – while it might be the case where 

an objective of the activity was to quench my thirst, I got my own drink also because I wanted 

to stretch out a little.  Additionally, I did not want my wife to nag at me for being lazy, and I 

also wanted her to know that I respected her time.  Here, we see that a multitude of objectives 

(and intended outcomes) led to my apparently 'simple' activity, which cannot be succinctly 

analysed via an activity theory framework, since the relationship between the  object  of the 

activity  (i.e. water) does not relate to one or more of the activity's intended outcomes (e.g. 

stretching out,  preventing my wife from nagging at me).  Nonetheless, what Figure 2.3 does 

is  that  it  provides  a  reflection  of  a  'thirst  quenching'  activity  and  delineates  the  logical 

connectivity (e.g. me  cup  water  quench thirst) and relevant constructs (e.g. household→ → →  

context and setting) for how I had quenched my thirst.  Said differently, activity theory works 

well in one direction, but less well in the other.  As a theoretical paradigm (e.g. explanatory 

model), its  dimensions provides the  logical connectivity and  relevant constructs for  artefact-

mediated activities  (e.g. the activity was undertaken because I had wanted to quench my 

thirst, and I used a cup to mediate the activity).  However, as a theory to analyse activities, its 

focus on outcomes and objectives that are direct derivatives of the object of the activity causes 

limitations (for another critique of activity theory, see Kozulin, 1998, p.24-31).  Therefore, in 

this dissertation, I used activity theory as a theoretical paradigm and a basis for educational 

application, and not as a theory to analyse activities.

Firstly,  using  activity  theory   as  an explanatory  model,  changes  to  an  activity's  objective 

necessitate  a  change in the activity itself,  since every activity  is  essentially  directed by a 

specific objective.  With a change in activity, sociocultural practices change.  Secondly, since 

interactions  are mediated by artefacts, then the introduction of a  new and powerful artefact 

with a unique affordance could well  change how students and teachers interact with each 

other, thereby also  necessitating a change in sociocultural practices.  Therefore, any change 

programme that merely advocates changing mindsets (e.g. from a focus on teaching to a focus 

on learning) is likely to fail and similarly, and any change programme that replaces one tool 
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with an equivalent other (e.g. from paper-based textbooks to ebooks) is unlikely to bring about 

significant changes and improvements in practices, since neither the objective nor the artefact 

(from an ideal, as opposed to material, perspective) might have been meaningfully changed. 

In fact, from a sociocultural perspective, “mediating artifacts are fundamental constituents of 

culture and essential ingredients of all activity.  They are features of the material world that 

have been and continue to be modified in their incorporation in goal directed human action...

[and]  must  be  seen  not  simply  as  facilitating  or  replacing  mental  processes,  but  as 

fundamentally shaping and transforming them” (Lecusay et al., 2008, p. 95).  In other words, 

it  is  not  “pedagogy  before technology”  as  advocated by Watson (2001, p.  251; emphasis 

added) but rather, technology as both a material artefact  with unique affordances as well as 

ideal aspects embodied in them which allow for a  change in pedagogy that would lead to 

changes and improvements in classrooms.

An  implementation  of  both  approaches  (changing  of  an  activity's  objective  as  well  as 

introducing a new mediating artefact) were utilised in the design of my intervention, and in 

Chapter Four, I provide details and illustrations on how this perspective shaped the design of 

my learning intervention.

2.2 Talk and Development

In line with my sociocultural theoretical perspective, language and social interactions form the 

genesis of human development and learning, where “[l]anguage acquisition and use are seen 

as having a profound effect  on the development of thinking”  (Rojas-Drummond & Mercer, 

2003, p. 100).  From a Vygotskyan perspective,  language is a particularly powerful artefact 

because it shapes human mental development via three interrelated ways.  Firstly, it serves as 

a cultural tool that facilitates the sharing and development of meaning amongst members of a 

community (I shall call this tenet one, or T1 for short).  Secondly, it serves as a psychological 

tool through which individuals structure their own thought processes (T2).  Thirdly, it serves as 

the  conduit through  which  social  practices  and  meaning  are  effectively  intermeshed  with 

individual thoughts and in so doing, transform them (T3).
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Perhaps a contemporary and illustrative example would be useful to expound the three tenets 

of language and its developmental powers.  In the recent 2009 Miss Singapore-World pageant, 

winner  Ris  Low  gave  a  public  interview  that  generated  much  controversy  among  the 

Singaporean community.  The source of controversy started out as criticisms against her poor 

diction (e.g. pronouncing 'bikini' as 'bigini') and usage of various (supposedly) English words 

(see RazorTV, 2009a, for the interview that sparked the controversy).  One word, in particular, 

turned  viral  among  the  Singaporean  community  and  started  appearing  on  prime-time 

television (e.g. see  YouTube, 2009a) and all over the internet and other mass-media.  A few 

music videos were even especially made (e.g. YouTube, 2009b/c).  This was how it all started: 

During an interview as a contestant, Ris Low was asked what she would wear if she is feeling 

“naughty”.  Her response was, “Something red and loud, something, you know, boomz”.  As 

Straits Times reporter, Nicholas Yong (2009a) blogged,

I don't know about you, but I've been hearing the word 'boomz' a lot lately. 

Whether  among  friends  or  strangers,  on  the  MRT  [train]  or  the  bus,  on 

Facebook or YouTube, it's been resounding everywhere....It's become apparent 

to  me  that  Ris  Low,  the  unwitting  pop  culture  phenomenon  of  2009,  has 

created  a  word  that  will  surely  become  a  permanent  part  of  our  cultural 

lexicon....And yet, no one quite knows what it means. 

So,  we see  that  language  has  served as  the  cultural  tool  that  facilitates  the  sharing and 

development  of  the  meaning  of  the  word  'boomz'  amongst  members  of  the  Singaporean 

community (T1).  Also, imbued in Yong's writing is evidence that language served him as a 

psychological tool through which he structured his sentences as he penned (or typed out) his 

article  (T2).   However,  contrary to  Yong's  (ibid.)  thoughts,  Ris  Low did  not  independently 

created the word, 'boomz'.  She revealed in an interview held after the Miss Singapore-World 

fiasco (she gave up her crown) that “'boomz' is actually a word meant to be something that is 

loud, something that is strong, something that has an effect on people...the comics whereby 
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the car crash into it and then it goes 'boomz'...explosion” (RazorTV, 2009b). Her utterance 

provides us with an insight into the incipience of the word 'boomz' in Ris Low's mind – it  

already existed in the world of comic strips and car crashes!  What Ris Low had done was to 

internalise this word and made it her own (T3).  Now that she has shared her meaning of that 

word (through dialogue, I should add), we are able to internalise it and, as Yong (2009b) 

cheekily muses, “Personally, I can't wait to see how the use of the word evolves. In fact, I'm 

feeling pretty boomz about it.”

Given the profound effect and influence language (or speech, see Wertsch, 1979; or talk, see 

Mercer, 2008) has on the development of one's thinking,  “many researchers have put forward 

persuasive  and  influential  arguments  for  the  importance  of  the  quality  of  teacher-student 

dialogue  on  the  development  of  children’s  understanding  of  science  and  other  curriculum 

subjects”  (Mercer, ibid, p. 92).  Examples include the research work of Lemke (1990), Wells 

(1999), as well as Mortimer and Scott (2003).  Lemke's (1990) social semiotic approach draws 

attention to his thesis that learning science “means learning to communicate in the language 

of science and act as a member of the community of people who do so” (p. 1).  To Lemke, 

scientific reasoning is learning “by talking to other members of our community, we practice it 

by talking to others, and we use it in talking to them, in talking to ourselves, and in writing 

and other forms of more complex activity (e.g., problem-solving, experimenting)” (p. 122).  As 

for Wells (1999), his semiotic apprenticeship approach “accord[s] a special place to language, 

seeing in the various genres of spoken and written discourse a kit of tools that performs a dual 

function, both mediating participation in activity and simultaneously providing a medium in 

which activity is represented and thus made available to be reflected upon”  (p. 164).  For 

Mortimer and Scott (2003), their research work has showed them that “[i]t is through talk that 

the scientific view is introduced to the classroom.  Talk enables the teacher to support students 

in making sense of that view.  Talk enables the students to engage consciously in the dialogic 

process of meaning making, providing the tools for them to talk through the scientific view for 

themselves”  (p. 3).  These researchers, who also have a sociocultural theoretical perspective, 

highlight the importance of talk (or discourse) because  “[t]he most fundamental concept of 
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sociocultural  theory is  that  the human mind is  mediated (Lantolf,  2000, p.1;  emphasis  in 

original) predominately by a process Mercer (1995) described as “the guided construction of 

knowledge”, which is “a communication process…in which one person helps another to develop 

their knowledge and understanding” (p. 1).

Looking at talk from a classroom perspective, there are two broad levels of potential benefits 

which discourse in class could bring to the students, namely individual-level benefits (intra-

personal benefits) and social-level benefits (inter-personal benefits).  At the individual level, 

meaningful discussions in classrooms can lead to deep learning as it facilitates the generation 

of  contextual  knowledge and scientific  conceptual  understanding (e.g.  see  Hsi,  1997)  and 

promotes reasoning in students  (e.g.  see Piaget,  1972).   By providing an opportunity  for 

students to be exposed to the views and beliefs of others, it may motivate the revision of ideas 

and  misconceptions  (Strike  &  Posner,  1985).   In  addition,  “[d]ialogue  and  discourse 

encourages the higher order thinking skills  of cognitive conflict  and resolution in providing 

context  and a mechanism for  explanation,  justification  and reason” (Lockyer  et  al.,  1999, 

p.56).

 

At a wider, social level,

The social environment...is truly educative in its effects in the degree in which 

an individual  shares or participates in  some conjoint  activity.   By doing his 

share in the associated activity, the individual appropriates the purpose which 

actuates it, becomes familiar with its methods and subject matters, acquires 

needed skill, and is saturated with its emotional spirit. (Dewey, 1916, p. 26)

In the quote above, Dewey highlighted the participatory and interactive role learners play in 

their education.  It is the learners’ interactions with instructors and other learners that “give 

them perspective, place them within a community of learning, and contribute to their mastery 

of concepts and skills” (Price & Petre, 1997, p. 1041).  I view such social interactions (and the 
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discourse which comes along with them) as vital in nurturing this spirit of learning that Dewey 

feels so passionate about.

Given  the  fundamental  relationship  meaningful  talk  has  with  mental  development,  my 

intervention encourages meaningful classroom discourse, and in Chapter Four, I provide further 

implementation details of how this was done.

2.3 The Written Text and the Spoken Word

Discourse may take many forms and occur in different ways, but the two most common ways 

are by talking or by writing.  As Wells (1999)  observed, in addition to language used during 

speech (or talk), Vygotsky also “had a keen interest in the development of writing...[and] saw 

mastering  written  language  as playing  a  critical  role  in  the  development  of  'the  higher 

psychological functions'” (p. 267).  In broad terms, Olson (2006) highlighted that,

The  general reasons people turn to writing are well known; writing preserves 

language across space and through time. Indeed, these two facts account for 

the two basic uses of writing that have been found historically and continue to 

dominate contemporary societies, namely, the use of writing for record keeping 

(through time) and for writing letters (across space).  (p. 137)

While Nystrand (2006) disagreed with Olson's view on the historical purpose of writing and 

offered an alternate  perspective,  stating that  writing  started “as  an alternative  system of 

communication...[which]  offered  features  and  resources  unavailable  to  speakers  yet 

meaningful to international traders who had no need even to speak the same language” (p. 

161), embedded in his statement is his implicate agreement that what is written (or recorded) 

is transportable through time and across space.

Indeed, from the perspective of human mental development, the written text offers unique 

affordances which the spoken word does not (and vice versa).  These unique affordances may 

Benson Soong Page 29



be looked at from the view of the recipient and the originator.  Firstly, because written text is 

transportable  through  time  and  across  space,  the  recipient  is  in  practical  control  of  this 

physical artefact (the written text) and may therefore deal with the artefact in a way s/he 

deems fit (e.g.  following a recipe for cooking Chicken Maryland, or collating recipes together 

for  further  dissemination  and/or  future  consultation  purposes).   Of  particular  interest  to 

educational researchers is the reflective endeavour a recipient must put into making sense of 

the written text (Wells, 1999).  Such an endeavour exists because while writing is an effective 

way of representing what people say, “it is hard to capture in writing how people say things” 

(Hannon, 2000, p. 17; emphasis in original) and as a result, more effort needs to be expended 

in order to derive at the originator's intended meaning, when compared to speech (see Olson, 

1994 and/or Gee, 2006 for examples of how seemingly simple printed sentences may have 

vastly different interpretations depending on how they are said).

Secondly, from the originator's perspective, the making of the written text involves “much 

greater engagement and commitment...because a new and independent material and semiotic 

artifact is created as the outcome of writing, but not in the case of reading” (Wells, 1999, p. 

287).

Because of the effort, engagement and commitment that has been put into its making, 

...it is in writing rather than in reading that the power of written language to 

create new meaning is most fully exploited....For it is in solving the problems of 

meaning making that occur in creating a written text for others that writers of 

all ages and stages of development both develop their mastery of the craft and 

extend and deepen their individual understanding.  In Vygotsky's words, “The 

individual  develops  into  what  he/she  is  through  what  he/she  produces  for 

others” (1981, p. 162).  (Ibid.)

Benson Soong Page 30



However, Gee (2006) provided a caveat by stating that the benefits of writing are not definite. 

He cautioned that, “Writing, like other technologies (e.g., television, computers, video games), 

does not have necessary effects, but it does have affordances that lead it relatively predictably 

to have certain sorts of effects in certain sorts of contexts” (p. 153).

From a classroom perspective, the act of purposeful writing engages students more fully, and 

because students' written work is transportable across space and through time, it allows for 

teachers  (and  the  students  themselves)  to  review  and  reflect  on  what  the  students  had 

written.  Hence, if students' discourse may be naturally operationalised in a 'written' format 

which is  suitable  for  review and critique,  then such an approach would greatly  aid in  the 

development of higher mental functioning in the learner.  In Chapter Four, I provide further 

details on how this was achieved in my intervention.

2.4 Constructivist Science Learning Environments and the Importance of Students’ 

Prior Knowledge

Increasingly, science education is being “largely shaped by the philosophy of constructivism” 

(Abdullah, 2009, p. 3).  A key tenet of constructivism is the belief that “meaningful learning 

can take place only when the learner is able to relate the information provided by a teacher to 

their existing knowledge” (Taber, 2003, p. 732; emphasis in original; the other tenet is the 

active  participation  of  learners;  see  also  Mortimer  &  Scott,  2003).   In  other  words, 

constructivist learning theory recognises that a student’s mind is not a tabula rasa; students 

come to classrooms with prior knowledge and preconceptions, and they interpret what their 

teachers are saying based on these preconceptions.  As Ogborn (2004) explained in his review 

of physics education,

Perhaps  the  strongest  result  to  emerge  from  this  research  [in  physics 

education] has been the fundamental importance of the ideas students hold 

about  the  physical  world,  in  deciding  how  they  understand  what  they  are 

taught.  The  point  is  ultimately  simple  and  obvious:  everybody  understands 

Benson Soong Page 31



what they are told as a kind of ‘best fit’ to what they already know. (p.85)

Against  such  a  backdrop,  it  has  been  recognised  that  students’  preconceptions  (or 

misconceptions  or  prior  learning)  can  often  impede  their  learning  and  understanding  of 

normative science concepts (for e.g. see  McDermott et al., 1987; Goldberg & Anderson, 1989; 

Trowbridge & McDermott, 1980; Trowbridge & McDermott, 1981; Aguirre, 1988; Bowden et al., 

1992; Voska & Heikkinen,  2000; Taber,  2003; Adbo & Taber,  2009).   Indeed,  Kang  et al. 

(2005) noted that “many science educators...have an interest in students’ pre-instructional or 

alternative  conceptions  because  knowing  them  is  an  essential  starting  point  to  develop 

strategies  and/or  processes  for  introducing  new  scientific  concepts,”  adding  that,  “[t]he 

research on students’  alternative conceptions in various content domains rapidly expanded 

during the 1980s…and remains an important agenda to be investigated” (p.1038).  An instance 

of how students’  preconceptions impede their  learning is provided by Ogborn (2004), who 

suggested that perhaps due to students’ intuitive understanding and experience with moving 

and non-moving objects, they “regularly refuse to believe the First Law [of Motion], and import 

into mechanics ideas of their own about a ‘force’ needed to keep objects in motion” (p.85).  

Unlike domains such as Civics or Moral education where the issues involved may be based 

largely  on  societal  opinions  which  may  vary  from  country  to  country  or  community  to 

community, physics concepts and principles are conceptually clear, with universally accepted 

and established normative views on the phenomena addressed by physics (e.g. Newton's Laws 

of Motion), which students are required to learn. The recognition of students’ preconceptions 

vis-à-vis  normative  scientific  views  has  led  to  an  increased  focus  on  uncovering, 

understanding, and dealing with students’ preconceptions and misconceptions.  For example, 

the Department of Physics at Montana State University (Montana, 2009) maintains a website 

of common students’ physics misconceptions, while the Comprehensive Conceptual Curriculum 

for Physics (C3P) project at the University of Dallas (Dallas, 2009) provides training workshops 

for teachers, which covers common preconceptions and misconceptions that many American 

high school physics teachers and college professors have recognized in their students.   This 

focus  and  importance  of  addressing  students’  preconceptions/misconceptions  in  science 
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learning environments is epitomised by Olenick (2005), who remarked that,

Our goal is for students’ preconceptions to be lost in time and our stakes are  

high.  Without the next generation of scientists and a citizenry that can make 

intelligent and informed decisions about science, our future will be lost. (p. 16; 

emphasis added)

Hence, from a physics learning environment perspective, there is a need to explicitly take into 

account students' prior knowledge and in Chapter Four, I provide further details on how this 

was achieved in my intervention.

2.5 Chapter Summary

In this chapter, I highlighted the centrality of sociocultural practices on human thought and 

behaviour,  which  are  succinctly  expressed  by  Wells'  proclamation  that  “who  we  become 

depends on the company we keep and on what we do and say together”.  I showed how 

sociocultural practices are significantly mediated by “talk” and identified that language and 

discourse serves as (i) a cultural tool that facilitates the sharing and development of meaning 

amongst members of a community, (ii) a psychological tool through which individuals structure 

their own thought processes, and (iii) the conduit through which social practices and meaning 

are effectively intermeshed with individual thoughts and in so doing, transform them.  I then 

indicated  that  from  a  classroom  perspective,  engaging  students  in  discourse  includes 

individual-level benefits (i.e. intra-personal benefits such as knowledge gains) and social-level 

benefits  (ie.  inter-personal  benefits  such  as  the  appreciation  of  the  subject  and  the 

community).  Thereafter, I accentuated the differences between the two most common types 

of discourse – the written text and the spoken word,  and  from a classroom perspective, 

emphasised  the  unique  affordances  the  written  text  offers.  Finally,  I  concluded  with  a 

discussion on science learning  environments, and pointed out that of utmost importance in 

physics education is the explicit need to take into account students' prior knowledge, since 

students interpret what a teacher says according to what they already know.  Ultimately, the 

Benson Soong Page 33



theoretical foundations expounded in this chapter serve as the pillars of my intervention, which 

is described in detail in Chapter Four.
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CHAPTER THREE

REVIEW OF KEY PHYSICS LEARNING INTERVENTIONS

In this chapter, I review physics learning interventions that fulfil  a specific criteria.  These 

criteria, which are elaborated in section 3.1, help me ensure that relevant physics learning 

interventions  are  identified  and  reviewed.   On  the  whole,  this  review serves  the  primary 

purpose of synthesising the field and indicating what has been previously accomplished, and 

what has not.

3.1 Coverage Strategy and Inclusion Criteria

Given that a key interest in educational research is to understand how students learn, and how 

we can assist them to learn better (see section 1.1), physics education research has been 

interested in helping students learn better since at least the 1970s.  During the 1970s and 

1980s,  there  were  considerable  research  interests  in  examining  the  differences  between 

experts and novices in an attempt to help physics students perform at an 'expert' level (e.g. 

see Simon & Simon,  1978; Larkin,  1981).  From the 1980s  to  1990s,  significant  research 

efforts  went  into  uncovering  students'  preconceptions  pertaining  to  a  variety  of  physics 

concepts (starting with Newtonian mechanics; e.g. Trowbridge & McDermott, 1981; Bowden et 

al., 1992) in order to facilitate conceptual change (Strike & Posner, 1985; Nersessian, 1998) in 

students.   From  the  late  1990s  onwards,  considerable  research  efforts  have  been  made 

towards improving teaching and learning practices (i.e. interventions) in science classrooms. 

Given the myriad of published learning interventions for science education, which vary in both 

scale and scope,  it is not plausible to review all such learning interventions.  Hence, included 

in this chapter are physics learning interventions that fulfil the following criteria: (i) they have 

been implemented in a whole-class setting for at least an entire academic term,  (ii) they cover 

a  range  of  introductory  physics  topics  (i.e.  does  not  focus  on  only  a  particular  physics 

topic/concept, such as only electric circuits or Newtonian mechanics), (iii) the intervention is 

not predominately laboratory-based (i.e. it focuses mainly on the classroom aspects of physics 
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lessons, not the practical/laboratory aspects), (iv) they have empirical evidence to support 

their claim of improved learning outcomes for students, (v) they provide clear guidelines for 

what teachers and students are to do (i.e. they are not generic approaches such as 'discovery 

learning', 'context-based instruction/assessment', etc.), and given that physics curriculum and 

classroom technology has changed significantly in the past decades, (vi) they are no older than 

two decades.  These criteria have been selected so as to be in line with my research intentions 

of designing, implementing, and evaluating an ICT-based physics revision intervention for a 

secondary school in Singapore.

To locate relevant studies, I searched ERIC, ISI Web of Knowledge (WoK), APA PsycINFO, and 

Google Scholar (GS) for the terms (i) “physics” and “learning intervention”, (ii) “physics” and 

“teaching intervention”, as well as, (iii) “teaching introductory physics”.  Prior to my searches, 

I spoke to close associates who are teachers and lecturers involved in physics education so as 

to obtain their insights on physics learning interventions that might meet my criteria.  Tables 

3.1, 3.2 and 3.3 provide a summary of my findings from my search efforts:

Table 3.1: Summary of search results for “physics” and “learning intervention”

Search terms: “physics” and “learning intervention” ERIC WoK PsycINFO GS

Number of hits 0 0 0 136

Table 3.2: Summary of search results for “physics” and “teaching intervention”

Search terms: “physics” and “teaching intervention” ERIC WoK PsycINFO GS

Number of hits 4 5 0 244

Table 3.3: Summary of search results for “teaching introductory physics”

Search terms: “teaching introductory physics” ERIC WoK PsycINFO GS

Number of hits 14 15 0 540

I  went  through  each  of  the  studies  (i.e.  first  only  looking  at  the  abstracts  and  then,  if 

necessary,  the  entire  document  and  where  appropriate,  the  references  therein),  selecting 

those that were relevant to my review based on the criteria justified earlier.  This activity was a 
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time-consuming process that was at times frustrating since, by and large, the vast majority of 

'hits' did not pertain directly to physics learning interventions. In addition, the vast majority of 

'hits' that did deal with physics learning interventions were mainly small-scale studies that did 

not  fulfil  the  criteria  set  (most  were  focused  on  specific  physics  concepts  and/or  were 

implemented and evaluated in less than one academic term). However, given the hundreds of 

references to  follow in GS, it  could be inevitable  that  I  might have missed out on a few 

relevant physics teaching methods.  Nonetheless, I found all the research studies which I had 

already known about, as well as those that were pointed out earlier by my associates in the 

physics  education  field.   In  total,  my  search  revealed  a  total  of  seven  physics  learning 

interventions that fulfilled the criteria set, and they are:

• Mazur's Peer Instruction (PI; e.g. Mazur, 1997, 2009)

• Heller  and Heller's  Cooperative  Group Problem Solving (CGPS; e.g.  Heller  &  Heller, 

1999a; 1999b)

• McDermott and colleagues'  Tutorials in Introductory Physics  (TIIP; e.g. McDermott et 

al., 2002)

• Redish  and  colleagues  at  the  Activity-based  Physics  Group's  Activity-based  Physics 

Suite (ABPS; e.g. Redish, 2003)

• VanLehn and colleagues'  Andes Physics Tutoring System (Andes; e.g. VanLehn et al., 

2005)

• Minstrell  and  colleagues'  Diagnoser  Project (Diagnoser;  e.g.  Thissen-Roe,  Hunt  & 

Minstrell, 2004)

• Etkina and colleagues' Extended Physics Program (EPP; e.g. Etkina et al., 1999)

It is worth pointing out that ABPS has elements of TIIP, CGPS, and PI, and EPP has an element 

of CGPS.

Benson Soong Page 37



3.2 The C4 Intervention Evaluation Model

In order to synthesise and review the qualified physics learning interventions, I analysed them 

based on my adaptation of the design brief guidelines developed by Ametller et al. (2007) and 

elaborated in Leach et al. (2009).  An adaptation was required as the interventions analysed 

were described in large grain size (Leach & Scott, 2008) terms,  whereas the prescribed design 

briefs are meant to provide for finer grain-size descriptions.  I have termed my adaptation of 

the design brief guidelines the C4 Intervention Review Model, which is depicted in Figure 3.1.

Figure 3.1: C4 Intervention Review Model (adaptation of Leach et al.'s (2009) Design Brief)

Intervention context provides a description of the context for the intervention:

• Curriculum:  The physics curriculum/level addressed by the intervention

• Students:  The academic level of the students, along with any specific characteristics 

that could influence the students' ability to learn physics

• Teachers:  The experience of the teachers, along with any specific characteristics that 

could influence the teachers' ability to teach physics

• Institutional affordances and constraints:  Class sizes and facilities, along with other 

infrastructural and/or policy constraints
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• Intervention-type:  What  the  intervention  focuses  on  (e..g  all  aspects  of  physics 

teaching, or assessment, or revision aspects)

• Other stakeholders: Other stakeholders who are directly involved in the intervention 

(e.g. teaching assistants)

Intervention content provides a description of the content coverage of the intervention:

• Key  topics  and  concepts  :   The  main  topics  and  concepts  addressable  by  the 

intervention

• Assessment:   How the  students  are  assessed  in  order  to  gauge  the  intervention's 

effectiveness

Intervention concept provides a description of the intervention's pedagogical strategies and 

instructional sequences:

• Theoretical  underpinnings:   The  theoretical  underpinnings  that  the  intervention  are 

based on (e.g. constructivism, cognitive apprenticeship)

• Activities  outside  of  classroom  instruction:   The  activities  that  occur  outside  of 

classroom instruction that are critical for the intervention to work

• Activities  during  classroom  instruction:   The  activities  that  must  be  done  during 

classroom instruction that are critical for the intervention to work

• Critical pedagogical concept: The chief pedagogical consideration that is considered as 

the heart of the intervention

Intervention  consequence provides  a  description  of  the  consequences  resulting  from  the 

successful implementation of the intervention:

• Students: The outcome of the students as a result of the intervention

• Teachers:  The outcome of the teachers as a result of the intervention

• Other expected consequences:  Any other expected consequences as a result of the 

intervention
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Based on this model, the proceeding sections will discuss each one of the four 'C's in turn.

3.3 Reviewing Interventions' “Context”

Based on the information summarised in Table 3.4, the review indicates that from a context 

perspective, the vast majority of physics interventions occur only at a college/university level. 

I believe that this is due to a 'convenience' factor; certainly no teacher/instructor or researcher 

would  claim  that  interventions  in  primary,  secondary  or  pre-university  settings  are  less 

important.  In fact, Lui (as cited in Gunasingham, 2009) believes that it is more important to 

improve science teaching practices when students are in primary and secondary schools.  It is 

therefore  unfortunate  that  out  of  a  total  of  seven,  six  of  the  qualified  interventions  are 

conducted so  late  into  students'  academic  journey,  since  more students  would  have  been 

interested to read physics at an undergraduate/postgraduate level if those interventions were 

introduced  much  earlier.   Also,  it  is  likely  that  these  six  interventions  are  not  readily 

implementable  in  secondary  schools  due  to  the  unique  affordances  available  within  a 

college/university institution.  For example, in a varsity setting, there are teaching assistants 

who share the teaching workload with lecturers, and lecturers have the ability/flexibility to 

change assessment items. Such affordances are not available in a typical secondary school, 

whereby the constraints are such that a teacher is solely responsible for teaching a specific 

subject to a specific class.  Additionally, secondary schools take standardised examinations and 

hence, lack the ability to customise their assessment methods.  Perhaps it was for this reason 

that only 5% of all PI practitioners surveyed (see Fagen et al., 2002) reported that they were 

from high schools, with no one reporting that they were from a middle school.  In fact, some of 

the  reported  challenges  to  implementing  PI  (see  Fagen  et  al.,  ibid)  as  reported  by  PI 

practitioners themselves seem particularly relevant to secondary school teachers:

• the time and energy required to develop ConcepTests – since most of the pre-written 

ConcepTests addresses the college/university curriculum
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Table 3.4: Cross-intervention comparison of Intervention “Context”

Intervention ContextIntervention Context

Intervention Name Curriculum Students Teachers Institutional Affordances and 

Constraints

Intervention Type Other Stakeholders

Peer Instruction

(PI)

Introductory physics typically 

at university/college level

Typically (very high-

achieving) undergraduates

Typically lecturers Large hall aided by ICT such 

as “clickers”.  Ability to 

change curriculum and 

assessment items

In-class large-scale lectures None specified

Cooperative Group 

Problem Solving

(CGPS)

Introductory physics typically 

at university/college level

Typically (high-achieving) 

undergraduates

Typically lecturers and 

teaching assistants

Large halls for lectures and 

small rooms/labs for 

recitation and laboratory 

sessions  Ability to change 

curriculum and assessment 

items, as well as change 

classroom set-up

In-class large-scale lectures 

with small-scale laboratory 

and recitation sessions

Teaching Assistants

Tutorials in 

Introductory Physics

(TIIP)

Introductory physics typically 

at university/college level

Typically (high-achieving) 

undergraduates

Typically lecturers and 

teaching assistants

Small rooms for recitation 

sessions  Ability to change 

curriculum and assessment 

items, as well as change 

classroom set-up

Small-scale recitation 

sessions to supplement 

large-scale lectures

Teaching Assistants

Activity-based 

Physics Suite

(ABPS)

Introductory physics typically 

at university/college level

Typically (high-achieving) 

undergraduates

Typically lecturers and 

teaching assistants

Large hall for lectures aided 

by ICT such as data-loggers. 

Small rooms for 

recitation sessions, and 

small laboratory rooms 

aided by ICT such as data 

loggers and visualisers. 

Ability to change curriculum 

and assessment items, as 

well as change classroom 

set-up

In-class large-scale lectures 

with small-scale laboratory 

and recitation sessions, but 

customisable according to 

needs

Teaching Assistants

Andes Physics Introductory physics typically Typically undergraduates Computer (AI) Ability to change curriculum Individual Problem-Solving None specified
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Tutoring System

(Andes)

at university/college level (Naval Academy Cadets) and assessment items

Diagnoser Project

(Diagnoser)

Physics typically at 

middle/high school level 

(State of Washington 

standards for education)

Typically Middle/High School 

Students

Computer (AI) Need to take standardised 

examinations

Individual Formative 

Assessment and Feedback

Administrators and teachers 

in school

Extended Physics 

Program

(EPP)

Introductory physics typically 

at university/college level

At-risk (of failing physics) 

undergraduates who are 

specially selected to take the 

course

Typically lecturers and 

teaching assistants

Ability to change curriculum 

and assessment items, as 

well as change classroom 

set-up.

In-class large-scale lectures 

with small-scale laboratory 

and recitation sessions

Teaching Assistants and 

Course 

Coordinator/Administrator
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• the quantity of material to cover in a semester often makes it difficult to devote class 

time to ConcepTests – since teachers in secondary schools are expected to directly 

teach physics concepts during class time, rather than in Mazur's case (e.g. see Mazur, 

2009) when students read and review textbook materials before coming to class (see 

section 3.5)

• teachers' scepticism of the benefit of students' discussions over lecture time – since 

discussions  are  only  fruitful  if  students  already  have  basic  knowledge  about  the 

concepts being discussed

• students' resistance to the method – since students in secondary schools prefer to be 

taught in class, rather than learning by themselves at home

• difficulty  in  engaging  students  in  class  discussions  –  since  many  secondary  school 

students lack the skills needed for fruitful peer discussions

There are two ICT-centred and five non-ICT centred interventions.  Interestingly, both the ICT-

centred interventions use some form of 'artificial intelligence' to address the revision aspects of 

physics education, while the five non-ICT centred interventions address the teaching aspects of 

physics education.  When the non-ICT centred interventions use ICT, the ICT used does not 

contain 'artificial intelligence' and merely performs collating and visualising tasks.  Broadly, 

when ICT is used in these seven interventions (i.e. Andes, Diagnoser, ABPS, PI), the main 

affordances exploited are (i) the speed at which it can processes information, as in the case of  

PI, ABPS, and Diagnoser and (ii) its ability to replicate and have each replicate follow the exact 

same instructional sequence, as in the case of Andes.  It is interesting that other (more social) 

affordances of ICT, such as its ability to facilitate a new genre of communications (Stahl, in 

prep)  are  not  exploited  in  these  interventions,  although  they  have  been  used  in  other 

educational settings (e.g. Hung, 1996; de Vries et al., 2002; Stahl, 2009).

The  qualified  physics  interventions  range  from  transforming  lecture  practices  (e.g.  PI), 

recitation  practices  (e.g.  CGPS,  TIIP),  laboratory  practices  (e.g.  ABPS),  problem-solving 
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practices  (e.g.  Andes),  assessment  practices  (e.g.  Diagnoser),  and  even  administrative 

practices (e.g. EPP) and hence can offer reference models for virtually all aspects of physics 

education.

3.4 Reviewing Interventions' “Content”

As summarised in Table 3.5, some interventions are topic and concept agnostic whereas others 

are based on misconception research and, hence, addresses specific topics and concepts.  For 

interventions that are topic and concept agnostic, the focus is on pedagogical approaches that 

help students learn better.  For example, Smith et al. (2009) showed that it is the pedagogy of 

having  peer  discussions centred  on  a  particular  physics  concept  that  leads  to  improved 

students' performance, whereas for CGPS, Heller and Heller (1999b) argued that it is students' 

immersion in their “culture of expert practice” (p. 5) which “bring these [internal thinking] tacit 

and hidden processes in the open, where students can observe, enact, and practice them with 

the help of the teacher and other students” (p. 6) that transforms students from novices into 

experts.  For EPP, it is the explicit and comprehensive support for 'at-risk' students that helps 

students to improve.  Further discussions on pedagogical approaches are provided in section 

3.5.

For interventions based on specific topics and concepts, all these interventions are based on 

misconception  research  (whether  driven  by  stable  cognitive  structures  or  activation  of 

inappropriate concepts; see Hammer, 1996).  Given that the popularisation of misconception 

research started with Newtonian mechanics (e.g. Trowbridge & McDermott, 1980; 1981), all 

non-topic/concept agnostic interventions address force and motion.  Also, the topics that the 

college/university interventions address are similar (e..g. electricity, magnetism, waves, optics) 

presumably due to  an informally  agreed upon curriculum, whereas the middle/high school 

intervention excluded certain topics (e.g. optics, electricity and magnetism) while including 

other topics (e.g. properties of matter), presumably due to differences between the university 

and pre-university physics curriculum.  It should be noted that the secondary school physics 

curriculum in Singapore includes optics, electricity, magnetism, as well as properties of matter. 
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Hence, the curriculum that Diagnoser covers does not comprehensively address the Singapore 

secondary school physics curriculum, and while the college/university level curriculum offers a 

closer match, implementing them in Singapore secondary schools would be difficult, given the 

conditions  they  require.   For  example,  PI  requires  students  to  read  and  review textbook 

materials  before  coming to class.   Such a practice would not be implementable  in  typical 

Singapore secondary schools, since the established practice has been for teachers to introduce 

new concepts  to students.   Hence, there clearly  is  room for a  topic  and concept agnostic 

physics  intervention  for  secondary  school   students.   Also,  a  topic  and  concept  agnostic 

intervention is more 'portable' as it is not dependent on a specific curriculum in order for it to 

be relevant.  Perhaps it is for this reason that ABPS has elements of PI and CGPS, while EPP 

has an element of CGPS.

Finally,  it  is  interesting  to  note  that  assessment  of  almost  all  interventions  included  a 

satisfaction  survey,  in  addition  to  pre/post  testing  and/or  control/experimental  group 

comparisons.

Table 3.5: Cross-intervention comparison of Interventions' “Content”

Intervention ContentIntervention Content

Intervention Name Key Topics & Concepts Assessment

Peer Instruction

(PI)

Topic and concept agnostic Satisfaction surveys; Pre/Post Testing (Force-Concept 

Inventory (FCI) and other concept inventories); Control 

Group/Experiment Group comparison

Cooperative Group 

Problem Solving

(CGPS)

Topic and concept agnostic Satisfaction surveys; Pre/Post Testing (FCI); Control 

Group/Experiment Group comparison

Tutorials in 

Introductory Physics

(TIIP)

Mechanics, electricity and magnetism, waves, optics, 

and thermodynamics

Satisfaction surveys; Pre/Post Testing (FCI)

Activity-based 

Physics Suite

(ABPS)

Tutorials are based on Tutorials in Introductory Physics 

while laboratory sessions are based on templates 

covering mechanics, heat and thermodynamics, and 

electric circuits

Satisfaction surveys; Pre/Post Testing (Force-Concept 

Inventory (FCI) and other concept inventories); Control 

Group/Experiment Group comparison

Andes Physics 

Tutoring System

Mechanics, electricity and magnetism, optics Satisfaction surveys; Control Group/Experiment Group 

comparison 
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(Andes)

Diagnoser Project

(Diagnoser)

Force and motion (mechanics), waves, properties of 

matter

Control Group/Experiment Group comparison

Extended Physics 

Program

(EPP)

Topic and concept agnostic Customised assessment includes enrolment figures, 

retention rates, satisfaction surveys, and comparison 

with non-”at-risk” students at the same University 

taking a 'normal' physics course

3.5 Reviewing Interventions' “Concept”

Based on the information summarised in Table 3.6, it is apparent that the college/university 

interventions that are non-ICT centred in nature (i.e. PI, CGPS, ABPS, TIIP, and EPP) prescribe 

activities that are based on the traditional triad of synchronised lectures, laboratories, and 

recitation sessions.  Even PI, which focuses on peer discussion during lectures, acknowledges 

the role laboratory and recitation sessions play (see Crouch et al., 2007).  Because the ICT-

centred interventions address the  revision aspects of  physics education, the activities they 

prescribe are quite different from the non-ICT centred interventions.  For example, students 

use  Andes only after they have completed learning a specific, mathematical-based physics 

topic  (such  as  Newtonian  Mechanics).  Andes  serves  as  a  'homework assigner'  and  'tutor' 

combined – it assigns pre-set questions from its database, and poses those questions for an 

individual student to solve.  While solving questions within the Andes environment, the system 

forces students to solve any given problem in a logical, fine-grained, step-by-step manner, and 

offers feedback after every step.  If the student needs assistance, pressing on a 'help' button 

would trigger a context-sensitive help feature, which provides varying amounts of help (from a 

simple hint to providing the entire problem-solving step required).  The Andes system does not 

provide  any  feedback  on  students'  performance  to  instructors,  and  is  largely  used  as  a 

standalone 'tutor' to help students improve their problem-solving skills.

With  regards  to  Diagnoser  (the  only  qualified  intervention  that  targets  secondary  school 

students),  students  use  the  system  as  an  individual  formative  assessment  and  feedback 

system.  After being taught a particular topic in class, students access the Diagnoser system 

and answer a pre-defined 'Diagnoser Set' for that particular topic.  This 'Diagnoser Set' is akin 
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to typical concept inventories like the FCI (see Hestenes et al., 1992).  However, unlike concept 

inventories, feedback is provided to the students after every question answered.  The feedback 

provided is meant to reinforce students' correct responses while offering alternate conceptions 

or suggestions for students to consider should they select an incorrect option.  Unlike Andes, 

Diagnoser  keeps  a  record  of  the  students'  response  so  as  to  provide  teachers  with  a 

description of the problems students have, as 'diagnosed' by the students' responses.  Also, 

the  system can offer  teachers with  some advice  for  'prescriptive  activities'  that  may help 

students overcome their misconceptions/misunderstandings.

Looking at the non-ICT centred interventions, both PI and ABPS make use of ICT to some 

extent.  However, the importance of using ICT is quite different for both these interventions – 

it is optional for PI, but critical for ABPS.  For PI, Mazur (2009) pointed out that  “it is not the 

technology but the pedagogy that matters” (p. 51).  Indeed, this view is echoed by Lasry 

(2008),  who  found  that  “using  PI  with  clickers  does  not  provide  any  significant  learning 

advantage over low-tech flashcards.  PI is an approach that engages students and challenges 

them to commit to a point of view that they can defend. The pedagogy is not the technology 

by  itself”  (p.  244).   For  ABPS,  due  to  its  focus  on  “blend[ing]  hands-on  activities  with 

reflection” (Redish, 2003, p. 182), the use of ICT is critical  since “computer-assisted data 

acquisition  [enables]  students  to  collect  high-quality  data  quickly  and  easily.  This  allows 

students  to  perform many  experiments  and  to  focus  on  phenomena  rather  than  on  data 

taking.” (ibid, p. 186).

It is apparent that the non-ICT centred interventions generally have a theoretical underpinning 

based on constructivism, whereas the ICT-centred interventions (i.e. Andes and Diagnoser) 

have a strong cognitive psychology underpinning.  Indeed, Andes is based on “cognitive task 

analysis” (VanLehn et al., 2005, p. 2005) and helps build students' problem-solving skills by 

way of “the [small] grain size of Andes’ interaction”, which “is a single step in solving the 

problem” (ibid).  As for Diagnoser, Minstrell and colleagues (e.g. Hunt & Minstrell, 1994) stated 

that “[h]ow people learn physics is also an interesting question for cognitive psychology” (p. 
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51) and developed Diagnoser to “provide timely topic-relevant in-class assessment by way of 

computer-administered quizzes.  The results  of  these assessments are both immediate and 

standard across classrooms” (Thissen-Roe et al., p. 239).  For the ICT-centred interventions, 

ICT is essentially used to replace either the teacher (as in the case of Andes) or the media (as 

in  the case of Diagnoser).   In my opinion,  using ICT  as a 'replacement for  teacher'  has 

important  implications.  Firstly, from a social standpoint, it changes the educational landscape 

by  placing  computers  at  the  foreground  and  teachers  at  the  background  of  students’ 

educational development.  This leads to unwarranted beliefs about what computers can do for 

education, and creates unnecessary tensions between teachers and computers, as manifested 

in the following remarks:

Computer makes studying more student centered.  When they use a computer to learn, 

they need to fund and discover materials by themselves instead of teachers simply 

putting things, which are not always interesting into their brain…Teachers can use the 

computer to present concepts to students in ways that are much more engaging than 

the  traditional  way.   As  a  teacher,  don’t  you feel  tired  of  standing  in  front  of  the 

blackboard and writing words on it?

- Dong Pan, 2000, ESL student (no attempts were made to correct the errors)

           (taken from http://kccesl.tripod.com/studentessays/computer.html)

However, once again there are uninformed members of the general public who believe 

that they can really learn Spanish or French or Chinese or whatever through a computer 

program. I would hope that the writers of this software know that they are making false 

claims by saying that someone can become fluent by using it. But the people who buy 

the software don't know that -- they believe what they read, they spend their money on 

it, and that means they don't register for my class.  That software could serve as a nice 

supplement to someone who is serious about learning a language, but it  will  never 

replace either classroom instruction or a cultural immersion experience. 
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I'm not REALLY worried that a computer will take away my job, but I am worried that 

the masses would like it to, just as the masses nowadays like everything that is faster, 

cheaper, and requires less thought and energy.

- Audrey, 2003, teacher

(taken from http://board.jeffjsnider.com/viewtopic.php?p=21780&sid=606bb442fdb948d07257bb7e65fbbd0d)

In my view, while learning from computers (in place of a teacher) may be effective and may be 

considered  a  legitimate  form  of  learning,  the  community  at  large  must  recognise  that 

computers are but one part of the larger process of enculturation (see Brown et al., 1989). 

Hence,  when  instructors  or  researchers  design  ICT-mediated  interventions,  they  need  to 

consider the wider learning processes and situate the interventions within its social context and 

practice.  Student-centred learning does not mean teacher-absent learning, and a learning 

environment that  is  orchestrated by a teacher should not be synonymous with a teacher-

centred focus to learning.

Secondly,  from a  financial  standpoint,  the  creation  of  any  'artificial  intelligence'  (such  as 

interactive learning courseware, video games, and interactive tutors) to replace a teacher are 

difficult  to  design,  require  specialised knowledge  to  code,  and  are  generally  expensive  to 

create.  At present, I am not sure if the cost justifies the results, especially when there are 

other more economical ways of utilising computer technology.

Thirdly,  from a pedagogic  standpoint,  learning directly  from computers has  its  groundings 

based in behaviourism.  For example, it is still common to find generic multimedia courseware 

that  are  based  on  the  principles  of  behaviourism  (Herrington  &  Standen,  1999).   Such 

instructions,  whether computer-based or otherwise, are out-dated as they place too much 

emphasis  on  memory  and  recall,  promoting  rote  learning  that  leads  mainly  to  “inert 

knowledge”  (Whitehead,  1929).   Hence,  it  is  often  caveat  emptor for  consumers  of  such 

products.
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From a 'replacement of medium' concept,  Clark (1983, 1994) had established that media itself 

will not influence learning outcomes.  Indeed, the activities performed by Diagnoser –whether 

it  is  the  provision  of  the  question  sets,  or  the  assessment  of  students'  answers,  or  the 

provision of feedback, or the suggestion of 'prescriptive activities' – may all be done via a 

paper-based system, albeit the speed will be much slower given the manual effort needed to 

record, analyse, reference and collate the generated data.

It  is  noteworthy  that  none  of  the  interventions  are  based  explicitly  on  a  sociocultural 

perspective.   Even  PI,  which  implicitly  draws  on  sociocultural  theory,  sees  itself  as  being 

effective essentially because “[i]t continuously actively engages the minds of the students, and 

it provides frequent and continuous feedback (to both the students and the instructor) about 

the  level  of  understanding of  the  subject  being discussed”  (Mazur,  2009,  p.  51).   In  my 

opinion,  PI's  success  may be seen from a  sociocultural  theory/activity  theory  perspective. 

From an activity theory perspective, PI changed the objective of the teaching practice, and as I 

have explained in Chapter Two, a change in an activity's objective necessitates a change in the 

activity  itself.   In  the  case  of  PI,  the  new  activity  focuses  on  students'  conceptual 

understanding and as a result,  students' conceptual understanding improves.  After all,  PI 

started  only  after  Mazur  found  that  his  students  could  solve  'harder'  problems  involving 

multiple  equations  and  variables  but  not  'simple'  conceptual  questions  involving  only  the 

fundamental physics concepts because the students were memorising “learning 'recipes' or 

'problem-solving strategies'...without considering the underlying concepts” (Mazur, 1997, p. 7). 

These  problem-solving  strategies  had  allowed  his  students  to  correctly  solve  numerous 

traditional  physics  questions  (such  as  those  involving  physics  formulas  and  mathematical 

calculations)  in  spite  of  serious  misconceptions  on  the  physics  concepts  involved  in  the 

question.  As a result, there was an underlying change in the  objective of Mazur's teaching 

practices.  Hence, instead of (unknowingly) helping students to  memorise 'learning recipes', 

Mazur focused on building up his students' conceptual understanding of physics concepts, and 

this change in objective was reflected in his teaching practice as well as in his assessment of 

their  learning  (which  includes  classroom  discussions  and  conceptual  questions  in 
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examinations).   With regards  to  the no significant difference finding in learning outcomes 

regardless of whether high-tech clickers or low-tech flashcards are used, it is attributable to 

the fact that while the material artefact is different (i.e. clickers are physically different from 

flashcards), the  ideal artefact is the same (i.e. both clickers and flashcards are used for the 

same purpose).  Hence, no significant changes occurs as a result of changing the material 

artefact.

From  a  sociocultural  theory  perspective,  students  undergoing  PI  improved  in  their 

understanding of physics concepts due significantly to the peer discussion process. As Smith et 

al. (2009) reported,

Previous explanations for the value of PI have maintained the 'transmissionist' 

view that during discussion, students who know the right answer are explaining 

the  correct  reasoning to  their  less  knowledgeable  peers....Our  findings  that 

even students in naïve groups [where everyone in that group did not initially 

know the correct answer] improve their performance after discussion suggests 

a more [socio]constructivist explanation: that these students are arriving at 

conceptual  understanding  on  their  own,  through  the  process  of  group 

discussion and debate. (p. 124)

In summary, as can be seen from the activities that were performed outside and inside of 

classrooms, educational practices were a direct reflection of (i) the objective of the educational 

process, (ii) the institutional and/or policy affordances and constraint, which provide for the 

various  tools  that  were made available  to  teachers  and students,  and (iii)  the  underlying 

theoretical underpinnings of the intervention.  For the ICT-centred interventions, students used 

ICT independently to build personal knowledge, while for the non ICT-centred interventions, 

ICT was used in-class in order to 'speed up' data processing.  In other words, students in the 

interventions were learning from (e.g. Andes, Diagnoser) and learning around computers (e.g. 

PI, ABPS), but they were not learning  through computers (e.g. Shahl, 2009), which in my 

opinion, are more supportive of learning from a sociocultural perspective.
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Table 3.6: Cross-intervention comparison of Interventions' “Concept”

Intervention ConceptIntervention Concept

Intervention Name Theoretical Underpinnings Activities Outside of Classroom Activities Inside of Classroom Critical Pedagogical Concept

Peer Instruction

(PI)

Explicit: Constructivism

Implicit: Sociocultural 

theory

Students are required to read 

and review textbook materials 

before attending class

There are slight variations to the PI process, but as described by Lasry et al. (2008):

Lecturer gives a brief lecture (less than ten minutes) on the topic that students have 

reviewed on their own.  

Thereafter, the lecturer provides a ConcepTest, which is a short conceptual multiple-

choice question on the subject being discussed (ConcepTest questions are very similar 

to questions posed in concept inventories, such as the FCI).  

Students are then given about one minute to individually think about the question, and 

are required to 'vote' for their answer by way of a show of hands, flashcards, or 

electronic clickers (i.e. audience response system).  

If less than 30% of students selected the correct answer, then the lecturer revisits the 

concept again, and provides another ConcepTest for students to individually assess and 

vote.  If more than 70% of the students selected the correct answer, then the lecturer 

provides a brief explanation of the answer, and proceeds to give a brief lecture on the 

next topic (and the cycle repeats).  

Most of the time, between 30% to 70% of students would have selected the correct 

answer.  In this case, the lecturer then asks the students to talk to their peers seated 

next to them and attempt to convince each other of their answer.  The lecturer would 

also mingle with the students to have a sense of what they are saying, or assess if they 

have particular difficulties.  After the peer discussion process (which would take several 

minutes), a new vote is taken and the process is repeated. 

Teaching by questioning

Cooperative Group 

Problem Solving

(CGPS)

Explicit: Cognitive 

Apprenticeship/

Constructivism

Laboratory and recitation 

attendance required

Based on a triad of synchronised lectures, laboratories, and recitation sessions.  

During lectures, lecturers introduce fundamental physics concepts taking into account 

typical students' preconceptions.  They also model explicitly all of the problem-solving 

Leading students from an 

'initial state' to a 'final state' 

via cognitive apprenticeship 

as a result of immersion in a 
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steps and decision processes required to solve the problem.

During laboratory and recitation sessions, students work in small groups to solve word 

problems or experimental problems respectively.   These sessions are coached by 

teaching assistants who are explicitly taught the cognitive apprenticeship process of 

coaching, scaffolding, and fading.

“culture of expert practice”.

Tutorials in 

Introductory Physics

(TIIP)

Explicit: Constructivism Students are required to have 

attended the traditional lectures 

before attending class, and also 

have completed a pre-test on 

the topics to be solved during 

the recitation sessions.

The recitation sessions are synchronised with the lectures.

Students work in small groups during recitation sessions in order to solve the 

conceptual problems posed.  

Teaching assistants are on-hand to mentor students and lead them in the right direction 

and show them the significance of the problems to be solved (a process of guided 

inquiry).

Thereafter, students are given 'homework' which are similar to the problems solved 

during the recitation sessions, after which they are required to take a post-test.

Teaching by guided inquiry

Activity-based 

Physics Suite

(ABPS)

Explicit: Constructivism Laboratory and recitation 

attendance required

Typically based on a triad of synchronised lectures, laboratories, and recitation 

sessions.

Lectures are conducted via a interactive lecture demonstration (ILD) methodology, 

whereby students first make predictions (on a prescribed worksheet) on the experiment 

that the lecturer is to conduct.  Thereafter, students summarise their observations on 

another prescribed worksheet.  Demonstrations are based on common misconceptions, 

and aided by computers, projectors, and computer-based data loggers.

Recitation sessions are based on TIIP, which have been described earlier.

Laboratory sessions are based on RealTime Physics (RTP), which is designed to build 

understanding of fundamental concepts through use of a guided inquiry model with 

cognitive conflict.  RTP relies heavily on computer-based data loggers.

Students must be actively 

doing physics. Cognitive 

conflicts are resolved via an 

empirical approach.
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Also, homework and examinations are based on questions with 'open-ended' reasoning.

Andes Physics 

Tutoring System

(Andes)

Explicit: Cognitive 

Psychology

Students are to have learnt the 

concepts via self-study and/or 

attending of lectures before 

attempting the Andes system

Students independently use the Andes system as a 'homework problem' system.  They 

attempt the questions on a computer with Andes installed, and using the Andes system, 

solve problems in a step-by-step manner as required by Andes.  If the student needs 

help, the artificial intelligence provides the necessary assistance.

The small grain-size of 

interactions provided by the 

Andes system.

Diagnoser Project

(Diagnoser)

Explicit: Cognitive 

Psychology

Students are to have learnt the 

concepts in class before 

attempting the Diagnoser 

system

Students independently use the Diagnoser system as a formative assessment system. 

They attempt the questions on a computer with Diagnoser running, and using the 

Daignoser system, obtain immediate feedback for the questions which they have 

answered.

A teacher also has access to his/her students' response to the questions posed, and the 

Diagnoser system provides the teacher with suggestions for how to transform students' 

thinking by way of examples/counter-examples and/or empirical methods.

Immediate, well-directed 

feedback based on 

questions that addresses 

well known preconceptions

Extended Physics 

Program

(EPP)

Explicit: Social Justice

Implicit: Constructivism

Students must be pre-qualified 

to take the course

Lecturers, course administrator 

and teaching assistants meet 

up once a week to discuss 

strategies for helping students 

who appear to be 'failing behind'

Based on a two-week synchronised cycle between lectures, group problem-solving 

workshops (recitation), qualitative minilabs, quantitative laboratories and review 

sessions on the same topic.

Extensive support for 

students, and small 

workshop and recitation 

sizes
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3.6 Reviewing Interventions' “Consequence”

Based on the  information  summarised in  Table  3.7,  unlike  the  common consequences  for 

students, there are some variations on the consequences for teachers.  For example, when 

lecturers conduct PI (and when teaching assistants conduct TIIP), they are explicitly looking 

out  to  gain  an  improved  understanding  of  their  students'  knowledge  base  and  thought 

processes, whereas this explicit activity of uncovering students' knowledge base and thought 

processes is less apparent in CGPS and ABPS.  For Andes, due to the absence of a feedback 

loop to teachers, it does not contribute to teachers' knowledge about  their students  in  any 

significant manner.  Hence,  for students,  Andes benefits them because it helps them to build 

up their problem-solving skills.  Since the Andes system does not provide any feedback on 

students' performance to instructors, the main benefit for instructors is that it saves them time 

from having to assign 'homework' to students and individually working with each student. For 

Diagnoser, besides saving the teachers' time to assign formative assessment questions, the 

Diagnoser system also provides teachers with a record of their students' performance and a 

'diagnosis' of their misconceptions.

Table 3.7: Cross-intervention comparison of Intervention “Consequence”

Intervention ConsequenceIntervention Consequence

Intervention Name Students Teachers Other expected consequences

Peer Instruction

(PI)

Improved learning outcomes; 

Increased satisfaction

Improved understanding of 

students' thought processes

None specified

Cooperative Group 

Problem Solving

(CGPS)

Improved learning outcomes; 

Increased satisfaction

None specified None specified

Tutorials in 

Introductory Physics

(TIIP)

Improved learning outcomes; 

Increased satisfaction

Improved understanding of 

students' thought processes

None specified

Activity-based 

Physics Suite

(ABPS)

Improved learning outcomes; 

Increased satisfaction

None specified None specified

Andes Physics 

Tutoring System

(Andes)

Improved learning outcomes; 

Increased satisfaction

No need to spend time assigning 

'homework' and no need to 

individually tutor students

Technology used to improve 

students' learning outcomes without 

additional workload for teachers

Diagnoser Project Improved learning outcomes Improved understanding of Technology used to improve 
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(Diagnoser) students' preconceptions students' learning outcomes without 

additional workload for teachers

Extended Physics 

Program

(EPP)

Improved learning outcomes; 

Increased satisfaction

Improved understanding of 

students' difficulties and weakness

Equity for 'at-risk' students

3.7 Chapter Summary

In this chapter, I reviewed physics learning interventions that are in line with my own research 

interests.  From a context perspective, my review shows that the vast majority of interventions 

targets  college/university  students when it  is  probably more important to  improve physics 

teaching  practices  in  secondary  school  classrooms.    From  a  content  perspective,   the 

secondary school physics curriculum in Singapore is somewhat similar to the college/university 

curriculum in the USA (in which all the interventions were initiated from).  However, it would 

be difficult to implement interventions targeted at a college/university level in a secondary 

school due to the unique affordances available in a varsity setting (such as the availability of 

teaching assistants and the ability to change assessment items).  From a concept perspective, 

all the interventions have their theoretical underpinnings based on constructivism, and none 

have  an  explicitly  sociocultural  theoretical  perspective.   When  ICT  is  used,  its  unique 

affordance  to  facilitate  a  new  genre  of  communications  was  not  exploited.   From  a 

consequence perspective, students' learning outcomes improved, and so did their satisfaction 

towards physics in general.  From a teachers' perspective, some interventions explicitly create 

situations such that  teachers would gain access to  students'  knowledge base and thought 

processes, whereas others are less explicit about this procedure.

A comparison of my intervention vis-a-vis the reviewed interventions will be made in Chapter 

Seven  after  I  have  discussed  the  results  of  students'  (and  teachers')  immersion  in  my 

intervention.

Benson Soong Page 56



CHAPTER FOUR

DESCRIPTION OF INTERVENTION AND RESEARCH DESIGN & METHODOLOGY

In this chapter, I describe how my physics revision intervention was designed based on the 

theoretical  foundations  expounded  in  Chapter  Two.   I  start  by  providing  the  necessary 

background information on my place of research.   Next,  I  explain the components of  my 

intervention  and  thereafter  describe  the  activities  that  go  into  each  of  the  two  unique 

processes that constitute the intervention.  Thereafter, I provide a discussion on my research 

methodology and explain why design experiments (also termed design-based research) are 

appropriate,  given  my  research  questions,  intentions,  epistemological  grounding,  and 

theoretical perspectives.

4.1 Background

Given my interest in improving pedagogical practices in secondary school physics classrooms, I 

decided to approach my former secondary school (Bartley Secondary School in Singapore) to 

see if they were interested in being involved in this research project.  I attended my secondary 

school education in Bartley from 1986 to 1989, and had conducted my MSc research (which 

may be considered as a feasibility study building up to this PhD research work) in the school 

from 07 July 2000 to 29 August 2000.  However, no trace of my earlier work may be found in 

the school due to staff movement and poor dissemination of my research work then.  I chose 

Bartley for two main reasons.  Firstly, I had maintained a relationship with the school via its 

alumni network, and this relationship offered me access to the school's management team, 

including  the  Principal.   Secondly,  I  wanted  my intervention  to  be  applicable  to  the  vast 

majority of schools in Singapore, and given that Bartley may be considered as an average 

'mainstream' secondary school provided with standard infrastructure and equipment (such as 

computers, classroom facilities, etc.), I believe that an intervention that 'worked' in Bartley 

would be appropriate for the majority of secondary schools in Singapore (for a discussion on 

the types of secondary schools in Singapore, see MOE, 2009).
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Through the school’s alumni network, I approached the school’s Principal in January 2008 with 

a proposal to involve students in an intervention designed to help them revise physics concepts 

better.  A presentation on the design rationale of the intervention was given to the Principal 

and Head of Department (HOD) for Science, and approval was given to involve a class of pure-

physics  (as  compared to  combined-science)  students  in  the  intervention.   Collectively,  we 

agreed that a small-scale study should be conducted (in October/November 2008; after the 

end of their school examinations) to gauge the overall effectiveness of the intervention prior to 

a  full  scale  study  involving  an entire  class  for  the  academic  year  2009 (from January  to 

November 2009).  Also, we decided that for the small-scale pilot study, the intervention would 

be evaluated primarily on the students’ improvements in physics (as measured via pre/post 

intervention testing), and secondarily on the students’ and their physics teacher’s feedback on 

being involved in the intervention.  The exact duration and scale of the main study would only 

be decided after the evaluation of the pilot study.

As there was only one class of students studying pure-physics who would be taking their GCE 

'O' level examinations at the end of 2009, this class (4E1) was selected for involvement in our 

research  study.   4E1  had  a  total  of  23  pure-physics  students  (11  boys,  12  girls;  mostly 

students with working-class parents) from a range of Asian countries: Singapore (9 pupils), 

Mainland China (4 pupils), Nepal (3 pupils),  Thailand (3 pupils), Indonesia (1 pupil), Hong 

Kong (1 pupil), Myanmar (1 pupil) and Vietnam (1 pupil).  The medium of instruction and 

assessment was English although the students are non-native speakers of the language.  As of 

31 Dec 2008, the students were aged between 15 and 17, and most students have been in the 

school since secondary one (January 2006).  Historically, there has always been a greater 

number  of  foreign  students  in  Bartley  as  compared  to  most  other  secondary  schools  in 

Singapore due to its close proximity to a Nepalese army camp.  Nevertheless, foreign students 

are common in Singapore secondary schools, since more than one third of the country's total 

population is made up of foreign nationals.   From a curriculum perspective, the students were 

taking  physics  GCE  'O'  Level  Syllabus  5058  and  the  curriculum  covered  Measurement, 
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Newtonian Mechanics, Thermal Physics, Waves, and Electricity and Magnetism.  The curriculum 

was taught for about a year and one-half (from January 2008 to August 2009), after which the 

students  took their  GCE 'O'  level  examinations  in  October/November  2009.     Their  final 

physics grade for the GCE 'O' levels consisted of 30% for Paper 1 (MCQ questions), 50% for 

Paper 2 (short structured and open-ended questions), and 20% for a practical examination. 

All students took six other subjects (English language, mother tongue language (e.g. Chinese), 

mathematics (E), additional mathematics, chemistry, and combined-humanities) in addition to 

physics, with some students taking an additional subject (Higher Chinese).

Based on the last standardised national examination that 14 of the students took in 2005 

(called the Primary School Leaving Examination, or PSLE for short), many of the students had 

just scored sufficiently to allow them admission into the GCE 'O' level programme.  Out of a 

maximum aggregate score of 300, the students had an  average score of 202 (top students 

typically  score  above 275,  with the top score in 2005 being 282).   The  cut-off  score for 

admission  into  the  GCE  'O'  level  programme  for  the  lower-tiered  mainstream  secondary 

schools is usually no less than 188, while the average cut-off score for admission into the GCE 

'O' level programme taking into account all public secondary schools in Singapore for the 2009 

cohort was 213 (see Appendix 4,1; the 2009 cohort PSLE scores were used because the 2005 

cohort data is no longer available.  However, these scores do not vary significantly).  The 9 

students  who  did  not  take  the  PSLE  were  foreign  students  who  had  passed  the  school's 

admission test and were directly admitted into the school's GCE 'O' level programme.

As of 31 December 2008, there were two teachers who were qualified and assigned to teach 

pure-physics in the school.  One is the Head of Department for Science (Ms Er), who has about 

five years of experience teaching pure-physics.  Ms Er has been with the school since her 

graduation  from  the  Singapore  National  Institute  of  Education  and  in  January  2008  was 

appointed as the Head of Department for Science. Another teacher (Mr Ng) had about three 

years of experience teaching pure-physics, and had been in the school for about six months 

(he left the teaching profession in June 2009).
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While most interventions (including those reviewed in the previous chapter) often propose the 

application of a holistic (encompassing teaching, revision, testing and evaluation) intervention, 

I  am reminded  of  the  difficulty  in  changing  established  classroom practices,  especially  if 

information  and communications  technology  (ICT)  is  to  be  introduced (e.g.  Cuban,  1986; 

2001).  My experience tells me that teachers stay with tried-and-tested methods that allow 

them to cover the examination syllabus within an allocated time-frame.  Hence, instead of 

designing a  teaching intervention  for physics education,  I designed a  revision intervention. 

From a dissemination perspective (especially based on Singapore’s context), I believe that an 

intervention focusing on the  revision of taught content has two distinct advantages over an 

intervention focusing on the teaching of new content.  Firstly, teachers and students would be 

more willing to attempt a new practice that does not interfere with 'regular teaching hours'. 

Since physics revision lessons in Singapore are often conducted outside of standard curriculum 

time, a revision-based intervention would appear more palatable.   Secondly,  teachers and 

students would be more willing to attempt a new practice which does not differ too greatly 

from their established classroom practices (i.e. not beyond their 'collectivist' or 'societal' zone 

of  proximal  development;  see  Valsiner,  1988,  p.  147).   Since  physics  revision  lessons  in 

Singapore are already operating via group work and other more interactive methods,  teachers 

and students would find dialogic and interactive practices (such as mine) more appropriate in a 

revision setting than in an authoritative teaching environment.

I am aware that  entry into a school  does not imply access into it (Ball, 1993), and studies 

involving a longitudinal design have generally more issues with access as compared to shorter 

studies (Cohen et al., 2000).  Hence, to gain access into the school culture, I had based myself 

in that school throughout the study, and in my opinion, had employed common sense and good 

judgement in order to strike a balance between the demands of being a good researcher and 

responsible member of the school’s community.  Also, I was aware that as a former National 

University  of  Singapore  post-graduate  research  scholar  and  current  Cambridge  University 

'researcher', it was possible that my credentials could impress the Principal and teacher(s) into 
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accepting any of my suggestions.  In addition, it is possible to suggest that any improvements 

made by the students were due mainly to my presence, rather than my intervention.  I shall 

address each question in turn.  On the issue of overawing the Principal and teacher(s), this did 

not happen as the school did not grant me permission immediately upon my request.  In fact, I 

had  to  prepare  a  formal  presentation  and  had  to  provide  detailed  explanations  of  my 

intervention programme and its  expected outcomes before  the Principal  and HOD Science 

granted me permission.  In addition, the Principal emphasised to me that while permission to 

conduct  research  in  the  school  was  granted,  she  or  her  teacher(s)  reserved  the  right  to 

withdraw from the research study, if either the teacher or the students perceived the study to 

be  to  their  detriment.   Hence,  I  believe  the  Principal  and  teacher(s)  involved  acted 

independently and objectively.  As reported by them, the main reason why the Principal and 

HOD Science agreed to take part  in this study was because they agreed, at least at the 

theoretical  level,  that  my  intervention  could  be  useful  for  Physics  revision,  resulting  in 

improved results for their students.  In this sense, both the school and I were working towards 

the same goal.   With regards to improvements resulting mainly  due to my presence,  this 

alternate  explanation can be negated by the longitudinal  nature  of  the study to  minimise 

novelty effects.  Ultimately, in line with the traditions of design experiments (see section 4.6), 

I  am  developing  a  profile  that  characterises  the  design  in  practice  and,  hence,  in  this 

dissertation, highlighted my involvement to the extent possible.  In this way, a reader is made 

aware of the sociocultural forces at play in my intervention. 

On the ethical front, even though I had the Principal’s written permission, I also obtained a 

signed  voluntary informed consent form from all the students involved.  Because there is a 

possibility of embarrassment since students’ misconceptions were exposed, students' names 

have been made anonymous in this final dissertation as well as in other related publications. 

Also, any student or teacher had a right to withdraw at any stage of the research project, and 

all  the data collected from them would have been purged.  Alternate (traditional) revision 

classes would have been arranged for students who have opted out.  Prior to any video or 

audio recordings (e.g. during the focus group session of the pilot study), permission was first 
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sought.  Also, since my intervention required students to use the computer and keyboard, I 

had ascertained that the students earmarked for involvement in this project were technically 

competent and, hence, no student was at a disadvantage.

4.2 Broad Intervention Design

Based  on  a  sociocultural  theoretical  underpinning,  the  critical  pedagogical  concept  of  my 

intervention  is  promoting  meaningful  talk,  both  between  students  themselves  as  well  as 

between teachers and students.  In addition, I utilised ICT's unique affordances of enabling a 

new communications genre as well as its ability to record discourse in order to encourage and 

enhance the type of talk/discourse that takes place in a physics classroom.  Broadly, given the 

centrality of addressing students’ prior knowledge and the fundamental nature 'talk' plays in 

students’  learning,  I  designed  my  revision  intervention  based  on  a  cyclical  process  of 

computer-mediated co-construction and student-centric prescriptive tutoring.

During the co-construction phase, each student, working from their own individual computer, 

collaboratively solves physics questions with an anonymous partner through the computer via 

a text-chat and whiteboard facility.  In other words, instead of learning  from the computer 

(e.g.  reading  an  'e'  textbook  or  using  Andes  to  guide  with  individual  problem-solving), 

students learn  through it (i.e. by using the computer medium to work with other students). 

This computer-mediated collaborative problem solving process serves two purposes.  Firstly, 

the text-chat and whiteboard logs (i.e. protocol data) allow a teacher to capture (and hence 

review at  the  teacher’s  convenience)  students’  knowledge  negotiation  and  co-construction 

attempts  in situ, which can be used for prescriptive tutoring later.  Secondly, the discourse 

process itself  promotes active  intellectual  involvement of  the students  by getting them to 

discuss  and  collaboratively  solve  physics  problems  posed.   For  example,  by  engaging  in 

meaningful discourse, students may learn from each other via a Piagetian (e.g. Piaget, 1985) 

and/or  Vygotskyan  (e.g.  Vygotsky,  1978)  account  of  cognitive  development 

(conflict/coordination/resolution and the 'in two planes' theory).  After all, from a sociocultural 

perspective, learning is a “social, communicative, and discursive process” which is “inexorably 
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grounded in talk” (Duffy & Cunningham, 1996, p.181).

During  the  prescriptive  tutoring  phase,  a  teacher  analyses  students’  knowledge  base  and 

thought processes by reviewing saved copies of their text-chat and whiteboard logs, which 

have been transported through time and across space. The objective of this exercise is to 

identify misunderstandings and/or misconceptions that specific students have.  Thereafter, the 

teacher  provides  revision  lessons  by  prescriptively  addressing  students’  physics  concept 

misunderstandings  as  evident  in  the logs.   Hence,  revision  lessons  are  primarily  student-

orientated and secondarily content-orientated, rather than the other way around.  In other 

words, the focus is on the students and how they are thinking about the content (i.e. various 

physics concepts), instead of on the content and how the students should be thinking about 

them.  As a revision intervention, this cycle between co-construction and prescriptive tutoring 

would start only after a particular topic had been taught in class.

4.3 Computer-mediated Collaborative Problem Solving Laboratory Sessions

4.3.1 Computer-mediated Collaborative Problem Solving (CMCPS) Set-up

There  are  four  computer  laboratories  in  the  school,  with  each laboratory  housing  40  PCs 

running Microsoft Windows XP operating system. Two labs house the newer and 'more stable' 

computers (see Figure 4.1), while another two labs house the older and 'mainly good for web-

surfing'  computers  (see  Figure  4.2).   Every  PC  is  connected  to  both  the  school’s  private 

Intranet, as well as the wider public Internet. As Microsoft NetMeeting comes pre-installed with 

the XP operating system, I used NetMeeting as the computer-mediated communications (CMC) 

software  where  students  worked  on  collaborative  problem  solving.  NetMeeting  is  an 

appropriate CMC software for my purpose because it features a shared whiteboard space and 

text-chat facility, has a user-friendly interface, and supports PPP (Point-to-Point Protocol), a 

TCP/IP-based protocol that does not require the use of a computer server. In addition, prior 

studies  (Soong  &  Chee,  2000;  Soong,  2001)  have  shown  that  NetMeeting  is  sufficiently 

feature-rich to allow for meaningful knowledge negotiation between students, and supportive 

of obtaining students' current knowledge and understanding in a 'naturally occurring' manner.
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Figure 4.1: 'New' computer laboratory (notice the flat LCD monitors)

The NetMeeting CMC environment consists of a text-chat and a whiteboard facility (see Figure 

4.3). The text-chat allows students to converse via typed text, while the shared whiteboard 

allows pictorial drawings and ideas to be depicted and discussed. During the CMCPS sessions, 

students were asked to regularly 'save' both the shared text-chat and the whiteboard onto a 

shared virtual disk, which was accessed at the end of the session for printing and analysis.

Figure 4.2: 'Old' computer laboratory (notice the CRT monitors)
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Just  prior  to  every  computer-mediated  collaborative  problem-solving  (CMCPS)  session,  I 

and/or the school's IT assistant would switch on the appropriate number of computers (e.g. 

seven in the pilot study, and 23 in the main study) and start up NetMeeting. We then assigned 

random 'nicknames' to each computer and randomly connected two computers together by 

means of NetMeeting’s 'call' feature (see Figure 4.4).  The 'new' computer laboratories had a 

classroom management software installed that allowed us to carry out these activities directly 

from our teacher's PC located at the front of the room (see Figure 4.5).  Hence, this entire set-

up process took no more than 20 minutes.  I used random nicknames because I did not want 

students to know who their problem solving partners were. This approach to make anonymous 

the student pairs was intended to “reduce differences in social status and prestige, thereby 

providing a more egalitarian context for social interaction. This may lead to more open and 

spontaneous participation” (Jehng, 1999, p.675). When the students first got to the laboratory, 

they were handed a copy of the questions posed for that particular session.  They would then 

select – from among the computers that were switched on – a computer that they wanted to 

work  from,  and  then  proceeded  to  collaboratively  solve  the  given  problems  with  their 

partner(s) via NetMeeting through the network.  This random seat selection process further 

enhanced the anonymous configuration of our environment.

Figure 4.3: NetMeeting's whiteboard and text-chat feature
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With respect to the formation of CMCPS teams, prior studies (e.g. Hung, 1996; Soong & Chee, 

2000; Soong, 2001) revealed that grouping two students to form a problem solving team was 

optimal. However, in the event that there was an odd number of students, one group would 

consist of three students.

Figure 4.4: NetMeeting's 'call' feature (direct IP address calling; no server required)
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Figure 4.5: Classroom management system used to set-up computers in the lab

For all the initial CMCPS sessions, students were provided with a set of ‘ground rules’ for how 

they should behave during the session. This procedure was based on the findings of prior 

research that collaboration is most effective, and learning outcomes are maximised, if students 

jointly and explicitly subscribe to an appropriate set of interactional norms and goals (Mercer & 

Littleton, 2007). The ground rules (adapted from Mercer, 2000) were:

• They agree to share their ideas and listen to each other, no matter how silly it might 

appear

• They agree to consider what their partner(s) has written or drawn

• They agree to respect each other's opinions

• They agree to give reasons for their ideas

• They agree to express their ideas and workings neatly and clearly

• If  they disagree with each other,  they will  ask “why?”  or  provide reasons for  their 
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disagreement

• They agree to discuss only on the questions posed (e.g. no asking who their partner is)

• They agree to only work on solving the problems (e.g. no web-surfing)

• They agree to try to concur on a solution, prior to asking the teacher(s) to check their 

answer

Throughout the entire (pilot and main) research study, I found that the students generally 

followed the ground rules during the CMCPS sessions. On occasions, there were very minor 

disruptive  behaviour  exhibited  (e.g.  asking  for  the  identity  of  their  partner,  guessing  the 

identify of the partner, random drawings on the whiteboard), but because I (and/or the teacher 

during the main study) was in the laboratory overlooking what the students were doing, such 

behaviours were kept to a minimum.  In addition, the students were constantly reminded that 

every message sent to their partner would be recorded in the log, and hence the source of 

disruptions would be traceable.  Such actions helped to keep disruptions at bay.

4.3.2 CMCPS: Questions Posed

I had initially wanted to base the questions posed to the students on “concept rich problems” 

(e.g. see Heller & Heller, 1999a).  I believe that such problems tend to be more authentic as 

they attempt to draw on students' previous experience and/or how they relate to everyday 

situations. Hence, they can help students relate Physics concepts to real experiences, thereby 

allowing them to talk more freely about their preconceptions.  However, the physics teachers in 

the school commented that concept rich problems are fundamentally different from the types 

of questions posed in the GCE 'O' level examinations and, hence, the questions that we (the 

physics teacher and I) posed during the CMCPS sessions were a mixture of concept rich (e.g. 

see Figure 4.6) and traditional (e.g. see Figure 4.7) questions.

Figure 4.6: Example of a concept rich physics problem (from the topic, pressure)
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Figure 4.7: Example of a traditional physics problem (from the topic, pressure)

4.3.3 CMCPS: Student, Teacher, and Computer Laboratory Assistant Training

From a technical perspective, the CMCPS sessions basically involved students typing in the 

text-chat window with a keyboard and drawing on the whiteboard with a mouse. Hence, the 

students  involved  in  this  research  study  were  already  familiar  with  such  basic  computer 

operations, and no technical training was required. The only 'training' I provided the students 

is what I term as 'activity objective' training, whereby I explained to the students the objective 

of them working on problem solving with a partner via the CMC environment, and emphasised 

what they needed to do during the CMCPS sessions.  Broadly, I explained to them that they 

were  working  on  collaborative  problem  solving  with  a  partner  via  a  computer-mediated 

environment because the environment offered them:

• The possibility to learn from one another, where learning might take place natively via a 

Piagetian (conflict/coordination/resolution) or Vygotskyan (ZPD) effect

• The confidence to freely and fully discuss their preconceptions and ideas, given that 

their identifies were made anonymous and their teacher would review their articulations 

and  provide  them  with  instruction  that  is  specifically  targeted  at  correcting  their 

misconceptions or misunderstandings

From a teacher's perspective, I had informed the teachers that the objective of the CMCPS 

session was for students to work with their partners via the CMC environment. Hence, as far as 

possible, all students' comments should be articulated between the students via the network 

so that their problem solving attempts are recorded and made available for review.  Therefore, 
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it  was  important  for  teachers  to  let  students  'struggle'  and  make mistakes,  and  hold  off 

providing students with hints for as long as possible.  Generally, students discussed with their 

partners and only called for the teacher when both parties have agreed on a specific solution. 

The teacher would then check the solution by reviewing appropriate discourse as highlighted 

by the students in the text-chat box (or the whiteboard).  Naturally, because the teacher could 

only be at one place at any time, only one student would call for the teacher, and this could 

suggest to the students who their partner was.  However, it is our (the physics teacher and 

my) opinion that after working with each other for a while, students were not very interested 

in knowing the identity of their partners.  If the students' solution was correct, the students 

were told that they were correct and told to proceed to the next problem.  If the students' 

solution was incorrect, this was also related to the students, and it was up to the teacher to 

provide hints if it was deemed necessary.  If the students' solution was still incorrect after 

numerous attempts, they were told to skip that question and attempt the next.  By and large, 

no solutions were provided during the CMCPS sessions, as it was a time meant for student  

discourse, and not teacher instruction.  Figure 4.8 provides a summary of a CMCPS session.

Figure 4.8: Summary of a CMCPS session

From an IT lab assistant's perspective, no training was required as the set-up of the computer 

laboratory was very straight-forward.  The IT lab assistant had observed how I set-up the lab 
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and was able to repeat the procedure without difficulty on subsequent occasions.  Generally, all 

that was required was for the assistant to set-up the computers, and when the students had 

left the laboratory, to print out the logs.  Since students completed a short survey after every 

CMCPS session in which they had to write down their  name and 'nickname' used for that 

particular CMCPS session, the IT lab assistant could indicate on the logs who the students 

were.  This identification exercise was used to allow teachers to know which students had said 

what.

4.4 Prescriptive Tutoring Classroom Sessions

Based on Mortimer and Scott’s treatise on meaning making in secondary science classrooms, 

there are six main teaching interventions in secondary science classrooms (see Table 4.1). The 

“first three [teaching interventions] relate to how the teacher act to introduce and develop the 

scientific  story  and the remainder  [three teaching interventions]  refer  to  other  aspects  of 

staging the teaching performance” (2003, p. 45).

Table 4.1: Secondary science teaching interventions (Mortimer & Scott, 2003, p.45)

Teacher intervention Focus Action the teacher might take
1. Shaping ideas Working  on  ideas,  developing  the 

scientific story

Introduce  a  new  term;  paraphrase  a 

student’s  response;  differentiate 

between ideas
2. Selecting ideas Working  on  ideas,  developing  the 

scientific story

Focus attention on a particular student 

response; overlook a student response
3. Marking key ideas Working  on  ideas,  developing  the 

scientific story

Repeating  an  idea;  ask  a  student  to 

repeat  an  idea;  enact  a  confirmatory 

exchange  with  a  student;  use  a 

particular intonation of voice
4. Sharing ideas Making  ideas  available  to  all the 

students in a class

Share individual student ideas with the 

whole class;  share group findings;  ask 

students  to  prepare  posters 

summarising their views
5. Checking student understanding Probing specific student meanings Ask for clarification of student ideas; ask 

students to write down an explanation; 

check  consensus  in  the  class  about 

certain ideas
6. Reviewing Returning to and going over ideas Summarise the findings from a particular 

experiment; recap on the activities of the 
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previous  lesson;  review  progress  with 

the scientific story so far

Mortimer and Scott also introduced four different communicative approaches (see Table 4.2) 

based “on a continuum between  interactive and  non-interactive talk on the one hand, and 

between dialogic and authoritative talk on the other.” (ibid, p.34; emphasis in original).

Table 4.2: Four classes of communicative approach (Mortimer & Scott, 2003, p.35)

Interactive / Dialogic Non-Interactive / Dialogic

Interactive / Authoritative Non-Interactive / Authoritative

Using  their  teaching  intervention  and  communicative  approach  models,  our  prescriptive 

tutoring lesson flow was as depicted in Figure 4.9.  Nonetheless, teaching is a dynamic process 

and there were times when our lessons did not follow the six steps to the letter.  However, as 

far as possible, we tried to follow these six steps, as we believed following the sequence would 

help our students learn better, since the six steps allowed us to focus on helping students to 

understand the concepts discussed, rather than on getting the correct answer to the question 

posed.  In other words, the objective of a prescriptive tutoring session was to ensure that  

students  understood  the  concepts  being  discussed;  the  objective  was  not  to  ensure  that  

students knew how to arrive at the right solution.

During the prescriptive tutoring session, the basis for instruction primarily came from students’ 

protocol data, rather than a pre-specified timetable.  In other words, the session would always 

start with, and revolve around, the students’ mental models.  For example, if analysis of the 

students’  protocol  data  revealed that  they had misconceptions  with  a particular  aspect  of 

Newton's Third Law of Motion, then we would start by selecting that particular misconception 

for discussion.  Students were shown the question that was asked during the CMCPS session, 
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as well as the protocol data of students’ collaborative problem solving efforts which revealed 

the misconception.  We then asked students to comment on the question posed (e.g. was it 

easy, hard, or just tricky?  Was the question difficult to understand?  What broadly was the 

understanding of this topic?).  We then shaped students' ideas by explaining to them what the 

normative  views  were,  and  what  their  misconception  implied.   Thereafter,  we  checked 

students’ understanding by getting them to articulate, in their own words, what the  normative

Figure 4.9: Prescriptive tutoring lesson flow

views  are,  and  why  their  preconceptions  were  incorrect.   Thereafter,  to  ensure  students 

understood the lesson, we reviewed the topic by getting the students to answer a question 

(similar to the one which led to exposure of the misconception).  Once we were satisfied that 

the students’ thinking had been transformed, we repeated these six “teaching interventions” in 

their  respective  order  until  all  misconceptions/misunderstandings  had  been  addressed. 

Naturally, attempting to change students' preconceptions was a difficult process and a highly 
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situated activity, and even at the end of the session, we could not be entirely sure that they 

were entirely convinced by our explanations. Nonetheless, because we knew exactly where our 

students'  difficulties lay,  we had at  least  taken the first  step in leading them towards the 

normative views.

4.5 Analysis from an Activity Theory Perspective

From an activity theory perspective, the intervention I have designed has two features that 

would necessarily change the sociocultural practice of classroom physics revision.  Firstly, the 

intervention  changed  the  objective of  the  classroom revision  sessions.   In  the  past,  the 

teacher's objective of conducting revision sessions was to ensure that students could answer 

the  questions posed (see Chapter  Six).   However,  the intervention showed that  getting a 

correct answer did not necessarily mean that students understood the concepts involved, and 

highlighted the importance of getting students to understand the concepts relevant in  the 

questions  posed.   Hence,  the objective  changed from 'getting  the  correct  answers  to  the 

questions posed' to 'understanding the physics concepts in the questions posed'.  As discussed 

in Chapter Two, a change in an activity's objective necessitates a change in the activity itself. 

Hence,  classroom  revision  sessions  via  the  intervention  was  a  fundamentally  different 

classroom practice as compared to traditional revision practices.  Secondly, the introduction of 

ICT as an artefact that allowed  all the students to simultaneously problem solve with each 

other  while  still  allowing the  teacher  to  have deep insights  into  all the  students'  thought 

processes and knowledge base resulted in the affordance for the conduct of a new activity (i.e. 

prescriptive tutoring) which was not feasible in the past.  This is because, from an ideal (as 

opposed to material) perspective, ICT is now being used to support and record discourse in a 

manner  that  makes  it  feasible  for  teachers  to  gain  deep  insights  into  how  students  are 

thinking.  Hence, it can be seen how the consideration of sociocultural theory and activity 

theory informed the design of my intervention.

Shown in Figures 4.10 and 4.11 are instantiations of the activity theory constructs depicting 

the pre-intervention and intervention activities respectively,  where it can be seen that these 
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were  vastly  different  activities  despite  the  majority  of  constructs  being  similar.   The  pre-

intervention  objective  was  to  ensure  that  students  could  answer  the  questions  posed. 

Consequently, the division of labour was such that during revision, the students focused on 

answering numerous questions from past year examination papers, while the teacher focused 

on showing students how the correct answers were arrived at.  It can also be seen that the 

artefacts that mediated this activity were identical to those used in their examinations, such as 

the GCE 'O' level examinations.

Figure 4.10: Activity Theory constructs depicting the 'getting the correct answers to the questions posed' activity

The  activities  inherent  in  the  intervention  were  fundamentally  different  from  the  pre-

intervention  revision  activities  primarily  because  of  a  difference  in  objective,  which  was 

afforded by ICT.  Our key objective of the intervention was to ensure that students understood 

the physics concepts posed in the questions.  In order to help the students understand the 

relevant  physics  concepts,  we  needed  access  into  the  students'  thought  processes  and 

knowledge base, and this was mediated by ICT.  Consequently, the division of labour was such 

that  the  students  used  the  computer-mediated  'text-chat'  and  whiteboard  tool  for  peer 

discussion such that their thought processes and knowledge base were made overt for our 

review and analysis, thereby allowing us to prescriptively focus on specific physics concepts 

that  students  needed  additional  support  in.   Therefore,  with  the  introduction  of  the 
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intervention,  the  sociocultural  practice  for  physics  revision  had  changed,  and  as  I  have 

presented in Chapter Two, the change in sociocultural practices led to changes in how students 

related to physics (see Chapter Six).

Figure 4.11: Activity Theory constructs depicting the 'understanding the physics concepts posed in the questions' 

activity

4.6 Design-based Research (DBR) Methodology

My  proposed  study  follows  a  long  tradition  of  classroom-based  intervention  research 

investigations  (e.g.  Palinscar,  1982;  Palincsar  &  Brown,  1984;  Heller  &  Heller,  1999a). 

However,  while  the  design  and  study  of  learning  interventions  have  a  long  tradition  in 

educational research, Wells (1999) warns of 'intervention studies' where,

an  attempt  is  made  to  introduce  some  new  curriculum  materials  or  an  improved 

approach to pedagogy or classroom management that has been developed by “experts” 

outside the classroom.  In this tradition, the emphasis is on making changes to what is 

in order to achieve what ought to be the case – according to the beliefs and values of 

the originator of the change.  However, this is equally unsatisfactory.  For although 

there is a strong commitment to bring about improvement, two essential ingredients 

are missing: first, the grounding of change in the specific cultural and historical context 
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of  the  classrooms  involved  and,  second,  the  active  participation  of  the  individual 

teachers concerned in deciding what sort of changes to make and how best to try to 

make them (p.xiv; emphasis in original).

Wells,  a  very  experienced  applied  educational  researcher,   reminds  me  that  I  need  an 

appropriate research methodology that is able to address change which is grounded in the 

situated context of the classroom, as well as ensure the active participation of the teachers 

involved.  Towards this end, the research methodology I used for my study follows on the 

tradition  of  design  experiments pioneered  by  the  late  Ann  Brown  (for  e.g.  of  design 

experiments, see Palincsar & Brown, 1984; De Corte et al., 2001; Angeli & Valanides, 2005; 

Kafai, 2005). In addition to being an intervention-based methodology, design experiments also 

take  into  account  the  missing “two essential  ingredients”  highlighted by  Wells  (since,  like 

Wells, Palincsar and Brown also subscribe to sociocultural theory; see Palincsar, 1998).  Also 

known as design-based research (see Barab & Squire, 2004; for more detailed discussions on 

design experiments, refer to the Theme Issue of  Educational Researcher, 2003, 32(1), the 

Special Issue of The Journal of the Learning Sciences, 2004, 13(1)), and the Special Issue of 

Educational Psychologist, 2004, 39(4)).  Brown (1992) explained that design experiments are 

modelled “on the procedures of design sciences such as aeronautics and artificial intelligence”, 

with educational design scientists attempting “to engineer innovative educational environments 

and simultaneously conduct experimental studies of those innovations” (p.141).   In contrast, 

whereas “the natural  sciences are concerned with how things work and how they may be 

explained” (Gorard  et al.,  2004, p.578) and the social sciences are interested in “material 

reality insofar as it plays a direct or indirect part in social action”, (Alasuutari, 2004, p.3), 

“design sciences  are  more  concerned with  producing  and  improving artefacts  or  designed 

interventions, and establishing how they behave under different conditions” (Gorard  et al., 

2004, p.578; see also Collins  et al., 2004).  Additionally, Amiel and Reeves (2008) perceive 

that “traditional predictive research in educational technologies has...offered little systematic 

advice to the practitioner...[whereas] design-based research provides an  innovative  proposal 

for research on innovation and education” (p. 30; emphasis added).
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4.7 Comparing DBR to Psychological Experiments & Ethnography

In order to delineate design experiments as a research methodology suitable for my research 

questions and intentions, I contrast it as a distinct methodology vis-à-vis a methodology that 

typifies a natural science methodology (i.e. psychological experimentation) and a social science 

methodology (i.e. ethnography).  Adapting a framework from Barab and Squire (2004), which 

compared psychological experimentation and design-based research methods, I compare these 

methodologies’ (i) location of research, (ii) complexity of variables, (iii) focus of research, (iv) 

role of participants, (v) unfolding of procedures, (vi) iteration extent, (vii) amount of social 

interaction, and (viii) characterisation of findings. 

4.7.1 Location of Research

For design experiments, the main research study occurs mainly in real-life settings (such as 

real-world classrooms).  It is possible that a controlled laboratory setting might be used to test 

out an initial 'test treatment', but eventually all such test treatments will be implemented and 

evaluated  in  a  real-world  setting.   On  the  other  hand,  research  work  for  psychological 

experimentation mainly occurs in controlled settings, such as a laboratory specially set-up for a 

particular experiment.  For ethnography, the research study occurs almost exclusively in real-

world settings, especially in communities of interest.

4.7.2 Complexity of Variables

Design experiments involve the study of multiple dependent variables, including climate (e.g. 

available  resources),  outcome  (e.g.  learning  content)  and  system  (e.g.  dissemination) 

variables.  There is no intention to 'control for' specific variables, but rather, the focus is on 

providing an account of all the relevant variables in play.  On the other hand, psychological 

experimentation frequently involves the study of a single or couple of dependent variables, and 

how it  is  correlated or directly affected by other independent variables.  Ethnography, like 

design experiments, involves the study of multiple variables.  However, the classification of 

these variables is typically of lesser importance as compared to design experiments.
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4.7.3 Focus of Research

For design experiments, the focus of the research is on characterising the situation in all its 

complexity, with a goal of bringing out change and improvements that are readily transferable 

to other similar real-world settings (e.g. from one academically average secondary school in 

Singapore to the next).  For psychological experimentation, the focus of the research is usually 

on identifying a few variables and holding them constant so as to uncover casual relationships 

between dependent and independent variables (e.g. how the lack of sleep (negatively) affects 

students’  test performance).  Ethnography focuses on characterising the situation in all  its 

complexity, with a goal of describing particular areas of interest via “thick descriptions” (see 

Geertz, 1973, chapter one).

4.7.4 Role of Participants

In design experiments, different participants could be involved in different stages of the design 

experiments.  For example, teachers could be involved at the initial design phase, while both 

teachers and students could be involved during the main evaluation phase.  However, what is 

important to highlight is that in design experiments, the participants are involved not merely 

as  passive  test  subjects,  but  rather  as  active  participants  who contribute  to  the  research 

process  (e.g.  by  suggesting  areas  of  improvements).   For  psychological  experimentation, 

participants are strictly treated as test subjects, and have no direct input on the research 

process other than performing the tasks expected of them.  As for ethnography, participants 

are  usually  specific  individuals  with  specific  stories  to  tell.   Indeed,  a  'participant'  in  the 

research may even be non-human (e.g. a cock in a Balinese cock-fighting community; see 

Geertz, 1973, chapter 15), even though it is always through human-beings that stories are 

told.

4.7.5 Unfolding of Procedures

Design experiments start with a framework and general process methodology, but involves 

flexibility in design revisions depending on their success in practice and in consultation with the 
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participants.  On the other hand, psychological  experimentation uses a fixed procedure, in 

which  every  subject  is  expected  to  be  given  the  same  experimental  treatment.   As  for 

ethnography,  no  specific  procedures  are  to  be  followed  (although  there  may  be  general 

guidelines) as it is part of a naturalistic study of a specific culture.

4.7.6 Iteration Extent

Design  experiments  are  highly  iterative,  as  they  involve  both  theory  building  and 

experimentation at the same time.  On the other hand, psychological experimentation uses 

fixed procedures in order to 'control for' differences in the climate or system variables. For 

ethnography, there is no iteration as the research study is meant to be an in-depth study of a 

particular culture as its people lives their daily life.

4.7.7 Amount of Social Interaction

In design experiments, the social interaction between the actors in the research setting is 

frequent and complex.  For example, if the research setting is in a regular classroom, then the 

researcher, teacher, and students would be in frequent contact involving complex interactions. 

On the other hand, psychological experimentation isolates the subjects in order to control (or 

minimise) interactions, thereby reducing 'noise'.  For ethnography, there are complex social 

interactions between actors in the research system, and the researcher will often have to be an 

'insider' in order to have access into the nuances of the culture under study.

4.7.8 Characterisation of Findings

Design experiments looks at multiple aspects of the design in the research setting, and seeks 

to  develop  a  framework/profile  that  characterises  the  design  in  practice.   Psychological 

experimentation focuses on testing hypotheses, while ethnography focuses on writing thick 

descriptions of multiple accounts of the same culture as experienced by different individuals 

within the community.

In short, design experiments occur mainly in real-life settings (e.g. in regular classrooms), 
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involving  the  study  of  multiple  variables  (e.g.  students’  test  scores,  students’  classroom 

learning interactions). Instead of attempting to 'control for' independent variables, it focuses 

on characterising the situation in all its complexity. Participants (e.g. teachers, students) are 

involved not merely as participants to be studied or manipulated, but as stakeholders who are 

able to influence the small, iterative changes of the environment studied. It also takes into 

account the complex social interactions between the participants themselves, and also with the 

researcher. In addition, it involves looking at multiple aspects of the design in order to develop 

a profile that characterises the design in practice. Hence, given its sensitivity to “the specific 

cultural and historical context of the classrooms involved”  and  “the active participation of the 

individual teachers” and students “concerned in deciding what sort of changes to make and 

how best to try to make them”, design experiments, as a research methodology, address the 

two key ingredients Wells discussed about as being missing in typical intervention studies, and 

is entirely appropriate given my research objectives.  Table 4.3 provides a summarised table of 

the comparisons described.

4.8 Chapter Summary

The first part of this chapter provided a description of my intervention, which is summarised in 

Figure 4.12.  Broadly, the intervention is based on a mutually reinforcing cycle of CMCPS and 

PT  sessions.   After  a  topic  has  been  taught  in  class,  students  are  scheduled  to  go  to  a 

computer laboratory in order to solve physics questions (on the topic recently taught) with an 

anonymous partner.  All discourse and problem solving attempts between student pairs are 

mediated by a whiteboard and text-chat facility, which is provided by a CMC software.  During 

the  CMCPS  sessions,  students  may  learn  from  both  a  Piagetian 

(conflict/coordination/resolution)  as  well  as  a  Vygotskyan  (ZPD)  account  of  cognitive 

development.  There is a possibility that students may confuse each other, but because the 

students' discourse are mediated by the CMC software, their protocol data are recorded and, 

hence, transportable across space and through time.  With the logs printed, their  teacher 

would then review and analyse the students' problem solving attempts in order to identify 

misconceptions, misunderstandings, knowledge gaps, or generally  identify  specific areas  that
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Table 4.3: Comparing psychological experimentation, ethnography, and design-based research (adapted and extended from Barab & Squire, 2004, p.4)

Category Psychological Experimentation Ethnography Design Experiments/Design-based Research
Location of research Conducted in controlled (e.g. laboratory) settings Occurs mainly in real-life (e.g. classroom) settings Occurs mainly in real-life (e.g. classroom) settings

Complexity of variables Frequently  involves  a  single  or  a  couple  of 

dependent variable

Involves  multiple  variables,  including  climate  (e.g. 

available  resources),  outcome  (e.g.  learning  of 

content) and system (dissemination) variables

Involves  multiple  dependent  variables,  including 

climate  (e.g.  available  resources),  outcome  (e.g. 

learning  of  content)  and  system  (dissemination) 

variables

Focus of research Focuses on identifying a few variables and holding 

them constant so as to uncover casual relationships

Focuses  on  characterising  the  situation  in  all  its 

complexity, with a goal of describing particular areas 

of interest

Focuses  on  characterising  the  situation  in  all  its 

complexity, with a goal of bringing about change and 

improvements

Role of participants Treats participants as subjects Participants  are  specific  individuals  with  specific 

stories to share

Involves different  participants  in  different  stages of 

the  design  experiment  (e.g.  teachers  in  the  initial 

design; teachers and students in situ)

Unfolding of procedures Uses fixed procedures No specific procedures are to be followed,  as it  is 

part of a naturalistic study of culture

Starts with a framework, but involves flexibility design 

revisions depending on their success in practice in 

consultation with the participants

Iteration extent The  fixed  procedures  are  usually  repeated  for 

different subjects

No 'iteration' as it is a in-depth study of a particular 

culture

Highly  iterative  process  involving  input  from  the 

same participants

Amount  of  social 
interaction

Isolates learners to control interaction Complex  social  interactions  between  actors  in  the 

system (e.g. students, teachers, researchers, etc.)

Frequently  involves  complex  social  interactions 

between  actors  in  the  system  (e.g.  students, 

teachers, researchers, etc.) 

Characterising the findings Focuses on testing hypothesis Involves  writing  a  thick  descriptive  of  multiple 

accounts  of  the  same  culture  as  experienced  by 

different individuals 

Involves  looking  at  multiple  aspects  of  the  design 

and  developing  a  profile  that  characterises  the 

design in practice 
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need  additional  scaffolding.   During  the  PT  sessions,  the  teacher  focuses  on  what the 

students  drew and wrote,  instead of  the content  which  the  students  are  meant  to  learn. 

Through a six-step teaching sequence, students are slowly led to the normative views while 

taking into account their misconceptions/misunderstandings.  In my opinion, this secondary 

school physics revision intervention fills a gap in current physics education research, which has 

thus far focused its attention on designing physics learning interventions for college/university 

level  students.   Additionally,  the intervention utilises two unique affordances of ICT – the 

enabling of a new communications genre, and its ability to record discourse for subsequent 

review and analysis.  A further account of the intervention 'in action' is given in Chapters Five 

and Six.

Figure 4.12: Overview of intervention design

The second part of this chapter provided a description of my research design and methodology. 

As my research intentions involve addressing real-world problems in the field in collaboration 
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with  practitioners  (e.g.  teachers)  and  other  relevant  stakeholders  (e.g.  students),  and 

integrating established theoretical  foundations  with experimental  configurations in  order  to 

evaluate the  effectiveness of the designed solutions to these problems while reflectively and 

iteratively evaluating the solution as well as to building new theory,  design-based research is 

particularly relevant given the type of research study that I conducted.  Chapters Five and Six 

will  provide detailed descriptions of my research procedure and time-line, along with their 

respective data collection and analysis methods.
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CHAPTER FIVE

PILOT STUDY DESIGN, IMPLEMENTATION & EVALUATION

This chapter focuses on the design, implementation and evaluation of the pilot study.  I start 

the chapter by stating my research questions and describing the pre-intervention activities that 

were undertaken in the school.  Thereafter, I provide the procedure and time-line for the pilot 

study.  Next, I provide a discussion on my data collection and analysis, elaborating how the 

research questions were answered in the study.   Thereafter,  I  provide a discussion of the 

findings of this  pilot  study,  including a description of the key constructs  that enabled this 

intervention, as well as a provision of evidence that CMCPS led to cognitive development via a 

Piagetian and Vygotskyan account of cognitive development.

5.1 Research Questions

The pilot study served as the first iteration of my design experiment.  As per the collective 

agreement before access into the school was granted (see Chapter Four), the main objective of 

this  pilot  study  was  to  determine  if  students  who  had  undergone  the  intervention  would 

improve in their understanding of physics concepts, resulting in improved test scores.  Also, we 

needed to evaluate if these students were willing to continue with the intervention in 2009 for 

the entire academic year.  Insignificant improvements or the students' reluctance to continue 

with the intervention would mean the end of the research study.  In addition to evaluating the 

intervention purely from a  students' consequence perspective, I also wanted to evaluate the 

intervention  from  a  teacher's  consequence perspective.   Towards  that  end,  I  wanted  to 

evaluate  whether  the  protocol  data  gleaned  from the  students'  problem-solving processes 

could provide the students' current physics teacher (Mr Ng) with additional insights into his 

students' knowledge base and thought processes.  Hence, in short, the overarching objective 

of the pilot study was for me to answer the following research questions:

(i) To  what  extent  would  I  be  able  to  obtain  insights  into  the  students’ 

misconceptions/misunderstandings from their protocol data?
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(ii) As  a  result  of  immersion  in  my  intervention,  to  what  extent  would  students’ 

understanding of physics concepts improve, resulting in improved test scores?

(iii)To what extent would students be comfortable with my intervention, given their many 

years of exposure to other approaches?

(iv)To what extent would the students' physics teacher find the information gleaned from 

the students' collaborative problem-solving processes 'insightful' and 'useful'?

5.2 Pre-Intervention Activities

I  based  myself  in  the  school  for  about  one  month  before  the  intervention  started.   The 

overarching objective of placing myself in the school earlier was for me to be assimilated into 

the school’s culture (in order to establish rapport and trust, and have a common language 

when discussing students’ work), as well as to lay the groundwork for my research study. At 

this stage (and throughout the intervention), I was provided a shared workspace in a room 

where the IT assistants and relief teachers occupied.  This room was on the second floor of the 

school building and located right next to the teachers' common room, where Mr Ng was based. 

During this time, I got to know many people in the school (e.g. other teachers, IT technicians), 

and  built  up  a  working  relationship  with  Mr  Ng,  the  pure-physics  teacher  who  had  been 

teaching 4E1 since June 2008.  Mr Ng was recently posted into the school, and had taken over 

the class from Ms Er, who had taught the students from January to May 2008.  I spent some 

time with both Mr Ng and Ms Er in order to explain to them the details of my research study, 

including the intervention process, commitment required, and expected results.  We also spent 

some time discussing about the topics to be tested during the pilot study.  I also built up a 

working relationship with Mr Das, the school's computer laboratory technician who takes care 

of the computer laboratories and other IT hardware infrastructure  (he reports to the Head of 

Department for IT).  Together, we spent some time experimenting with the various settings in 

the computer laboratory in order to ensure that all technical issues were ironed out and also to 

minimise set-up time.

More importantly, I was given the opportunity to address the students in order to talk to them 
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about the intervention.  Essentially, I explained to the students that getting a good grade in 

physics  was a likelihood if  they truly understood what they were taught,  and my revision 

intervention helps with this process by allowing their physics teacher to 'see' how/what they 

were thinking when solving physics problems.  Also, I suggested that it was possible that they 

might end up helping each other understand physics concepts better, given the fact that they 

could probably relate to each others'  experiences better.   I  also handed out the Informed 

Voluntary Participation forms (see Appendix 5.1) which were collected back a week later, and 

also conducted an initial survey to ascertain the students' interest in physics, among other 

things (see Appendix 5.2).

5.3 Pilot Study Procedure and Time-line

The pilot study was carried out from 20 Oct to 5 Nov 2008.   Out of the 23 students in 4E1 that 

took pure-physics, three of them had consistently failed physics, and were earmarked during 

the  school's  end-of-year  promotion  exercise  to  drop  the  subject  the  following  year  (the 

students were not informed of this decision at the time of the pilot study).  It is a common 

practice for students in Singapore to drop a subject at the start of secondary four so that they 

have more time for their other subjects.  Consequently, it is a common practice for teachers to 

recommend to students on which subject(s) they should drop out off at the start of secondary 

four.  Out of these 23 students, 21 students (10 boys, 11 girls) were consistently present 

during the research study period (one student was on medical leave and the other student was 

on overseas leave during that period) and, hence, the pilot study focused only on these 21 

students.

A pre-test and a post-test covering concepts from  Physical Quantities, Units and Measures, 

Kinematics, and Energy, Work, and Power was created by me and vetted by Mr Ng prior to the 

intervention.  It should be noted that there are many concepts covered within each topic, and 

only the key concepts within the topics were chosen for this pilot study.  In order to ensure 

that the pre- and post- test were of similar standards, each post-test question was crafted as a 

direct adaptation of a pre-test question, therefore testing the same underlying concepts.  The 
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questions posed were adapted (I made the questions more contextualised) from actual GCE 'O' 

level questions, and the concepts tested had already been taught (and examined) as part of 

the students’ secondary three syllabus.  However, I selected questions that were of a higher 

level of difficulty and hence expected that students would find the tests difficult.

The pre-test was given to all  21 students on 20 Oct 2008, which was one week after the 

students' end-of-year physics examination.  This pre-test was then scored by me and, in order 

to ensure consistency of marking, the scoring was reviewed by a physics teacher in the school 

who was not involved in the intervention (Mr Lim, who has about three years of experience 

teaching  physics  at  the  combined-science  level),  who  found  the  scoring  to  be  consistent. 

Correlation analysis of the 21 students' secondary three final examination scores and their pre-

test scores (see Figure 5.1) show that the students’  pre-test scores are significantly (p < 

0.001) highly correlated (r = 0.673) with their end-of-year examination scores.  This finding 

indicates that the pre-test (and by extension, the post-test) would provide us with a reliable 

proxy for gauging students’ understanding of the physics concepts covered.

Figure 5.1: Correlation analysis between secondary three final examination scores and pretest scores

In order to evaluate the intervention, we (Mr Ng and I, in consultation with Ms Er) split the 

class into  three groups  – an experimental  group (XG) who underwent my intervention,  a 

control  group (CG) who only revised physics by themselves, and an alternate intervention 

group (AG) who had private tutors for  physics.   In order to place the students into their 

respective groups, we surveyed the students on whether they were interested to take part in 
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the pilot study and also whether they had private tuition on physics.  Out of these 21 students, 

seven had private physics tutors and, hence, those students formed the AG.  It is a common 

occurrence  for  students  in  Singapore  to  attend  private  tuition  lessons  (i.e.  they  are  not 

reserved for the wealthy), hence the fact that about a third of our students had private physics 

tutors did not surprise us.  14 students volunteered to be part of the experimental group, out 

of which nine students had no private physics tutors.  Hence, Mr Ng selected eight of these 

nine students to form the XG.  The remaining six students formed the CG.  However, one 

student in the XG attended only the first CMCPS session (she was on medical leave for the 

next three days) and hence, was removed from the XG and placed in the CG.  Therefore, I 

considered that there were seven students in each group, with four boys and three girls in XG.

Out of a maximum score of 36, the mean pre-test score for CG was 14.36 (SD = 6.24), AG 

was 8.07 (SD = 4.24), and XG was 9.86 (SD = 4.71).  Because the groups were not randomly 

assigned,  I  wanted  to  ensure  that  there  was  independence  of  the  pre-test  (which  is  the 

covariate in my ANCOVA) and treatment effect (the groupings).  The Levene statistic for the 

test of homogeneity of variances was not significant (p=0.392), and with an F-test result for 

the pre-test covariate at F(2,11.744) = 2.30, p = 0.143, it indicated that the pretest and the 

treatment effect were indeed independent. (see Figure 5.2).
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Figure 5.2: Test for homogeneity of variances (pre-test) / independence of the pre-test and treatment effect

Students  in  XG attended  three  cycles  of  CMCPS  and  PT  sessions.   These  sessions  were 

conducted in one of the school’s newer computer laboratory after regular class hours.  The 

intervention was solely conducted by me as Mr Ng was involved in other school activities at 

that time.  Each cycle (a CMCPS and a PT session) covered concepts from either  Physical 

Quantities, Units and Measures, or  Kinematics, or  Energy, Work, and Power, and the three 

cycles were conducted over a 2-week period (see Table 5.1).  The total contact hours for XG 

were about 9 hours.

Table 5.1: Schedule of the main activities in the pilot study

Date Event
13 Oct 08 - School’s official end-of-year physics exam (all students) [2 hr 15 mins]
20 Oct 08 - Intervention Pretest (all students) [45 mins]
28 Oct 08 - Computer-mediated collaborative problem-solving session 1(XG) [1 hr 15 mins]
29 Oct 08 - Prescriptive tutoring session 1 (XG) [1 hr 45 mins]
30 Oct 08 - Computer-mediated collaborative problem-solving session 2 (XG) [1 hr 15 mins]
31 Oct 08 - Prescriptive tutoring session 2 (XG)  [1 hr 45 mins]
3 Nov 08 - Computer-mediated collaborative problem-solving session 3 (XG) [1 hr 15 mins]
4 Nov 08 - Prescriptive tutoring session 3 (XG) [1 hr 45 mins]
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5 Nov 08 - Intervention Post-test (all students) [45 mins]

- Focus Group (XG students) [30 mins] 

- Interviews (XG students) [30 mins each student]

5.4 Data Collection, Analysis, and Findings

5.4.1 Obtaining Insights into Students' Knowledge Base and Thought Processes

As a main objective of PT (see Chapter Four) is to obtain insights into students' misconceptions 

and misunderstandings by  reviewing their  recorded collaborative problem-solving attempts, 

the answer to the first research question (to what extent would I be able to obtain insights into 

the students’ misconceptions/misunderstandings from their protocol data) could be obtained 

by summarising data from the PT 'notes' made during the pilot study.  Since three cycles of the 

intervention were conducted, there were three PT 'notes' that I had made and handed out to 

the students during the intervention.  Figure 5.3, 5.4 and 5.5 provides an example of one slide 

from each of the three PT sessions (Appendix 5.3 provides the questions posed for the first 

CMCPS session, while Appendix 5.4 provides the complete 'notes' handed out to students for 

its  subsequent  PT  session).   Table  5.2  provides  an  elaboration  of  what  I  term  as  a 

'misconception' or 'misunderstanding', and provides readers with an idea of how the protocol 

data was reviewed and analysed.  The snippet shown in Table 5.2 was taken verbatim from 

one  student  dyad’s  co-construction  efforts,  and  it  manifests  the 

misconception/misunderstanding Mumo (all students names have been made anonymous; in 

this dissertation, once an anonymous name has been assigned to a particular student, that 

same name is used throughout the dissertation) had with regards to what 'direction' means in 

physics terminology.  When appropriate, I provide comments in square brackets ([...]) to aid 

the reader in understanding the context of the students' problem solving attempts.
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Figure 5.3: Misconception/misunderstanding of the meaning of 'direction' in physics terminology (from PT session 1)

Figure 5.4: Misconception/misunderstanding of when to apply the speed = distance / time formula (from PT session 2)
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Figure 5.5: Misconception/misunderstanding of what 'work done' means (from PT session 3)

One of the questions posed during the first CMCPS session was a typical 'recall' type question. 

Given a list of terms, I asked the students which of the terms referred to scalar or vector 

quantities.   As can be seen from the discussion snippet in  Table  5.2,  Mumo obtained the 

correct answer for acceleration (“acceleration is vector”).  In a test or examination setting, he 

would have obtained full marks for this test item, and deemed to have understood the concept. 

However, due to the dialogic nature of the CMCPS session, Dino asked him why he considered 

acceleration to be a vector quantity (“why?...gravity ah?”).  Dino's utterance (“gravity ah?”) 

suggests that she thinks that  gravity is a vector quantity, but is unsure if acceleration and 

gravity are equivalent.  Mumo responded that he had not considered gravity (“no”), and Dino 

probed further by asking, “then?”.  As a result, Mumo revealed an interesting insight; he felt 

that acceleration was a vector quantity because its magnitude could increase and decrease 

(“increase and decrease acceleration...right?”).  Baffled by Mumo's explanation, Dino seeked 

clarification (“huh...wat u talkin?”) and stated that a vector quantity has a direction component 

to it (“if vector needs direction right”).  As a result of the further probing from Dino, Mumo 

made  explicit  his  conceptions  about  'direction'  by  stating  that,  in  his  opinion,  'direction' 

constitutes  increasing  or  decreasing  magnitudes  (“i  mean  acceleration  got  increasing  and 
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decreasing so ,isnt it directon?”).  Dino then pointed out that temperature  can also increase 

and  decrease  in  magnitude  (“temperature  also  have  increasing  n  decreasing”),  and  since 

Mumo had earlier commented (not shown in Table 5.2) that temperature is a scalar quantity 

(“temperature is scalar”) and supposedly knew the difference between vectors and scalars (he 

had earlier wrote that, “i think it is vector that has magnitude and direction”), she is indirectly 

suggesting that his conception of what constitutes 'direction' might be wrong.  

From the snippet provided in Table 5.2, I draw three important observations.  Firstly (and not 

surprisingly), it is entirely possible that students provide correct answers to questions even 

though they do not understand the fundamental concepts involved.  Of value to teachers is not 

this observation, but a practical approach that would help them recognise that such an incident 

has  occurred,  and  I  argue  that  the  methods  used  in  this  intervention  present  one  such 

approach.   Secondly,  peer  discussions  can  lead  to  illuminating  insights;  I  had  never 

encountered a conception that supposes that 'direction' may be said to constitute an increase 

or decrease in magnitude.  In fact, neither Mr Ng nor Ms Er had ever encountered such a 

conception.   In  our  opinions,  the  term  'direction'  is  very  straight-forward  and  we  never 

conceived that it could be misconstrued.  Thirdly, we could access how Dino and Mumo were 

thinking while  simultaneously accessing how other students were thinking due to the unique 

affordance of ICT.  The way we used ICT allowed for a new communications genre to take 

place, while ensuring that the discourse was recorded and made available for our review and 

analysis.  In a typical classroom situation, a teacher would only be able to listen in to one peer 

discussion at  any point  in  time.  Hence,  the discourse of  the other  groups  would not be 

available for teachers to review and analyse.

Table 5.2: Example of a question posed and students’ discourse during the first CMCPS session, and the 'direction 

means being able to increase or decrease in value' insight

Question Posed Discussion Snippet
Q1b) Which of the 

following are scalars 

and which are vectors? 

Mumo: acceleration is vector

[Mumo’s answer is correct – acceleration is a vector]

Dino: y?
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Velocity, Speed, 

Distance, 

Displacement, Time, 

Temperature, Force, 

Mass, Acceleration

[Dino is uncertain if acceleration is a vector]

Dino: gravity ah?

[This utterance suggests that Dino thinks that gravity is a vector.  However, she is unsure if  

acceleration and gravity are equivalent (they is, but only in a specific context)]

Mumo: no

Dino: then?

Mumo: increase and decrease acceleration

Mumo: right?

[Here we see that Mumo obtained the correct answer by incorrect reasoning.  To Mumo,  

direction means the ability of a magnitude to increase or decrease]

Dino: huh

Dino: wat u talkin?

Dino: if vector needs direction right

[Dino is unclear what Mumo meant, and states that a “vector needs direction”.  This utterance  

also suggests that Dino knows that “increase and decrease” do not constitute “direction”]

Mumo: i mean acceleration got increasing and decreasing so ,isnt it directon?

[Here, Mumo explicitly states his conception of “direction”, revealing a misconception of what  

“direction” means in physics terminology]

Dino: temperature also have increasing n decreasing

[Here, Dino points out that temperature can also increase and decrease.  Since Mumo said  

earlier than temperature is a scalar quantity, she is indirectly suggesting that his conception of  

what constitutes “direction” might be wrong]

On a whole, the three cycles revealed 24 unique misconceptions/misunderstandings, and each 

misconception/misunderstanding offered an insight into the students' thought processes and 

knowledge base.  Due to space constraints and the fact that I have already provided a fairly 

detailed discussion of the 'direction means being able to increase or decrease in value' insight, 

I shall now only briefly discuss the insights I gained from the first two CMCPS sessions.  For 

each insight, mostly only one discussion snippet is shown below even though it was common 

to observe multiple groups having similar misconceptions/misunderstandings.
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In Table 5.3, it can be seen that while both Taki and Gabo correctly defined the term vector, 

they thought that a scalar only has direction (and no magnitude).  When students make such 

'simple' mistakes, they often give the excuse that they were “careless”.  Indeed, when I first 

showed this insight to Mr Ng, he commented that they were probably “careless”.  However, as 

evident  from  the  discourse,  both  Gabo  and  Taki  had  numerous  opportunities  to  correct 

themselves if  they had indeed been “careless” – they had not done so, and this reveals a 

misconception/misunderstanding on their part (and not merely a “careless mistake”).

Table 5.3: 'A scalar has direction only' insight

Question Posed Discussion Snippet
Q1a) What is the 

difference between a 

vector and a scalar?

Taki: lets start with qn 1 now

Gabo: ok

Taki: vector-got direction and magnitude but scalar only direction agree?

[First occurrence of the “scalar only direction” definition]

Gabo: ya

Gabo: so settled ?

Taki: ok  so  for  qn  1  ans  is  vector-got  direction  and  magnitude  but  scalar  vector-got 

direction and magnitude but scalar only direction .

[Second occurrence of the “scalar only direction” definition]

Gabo: vector - magnitude + direction , scalar - direction

[Third occurrence of the “scalar only direction” definition]

Gabo: can?

Taki: yes 

Table 5.4 shows that both Dino and Mumo could not remember the definition of vectors and 

scalars, despite the fact that this topic was included in their end-of-year examination that they 

took about two weeks ago.  Interestingly, they remembered that “the difference [between 

vectors and scalars] is that one got direction and the other one dont have”, but they could not 

remember “which one”. 
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Table 5.4: 'A scalar has both magnitude and direction' insight

Question Posed Discussion Snippet
Q1a) What is the 

difference between a 

vector and a scalar?

Dino: scalar is sth which has magnitude n direction

Dino: u there or not

Dino: /

Dino : ?

Mumo: i think it is vector that has magnitude and direction

Dino: o

Dino: u sure ah?

Mumo: i dont knpw

Mumo: know

Mumo: the difference is that one got direction and the other one dont have

Dino: that one i noe

Dino: but i don noe which one

In Table 5.5, it can be seen that while both Maria and Yoyo recognised that  vectors involves 

direction while scalars do not, they did not mention about the quantity's magnitude.  This is 

also manifested by Ziki and Sarsi (see Table 5.6).

Table 5.5: 'A vector has direction but scalar has no direction (magnitude not mentioned)' insight

Question Posed Discussion Snippet
Q1a) What is the 

difference between a 

vector and a scalar?

Maria: hey let start doing first qn

Yoyo: okay

Maria: 1a

Maria: wat do u thing

Maria: i think vector is involve direction

Yoyo: vector has direction

Maria: yup

Maria: and scalar does not have direction

Yoyo: yup

Table 5.6: 'A vector has direction but scalar has no direction (magnitude not mentioned)' insight

Question Posed Discussion Snippet
Q1a) What is the 

difference between a 

vector and a scalar?

Ziki: vector is a scalar with distance

[Ziki's utterance indicates that his thinks that “a vector has both magnitude + direction, while a  

scalar has direction only”; see also Table 5.3]
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Sarsi: so...? u start first?

Ziki: watever

Sarsi: scalar is without direction Vector is with direction

Ziki: ya

Viewed in totally, all  the eight students (there were initially eight students in XG, but one 

student dropped out of XG after this first CMCPS session as she was on medical leave for the 

next three days) were not even sure of the definition of vectors and scalars, despite the fact 

that these are considered as foundational terms.  In addition, their definitions were mostly 

non-identical (out of eight students, there were three different definitions) even though they 

had all attended the same physics lessons, learnt from the same physics teacher, and read 

from the same textbook.  Initially, I had classified these three insights ('a scalar has direction 

only', 'a scalar has both magnitude and direction', and 'a vector has direction but scalar has no 

direction (magnitude not mentioned)') as students' misconceptions and/or misunderstandings. 

However,  but  upon further  analysis,  I  felt  that  the  'misconception/misunderstanding'  label 

might not be entirely appropriate.  After all, the discourse suggests a lack of knowledge rather 

than a misconception or misunderstanding.  While I acknowledge that misconceptions and/or 

misunderstandings may arise from a lack of knowledge (Fisher, 1985),  getting students to 

correctly  recall  a  definition  does  not  constitute  as  conceptual  change  and,  hence,  a 

misconception/misunderstanding label would be inappropriate.  Therefore, I have tentatively 

labelled these insights as insights into the students' 'knowledge gaps'.  Further discussions on 

the implications of whether students have 'misconceptions/misunderstandings' or 'gaps in their 

knowledge' is provided in Chapter Six (section 6.5.2).

Table 5.7 shows that while Taki and Gabo knew the definition of a vector and scalar (they had 

eventually  obtained the correct  answer  to  the question “what is  the difference between a 

vector and a scalar”) and had correctly concluded that speed is a scalar quantity while velocity 

is a  vector quantity, they lacked conceptual understanding of these terms, as Taki assumed 
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that speed and velocity were interchangeable terms.

Table 5.7: 'Speed and velocity are interchangeable terms' insight

Question Posed Discussion Snippet
Q2) An old man, 

starting his walk from 

Point O, took 1 minute 

to travel 3 metres 

North.  From there, he 

took another 4 minutes 

to travel 4 metres East. 

Draw and label a 

diagram of his walk and 

then calculate his 

speed and velocity.

Gabo: what is the formula for velocity?

Taki: speed=(4+3)m/(5x60)s=0.0233m/s

[Taki obtained the correct answer for speed, which is total distance / total time]

Taki: ???

Taki: i dont think velocity got formulas

[I am not sure if Taki meant that velocity has no formulas, or whether she thinks that there are  

no appropriate formulas for velocity in this instance.  In any case, this utterance itself reveals  

a lack of understanding on her part]

Taki: *formula

[Students use the asterisk sign “*” to signify a correction to a typo made in their previous  

statement]

Gabo: then how to caculate?

Taki: hmm...mayb same as speed

[Here, we see that to Taki, speed and velocity are interchangeable terms]

Table 5.8 provides a continuation of Taki and Gabo's discourse as provided in Table 5.7.  From 

their discourse, it can be seen that Taki and Gabo assumed that  distance and  displacement 

were interchangeable terms.  In fact, the discourse shows the reason why Taki felt that speed 

and velocity were interchangeable – it was because, to both Taki and Gabo, displacement and 

distance  were  interchangeable.   Their  discourse  suggests  that  Taki  and  Gabo  did  not 

understand the conceptual difference between displacement and distance.  

From  the  analysis  of  the  snippets  provided  in  Table  5.7  and  5.8,  I  draw  two  important 

observations.  Firstly (and not surprisingly), misconceptions/misunderstandings have a 'knock-

on' effect – a lack of understanding in one area leads to further misunderstanding in other 

areas.   In this  case,  a  lack of  understanding of the difference between  displacement and 
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distance resulted in a lack of understanding between the terms velocity and speed.  I further 

posit that it is this lack in understanding between velocity and speed that resulted in their lack 

of  understanding  between  vectors and  scalars,  and  the  students'  protocol  data  provides 

evidence in support of this claim.  Secondly, in addition to revealing insights into students' 

thought processes and knowledge base (e.g. students thinking that  speed and  velocity are 

interchangeable  terms),  analysis  of  peer  discussions  allow  teachers  to  see  how students' 

conceptions are inter-connected.  Said differently, analysis of the discussion logs of students' 

collaborative  problem  solving  attempts  can  provide  both  discrete  insights and  relational 

insights.   A  discrete  insight may  be  thought  of  as  a  specific  student 

misconception/misunderstanding,  such  as  “velocity  and  speed  are  interchangeable  terms”, 

while  a  relational  insight may be thought  of  as  the  inter-connectedness  between discrete  

insights, such as the conception that “displacement and distance are interchangeable terms” 

leading to the conception that “velocity and speed are interchangeable terms”, which leads to a 

lack of appreciation between vector and scalar quantities.  Such relational insights are difficult 

to obtain in a typical classroom setting due to various constraints that limits the amount of 

time students may engage in deep discussion about a particular physics concept or problem.

Table 5.8: 'Distance and displacement are interchangeable terms' insight

Question Posed Discussion Snippet
Q2) An old man, 

starting his walk from 

Point O, took 1 minute 

to travel 3 metres 

North.  From there, he 

took another 4 minutes 

to travel 4 metres East. 

Draw and label a 

diagram of his walk and 

then calculate his 

speed and velocity.

Taki: velocity is displacement /time

Gabo: m

Gabo: ok

[Gabo agrees that a formula for velocity is displacement / time]

Taki : finally rmb

[Taki finally remembers (rmb) the formula for velocity, which is displacement / time]

Gabo : so same as speed?

[This utterance suggests that, to Gabo, displacement and distance are interchangeable terms]

Gabo: i don think so leh

Gabo: not sure

[Gabo does not think that the answer for both speed and velocity would be the same]
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Taki: mayb need direction??

[Taki recalls that vectors have direction and, hence, suggest that perhaps direction is needed]

Gabo: um

Gabo: i don think can calculate direction

[This utterance suggests a weak understanding of 'direction'; see also Table 5.2]

Taki: so is the same

Taki: ??

Gabo: try

Taki: so velocity=displacement /time=7m/300s=0.0233m/s

Gabo: ok

[Taki and Gabo assume that displacement and distance are interchangeable terms, and used  

the value for distance in place of the displacement]

Table 5.9 shows that Sarsi had thought that the SI units (i.e. International System of Units) for 

distance and displacement were both kilometres (“KM”), which was surprising because he had 

scored 69 (out of 100) for his end-of-year physics examination, which is almost a distinction 

grade (scoring 70 and above would result in a distinction grade).

Table 5.9: 'KM (kilometres) is the SI unit for distance' insight

Question Posed Discussion Snippet
Q2) An old man, 

starting his walk from 

Point O, took 1 minute 

to travel 3 metres 

North.  From there, he 

took another 4 minutes 

to travel 4 metres East. 

Draw and label a 

diagram of his walk and 

then calculate his 

speed and velocity

Sarsi: SI units.

Sarsi: -.-

Sarsi: zzzzzzzzzzz

[Sarsi and Ziki were calculating the answer for the question posed, and Sarsi said that they  

needed to change their answers to be in SI units]

Ziki: ha

Sarsi: u go the conversation?

[Sarsi was probably asking Ziki if  he overhead the conversation between me and another  

student]

Ziki: so????
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Ziki: huh??

[Ziki was unable what Sarsi was asking, probably due to the Sarsi's typo]

Sarsi: mins change to s

[Sarsi is saying that to get SI units, minutes need to be changed into seconds]

Ziki: ok....

Sarsi: m change to KM

[Here, we see that Sarsi thought that the SI units for distance was “KM” (kilometres)]

Table 5.10 offers two interesting discrete insights.  Sarsi had thought that  time can have a 

negative value, since “its deceleration, so negative value is expected”.  I was very surprised 

that Sarsi could have such conceptions (i.e. I gained a discrete insight – to Sarsi, 'time can be 

negative'),  and  the  fact  that  he  related  negative  time  with  deceleration  (i.e.  I  gained  a 

relational  insight  – time could be negative  because “its  deceleration,  so  negative  value is 

expected”) was particularly insightful to us (Mr Ng, Ms Er, and myself).  Ziki challenged Sarsi 

on his conception that time could be negative (“hallo...sth [something] is  wrong...negative 

time?”).   When  Sarsi  rebutted  that  “its  deceleration,  so  negative  value  is  expected”,  Ziki 

indicated that he agreed on a negative value (“ya”), but refocused Sarsi's attention on time 

(“sry [sorry]...time la [I'm asking about time]”).  Sarsi's clarification that “acceleration when 

negative = deceleration so dun be so shock” indicated that (i) he still thought that time can 

have a negative value, since the airplane is decelerating, and (ii) he believed that negative 

acceleration  necessarily  implies  deceleration  (the  second discrete  insight  gained),  which  is 

incorrect since acceleration is a vector quantity and a negative value for acceleration could well 

mean that an object is accelerating in the opposite direction.  Of course, Sarsi did not explicitly 

state that he believed that negative acceleration necessarily implies deceleration; it was the 

analysis of the entire protocol data led me to this conclusion.

Table 5.10: “Time can be negative” and “negative acceleration necessarily implies deceleration” insight

Question Posed Discussion Snippet
Q3a) A small airplane was trying to take 

off a runway when the pilot saw an object 

Sarsi: see how long did it brake

Sarsi: -50
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some distance from the runway, and 

decided to step on the brakes.  The 

airplane had a total mass of 2000kg and 

was travelling at a speed of 150km/hr.  If 

the object was 300 metres away from the 

airplane when the pilot saw it, and the 

maximum braking force of the airplane is 

6000N, could the airplane stop in time?

[Sarsi had calculated that it took -50s for the airplane to stop]

Ziki: hallo

Ziki: sth is wrong

Ziki: negative time?

[Ziki  observed that  something was wrong with Sarsi's  answer,  since the  

value for time was negative]

Sarsi: its deceleration, so negative value is expected

[Sarsi's  responded  that  since  the  airplane  was  decelerating,  a  negative  

value was to be expected]

Ziki: ya

Ziki: sry

Ziki: time la

[Ziki agreed on a “negative value”; even though he was not explicit on which  

value he was referring to]

Sarsi: acceleration when negative = deceleration so dun be so shock..

[This utterance provides an indication that Sarsi believes that negative 

acceleration necessarily implies deceleration, which is incorrect]

Sarsi: time?

Ziki: time wat

Sarsi: 50 s lo

[I believe that it is due to Ziki's continued questioning on time that Sarsi  

dropped the “minus” sign in front of 50s, when he stated that the time is 50 

seconds...]

Ziki : how u get?

Sarsi: wait.. can we just get rid of the munus sign?

[...and asks if he can just get rid of the minus sign (from -50s to 50s)]

Table 5.11 offers yet another interesting insight.  Sarsi's utterance of “NEWTON [force] WHERE 

GOT NEGATIVE” indicates that he does not understand the implication of a vector quantity 

(Sarsi had early answered correctly that force is a vector quantity).  Also, notice that when Ziki 
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mentioned that I had said that direction can cause a value to be negative, Sarsi simply agreed 

(“hmm...[o]kay...jus[t]  proceed”)  despite  the  fact  that  Ziki's  message  was  not  clearly 

articulated.  Here, we see that:

Just as, if left to himself...the child who is submissive to the word of his parents [or 

an adult] believes without question everything he is told, instead of perceiving the 

element of uncertainty and search in adult thought. The self's good pleasure is 

simply replaced by the good pleasure of a supreme authority. There is progress 

here,  no  doubt,  since  such  a  transference  accustoms  the  mind  to  look  for  a 

common truth, but this progress is big with danger if the supreme authority be not 

in its turn criticized in the name of reason.  (Piaget, 1932, p. 409)

It  is  my  opinion  that  students'  misconceptions  and  misunderstanding  stay  buried  within 

themselves due to the prevalent sociocultural practice in science classrooms that privileges 

teachers'  instructions  over  students'  voices.   As  can  be  seen,  Ziki's  mere  mention  that 

“[tea]cher...say d[i]rection have negative” was enough to stop Sarsi from further discussion 

about his claims that force cannot have a negative value.

Table 5.11: “A force cannot have a negative value”  insight

Question Posed Discussion Snippet
Q3a) A small airplane was trying to take 

off a runway when the pilot saw an object 

some distance from the runway, and 

decided to step on the brakes.  The 

airplane had a total mass of 2000kg and 

was travelling at a speed of 150km/hr.  If 

the object was 300 metres away from the 

airplane when the pilot saw it, and the 

maximum braking force of the airplane is 

6000N, could the airplane stop in time?

Ziki: braking force is deceleration

Sarsi: assume that time for braking is 50

[Due to repeated queries from Ziki, Sarsi simply got rid of the minus sign  

and assumed that it was 50s]

Ziki: so is -6000N

[Ziki had calculated that the force of the airplane was -6000N]

Sarsi: NEWTON WHERE GOT NEGATIVE?

[This utterance indicates that Sarsi does not understand the implication of a  

quantity being a vector; a negative value would been that the airplane was  

experiencing a force in the opposite direction of its motion]
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Sarsi: a = 3

Sarsi no negative

Ziki: cher

[Ziki is trying to explain to Sarsi that I (cher is meant to represent the word  

'teacher')...]

Sarsi: but because its its decelerating...... thats why i put negative at my

2nd working

Ziki: say dorection have negative

[...said that direction can cause a value to be negative, even though the  

message was not clearly articulated]

Sarsi: hmm,

Sarsi: kay l

Sarsi: jus proceed

[Here, we see that Sarsi did not challenge Ziki, presumably because I had  

said that a negative value for 'force' was possible]

In Table 5.12, it can be seen that Mumo (and by extension, Dino) did not know that finding a 

resultant force on an object requires vector addition.  What Mumo had done was essentially 

adding two perpendicular vectors as if there were acting in the same direction.  Once again, I 

believe this is due to a lack of understanding of vector quantities, bearing in mind that Mumo's 

conception of 'direction' is the ability of a quantity's magnitude (e.g. Force) to increase or 

decrease (see Table 5.2).

Table 5.12: 'Finding resultant force does not require vector addition' insight

Question Posed Discussion Snippet
Q3a) A small airplane was trying to take 

off a runway when the pilot saw an object 

some distance from the runway, and 

decided to step on the brakes.  The 

airplane had a total mass of 2000kg and 

was travelling at a speed of 150km/hr.  If 

the object was 300 metres away from the 

airplane when the pilot saw it, and the 

maximum braking force of the airplane is 

Mumo: F-f=ma

Dino: use that ?

[The students have learnt in class that in order to find the resultant 'force',  

one formula applicable was F-f = ma, where F is the force on the object, and  

f is the frictional force the object experiences]

Mumo: 2000(10)-6000=ma

[Mumo calculated that the force on the airplane was 2000 kg x 10 m/s2, 

while the frictional force was  assumed to be 6000N.  However, he failed to 
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6000N, could the airplane stop in time? recognise that the force on the airplane that he calculated was its weight 

(downwards),  while the frictional  force was acting sideways.  Hence, this 

reveals that he did not recognise the implications of vectors]

Mumo: 14000=ma

Dino: mass is 2000

Mumo: 14000=2000(a)

Dino: then find acceleration?

Mumo: a=7

Tables  5.13  and  5.14  show  Dino's,   Gabo's  and  Maria's  confusion  over  initial  and  final 

velocities.  In their opinions, the round rubber bomb would eventually come to rest on the 

ground and, hence, as a result, believed that the  final velocity should be 0 m/s.  However, 

since the question had asked them to calculate the bomb's velocity, they assumed that the 

question was asking for initial velocity, even though  the question had stated that they were to 

find “the final velocity of the rubber bomb just before it hits the ground”.  In other words, to 

the students, the final velocity asked in the question was the equivalent of the initial velocity 

which they were trying to calculate.  In my opinion, those students could have been confused 

between initial velocity and final velocity because they had misinterpreted the question.  They 

assumed that since the bomb was to hit the floor, its final velocity would therefore necessarily 

be 0 m/s.  However, since the question required them to calculate a value for the bomb's 

velocity, they assumed it was  initial velocity that they had to find.  It is interesting that all 

three students did not stop to consider that it was implausible that the initial velocity of the 

bomb was not 0 m/s, since the question had stated that it was “hovering at a height of 100 

metres above the ground”.  Additionally, Maria (and all of the students) had tried to obtain the 

answer for  the bomb's  velocity  via  the formula  velocity  = displacement /  time,  when the 

application of this formula is inappropriate in the given context as acceleration is not zero 

(since acceleration due to gravity was in play).
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Table 5.13: 'Confusion between initial velocity and final velocity' insight

Question Posed Discussion Snippet
Q1a) A remote controlled 

helicopter, hovering at a 

height of 100 metres 

above the ground, 

dropped a round rubber 

“bomb”.  You estimated 

the time it took for the 

rubber bomb to reach the 

ground was 4.47 seconds. 

What is the final velocity 

of the rubber bomb just 

before it hits the ground? 

Dino: i thought final shld be 0

[Dino is saying that, in his opinion, the final velocity of the bomb should be 0 m/s]

Sarsi: hmm...

Sarsi: when the bal is released from the helicoper

[Sarsi is drawing attention to the moment when the bomb was released]

Dino: then initial is the inknown

Dino: _unknown

[Dino is actually suggesting that the final velocity is 0 m/s, while the question was asking  

them to work out the initial velocity]

Table 5.14: 'Confusion between initial velocity and final velocity' and 'velocity = displacement / time can be used to 

calculate displacement in all situations (even when the object is accelerating or decelerating)' insights

Question Posed Discussion Snippet
Q1a) A remote controlled 

helicopter, hovering at a 

height of 100 metres 

above the ground, 

dropped a round rubber 

“bomb”.  You estimated 

the time it took for the 

rubber bomb to reach the 

ground was 4.47 seconds. 

What is the final velocity 

of the rubber bomb just 

before it hits the ground? 

Maria: hey they asking for the rubber round

Maria: bomb*

Maria: to reach the ground

Maria: final velocity

Maria: is the ground rite

Gabo: ya

[Here, we see that both Maria and Gabo are focused on “the ground”, rather than “just  

before it hits the ground”]

Maria: so i think is 0 m/s

Gabo: final is 0

[Probably because of their focus on the bomb being on “the ground”, they concluded that  

the final velocity must be 0 m/s]

Gabo: initial is?

Maria: initial is from the top..

[Gabo and Maria knows that initial velocity is the velocity of the bomb “from the top”.]
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Maria: then

Maria: ?

Gabo: um

Maria: but they ask for final

Gabo: rate of displacemtne / time

Gabo: displacement*

Gabo: 100/4.47?

[Here, we see Gabo applying the formula Velocity = Displacement / Time.  However, this is  

an incorrect application of the formula, since acceleration in this case is not zero]

Maria: initial velocity is 100/4.47

Maria: m/s

[Despite knowing that the initial  velocity is “from the top”,  Maria did not consider that it  

should be 0 m/s]

Figure 5.6 shows Maria's and Gabo's whiteboard drawing (which were similar to other groups), 

depicting their conception of the velocity-time (VT) graph of the bomb.  They had drawn the 

VT-graph in order to obtain the  initial  velocity of the bomb (see Table 5.15).  While their 

numerical answer was correct (the final velocity just before the bomb hits the ground was 

44.7  m/s),  their  graph  and  'labels'  were  incorrect.   They  had  depicted  (consciously  or 

otherwise) their VT-graph such that it looked similar to the motion of the bomb!  Importantly, 

they had failed to consider the implication of the graph they had drawn – if the bomb had 

indeed travelled as per their depiction, it would actually start off fast and slowed down until it 

reached the ground, where it comes to rest (0 m/s).  In my opinion, the reason that the 

students were perfectly happy with their solution was because they had not considered the 

implication and plausibility of their depiction.

Benson Soong Page 108



Figure 5.6  'The VT graph of a falling object mirrors its motion' insight

Table 5.15: 'The VT graph of a falling object mirrors its motion' insight

Question Posed Discussion Snippet
Q1a) A remote controlled 

helicopter, hovering at a 

height of 100 metres 

above the ground, 

dropped a round rubber 

“bomb”.  You estimated 

the time it took for the 

rubber bomb to reach the 

ground was 4.47 seconds. 

What is the final velocity 

of the rubber bomb just 

before it hits the ground? 

Gabo: look at velocity time graph again

[Gabo is referring to the graph depicted in Figure 5.6]

Maria: just before it hit the ground...

Gabo: 0m/s?

Maria: no..

Maria: 100 = 1/2 time 4.47 time height

Maria: so is 44.7m/s

[Here,  Maria  calculated  the  value  for  the  bomb's  initial  velocity  by  using  the  “area  of  

triangle” formula.  Area of triangle = ½ * base * height, therefore 100 = ½ * 4.47 * height,  

which gives  a height (velocity) value of 44.7m/s]

Table 5.16 shows a continuation of Gabo and Maria's problem-solving attempts some time 

after they thought they had successfully solved Q1a (see Table 5.15).  The fact that both Gabo 

and Maria used 44.7 m/s as the final velocity and 0 m/s as the initial velocity indicates either 

confusion or desperation on their part.  In addition, the fact that both Gabo and Maria had 

used 4.47s as the value for time indicates confusion on the appropriate time to use, or pure 

desperation to randomly put in any number in order to get an answer.  The protocol data 
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shows clearly that while Gabo and Maria have knowledge about the formulas to be used, they 

lack conceptual understanding on how to use the formulas.  Students commonly complain that 

they know facts and formulas, but are unable to apply them correctly.   Here, we see the 

reason – often, students lack conceptual understanding on the concepts embedded within the 

formula.  Hence, to help students improve, what is needed is not to get students to 'solve 

more problems' but rather, help students build conceptual understanding.

Table 5.16: 'Confusion between initial velocity and final velocity' and 'confusion on appropriate time to use' insights

Question Posed Discussion Snippet
Q1b) Upon hitting the 

ground, the round rubber 

bomb bounced back 

directly upwards with a 

velocity of 72km/hr.  You 

estimated that the bomb 

spent 0.1 seconds on the 

ground before bouncing 

back upwards.  If the 

bomb has a mass of 

100g, what is the force 

the ground exerted on the 

round rubber bomb? 

Gabo : final is 44.7

Gabo : -_-"

Gabo : m/s

[In order to calculate the bomb's acceleration, Gabo needed to find the bomb's final velocity  

and initial  velocity  after  it  hit  the  ground and bounced back up.   Because their  earlier  

attempts were unsuccessful, Gabo felt that the final velocity to be used now would be the  

initial velocity that they had previously calculated]

Gabo : so

Gabo : acc=44.7-0 / 4.47

[Gabo felt that the initial velocity for this question would be 0 m/s, since the bomb had no  

velocity when it was on the ground.  In addition, they had used the time that was previously  

given (4.47s) instead of the 0.1s given in this part of the question]

Maria : 44.7-0/4.47

[Maria's workings mirror that of Gabo's]

Gabo : f=0.1 multiply by 0.1

Gabo : 0.1multiply by 10

Gabo : *

[The asterisk “*” is used to indicate that a typo had occurred in an earlier sentence.  In this  

case, Gabo is saying that “0.1 multiply by 10” supersedes “f=-0.1 multiply by 0.1”]

Gabo : so

Gabo : it is 1N

Maria : 1N 
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Table 5.17 provides a continuation of Gabo and Maria's problem-solving attempts some time 

after they were told that their answer (to Q1b) was incorrect.  Maria had concluded that the 

correct values for the final velocity, initial velocity, and time should be 20m/s, 44.7 m/s, and 

0.1s respectively.  However, she (and Gabo) neglected to include a negative (-) sign for final 

velocity, since the bomb was travelling in the opposite direction when it “bounced back directly 

upwards”.  This mistake is attributable to a (still) weak understanding of the implication of 

vector quantities.  I had, on the previous day, spent some time talking to the students about 

vectors  and  scalars  quantities,  focussing  specifically  on  what  'direction'  meant  in  physics 

terminology.  I had indirectly discussed about the implication of an object's direction on the 

magnitude of its average velocity (see Figure 5.7).  The protocol data, however, indicated to 

me that more needed to be done to address this lack of understanding.

Table 5.17: 'There is no need to include a negative sign (-) for an object’s velocity when it moves in the opposite 

direction' insight

Question Posed Discussion Snippet
Q1b) Upon hitting the 

ground, the round rubber 

bomb bounced back 

directly upwards with a 

velocity of 72km/hr.  You 

estimated that the bomb 

spent 0.1 seconds on the 

ground before bouncing 

back upwards.  If the 

bomb has a mass of 

100g, what is the force 

the ground exerted on the 

round rubber bomb? 

Maria: spent 0.1s

[Maria is echoing the text of the question, which stated that the “bomb spent 0.1 seconds on  

the ground”]

Maria: they ask for ground

[Maria is trying to analyse which value for 'time' is appropriate for use in the formula]

Gabo: 44.7m/s is the initial

Gabo: 20 is the final

[Gabo finalises that the initial velocity is 44.7 m/s, and the final velocity is 20 m/s.   Notice  

that  despite  the  opposite  direction,  he  did  not  put  a  negative  sign  in  front  of  the  final  

velocity]

Gabo: then the time

Gabo: is

Gabo: ?

Gabo: 4.47?

[Gabo is still unclear on the time to be used in the formula]

Maria: i got it
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Maria: 44.7-20=24.7m/s

[Maria is trying to use the formula “acceleration = v – u / t”.  Notice that she has used the  

wrong values, and despite the opposite direction, did not put a negative sign in front of the  

final velocity]

Gabo: 44is initial

Gabo: o.o

Maria: 24.7 / time which is 0.1

Maria: sorry

[Maria is apologising for using the wrong values]

Maria: 44.7 is initial the 20 is final

Maria: time 0.1

[Maria clarifies on the initial and final velocity to be used, and stated that the time to be  

used should be 0.1s]

Maria: acceleration

Gabo: so

Gabo: 20-44.7

Maria: force= 24.7n

Gabo: 24.7N

[Both  Maria  and Gabo  obtained this  answer  by  the  formula,  acceleration  =  v  –  u  /  t,  

therefore acceleration = 20 – 44.7 / 0.1 = 24.7N.  However, because they had neglected to  

include a negative (-) sign in front of the final velocity's value, they obtained an incorrect  

answer]
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Figure 5.7:  Discussion of implication of an object's direction on its average velocity

Table 5.18 provides a manifestation of what Soong and Chee (2000) termed as the “stepwise 

velocity increment conception” (p. 171). To Sarsi, when an object accelerates at 10 m/s2, the 

distance it covers increases by 10m every second because its velocity increases by 10 m/s 

every second (Sarsi had explain this conception to me when he and Dino could not come to an 

agreement).  To Sarsi, if an object accelerates at 10 m/s2  starting from 0 m/s, then in the 1st 

second, it's velocity would be 10 m/s, and in the 2nd second, it's velocity would be 20 m/s. 

Hence, he reasoned that the distance travelled in the 1st second would be 10m, and in the 2nd 

second  would  be  20m  (see  Figure  5.8).   Of  course,  objects'  velocities  do  not  increase 

instantaneously and, hence, Sarsi's conception was incorrect.

Table 5.18: 'Objects accelerate in a 'step-wise' manner' insight

Question Posed Discussion Snippet
Q2a)  A bird was flying 

100 metres from the 

ground when it excreted a 

dropping.  Draw a 

velocity-time graph and 

find out how long it took 

Sarsi : according to the units

Sarsi : m/s2

Sarsi : 10 m /s2

Sarsi : right?

[Sarsi is attempting 'unit analysis' on the concept of acceleration]
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for the dropping to hit the 

ground.

Dino : ya

Sarsi : means

Sarsi : 1 sec can travel 10 m

Sarsi : right?

[Here, Sarsi makes a mistake; “1 sec can travel 10 m” is what happens if an object travels  

at 10m/s, not if it accelerates at 10 m/s2]]

Dino : o!

Dino : like yesterday

[In  the previous day,  I  had talked about how 'unit  analysis'  may help in deriving at  the  

answer to a question]

Sarsi : so 2 s can travel 20?

Sarsi : right?

[This is incorrect; 

Dino : yes

[Dino is saying yes to Sarsi's comment that “1 sec can travel 10m...so 2 s can travel 20”,  

which is technically correct]

Sarsi : in total

Sarsi : now many metres traveled in 2 sec?

Dino : then 100/10 ah?

Sarsi : u ans my question first..

Dino : 20m

[Dino's answer is actually correct!  If an object starts from rest and accelerates at 10m/s2  

for 2 seconds, then it would have travelled a total of 20 metres in that 2 seconds]

Sarsi : WRONG

[Because of Sarsi's conception, he thinks that Dino is “WRONG”]

Dino : huh

Dino : y?

Sarsi : FIRST sec 10 m SECOND sec 30 m

[Here, we see evidence of Sarsi's “stepwise velocity increment” concept]

Dino : y?

Sarsi : it will increase by 10 in every sec.
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Sarsi : ACCELERATION

Sarsi : the 2nd sec it will travel 20 m right?

Sarsi : so AFTER 2nd sec, total dis traveled = 20 + 10 = 30m

[Sarsi is essentially saying that velocity increases in a step-wise manner.  See Figure 5.8]

Figure 5.8:  Sarsi's conception of acceleration and how the velocity of an object increases (depicted on the left), vs the 

correct model (depicted on the right)

Table 5.19 shows that Maria and Gabo used the principal of conservation of energy (GPE = KE) 

literally  regardless of  the  situation.   Maria  and Gabo had calculated that  the gravitational 

potential energy of the dropping was 0.25J, and it was implied in their discussion that they 

assumed that the value for the kinetic energy would be the same “Gabo: so 0.25J then? Maria: 

so ans 0.25N”).  I had initially thought that this could be a careless mistake, but when I  

reviewed the logs with the students during subsequent PT session, it was confirmed that the 

students' conception of 'KE=PE' was present.  Also, I noted from the logs that Maria had a poor 

understanding of the difference between Newtons (a  force quantity) and Joules (an  energy 

quantity).  The need for me to use the PT session in order to get confirmation on the students' 

conceptions reaffirms my belief that the CMCPS and PT sessions necessarily go hand-in-hand; 

the CMCPS session provides teachers with insights to how students are thinking (or might be 

thinking), and the PT session provides confirmation and clarification.

Table 5.19: 'KE = PE is taken literally regardless of situation; KE’s value will always equal PE’s value' insight

Question Posed Discussion Snippet
Q2b) If the dropping had 

a mass of 1g, what was 

Maria : gravitatioonal potential energy

Gabo : mgh
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its kinetic energy when it 

was 25 metres from the 

ground?

[The  students  have  learnt  that  gravitational  potential  energy  can  be  calculated  by  the  

formula GPE = mgh]

Gabo : 0.001 multiply 10 multiply 25

Gabo : 0.25

Maria : (0.1)(10)925)

Gabo : correct?

Gabo : 0.25 J

Maria : yyaya

Maria : 0.01 kg

Gabo : 0.001

Maria : i forgot to convert

Gabo : 0.001kg

Gabo : 1g mah

Maria : sorry 0.001kg

Maria : hahha

Gabo : k

Gabo : so 0.25J then?

[Gabo  had  found  the  answer  for  the  dropping's  GPE.   However,  both  he  and  Maria  

assumed that this was the answer to the question, since they learnt that GPE = KE.  I had  

earlier  thought  that  perhaps this  was a  “careless”  mistake.   However,  discussions with  

students'  during  the  PT  session  confirmed  my  suspicion  it  was  indeed  an  incorrect  

conception]

Maria : so ans 0.25N

[Here, we see that Maria had the wrong unit (the unit for energy is Joules), and further  

analysis of the log indicates this was not a “careless” mistake]

In sum, the discrete insights I obtained from students' protocol data are summarised in Table 

5.20.

Table 5.20: Summary of “discrete” misconceptions/misunderstandings uncovered during the pilot study

Topic Misconception / Misunderstanding Uncovered
Physical 

Quantities, Units 

and Measures

* 'Direction' means being able to increase or decrease in value

* A scalar has direction only

* A scalar has both magnitude and direction

* A vector has direction but scalar has no direction (magnitude not mentioned) [T]

* KM (kilometres) is the SI unit for distance [T]
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* The units for displacement is m/s

* The units for acceleration is m/s

* The unit for Work Done is J/s 
Kinematics * Speed and velocity are interchangeable terms

* Distance and displacement are interchangeable terms

* Negative acceleration necessarily implies deceleration [T]

* Finding resultant force does not require vector addition

* A force cannot have a negative value

* Confusion between initial velocity and final velocity

* Confusion on appropriate time to use

* Velocity = Displacement / Time can be used to calculate displacement in all situations (even 

when the object is accelerating or decelerating)

* There is no need to include a negative sign (-) for an object’s velocity when it moves in the  

opposite direction

* Objects accelerate in a 'step-wise' manner

* The VT graph of a falling object mirrors its motion

* When acceleration is not explicitly provided, it is 10m/s2

* Distance = Speed x Time can be used to calculate distance in all situations (even when the 

object is accelerating or decelerating)

* Time can be negative
Energy, Work and 

Power

* KE = PE is taken literally regardless of situation; KE’s value will always equal PE’s value

* For PE = mgh, h is the distance travelled [T]

On a  whole,  the  three  cycles  revealed  24  unique  misconceptions/misunderstandings  and, 

hence,  it  is  my  opinion  that  that  I  was  able  to  gain  deep  insights  into  the  students’ 

misconceptions/misunderstandings from their protocol data.

5.4.2 Evaluation of Students' Learning Outcomes

In  order  to  answer  the  second  research  question,  which  pertains  to  students'  learning 

outcomes, the intervention post-test was conducted on 5th November, and scored by me.  The 

same combined-science physics teacher (Mr Lim) who had earlier reviewed the pre-test scoring 

also  assessed the post-test  marking,  and found the  scoring to  be consistent.   Table  5.21 

summarises the three group’s pre-test and post-test mean scores (and standard deviation).
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Table 5.21: Descriptive statistics, including variance ratio comparisons

Grouping Mean Standard Deviation Variance Ratio Hartley's Test 

(Critical Value for n = 7; 

k = 3; α = 0.05)

Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre/Post Test

CG 14.36 13.07 6.24 5.76 2.17 2.99 8.38

AG 8.07 5.36 4.23 3.33

XG 9.86 17.64 4.71 3.58

While a mean score of 17.64 for XG appears to be low, on average, students in the XG out-

improved students in CG by 9 points, and out-improved students in AG by 10 points.  Hence, 

in percentage terms, students in XG out-improved the other two groups by at least 25%.   In 

my opinion, the overall low marks could be an indication of the level of difficulty of the pre- 

and post-tests, which were based on difficult questions.  A question could be difficult due to 

various  factors,  including  the  amount  of  time given  for  the  test,  the  comprehension  skill 

needed  to  understand  the  question  posed  (e.g.  see  Pollitt  &  Ahmed,  2001),  the  type  of 

mathematics  involved  (e.g.  see  Tuminaro  &  Redish,  2003),  as  well  as  other  non-physics 

demands (e.g. see Soong et al., 2009).  Nonetheless, I had higher expectations for the XG 

students'  results,  and feel  that perhaps their low scores were also an indication that they 

needed more time for learning (see Gettinger, 1984) than anticipated.

The analysis of covariance (ANCOVA; see Figure 5.9) using post-test scores as the dependent 

variable, the groups as the fixed factor, and pre-test scores as the covariate revealed that 

post-test scores was significantly influenced by the students’ groupings (F(2,17) = 16.913, p < 

0.001; effect size (partial eta squared) = 0.666).  Also, it is reassuring to note that the post-

test scores was also significantly influenced by pre-test scores (F(1,17) = 8.694, p < 0.01; 

effect size (partial eta squared) = 0.338).  I noted with interest that the effect size (partial eta 

squared) of the pre-test score was less than that of the treatment effect (grouping).

Two fundamental  assumptions of  the ANCOVA are the assumption of  independence of  the 

covariate  and treatment effect  and the homogeneity of  variance (Field,  2009).   While  we 
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calculated  Levene’s  test  of  equality  of  error  variances  in  our  ANCOVA  to  be  insignificant 

(F(2,18)=3.305,  p  =  0.06),  the  p-value  is  very  close  to  the  0.05  threshold.   Hence,  I 

calculated the variance ratio and compared it against the critical value provided by Hartley's 

test (see Field, 2009, p.150-151).  The variance ratio for the pre-test is 2.17, and for the post-

test is 2.99.  Given that the critical value provided by Hartley's test is 8.38, both the variance 

ratios are smaller than the relevant critical value and so we conclude that the data does not 

provide evidence that the homogeneity of variance assumption has been violated.  Since we 

had already established the independence of the covariate and treatment effect earlier, the 

ANCOVA results appear valid.

Figure 5.9: ANCOVA results

An analysis of variance test (ANOVA; see Figure 5.10) was also conducted in order to ascertain 

if there was a significant difference in the  mean gain in test scores (the difference between 

post-test and pre-test scores) between the three groups.  The ANOVA test scores that the 

mean gain in scores is significantly different between the three groups (F (2,12.818) = 11.583, 

p < 0.01; since the assumption of homogeneity of variance was violated, therefore the Brown-

Forsythe F-ratio is reported).
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Figure 5.10: ANOVA results

Given the significant ANOVA findings, further t-testing was conducted.  The  t-tests on gain 

scores reveal that the difference in mean gain in scores was not significant between CG and 

AG (t=0.672, p=0.514; see Figure 5.11), but was  significant between CG and XG (t=-3.20, 

p<0.01; see Figure 5.12). The mean gain score is lower (M=-1.29, SD=5.15) for CG than for 

XG (M=7.79, SD=5.45).  The t-test also reveals that the difference in mean gain in scores was 

significant between AG and XG (t=-4.89, p<0.01; see Figure 5.13). The mean gain score is 

lower (M=-2.64, SD=1.44) for AG than for XG (M=7.79, SD=5.45).

Figure 5.11: T-testing between CG and AG
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Figure 5.12: T-testing between CG and XG

Figure 5.13: T-testing between AG and AG

In summary, all  the relevant statistical  tests (ANCOVA; ANOVA and t-test on gain scores) 

conducted show statistically significant improvements for  XG.  Hence, controlling for initial 

ability,  there  was  a  significant  difference  in  post-test  scores  between  the  three  groups. 

Statistical  analysis  indicated  that  students  who  underwent  the  intervention  obtained 

significantly higher post-test scores – an improvement of more than 25% – as compared to 

students in the control or alternate intervention groups.  Hence, it can be said that as a result 

of immersion in my intervention, the students’ understanding of physics concepts improved by 

a large extent.

5.4.3 Students' Evaluation of the Intervention

In order to evaluate the extent to which the students were comfortable with my intervention 

(i.e. to answer the third research question), I elicited students' feedback via a focus group 

semi-structured  discussion  session,  individual  semi-structured  interviews  (prior  to  them 
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knowing their pre-test/post-test results), as well as through their response to a short survey 

after  every  CMCPS  session.   The  data  collection  procedure  and  analysis  methods  are 

summarised in Table 5.22.

Table 5.22: Qualitative data collection and analysis methods to elicit students' evaluation of the intervention

Data collected Main questions asked Procedure

Focus group discussion

* Were you comfortable in the learning environment? Why?

* Which areas made you feel comfortable?  Why?

* Which areas made you feel uncomfortable?  Why?

Audio recorded and 

reviewed numerous 

times, and 

appropriate portions 

were transcribed

Individual interviews * Now that you have been involved in this revision method, what are 

your views on using computers for learning?  Like it?  Dislike it?  Why?

Recorded and 100% 

transcribed (since the 

interview was 

conducted via text-

chat)
Short survey responses 

(after every CMCPS 

session)

* How do you feel about working with a partner via the computer to solve 

Physics questions?

[  ] Very Comfortable   [  ] Comfortable   [  ] Neutral   

[  ] Uncomfortable     [  ] Very Uncomfortable

Recorded and 

statistically analysed

The aggregated students' responses are given in Table 5.23.  Generally, the students were 

initially not entirely comfortable in the learning intervention. However, by the third session, 

they were more comfortable with the environment, mainly because they could see its benefits. 

Interestingly, the main area that made many students feel comfortable was the “chat room”, 

where they felt that they had created their “own logic that don't make sense” and “gave a lot 

of funny formulas” that I then corrected.  There were three main areas where the students 

were uncomfortable with in our learning intervention.  Firstly, Ziki initially felt uncomfortable 

having to type out his explanations when he was used to speaking directly to each other (Sarsi 

concurred with this view).  Secondly, the majority of students who worked in groups of three 

felt that it was “very difficult to communicate” in a three person group (and this was verified 

by their survey responses).  Thirdly, Mumo felt that if his “secret partner” knew his identity 

(which is possible given the small class size), he would “hold back” from revealing what he 
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thought, for fear of embarrassing himself.  Nonetheless, after the third session, the students 

were more comfortable with the intervention, and saw the benefit of text-chatting instead of 

speaking directly with their classmates while problem-solving.

Table 5.23: Aggregated students' response (spelling and grammar mistakes have been corrected)

Student 

Names

(Anon)

Focus Group Response Snippet

[Conducted in a computer laboratory]

Individual Interview Response 

Snippet

[Conducted via text-chat]

Survey Response

[Likert scale of 1 to 5, 

with 1 being very 

comfortable]

Sarsi

The first time it might be quite awkward 

because [it requires] explaining through 

words, and normally I do it through 

talking to people.  First time of course it is 

uncomfortable, but out of 10, I'd rate [the 

first time a] 6 out of 10 that it is 

comfortable actually, as we are all used 

to seating at home and [text] chatting.

It's beneficial [as] it really corrected us. 

Just simply through WORDS that we 

type it with our OWN HANDS.  It's 

powerful.

Session 1: 2

Session 2: 3

Session 3: 1

Ziki

At first...like...very nervous, then after the 

second or third time, its... like...ok.

Quite like it [as] it is a new way of 

learning [and also like] the way we 

answer the questions.

Session 1: 1

Session 2: 2

Session 3: 1

Maria

It's different from the [traditional] class 

when we use computers; its rather more 

comfortable [in this setting].

Yes rather like it.  It [is] something [like 

a] new way of discussing the question.

Session 1: 2

Session 2: 2

Session 3: 2

Taki

The environment is very good because 

there is air-con!

Neutral. Sometimes when I am really 

stuck in that question, I will not know 

what to do.  But I think should continue 

[with the intervention]

Session 1: 2

Session 2: 3

Session 3: 3

Gabo After a few rounds, gradually it gets 

better.

They [the intervention sessions] are 

okay, as long as it helps, anything is ok 

as long as it helps me.

Session 1: 2

Session 2: 2

Session 3: 2

Mumo

When you get used to it...you can 

communicate well...like...you feel better.

I like it but it is not good without the 

prescriptive [tutoring sessions].  They 

are like one process. It is different from 

learning in class and very interesting 

and creative.

Session 1: 2

Session 2: 2

Session 3: 1

Dino

Dino did not answer the question 

specifically.  Instead, she responded with: 

“At first I didn't want to come because I 

I like it because I think it has really 

helped me improve.  Because I cleared 

my misunderstanding and I think you 

taught us the right way. The method you 

Session 1: 1

Session 2: 2
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thought I'd waste my time.  But now, I 

think it make me...get higher marks, I 

think.” 

used is correct.  The log when we 

discuss with a partner first, then you 

analyse all our mistakes and print it out 

for us.

Session 3: 1

Summary

Students generally got more comfortable 

as they got used to the intervention.

Students generally feel that the 

intervention has helped them improve.

Twosome 

average: 1.73

Threesome

average: 2.17

Overall 

average: 1.86

On the whole, the students reported that they appreciated the intervention and felt they had 

learnt  much.   Every  student  requested  to  continue  with  the  intervention  for  the  coming 

academic year mainly because they felt that the intervention had helped them improve, and 

many students even suggested that chemistry revision could be done the same way.  Hence, 

despite their initial reservations, the students were eventually comfortable enough with our 

intervention such that they were willing to continue with it.

5.4.4 Teacher's Evaluation of the Intervention

When the pilot study was concluded, Mr Ng was shown the PT 'notes' that were used during PT 

sessions (these notes were also handed out to the students), and asked to comment on the 

recorded misconceptions/misunderstandings.  Out of these 24 misconceptions, he identified 20 

misconceptions as being “unexpected”, which was to say that he either had never seen such a 

misconception, or was surprised that a particular student still had a particular misconception. 

When he reviewed the students' logs which were shown in the PT 'notes',  he immediately 

recognised that a key difference between our intervention and traditional revision practices 

was that our intervention “is informing the processes before they came to the solution itself.  I 

mean, in the classroom written work, they just write the final solution – the final product of 

what thinking processes have went through their mind.  But here, you really can see what 
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went  through their  mind,  what  are  the  ideas  that  came through their  mind,  consolidated 

together before they came up with the final answer.  This is something I find teachers are 

unable to see”.  It  was heartening for me to note that while he was assigned to teach a 

different physics class for the next academic year (and hence, was not expected to be directly 

involved in the pursuit of the intervention), he sent an email to the school Principal, Head of 

Department for Science (Ms Er), and myself, stating that he would want to “work closely with 

you [i.e. the researcher], together with Ms Er, when the new academic year starts, so that 

gradually  I  can have  some ownership  of  the  ICT-assisted learning  of  physics  intervention 

programme for next year's batch of weak 3E1 pure physics students.  Then, there will be some 

continuity  and  follow-up  in  your  intervention”.   Hence,  I  believe  that  from the  teacher’s 

perspective, the intervention was deemed useful and worthy of his personal involvement and 

evaluation.

5.5 Discussion of Findings

5.5.1 Improvements in Learning Outcomes and Alternative Explanations

Based on the quantitative and qualitative data analysis, my intervention for physics revision 

appears to be effective in helping the students revise physics concepts. The students also 

appear to appreciate revising physics concepts using the intervention I introduced.  It seems, 

therefore,  that  I  have the basis  for  an effective,  practical  way of  helping students  revise 

physics, while also helping Mr Ng gain deeper insights to his students’ conceptions and thought 

processes. However, alternative explanations for why the students improved can be offered. 

For example, one possible reason for why XG students performed better for the post-test could 

be that they had been practicing and revising physics concepts continuously prior to the post-

test and as a result, understood the concepts covered.  After all, time-on-task has long been 

accepted as a predictor of learning outcomes (Carroll, 1963; Bloom, 1971; Fisher & Berliner, 

1985), albeit not always sufficient (Cornbleth, 1980) and the relationship is not necessarily 

linear (Fredrick & Walberg, 1980).  Linked to time-on-task is the possibility that these students 

could have high aptitude for physics and, hence, given the additional time-on-task, were able 

to vastly improve their understanding.  Another possible reason could be due to my mere 
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presence, since I'm a researcher from the university that, in partnership with the Singapore 

Ministry of Education, provides for the GCE examinations that the students would take.  Hence, 

the  students  may  have  been  more  inspired  and  motivated  to  work  hard  given  my  mere 

presence.  Linked to motivation, yet another reason could be due to novelty effects of working 

anonymously  with  fellow  students  in  a  computer-mediated  environment.   After  all,  the 

students acknowledged that,  from an educational perspective, this  was the first time they 

learned  through – and not  from  – computers, which many found “Very fun!”  I  shall  now 

address these alternate explanations in turn.

I agree that, in general, time-on-task is a good predictor of learning outcomes.  However, in 

this situation, the students took the pre-test merely one week after their end-of-year physics 

examination.  Since it is reasonable to assume that the students would have worked hard up to 

the final day in preparing for that examination, then the time-on-task argument is weakened. 

As for the possibility of the students having high aptitude for physics, two of the XG students 

have consistently failed physics, and were earmarked to drop the subject at the start of the 

next academic year (although they were not told of this plan during the pilot study period). 

Hence, the aptitude argument is  not valid.  With regards to  the effects of  presence, it  is 

unlikely that the students were affected by my mere presence.  In fact, I found the students to 

be quite nonchalant in my presence.  In addition, in the  Informed Consent Form that the 

students  signed,  they  were  advised  that  there  can  be  no  guarantee  of  the  learning 

intervention's effectiveness.  However, I cannot totally disregard novelty effects and, hence, a 

temporal/longitudinal study would need to be conducted to test this possibility.

5.5.2 Discussion on Whether Deep Insights are Assessable via Traditional Testing

While I have shown that analysis of students' CMCPS attempts reveal deep insights about 

students' knowledge base and though processes, it may be suggested that similar insights 

might be gleaned merely from traditional means, especially students' test scripts.  In an exam, 

students provide more 'workings' as an attempt to maximize their scores, since marks are 

given for correct 'workings' despite an incorrect final answer.  In my opinion, while students' 
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test scripts (and other similar exercises including answers to 'ten-year series' questions) may 

offer  teachers  some  insights  into  students'  knowledge  base  and  thought  processes,  the 

granularity of the insight is much more coarse when compared to the information obtained via 

CMCPS.   This  is  because  students  often  do  not  record  (on  paper)  their  explanations  or 

considerations for solving questions posed.  Given the lack of details, it is often difficult to 

distinguish  between  a  'careless'  mistake,  a  lack  of  knowledge,  or  a 

misconception/misunderstanding.  In other words, the extent or reason for their mistakes is 

often difficult to ascertain.  For instance, if a student does not provide any answer to a test 

question, or provides a correct answer to one part, but an incorrect answer to a related part 

(i.e. the complete answer is inconsistent), what should we assume?  Should we  assume that 

they did not understand the question posed?   Or do we assume that they ran out of time?   Or 

perhaps they could not remember the formulas to be used?  Or maybe they do not know the 

concepts involved?  Figure 5.14 provides an instantiation of such a dilemma.  Taken directly 

from a term test taken by a student in 4E1, the student was asked (in Part A) to find the 

pressure at Point A.  The student stated that the pressure was 750mm Hg, when the answer 

should have been 0mm Hg.  Viewed individually, the most likely deduction is that this student 

does not recognise that there is no pressure acting on the liquid mercury at the top of a simple 

mercury barometer set-up, since the top is a vacuum.  However, a related question (in Part B) 

asked the student to calculated the pressure at Point B, in which the student obtained  the 

correct answer by first calculating the length of mercury in which Point B was under (“85 – 52 

= 33cm”)  before  providing the correct  answer (330mm Hg).   Viewed  individually, it appears 

that this student understands the concept of pressure in a liquid column.  However, viewing the 

combined answer provided for both Parts A and B, the student's answer appears inconsistent, 

and illustrates that it is actually rather difficult to obtain deep insights into students' knowledge 

base and thought processes via test scripts.
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Figure 5.14: A student's inconsistent response to a test question

5.5.3 Key Constructs that Enabled this Intervention

As I have argued in Chapter Two, the dimensions in activity theory can provide the logical 

connectivity and relevant constructs for describing artefact-mediated activities.  Hence, I will 

be using the dimensions provided for by the Activity Theory model in order to describe the key 

constructs that, in my opinion, enabled this intervention (and the results it obtained).  
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Figure  5.15  provides  a  typical  depiction  of  the  Activity  Theory  model,  while  Figure  5.16 

provides an instantiation based on the pilot study.  In order to provide a more vivid description 

of the working of the intervention so as to assist readers in understanding the context in which 

the teaching and learning took place, I sub-divided the Activity Theory model into its nine 

interacting components, and provide descriptions and illustrations detailing the pilot study for 

each of these nine interacting components.

Figure 5.15: Activity Theory model

Figure 5.16: Activity Theory model based on an instantiation of the pilot study
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Figure 5.17: Student-Artefact-Object interaction

Figure 5.17 shows the student-artefact-object interacting components, which may be used to 

draw attention to a student's instinctive objective when s/he uses a particular artefact.  In the 

context of Bartley Secondary School, students use computers in the computer laboratory to 

answer multiple-choice or survey questions.  On occasions, they use the computers there for 

playing games and online socialising purposes, such as instant (text) messaging with their 

friends.  The intervention required the students to attach a different purpose for using the 

computer.  Instead of using computers to receive feedback (as in the case of answering topic-

based  multiple-choice  questions),  provide  feedback  (as  in  the  case  of  answering  survey 

questions), or for entertainment purposes (as in the case of playing games or online socialising 

via  text-chatting),  I  explained  to  the  students  that  the  chat-logs  that  are  automatically 

generated by instant messaging software (such as MSN or NetMeeting) can provide me with 

deep insights into their physics knowledge base and hence, misconceptions.  If I knew where 

their physics misconceptions lay, I may then provide them with instruction that would lead 

them to normative views, thus helping them to get better grades for their physics tests and 

exams.  In addition, I explained to them that it was entirely possible that they learn from one 

another, as other students before them had discovered.  Hence, I aligned the students' (the 

subject) objective of using computers (the artefact) for solving physics questions (the object) 

to be the same as mine – for the purpose of peer discussion and providing me with a record of 

their discourse so that I may conduct 'prescriptive tutoring' such that they would understand 

the concepts probed by the questions posed (the objective).  This process was more tedious 

than I had initially thought,  and I found myself  needing to repeat the intention for  using 

computers during the CMCPS sessions.  In my opinion, the successful implementation of this 

pilot study required students to understand how computers served my intended purpose, and 

in the case of this pilot study, I  believe they did only after the first CMCPS-PT cycle.  In 
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addition, because I knew through experience that students placed more emphasis on obtaining 

correct answers to questions posed than on understanding the fundamental physics concepts 

raised by the questions, I took some time to explain to the students that getting the correct 

answer was meaningless if  they do not understand the physics concepts involved because 

while questions and question formats can change, the fundamental physics principles do not.  I 

told them that a fixation on correct answers was like trying to memorise thousands of question 

combinations, which was difficult and unnecessary, when all that was needed was a proper 

understanding  of  the  physics  concepts  in  question.   In  other  words,  I  spent  some  time 

motivating students to change their objectives when confronted with questions; instead of 

seeking to obtain the correct solution, they should check that they understand the physics 

concepts probed instead.

Figure 5.18: Student-Community-Artefact interaction

Figure  5.18  shows  the  student-community-artefact  interacting  components,  which  may  be 

used to draw attention to what a student and his/her community perceives as the value of 

computers (a shared ideal perspective).  In the context of the school, computers were seldom 

used in a teaching and learning context.  If they were used for teaching and learning, it did not 

require connectivity between two computers in the laboratory, since students were meant to 

interact with the computers, and not with each other.  I discovered that if the credentials used 

to access the computers were student-based, inter-computer connectivity was blocked.  Due to 

the  default  computer  policy  settings  in  the  school,  inter-computer  connectivity  was  only 

allowed if the login credentials were either a teacher's or an administrator's.  As such, I spent 

some time with Mr Das (the school's IT technician) to ensure that the computers could connect 
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to one another.  Eventually, Mr Das had to specially configure and provide me with a limited-

access  teacher's  login  account,  which  we used  for  logging into  the  machines  so  that  the 

computers  could  connect  with  one  another,  while  preventing  access  to  sensitive  intranet 

materials such as marking reports and test scripts.  In my opinion, this exercise shows that 

from an  ideal (as opposed to  material) perspective, the school community (the  community) 

perceived  that  students  (the  subject)  best  learn  from,  and  not  through,  computers  (the 

artefact), and this was a perspective I worked hard at changing.

Figure 5.19: Community-Artefact-Object interaction

Figure 5.19 shows the community-artefact-object interacting components, which may be used 

to draw attention to the community's instinctive objective when using an artefact.   In the 

context of teaching and learning in the school, while computers (the artefact) have been used 

to quiz students on their subject knowledge base via multiple-choice questions (the object), it 

had never been used for discourse purposes (the objectives). Hence, I needed to spend time 

explaining to the Principal, Vice-Principal, and Head of Department for IT (the community) why 

I needed to use the computer laboratory, and why I needed extensive technical support from 

Mr Das, especially during the initial testing periods.

Figure 5.20: Subject-Community-Rules interaction
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Figure 5.20 shows the subject-community-rules interacting components, which may be used to 

draw attention to how a student (the subject) is to behave within the school community (the 

community).  Based on my observations in the school, the rules during classroom lessons were 

such that students were expected to keep quiet during lessons, and speak only when spoken 

to  (the  rules).   However,  for  my  intervention,  I  wanted  to  encourage  student-generated 

discourse both during the CMCPS and PT sessions.  Naturally, students discourse during CMCPS 

occurred via the computer and given their prior experience with text-chatting (and my 'activity 

training'; see section 4.3.3), I was confident that meaningful discourse would take place then. 

I was more concerned about the PT sessions, since from a classroom set-up perspective, it was 

very similar in structure to traditional classroom lessons.  Hence, my PT 'notes' and lessons 

were  intentionally  designed  such  that  students'  views  were  explicitly  elicited  by  featuring 

students' chat data, which I found served as an excellent resource that would get students 

talking about (and even defending) their preconceptions.

Figure 5.21: Subject-Community-Division of labour interaction

Figure 5.21 shows the subject-community-division of labour interacting components, which 

may be used to draw attention to what a student expects a teacher to do within the school 

community.  Based on my experience, students' typically expect teachers to provide them with 

'model answers' to questions posed.  Because I wanted students to focus on understanding the 

physics  concepts  probed  by  the  questions,  rather  than  memorising  a  'model  solution',  I 

emphasised  to  the  students  that  my main  job  was  to  help  them understand  the  physics 

concepts probed in the questions, and also to identify and correct their misconceptions, and 

that it would fall on their shoulders to ensure that they could derive at the solution to the 

questions posed.  While I still provided answers, it was generally less detailed than what they 
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were generally used to receiving.  I believe such a division of labour motivated students to 

shift their focus from memorising to understanding.

Figure 5.22: Subject-Rules-Object interaction Figure 5.23: Subject-Division of labour-Object interaction

Figures 5.22 and 5.23 shows the subject-rules-object  and subject-division of labour-object 

interacting  components,  which  may  be  used  to  draw  attention  to  the  ground  rules  and 

expected conduct that I had to establish with the students with regards to the objective of 

getting them to understand the physics concepts probed by the questions posed.  Given my 

prior experience in conducting such sessions (see also Mercer, 2000), I felt that the ground 

rules (the rules) would provide students with a guide on expected and acceptable behaviour 

(such as asking 'why' and providing reasons for disagreements; the division of labour), given 

that our (the students' and my own) objective was for the students (the subject) to address 

the questions posed (the object) such that peer discussion could occur, enabling me to glean 

meaningful insights that would be helpful for prescriptive tutoring (the objective).  I observed 

that some students were quite strict with following the ground rules, while others were more 

laissez faire.   Nonetheless, it  is  my opinion that the ground rules, as well  as my physical 

presence in the computer laboratory, served to keep the students on task and generally well  

behaved.

Figure 5.24: Community-Rules-Object interaction       Figure 5.25: Community-Division of labour-Object interaction

Figures 5.24 and 5.25 shows the community-rules-object and community-division of labour-

object interacting components, which may be used to draw attention to the new 'rules' and 
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'duties' that I brought into the school as a result of the conduct of the intervention.  Prior to 

my  intervention,  while  the  school  community  (the  community)  was  familiar  with  using 

questions (the  object)  during revision sessions, no one had conducted or even considered 

using computers (the  artefact) as a means for student discourse.  Subsequently, reviewing 

students' discourse (the division of labour) so that prescriptive tutoring might occur was a new 

concept.  Additionally, focus had predominately been on helping students to obtain correct 

answers to questions posed, and a focus on using sound physics concepts to answer questions 

(the  objective) was not common.  The main criteria (the  rules) made known to me (by the 

Principal and Ms Er) was that students' test scores should improve as a result of involvement in 

the intervention, and this criteria motivated me greatly.

In sum, many important elements had to be in place in order to successfully implement the 

pilot study (and the positive results it obtained).  By giving close consideration to the various 

dimensions provided by the activity theory model, I believe this intervention (and its resulting 

positive results) may be experienced by another researcher/teacher.

5.5.4 Evidence of Peer Discussion Leading to Cognitive Development via a Piagetian and/or  

Vygotskyan account of Cognitive Development

Table 5.24 provides an example of protocol data taken verbatim from a student-dyad during 

the third CMCPS session.  The snippet shows how Mumo and Sarsi collaboratively solved the 

problem while  they  worked  within  each  other’s  zone  of  proximal  development  (ZPD;  see 

Vygotsky, 1978) or “intermental development zone” (IDZ; see Mercer, 2000).  Again, when 

appropriate,  I  provide  my  comments  in  square  brackets  ([...])  to  aid  the  reader  in 

understanding the context of the students' problem solving attempts.

Table 5.24: Suggestion of ZPD/IDZ learning

Question Posed Discussion Snippet
John was riding on a 

bicycle, travelling at a 

constant speed of 2 

m/s.  Suddenly, he 

Mumo:  use graph??

[Mumo tentatively suggests to draw a graph in order to obtain the solution]

 

Sarsi: ah...?    
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spotted a cat in his 

path, and immediately 

pressed on the brakes. 

If he comes to a stop 

after 2 seconds, and 

the total mass of John 

and the bicycle is 80kg, 

what is the average 

heat lost from the 

bicycle’s brakes?

Sarsi: why

Mumo: ......    

Sarsi: why 

[Sarsi questions the reason behind drawing a graph, and Mumo’s response “......” –which the  

students use to mean “I’m thinking”– imply that he merely suggested to draw a graph without  

a clear purpose or strategy]

Sarsi: energy heat lost = 1/2 x m x v^2    

Mumo: what should we find firstly??    

Mumo: ok

[Here, Sarsi states (correctly) that the heat energy lost is equal to the initial kinetic energy  

possessed by the bicycle (with John on it).  Mumo agrees with this approach.]

 

Sarsi: = 1/2 x 80 x 4 = 160 J?    

[Using the correct formula, Sarsi obtained the answer for the total energy in the system, which  

he thought was the answer to the question (it isn’t)]

Mumo: ya    

Mumo: divided by 2s    

Mumo: 80 J/s 

[Mumo states that  he understands Sarsi’s rationale, and demonstrates this by  extending  

Sarsi's solution in order to obtain the correct answer]

Sarsi: why?

Mumo: average heat lost    

Sarsi: average heat lost...?    

[Sarsi does not understand Mumo’s workings, and Mumo explains that he “divided by 2s” as  

the question asked for the “average heat lost”]

Sarsi: what is the meaning of it    

Sarsi: ok... i think i get it 

Sarsi: get the techer

Sarsi: yay!!!!!!!    

[Initially, Sarsi did not understand why there was a need to divide his initial answer of 160J by  

2s.  However, he very quickly realised that average heat lost in this context meant heat loss  

per second, and called for the first author to verify his understanding]

Mumo: 80 Watts
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[Mumo is correct; J/s is actually Watts]

Sarsi: smart boy. 

In  my  opinion,  the  snippet  provided  in  Table  5.24  strongly  suggests  ZPD/IDZ  learning. 

Without Sarsi’s initial suggestion that the heat energy lost is equal to the initial kinetic energy 

possessed  by  the  boy/bicycle,  Mumo  might  not  have  obtained  the  solution,  and  without 

Mumo’s interjection that the average heat lost implied heat loss per second, Sarsi would have 

obtained an incorrect answer.  It is my belief that because the students operated within each 

other’s ZPD/IDZ, they were successful in their collaborative problem-solving and knowledge 

negotiation process.  I note with interest that after the CMCPS session, Sarsi wrote on his 

survey form that “I didn’t know J/s = Watts, now I know it”, and was reminded that,

Any function in the child’s cultural  development appears twice, or  in two planes. 

First, it appears on the social plane, and then on the psychological plane.  First, it 

appears between people as an interpsychological category, and then within the child 

as  an intrapsychological  category.   This  is  equally  true  with  regard to  voluntary 

attention, logical memory, the formation of concepts, and the development of volition 

(Vygotsky, 1978, p. 163).

Table 5.25 provides an example of protocol data taken verbatim from the same chat log as 

Table 5.24.  In my opinion, the snippet shows learning taking place from a ZPD/IDZ as well as 

a Piagetian (conflict/resolution) account of cognitive development.

Table 5.25: Suggestion of ZPD/IDZ as well as Piagetian (conflict/resolution) account of cognitive development

Question Posed Discussion Snippet
2) Two balls (A and B) of mass 1kg 

each were pushed up a hill as shown 

below.  What is the work done on Ball  

A and Ball B by moving them from the 

bottom to the top of the hill?

Mumo: I got it    

Sarsi: loll...    

Mumo: mgh!!

Mumo: ???    

[After both students thought about the question for a while, Mumo suggested  
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10m
10.77m

3m

5m
A B

that the solution to the question is actually to find the gravitational potential  

energy gained by Ball A in order to find the work done on Ball A]

 

Sarsi: work done la... not energy    

[Here, Sarsi asserts strongly (“la” is a colloquial expression used to explicate a  

statement) that Mumo’s suggestion is incorrect, since the question asked for  

“work done” and “not energy”]

Mumo: same what    

[Mumo’s  utterance  “same  what”  is  a  direct  and  sharp  response  to  Sarsi’s  

assertion that work done and energy are not equivalent]

Sarsi: work done = dist x force energy = mgh/ 0.5mv^2    

Sarsi: OH    

Sarsi: both Jolues    

Sarsi: ok    

Sarsi: can    

Sarsi: i get it

[Because of the conflict, Sarsi used unit analysis and found that work done,  

gravitational potential energy, and kinetic energy all has the same unit, “Joules”.  

Hence, work done and energy may be equivalent]

It is my view that the snippet provided in Table 5.25 strongly suggests learning by way of 

conflict and resolution.  Initially, Sarsi asserted strongly (“work done la... not energy”) that 

Mumo’s suggestion that the work done on Ball A could be obtained by finding the gravitational 

potential energy it gained was incorrect.  The assertion drew a direct and sharp response from 

Mumo (“same what”), which resulted in Sarsi using unit analysis to verify that Mumo was 

indeed correct (work done, just like gravitational potential energy or kinetic energy, is a type 

of energy).  He realised that both work done and gravitational potential energy and kinetic 

energy have the same unit (“OH…both Jolues [sic]”) and so he understood the rationale behind 

Mumo’s suggestion.  Here, it can be seen that “[c]riticism is born of discussion and discussion 

is only possible among equals: cooperation alone will therefore accomplish what intellectual 

constraint [caused by unquestioning belief in an adult] failed to bring about” (Piaget, 1932, p. 

409).  I conjecture that if a teacher had told Sarsi that work done and gravitational potential  
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energy or kinetic energy are equivalent in specific settings, he would have accepted it as a 

fact, and not attempt for himself the unit analysis that he performed in order to resolve the 

conflict.   After all, this had happened earlier, when Ziki told Sarsi that  “cher...say dorection 

have negative” (see Table 5.11).  The reader might be interested to know that several weeks 

after this session, I bumped into Sarsi at school and casually asked him if he thought work 

done and potential energy are equivalent, to which he replied, “Of course, same unit [Joules] 

what”.

5.6 Chapter Summary

In this chapter, I described the design, implementation and evaluation of my pilot study.  I 

showed  that  the  intervention  provided  deep  insights  into  students'  misconceptions  and 

misunderstandings,  which  allowed  me  to  conduct  'prescriptive  tutoring'  centred  on  the 

students' specific misconceptions and misunderstandings.  As a result of the intervention, their 

physics  grades  improved  significantly,  and  the  students  reported  that  they  were  fairly 

comfortable with the intervention despite their many years of exposure to other (less dialogic) 

approaches.  The study also revealed that their physics teacher (Mr Ng) found the information 

gleaned from the CMCPS sessions to be insightful and useful, and he reported that he would 

want to try out the intervention in his physics class for the academic year 2009, even though 

his class was not earmarked for involvement in the study.

Given the positive results of this pilot study, the school had given me permission to involve the 

entire 4E1 class in my revision intervention for the entire 2009 academic year.  In that setting,  

novelty, motivation, aptitude and other such factors would have been normalised given the 

temporal/longitudinal  nature  of  the  research  work.   Naturally,  conducting  the  intervention 

during regular term time and during standard curriculum hours require some changes made to 

the implementation of the intervention, and Chapter Six provides a such discussion on the 

design, implementation and evaluation of the main study.
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CHAPTER SIX

MAIN STUDY DESIGN, IMPLEMENTATION & EVALUATION

This chapter focuses on the design, implementation and evaluation of the main study.  I start 

the chapter by stating my research questions, some of which are similar in focus to the pilot 

study  (e.g.  whether  there  had  been  improvements  in  students'  physics  understanding, 

resulting in improved test scores), and others which have surfaced as a result of the research 

implications of the pilot study (e.g. whether students' specific difficulties when solving physics 

questions could be derived from the CMCPS protocol data).  Thereafter, I provide a discussion 

on the changes made to the intervention in order to conduct it during term time and within 

curriculum hours in school based on a whole class setting.  Next, I describe the procedure and 

time-line for the main study.  I then provide a discussion on my data collection and analysis, 

elaborating how the research questions were answered in the study.  Thereafter, I provide a 

discussion of the findings of this main study, including a description of specific difficulties the 

students faced when solving physics questions, as well as a discussion on fostering dialogic 

pedagogical classroom activities.

6.1 Research Questions

The main study reported in this chapter is the second iteration of my design experiment and 

was made possible given the positive results of the pilot study as reported in Chapter Five. 

From the perspective of the school community (especially the Principal, Vice-Principal, Head of 

Department  for  Science,  and  students  of  4E1),  their  objective  for  being  involved  in  the 

intervention essentially centred on our joint belief that the students' results would improve as 

a  result  of  involvement  in  the  intervention.   This  belief  was  supported  initially  by  the 

theoretical foundations embedded within the intervention (as discussed in Chapters Two and 

Four), and later by evidence from the pilot study.  Despite the success of the pilot study, I 

recognised that the involvement of an entire class of physics students would certainly be more 

complex than merely involving a small group of students.  Hence, a key research question I 
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wanted to answer was whether the students' results would improve as a result of involvement 

in the intervention in spite of a larger, class-based setting.  I no longer needed to discover if I 

were able to obtain deep insights into the students’ misconceptions/misunderstandings from 

their protocol data, as the pilot study had convincing shown that it was indeed the case.  Given 

the longitudinal nature of the main study, I also wanted to evaluate the students' interest in 

physics,  their perceptions on whether group work helped them in solving physics problems, 

and their impressions of the intervention in general.  In addition to evaluating the intervention 

from a students' consequence perspective, I also wanted to evaluate the intervention from a 

teacher's  consequence perspective.   Towards  that  end,  I  wanted  to  obtain  the  teacher's 

personal reflection of being involved in the intervention.  Also, I wanted to answer questions 

that arouse as a result of the findings of the pilot study.  Hence, in short, the overarching 

objective of the main study was for me to answer the following research questions:

(i) As  a result  of  immersion in  my intervention,  to  what  extent did  students’  learning 

outcomes improve?

(ii) What were the key themes that stood out for the teacher, when she reflected on her 

involvement in the intervention?

(iii)How,  if  at  all,  had  the  students'  physics  revision  practices  changed  after  the 

intervention?

(iv)How comfortable were the students with the intervention, given their years of exposure 

to other approaches?

(v) What were the specific difficulties that students faced when solving physics problems?

6.2 Pre-intervention Activities and Considerations

While the pilot study was conducted during term time, it was conducted during the final weeks 

of the academic year, when teachers are usually more focussed on administrative endeavours, 

such  as  the  annual  students'  promotion  exercise  and  recommendations  on  what  subjects 

should be dropped by which students.  As such, while the students still had regular lessons 

during  'standard  curriculum  time'  (SCT;  from  7.30am  to  1.30pm),  there  were  no  'after 

curriculum time'  lessons (ACT; usually  from 2pm to 3.30pm).  ACT lessons are  especially 
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common for secondary three and four students, and it is not unusual for students to attend 

ACT lessons three times a week.  As the intervention for the pilot study was conducted on a 

daily basis consecutively during ACT time, we had no restrictions on a fixed ending time since 

the students did not need to rush off to another lesson when the bell rang.  As we had no fixed 

ending time, I usually ended the CMCPS sessions when all the students had completed the 

questions, or when I felt that the students had reached the tail-end of their productivity cycle 

(which I found to be about one and one-quarter hours).  Given the dialogic nature of the PT 

sessions, each PT session usually lasted about one and three-quarter hours.

With the beginning of the new academic year (there are four academic terms per year, and 

each term lasts ten weeks), the students'  timetables (both SCT and ACT) were filled with 

lessons.  Additionally, the maximum consecutive number of periods given per lesson was only 

two.  Since each period is only 30 minutes, it was impossible to replicate the pilot intervention 

design for the main study.  Also, given that most of the students were taking seven subjects 

for  their  GCE  'O'  level  examinations,  there  was  less  than  one  hour  of  instructional  time 

available per day per subject.  The total time available for subject instruction was even lower 

given the students' involvement in other co-curricular activities, such as participation in the 

school band or peer counselling.

As I was working within the constraints of the school, no special concessions were given for 

physics.  Hence, we (Ms Er and I) decided to conduct the CMCPS sessions during ACT and the 

PT sessions during SCT.  Naturally, this would mean that the PT sessions would be stretched 

over different SCT physics lessons (e.g. four periods across different days), which I did not feel 

was ideal but was nonetheless unavoidable.  Given the students' already packed ACT schedule, 

we could only schedule three CMCPS sessions for the first academic term (students' schedules 

are assigned on a per-term basis).  Initially, I had planned to conduct at least five CMCPS-PT 

cycles per academic term, with each CMCPS-PT cycle covering one physics topic (there are 22 

examinable topics).  However, this was not possible given the students' schedules, and so I 

worked my intervention around what was possible and not what was ideal.  Additionally, the 
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top two physics students (Xian and Chan) requested at the start of the year to be excused 

from taking part in the intervention.  They commented that they had consistently scored very 

high marks for all their physics tests and exams, and did not think that the intervention could 

help them further (since they had already been consistently scoring A1 for physics).  They 

supported their request by explaining that they wanted more time to revise for their other 

subjects, which was a reasonable request since students could already 'skip' remedial classes 

(usually conducted during ACT) for subjects that they excel in.  Ms Er encouraged both Xian 

and Chan to keep an open mind and try out the intervention before making a final decision. 

She told them that if they still wanted to opt out of the intervention after trying it, they would  

be allowed to do so.  When Ms Er informed me of the possibility of Xian and Chan dropping out 

of  the  study,  I  was  concerned  as  it  would  impact  my  research  study  from  both  a 

methodological as well as theoretical perspective.  From a methodological perspective, it would 

make comparing class-based average physics test scores across the years difficult.  From a 

theoretical  perspective,  the  students'  zone  of  proximal  development  would  have  been 

negatively impacted given the absence of these 'peer coaches', who were popular in class since 

they shared their physics knowledge with the other students.  I had discussed this issue with 

my supervisor (Neil Mercer) and collectively we agreed that such was the nature of real-world 

research and we would address the additional methodological/theoretical  issues should the 

need arise.   Silently,  I  was  hopeful  that  they would  find  the  intervention  interesting  and 

helpful, and hence would choose to continue with the intervention.  Fortunately, after they 

participated in the first CMCPS-PT cycle, they decided to continue with the intervention. Xian 

had disclosed in a reflection exercise (see section 6.4) the reason for his decision to continue 

with the intervention:

Although it was optional for me to go for this prescriptive tutoring, I chose to go for 

it as I thought it would benefit me a lot more than the normal physics lessons did. 

This was because I could expose my physics knowledge and concepts to my fellow 

classmates and teachers in a much clearer and easier manner, thus they could 

brought up my misconceptions/misunderstandings, so that I could correct them 
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and remember the right concepts.  Also prescriptive tutoring helped me see my 

fellow classmates' various means of solving any particular questions which might 

be different from mine.  Therefore prescriptive tutoring is beneficial to me (Xian, 

22 Apr 2009; reproduced verbatim).

Given the workload needed for implementation of the intervention, Ms Er and I decided that for 

the first term, I would conduct the CMCPS sessions, prepare the PT 'notes', and conduct the PT 

lessons.  Initially, she would observe what I did (including analysing the protocol data) and 

over time, my scaffolds would fade such that by the end of the year, she would be conducting 

the entire intervention by herself.

6.3 Procedure and Time-line

The substantive portion of the main study was carried out from 8 Jan to 18 September 2009, 

with the students taking the bulk of their GCE 'O' level examinations in October and November 

2009 (practicals and mother tongue language examinations were conducted in June).  There 

were a total of 23 students in 4E1 who took pure physics, and despite the teachers' (Ms Er and 

Mr Ng) initial suggestion for three students (Gabo, Dino, and Zhan) to drop the subject in the 

academic year 2009, no student did.  This was presumably due to their increased interest in 

the subject, as well as their belief that they would do well for the subject (see section 6.4).

Figure 6.1 summaries the key events of the main study.  In total, 12 CMCPS-PT cycles were 

conducted,  covering  various  concepts  from  16  topics:  Pressure,  Kinetic  Model  of  Matter, 

Transfer  of  Thermal  Energy,  Temperature,  Thermal  Properties  of  Matter,  General  Wave 

Properties,  Light, Electromagnetic Spectrum, Sound, Static Electricity, Current of Electricity, 

D.C. Circuits,  Magnetism, Electromagnetism, and Electromagnetic Induction.  There was at 

least one CMCPS-PT cycle conducted every month of the academic year leading up to the GCE 

'O' levels in October, except for May and June when the students were busy preparing for and 

taking their 'O' level mother tongue language papers, as well as their Chemistry and Physics 

'O'  level  practical  examinations,  and  September  when  the  students  were  taking  their 
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preliminary examinations.

Figure 6.1: Schedule of key events for the main study

6.4 Data Collection, Analysis, and Findings

Like the pilot study, both quantitative and qualitative data were collected for this main study. 

Three  short  survey  questions  regarding  their  perceptions  of  group-work  were  posed  and 

collected  after  every  CMCPS sessions.   Also,  four  student  surveys,  two student  reflection 

pieces,  and  two  teacher  reflection  pieces  were  collected  in  addition  to  test  score  data. 

Additionally, video recordings for the first hour of every PT session were made.

6.4.1 Evaluation of Students' Learning Outcomes

While  results  from the  pilot  study  suggests  that  the  intervention was  effective  in  helping 

students improve their understanding of physics concepts, resulting in improved test scores, I 

wanted  to  know  whether  similar  effects  could  be  experienced  in  a  whole-class  setting. 

However,  I  was  unable  to  replicate  my initial  control/alternate/intervention  groups  with  a 

pre/post test methodology due to logistical and resource constraints.  I had the resources to 
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only work with one school for this research study, and because Bartley had only one class of 

students at the secondary four level taking pure physics, I had no control group to work with. 

In addition, it was not feasible for me to approach another school to have them offer me a 

class of students who would serve as a control group because I would have nothing of value to 

offer  them in  return  (especially  since  those  students  would  be  taking  their  GCE 'O'  level 

examinations  at  the  end  of  the  year  as  well).   Hence,  in  order  to  have  some  form  of 

meaningful  comparison  in  order  to  ascertain  whether  the  intervention  had  indeed  been 

effective, I obtained historical test score records from the school.  In particular, I obtained the 

actual GCE 'O' level physics scores for the past six years (from 2003-2008), as well as the 

cohorts'  expected physics scores.  The  expected score is directly derived from the students' 

PSLE scores (see  Chapter  Four),  and the  Singapore Ministry of  Education uses  this  score 

(known as the expected mean subject grade, or expected MSG) to evaluate whether a school 

had  'value-added' to a student's academic performance (see Ng, 2007, for a discussion on 

how  the  Singapore  Ministry  of  Education  assures  educational  quality  in  Singapore  public 

schools).  Broadly, a student's MSG is calculated based on the numerical grade (as compared 

to the absolute score) that student obtained for his/her respective subject.  Distinction grades 

are A1 and A2, pass grades are B3, B4, C5, and C6, while fail grades are D7, E8 and F9. 

Hence, if student Alpha obtained a B3 for physics, his physics MSG is 3, while if student Beta 

obtained a C4 for  physics,  then his  physics  MSG is  4.   Combined,  their  average MSG for 

physics would be 3.5.

Based on discussions  with  my supervisor  (Neil  Mercer)  and  advisor  (Christine  Howe),  we 

collectively decided that comparing the GCE 'O' level results of the 2009 cohort against an 

averaged MSG of several previous cohorts would be more equitable than comparing it against 

specific years' results.  Also, to provide another basis for comparison, I obtained the students' 

GCE 'O' level chemistry scores, since students who took physics also took chemistry, and being 

a natural science subject involving abstract concepts, chemistry is somewhat similar in nature 

to physics.  Biology scores were not considered because it was only recently offered in the 

school.  It is noteworthy that the classroom configurations have remained very similar during 
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the past years; only students in the 4E1 class of each cohort took pure chemistry and physics. 

Hence, I am comparing similar groups of students in the 4E1 cohort across the years.

For the 2009 GCE 'O' level examinations, every student had passed their physics examination. 

It is noteworthy that even the three students who were ear-marked at the end of secondary 

three to drop physics due to their consistent failure had passed the subject – Gabo had scored 

a B3, while both Dino and Zhan had scored a C5.  No student scored below a C5, while the 

mode grade was a B3.  Expectedly, both Xian and Chan scored A1s, while five other students 

also scored distinction grades.  The break-down of their results is provided in Table 6.1.

Table 6.1: Summary of the students' 2009 GCE 'O' level physics grades

GCE 'O' level Physics Grade Number of Students

A1 (distinction grade) 3

A2 (distinction grade) 4

B3 (pass grade) 12

B4 (pass grade) 1

C5 (pass grade) 3

C6 (pass grade) 0

D7 (fail grade) 0

E8 (fail grade) 0

F9 (fail grade) 0

Table  6.2  provides  a  summary of  the  comparison of  physics  (and chemistry)  test  scores. 

Looking specifically at the data for physics, it is worthwhile noticing that the students' 6-year 

and 3-year average physics scores are similar at 3.75 and 3.8 respectively.  Comparing the 

2009 cohort's 'O' level average MSG with the 6-year and 3-year average MSG reveal that the 

2009 cohort  outperformed these two averages by almost one entire  grade point  (2.87 as 

compared to 3.75 and 3.8).  Additionally, the 2009 cohort did much better than was expected 

of them, given that the cohort was expected to obtain an average MSG of 4.2 when they had 

achieved an average MSG of 2.87 instead.  In other words, it may be considered that the 

intervention  value-added to students' performance by almost one and one-half grade points 

(from 4.2 to 2.87).
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I wanted to obtain another means of comparison and, hence, included the students' chemistry 

scores in Table 6.2.  The MSG for chemistry also improved significantly for the 2009 cohort – 

from about 4.03 and 4.06 for the 6-year and 3-year average MSG respectively to 3.29 for the 

2009  cohort.   On  the  surface,  this  data  could  be  indicating  that  the  2009  cohort  did 

exceptionally well in general,  and a claim could be made that the 2009 cohort's improved 

physics scores is not an indication that the intervention was effective.  In order to evaluate this 

claim, it is necessary to ascertain whether physics 'outperformed' chemistry on a comparative 

basis.  To perform such a comparison, I calculated the  difference in chemistry and physics 

actual MSG for the 'O' level examinations.  I found that the 6-year and 3-year average MSG 

difference were similar, at 0.28 and 0.25 respectively (in favour of physics).  However, for the 

2009 cohort, the difference in average MSG for the 'O' level examinations between chemistry 

and physics is 0.42 in favour of physics.  Given that the difference in MSG between chemistry 

and physics had actually increased in favour of physics for the 2009 cohort, the result suggests 

that the intervention did play a role in the 2009 cohort's physics test scores.

Table 6.2: Comparison of MSG results

Physics Chemistry

Expected MSG 'O' level MSG Expected MSG 'O' level MSG

2009 4.20 2.87 4.20 3.29

3-year average

[2006-2008, 

inclusive]

4.20 3.8 4.20 4.05

6-year average

[2003-2008, 

inclusive]

4.03 3.75 4.03 4.03

In short, based on an analysis of the available quantitative data consisting of historical test 

scores from a standardised international examination, the evidence suggests that immersion in 

the  intervention  contributed  to  improved  students’  learning  outcomes,  leading  to  an 

improvement by almost one and one-half grade points as indicated by their average actual 
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GCE 'O' level MSG compared with their expected average MSG, or almost one grade point as 

indicated by their average GCE 'O' level MSG compared with either the historical six-year or 

three-year  average  MSG.   It  is  also  important  to  note  that  every  cohort  included  in  the 

comparison  with  the  2009  batch  had  students  who  dropped  physics  on  their  teacher's 

recommendations at the end of secondary three.  However, this was not the case for the 2009 

cohort. 

6.4.2 Teacher's Initial Reflection of Involvement in the Intervention

Throughout the main study, I obtained Ms Er's reflection on her involvement in the intervention 

twice.  The first occasion was early on in the year (in Feb 2009), after we had conducted two 

CMCPS-PT cycles. I had asked Ms Er for her impressions on the intervention thus far, and she 

said that she would reflect on the intervention (and her involvement in it), and provide me 

with a written response.  She asked if I needed her to address any issues specifically, or if 

there was a 'word count' I would require.  As I wanted to know what was important to her  

from her perspective, I responded that I had no specific requirement, and that my only request 

was that she provided me with something that was frank and thought through.  Given her busy 

schedule (in addition to teaching/administrating in school, she was also enrolled for a Master 

degree program at the Singapore National Institute of Education), she took about two weeks to 

provide me with her written reflection.  By this time, we had already completed the third 

CMCPS-PT cycle.

Her written response consists of five paragraphs, and is 393 words long.  I shall produce her 

reflection  piece  verbatim,  and  provide  a  discussion  of  her  reflection  on  a  paragraph-by-

paragraph basis.  The first paragraph from her reflection piece is provided below:

The Prescriptive Tutoring project has been very useful  in helping me to identify 

specific  misconceptions  and  learning  difficulties  that  my  students  face  in  the 

learning of physics. Benson has been very helpful in facilitating the process, with 

sincere commitment to sustain this project in the long run at Bartley. He has been 
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very generous with his time to guide the students in their learning journey and 

support us teachers in implementing this project, be it the selection of contextual 

rich questions, the skill of reviewing chat logs or the sharing of insights he gathered 

about the students.  (Ms Er, 22 Feb 09, paragraph 1).

In  her  first  sentence,  she  identified  that  the  intervention  helped  her  to  identify  specific  

misconceptions and learning difficulties that her students faced in the learning of physics.  For 

example, Figure 6.2 provides protocol data taken from the second CMCPS session, which was 

used in its corresponding PT session.  In brief, while attempting to solve a question on basic 

wave properties, Rarty referred to the textbook and found the general wave formula (v = f λ). 

He also found (on page 214 of the textbook) a section stating that as sea water rushes to 

shore, its' speed decreases.  Hence,  Googi (Chan's nickname for this session) concluded that 

“v decreases”.  Rarty then asked “what is v...volume or speed[?]”, which indicated that he was 

not sure what the variables in the (basic) formula 'v = f  λ' represented.  When Ms Er and I 

were talking about this particular discourse snippet prior to the PT session, I mentioned that I  

found it really hilarious that Rarty would think that the 'v' in 'v = f λ' could represent “volume”. 

She replied that she “wanted to cry in frustration” when she saw that particular comment, and 

was surprised that Rarty would think that 'v' could represent “volume”.
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Figure 6.2: PT slide taken from PT session 2

Figure  6.3  provides  another  PT  slide  taken  from the  second  PT  session.   Students  Bobo 

(Mumo's nickname for that session) and Lopi were attempting the same question (Question 2), 

and Mumo had referred to the text book (specifically to page 214), where he also read that as 

sea water rushes to shore, its speed decreases.  However, he was unable to explain why its 

speed decreases, and neither could Lopi.  Ms Er and I agreed that students should not merely 

memorise the fact that as sea water rushes to shore, its speed decreases (or more generally,  

when a wave enters a shallower region, it's speed decreases).  Hence, I explained in class that 

it is because of the friction between the water and the sand at/near the shoreline that causes 

the speed of the sea water to decrease as it reaches the shore (see Figure 6.4).
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Figure 6.3: Another PT slide taken from PT session 2

Figure 6.4: Benson explaining question 2 in class

After  my  explanation,  the  students  remained  somewhat  silent.   At  this  moment,  Ms  Er 

contributed to the explanation (see Figure 6.5; she was off camera and on the right, so the 

students turned their heads to look at her) and told the students that “another thing you can 

think of is, if the speed keep increasing as it goes to the shore, it will never stop – it will just 
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keep moving.  It must slow down then it can U-turn, just like free fall. If you throw a ball up, if  

the speed does not decrease it will keep going up.  Until the speed [dramatically decrease and 

slow down so that it can return?] (students laughing).  So the speed must slow down then can 

return, just like the water must return.”

Figure 6.5: Ms Er contributing to the explanation of question 2 (off camera on the right)

I believe it was such instances that made Ms Er reflect that the intervention was very useful in 

helping her to identify specific misconceptions and learning difficulties that her students face in 

the learning of physics.

The second and third sentences (of her first paragraph) reflects her acknowledgement that I 

was fully committed to the project, and spent time selecting the questions to be posed for the 

CMCPS sessions, reviewing the chat logs with her, sharing with her my opinions on how to 

address students' misconceptions, and even creating the first three PT 'notes' and conducting 

the PT sessions.  I had conducted the first two PT sessions while she observed and contributed 

from the sidelines, and we co-conducted the third PT session together.  Throughout this time, I 

took care not to behave and act like the information gathered (e.g. students' misconceptions) 
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and  created  (e.g.  PT  'notes')  were  exclusively  mine,  and  I  believe  she  appreciated  and 

reciprocated by being actively involved in the intervention and sharing her views with me 

liberally.   Beneath  the  surface,  I  believe  she  was  trying  to  indicate  that  the  intervention 

required a lot of time and effort to conduct, and on her own, she would be unable to conduct 

the intervention (as per how I was doing it) on her own.  We had spoken about the effort 

needed to source for  appropriate questions,  set up the computer laboratory, print  out the 

discussion logs, review and analyse the logs, and finally produce some form of documentation 

that was helpful during the PT sessions.  At present, teachers are not required to do any of 

these activities, and even the sourcing of questions (for traditional revision lessons) is made 

simple  by  the  existence  of  pre-prepared  'Ten-Year-Series'  (TYS)  worksheets  or  test  and 

examination papers from other schools.  I told her that while I think context-rich questions are 

more thought provoking and could yield interesting student insights, we did get deep student 

insights from the 'regular' questions we posed as well.  Additionally, I suggested that the more 

technical/administrative  tasks,  such as the setting up of  the computer  laboratory and the 

printing of discussion logs, could be handled by the school's IT assistant (Mr Das).  She said 

that if she needed his help on a regular basis, then she would need his reporting officer (the 

Head of Department for IT) to give his permission.  Alternatively, she said she could consider a 

work-around  using  her  own  staff  (e.g.  asking  a  more  IT-savvy  experimental  laboratory 

assistant to perform this task), but was concerned that the lab assistant's job scope does not 

include  computer-related  duties.   Sensing  that  she  might  be  facing  certain  constraints,  I 

offered to continue performing such technical/administrative tasks until a suitable solution as 

to who would provide such technical/administrative support could be found.

 

The second paragraph from her reflection piece is provided below:

I  noticed  an  increased  motivation  in  this  group  of  Physics  students  who  had 

participated in this project. I attribute this to the deeper understanding they are 

able attain in the various concepts via this project. This “deeper understanding” 

came about because students are “forced” to verbalize their logical thinking both to 
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their peer and teacher. The collaborative nature of the computer laboratory sessions 

also encouraged them to learn from one another and “talk” about Physics in a non-

threatening  environment.  Previously,  the  interaction  was  mainly  between  the 

teacher and student via homework exercises and during lessons. (Ms Er, 22 Feb 09, 

paragraph 2).

Ms Er had perceived an increase in motivation of the physics students and attributes this to a 

deeper  understanding they  had  attained  in  various  physics  concepts  as  a  result  of  the 

intervention.  In my surveys, I did not ask the students about how motivated they were to 

study physics, but I did ask them during the initial conducted on 20 Oct 08 and second survey 

conducted on 12 Feb 09 how much they liked learning physics (Figure 6.6 illustrates how this 

question was posed).  All 23 students answered both surveys, and the average score for the 

initial survey is 2.17, while the average score for the second survey is 1.96.  Hence, the survey 

data supports Ms Er's perception of increased motivation (see also section 6.4.4).

Figure 6.6: Survey question to ascertain how much students like learning physics

In  the  third and forth sentences,  Ms Er  revealed her  perception that  because the CMCPS 

sessions force students to verbalise their thinking processes to each other (and hence also the 

teacher),  they  come to  a  deeper  understanding  of  the  physics  concepts  being  discussed. 

Additionally, she recognises that the collaborative nature of the CMCPS sessions  encourages 

students to learn from one another and talk about physics in a non-threatening environment. 

Table  6.3  provides  an  illustration  of  such  a  “talk  about  physics  in  a  non-threatening 

environment”.  As can be seen from the discussion snippet provided in Table 6.3, Dino had 

“forgot” about the concepts in the topic, pressure.  However, Wagi did not chide Dino and 

instead engaged Dino in problem-solving as an equal by seeking her opinion (e.g. “listen to my 

explanation whether it sounds logical”).  Eventually, both students collaboratively obtained a 
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valid  answer  to  the  problem,  with  Dino  expressing joy  at  the  end of  the problem-solving 

endeavour.

Table 6.3: Illustration of talk about physics in a non-threatening environment

Question Posed Discussion Snippet
John and Cindy filled a 

manometer with an 

unknown liquid of 

density 50,000kg/m3 as 

shown in Setup 1. 

They then introduced 

an unknown gas into 

the manometer as 

shown in Setup 2. 

John calculated the 

pressure of the 

unknown gas to be 

50,000 Pa, while Cindy 

says it is 100,000 Pa. 

Who (if any) is correct? 

(Assume atmospheric 

pressure is 100,000Pa) 

[2]

Dino: i forgot le

[Here, Dino states that she has forgotten, presumably about the topic.]

Dino: u ?

Wagi: tinking ...

Wagi: i tink both wrong..

[Notice that Wagi did not chide Dino for forgetting, and instead stated that  

she thinks that both John and Cindy were wrong.  She is indeed correct,  

but has not yet offered reasons for her answer.]

Dino: wait ah

Dino: i think first

Dino: is density the pressure of a liquid?

Dino: or is it onli for mercury?

[Here, we see evidence that Dino had indeed forgotten about what she has  

learnt  for  this  topic.   She  equates  density  with  pressure,  which  is  

incorrect.]

Dino: eh

Dino: nono

Dino: i sae wrong alrd

[Dino  meant  that  “i  sa[y]  wrong  alr[ea]d[y]”,  which  implies  that  she  

recognised that density and pressure are not equivalent]

Wagi: listen to my explanation whether it sounds logical

[Wagi has an explanation, but is not sure if it is “logical” and hence asks  

Dino for her opinion.  Notice that Wagi still asks for Dino's opinion despite  

the fact that Dino had shown that she had forgotten much about the topic.]

Dino: ok

Wagi: in this situation the pressure of unknown gas shld be more than of 
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atm pressure..

[Wagi is saying that in the situation depicted at Setup 2, the pressure of  

the unknown gas should be more than the atmospheric pressure.  She is  

indeed correct, and provides further explanation in her next statement.]

Dino: ya

Wagi: therfore the pa on the liquid is atm pa with liqiud pa

[While's Wagi's explanation is not precise, her answer is broadly correct.  A  

more precise explanation would be to say that the pressure on the liquid  

just beneath the unknown gas is the sum of the atmospheric pressure plus  

the  liquid  pressure  caused  by  the  difference  in  height  of  the  liquid  

columns.]

Dino: and the pressure on set up 1 should be equal to the atmospheric 

pressure right

[Following Wagi's line of reasoning, Dino contributes to the thought process  

and asks if the pressure at the surface level of the liquid must be equal to  

atmospheric pressure for Setup 1...]

Wagi: yes

Dino: so both not correct

[...and upon confirmation from Wagi, concludes correctly that both John  

and Cindy were incorrect, since their calculated values was no higher than  

atmospheric pressure]

Dino: :D

[Dino draws a 'happy smiling face' to express her joy at contributing to the  

answer]

Ms  Er  acknowledged  in  her  final  sentence  (of  the  second  paragraph)  that  traditionally, 

interaction between her and her students had been via homework exercises (when she marks 

their solutions to the questions posed)  and during lesson time (when they ask questions, or 

give answers to her questions).  Presumably, she is implying that the CMCPS sessions extend 

the interaction she has with her students.
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The third paragraph from her reflection piece is provided below:

The  tutoring  session  conducted  after  the  computer  laboratory  session  was  a 

focused and purposeful remediation where the common mistakes/misconceptions, 

as well as answering techniques were addressed using examples from the students’ 

chat log. This provided a realistic background to the kinds of potential mistakes 

they can make during assessment. (Ms Er, 22 Feb 09, paragraph 3).

In  her  third  paragraph,  she  stated  that  she  found  the  PT  sessions  to   be  focused  and 

purposeful  not  only  for  addressing  mistakes  and  misconceptions,  but  they  also  address  

students' answering techniques.  For example, Figure 6.7 depicts a slide used in the first PT 

session.   When asked to  explain  if  (and why)  John would  feel  the same amount  of  pain 

regardless of whether it was  a boy on a bicycle (40kg) or a man on a motorcycle (120kg) 

rolling  over  his  legs,  Zouk  provided  an  instinctive,  'everyday'  answer  instead  of  a  more 

appropriate, 'scientific' one (see Mortimer & Scott, 2003, p. 13, for a discussion on the social 

language of science).  Initially when we were discussing possibilities for why Zouk could have 

provided such an answer, we thought that it was because her 'concept awareness' was weak. 

While I believe that Zouk's awareness of the appropriate concepts to use when solving that 

particular physics question was weak, I also believe that her provision of an 'everyday' answer 

was  a  direct  response  to  the  'everyday'  nature  of  how  that  question  was  posed.   Said 

differently,  students  often  try  to  provide  'scientific  answers'  if  the  questions  posed  are 

'scientifically phrased', and provide instinctive 'everyday answers' if the questions posed are 

phrased  in  a  natural,  social,  and/or  non-scientific  prose.   Sub-section  6.5.2.2  provides  a 

further discussion on this matter.

In the final sentence of her third paragraph, I believe the word “realistic” was used to highlight 

the actual mistakes that students make, as opposed to the ones inferred by, say, a teacher 

when marking answer scripts.
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Figure 6.7: Slide showing Veve's 'unscientific' answer 

The fourth paragraph from her reflection piece is provided below:

Reviewing the chat logs also provided me with deeper insights about the learning 

progress and difficulties faced by my students. I am delighted to find significant 

improvement (in terms of conceptual reasoning) in some of my students, who were 

struggling last year. It is obvious that the collaborative learning environment (which 

provided a useful learning alternative) and the immediate focused remediation after 

the laboratory sessions played an important role in helping these students to clarify 

their doubts. The chat logs also pointed out the learning gaps that my students face 

which enabled me to tackle it quickly in the classroom lessons during revision. (Ms 

Er, 22 Feb 09, paragraph 4).

In this paragraph, Ms Er essentially acknowledged that reviewing the students' discussion logs 

provided  her  with  deeper  insights  about  her  students'  learning  progress  as  well  as  the  

difficulties  they  face  in  understanding  the  topic.   For  example,  when  we  were  discussing 

insights  gleaned from the third CMCPS session, she told me that  when teaching the topic 
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pressure, the term “vacuum” is often mentioned in passing as it was expected that students 

understand what a “vacuum” means and implies.  However,  the students' discourse during the 

third CMCPS session shows clearly that they do not understand what actually a “vacuum” is 

(see Figures 6.8 and 6.9).  As a result of this insight that she has gained, she mentioned to me 

that she would spend some time to ensure that students in her future classes understand this 

basic term before she actually teaches about the various concepts of pressure.

Figure 6.8: Question posed during the third CMCPS involving the term “vacuum”
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Figure 6.9: Students' discourse revealing their  lack of knowledge of the term “vacuum”

Ms Er reported that she found  significant improvements in terms of conceptual reasoning in 

some students who were struggling last year.  Earlier in our discussions, she had mentioned 

specifically  that  she saw improvements  in  Mumo's  and Gabo's  conceptual  reasoning skills. 

While it is tempting to suggest that such improvements may be seen after only three CMCPS-

PT  cycles,  Mumo and  Gabo  had  taken part  in  the  pilot  study.   Hence,  they had  in  total  

undergone six cycles of the intervention.  Since “[m]ost learning does not happen suddenly: 

we do not one moment fail to understand something and the next moment grasp it entirely” 

(Barnes,  1992, p.  123.),  some amount of  time is  needed for  students  to  understand and 

appreciate the objectives of the intervention so as to benefit from it.  Naturally, while the time 

required will vary for different students, Ms Er was able to see the improvements in Mumo and 

Gabo (and possibility other students) by February 2009.  To Ms Er, it is  “obvious that the 

collaborative learning environment”  (i.e.  the CMCPS sessions) and the “immediate focused 

remediation”  (i.e.  the  PT  sessions)  thereafter  “played  an  important  role  in  helping  these 

students to clarify their doubts”.  Her observation that the intervention helps students to clarify 

their doubts has been reported by the students themselves as well (see sub-section 6.4.4.1).
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The fifth (and final) paragraph from her reflection piece is provided below:

I find that this project complements and supports what I am currently teaching in 

the classroom. Specifically,  misconceptions were arrested and addressed earlier, 

preventing a snowballing effect. I am happy to be involved in this project and I look 

forward to more sessions with my students.  (Ms Er, 22 Feb 09, paragraph 5).

As a revision intervention, Ms Er recognises that the intervention complements and supports 

her teaching activities in the classroom, in the sense that “misconceptions were arrested and 

addressed earlier”.  She concluded the reflection piece by stating that she “look forward to 

more sessions with [her] students”.  In my opinion, her willingness to go forward with the 

intervention (whereby she would play a much greater role in the intervention) lends weight to 

what she has provided me in this reflection piece, and is essentially an acknowledgement of 

the positive outcomes she sees in the intervention.

6.4.3 Teacher's Final Reflection of Involvement in the Intervention

In early September 2009, after the conduct of our final CMCPS-PT cycle, I asked Ms Er to 

provide me with her final reflection of her involvement in the intervention.  I had asked if she 

could address thee specific  main themes in her reflection (see Appendix 6.1) and she did 

provide me with answers to those questions (see Appendix 6.2).  However, she surprised me 

with  a  narrative  paper  (on 5th October  2009),  which  she  had  written and  submitted  just 

recently as part of her MEd course-work on Professional Development (PD) and Professional 

Learning (PL).  Entitled “PD & PL Narrative Paper: Inquiring Into My Professional Development 

and Learning Trajectory through Narratives”, the 3,165 word-count paper contains her personal 

narrative of her involvement in the intervention.  She had sent it to me purely because she 

thought  I  might  be  interested  to  read  her  narrative,  since  it  focused  exclusively  on  the 

activities and events pertaining to the intervention.  It is this narrative that I have chosen to 

be included in this dissertation for discussion.  In my opinion, this personal narrative is her 

reflection in which she talks about matters that  were significant to her, and in this sense, it 
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provides a much more authentic account of her final reflection on the intervention.

Broken down into six distinct sections, she starts her narrative by first describing her first 

meeting with me in 2008 (this section was entitled “The meeting on 2nd Semester, Year 2008”). 

She expressed that my presentation to her and the Principal on the proposed intervention 

“sounds good...No harm to give it a try to see what happens”.  She emphasised that after I 

had presented the positive results of the pilot study, what got her more interested in the 

intervention “was when Benson further presented selected snapshots of students' chat-logs of 

the misconceptions that surfaced and how they were addressed.”  In other words, the 'hook' 

that  got  her  interested  in  the  intervention  was  when  I  showed  her  the  students' 

misconceptions, many of which neither Mr Ng nor she had knowledge existed in their students' 

minds.

In her second section, entitled “The tension and struggle”, she explains,

I taught Physics for five year and have been through a powerful initiation into the 

culture  of  using  assessment  as  the  ends-means  tool...I  had  become  more 

pragmatic.   The goal of a good O level results has closed the doors to several 

creative  teaching  and  learning  strategies  that  is  deemed  as  taking  too  much 

time....a “Drill  and Practice” (D&P) approach is put in place to ensure sufficient 

repetition of  core  and popular  concepts  being tested.   D&P focus  on rigor  and 

places an importance in the practice of past year Cambridge papers for the basic 

standard and other school papers for an improvement in the Physics standards in 

my students.

She  had  initially  thought  that  the  D&P  approach  was  effective  in  helping  students  gain 

conceptual understanding, and “[w]ith good results that validated my teaching approach for 

the past two years, I have continued and even intensified in the D&P rigor”.  However, she 

“started to have nagging doubts about the effects of such intensive D&P on my students' 
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achievement  and  cognitive  development  beyond  the  O  levels.   Some  students  who  have 

graduated  returned  and  lamented  how  they  are  not  able  to  cope  at  the  next  level  of 

education.”  She also reflected on her position as the Head of Department for Science, and 

“felt upset that my core duty as a teacher has been neglected.”  She recognises that “most of 

my students have experienced failure in the educational system at PSLE (with low PSLE score)” 

and decided to “[f]orget about creative teaching methods where students seemed to learn 

better and are excited; but this does not translate into good academic results. I made the 

decision to use assessment as the driving force in my teaching and only infused selected 

'creative' learner-centered strategies in some of my lessons.”

In her third section, entitled “Prescriptive Tutoring with Benson”, she stated her decision to 

continue with the intervention “for another year with the same group of students and measure 

their improvement through the O level results”.  She had been “bought in by the theories that 

validated  this  PT  approach,  the  positive  findings  in  the  pilot  student  and  the  amount  of 

misconceptions  that  had  been  surfaced”.   She  was,  however,  concerned  that  due  to  the 

intervention, a longer time is now “required to complete the revision of each topic using the PT 

revision  approach  as  compared  to  the  traditional  D&P  revision  approach.   This  could 

compromise on the time that is left for D&P.”  However, she went ahead with the intervention 

because “the benefits and the validation from research studies gave me the conviction to move 

ahead”.  She had quoted a passage from one of my papers (Soong, 2008b) as an example of 

research studies “that supported the PT approach”:

At the wider social level, it is the learners’ interactions with instructors and other 

learners that “give them perspective, place them within a community of learning, 

and contribute to their mastery of concepts and skills” (Price & Petre, 1997, p. 

1041). Such social interactions are vital in nurturing the spirit of learning, since 

“the individual …becomes familiar with its methods and subject matters, acquires 

needed skill, and is saturated with its emotional spirit” (Dewey, 1916, p. 26). The 

concepts  and skills  exposed at  the social  level would then later be internalised 
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(Vygotsky, 1978), leading to individual improvements.  (Soong, 2008b, p. 595-6)

She then talked about how the intervention started, and how I initiated her “into the language 

of Prescriptive Tutoring” – in short, I “led the first few sessions”, initiated her “into the process 

of how to conduct the lab sessions”, shared with her “the misconceptions as identified from the 

chat-logs”,  highlighted  “how  students  are  thinking  and  their  learning  difficulties”.   I  also 

“addressed all these in the classroom sessions” where she “took on an observer role to learn 

how” I approached “these learning difficulties and how [I] connected with the students by 

discussing  physics  ideas  from  students'  mental  model”.   She  also  saw  how  I  “corrected 

students’ misconceptions and brought students to adopt the normative view”.

She described that as we progressed, I  had “relinquished the lead and began to play the 

supporting role in this programme.”  I had taught her “how to analyze the chat-logs, how to 

better categorize findings and consolidate this information into a useful  format that would 

guide  us  conducting  the  classroom sessions”  and  together,  “we  discussed  about  students 

misconceptions, students’ thinking; the whys and the hows and the what’s next? Together we 

analyzed the  chat-logs,  conducted the  classroom sessions  and  evaluated how successfully 

these sessions were conducted and how it could be better.”  She said I was “a pillar of support, 

was a mentor, a friend and had this unwavering conviction that affected [her] as well. We 

believe we are doing something very important and worthwhile  and most importantly,  we 

shared common goals and the belief that our students will attain high levels of achievement 

through this intervention.”  Slowly, she was leading the intervention sessions and I “supported 

where necessary, facilitated [her] learning progress and looked into the menial stuff (e.g the 

preparation of the computer labs) and at times even prepared the teaching materials for the 

classroom sessions. This allowed [her] to fully immerse in the core job of reading chat-logs, 

analyzing my students’ thoughts and thinking about how to teach”.

In her fourth section, entitled “My thoughts on PT”, she reiterated her earlier reflection that the 

intervention  “has  been  very  useful  in  helping  me  to  identify  specific  misconceptions  and 
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learning difficulties that my students face in the learning of physics”.  She reported an increase 

in student motivation and attributed this directly to the intervention.  She was delighted to find 

“significant improvement (in terms of conceptual reasoning) in some of my students who were 

struggling last year. It is obvious that the collaborative learning environment (which provided a 

useful  learning  alternative)  and  the  immediate  focused  remediation  after  the  laboratory 

sessions played an important role in helping these students to clarify their doubts” and, in her 

opinion, “being involved in this project is a meaningful, enlightening, if not a transformative 

experience/process”.

In her fifth section, entitled “What I have learnt”, she recalls her “training as a teacher at NIE 

[National  Institute  of  Education;  the  only  teacher  training  college  in  Singapore]  on  the 

teaching of Physics”.  She had “been taught the typical elements of good classroom teaching – 

knowing students  prior  knowledge,  use of  'hooks'  to  get  students  attention,  building new 

concepts  via  the linking to previous knowledge,  proper  sequencing,  assessment to further 

inform  revision,  etc.”  and  “have  used  various  strategies  to  understand  students’ 

preconceptions/misconceptions to better inform my teaching practice. These included marking 

homework,  professional  discourse  with  fellow colleagues,  reading  the  markers’  report  and 

relevant  materials/books,  or  classroom  discussions  to  glean  insights  into  what  and  how 

students  think”.   However,  despite  all  these activities,  “the amount  of  knowledge  gleaned 

(mostly generic in nature) in my five years of teaching experience is much less tha[n] the 

insights that I gained through one year of PT”.  She explained that:

Not only was I empowered with this new knowledge, reading students’ chat-logs 

has  further  enabled  me  to  better  connect  with  my  students’  learning  needs 

(cognitive needs especially). It has fostered a collegial and positive learning climate 

where there is a greater and richer exchange of knowledge and concepts between 

me and my students. I noticed a greater confidence level in many students and the 

enthusiasm and perseverance to arrive at the correct answer “using sound physics 

concepts/ideas”....
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PT has allowed for a “thinking” culture to evolve, an important skill that will help 

prepare my students for the demands of education at the next level. Watching how 

my students  are  propelled  to  the  next  level  (=depth)  of  learning,  the  interest 

generated in Physics, as well as witnessing this intellectual growth in my students; 

it has further increased my satisfaction and fulfillment as a teacher. All these are 

beyond the academic aspects which I had focused on previously.

She reflected that during the intervention,  she “made changes in [her] teaching and also 

started to re-think about [her] knowledge of Physics, re-examined [her] fundamental beliefs 

about [her] students and the goals of education.  In the process, [she] was made vulnerable 

and forced to take risks”.  She said that she “was lucky” to have me as “an external support  

figure” who provided her with “access to subject-matter expertise and given [her] time to be 

comfortable with the role of a learner”.

In the final paragraph of the fifth section, she feels “a sense of pride” as she “see the keen 

interest and confidence [her] students now have in this subject that [she is] teaching”.  As a 

result of the intervention, “there wasn't a chance to conduct the intensive D&P in the ten 

weeks before their Preliminary Examinations”.  Despite of this, she is “proud of their results 

and achievements” (the students had done well for their Preliminary Examinations) as she 

“finally saw how [her] students were able to make sound use of Physics concepts to answer 

the questions, something that occurred because they understood and not because they have 

been drilled to recognize and remember”.   However, “[n]o matter what the academic outcome 

it will be”, she feels “a sense of achieve and pride in the journey” as she is “able to connect  

with them...able to respond effectively to their learning needs, being able to teach from their 

mental model and most importantly...[her] students being able to finally understand and apply 

the concepts of the subject” that she taught.

In  her  concluding  section,  entitled  “Looking  forward”,  she  recognises  that  “pedagogy  and 
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theory are not separate but are both generative in producing knowledge” and acknowledges 

that she “still have much to learn on how to bring theory and experience into dialogue”.  She 

concludes on a hopeful note, stating that she is sure the MEd programme she is currently 

taking will help her bridge this gap (theory and experience) and propel her “forward to another 

wave of learning”.

In short,  the key themes that  stood out for  Ms Er are (i)  the intervention helped her to 

“identify  specific  misconceptions  and  learning  difficulties”  that  her  students  faced  in  the 

learning of physics.  In fact, she found that “the amount of knowledge gleaned (mostly generic 

in nature) in [her] five years of teaching experience is much less tha[n] the insights that [she] 

gained through one year of PT”. (ii) Students who had undergone the intervention had an 

“increased motivation” to learn physics due to the “deeper understanding they are able to 

attain” as they were forced to articulate their thought processes to both their peers and their  

teacher.  As a result, she can “see the keen interest and confidence [her] students now have in 

this subject”. (iii) The intervention provided a “non-threatening environment” where students 

can  learn  from one  another  and  “'talk'  about  physics”,  thereby  fostering  “a  collegial  and 

positive  learning climate  where  there is  a  greater  and richer  exchange  of  knowledge and 

concepts  between [her]  and [her]  students”.   (iv)  The prescriptive  tutoring sessions were 

“focused and purposeful”, as she “saw how [her] students were able to make sound use of 

Physics concepts to answer the questions, something that occurred because they understood 

and not because they have been drilled to recognize and remember”.  (v) The intervention 

“complements and supports” her current classroom practices, “preventing a snowballing effect” 

of misconceptions.  In sum, she found that “being involved in this project is a meaningful, 

enlightening, if not a transformative experience/process”.

6.4.4 Students' Reflection of Involvement in the Intervention

6.4.4.1 Perception of Difference between Intervention and Previous Revision Methods

During the two student-reflection exercises, the students were asked for their written feedback 

on what they thought were the differences between the intervention and previous revision 
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methods.  In order to more fully explore the students'  views, somewhat similar  questions 

regarding their perception of difference in revision methods were asked twice – once in April 

2009 and the other in August 2009.  Some of the questions asked in the first feedback session 

were  more  skewed towards  individual  revision  practices  while  the  questions  asked in  the 

second feedback session were more skewed towards revision practices as a class.   Taken 

holistically, responses to both these question types may provide us with insights into how the 

intervention  had  influenced  the  students'  revision  practices  within  and  outside  of  their 

classroom.  Also, asking these somewhat similar questions twice over a period of time has a 

distinct advantage – a shift or change in students' perceptions over a time period may serve as 

an indication for further analysis.  If the main themes remain similar, then there is a good 

chance that the students were not merely telling me what they thought I wanted to hear, 

especially since they had no access to their earlier feedback.

The questions posed for the April 2009 feedback collection exercise that was used as a means 

of obtaining student feedback on revision practices are provided in Figure 6.10,  while the 

question  posed  on  revision  practices  for  the  August  2009  feedback  collection  exercise  is 

provided in Figure 6.11.  For both these sessions, sheets of paper asking students to pen their 

reflections on their involvement in the intervention were given out opportunistically as the 

students unexpectedly had at least one free period that day (because a teacher was absent on 

medical leave) while I was in school.  Out of a total of 23 students, 16 students completed 

both  reflection  exercises;  20  students  completed  the  first  feedback,  while  18  students 

completed the second.  Absenteeism was the only reason why some students did not complete 

the feedback.   While all the students' reflections were reviewed, due to space constraints, only 

the feedback of students who completed both the reflection exercises are provided in Table 

6.4.  In addition, by placing the students' comments for the two reflection exercises side-by-

side in a table-format, we may see if the students' comments are similar for both sessions 

(mostly they are).
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Figure 6.10: Questions posed on revision practices during the first students' reflection exercise

Figure 6.11: Questions posed on revision practices during the second students' reflection exercise

Table 6.4 provides a tabulated view of the 16 students' perceptions of differences in revision 

practices  between  the  intervention  and  previous  revision  methods.   From  an  individual 

perspective, seven students reported that they were attempting more physics questions as 

part  of  their  revision  practice.   This  was  surprising  to  me,  as  neither  Ms  Er  nor  I  had 

intentionally given students additional physics questions to practice on.  Hence, they were 

using their own resources in order to work on those additional practice questions.  In addition, 

I  felt  that since the intervention focused on helping students  understand physics concepts 

better, an improved understanding on the students' part should actually allow them to attempt 

fewer physics questions.  A deeper analysis of why students were attempting more physics 

problems as part  of  their  individual  revision practice  indicates that  they spend more time 

attempting physics problems largely because their  interest in physics had increased, and/or 

they attempt more problems in order to help them understand physics concepts better.  For 

example, Abalon explained that “I used to read textbook, read the worked examples.  But now, 

I start doing all the questions in the ten years series, and other school papers...I am beginning 

to  like  physics  now,  hence,  I will  spend  more  time  to do  physics at home”,  while Chalice

Benson Soong Page 170



Table 6.4: Students' perception of difference between intervention and previous revision methods

Student Reflection 1 Comment Snippet Reflection 1 Themes Reflection 2 Themes Reflection 2 Comment Snippet
Taki Yes,  there is a difference.  I  used to read 

textbook  and  do  questions  from  TYS  but 

now  whenever  I  encounter  some  physics 

questions  I  don't  know,  I  will  consult  my 

teacher  and ask until  I  understand.   I  am 

spending more time for physics now.  The 

class  format  is  better  now  as  more 

misconceptions are cleared.

Seek help

Clearing of misconceptions

More time spent on physics

More discussions

Exposure to different types of questions

Think more deeply

Understanding/application

Seek help

Clearing of misconceptions

Yes, I think that there are more discussions 

with the teachers and with fellow students 

and in this way, students will get to expose 

more different type of questions.  Previously, 

when  I  am  doing  physics  questions  and 

encounter questions that I don't know, I will 

just write any sensible answer.  But now, I 

think  more deeply about  physics  concepts 

and will  apply  it  to  the questions,  even to 

questions  I  am  not  sure.  Now,  I  will  also 

seek help from the teachers if  I  have any 

question  so  that  this  can  clear  my 

misconception.
Abalon I  used to  read  textbook,  read the  worked 

examples.   But  now,  I  start  doing  all  the 

questions in the ten years series, and other 

school papers.  I will also clarify my doubts 

with my teachers  and private tutor.   More 

time.  I am beginning to like physics now, 

hence, I will spend more time to do physics 

at home.  In the past... I think read textbook 

will help me correct my misconceptions.  But 

now,  I  learn  how  to  study  smart.   Seek 

teachers help to clarify my doubts.

Trying more questions

Seek help

More time spent on physics

Understanding/application

Seek help

Identification of weaknesses

Yes,  in  my opinion,  I  think  that  there  is  a 

difference  in  the  revision  methods.   Last 

time, whenever I made a misconception in 

any  topic,  I  would  just  memorise  the 

concepts  and  not  trying  to  understand  it. 

But  now,  when I  make a misconception,  I 

would  seek  help  from  Miss  Er  and  Mr 

Benson to understand the concepts and use 

it for answering questions.

I  think  prescriptive  tutoring  is  very  useful. 

Especially when out teachers (Ms Er & Mr 

Benson)  are  willing  to  view our  chat  logs 

and point out our misconceptions. :D
Buddy Yes,  I  try  the  TYS  Qs  and  try  to  make 

everything  logical  and  not  just  memorise 

everything.   I  go  through  prescriptive 

tutoring (notes).

I try my best not to do last-minute study and 

Trying more questions

Understanding/application

More time spent on physics

Think more deeply

More discussions

We  definitely  think  more  deeply  about 

physics concept than last year and there is 

more  discussions  with  teacher  and  even 

more among the students mainly our closer 

friends.  Revision methods are better  now 
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I forgot how much time I used to spend for 

physics.  I practice more.

but  I  feel  that  when  we  do  papers,  the 

questions  we  are  not  sure  of  should  be 

taught slower.  Prescriptive tutoring is very 

helpful.
Wagi At  first,  I  just  browse  through  textbook, 

memorising  facts  and  formulas  –  the 

content.   But I know its important to know 

how to apply the skills by doing a lot of qns.

To be honest, I feel that I am spending less 

time than before.

It is good.  When going thru mistakes, many 

good  questions  are  raised  and  answered 

efficiently  –  open  discussion.   Sometimes 

that lead to confusion but all rest of the time 

it is doing good.

I thought physics was just – maths – purely 

applying  formulas.   But  than  now I  know, 

misunderstandings  should  be  cleared  as 

soon as possible as it  leads to getting the 

whole qns wrong, even the concept.

Trying more questions

Understanding/application

More discussions

Clearing of misconceptions

Less time spent on physics

More discussions

Understanding/application

Think more deeply

In Sec 3, we were flooded with Bartley and 

other school papers, do it and mark it.  If we 

have questions, we revise them.  Now, I am 

able to identify appropriate concepts to be 

applied.  There are more discussions as a 

class and sometimes we try to find a way to 

explain  our  answer  which  may  not  be 

correct.   And in the end if  it  is  wrong,  we 

know where we went wrong when teacher 

or friends ask, 'how you know?'.  I am force 

to think deeply to figure out a way for correct 

answer without being contradicted.

Coca Not  much  difference  in  methods  used  to 

revise physics concept (reading textbook to 

memorise  facts,  applying  them  into 

questions from assessment books/TYS).

Same amount of time spent on revision on 

certain  areas  which  is  still  unclear  on. 

Lesser  time  spent  on  topics  which  are 

understood  with  misconceptions  cleared 

after prescriptive tutoring.

Class format is good.

None specified

Less time spent on physics

More discussions There  are  differences  in  the  revision 

methods.

More  discussions  with  teachers  and 

students over questions and concepts.

Ziki Of course there is a difference.  I will have 

more points of misconceptions that I have to 

take note of during revision.

Doing more practice questions.  More time 

More discussions

Clearing of misconceptions

Trying more questions

Understanding/application

More discussions

Clearing of misconceptions

In the past, I memorised the concepts.  But 

now,  I  understand  the  concept  before  I 

memorise the formulae of the concept.  Of 

course,  we  discuss  with  our  teachers  on 
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for  revision  for  physics.   Can  be  able  to 

know my mistakes and correct my friend's 

mistakes, win-win situation :)

More time spent on physics how  we  understand  the  concept  by 

answering  the  questions  set  by  teachers. 

From there, we think on how the concepts 

link  each  other  and  clarify  our  doubts  on 

how we think of the concepts.
Yoyo I think there is a difference.  In the past, I did 

question alone,  I  stopped when I  was  not 

able  to  solve  the  problem.   But  now,  I 

discuss with friends, exchange ideas which 

can help me a lot.  I spend 2 or 3 hours to 

study physics during the weekend.  I think 

this  learning  intervention  helps  me  to 

strength  my  physics  concept  and  let  me 

know  exactly  where  my  misconceptions 

are...it  teaches  me  how  to  solve  the 

questions  by  using  a  correct  physics 

method.

More discussions

Understanding/application

Clearing of misconceptions

Problem-solving strategy

More time spent on physics (inferred)

More discussions

Understanding/application

During  Secondary  3,  the  discussions  with 

teachers  and  classmates  were  less 

compared to we are doing it  now.  Before 

we only went through the test  papers  and 

did however [sic] on time, we did not know 

how to use physics concepts to answer the 

questions  properly  and  apply  to  our  daily 

life.

Xian There is slightly difference in my methods of 

revising  physics  between  past  and  now. 

Nowadays, I would like to ask some of my 

classmates  some  physics  questions,  and 

share with them each other's way of solving. 

At the same time, I still revise the textbook 

for better understanding of concepts.

Actually, I think i'm doing the same thing for 

revising physics  most  of  the  time,  but  the 

amount of time I spent for revision is getting 

longer and longer.

The change in the format will definitely help 

the  weaker  student,  in  a  larger  scale,  the 

whole class of 4E1 physics student all  will 

benefit  from it....By the helps given by the 

teacher,  I  will  be  able  to  correct  my 

More discussions

Clearing of misconceptions

More time spent on physics

More discussions

Think more deeply

During Sec 3, revision mostly was done by 

my  own,  seldom  discussion  between  me 

and my classmate.   Certainly,  in  Sec  4,  I 

have  been  involved  in  active  discussions 

during classes, after classes and even after 

school.   Having  discussions  with  teachers 

more  frequently,  I'm  able  to  think  more 

deeply about physics concept, this helps me 

remember concepts much vividly.
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misconception efficiently.
Lopi Yes,  I  do  my  revisions  by  reading  less 

textbook  but  try  to  understand  the  main 

concept of that particular chapters.

I  find  myself  think  and  answer  in  a  more 

systematic way.  I am spending less amount 

of time revision for physics.  I prefer the new 

way of  the class format  than the previous 

one.  It is definitely a good change.

I  used  to  think  that  how  much 

misconceptions we can have but later I am 

surprised  that  I  have  numerous 

misconceptions which I never know I have.

Understanding/application

Uncovering/clearing of misconceptions

More systematic in thinking

Less time spent on physics revision

Understanding/application

More discussions

Clearing of misconceptions

Yes, there is definitely a different.

In  secondary  3,  I  depended  heavily  on 

textbooks  and  memorising  without  really 

understanding the concepts and hence did 

not  know how to  apply.   With  prescriptive 

tutoring,  I  have  more  opportunities  to 

discuss  with  my  friends  and  uncover  our 

physic misconceptions.

Chalice Yes, I think there is a difference in the way I 

revise physics.  In the past I usually spent 

most  of  my time remembering the answer 

and TB more than practise question.  Now I 

practise  more  and  try  to  understand  the 

concept instead of memorising them.

I  spent  more  amount  of  time  for  physics 

revision. 2-5 Qns a day (not MCQ; structure 

Qns).

Physics  lesson  is  more  interesting  to  me 

now than before.

Good Areas:

Student  know  their  misconception,  clear 

them with good and funny example to help 

them have a clear concept.

Teacher  get  to  know  student 

misconception :|

Understanding/application

Trying more questions

Clearing of misconceptions

More time spent on physics revision

More discussions

Clearing of misconceptions/doubts

Yes,  there  is  differences  in  the  revision 

methods.

In  secondary  3,  we  usually  depends  on 

textbook  and  practice  the  question  as  a 

revision.   Now,  there  are  more  discussion 

about questions in class which can help and 

clarify  doubts  and  more  opportunities  for 

students to share their thoughts.

Cullen Yes.  In the past, when there were tests or 

exams.   I  would  just  re-read the  textbook 

Trying more questions

Seek help/ask questions

More discussions

Clearing of doubts/misconceptions

In  the  past,  revisions  were  done  through 

drawing mind-map and simply listen to Ms 

Page 174



over  and over.   But  now I  start  practicing 

questions  and  clear  my  doubts  by  asking 

questions.

Yes.  I've spent slightly more time to revise 

for physics.

Seems like everyone has a great  improve 

on physics

More time spent on physics

Er  to explain  some selected questions  for 

us.  There were very little discussion in the 

class.

Now, we can clear  most  of  our  doubts  by 

discussing in class and I think teachers get 

to know our weaknesses.

Rarty Yes, I asked my brother to give me tuition as 

well.

I  am  spending  more  time  on  revising 

physics

Good:  Prescriptive  tutoring  more 

misconceptions  are  being  understood  and 

cleared

Clearing of misconceptions

More time spent on physics

More discussions

Clearing of misconceptions

Understanding/application

There is more discussions now than in sec 3 

and  we  will  get  to  know  the  possible 

misconceptions  when  answering  physics 

questions  and not  repeat  them.   We also 

discussed  with  each  other  to  understand 

how to answer questions properly in physics 

concept more than in sec 3.
Sarsi No  difference,  just  that  I  pay  much  more 

attention  in  class,  I  do  not  really  revise 

physics compared to other subjects...

The lessons  in  classroom are much more 

detailed  and  precise  now...Impression? 

Good obviously,  benefited me (class)  by a 

lot.  In the area which made us think out of 

the box, and go into the very little detail of 

every  topic  taught.   It  also  made  us  or 

cultivate  us  to  ask  more  and  think  more, 

compared to the past.

I  can't  see any flaws as I  am enjoy every 

lesson.

Paying more attention in class

Think more deeply

No difference in time spent on physics

Paying more attention in class

Think more deeply

First of all, I do not study physics, but I pay 

super  attentive  in  class.   I  am  doing 

normally as what I do for physics this year, 

but  the  difference  is,  I  become  more 

sensitive to questions nowadays as in I think 

a lot deeper than just looking the question 

on its surface.  One very common way of 

me  doing  my  revision  is  by  talking, 

discussing  and  debating  out  all  our 

misconceptions.

Zouk Yes.  It has been more lively and absolutely 

interesting  where  I  am  able  to  share 

knowledge with others and get to know my 

weak areas as well as get corrected by the 

teachers.  Yes.  I tend to spend some empty 

times to look through worksheets given by 

the school and have a challenging moment 

More discussions

Trying more questions

More time spent on physics

Identification  of  weaknesses/Clearing  of 

misconceptions

More discussions

Yes,  there  is  more  opportunities  given  to 

each individuals to know their weaknesses 

and  got  enlightened  through  class 

discussion with teacher.
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doing it....now I  realised the importance of 

spotting our all the misconceptions in order 

for myself to improve.
Gabo Yes.  Tend to solve the question to the best 

of my ability until an answer is shown.  More 

time.

Work harder on problem-solving

More time spent on physics

More discussions

Identification  of  weaknesses/Clearing  of 

misconceptions

Understanding/application

Think more deeply

There  are  more  discussions  with  the 

teachers and students  to help identify key 

points or common mistakes which students 

or the teachers may sometimes make.  With 

this  happening,  we  help  to  correct  one 

another and avoid making the same mistake 

over and over again.  Physics concepts are 

important  to  think  about  and  understand 

how they are derived so that we can use it 

without hesitation.
Maria A lot differences, because in the past when I 

do Qn I never ask myself what the physics 

concept, but now I constantly asking myself 

what is the physics concept.  Yes definitely 

I'm doing something different at home.  I do 

revision in the assessment book (Longman) 

I spend more time revision.  Better I guess 

in  the  way  that  we  work  more  with  our 

classmates to solve the physic Qn and the 

teacher going through the logs and pointing 

out the mistake.

Understanding/application

More discussion/working together

Clearing of mistakes/misconceptions

More time spent on physics

Exposure to different types of questions

More discussion

Understanding/application

Yes, now I tend to expose to more difficult 

Qn and lots of discussion.  Broaden the way 

I think to ans the physic Qn.  Each Qn have 

to apply a physic concept.  

In the past we are not expose to difficult Qn 

and we did not apply physic concept, we 

tend to apply random ans. Not much 

discussion.
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related that “Yes, I think there is a difference in the way I revise physics.  In the past I usually 

spent  most  of  my  time  remembering  the  answer  and  TB  [textbook]  more  than  practise 

question.   Now I practise more and try to  understand the concept instead of  memorising 

them”.

Six  students  indicated  that  as  part  of  their  individual  revision  practices,  they  now  have 

discussions with other students.  For example, Yoyo stated that “In the past, I did question 

alone, I stopped when I was not able to solve the problem.  But now, I discuss with friends,  

exchange ideas which can help me a lot”, while Zouk explained that “It has been more lively 

and absolutely interesting where I am able to share knowledge with others and get to know 

my weak areas as well as get corrected by the teachers.”

Four students indicated that  they now focus on getting a better  understanding of physics 

concepts,  as  opposed  to  the  past  whereby  they  memorised  formulas  and  answers.   For 

instance, Maria explained that “in the past when I do Qn I never ask myself what the physics 

concept, but now I constantly asking myself what is the physics concept”, while Buddy stated 

that he would “try the TYS Qs [ten-year series questions] and try to make everything logical 

and not just memorise everything”.

Three students indicated that they now sought help and asked questions.  For example, Taki 

explained that “I used to read textbook and do questions from TYS [ten-year-series] but now 

whenever I encounter some physics questions I don't know, I will consult my teacher and ask 

until I understand”, while Cullen stated that “In the past, when there were tests or exams.  I 

would just re-read the textbook over and over.  But now I start practicing questions and clear 

my doubts by asking questions.”

Other changes to individual physics revision practices reported by the students are (i) thinking 

in a more systematic way, (ii) paying more attention in class, (iii) thinking more deeply, and 

(iv) working harder on problem-solving.  On the whole, 12 students indicated that as a result 
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of the intervention, they spent more time on physics revision.  Three students indicated that 

they spent less time, while one student reported that he spent the same amount of time (as in 

the past).   Out of  the three students who spent less time on physics  revision, only Coca 

provided an explain.  He spent less time for physics revision now because he spends the “same 

amount  of  time...on  revision  on  certain  areas  which  is  still  unclear  on...[while  spending] 

[l]esser time...on topics which are understood with misconceptions cleared after prescriptive 

tutoring”.

As members of a class-based community, it  was the students'  perception that the biggest 

difference  between  the  intervention  and  previous  revision  methods  lay  in  the  amount  of 

discussion the class has as a whole.  After all,  14 students indicated that the intervention 

resulted in “more discussions” both between teacher and students, as well as between the 

students themselves.  For instance, Lopi explained that “In secondary 3, I depended heavily on 

textbooks and memorising without really understanding the concepts and hence did not know 

how to apply.  With prescriptive tutoring, I have more opportunities to discuss with my friends 

and uncover our physic misconceptions”.  Her account is corroborated by Chalice, who recounts 

that “In secondary 3, we usually depends on textbook and practice the question as a revision. 

Now, there are more discussion about questions in class which can help and clarify doubts and 

more opportunities for students to share their thoughts”.  Six students had brought up the 

theme of “more discussions” during the April 2009 feedback session, which was a session more 

focused on individual physics revision practices.  This indicates that students recognised the 

benefits of discourse from both an individual as well as class-community perspective.

The students attributed a range of benefits due to the increase of in-class discussions.  For 

example,  nine  students  indicated that  they now help  each other  in  understanding  and/or 

applying physics concepts.  For example, Rarty explained that “We also discussed with each 

other to understand how to answer questions properly in physics concept more than in sec 3”, 

while Wagi stated that “There are more discussions as a class and sometimes we try to find a 

way to explain our answer which may not be correct.  And in the end if it is wrong, we know 
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where we went wrong when teacher or friends ask, 'how you know?'”.  Six students related 

that they now thought more deeply about physics concepts.  For instance, Sarsi reported that 

“I become more sensitive to questions nowadays as in I think a lot deeper than just looking 

the  question on its  surface”,  and his  account is  similar  to  that  of  Xian's,  who wrote  that 

“Certainly, in Sec 4, I have been involved in active discussions during classes, after classes and 

even after school.  Having discussions with teachers more frequently, I'm able to think more 

deeply about physics concept, this helps me remember concepts much vividly”.  Also, nine 

students  reported  that  the  increase  in  discussions  helped  them  deal  with  their 

misconceptions/misunderstandings.   For  example,  Gabo  wrote  that  “There  are  more 

discussions with the teachers and students to help identify key points or common mistakes 

which students or the teachers may sometimes make.  With this happening, we help to correct 

one another and avoid making the same mistake over and over again”, and his account is 

similar to the comment given by Zouk, who stated that “Yes, there is more opportunities given 

to each individuals to know their weaknesses and got enlightened through class discussion 

with teacher”.  Seven students had brought up the theme of “clearing misconceptions” during 

the  April  2009 feedback session,  which  was a session more focused on individual  physics 

revision  practices.   This  suggests  that  students  had  become more  sensitive  to  their  own 

misconceptions/misunderstandings  from  both  an  individual  as  well  as  a  class-community 

perspective.

Other changes to the classroom-based revision practices reported by the students were (i) 

paying  more  attention  in  class,  (ii)  seeking  help  from the  teacher,  and  (iii)  an  increased 

exposure to different types of questions.

Interestingly, out of the three students who were ear-marked to drop physics at the end of 

secondary three, Dino was absent from school during both the reflection exercises, while Zhan 

was absent during the second reflection exercise.  Gabo (who was also ear-marked to drop at 

the end of secondary three), was present during both the reflection exercise sessions.  While I 

did not collect attendance data, on the whole, I did notice that Dino and Zhan had a higher 
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than normal absentee rate from school.  Gabo had scored a B3 for his GCE 'O' level physics 

examination, while both Dino and Zhan scored C5, suggesting that attending the school-based 

revision intervention had been helpful for achieving a higher score.

6.4.4.2 Students' Perception of Improvements Attributable to the Intervention

During the second reflection exercise, the students were asked to reflect upon was what, in 

their  opinion,  their  biggest  improvement as a result  of  being involved in the intervention. 

Figure 6.12 provides an illustration of how this question was posed.

Figure 6.12: Question posed to students on their biggest improvements as a result of being involved in the 

intervention

It  was the opinion of all  but one student (Rarty's response was “No comments”) that the 

intervention helped improve their physics.  Interestingly, Rarty was the only student who was 

not ear-marked to drop physics at the end of secondary three to score a C5 for his GCE 'O' 

level physics examination.

The  themes  that  emerged  from  an  analysis  of  students'  reflections  on  their  biggest 

improvements are:

▪ Understanding of concepts (and application to problems):  14 students identified that 

their  biggest improvements lay in their  improved understanding of physics concepts 

and/or their improved abilities in applying relevant physics concepts to the questions 

posed.  For instance, Wagi explained that “Even if it is a small part of the chapter, I am 

able to explain the full theory of how something happens and apply it e.g. pressure in a 

bottle on a hot day, heat chapter, movement of electrons and many =)”  [ =) is the 

depiction of a smiley face ] and Abalon reported that “Instead of memorising concepts 
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and applying on questions, I am now understanding the concepts and apply it to any 

questions”.

▪ Clearing of misconceptions:  Four students stated that their improvement in physics 

was a result of their misconceptions being corrected.  For example, Taki reported that 

“The biggest improvement as a result of being involved our new revision method is 

where our misconceptions are cleared” while even Chan (one of the top two physics 

students in the class) acknowledged that “I correct some of my misconceptions with the 

help of the new revision method”.

▪ Knowing  where  their  weaknesses  lay:   Three  students  expressed  that  their 

improvements in physics was a result of themselves knowing where their weaknesses in 

physics  lay.   For  instance,  Zouk  wrote  that  she  improved  as  she  now  had  an 

“understanding [of] my mistakes in a scientific way thus enabling me to improvement 

myself” while Taki explained that “our misconceptions are being pointed out and teacher 

corrected it.  In this way, students can learn from their mistakes and will not make it 

again”.

▪ Identifying of topics:  Two students reported that their physics had improved as a result 

of their ability “to identify the topic being asked” in the questions posed.

▪ Thinking  in  a  more  systematic  way:   Lopi  stated  that  she  how thinks  “in  a  more 

systematic way which will help me in constructing my answers”.

▪ Tackling questions which they could not before:  Gabo stated that he can now “tackle 

questions which I could not before and I think I have improved as compared to the year 

before”.

In short, according to the students, it is their opinion that their biggest improvements as a 

result of being involved in the intervention lay in better understanding of physics concepts, and 

the application of physics concepts to problems posed.  The students also identified other 

improvements such as the clearing of misconceptions and the related factor of knowing where 

their  weaknesses lay.   Also,  they improved in their  identifying of  topics  for  the questions 

posed, thinking in a more systematic way, and tackling questions which they could not before. 
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In all, the key themes raised by the students are similar across the two reflection exercises, 

thereby strengthening the claim that the students were honest in giving their opinions, and not 

merely telling me something they thought I wanted to hear.

6.4.4.3 Other Students' Perceptions

In  order  to  triangulate  the  students'  written  reflections,  four  surveys  were  conducted 

throughout the intervention in addition to the short survey questions posed during the CMCPS 

sessions (see Figure 6.15).  The fourth and final survey (which was summative in nature, and 

taken by all 23 students) was conducted in August 2009.  During this final survey, the students 

were asked to rate on a Likert scale how helpful they thought the intervention had been in 

their revision of physics.  Also, they were asked how much they thought prescriptive tutoring 

would benefit their juniors who were in secondary three.  Figure 6.13 depicts key questions 

posed to the students during the final survey.

Figure 6.13: Key questions posed to the students during the final survey

With an average score of 1.3 (out of 5),  all  the students thought that the intervention was 

either very helpful or helpful in their revision of physics concepts.  As Sarsi explained, “It's 
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effective in luring the misconception we have out on paper in black and white where it can be 

corrected”.  Similarly, all the students thought that the intervention would either greatly benefit 

or benefit their juniors (a score of 1.4 out of 5).  Many students said that they would be 

envious of their juniors if these juniors were to embark on the intervention.  For example, 

Sunny wrote that “They will have 2 yrs of prescriptive tutoring eh!  So lucky” while Wagi stated 

that “I envy them!  They have more help than us!  But it will be a definite benefit.”

With  an average  score  of  1.5,  all  the students  except  Zhan (who provided a score of  3, 

indicating he was neither comfortable nor uncomfortable with the intervention) were either 

very  comfortable  or  comfortable  with  the  intervention.   Abalon  was  comfortable  with  the 

intervention because she found it to be “[v]ery fun.  Especially to try to solve answer/solve 

questions through online chats”, while Xian was very comfortable with the intervention because 

“I'm  able  to  practice  typing.  Expressing  my  thoughts  in  words/letters  allows  me  to 

communicate better with others”.

In order to track the students' interest in learning physics', I asked students how much they 

liked learning physics during all the four survey sessions.  Initially, their average score for that 

question was 2.17, and this score steady reduced to a value value of 1.74 as depicted in Figure 

6.14.  Hence, it is suggestive that the intervention helped students gain an interest in physics, 

which Ms Er had observed and reported in her reflection pieces.  Interestingly, Cullen and Kiki 

were on medical leave during the tenth CMCPS session.  However, they contacted Ms Er and 

seek permission to come to school in order to attend the CMCPS session, which was held 

during ACT (after 1.30pm).  They informed Ms Er that they were feeling better, and did not 

want to miss the CMCPS session.  After the session, I asked Cullen to Kiki to write on their 

CMCPS form why they had chosen to attend the CMCPS session despite being on medical 

leave.   Cullen explained that  “I  attended this  session even though I  was on MC [medical 

certificate leave] because I love physics and I want to get A1 for physics!! :D”, while Kiki wrote 

that “I attended the session today even though I was on MC because I feel my physics is not 

good and the prescriptive tutoring session is helpful in identifying misconceptions”.  Hence, I 
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believe the intervention had indeed positively increased students' interest in physics.

Figure 6.14:  Graph showing students increased interest in physics over time

In order to ascertain whether the students thought that group-work helped them with their 

problem-solving endeavours, they were required to complete three short Likert scale survey 

questions after every CMCPS session.  These short survey questions are depicted in Figure 

6.15.

Figure 6.15:  Short survey questions posed during the CMCPS sessions

On average across the 12 CMCPS sessions, students initially found the questions to be between 

“difficult” and “neither easy nor difficult” (scoring an average of 3.27 out of 5).  However, after  

trying to answer the questions together with their partner(s), they found the questions to be 

between “easy” and “neither easy nor difficult” (scoring an average of 2.79 out of 5).  This 

result  indicates that  the students found that  group-work helped them with their  problem-
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solving endeavours.   In addition,  the students generally  felt  “comfortable” working with a 

partner via the computer to solve physics problems (scoring an average of 1.94 out of 5). 

Interestingly,  the  average  for  groups  with  three  students  were  similar  for  the  first  two 

questions (scoring an average of 3.17 and 2.88 respectively).  However, the average score of 

the third question was 2.33.  This results indicates that, in general, students in groups of three 

found working within their groups more difficult than the groups with two students.  These 

results are summarised in Table 6.5.

Table 6.5: Summary of results of CMCPS survey questions

Average scores of all 

students

Average scores of students 

who were in groups of three

Q1: Initially, I thought that the questions were [____]

1 (Very Easy) – 5 (Very difficult) 

3.27 3.17

Q2:  After trying to answer the questions together with 

my partner, I found that the questions were [____]

1 (Very Easy) – 5 (Very difficult) 

2.79 2.88

Q3:  How do you feel about working with a partner via 

the computer to solve physics questions?

1 (Very Comfortable) – 5 (Very uncomfortable)

1.94 2.33

6.4.5 Causes of Students' Difficulties when Solving Physics Problems

While  the  revision  intervention  was  initially  targeted  at  uncovering  students' 

misconceptions/misunderstandings in order to prescriptively address those issues, I found that 

while  misconceptions/misunderstandings  were  prevalent  in  all  topics  in  which  the  revision 

intervention  was  carried  out  for,  I  also  identified  other  factors  that  also  significantly 

(negatively) affected the students' ability to successfully solve the physics questions posed 

(and therefore obtain a correct solution to the problem).  At the start of the research study, I  

was expecting that misconceptions/misunderstandings would account for the vast majority of 

difficulties  students  face  when  solving  physics  problems.   After  all,  my  own  experience 

teaching physics, together with the existing body of knowledge on students’ misconceptions 

(e.g. Modell et al., 2005, Richardson, 2004) pointed in this direction.  However, while reviewing 
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the students’ protocol data in order to perform prescriptive tutoring, I was somewhat surprised 

to notice that while misconceptions/misunderstandings still accounted for a good portion of 

students’  difficulties  during problem solving,  other  factors  were also  significant and highly 

prevalent.  As a result, an additional track to the original research work was added in which I 

sought  to  map  out  specific  difficulties  the  students  encountered  while  they  were  solving 

physics problems.   This sub-section reports on the key findings of this new strand of research.

When reviewing the logs, I made notes regarding students’ difficulties during problem-solving. 

These notes were then compared against the notes made by Ms Er, and the results indicated in 

this sub-section highlights our joint argument.  A fuller discussion, including a brief literature 

review of students' difficulties when solving physics questions, is provided in section 6.5.2.  It 

is important to note that the categorises reported are not mutually exclusive; it is possible for 

a particular difficulty to be classified in more than one category.

6.4.5.1 Knowledge Gaps

The students may have had difficulties solving the questions that we posed simply because 

they did not have the necessary basic knowledge about the topic we were assessing.  Provided 

in Table 6.6 is a question that we posed, and the subsequent chat discussion by Yoyo and Ziki 

shows Yoyo's knowledge gap on the topic, 'pressure'.  As can be seen from the discussion log, 

Ziki had identified (correctly) to Yoyo the topic (“topic. pressure. K???”) in which the question 

was meant to address.  When Ziki asked for the formula for pressure, Yoyo replied that “i 

forgot too”, and then asked if “F=ma” was the right formula.  Even when Ziki responded that 

the  formula  she  gave  was  incorrect,  Yoyo  still  thought  that  it  was  correct  until  further 

reflection, when she realised that it was incorrect (“oh wrong”).

Table 6.6: Illustration of knowledge gap

Question Posed Discussion Snippet
Joe was lying straight 

on the floor when a boy 

on a bicycle (total mass 

= 40kg) rolled over his 

Ziki: topic

Ziki: pressure

Ziki: K???

Benson Soong Page 186



legs.  This was 

immediately followed by 

a man on a motorcycle 

(total mass = 120kg). 

Fortunately, Joe is fine, 

and said that the pain 

caused by the bicycle is 

the same as the pain 

caused by the 

motorcycle.  Is this 

possible?  Explain your 

answer. [3]

[Here, Ziki is stating that this question is based on the topic, 'pressure']

Yoyo: qn1

Ziki: erm...

Ziki: wats the formular???

Yoyo: i forget too

[When  asked  for  the  formula  for  'pressure',  Yoyo  replied  that  she  has  

forgotten it]

Ziki: i use green colour

Yoyo: pink la

[Ziki is using green on the whiteboard, while Yoyo is using pink]

Yoyo: F=ma

Yoyo: right??

[Here, we see evidence that Yoyo has indeed forgotten the formula for  

pressure, as she provided the formula for Force instead]

Ziki: no wat

Ziki: is pressure leh

[While, Ziki cannot remember the formula for pressure, he certainly knows  

that the formula given by Yoyo is incorrect]

Yoyo: yup

[Yoyo  is  actually  saying  that  the  formula  she  provided  (F=ma)  is  for  

pressure...]

Yoyo: oh wrong

[...but upon reflection, she recognised that it is 'wrong']

Based on the study,  the students had difficulty  solving problems in which they lack basic 

knowledge  about.   For  example,  because  Yoyo  lacked  basic  knowledge  about  pressure 

(including the formula Pressure = Force / Contact Area), both Ziki and Yoyo were unable to 

solve  the  question  until  they  referred  to  their  textbook  in  order  to  obtain  the  formula. 
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Throughout the intervention, I noticed that students had knowledge gaps on various topics 

from when they missed lessons or when there had been miscommunication between teachers. 

For example, a student may have been absent when a topic was taught in class, or another 

teacher was supposed to have taught a topic but was unable to do so due to various reasons 

(e.g. Mr Ng was supposed to have completed teaching the topic on 'pressure' before handing 

over  the  class  to  Ms Er,  but  he  had not  completed teaching that  topic.   However,  Ms  Er 

assumed that he had completed teaching the topic).  While the conclusion that students would 

have difficulty solving problems in which they lack basic knowledge about is not revelatory, 

what is surprising was that the intervention is revision in nature.  Hence, the students were 

meant to at least possess basic knowledge on the topics they were revising on, and their 

knowledge gaps could be indicative of non-physics based problems, such as absenteeism or 

lack of coordination between teachers.

6.4.5.2 Concept Gaps

From the logs, I noticed that many students had basic knowledge of various physics concepts, 

but were unclear of its conceptual meaning or implications.  For example, students might know 

the formula to find a particular physics quantity, but lack the conceptual understanding that 

would enable them to use that formula to solve a novel problem.  Provided in Table 6.7 is a 

question  that  we  posed,  and  the  subsequent  chat  discussion  by  Veve  and  Sunny  shows 

Sunny's concept gap on Fleming's Left Hand Rule.  As can be seen from the discussion log, 

while  Sunny  has  knowledge  of  Fleming's  Left  Hand  Rule  (i.e.  she  knows  that  the  thumb 

represents movement direction, the second finger represents the magnetic field direction, and 

the third finger represents the current direction), she lacked the conceptual understanding of 

how to apply this Rule.
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Table 6.7: Illustration of concept gap

Question Posed:

Discussion Snippet: Veve: 4a/ move to the right

[Veve  stated her  answer  for  the first  part  of  the question  (4a),  which is  the  

correct  answer  as  the  copper rod will  indeed move to  the right,  towards  the  

batteries]

Veve: as the direction of current is outwards

Veve: using left hend rule

Veve: the force direction is to the right

[Here, Veve provides the rationale for her answer; she had used Fleming's Left  

Hand Rule to ascertain the direction of movement of the copper rod]

Sunny: hey electron flow from negative terminla right

Sunny: so current is opposite isit

Sunny: right right

Veve: yes

Veve _ yes

[Sunny asked Veve if  electron flow  and the conventional  current  flow are in  

opposite directions.  Veve replied that they are indeed in opposite direction]

Sunny: ok i know..

Veve: so correct rite?

Veve _ 4b?

[Veve asked Sunny if she thought that the answer to 4a was correct, and if they  

should move on to the next sub-question, 4b]

Sunny: i though out if the plane

Veve : hah?
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Veve: out of the plane?

Veve: Qn4?

Sunny: yeah

Sunny: a

[Here, Sunny expresses that she thought that the copper rod will move out of the  

plane]

Sunny: ufff..

[To illustrate to Veve how she obtained her answer, Sunny drew a cross-sectional  

diagram that, in her opinion, demonstrates that the copper rod will move out of  

the plane.  Notice that Sunny has knowledge of Fleming's Left Hand Rule in the  

sense that she knows what each finger is meant to represent]

Sunny: that one current flow, right?

[This  utterance  reveals  Sunny's  concept  gap on the  Left  Hand Rule;  she had  

gotten her answer that the copper rod will move out of the plane because she had  

though that the current was flowing to the left, as depicted by her purple arrow  

pointing to the left.  However, while the current is indeed moving to the left on  

the back iron rail, she should be using the direction of movement of current on  

the copper rod and not the iron railing]

Veve: yah

Veve: the current goes outwards

[Here, Veve is trying to explain to Sunny that the current flow to consider should  

be that of the copper rod]

Sunny: yellow colour is downwards
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[Sunny is  illustrating  the  magnetic  field,  depicted  by a  yellow arrow pointing  

downwards.   Here,  we  see  even  clearer  how Sunny  obtained  her  (incorrect)  

answer of the copper rod moving out of the plane by the application of Fleming's  

Left Hand Rule]

Veve: current goes outwards

Veve: rite?

[Veve reiterates her (correct) opinion that the current is moving “outwards” (and  

not to the left)]

Sunny: to the left what

Sunny: omg idk

[[Sunny  reiterated  that  the  current  is  moving  “to  the  left”,  but  soon  

acknowledges that she does not know (“omg idk” means “Oh my God, I don't  

know”)] 

I observed that the students had difficulties solving problems in which they had concept gaps. 

For  example,  because  Sunny  did  not  realise  that  the  direction  of  current  to  be  used  in 

Fleming's Left Hand Rule was that of the current which is flowing within the object in which its 

movement  is  to  be  ascertained,  she  had  difficulty  in  solving  the  question  posed.   In  my 

opinion, such concept gaps exists mainly because students memorise certain rules or formulas 

without attempting to understand the concepts involved.  Hence, for questions on the same 

topic, these students would get some questions correct, but others incorrect simply due to the 

features of the questions, rather than the concepts inherent therein.
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6.4.5.3 Misconceptions/Misunderstandings

While  concept  gaps  and  misconceptions/misunderstandings  may  appear  somewhat  similar, 

they differ significantly because of the 'sureness' a student exhibits in his/her conception.  For 

instance,  students with concept gaps are,  at  least  in  part,  aware that  they may not fully 

understand  a  topic  (as  in  the  case  of  Sunny  in  sub-section  6.4.5.2  above,  where  she 

acknowledged at  the  end,  “omg idk”).   In  the  case of  misconceptions/misunderstandings, 

students actually believe that their conceptions are correct, despite them being misconceived.

For example, Table 6.8 shows a question that was posed to students during the third CMCPS 

session.  Kiki and Xian were collaboratively solving this question when Kiki insisted that his 

solution,  which  differs  from Xian,  is  correct.   The  dialogue  snippet  provided  in  Table  6.8 

demonstrates Kiki's misconception/misunderstanding with respect to calculating the pressure 

of a liquid column, and also shows Kiki's lack of understanding of the SI unit for length (a 

mathematical/logical  skills  gap).  Additionally,  I  believe  the  dialogue  demonstrates  an 

advantage of anonymity during collaborative problem-solving; Kiki did not know that he was 

working with Xian (the top scorer for physics), and hence engaged him in conversation as an 

equal.

Table 6.8: Illustration of misconception/misunderstanding

Question Posed Discussion Snippet
John and Cindy filled a 

manometer with an 

unknown liquid of 

density 50,000kg/m3 as 

shown in Setup 1. 

They then introduced 

an unknown gas into 

the manometer as 

shown in Setup 2. 

John calculated the 

pressure of the 

Kiki: using P=phg

Kiki: P= 50000 x 10 x 10

Kiki: = 5000000Pa

Kiki: thats the answer

[Using the correct formula for calculating pressure due to a liquid column,  

Kiki obtained an incorrect answer when he tried to calculate the difference  

in  pressure between the two arms in  Setup 2.   Notice that  he did not  

convert the height component into SI units, and also his height value is  

incorrect]

Xian: ....
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unknown gas to be 

50,000 Pa, while Cindy 

says it is 100,000 Pa. 

Who (if any) is correct? 

(Assume atmospheric 

pressure is 100,000Pa) 

[2]

Xian: height 20cm

[Xian indicates to Kiki that Kiki should have used a height value of 20cm 

instead of 10cm (Xian is correct)]

Kiki: ya height 20

Kiki: but the gained height is 10

[Here, we see that Kiki  is aware that “height [is] 20”, but somehow he  

perceives that it should be “gained height” that matters]

Xian: liquid experience same P at same level u know?

[Here, Xian is pointing out to Kiki that liquid at the same level experience  

the same pressure]

Kiki: so whats your working

Kiki: the gained height is 10

Kiki: it does not include the actual height what

Kiki: so not 20

[Once again, Kiki insists that the height to be used should be “the gained  

height”...which “does not include the actual height, so not 20”]

The  discussion  log  in  Table  6.8  demonstrated  Kiki's  'sureness'  of  his  answer.   In  fact,  I 

conjecture that if another similar problem was given to Kiki, he would have continued to use 

gained height and not height difference when calculating the pressure due to a liquid column. 

I  noticed that  the students  often had difficulties  solving questions posed because of  such 

misconceptions/misunderstandings.  While some students had unique misconceptions, based 

on the protocol data collected in this study, it is largely true that if one student exhibits a 

particular misconception, it is likely that other students would have a similar misconception. 

For example, analysis of the logs show that there were at least four other students who had 

this same misconception as Kiki (see Figure 6.16).
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Figure 6.16: Slide taken from the third PT session, showing a common student misconception

6.4.5.4 Mathematical/Logical Reasoning Gaps

I noticed that some students had difficulties solving questions posed because they had weak 

mathematical/logical reasoning skills.  For example, provided in Table 6.9 is a question that we 

posed,  and  the  subsequent  chat  discussion  by  Chalice  and  Dino  shows  the  latter's  weak 

mathematical/logical reasoning skills; while Dino knows that for a wave, its velocity can be 

calculated by its frequency multiplied by its wavelength, she states that it is possible for a 

wave to have its velocity decrease while its frequency and wavelength remain unchanged.

Table 6.9: Illustration of mathematical/logical reasoning gap

Question Posed Discussion Snippet
Water waves in the sea 

move from a deeper 

region to a shallow 

region.  Sate the 

change, if any, in the 

frequency, wavelength, 

period, and speed of 

the waves by filling in 

Dino: v=f/l

Dino: u noe the sign

[Notice here that Dino is stating a formula to calculate the velocity of a wave (v),  

which is frequency (f) multiplied by  its wavelength (lambda))

Chalice: yup

Chalice: v=fl

Chalice: not f/l
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the blanks below with 

either “increases”, 

“unchanged”, or 

“decreases” [2]

Frequency: _________

Wavelength: ________

Speed: ____________

Period: ____________

[We  see  here  that  Chalice  mistook  Dino's  lambda  sign  “/l”  as  “divided  by  

lambda”]

Dino: i trying to make the sign la

Dino: lol

Dino: hahah

Chalice: kkkk#

[Dino clarified that she was merely trying to create a lambda sign, and both Dino  

and Chalice had a good laugh over the miscommunication]

Chalice: so how???? just use “y” for wavelength. v = fy

Dino: ok

Chalice: ok

[Both Chalice and Dino agrees to use “y” to represent “wavelength”.  Hence, the  

formula would be v = fy.  Their discourse so far indicates that both Chalice and  

Dino are aware of the formula]

…[some non-consequential discourse was removed to save space]...

Dino: my ans

Chalice: i am very confuse

Chalice: ...

Dino: frequency: unchanged    wavelength: unchanged   speed: decreases 

period: unchanged

[Here, we see a weakness in Dino's mathematical/logical reasoning skills.  She is  

aware of the formula v = fy, and yet provided an answer which suggests that  

while frequency and wavelength remain unchanged, speed decreased]

The  discussion  log  in  Table  6.9  demonstrated  Dino's  weak  mathematical/logical  reasoning 

skills; if “v = fy”, how can “v” decrease if both “f” and “y” remain constant?  I noticed that 

Gabo had made this mistake as well, and when I checked their secondary three mathematics 

results, uncovered that they were among the lowest mathematics scorers.  It is perhaps for 

this  reason that  mathematical  abilities  are  linked to  physics  problem-solving abilities  (see 

6.5.2).
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6.4.5.5 Not understanding the question

I noticed that students sometimes had difficulty solving the questions posed because they 

could not understand the question.  For example, the discussion snippet provided in Table 6.10 

captured Sarsi's difficulty with understanding the question posed.

Table 6.10: Illustration of difficulty in understanding the question posed

Question Posed Discussion Snippet
Joe was lying straight 

on the floor when a boy 

on a bicycle (total mass 

= 40kg) rolled over his 

legs.  This was 

immediately followed by 

a man on a motorcycle 

(total mass = 120kg). 

Fortunately, Joe is fine, 

and said that the pain 

caused by the bicycle is 

the same as the pain 

caused by the 

motorcycle.  Is this 

possible?  Explain your 

answer. [3]

Sarsi: i dun even understand the question

[Sarsi indicated early in the problem-solving attempt that he did not understand  

the question posed]

Coca: …

[Students use “...” to indicate that they are thinking]

Sarsi: do u understand?

Coca: yes

Coca: PRESSURE = FORCE / AREA

[Coca  responded  to  Sarsi,  replying  that  he  (Coca)  understands  the  question.  

Coca then proceeds to state a formula for pressure]

Sarsi: i only understand that this boy got his leg rolled over a motrobike

[Notice  that  Sarsi  is  more  interested  in  understanding  what  the  question  is  

asking, than with using the formula Coca provided to solve the question]

Coca: .....

Sarsi: then?

Coca: then

Coca: they mentioned that he was run over

Coca: immediately by a man on motorcycle

Coca: after being run over by the bicycle

Sarsi: what does it mean?

Coca: means

Coca: he didnt move

Sarsi: i dun understand the 2nd sentence
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Sarsi: can i say that joe was ran over 2 times?

[Here, we see that Sarsi had difficulties understanding the question because the  

question did not explicitly state that Joe was ran over twice]

Coca: yes

I had noticed that students tended to have more difficulties with longer questions.  While Sarsi 

could  not  understand  the  question,  Coca  could.   Based on the  students'  secondary  three 

examinations, Coca had obtain a significantly higher English score (B3) as compared to Sarsi 

(C5).  Hence, like mathematical/logical reasoning gaps, students' difficulty in solving physics 

problems may be related to their command of the English language, not their understanding of 

physics.

6.4.5.6 Misreading or Misinterpretation of the Question

The students in the study occasionally did not obtain correct solutions to the questions posed 

because they misread or misinterpreted the questions.  For example, Table 6.11 illustrates a 

question in which both Taki and Ziki misread.  In that question, the students were asked about 

the movement of the signal arm.  However, given the presence of the solenoid and iron rod, 

the students had to focus their attention on how the solenoid would affect the movement of 

the iron rod.  As such, some students provided their answers based on the movement of the 

iron rod, and not the signal arm (see 6.5.2 for a deeper discussion) and, hence, provided an 

incorrect answer, as Ziki and Taki had done.
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Table 6.11: Illustration of misreading or misinterpretation of the question

Question Posed:

Discussion Snippet: Ziki: hey

Ziki: we r sooooooooooooooooooooooooooooooooooo

Taki: ?

Ziki: stupid

Ziki: the ans shld be b

Taki: y?

Ziki: cuz

Ziki: READ Q

Ziki: !!!!!

Taki: ya

Taki: oh ya

Taki: is signal arm

Taki: not the rod

Ziki: YA

Students often attribute such careless mistakes to stress when they make such errors in an 

examination.  While examination stress is very real and may negatively impact a student's 

performance,  we  see  here  that  even  in  a  normal,  “non-threatening  environment”,  such 

mistakes are still committed.
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6.4.5.7 Weak Concept Awareness

The students in  the study sometimes provided solutions to  the questions posed based on 

concepts which are not appropriate for the context in the given question.  For example, Table 

6.12 illustrates how Rarty obtained a correct answer based on an inappropriate concept.  The 

students were asked which one of the three designs they would choose if the tank was to be 

used  for  storing  a  large  amount  of  mercury.   Rarty  selected  Design  2,  which  is  correct.  

However,  his  main  rationale  for  selecting  Design  2  was  a  'stability'  argument,  which  is 

inappropriate in the given context.  Despite Xian's explanation (“as we noe that the deeper the 

liquid is the greater the pressure is...so the btm of of the container should be thicker”), Rarty 

still insists that his answer is valid (“i havent finish explaining...when mercury is filled to the 

top, the possibility that container falling over is reduced rite? because it is more stable”), to 

which Xian responded by saying “i think the designer g[o]t consider about that ...”.

Table 6.12: Illustration of weak concept awareness

Question Posed:

Discussion Snippet: Rarty: the ans is most probably design 2

Xian: i think answer is this

[Xian drew Design 2 on the whiteboard]

Rarty: because mercury is a metal, it would be heavy

[Here, we see that Rarty is saying that he picked Design 2 possibly due to a  

'stability' argument, which is incorrect in the given context]

Rarty: ya i oso think so

[Rarty  is  agreeing  with  Xian's  answer,  which  Xian  had  earlier  drew  on  the  

whiteboard]
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Xian: sorry i dunt think ur answer is right

Xian: i mean ur explanation

Xian: would u like to listen to mine ?

[Xian  does  not  agree  with  Rarty's  explanation  (the  'stability'  argument),  and  

offers his own]

Rarty: issit the mercury part?

Xian: mercury usually is in liquid form

Rarty: ya

Rarty: but it is still a metal

Rarty: but heavier than water

Xian: as we noe that the deeper the liquid is the greater the pressure is 

[Xian offers that a 'pressure' argument is more appropriate given the context ]

Rarty: ya

Rarty: but design 2 is more stable

[Once again, Rarty brings up the stability argument]

Xian: so the btm of of the container should be thicker

Rarty: ya

Xian: so that can sustain from the great pressure

[Xian's reason is inline with what the students have been taught]

Rarty: ur rite

[Rarty states that he agrees with Xian's reason...]

Xian: ok settle qn2

Xian: lets do 3

Rarty: wait

Xian: ??

Rarty: i havent finish explaining

Xian: ok continue

Rarty: when mercury is filled to the top, the possibility that container falling 

over is reduced rite?

Rarty: because it is more stable
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[Here, Rarty makes explicit his 'stability' argument.  Notice that despite Xian's  

explanation  and  Rarty's  agreement  with  Xian's  explanation,  Rarty  still  feels  

strongly that his 'stability' argument is valid as a reason for choosing Design 2]

Rarty: agree?

Xian: i think the designer gt consider about that ... 

I noticed in the discussion logs that whenever students provided seemingly random answers to 

the questions that we posed, it was because they had not attempted to identify the concepts 

being assessed by the questions.  Sometimes, students fail to identify the relevant conceptual 

factors in a particular topic being assessed by a question because they lack knowledge about 

the concepts, as demonstrated in Table 6.13.

Table 6.13: Illustration of knowledge gap leading to seemingly random answers

Question Posed Discussion Snippet
Joe was lying straight 

on the floor when a boy 

on a bicycle (total mass 

= 40kg) rolled over his 

legs.  This was 

immediately followed by 

a man on a motorcycle 

(total mass = 120kg). 

Fortunately, Joe is fine, 

and said that the pain 

caused by the bicycle is 

the same as the pain 

caused by the 

motorcycle.  Is this 

possible?  Explain your 

answer. [3]

Kiki: pressure question?

Zouk: think.so

[Kiki asks Zouk if she thinks the question is a “pressure question”.  Zouk thinks  

so, but is unsure...]

Zouk: bt.nv.learn.siol

[…as she has no knowledge of the topic. “bt nv learn siol” means “but never learn  

sorry”]

Zouk: wad.u.think.?

Kiki: do u rmb anything about pressure?

Zouk: errr

Zouk: no

Kiki: me too -.-

Zouk: ok

[Here, both Zouk and Kiki acknowledges their lack of knowledge on the topic,  

pressure]

Zouk: its.possible.because

Benson Soong Page 201



Zouk: motorcycle.at.higher.speed

[Given the lack of knowledge, Zouk and Kiki were unable to identify the relevant  

conceptual  factors  to  consider  in  this  question.   Hence,  Zouk  provided  a  

conjecture on why it is possible for the boy to feel the same amount of time – if  

the motorcycle moved at a faster speed, while the bicycle moved at a slower  

speed, then the amount of pain would be the same]

Kiki: higher speed?

[Kiki questions Zouk's conception of speed...]

Zouk: nvm.i.anyhow

[...to which Zouk acknowledged that she randomly provided an answer (“nvm”  

means “never mind” while “i anyhow” is a colloquial term that means “i did it  

without thought”] 

6.5 Discussion of Findings

6.5.1 Improvements in Learning Outcomes and Alternative Explanations

The analysis of both quantitative and qualitative data from the main study suggests that the 

intervention  was  very  effective  in  helping  an  entire  class  of  students  revise  physics  and 

improve their test scores. The students also responded very positively to the intervention.  It 

seems, therefore, that I have the basis for an effective, practical way of helping an entire class 

of students revise for physics, as well as helping a teacher gain insights into her students’ 

conceptions and thought processes. However, alternative explanations for why the students' 

test scores improved can be offered.  For example, it is possible that this cohort had done 

particularly well in their practical examination, which accounts for twenty percent of their final 

physics grade.  In other words, it was their outstanding physics practical results and not their 

performance  on the  paper-based  tests  (which  the  intervention  addresses)  that  caused an 

improvement in  their  overall  physics  grade (when compared to  the six-year  or  three-year 

average grades, as well as the expected MSG).  Also, another possible reason for the students' 

improved performance could be due to the increased motivation and hard work Ms Er had put 

into  teaching  this  class,  as  a  result  of  my  presence  in  her  classroom.   Additionally,  as 

Benson Soong Page 202



mentioned in Chapter Five, other possible reasons for the students' improved performance 

could be due to my mere presence, which motivated them to work harder on physics, and the 

novelty  effects  of  working  anonymously  with  fellow  students  in  a  computer-mediated 

environment.  I shall now address these alternate explanations in turn.

When the GCE 'O' level results are released, both the students and the school only gets a final 

grade on the students' performance.  In other words, no break-down on how well a student did 

in a particular section of the examination is provided.  Hence, I cannot verify if the students 

had done particularly well for their practical examinations.  However, I did talk to Ms Er on the 

students' ability in a physics laboratory, and it was her opinion that this cohort of students 

were not more 'laboratory-savvy' as compared to previous cohorts.  In addition, this group of 

students did not have more time in a physics laboratory as compared to previous cohorts. 

Hence,  it  is  unlikely  that  their  practical  scores  were  significantly  higher  than  that  of  the 

previous cohorts.

With regards to Ms Er having increased motivation and working harder, I believe this was 

indeed the case.  However, she had increased motivation and worked harder not because of 

my presence, but because the intervention allowed her to have deep insights into her students' 

thought processes and knowledge base, thereby allowing her to prescriptively address their 

learning difficulties.  Additionally, motivation is reciprocal in nature – as the students were 

more interested in learning about physics concepts, she became more interested in teaching 

those concepts, thereby creating the conditions for a virtuous cycle.  Also, it is important to 

note that Ms Er did not spend more time with the students as a result of the intervention.  In 

fact, because Mr Ng had left the teaching profession in June 2009, Ms Er had to take over one 

of his physics classes (there was no replacement teacher available) and as a result, actually 

had less time for this cohort of students.

As with the pilot study, it is unlikely that the students were affected by my mere presence, 

since I found the students to be quite nonchalant in my presence.  While I do think that the 
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students appreciated my presence, I think their appreciation comes from the fact that they 

could see how the intervention that I had designed and implemented could help them with 

their revision of physics concepts.  Also, their increased interest in physics could be a result of 

the change in classroom revision practices, which gave them a 'voice' in the classroom.  Like 

Ms Er, they too were caught up in a virtuous cycle and in their case,  their interest in physics 

caused them to spend more time on the subject,  thereby improving their  physics  results, 

which in turn increased their interest in physics even more.  Said differently, while I think that 

the  students  in  this  cohort  probably  worked  harder  on  physics  as  compared  to  previous 

cohorts, they had done so not because of my presence, but because of the new sociocultural 

practice for physics revision that the intervention brought about.  Finally, given the longitudinal 

nature  of  the  intervention,  it  is  unlikely  that  novelty  effects  was  the  cause  of  the 

improvements.

Having argued that the students' improved learning outcomes were largely due to the effects 

of the intervention, it is necessary to emphasise that the improvements are not solely due to 

the intervention.  After all, the intervention is revision in nature, and without Ms Er's regular 

teaching lessons (including some drill and practice), I doubt the students would have shown 

any improvements.  Also, the intervention did not completely cover the entire examinable 

syllabus, since there are 22 examinable topics but only 16 topics were covered in this study.  I  

believe  that  if  we  had  covered  all  the  topics,  we  would  have  seen  an  even  greater 

improvement in the students' results.  However, it is also arguable that perhaps it was the 

students'  (excellent)  performance  in  the  (other)  six  topics  that  were  not  covered  in  the 

intervention that caused their results to improve.  Naturally, without a complete break-down of 

scores, these claims are non verifiable.

6.5.2 Discussion on Causes of Students' Difficulties when Solving Physics Problems

As discussed in Chapter One, the predominate reason offered by students is that they perceive 

physics to be a difficult/hard subject.  Students find physics hard essentially because they 

often experience difficulties in  solving physics  problems (Byun et  al.,  2008).  For instance, 

Benson Soong Page 204



Tuminaro and Redish (2003) demonstrated that students perform poorly on physics problems 

involving mathematical tasks largely because of the students’ failure to apply the mathematical 

knowledge they have, or to interpret that knowledge in an appropriate (physics) context.  In 

other words, as well as subject knowledge of physics, successful problem solving in physics 

often also requires sufficient mathematical knowledge.

Various research endeavours have been undertaken to help students solve physics problems. 

For example, early research work studied the differences between expert and novice problem 

solvers (e.g. Simon & Simon, 1978; Larkin & Reif, 1979; Chi et al., 1981; Larkin, 1981) with 

the view of attempting “to design a general Physics problem-solving instruction that can be 

taught  to  students”  (Abdullah,  2006,  p.12).   Later,  researchers  designed  problem-solving 

models (e.g. Heller & Heller, 2000; Byun et al., 2008) that were targeted at helping students 

with each stage of the problem solving process.   However, as highlighted by Byun et al., 

(2008), “there is little research on the students’ specific difficulties in the process of problem 

solving” (p.87; emphasis added).  Without deep insights into students’ specific difficulties when 

they problem-solve, researchers would only be able to offer students generic assistance when 

prescriptive  treatment  could  be  more  effective.  Hence,  in  this  study,  I  reviewed  specific 

difficulties  the  students  had during problem solving.   My data  is  gathered from authentic 

student-dyad discussions collected during collaborative problem-solving that is mediated by 

synchronous computer-mediated communications technology, and I believe that this difference 

in data source (as compared to interviews or think-aloud protocol data) could offer interesting 

insights into the difficulties students encounter with physics problems.

6.5.2.1 More Fundamental than Misconceptions

A  popular  research  track  among  physics  education  researchers  is  the  study  of  students’ 

misconceptions, which is usually defined to mean conceptions that differ from scientific norms 

and yet are strongly held, stable cognitive structures that affect in a fundamental way how 

students  understand  physics  concepts  and  solve  physics  problems  (see  Hammer,  1996). 

Misconceptions are largely attributed to students’ prior knowledge (Ogborn, 2004) and against 
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such a backdrop, it has been recognised that students' preconceptions can often impede their 

learning and understanding of  normative science concepts  (for  e.g.  see McDermott  et  al., 

1987, Bowden et al., 1992; Voska & Heikkinen, 2000).

While  the  protocol  data  indicates  the  prevalence  of  misconceptions  and  highlights  how 

misconceptions may impede a student's problem-solving endeavours, it also suggests a much 

simpler reason for why students have difficulties in solving physics questions – students may 

simply lack the basic  knowledge of  the various topics  (perhaps due to absenteeism) and, 

hence, provide naïve, 'unscientific' answers to the questions that were posed (e.g. Zouk's lack 

of basic knowledge on the topic, pressure, leading her to provide a speed/time-based answer 

to a pressure question, as illustrated in sub-section 6.4.5.7).  Said differently, while students' 

misconceptions are partially responsible for students' difficulties in solving physics, it would be 

prudent to check that students actually possess basic knowledge and conceptual understanding 

on the topics in question.  After all,  students cannot be said to have misconceptions if they 

have no conceptions.  Hence, it would be appropriate to assess students' basic knowledge and 

understanding  prior  to  embarking  on  revision  sessions  that  focuses  on  conceptual  and 

application-based matters.

6.5.2.2 P-Prims caused by Concept Gaps/Awareness

diSessa and colleagues (e.g. diSessa, 1993; Smith et al., 1993/1994 ) offered an alternative to 

the misconception perspective.  They argue that not all thoughts expressed by students are 

necessarily derived from stable cognitive structures.  Instead, diSessa (as cited in Hammer, 

1996)  posited  the  existence  of  “more  fundamental,  more  abstract  cognitive  structures  he 

called phenomenological primitives or p-prims.  By this view, students respond to a question 

depends on which p-prims are activated” (ibid, p.102) as part of a knowledge construction 

process.  Hence, students may have difficulties with solving physics problems because a p-

prim that is inappropriate with the given context was activated.

The protocol data suggests how p-prims that are inappropriate with a given context might be 
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activated – when students have weak concept awareness.  For instance, Table 6.14 shows how 

Mumo's  lack  of  concept  awareness  may have  led  to  the  activation  of  Ohm's  p-prim (see 

diSessa, 1993, p.126-129), leading to an incorrect solution.  However, upon recognition of the 

concept to be applied (in this case, P=phg), Mumo was able to obtain the correct solution to 

the problem.

Hence, students should be taught that when answering questions, they need to make the 

effort to identify the relevant concepts inherent in the question being asked, and use those 

concepts in order to answer the question.  When given a context-rich or 'everyday' situation-

type question, they especially need to resist the urge to provide 'instinctive' answers and, 

instead, focus on identifying the concepts being assessed in that question.  Such an approach 

should minimise the likelihood of inappropriate p-prims being activated.

Table 6.14: Illustration of weak concept awareness leading to the activation of Ohm's p-prim

Question Posed Discussion Snippet

Beakers A and B 

contain tap water.  A 

small hole of the same 

diameter was made at 

the middle of both 

beakers.  Which of the 

following statement is 

true, and why? [2]

a) Water will spurt out 

further in beaker A than 

B.

b) Water will spurt out 

equally in beaker A and 

B.

Veve: i think b

[Veve revealed to Mumo that she thought the answer was (b).  She is correct, but  

did not provide reasons for her answer]

Mumo: why??

Mumo: i thought bigger area mean more pressure??

[Here, Mumo questions Veve's answer, and reveals his thought process – he had  

thought that bigger area (i.e. in beaker B) meant more pressure.  Hence, his  

initial answer is implicitly (c). This could be due to an activation of Ohm's p-prim,  

whereby the “bigger area” of the water surface and volume (the 'agent') implies  

more force, and given the same hole size (the 'resistance'), beaker B would spurt  

water out further than beaker A]

Mumo: ok i get it

[Upon reflection of Veve's answer, Mumo claims to “get it”]

Veve: how?

[Veve seeks clarification for how Mum 'got it']
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c) Water will spurt out 

further in beaker B than 

A.

Mumo: same density

Mumo: same height

Mumo: same gravity ......

[Here, we see that Mumo has applied the formula P = phg.  Since the water in  

both  beakers  had  the  same  density  (p),  were  at  the  same  height  (h),  and  

experienced the same gravitational pull (g), pressure would be the same]

Veve: so the same rite?

Mumo: so ya answer is b

[Here, we see that both Veve and Mumo agree on the solution]

6.5.2.2 More Fundamental than Misreading and Misinterpretation of the Question

Through their analysis of student responses to multiple-choice questions, Pollitt and Ahmed 

(2001; see also Crisp et al., 2008) suggest that students’ answers to various TIMMS’ questions 

may have more to do with the students' reading and interpretation of a question than with 

their knowledge on the subject.  For example, they reported that when students were asked, 

“Which of these meals would give you most of the nutrients that you need?”, more students 

selected  the  option  “Vegetables,  fruit,  and  water”  instead  of  the  (correct)  option  “Bread, 

vegetables, and fish”.  When the students’ selection were analysed according to their countries, 

the results reveal that students from Norway or Singapore were ten times more likely to select  

the correct answer than students from South Africa and Colombia.  Pollitt and Ahmed suggest 

that this data indicates that substantial cultural influences regarding the types of food that are 

considered healthy or nutritious affected how students interpreted the question.  Therefore 

they argue that  a  question  must  have construct  validity  before  it  can accurately  evaluate 

students' knowledge and abilities on a given topic.

The protocol data reveal a more fundamental issue – students who are weak in the English 

language might completely not understand the question posed.  If students cannot understand 

the questions posed, then they cannot even attempt to answer the questions.  Hence, there is 
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a need to ensure that the questions posed are not too difficult for such students to grasp. 

Otherwise, these students could be severely disadvantaged, since their limited command of the 

language could indirectly (negatively) affect their physics results.

6.5.2.3 More than (Weak) Mathematical Ability

In a study of physics problem solving among secondary school students in Turkey, Orhun and 

Orhun (2002) reported that the most common mistakes students made during problem solving 

of  algebra-based  questions  were  mistakes  due  to  conversion  of  units,  and  mistakes  on 

mathematical operations.  For example, students incorrectly converted “30g = 3kg”  and when 

solving the equation “30dg = Vs(3d/2)g”, students incorrectly stated that “Vs= 30 x 3/2 => 

Vs= 45”.  Hence, they suggested that the teaching of mathematics is an important prerequisite 

for the teaching of physics.  However, in a study of undergraduate physics students, Tuminaro 

and Redish (2003) found that a major source of students’ errors while solving mathematics-

based physics problems is the students’  failure to apply the mathematical  knowledge they 

already possess, or to interpret that knowledge in a appropriate (physics) context.  Hence, 

they suggest that what is needed is not more mathematical lessons, but rather, strategies to 

help  students  reframe  problems  so  as  to  “activate  and  effectively  utilize  the  relevant 

mathematical resources [they] already possess” (ibid, p.114).

The protocol data suggests that in additional to mathematical abilities, students need to apply 

basic logic during physics problem-solving.  Hence, to aid in their problem-solving attempts, 

students need to be taught to consider the logical plausibility of their answers.

In short, the protocol data reveals that non-physics related deficiencies play a big part in how 

students solve problems.  The implication of this finding is that a physics-only intervention 

might  not  be  adequate  to  significantly  improve  students'  final  physics  grade.   After  all, 

students  who  understand  all  physics  concepts  taught  in  class  might  not  do  well  in  an 

examination if they have a weakness in question comprehension.  In other words, students 

face numerous difficulties when solving physics problems, and a good portion of our students' 
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difficulties  are  actually  non-physics  related.   Hence,  in  order  to  help  students  improve, 

interventions in other domains (e.g. language, mathematics) might be necessary.  Further 

research needs to be conducted to see if there are correlations between language (English), 

mathematics, and physics results.

6.5.3 Fostering Dialogic Pedagogical Activities 

In recent years, there has been increased interest in fostering dialogic pedagogical activities in 

classrooms (e.g. see Alexander, 2006; Dawes, 2008a; Mercer et al., 2009).  This increased 

interest is largely fuelled by a sociocultural perspective to education, which foregrounds the 

foundational  importance  language  and  dialogue  plays  in  the  cognitive  development  of 

individuals.  However, traditional didactic teaching practices that has existed for centuries still 

hold  sway  in  classrooms today.   As  identified  by  Barnes  (1976),  there  are  two  types  of 

teachers:

The  Transmission teacher  sees  it  as  his  task  to  transmit  knowledge  and to  test 

whether the pupils have received it. To put it crudely, he sees language as a tube 

down which knowledge can be sent; if a pupil catches the knowledge he can send it 

back up the tube. Such a teacher does not see speech or writing as changing the way 

in which the knowledge is held. For the Interpretation teacher, however, the pupil's 

ability to reinterpret knowledge for himself is crucial to learning, and he sees this as 

depending on a productive dialogue between the pupil and himself. (p. 142)

Hence, in order to foster dialogic pedagogical activities in a classroom environment, there is a 

need for teachers to be more “interpretation” and less “transmission” in practice.  To help 

science teachers plan for dialogic teaching, Dawes (2008a) has suggested the use of 'Talking 

Point'  resources, which are based on “a specific science theme and encourage students to 

consider  it  in  more  detail.  Talking  Points  statements  are  listed  in  a  way  that  stimulates 

sequential thinking about the topic and brings out a wide range of ideas for others to hear. 

They are basically a list of simple statements that encourage thinking, speaking, listening and 
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learning” (p.3).  Figure 6.17 provides an example of a Talking Point resource for the topic, 

Magnetism.

Figure 6.17: Magnetism Talking Point resource (Dawes, 2008a, p. 104)

In short,  Dawes (2008b) explains that Talking Points are used by teachers in a classroom 

based on the following setting:  Students work in small groups of no more than three in order 

to discuss the statements made in the Talking Points resources.  Prior to working together, 

students are made aware of the ground rules for thinking together (see Mercer, 2000, chapter 

two) and the fact that they would be asked “to contribute to a whole-class plenary” on the 

“content of the Talking Points” as well as “how well the the group talked and worked together” 

(Dawes, 2008b, p. 33).  After sufficient time has lapsed for students to discuss on the Talking 

Points within their groups, the teacher may then signal for the individual group discussion to 

stop and the whole-class plenary to start.  The teacher may take a Talking Point which “has 

raised uncertainty or interest and draw on what [the teacher has] heard during group work” 

(Dawes, 2008a, p.104) and seek contributions from the class, and hence the dialogue in the 

class is primarily driven from the students' discussion centred on those Talking Points.

This intervention (i.e. CMCPS-PT) contributes to research on dialogic pedagogy in two ways. 
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Firstly, because the intervention is based on the tenets of sociocultural theory, the constituent 

components of the intervention (i.e. CMCPS and PT sessions) naturally lends itself towards 

fostering a dialogic revision environment for physics.  In other words, if  a science teacher 

replicates the intervention in accordance to its essence, then the teacher would have fostered 

a  dialogic  learning  environment  by  virtue  of  the  fact  that  the  intervention  is  centred  on 

problem-solving dialogues.  Secondly, snippets of students' problem-solving discourse could 

serve as a Talking Point resource in itself.  For example, instead of providing the Magnetism 

Talking Point resource as depicted in Figure 6.17, teachers can provide discussion snippets of 

students' problem-solving attempts and have students discuss that instead (see Figure 6.18 

for an example).

Figure 6.18: Using students' problem-solving discourse as a Talking Point resource

I believe that using such problem-solving discourse as a Talking Point resource is particularly 

appropriate in a secondary school science classroom setting for the following reasons:

I) Because the resource is centred specifically on a particular question (instead of a broad 

topic),  students  see  the  relevance  between  'talking  about  physics  concepts'  and 

'answering physics questions', which is the main form of assessment used by schools

II) Because the resource features real students' dialogue, the illustrated discourse could 

serve as a model for how the students are to discuss with each other

III)Because the resource is essentially generated from students' discourse, the issues and 
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concepts illustrated in the resource may resonate with the students, thereby spurring 

more discussions and debates (especially if the students disagree with one another)

Regardless  of  the  eventual  implementation,  a  distinctive  feature  of  dialogic  learning 

environments  lies  in  the  importance  a  teacher  places  in  summarizing  and/or  rephrasing 

students'  talk  (i.e.  “revoicing”;  see  O’Connor  &  Michaels,  1996,  p.76)  in  the  classroom. 

Renshaw and Brown (1998) argue that “a student whose contribution has been revoiced by the 

teacher or another student, is positioned to make a judgement regarding the relevance and 

acceptability of the revoiced utterance. By revoicing and naming a particular student as the 

author of the idea the teacher also positions the student in relationship to other participants in 

the  discussion”,  which  is  supportive  in  the  building  of  a  more  egalitarian  and  inclusive 

classroom environment.  Talking Points, Prescriptive Tutoring, and Peer Instruction all have this 

feature, and all have been shown to improve students' learning outcomes, thereby highlighting 

the relevance and importance of sociocultural theory to individual cognitive development.

6.5.4 Consideration of the Activity Theory Constructs when Replicating the Intervention

While Figure 5.18 provides an Activity Theory instantiation of the intervention implemented in 

the pilot study, its constructs have largely remained consistent even for the main study.  For 

instance,  the  intervention's  key  artefact is  still  the  computer  'text-chat'  and  whiteboard 

software that allowed students to engage in problem-solving discourse.  Also, the objective of 

the intervention remained the same – we want to help students understand physics concepts 

posed  in  the  questions  they  are  solving,  and  not  drill  students  to  remember  facts  and 

memorise 'learning recipes'.  From a rules perspective, students still needed to abide by the 

ground rules during the CMCPS sessions (so as to ensure meaningful and productive problem-

solving discourse).  The division of labour had also remained the same in the sense that the 

students were to articulate their thought processes and knowledge base to each other (and 

their teachers) during collaborative problem-solving, while the teacher reviewed and analysed 

the discourse so as to provide prescriptive tutoring based on the students' mental models (and 

not on a pre-defined lesson plan).  From a community perspective, I still played an important 
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role  by  providing  the  necessary  technical  and  administrative  support  needed  for  the 

intervention (e.g. setting up the computer laboratories; printing of the discussion logs).

In other words, the Activity Theory instantiation of the intervention depicted in Figure 5.18 

captures the essence of the intervention, which remained the same during the pilot as well as 

main study.  The intervention essentially causes a change in the sociocultural practices for the 

revision  of  physics  by  changing  how students  and  their  teacher  interact  with  each other, 

thereby changing how they think, act, and feel towards physics.  Hence, a reader who wishes 

to implement the intervention in their own unique setting must realise that the intervention is 

principally a pedagogical intervention and not a technological one – the use of the text-chat 

and  whiteboard  technology  alone  would  be  inadequate  without  the  corresponding  rules, 

division of labour,  community support (especially technical support; see Soong et al., 2001), 

and an  objective to help students understand physics concepts (and not memorise facts or 

'learning recipes').

6.6 Chapter Summary

In this chapter, I described the design, implementation and evaluation of my main study.  I 

showed  that  students  in  the  2009  batch  who  were  involved  in  the  intervention  obtained 

significantly  higher GCE 'O'  level  physics  grades than the six-year and three-year average 

physics  grades  of  the  previous  cohorts,  in  addition  to  outperforming  what  the Singapore 

Ministry of Education had expected of them.  Additionally, the three students who were ear-

marked to drop physics at the end of secondary three had passed the subject, and no student 

scored below a C5.  In addition to improved examination scores, the survey results also show 

that the students' interest in physics consistently increased throughout the intervention.  By 

and large, the students were very comfortable with being in the intervention, and felt that their 

biggest improvement due to the intervention lies in their improved understanding of physics 

concepts and their ability to apply these concepts to solve problems.    From an individual 

revision perspective, many students were spending more time on their revision of physics, as 

well as having discussions with their classmates on solving physics problems.  From a class-
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community perspective, most students reported that the intervention had resulted in more 

discussions between students and teacher, as well as the students themselves.  It was their 

opinion that the increased discussions helped them in understanding physics concept better 

and/or apply the concepts to questions posed, as well as helped them in dealing with their 

misconceptions/misunderstandings.  The students overwhelmingly agreed that the intervention 

had been helpful in their their revision of physics concepts, and believe that their juniors (in 

secondary  three)  would  benefit  from the  intervention  as  well.   On  the  whole,  they were 

comfortable with the intervention, despite their many years of exposure to other (less dialogic) 

revision practices.

From the teacher's perspective, Ms Er had found that being “being involved in this project is a 

meaningful, enlightening, if not a transformative experience/process”.  She reported that while 

she  had “been taught  the  typical  elements  of  good classroom teaching...[and]  have  used 

various strategies to understand students’ preconceptions/misconceptions to better inform my 

teaching practice...the amount of knowledge gleaned (mostly generic in nature) in my five 

years of teaching experience is much less tha[n] the insights that I gained through one year of 

PT”.   It is her opinion that the intervention provided a “non-threatening environment” where 

students can learn from one another and “'talk' about physics”, thereby fostering “a collegial 

and positive learning climate where there is a greater and richer exchange of knowledge and 

concepts”  between  her  and  the  students,  and  had  helped  her  to  “identify  specific 

misconceptions and learning difficulties” that her students faced in the learning of physics.

Also included in this main study is an attempt to uncover specific difficulties the students had 

while solving physics questions.  While the literature largely points to misconceptions, p-prims, 

reading, and mathematical ability as being largely responsible for students' difficulties during 

problem-solving, the protocol data data indicates that other factors are also responsible in 

addition to these established causes.  These factors include knowledge gaps, concept gaps, 

mathematical/logical reasoning gaps, weak concept awareness, and an inability to understand 

the questions posed.  In other words, this research study reveals that non-physics related 
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deficiencies play a big part in how students solve problems and a good portion of our students' 

difficulties  may be considered as non-physics  related.   Hence,  in  order to  holistically  help 

students  improve  in  their  physics  problem-solving  abilities,  interventions  in  non-physics 

domains (e.g. language, logical reasoning) might be necessary.
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CHAPTER SEVEN

FINAL DISCUSSION, IMPLICATIONS, AND CONCLUSION

In this chapter, I conclude the dissertation by first mapping out my intervention to the C4 

Intervention Evaluation model introduced in Chapter Three,  emphasising the similarities and 

differences  between  my  intervention  and  the  seven  qualified  interventions.   Thereafter,  I 

provide  a  summary  of  the  significant  contributions  the  research  study  described  in  this 

dissertation  makes  to  educational  research  that  aims  specifically  at  improving  classroom 

practices.  Next, I provide a discussion on the implications of the findings of this research 

study (as well as future research work that may be conducted) from the perspective of (i) the 

practice of physics revision in secondary schools, (ii) designing and implementing ICT-based 

interventions, and (iii) designing and implementing dialogic learning environments.  Finally, I 

conclude the dissertation by summarising the entire study, as well as sharing my own thoughts 

on the entire research endeavour reported in this dissertation.

7.1 Mapping the Intervention to the C4 Intervention Evaluation Model

In Chapter Three (section 3.2), I introduced the C4 Intervention Evaluation Model as a means 

to synthesise and review the qualified physics learning interventions.  The model allowed me to 

highlight the similarities and differences between the interventions from both a practical as 

well  as  theoretical  perspective.   For  example,  from  a  practical  perspective,  the  model 

highlighted  that  six  out  of  the  seven  interventions  were  essentially  targeted  at  a 

college/university setting, relying on specific affordances offered at these tertiary institutions in 

order for the interventions to be successfully implemented.  On a theoretical perspective, the 

model  revealed  that  none  of  the  interventions  were  explicitly  based  on  a  sociocultural 

perspective  that  privileges  dialogue  and  discourse.   Even  PI,  which  is  arguably  the  most 

dialogic of all the seven interventions, is viewed as being effective essentially because “[i]t 

continuously  actively  engages  the  minds  of  the  students,  and  it  provides  frequent  and 

continuous feedback (to both the students and the instructor) about the level of understanding 
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of  the  subject  being  discussed”  (Mazur,  2009,  p.51).   In  other  words,  PI  foregrounds 

constructivist concerns, while sociocultural concerns are in the background.  In mapping out 

my  intervention  to  the  C4  Intervention  Evaluation  Model,  I  aim  to  emphasise  how  my 

intervention differs from these seven interventions, and illustrate how it contributes to the 

research community on both practical as well as theoretical fronts.

7.1.1 CMCPS-PT “Context”

My intervention addresses physics at the secondary school curriculum level.  Given that the 

study showed that students of different abilities (e.g. Xian and Chan (high physics abilities), 

and Dino and Gabo (low physics abilities)) appreciated and benefited from the intervention, the 

intervention may be said to address students of all abilities at the secondary three and four 

levels, even though for my research study, the students were typically low academic achievers 

based on their PSLE examination scores.  As the intervention is teacher-directed (even though 

it is student-centred; see section 7.1.3 for a fuller discussion), it requires the presence of a 

qualified  physics  teacher  to  lead  and  'orchestrate'  the  classroom PT  sessions.   Since  the 

CMCPS-PT  intervention  addresses  the  secondary  school  curriculum,  it  is  bounded  by  the 

constraints of the international (or national or state) examination that the school subscribes to 

(e.g.  in  the  case  of  secondary  schools  in  Singapore,  the  GCE 'O'  levels).   As  a  revision 

intervention,  the  CMCPS-PT  intervention  requires  student  pairs  to  collaboratively  work  on 

solving physics problems over a computer network system through a shared text-chat window 

and  a  virtual  whiteboard.   Thereafter,  upon  analysis  of  the  students'  text-chat  logs  (and 

whiteboard  depictions),  the  teacher  would  conduct  revision  lessons  by  prescriptively 

addressing  students'  problem-solving  difficulties  (e.g.  misconceptions/misunderstandings) 

based  on  the  students'  mental  models,  and  not  on  a  predefined  time-table.   As  the 

intervention requires students to use computers for discussion purposes, the assistance of an 

IT laboratory assistant is usually needed.  Figure 7.1 provides a summary of my intervention's 

“context”.
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Figure 7.1:  CMCPS-PT Intervention “Context”

The  CMCPS-PT  intervention  is  most  similar  to  the  Diagnoser  Project  from  a  “context” 

perspective,  since  both  interventions  address  a  pre-tertiary  physics  curriculum  involving 

standardised examinations.  In addition, both these revision interventions utilise computers as 

a  crucial  'problem-solving'  component  of  the  revision  process.   However,  there  are  also 

significant differences between Diagnoser and CMCPS-PT.  Firstly, students who use Diagnoser 

use  computers  to  answer  multiple  choice  questions  individually,  whereas  for  CMCPS-PT, 

students use computers in order to answer a variety of question types (e.g. MCQ, open-ended) 

with an anonymous partner over a computer network.  While the Diagnoser computer system 

is designed to play the role of a teacher by providing feedback to students based on their 

answers  to  the  questions  posed,  it  is  a  teacher  that  plays  this  role  in  the  CMCPS-PT 

intervention.  Said differently, while the bulk of the revision interaction is between student and 

computer for Diagnoser, a significant portion of the revision interaction is between students 

themselves for CMCPS-PT.  Also, while the teacher only plays a supporting role in Diagnoser, 

the teacher  is  absolutely  essential  in  CMCPS-PT because it  is  the teacher that  directs  the 

remedial activities during the PT sessions based on the difficulties manifested in the students' 

problem-solving dialogues, as recorded in situ by the computer during the CMCPS sessions.

7.1.2 CMCPS-PT “Content”

As my intervention is not dependent on any specific content or materials, it is concept and 

topic agnostic.  Also, the assessment of effectiveness of my intervention was through historical 

test scores comparison.   Figure 7.2 provides a summary of my intervention's “content”.
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Figure 7.2:  CMCPS-PT Intervention “Content”

From a  “content”  perspective,  my  intervention  is  similar  to  the  other  topic  and  concept 

agnostic interventions, namely,  PI, CGPS, and EPP.  The distinct advantage in being content 

agnostic is that content changes (e.g. the inclusion of new content into the syllabus) would not 

affect the practice of the intervention in any way.  However, I recognise that the interventions 

that rely on specific materials (e.g. the specific questions and options posed in Diagnoser) do 

so because those materials aid the intervention from an efficiency perspective.  For example, a 

teacher may be able to obtain insights into his/her students' conceptions and knowledge base 

without  taking  the  time to  review any  logs,  since  all  students  need  to  do  is  answer  the 

multiple-choice questions (MCQ) posed in Diagnoser.  For instance, Figure 7.3 depicts a MCQ 

(and the relevant distractors/answer) on the topic  Kinematics.  In the question depicted in 

Figure 7.3, a student is asked to select a description of the horizontal forces acting on a block 

on a “very slippery table” after it was given “a shove”.  Conceptually, the answer would be the 

first option, since “the force to the right is zero” and “the frictional force to the left is very 

small”, as the table is described as being “very slippery”.  Figure 7.4 shows the 'feedback' that 

Diagnoser would provide if a student selects the fourth option (“A constant force of motion 

keeps the block moving to the right”), which is a common misconception.
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Figure 7.3: A MCQ from Diagnoser on the topic, Kinematics (Taken from http://www.diagnoser.com)

Figure 7.4: Example of 'Feedback' from Diagnoser (Taken from http://www.diagnoser.com)

The immediate  feedback  that  Diagnoser  presents  to  the  student  (which  is  relayed  to  the 

student's teacher) assumes that the student obtained an incorrect answer because s/he does 

not understand that a net zero force on an object implies that the object would either remain 
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at rest, or travel at a constant velocity (i.e. Newton's First Law of Motion).  However, while this 

is a common misunderstanding many students have, it is entirely possible that the students' 

incorrect answer was a result of not understanding the question, or some other conception. 

Hence, while Diagnoser (and indeed other non-content agnostic interventions such as Andes) 

is  efficient (i.e. doing things well, thus saving time), it is not necessarily effective (i.e. doing 

the right things, thus getting the diagnosis correct).  For CMCPS-PT, while it is not necessarily 

efficient (since time is needed to read every peer discussion), it is  effective since students' 

perceptions (as well as their reasons and thought processes) are available, thereby offering 

teachers with a more accurate diagnosis of students' difficulties in solving physics problems. 

In my opinion, CMCPS-PT strikes an appropriate balance effectiveness and efficiency, providing 

teachers with a practical trade-off between depth of discovery of students’ knowledge and time 

and effort needed.

7.1.3 CMCPS-PT “Concept”

As  expounded  in  Chapter  Two,  the  theoretical  underpinnings  of  my  intervention  are 

sociocultural theory and constructivist learning principles.  More specifically, my intervention 

focuses on creating an environment that promotes and encourages sustained discussions about 

physics concepts in a non-threatening, fail-safe environment.  As a result of the promotion of 

active problem-solving discourse in order to revise physics, learners natively become active 

participants  in  their  own journey of  learning and discovery (which  is  the  second tenet  of 

constructivism;  see  section  2.4).   Also,  because  students'  collaborative  problem-solving 

endeavours may be transported through time and across space, the teacher may review and 

analyse those discussions at his/her own convenience.  Based on the insights gained from this 

review  and  analysis  process,  the  teacher  would  have  specific  insights  into  the  students' 

thought  processes  and  knowledge  base,  thereby  orchestrating  his/her  lessons  around  the 

students'  mental  models.   As  a  result  of  the  deep  insights  into  the  students'  existing 

knowledge,  the teacher can assist students in relating what they know to the various views of 

normative physics concepts (which is the first tenet of constructivism; see section 2.4).  As the 

intervention is teacher-directed and does not make use of existing materials (see 7.1.2), the 
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teacher is required to prepare the questions to be posed during the CMCPS sessions outside of 

classroom instruction time.  In addition, the teacher is also required to review and analyse the 

students' collaborative problem-solving discourse and prepare some form of remedial materials 

based on the students' mental models.  Hence, the critical pedagogical concept of CMCPS-PT is 

essentially to provide students with a  dialogic learning environment that is  teacher-directed 

but student-centred.  Figure 7.5 provides a summary of my intervention's “concept”.  

Figure 7.5: CMCPS-PT Intervention “Concept”

In my opinion, my intervention is most similar from a “concept” perspective to PI.  This is  

because both CMCPS-PT and PI strongly feature peer discussion as a critical component of 

learning/revising  particular  concepts.   In  addition,  the  peer  discussion  for  both  these 

interventions are based on specific problems posed to the students.  After peer discussion, the 

teacher would provide remediation based on the students' conceptions.  However, there are 

important differences between PI and CMCPS-PT from both a theoretical as well as practical 

perspective.   From  a  theoretical  perspective,  CMCPS-PT  pays  much  more  attention  to 

“revoicing” students' opinions and conceptions as compared to PI (see section 6.5.3), since 

more privilege is given to sociocultural considerations.  From a practical perspective, for PI, 

students are required to read and review textbook materials before attending classes, which 

might be acceptable in a college/university setting (especially in a high-achieving varsity like 

Harvard).  However, in a mainstream secondary school setting, teachers are expected to teach 

the content to students during curriculum hours.  While it might be possible to implement PI in 

a more 'revision' context whereby PI is only used after a topic has been taught in class, there  

are two key obstacles to implementing PI in such a setting.  Firstly, many teachers feel that 

they have incorporated some form of 'group work' or 'peer discussion' during revision lessons. 

Hence, from that perspective, they might think that there is little difference between PI and 
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the  more  common 'group work'  approach.   In  fact,  when I  was discussing PI  with  some 

teachers in the school, most of them commented that they were already “asking students to 

discuss questions with one another”.  Because of the similarities in approaches, teachers might 

not  perceive  the  benefits  PI  could  bring.   Secondly,  PI  requires  some maturity  from the 

students in the sense that students are to engage in meaningful discussion with one another. 

As secondary students are significantly less mature than undergraduates, the quality of their 

discussions is not often high.  In addition, because a teacher can only physically be at one 

place  listening  in  to  one  group  at  a  time,  the  students  tend  to  talk  about  off-task 

activities/events when the teacher's attention is on another group.  CMCPS-PT avoids these 

two key obstacles and is appropriate in a secondary school setting.   Firstly, the students' 

discourse during CMCPS is recorded by the computer system.  Hence, the students know that 

any talk about off-task activities/events or disruptive behaviour are traceable to the specific 

student.   Hence,  this  instils  discipline  and  focus  into  the  students'  collaborative  problem-

solving  activities,  thereby  ensuring  a  high-quality  of  discussion.   Secondly,  because  the 

activities inherent in CMCPS-PT are different from most activities teachers have attempted, 

they are less likely to make the assumption that the end-results would be the same as per 

their  previous activities, thereby encouraging them to embark on the new practice.  Since 

CMCPS-PT changes how a teacher interacts with his/her students, the change in interaction 

would cause a change in the way the entire class think, act, and feel towards physics revision. 

With such a change, practices such as the “revoicing” of students' conceptions may be given 

more prominence and meaning as compared to past revision practices.

7.1.4 CMCPS-PT “Consequence”

There are important and significant consequences of being involved in CMCPS-PT.  As the study 

has shown, from the students' perspective, the intervention has helped them improve their 

understanding and application of physics concepts.  Also, CMCPS-PT increased the students' 

interest in physics.  As a result of improvements on both the cognitive as well as affective 

fronts,  their  physics  results  have  improved  significantly.   From  a  teacher's  consequence 

perspective, Ms Er gained deeper insights into her students' thought processes and knowledge 
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base.   Also,  because  the  intervention  promoted  a  collegial  and  positive  learning  climate 

whereby there was rich exchange of knowledge and concepts between teacher and students 

(and  between  the  students  themselves),  Ms  Er  experienced  increased  satisfaction  and 

fulfilment in her role as a teacher, when she saw the students responding positively to the 

intervention.  As she pointed out, she felt a “sense of pride” when she saw that the students 

could answer questions that she posed because they understood the physics concepts and not 

because they have been drilled to remember the solutions.  Figure 7.6 provides a summary of 

my intervention's “consequence”.

Figure 7.6: CMCPS-PT Intervention “Consequence”

By and large, the objective of every intervention is to improve students' learning outcomes, 

and  my intervention is no different.  Like most of the interventions, there is also increased 

satisfaction in the learning of physics on the part of  the learners.  Also, from a teachers' 

consequence perspective, most of the interventions (e.g. PI, TIIP, Diagnoser, EPP, including 

CMCPS-PT) are designed such that teachers have an improved understanding of their students' 

thought processes.  After all, teachers are often in the best position to help students learn, and 

insights into the students' thought processes and knowledge base aid teachers in being more 

effective educators.

7.1.5 CMCPS-PT Intervention Summary

In  sum,  I  believe  that  my  intervention  can  stand  toe-to-toe  with  the  seven  qualified 

interventions.  After all,  it  helped developed the students'  cognitive (e.g. understanding of 

physics  concepts)  and  affective  (e.g.  interest  in  learning  physics)  domains  pertaining  to 

secondary physics education, and aided the teacher in being more effective during revision 

lessons.  Also, it is the only intervention targeted at a secondary level that is concept and topic 
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agnostic.   In  my opinion,  the  intervention  is  effective  because  it  is  explicitly  based  on a 

sociocultural  perspective  that  aimed at  bringing  about  a  change  in  classroom pedagogical 

practices.  With a change in practices comes a change in how students and their  teacher 

interacted,  thereby changing how everyone felt  and acted towards  physics  revision.   This 

change in pedagogical practices was enabled because, as a collective school-based community, 

we had agreed that  we needed to focus on helping students understand physics concepts 

better, and the students' problem-solving discussion logs provided us with the means to do so. 

I recognise that how secondary schools typically divide their labour might make it difficult for 

the  intervention  to  be  immediately  implementable,  but  because  the  intervention  does  not 

require  specialised  technology  or  educators  to  implement,  I  remain  hopeful  that  teachers 

would be able to conduct the intervention when the need arises, or even as part of  their 

standard revision practice.

7.2 Summary of Significant Contributions

As discussed in Chapter One, it has been acknowledged that research has a large role to play 

in the improvement of classroom practices.  Given the “crisis” in physics education and the 

identified  need  to  improve  the  teaching  and  learning  of  physics  in  secondary  science 

classrooms,  it  is  important  that  research  efforts  are  put  into  finding  ways  of  improving 

secondary physics classroom practices.  Also, with the increased use of ICT in classrooms but 

the “no significant difference” findings various research studies have found, it is important for 

research to contribute to the design of ICT-infused learning environments that would result in 

significant  improvements  in  learning  outcomes.   The  research  work  described  in  this 

dissertation contributes to these two areas of interest by illustrating how an intervention that 

harnesses basic ICT infrastructure readily found in all public schools in Singapore may improve 

the practice of physics revision in secondary science classrooms.

From a practical perspective, the research study contributes to our community by sharing the 

design  and  practice  of  an  intervention  that  led  to  significant  improvements  in  students' 

learning  outcomes,  both  from  cognitive  and  affective  fronts.   It  details  an  innovative 
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intervention for  secondary school  physics  revision using common ICT infrastructure,  which 

would help in the utilisation of the intervention in other secondary school classrooms.  The 

intervention had positively impacted both the students and their physics teacher not because it 

used a different curriculum or teaching tools, but rather because it changed the practice of how 

physics revision was conducted in the classroom.  This change in practice was enabled by using 

ICT as a means for promoting student problem-solving dialogues and aiding the teacher in 

uncovering the students' thought processes and knowledge base, and made possible because 

the teacher's (and the students') objective of revision lessons had changed from “getting the 

right answer to the questions posed” to “understanding the physics concepts posed in the 

questions”  (see  Chapter  Four).   Also,  given  the  intervention's  sociocultural  groundings,  it 

contributes to the growing research interest in designing dialogic learning environments.

From  a  theoretical  perspective,  the  study  illustrates  the  importance  and  relevance  of 

sociocultural theory in the design of learning environments that engages the cognitive and 

affective domains of students, thereby changing them.  It shows that an environment that 

intentionally and explicitly encourages meaningful “talk” between teacher and students, as well 

as between students themselves, can positively  transform and enhance both teaching and 

learning  experiences  without  the  need  of  fanciful  technology  (as  commonly  advocated  by 

educational technology vendors).  The study also contributes to an increased understanding of 

students'  difficulties  when they solve  physics  problems.  It  shows that  non-physics  related 

deficiencies  may  impede  students'  physics  problem-solving  attempts  regardless  of  the 

students'  understanding  of  the  physics  concepts  involved,  therefore  suggesting  that  non-

physics related interventions may be important to help students solve physics questions better.

In my opinion, the study also informs sociocultural  theory by elucidating the conditions in 

which a teacher may scaffold students' construction of knowledge within their individual zones 

of proximal development.  While several researchers (e.g. see Srivastava & Misra, 2007, p.66; 

Scott,  2008, p. 84) have identified the zone of proximal  development as Vygotsky's most 

important contribution to learning theory (however, see Edwards, 2005 for an alternate view), 
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Vygotsky's original conception of the zone is vague, since “a problem in applying the concept 

of  the  zone...is  that  the  basic  definition  of  the  zone...may  characterize  virtually  any 

instructional practice [in a classroom]” (Moll, 1990, p. 160).  Given that the success of my 

intervention  in  improving  students'  learning  outcomes  is  an  indication  of  the  overall 

effectiveness of the PT sessions, it is likely that the PT sessions effectively created individual 

zones of proximal developments whereby the teacher helped scaffold the students' knowledge 

construction  efforts.   This  in  turn suggests  that  an analysis  of  how the PT sessions  were 

conducted  would  elucidate  the  conditions  in  which  a  teacher  may  scaffold  students' 

construction of knowledge within their individual zones of proximal development.

During  PT  sessions,  the  students  and  their  teacher  focus  their  discussions  on  particular  

questions which had been collaboratively attempted, and interact in a dialogic manner in order 

to  review the concepts posed in those questions.  In my opinion, there are two key reasons 

why such a classroom practice creates effective individual zones of proximal development. 

Firstly, on the part of the students, they had worked hard at attempting to solve the questions 

posed with a peer, and as Howe et al., (2005) have shown, there are incubation and delayed 

effects associated with peer collaboration.  Hence, when those questions are discussed again 

by the teacher, the students'  minds are more 'prepared'  and so they gain more from the 

instruction that follows.  Secondly, on the part of the teacher, the activity is dialogic in the 

sense  that  during  PT,  the  teacher  takes  into  account  the  students'  mental  models  when 

discussing  the  questions  posed.   In  other  words,  the  teacher  is  aware  of  the  students' 

'baseline' in their respective ZPD.  Since the teacher knows the zone's 'baseline' (i.e. students' 

current knowledge base and thought processes) and 'topline' (i.e. understanding of normative 

science  concepts),  instruction  to  assist  students  may  be  more  targeted  and  meaningful. 

Hence, in short,  individual zones of proximal  development may be created in a classroom 

setting when both students and their teacher are 'prepared', even though their 'preparation' 

involves different endeavours.  For the students, they need to be 'prepared' to grapple with the 

instructions that the teacher would provide, while for the teacher, s/he needs to be 'prepared' 

by having access into students' current knowledge base and thought processes.  Such are the 
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conditions in which a teacher may scaffold students' construction of knowledge within their 

individual zones of proximal development.

7.3 Implications for the Practice of Physics Revision in Secondary Schools

7.3.1 Drill-and-Practice (D&P) and CMCPS-PT

Traditionally, the practice of physics revision in secondary classrooms (especially in Singapore) 

largely revolve around “drill-and-practice” (D&P).  During D&P, students are given numerous 

physics questions (either as a paper-based handout or in a computerised assessment format) 

to  attempt,  and  whether  individually  or  as  a  group,  the  students  work  at  solving  those 

problems posed.  The students' problem-solving attempts are usually recorded either on paper 

(like in a test or examination) or in the computer (where the selected choices or final answer is 

captured).  Based on the correctness of the students'  answers, the teacher would provide 

detailed  explanations  in  class  for  questions  where  a  significant  number  of  students  had 

difficulty obtaining the correct answer or made mistakes in.  Alternatively, the teacher might 

review the students' work while they are attempting to solve the questions posed during class 

time, and immediately address any difficulties the students might have.

There are many reasons why a D&P approach to physics revision is the norm in Singapore, but 

as Ms Er explained, the predominate reason it is commonly practised is to “ensure sufficient 

repetition of core and popular concepts being tested”.  As Ms Er had discovered, it is possible  

to obtain good GCE 'O' level results from a D&P approach, although there are “doubts about 

the effects...on [the] students’ achievement and cognitive development beyond the O levels”. 

However, since D&P appears to deliver good GCE 'O' level results, it is practised in virtually all  

secondary physics classrooms in Singapore and probably the rest of Asia (see Kim and Pak, 

2002, for a discussion on how it is common for students in South Korea to attempt more than 

1,000 physics questions in preparation for their examinations).  Since D&P is essentially based 

on  repetition  (repeatedly  attempting  many  questions),  it  encourages  a  practice  whereby 

students (consciously or otherwise) seek to obtain correct answers to the questions posed, 

while teachers attempt to show students how the correct answers were obtained.  As reported 
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by Ms Er, with D&P, students are “drilled to recognize and remember” answers to various 

questions regardless of understanding.

As an alternative revision approach, CMCPS-PT differs from D&P in two main areas.  Firstly, the 

objective of CMCPS-PT is to help students  understand the physics concepts in the questions 

posed.  Said differently, while D&P focuses on ensuring students  know the answers to the 

questions  posed,  CMCPS-PT  focuses  on  ensuring  that  students  understand  the  physics 

evaluated in the questions posed.  Secondly, the  interaction of CMCPS-PT is such that peer 

discussion is crucial and the teacher “revoices” the students' opinions in order to base remedial 

instructions on the students' mental models.  In other words, while peer discussion is optional 

and the teacher focuses remedial instructions on an authoritative 'correct answer' in D&P, peer 

discussion is a crucial component of CMCPS-PT, and the teacher focuses remedial instructions 

based on a dialogic consideration of what the students said (or wrote) vis-a-vis the normative 

science views.

In  my  opinion,  the  CMCPS-PT  intervention  introduced  in  this  dissertation  offers  a  viable 

alternative to the D&P approach to physics revision in secondary science classrooms.  As Ms Er 

explained, CMCPS-PT has been shown to improve students' results because the students “were 

able to make sound use of Physics concepts to answer the questions...something that occurred 

because they understood and not because they have been drilled to recognize and remember”. 

Also, because the intervention is concept/topic agnostic and utilises basic ICT infrastructure 

found in virtually all public secondary schools in Singapore, the barriers to implementing the 

intervention are low.

The pilot study has shown that the intervention may be utilised strategically to help a small 

group of students, while the main study has shown that this intervention is also appropriate as 

a whole-class revision  practice.   Nonetheless,  I  recognise  that  this  CMCPS-PT intervention 

comes  at  a  cost.   While  reading  students'  discourse  and  identifying 

misconceptions/misunderstandings and/or knowledge gaps is not a difficult process per se, it is 
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a time consuming endeavour.  For instance, I observed that it takes teachers about five to ten 

minutes to provide a detailed explanation of how they arrived at the answer to a fairly complex 

(e.g. multi-part) physics question in front of a class of students.  Hence, in 60 minutes, a 

teacher could provide detailed solutions to six physics questions, which was about the number 

of questions I posed per CMCPS session.  Given that it takes about 20 minutes to review and 

analyse each discussion log (based on a CMCPS session of about one and one-quarter hours), 

just for the pilot study I needed one hour to review and analysis the XG students' discourse. 

Thereafter, I spent three hours collating the data (mainly students' text-chat snippets) and 

preparing the PPT 'notes' used during the PT session.  Given the dialogic nature of the lesson, 

each PT session lasted about one and three-quarter hours.  Hence, the total time I spent per 

CMCPS-PT cycle was four hours.  Compared to the traditional revision method, where students 

worked on answering questions posed for an hour before their teacher explained the solutions 

for another hour, this revision intervention is clearly much more time consuming, for both the 

teacher as well as the students.  In fact, if there were more discussion logs to review and 

analyse, then the time taken for the teacher would be even greater.  In my opinion, the extra 

time spent helping students understand physics concepts (rather than memorise answers) is 

beneficial in at least two ways.  Firstly, students gain an interest in physics, which is important 

from a societal perspective (see Gunasingham, 2009) since they would be much more likely to 

read physics/engineering at post-secondary level.  Secondly, students' grades would improve 

as a result of better understanding.

Over and above the additional time requirement, I recognise that CMCPS-PT alone cannot deal 

with all  aspects of  revision,  and the D&P approach still  has a role to play during revision 

lessons.  For instance, the D&P approach of using worksheets and past examination papers 

helps  students  with  their  procedural  and concept-recognition  skills,  in  addition  to  building 

discipline and extending their  attention span.   Indeed,  students take  individual  high-stake 

examinations,  and such 'mock examinations'  are a legitimate form of preparation for such 

endeavours.  In my opinion, if some form of 'balance' between CMCPS-PT and D&P may be 

struck, then we would have a holistic revision intervention that would address the students' 

Benson Soong Page 231



cognitive  (e.g.  understanding),  affective  (e.g.  interest  in  physics),  and  conative  (e.g. 

discipline)  needs.   Future  research  could  be  conducted  to  evaluate  what  an  appropriate 

'balance' might be.

7.3.2 Non-Physics Related Deficiencies, IRF exchanges, and CMCPS-PT

As discussed in Chapter Six (section 6.4.5), non-physics related deficiencies account for a 

sizable amount of difficulty students experience while solving physics problems.  Hence, during 

physics revision lessons, teachers need to pay special attention at ascertaining whether their 

students are indeed affected by such non-physics related deficiencies.  At present, one of the 

most  common ways  for  physics  teachers  to  identify  the  difficulties  their  students  have  is 

through the IRF exchange (see Sinclair & Coulthard, 1975).  Typically, the teacher initiates (I) 

some form of discussion with the students by asking a question.  A student would provide a 

response (R), and based on that response, the teacher would provide some form of feedback 

or follow-up (F), and the exchange could continue resulting in a IRFRF- chain (see Mortimer & 

Scott, 2003, p.41).  While the IRF exchange is commonly used by teachers to gain insights into 

students' thought processes, Barnes (2008) noted that, 

[I]t  is  surprisingly  difficult  for  teachers  to  achieve  insight  into  pupils’  thinking 

merely by asking a question and listening to their brief answers....As a result, they 

may fail to grasp what pupils had been thinking and what would give them useful 

support.  Thus their  contribution  to  the discussion can sometimes be less than 

helpful in advancing their pupils’ thinking. (p.2)

As a revision intervention, CMCPS-PT helps teachers identify both physics and non-physics 

related deficiencies and helps “teachers to achieve insight into pupils' thinking” not by “asking 

a question and listening to their brief answers”, but rather, by seeing (or more accurately, 

reading) how students solve physics questions in situ with a peer.  Because teachers may now 

see the  process of how their students are solving the problems (instead of the  outcome of 

what  the students thought), the teachers' insight into the students' mental model is much 
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deeper.  In addition, the CMCPS process also changes the IRF exchange roles in a significant 

way – instead of teachers initiating (I) the discussion and expecting students to provide a 

response (R), students now may initiate a discussion based on a specific difficulty they have 

encountered, and can expect the teacher to respond to it.  For instance, Table 7.1 provides the 

discussion snippet between Rarty and Chalice.  As both Chalice and Rarty were unable to 

provide a satisfactory reason for  their  instinctive  answers,  they apologised to  the teacher 

(“sorry teacher”) and initiated a discussion by asking the teacher to help them with their 

conceptions (“Pls explain 2 us Ms Er”), which the teacher did during the corresponding PT 

session.

Table 7.1: Students initiating a discussion with the teacher and expecting a response in class

Question Posed Discussion Snippet
Johnny said that it is 

not possible for the 

North-pole of a freely 

suspended bar magnet 

to always point to the 

North pole of the Earth, 

because like poles will 

repel.  Do you agree 

Johnny? [1]  Provide 

one reason [1].

Chalice: sorry teacher

[After numerous attempts at providing an answer, both Chalice and Rarty  

were unable to come up with a satisfactory reason to support their answer.  

Hence, Chalice is apologising as she wants to skip this question and move  

on to the next]

Rarty: its official

Rarty: we give up

Rarty: :P

Rarty: Pls explain 2 us Ms Er

[Rarty's statement translates to “Please explain to us, Ms Er”.  Here, we  

see Rarty initiating a discussion with the teacher,  and expecting her to  

address their difficulties in class]

Rarty: Thx

Table  7.2  provides another  example  of  students'  dialogue which  was aimed at  invoking a 

response  from  the  teacher.   Cullen  was  having  considerable  difficulties  in  answering  the 

question posed because she had difficulty in understanding the question (a non-physics related 

deficiency).  Hence, she expressed her frustration at her inability by directly telling the teacher, 
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“ms er we are getting mad with this qn!”, knowing that the teacher would read the log and 

respond in class.

Table 7.2: Students' dialogue aimed at invoking a response from the teacher in class

Question Posed

Discussion Snippet Dino: can agree half or not

Dino: hehe

[Dino is saying that she half agrees with Student 1, and half agrees with  

Student 2]

Cullen: i still cant figure out the part behing

Cullen: behind*

[Cullen is saying that she cannot figure out the “part behind”.  I assume this  

means that she does not understand the second part of what the students  

are saying]

Dino: yaa

Cullen: i mean i dont understand

[Cullen states that she does not understand...]

Dino: as in don understand the sentence?

[…in which Dino seeks clarification, asking if Cullen does not understand the  

sentence.  Notice that this is a non-physics related deficiency]

Cullen: ya

Cullen: aaaaaa

Cullen: dont knoww
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[Cullen acknowledges that she does not understand the sentence, meaning  

that she does not understand what the students in the question posed were  

saying]

Dino: hahah

Dino: i think it means if current in (a) is 4A then current in (b) is 2A each

[Dino attempts to help Cullen understand what the students are saying]

Cullen: ms er we are getting mad with this qn!

[Here, we see Cullen expressing her frustration at her inability to understand  

the question.  Notice that she is directly addressing the teacher, thereby  

expecting the teacher to response to her difficulty with this question in class]  

Hence, CMCPS-PT can help teachers to identify non-physics related deficiencies, as well as 

extend the IRF exchange by providing opportunities for students to initiate discussions at the 

specific moment of need.  After all, as Barnes (2008) observed, “it will always be the pupil who 

has to do the learning” (p.2) and “[o]nly pupils  can work on understanding: teachers can 

encourage and support but cannot do it for them” (p. 4).  It therefore makes complete sense 

to have students initiate discussions with their teachers, and CMCPS-PT is entirely supportive 

of  such a  practice.   Future  research should  be  conducted to  look  at  the  extent  to  which 

changing  the  “ground  rules”  to  encourage  student-initiated  discussions  would  lead  to  an 

increase of such a practice.

7.4  Implications  for  Research  on  Designing  and  Implementing  ICT-based 

Interventions for Physics Education

7.4.1 Peeking Inside Students' Thought Processes

The relative  ease at  which  a researcher  can peek inside students'  thought  processes  and 

knowledge base, as seen from the protocol data provided by CMCPS sessions, has significant 

research implications.  Unlike transcriptions of verbal discourse, a text-chat log is a unique 

communications record that is actually meant to be read in order to be understood.  However, 
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it still retains the tentative, constructive and fluid nature of discourse in which we might glean 

insights into subjects'  co-construction process, thereby gaining insights into their individual 

and collective thought processes and knowledge bases.  One direct implication is that analysis 

of  such  protocol  data  will  allow  us  to  investigate  students'  difficulties  in  solving  physics 

questions.  For example, the data can show clearly whether students have misconceptions or 

misunderstandings, gaps in their knowledge, or some other difficulty.  Such insights would be 

helpful  to teachers for  planning remedial  instruction.  Another implication would be in the 

domain of concept inventories (CIs).  At present, a Delphi process (e.g. see Goldman et al., 

2008) is arguably the most common method for identifying difficult concepts in various topics. 

Since the Delphi process relies heavily on the input of (adult) experts, it is mainly from the 

perspectives of these experts that misconceived concepts are included into CIs.  On the other 

hand, the insights gleaned from the review and analysis of the CMCPS discussion logs provide 

misconception data  from students'  perspectives.   It  would  be interesting to  compare  how 

closely misconceptions from these two different sources match-up.  While I expect that there 

would be differences, this was not further evaluated in this study, and future research can 

assess this claim further.

7.4.2 Learning From, Through, and Around Computers

As I have shown in Chapter One (section 1.2), ICT is used in a variety of manner for different 

reasons in physics classrooms.  Given the diverse forms and usage of ICT in classrooms, as 

well as its potential to transform classroom practices, it makes sense to categorise research in 

ICT and learning.  After all, Gill (1995) noted that “[i]f we want to look for profound changes in 

educational  practices,  we need to  think about the conceptual  framework or models  within 

which teachers and pupils are using computers” (p.72).  However, this is not an easy task, and 

as Andrews and Haythornthwaite (2007) observed, “there is as yet no coherent view of what 

constitutes research in the field [of ICT and education] nor of how best to undertake it.”

Andrews  and  Haythornthwaite  (2007)  suggest  a  wide,  macro  framework  for  examining 

emergent processes in ICT and learning, depicted by a four-by-four matrix that considers the 
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various levels of interplay between administration, pedagogy, technology, and community (see 

p.41 to 44), while Crook (1995) offers a simpler, micro-level framework based largely on the 

roles that computers play in schools.  Crook's framework, which may be used to categorise 

research in computers and learning, is as follows:

• The computer  as  tutor  – computers take the role of  a  teacher and provides direct 

instruction to students (e.g. via drill-and-practice computer programs)

• The computer as pupil – computers play the role of a pupil, allowing students to issue 

commands into the computer so that students may learn from the computers’ response 

(e.g. the issuing of LOGO commands into a computer so as to learn geometry)

• The computer as  resource –  computers play the role of resource provider, providing 

students with a wide-array of digital resources (e.g. interactive CD-ROMs)

• The  computer  as  fabric –  computers  play  the  role  of  the  medium,  allowing 

communication and sharing of information to take place (e.g. emails, instant-messaging 

and virtual educational communities)

At  this  point,  I  put  forth  my  own  micro-level  framework  for  consideration.   As  I  have 

mentioned in Chapter One, computer usage in schools would likely lead to educational change 

and improvements only if  they are well-designed to  mediate specific learning objectives or 

processes. Hence, based on the concept of mediation, it may be considered that ICT provides 

three distinct  mediating objectives to a lesson designer or teacher, namely, learning  from, 

around, and through computers.

When an instructor designs his/her lesson such that students are to learn from the computer, 

s/he does so with the specific objective of using computers to help students learn content via 

the students’ direct interaction with the computer alone.  In other words, the student and 

computer form an enclosed learning unit with no connections to other learning units (at least 

during the student-computer interaction).  Reading online books, accessing online courseware 

(including  the  highly  interactive,  highly  engaging  ones),  viewing  detailed  and  engaging 

animations, playing non-networked video games, programming commands into the computer, 
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drill-and-practice  computer  programs  –  all  these  fall  under  the  category  of  learning  from 

computers.  Crook’s framework of the computer as tutor, pupil, and resource all fall under this 

category.  Once  again,  the  'enclosed'  learning unit  of  student  and computer  alone for  this 

category  is  emphasised,  and  that  students  are  to  learn  content  from  the  computer  is 

highlighted.  Because students and the ICT system form an 'enclosed' learning unit, students 

learn from ICT in Andes and Diagnoser.

When  an  instructor  designs  his/her  lesson  such  that  students  are  to  learn  through the 

computer, s/he does so with the specific objective of using computers as a medium through 

which students may collaborate, interact, discover, and learn with others. The computer may 

provide instructions, resources and hints, but it is the unique affordance of computer-mediated 

communications  (CMC)  in  supporting  collaborative  learning  (e.g.  reach,  asynchronous, 

synchronous, permanency of the medium) that the instructor is most interested in.  Playing 

networked games (e.g. MMORPG-type games) and students collaboratively solving problems 

via CMC such as CMCPS-PT fall under the category of  learning through computers.  Crook’s 

framework of  the computer  as fabric falls  under  this  category,  though he focused on the 

network and information dissemination aspects much more strongly in his paper. Once again, I 

emphasise the collaborative aspect of using the computer as a medium of communication for 

knowledge  co-construction  between  teachers  and  students,  or  between  the  students 

themselves.   Because  students  use  ICT  as  a  medium for  problem-solving,  students  learn 

through ICT in CMCPS-PT.

When  an  instructor  designs  his/her  lesson  such  that  students  are  to  learn  around the 

computer, s/he does so with the specific objective of using computers to help students work 

collaboratively  with others using the computer  (or  things provided by the computer)  as a 

centre-piece for discussion.  In other words, while the computer may provide instructions, 

resources and hints, it is the  collaborative work around the computers that the instructor is 

most  interested  in.   Teachers  and  students  working  collaboratively  around  interactive 

whiteboards (e.g. see Gillen et al., 2007), children working collaboratively around interactive 
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computer programs (e.g. visit http://thinkingtogether.educ.cam.ac.uk/) – all these fall under 

the category of  learning around computers.  I again emphasise the collaborative aspect of 

using the computer as a centre-piece for knowledge co-construction between teachers and 

students, or between the students themselves.  Because students work collaboratively with 

“clickers” in PI and with data loggers and visualisation systems in ABPS, students actually 

learn around ICT in both PI and ABPS.  Also, because ICT transports students' discussion logs 

(for CMCPS-PT) and selections (for Diagnoser) through time and across space, students also 

learn around ICT in both CMCPS-PT and Diagnoser.

In  my opinion,  the  majority  of  research on ICT  and  education appears  to  be  centred  on 

learning from computers.  For example, Krusberg (2007) identified Physlets Physics (Physlets; 

e.g. Christian & Belloni, 2001), Andes Intelligent Tutoring System (Andes; e.g. VanLehn et al., 

2005),  and  Microcomputer-Based  Laboratory  (MBL;  e.g.  Redish,  2003)  as  “emerging 

technologies  in  physics  education”  (p.401).   Out  of  these  three  “emerging  technologies”, 

Physlets and Andes require students to learn from ICT, while for MBL, students learn around 

the data and charts that MBL produces.

More research should be focussed on learning through computers.  As a research community, 

we are already familiar with the generic advantages of using computers as a medium through 

which learning can occur. However, I think the uniqueness of the permanency of the electronic 

medium is an area often overlooked by researchers and designers of learning environment.  I  

believe the permanency property offered by the electronic medium can provide teachers with a 

powerful  tool  to  better  understand students’  thinking,  thereby facilitating student  learning 

better, and the CMCPS-PT intervention reported on in this dissertation is one such example. In 

the  case  of  CMCPS-PT,  computers  were  used  predominately  due  to  their  ability  to  hide 

identities (the students did not know who they were working with) and ability to easily record 

the entire knowledge negotiation process between the student dyads.  In other words,  the 

computer played a subsidiary role to the teacher, and was integrated into the wider learning 

process by providing the teacher with information that was otherwise too difficult and time 
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consuming to obtain – students’ exact thought processes when solving problems.

More research also needs to be conducted on learning around computers, given its potential to 

turn simple (or behavioural interactive multimedia) content into opportunities for knowledge 

co-construction  and  the  appropriation  of  higher  order  thinking  and  functioning  (e.g.  see 

Herrington & Standen, 1999).  An example of work in this area is the work by Mercer and 

colleagues (Mercer et al., 1999; see also Wegerif, 1996; Wegerif et al., 1998; Mercer, 2000 

(chapter 6); Wegerif, 2004), whose research findings have been incorporated into the UK’s 

National Strategies for primary and secondary education.  In their research, they designed an 

intervention to help develop primary school children’s talk and the development of reasoning. 

Briefly, they taught teachers who in turn taught students the ground rules for “exploratory 

talk”.  Next, using the ground rules and other scaffolds as guides, students worked with each 

other  around  a  specially-designed  computer  program  in  order  to  collaboratively  obtain 

solutions  for  the  questions  posed.   Such  collaborative  efforts,  together  with  teacher-led 

discussions, led to an increase in the children’s exploratory talk, raised achievement in group 

situations and raised achievement in  individual work as assessed by the Raven’s standard 

progressive matrices non-verbal reasoning test (see Raven et al., 1995).  Computers were 

used predominately due to their non-judgemental and patient 'nature', as well as their ability 

to  frame  the  dialogues  students  were  supposed  to  be  engaged  in.   In  other  words,  the 

computer  was  integrated  into  the  wider  learning  process  and  situated  within  a  context 

appropriate for its use.

7.5  Implications  for  Research  on  Designing  and  Implementing  Dialogic  Learning 

Environments

The institution of formal, school-based education has been with us for centuries, and in my 

opinion, is unlikely to change in form, structure or style any time soon.  As such, we need to 

work within the constraints inherent in schools, including the fact that there are many more 

students than there are teachers, and lessons which are based on a standardised curriculum 

are conducted within definite starting and ending periods.   In such a scenario, Mercer (e.g. 

Benson Soong Page 240



Mercer, 2010) has proposed that “talking skills” be taught to both students and teachers so 

that they may learn how to talk and work together, and hold “reasoned discussions” with each 

other during class.  After all, from a sociocultural perspective, language is a tool for thinking 

and  individual  cognitive  development,  which  occurs  mainly  through  dialogue  (see  Mercer, 

2000, chapters 1 and 6).

While I fully support the notion of engaging students in meaningful dialogue, it is important to 

recognise that dialogue does not necessarily have to be verbal in nature, even though verbal 

dialogue account for a significant portion of all communications between teachers and students 

in a school-based setting.  Verbal communication is not an end in itself.  Rather, it is a means 

to an end, and in the context of formal schooling, a key objective is for students to develop 

cognitively  in,  say,  physics,  mathematics,  or  history.   Such  cognitive  developments  occur 

because students are able to make sense and internalise events that were played out on a 

social plane (e.g. see Wertsch, 1991), and this sense-making and internalisation process are 

mediated by language and facilitated by dialogue which need not be spoken or verbal in nature 

(e.g. they may be in a written form, or perhaps even communicated by hand-signals).  The 

ultimate point is simple and obvious – verbal communication is but one form of dialogue, and 

researchers (and practitioners) should consider evaluating other forms of dialogue in order to 

facilitate students' cognitive development.  After all, we need to recognise, as Thorndike had, 

that  the  “chief  excellence”  of  the  practice  whereby  teachers  do  most  of  the  talking  in 

classrooms “is economy...[and] in some cases this advantage alone justifies its use” (1912, 

p.189, as cited by Spencer, 1991, p.6).  Hence, it is unlikely that students would get enough 

time  to  verbally  express  their  opinions  and  conceptions  to  their  teacher  in  a  traditional 

classroom setting, and unless the classroom setting changes (e.g. to a situation whereby the 

student-to-teacher  ratio  is  much  smaller),  then  other  forms  of  (non-verbal)  dialogic 

engagements with students should be explored.  Additionally, there is a need to recognise that 

a  dialogic  learning  environment  does  not  necessarily  imply  one  that  is  centred on verbal 

discourse.  As Mortimer and Scott clarified, a “dialogic communicative approach [is one] where 

attention is paid to more than one point of view” and where “more than one voice is heard and 
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there is an exploration...of ideas” (2003, p.33-34; emphasis in original).  Hence, so long as 

teachers “revoice” students' conceptions and help them reinterpret knowledge for themselves 

(see Chapter Six, section 6.5.3), then it may be considered that such a learning environment is 

dialogic  in  nature,  and  supportive  of  sociocultural  practices  in  aiding  the  cognitive  (and 

probably also affective) development of students.

7.6 Dissertation Conclusion

7.6.1 Dissertation Summary

In  sum,  this  dissertation  reported  on  the  design,  implementation,  and  evaluation  of  my 

intervention for the revision of physics in a mainstream public secondary school in Singapore. 

This  intervention was conducted over  a one-year  period,  and involved students who were 

taking their GCE 'O' level physics examination after immersion in the intervention, which was 

conducted as part of their regular physics revision curriculum.

Based on sociocultural theory, the intervention changed the practice of how physics revision 

was conducted in a particular  secondary physics  classroom in Singapore.   Consisting of  a 

computer-mediated  collaborative  problem-solving  (CMCPS)  component  and  a  prescriptive 

tutoring (PT) component, the CMCPS portion of the intervention required the students to follow 

basic “ground rules” for computer-mediated problem-solving of physics questions.  Basically, a 

student selected a computer to work from, and was randomly paired with another student 

working from a different computer in order to solve physics questions through the computer 

network  by  way  of  a  virtual  shared  text-chat  box  and  whiteboard  provided  for  by  the 

computer-mediated communications software (NetMeeting, a fee-free software pre-installed in 

all Windows XP machines).  After the CMCPS session, the students' problem-solving dialogues 

were captured and printed for review and analysis by the students' physics teacher.  During the 

PT  session,  the  teacher  prescriptively  addressed  the  students'  misconceptions, 

misunderstandings, and other problem-solving difficulties that the students exhibited during 

their CMCPS session.  In other words, revision lessons were primarily based on the students' 

mental models and secondarily on physics concepts, instead of the other way round.  Hence, 
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the basis for instruction during remedial lessons came from students’ protocol data, rather 

than a pre-specified timetable.

The intervention was evaluated in two stages.  First, a small-scale (pilot) study was conducted 

in order to evaluate whether the intervention was effective in promoting improved learning 

outcomes as measured by  the students'  physics  grades.   This  small-scale  study was also 

conducted to ascertain if the XG students were interested in being involved in the intervention 

for the whole of the academic year 2009.  Also, the small-scale study allowed the students' 

physics teacher to evaluate the intervention in order to recommend whether the larger-scale 

(main) study should be conducted.  

Given the statistically significant improvements in the students' results and the overall positive 

findings of the small-study scale (which utilised a control group (CG) / alternate intervention 

group  (AG)  /  experimental  group  (XG)  with  pre-  and  post-test  research  design),  the 

intervention was conducted for the entire class during the main study.  In order to evaluate the 

effectiveness  of  the  intervention  during  the  main  study,  the  cohort's  actual  GCE 'O'  level 

physics results were compared with their expected grades (as given by the Singapore Ministry 

of Education based on the students' primary school's results).  Also, the students' 'O' level 

physics results were compared with the average physics results obtained by previous cohorts. 

The  quantitative  data  indicated  that  the  intervention  for  physics  revision  appears  to  be 

effective in helping the entire class of students revise physics concepts, resulting in improved 

test scores, while the qualitative data indicated that as a result of the involvement in the 

intervention, the students' interest in physics had increased over time such that by the end of 

the  intervention,  every student  either  “very  much liked”  or  “liked”  learning physics.   The 

physics teacher also appreciated the intervention, and had found that from the perspective of 

knowing what students are thinking, “the amount of knowledge gleaned (mostly generic in 

nature) in my five years of teaching experience is much less tha[n] the insights that I gained 

through one year of PT”, and reflected that “being involved in this project is a meaningful, 

enlightening, if not a transformative experience/process”.
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From a practical perspective, the research study contributes to our community by sharing the 

design and practice of an effective intervention that addresses secondary science classrooms, 

which has been identified as being crucial in dealing with the “crisis” in physics education.  It  

also contributes to the growing research interest in designing dialogic learning environments.

From  a  theoretical  perspective,  the  study  illustrates  the  importance  and  relevance  of 

sociocultural  theory in the design of learning environments that  engage the cognitive  and 

affective domains of students, thereby changing them.  It shows that an environment that 

intentionally and explicitly encourages meaningful “talk” between teacher and students, as well 

as between students themselves, can positively  transform and enhance both teaching and 

learning  experiences  without  the  need  of  fanciful  technology  (as  commonly  advocated  by 

educational technology vendors).

7.6.2 Final Reflections

When I proposed to embark on the research study reported in this dissertation, most of my 

fellow PhD candidates thought that I had lost my mind.  “It's so risky!”, one exclaimed.  “What 

if, after one year, there are no improvements?  Wouldn't you have to restart your research 

from scratch then?”, another rhetorically asked.  For me, it was my own personal belief in the 

objective of educational research that led me down this “risky” path (see Chapter One, section 

1.1).  More than that, I was personally convinced that I 'knew' what the problems were in 

secondary science classrooms, and that I could 'fix' them.  As it turned out, while I was correct 

in some areas, I was mostly wrong in others.  I shall start by providing a brief description of 

some of the occasions whereby I was 'wrong', and end on a positive note by presenting a brief 

account of some of the times when I was 'correct'.

In retrospect,  while I  conceptually  understood the challenges and difficulties in conducting 

real-world research and had proclaimed in a methodological paper (in April 2008) that I “am 

confident that I should be able to handle doing research in the booming, buzzing confusion of 
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real-world classrooms”, nothing could have prepared me for the harsh reality and events in 

real-world  classrooms,  which  range  from  minor  irritations  to  significant  jeopardies.  For 

example, the Vice-Principal had assigned me with a personal desk in a room where the IT 

assistants and relief teachers occupied.  However, the other relief teachers (who had to share 

desks), started using my desk partly due to a shortage of workspace and partly because I was 

not considered to be a 'real' teacher, and so could well afford to share my space with them.  As 

a result, I could not place my research or personal articles there, which made it more difficult 

for me to do work in school, which was a bugbear for me.  An example of an event that could 

have jeopardised the entire research study was when Xian and Chan requested to be excused 

from the  study  even  before  attempting  it.   Fortunately,  they  chose  to  stay  on  with  the 

intervention after experiencing it.

In  all  honesty,  up until  before  I  concluded the pilot  study,  I  had initially  thought  that  all  

students who had undergone my intervention would obtain a distinction grade for physics for 

their  GCE  'O'  level  examination.   This  was  because  I  was  confident  in  the  theoretical 

foundations that my intervention was based on, and firmly believed that it would transform 

educational practices and drastically improve students' results.  I only started having concerns 

about the students' results when I noticed that absenteeism (by both students and teachers) 

and other non-physics related deficiencies were negatively affecting the students' problem-

solving abilities and hence, their results.  In addition, I experienced first-hand how teachers 

felt  when  they,  in  their  opinion,  have  very  clearly  addressed  a  specific  student's 

misunderstanding, only to have that student 'repeat the same mistake' again.  When I myself 

was a student in school, I had thought that teachers were angry when I repeated my mistakes. 

However, now that the roles were reversed, I realised that it was not anger that the teachers 

felt, but rather, anguish – teachers work so hard at helping students learn from their mistakes 

and yet, these students somehow doggedly hold onto their previous conceptions.  What kept 

me going was my conviction that I was doing something meaningful, and Ms Er's constant 

reminders that “Bartley students are like that.  We must repeat many times then they will get 

it.”
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On the positive side, I started this research study because I believed that classroom practices 

needed  to  change,  and  I  knew  that  since  teachers  and  students  are  focused  on  good 

examination results, any change to classroom practices needed to be predicated on improving 

students  results.   Hence,  I  had  planned  for  a  small-scale  pilot  study to  demonstrate  the 

effectiveness of the intervention in improving students' results, and given the careful planning 

from both methodological (e.g. research questions and methods) as well as theoretical (e.g. 

cognitive development theories and pedagogy) perspectives, the students' results improved, 

thereby allowing me to conduct the main study and showing that the intervention was effective 

even in a whole-class set-up.

Most importantly, my greatest sense of pride and joy lies in the fact that my intervention had 

positively impacted the lives of these 23 physics students (some more than others) and their 

teacher.   At  the  end of  the  intervention before  I  returned to  Cambridge  to  write-up  this 

dissertation, many students had come up to me in school and told me that they “really learnt a 

lot” from “my method”, and I even received an email from Zouk thanking me for what I had 

done for them, explaining that “It's all the interactive way of learning you introduce that build 

up my interest in physics”.  Bearing in mind that the students had actually not yet taken their 

'O' level examinations and thought that they would probably not see me for the foreseeable 

future, their expressions of gratitude made it easier for me to believe that I had indeed done a 

good job.  Now, even with the benefit of hindsight on all the difficulties and challenges doing 

real-world research encompasses, I would still do it again.
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Appendix 5.3:  Sample of Student Handout During CMCPS
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 1 of 15)

Benson Soong Page 284



Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 2 of 15)

*Take  note  that  these  are  PowerPoint  slides,  and  the  'boxes',  'arrows'  and  any  remedial 

instructions or comments (usually next to the 'arrows') only appear when the mouse button is 

clicked.  Hence, students always get to review what they have written, with dialogic discourse 

taking place before the remedial instructions or comments are shown.
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 3 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 4 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 5 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 6 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 7 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 8 of 15)

Benson Soong Page 291



Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 9 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 10 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 11 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 12 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 13 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 14 of 15)
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Appendix 5.4:  Sample of 'Notes' Handout During PT (Page 15 of 15)
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Appendix 6.1:  Original Questions Posed to Ms Er (in order to get her reflections)
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Appendix  6.2:   Ms Er's  Response to Reflection Questions Posed (not used in  the 

dissertation; Page 1 of 3)
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Appendix  6.2:   Ms Er's  Response to Reflection Questions Posed (not used in  the 

dissertation; Page 2 of 3)
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Appendix  6.2:   Ms Er's  Response to Reflection Questions Posed (not used in  the 

dissertation; Page 3 of 3)
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