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Abstract 

Emerging evidence suggests that epigenetic mechanisms are involved in different brain functions such as the 

development of the nervous system and normal neuronal function. At the same time, it has been proposed that several 

neurological diseases are in part, caused by aberrant epigenetic modifications. Nevertheless, the mechanisms underlying 

pathological alterations in the brain genome are not completely understood. Post-transcriptional histone acetylation is a 

major mechanism of chromatin remodeling, contributing to epigenetic regulation of gene transcription. Histone 

deacetylases (HDACs) are a family of proteins involved in both physiological and pathological conditions by regulating 

the status of chromatin histone acetylation. It is now becoming clear that epigenetic regulatory mechanisms may also 

play a major role in epilepsy; modulation of chromatin structure through histone modifications has emerged as an 

important regulator of gene transcription in the brain and altered histone acetylation seems to contribute to changes in 

gene expression associated with epilepsy and the epileptogenic process. Histone modification is crucial for regulating 

neurobiological processes such as neural network function, synaptic plasticity, and synaptogenesis which also 

contribute to the pathophysiology of epilepsy. The role of epigenetics in epilepsy development is a new and emerging 

research area; the present article reviews the recent findings on the role played by HDACs and the possible function of 

different histone modifications in epilepsy and epileptogenesis. Inhibitors of HDACs (HDACIs) have been tested in 

different experimental models of epilepsy with some success. We also review the results from these studies, which 

indicate HDACIs as potential new therapeutic agents for the treatment of human epilepsy. 
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Introduction 

Epilepsy is a chronic neurological disorder characterized by spontaneous and recurrent epileptic seizures with 

associated comorbidities. Currently used antiepileptic drugs (AEDs), suppress neuronal hyperexcitability and thereby 

abolish epileptic seizures but ~20–30% of affected people are refractory to treatment and are considered to have drug-

resistant epilepsy (DRE)[1]. Furthermore AEDs do not prevent the development and progression of epilepsy 

(epileptogenesis) [2]. Epileptogenesis is the process by which the brain undergoes molecular and cellular alterations in 

response to a neuronal insult leading to recurrent spontaneous seizures [3-5]. Several mechanisms are involved in the 

epileptogenic cascade including neuro-inflammatory responses, neuronal cell loss, mossy fiber sprouting, aberrant 

connectivity and gliosis [6-8]. Seizures can be triggered by several risk factors including traumatic brain injury, central 

nervous system (CNS) infections, stroke, hypoxic-ischemic and metabolic disorders, tumors, fever, electrolyte 

imbalance, drug withdrawal and genetic mutations [2]. In the past two decades, different genetic mutations identified in 

ion channels or proteins have been directly linked to epileptic syndromes [9, 10]. Recently, it has been suggested that 

epigenetic mechanisms can also be involved in the pathophysiology of several epileptic disorders. In fact, different 

forms of epilepsy are caused by abnormalities in factors responsible for chromatin regulation [11-13]. Alterations of 

epigenetic mechanisms in human tissues and animals with epilepsy are genome-wide and selective for the factors 

involved in epileptogenesis such as neurotransmitter receptors (e.g, GluR2, GLRA2, and GLRA3), growth factors (e.g, 

BDNF), and transcriptional regulators (e.g., CREB, c-fos, and c-jun) [14]. 

Epileptogenesis is associated with different abnormalities of neuronal networks, due to protein posttranslational 

modifications, activation of immediate early genes (IEGs), and other alterations in the gene expression and function of 

genes (e.g., GABAA receptor subunits, CREB, BDNF, and EGR3) that eventually lead to deregulated neural circuits 

with a predisposition for synchronous electrical activity [3, 11]. Epigenetic mechanisms regulate the neuronal gene 

expression during brain development and function, synaptic plasticity, memory formation and other processes. Their 

alterations affect not only normal brain function, but also several brain diseases such as epilepsy [15, 16]. 

Aberrant patterns of epigenetic modification could erroneously affect gene expression and contribute to pathogenesis or 

maintenance of the epileptic disease. Epigenetic changes involved in epilepsy and epileptogenesis are represented by 

covalent modification of DNA, posttranslational histone modifications and chromatin remodeling, and noncoding 

RNAs [11, 17-19]. Affected genes by these alterations are likely to be involved in neural development, normal neuronal 

homeostasis and stress responses , neural network function, cell survival, and inflammatory processes [13, 20]. The fact 

that epigenetic changes might play a significant role in epilepsy (at least in TLE) is important because these changes are 

potentially reversible. Knowledge of the epigenetic mechanisms implicated in the development of epilepsy could lead to 

new epigenetic therapies to prevent epilepsy (antiepileptogenic) or its progression (disease modifying). Although DNA 

methylation changes [13], have been implicated in epileptogenesis, recent evidence points to a critical role of 

posttranslational histone modifications in the development and progression of epilepsy.  

Histone modifications are important for the regulation of neurological processes, such as function of neural networks, 

synaptic plasticity and synaptogenesis, that seem to be responsible for the epilepsy pathophysiology [11, 21, 22]. 

Histone deacetylases (HDACs) have shown broad potential in treatments against cancer, and emerging data also support 

their targeting in CNS dysfunction [23, 24]. 

HDACs regulate the acetylation of histones in nucleosomes, which mediates changes in chromatin conformation, 

leading to regulation of gene expression. From available data it appears that histone modifying enzymes are frequently 
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identified in epilepsy. Thus, treatment with various HDAC inhibitors (HDACIs) has emerged as a potential therapeutic 

tool in the treatment of epilepsy [25].  

In this review, we will focus on the presumed role of HDACs in experimental and human epilepsy, and particularly in 

the process of epileptogenesis. We will discuss how epigenetic mechanisms especially histone code modifications can 

regulate developmental alterations that may contribute to epileptogenesis. Finally, we will also describe the potential of 

using specific HDACIs as a new pharmacological strategy for epilepsy treatment.  

 

Histones  

In eukaryotic cells, the regulation of gene expression occurs on a complex nuclear structure called chromatin, composed 

of DNA, special proteins called histones, and non-histone proteins. Histones are a family of conserved basic proteins, 

which are core components of the nucleosome (fundamental unit of chromatin). The nucleosome contains 147 base 

pairs of DNA wrapped around the histone octamer composed of two copies each of the histones (H) H2A, H2B, H3, 

and H4. In addition to providing structural support, histones control accessibility for transcription factors, thereby 

regulating gene expression [26]. Histone proteins are subjected to different posttranslational modifications on their N-

terminal domains, that protrude out of the nucleosome primarily in the N terminals of H3 and H4. These modifications 

include acetylation, phosphorylation, methylation, ubiquitylation, sumoylation, ribosylation, and citrullination and play 

an important role in the control of chromatin structure and in the regulation of gene transcription [27]. These 

modifications most likely act in a combinatorial or sequential fashion, defining the so-called “histone code” which 

regulates gene expression [28].  

One of the most studied posttranslational modifications of histones is the acetylation at lysine residues, which is 

associated with transcriptional activation [29]. Histone acetylation influences chromatin conformation and affects the 

accessibility of transcription factors and effector proteins to the DNA, thereby modifying gene expression [30]. The 

acetylation  of histones is regulated by the opposing actions of two different classes of enzymes: histone 

acetyltransferases (HATs), which transfer acetyl groups to lysine residues on the N-terminal tails of core histones 

causing a relaxation of chromatin (euchromatin), and histone deacetylases (HDACs), which remove the acetyl groups 

from lysine residues in the histone tail, thus causing a condensation of chromatin  (heterochromatin) [31, 32]. 

HATs hyperacetylate and lead to a transcriptionally-active chromatin structure and therefore facilitate gene 

transcription, whereas HDACs deacetylate and suppress transcription and consequently repress gene transcription [33, 

34]. A well-balanced regulation of HATs and HDACs is thus essential to gene transcription. The balance between the 

actions of HATs and HDACs, functions as a key regulatory mechanism for gene expression, controlling different 

physiological processes and disease states. Acetylation of proteins modulates numerous cellular events that are involved 

in many biological processes such as cell proliferation, cell survival or apoptosis [35, 36].  

Dysregulation of HATs and HDACs can lead to an imbalance between the acetylation and deacetylation of their 

substrates resulting in altered gene expression that can play a significant role in different human disorders [25, 37, 38]. 

This alteration was first observed in cancer, many forms of which are linked with increased expression and activity of 

HDACs [39, 40]. It is important to underline that dysregulation in the delicate relationship between HAT and HDAC 

function may lead to cellular dysfunction, including uncontrolled cell growth of abnormal cells and/or apoptosis. For 

example, excessive deacetylated histones are generally present in pathological conditions, particularly those associated 

with DNA hypermethylation, chromatin condensation, and gene silencing [41].The best-characterized cellular protein 
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that is a positive regulator of histone acetylation is the cyclic AMP (cAMP)-responsive element binding protein 

(CREB)-binding protein (CBP) [42]. 

Histone deacetylases (HDACs) 

HDACs are a family of enzymes that play an important role in regulating transcription as well as the function of 

different cellular proteins. HDACs mediate the deacetylation of histone through the removal of an acetyl group from 

lysine residues within histone tails, leading to a compacted chromatin structure that results in transcriptional repression 

[43]. HDACs are involved in both physiological and pathological conditions by regulating the status of histone 

acetylation. Until now, 18 mammalian HDAC isoforms have been identified and divided into 4 classes based on their 

function and structural homologies to yeast deacetylase proteins: classes I, II (a and b), III and IV [44-46] . Classes I, II 

and IV HDACs (“classical,” metal-dependent HDAC enzymes) are all zinc dependent enzymes containing zinc-

dependent catalytic domains (Table 1). In contrast, Class III HDACs (nonmetal-dependent enzymes) are zinc 

independent enzymes and include a family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases that 

possess sequence homology with the NAD-dependent HDAC yeast SIR2 protein [47, 48]. These HDAC proteins, in 

general called ‘sirtuins’, are structurally and enzymatically different from other HDACs [49, 50]. 

Class I HDACs include HDACs 1, 2, 3, and 8, and share high sequence homology in their catalytic sites with yeast 

RPD3 deacetylase. Class I HDACs are expressed ubiquitously, generally localized in the nucleus (with the exception of 

HDAC3, which can shuttle out to the cytoplasm) and possess high enzymatic activity. Class I HDACs are important in 

regulating proliferation [51]. 

Class II HDACs are closely related to yeast HDAC1 and include HDACs 4, 5, 6, 7, 9 and 10. This class is further 

subdivided into two subclasses: IIa, (HDACs 4, 5, 7 and 9), which contain only one catalytic site and are known to 

shuttle between cytoplasm and nucleus, and IIb (HDACs 6 and 10), which contain two catalytic sites and are mainly 

found in the cytoplasm [43, 52].  

Class I and II HDACs are widely expressed throughout the brain [53]. Inhibition of these classes of HDACs, enhances 

levels of histone acetylation producing beneficial effects on host metabolism and brain health. 

Class IV HDACs consists of HDAC 11 alone, that is structurally different from class I and class II HDACs but seems to 

have some properties of both classes. HDAC 11 is expressed in the brain, heart, muscle, kidney and testis, but little is 

known about its function [36].  

The Class III HDACs (Sirtuin family), includes Sirtuin 1, 2, 3, 4, 5, 6, and 7 (SIRTs 1–7). This class, found in the 

nucleus, cytoplasm and also in mitochondria, is dependent on the co-factor nicotinamide adenine dinucleotide (NAD+) 

[47, 48] (Table 1). 

The role of HDACs in epigenetic regulation is to invert the effects of HATs, by catalysing the deacetylation of N-

terminal tails of histone proteins. This leads to a condensation of chromatin structure which inhibits transcription factor 

access to DNA, thus producing the transcriptional repression. HDACs are therefore active deacetylating enzymes; 

however, their activity is not limited to histone proteins. Other than histone proteins, HDACs also deacetylate a great 

number of non-histone protein substrates, both in the nucleus and in the cytoplasm, such as transcription factors, 

signalling mediators, cytoskeleton proteins, nuclear hormone receptors, chaperones and other cellular proteins some of 

which are involved in the tumour progression, cell cycle control, apoptosis, angiogenesis and cell invasion [54]. The 

structure and activity of these non-histone proteins may be altered by acetylation/deacetylation with subsequent effects 

on several cell functions including gene expression cell cycle progression, and cell death pathways [55-57]. HDACs are 

expressed in several tissues, including the brain and spinal cord. Although some HDAC family members have limited 
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tissue specificity and central nervous system (CNS) distribution, distinct neurons often express several HDACs [58]. All 

of the zinc-dependent HDACs are expressed in the brain (Table 1). Isoforms of HDACs class I, II, and IV are expressed 

principally in neurons, but several classes are present in glia. Although the expression of all HDACs is relatively low in 

astrocytes, HDACs 2, 3, 4, 5, and 11 are expressed in oligodendrocytes  [58]. Of the aforementioned classes of HDACs, 

classes I and IIa are the most highly expressed in brain regions that are associated with learning and memory [59, 60]. 

By controlling the status of histone acetylation, HDACs are involved in diverse physiological and pathological 

processes [61]. 

Alterations in histone acetylation and related HDACs have been correlated with many diseases, including several forms 

of cancer, heart failure, inflammatory diseases, and cognitive and psychiatric disorders [24, 62, 63]. Accumulating data 

suggest that HDACs play important roles in synaptic plasticity, learning, memory, and adult neurogenesis [64-67]. 

HDACs represent a large and different class of deacetylating enzyme and given their distinct expression patterns in the 

brain and in the cell, these enzymes are an ideal target for therapeutic inhibition [53]. Therefore, different non-selective 

and selective HDACIs have been developed [68]. 

 

Table 1. Histone deacetylases (HDACs) – classes and isoforms. 

Class  HDACs  Cofactor Sub-cellular location Localization in brain 

Class I HDAC1 

HDAC2 

HDAC3 

 

HDAC8 

Zn2+ Nucleus 

Nucleus 

Shuttles between nucleus and 

cytoplasm  

Nucleus 

Cortex, caudate/putamen, 

hippocampus, amygdala 

SNpc, SNpr, locus coeruleus, corpus 

callosum. 

Class IIa HDAC4 

 

HDAC5 

HDAC7 

HDAC9 

Zn2+ Shuttles between nucleus and 

cytoplasm 

" 

" 

Nucleus-cytoplasm 

Cortex, caudate/putamen, 

hippocampus, amygdala SNpc, 

SNpr, locus coeruleus, globus 

Pallidus 

Also hippocampus, amygdala 

(HDAC 7,9) 

Class IIb HDAC6 

 

HDAC10 

Zn2+ Cytoplasm 

 

Cytoplasm 

Cortex, caudate/putamen 

Hippocampus, amygdala, SNpc, 

locus coeruleus, cerebellum 

Class III SIRT1 

SIRT2 

SIRT3 

SIRT4 

SIRT5 

SIRT6 

SIRT7 

NAD+ Nucleus 

Cytosol 

Mitochondria 

Mitochondria 

Mitochondria 

Nucleus 

Nucleolus 

 

Class IV HDAC11 Zn2+ Nucleus Cortex, hippocampus, brain stem, 

cerebellum, diencephalon 
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Histone deacetylase inhibitors (HDACIs) 

HDACIs are a heterogeneous group of compounds that inhibit HDACs and reestablish or increase the level of histone 

acetylation of lysine residues in nuclear and cytoplasmic proteins, which may modify their activity and function. 

HDACIs also promote the acetylation of non-histone proteins which can determine the interactions, localization and 

stability of these proteins [56, 69]. Treatment with pharmacological HDACIs reverses epigenetic silencing and exerts 

antineoplastic effects in tissue cultures and animal models of tumorigenesis. Since the deacetylation of histones by 

HDACs has a repressive activity on gene transcription, treatment with HDACIs stimulates transcriptional activity in 

cells [69, 70]. Therefore HDAC inhibition has appeared as a possible therapeutic approach to contrary abnormal 

epigenetic changes associated with cancer and, HDACIs have been shown to cause growth arrest, differentiation and/or 

apoptosis of many tumours cells by altering the transcription of a small number of genes [71-73]. Consequently, 

different HDACIs have been studied in clinical trials and commonly used therapeutically as anti-cancer drugs [74-76]. 

HDACIs, which were initially characterized as anti-cancer drugs, have also recently been proposed to act as 

neuroprotective agents that enhance the synaptic plasticity, neuronal survival, learning, and memory in different 

neurodegenerative disorders such as Parkinson’ disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD) 

[77-79]. More recently, there has been interest in the use of HDACIs to activate the expression of mRNAs that are 

down-regulated in other brain disorders. For these reasons, HDACs represent attractive molecular targets for the 

treatment of several neurological conditions, and pharmacological therapies using HDACIs have shown beneficial 

effects in epilepsy, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), stroke, Rett syndrome and 

Fragile X syndrome (affecting girls) [25, 80], as well as a variety of psychiatric diseases (schizophrenia, depression, 

drug addiction, and anxiety) [62, 81-83].  

 

HDACIs are a family of naturally derived and synthetically produced compounds that can be divided in four main 

groups based on their chemical structure: hydroxamates, cyclic peptides, the short fatty-chain acids and the benzamides 

[35, 84] (Table 2). HDACIs differ in their specificity for the separate classes of HDACs, although most act on class I 

and II. 

Hydroxamates comprise the largest class of HDACI that act as pan-HDACIs and show low selectivity [23, 84]. 

Hydroxamate inhibitors possess moderately short half-lives, but exert long-lasting effects. They include trichostatin A 

(TSA), SAHA (Vorinostat), Panobinostat (LBH589), Belinostat (PXD101), Givinostat (ITF2375), Abexinostat and 

Dacinostat [84]. These compounds inhibit only class I and II HDACs.  A number of these compounds are now in 

clinical trials investigating for cancer treatment [75, 85]. Vorinostat is the first HDACI to be Food and Drug 

Administration (FDA)-approved for clinical treatment of refractory cutaneous T-cell lymphoma (CTCL) [86]. 

Vorinostat and TSA are two most clinically advanced and most prominent hydroxamate HDACIs, both cross the blood 

brain barrier (BBB) and could be used for different neurological diseases [77, 87]. TSA is now known to be a broad 

spectrum pan-HDACI. TSA has been shown to exert anti-inflammatory and neuroprotective effects both in vitro and in 

vivo models of ischemic stroke. There is also evidence of its neuroprotective effects in numerous models of 

Parkinsonian cell death [88, 89]. 

Cyclic peptides: this class of HDACI include compounds such as Apicidin, Trapoxin B and Depsipeptide (FK-

228)/romidepsin. These compounds specifically inhibit different HDAC isoforms, given that their chemical vary 

significantly. Apicidin displays selectivity for HDAC2 and HDAC3 (and HDAC8) while FK-228 shows potent efficacy 
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for inhibition of HDAC1 and HDAC2 (and HDAC4). FK-228 also was approved by the FDA for the treatment of 

cutaneous T-cell lymphoma (CTCL) [90, 91].  

Short chain fatty acids (SCFAs), comprise compounds relatively small, with simple structure such as Valproic Acid, 

butyrate and phenyl butyrate. SCFAs all show the same inhibition profile on the HDAC I and IIa classes with most 

efficacy in inhibiting the HDAC activity than hydroxamates [81]. Due to their capacity to easily cross the BBB, SCFAs 

are considered a promising class of HDACI for the treatment of neurological diseases [35].  

Valproic Acid (VPA) is a short-chain fatty acid used as an anti-epileptic drug, as a mood stabilizer and adjuvant 

treatment for schizophrenia [92]; it is now the most commonly prescribed anti-epileptic for both generalized and partial 

seizures in adults and children [93, 94]. VPA is now known as a pan-inhibitor of HDAC classes I and IIa due to its 

capacity to relieve HDAC-dependent transcriptional repression through the removal of the acetyl group from histones in 

nucleosomes and cause histone hyperacetylation both in vitro and in vivo [95, 96]. By inhibition of HDACs in various 

tissues, including the brain, VPA alters the expression of several neuronal, immune and other tissue-specific genes that 

are thought to explain VPA’s therapeutic effects in non-epileptic conditions such as bipolar disorders, schizophrenia, 

cancer and neurodegenerative diseases [97, 98]. VPA has shown neuroprotective effects in models of traumatic brain 

injury [99], spinal cord injury [100, 101], stroke [89, 102] PD [103] and AD [104, 105]; the mechanism of 

neuroprotection implicated thus far includes the elevation of histone 3 (H3) acetylation. Earlier studies in vitro also 

clearly demonstrated that VPA could promote neuronal survival in cultures subjected to glutamate-induced 

neurotoxicity [106, 107] or to oxygen-glucose deprivation injury [108]. Recently, this drug has demonstrated antitumor 

activity as an HDACI [109, 110] with action on cell growth, differentiation and apoptosis [111-114]. It is important to 

note however, that VPA acts as a nonselective HDACI and possess other mechanisms of action such as targeting the 

GABAergic system, and can have adverse side effects in clinical patients, making it less than ideal as a therapeutic tool. 

Indeed teratogenicity (e.g. Fetal Valproate Syndrome) and hepatotoxicity, two rare but lethal side effects, limit the 

clinical application of valproate [92, 115]. 

Among SCFAs, butyrate (or sodium butyrate) was one of the first endogenous substances found to have HDACI 

activity. Butyrate shares inhibition profiles of HDACs with valproate inhibiting classes I and IIa. However, like other 

SCFAs this is achieved at a relatively low potency [116]. Butyrate has been shown to facilitate neuronal plasticity, long-

term memory formation or long-term potentiation (LTP) [117]; also, it has neuroprotective effects and restores 

cognitive function in experimental models of neurodegeneration (HD and PD, stroke, ALS and ataxias) [118-120] or 

cognitive impairment [121]. Also it has been shown to induce neurogenesis in the rat brain after cerebral ischemia 

[122]. Butyrate also reduced depressive-like behavior in animal models showing effectiveness in psychiatric disorders 

[123, 124]. Both VPA and sodium butyrate also show anti-inflammatory properties [125]. 

Benzamides, include MS-275 (Entinostat), and Mocetinostat, and represent a highly selective class of HDACI, which 

show a relatively long half-life as compared with other potent HDACIs (Table 2). Both selectively inhibit HDAC1 (and 

HDAC3 to a lesser extent) therefore represent a new population of HDACI being designed selectively against 

individual HDAC isoforms. Two drugs within this class are currently in clinical trial for the treatment of cancers 

(Grayson et al., 2010).  MS-275 has recently received particular attention because of its ability to inhibit HDACs in the 

brain [126, 127]. These HDACIs may be useful in selectively activating promoters that may be not sufficiently 

expressed in schizophrenia and other psychiatric disorders [81]. 

Sirtuin inhibitors (SIRTIs), include the pan-inhibitor nicotinamide and the specific SIRT1 and 2 inhibitors sirtinol, 

cambinol, and EX-527. 
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In summary, treatment with HDACIs has emerged as a promising strategy for intervention in neurodegenerative and 

neuropsychiatric disorders [77]. Many of these inhibitors are in the final phases of clinical trials and have demonstrated 

effectiveness in synergistic therapy. For the treatment of brain disorders, an additional challenge is the permeability of 

the inhibitors across the BBB [25]. Different HDACIs including VPA, vorinostat (SAHA), MS-275, butyrate, and 

phenyl butyrate have been shown to cross the BBB. In addition, MS-275 seems to be 30 to 100 times more potent than 

VPA in increasing histone acetylation in vivo [127]. Therefore, MS-275 might be considered a second-generation 

HDACI with improved specificity, which holds promise not only for cancer treatment [128] but also for various 

neurological diseases [25]. 

 

Table 2.  Histone deacetylase inhibitor (HDACI) classification. 

Class Compound HDAC Target 

(Potency) 

Status in Clinical 

Trials for Neurology 

Diseases Targeted 

Hydroxamates Trichostatin A 

(TSA) 

Class I (HDAC 

1,2,3,8), II, (HDAC 

4,5,6,7,9, 10) (µM) 

 Neurodegeneration. 

 SAHA 

(Vorinostat) 

Class I (HDAC 

1,2,3,8), II, (HDAC 

4,5,6,7,9, 10) (µM) 

FDA-approved (2006) 

for CTCL, phase II, 

III alone or in 

combination 

Preclinical: Memory loss,  

SMA, Focal Ischemia, 

Cognitive disorders, 

Glioblastoma. 

 CBHA  Sirtuins (HDAC1,3) 

N/A (µM)  

 Preclinical: Axonal 

degeneration 

 LAQ-824 Class I and II (nM)   

 Belinostat 

(PXD101) 

Class I, II, IV (µM) Phase I, II alone or in 

combination 

 

 Panobinostat 

(LBH589) 

Class I, II, IV (nM) Phase II, III alone or 

in combination 

Preclinical: Triggers the 

expression of the protein 

Survival Motor Neuron gene 

2 (SMN2) in spinal muscular 

atrophy fibroblasts 

which are inert to VPA 

treatment 

 Givinostat 

(ITF2375) 

Class I and II (nM) Phase I, II  

 Abexinostat 

(PCI-24781) 

Class I, II, IV (nM) Phase I, II alone or in 

combination 

 

 Resminostat 

(4SC-201) 

Class I, II, IV (µM) Phase I, II alone or in 

combination 

 

 Quisinostat 

(JNJ-26481585) 

Class I, II, IV (µM) Phase I  

Cyclic peptide Depsipeptide  

(FK-228)/ 

romidepsin 

Class I (HDAC1,2,4,6) 

(nM) 

FDA-approved (2009) 

for CTCL and PCTL, 

phase I, II alone or in 

combination 

Preclinical: 

Neurodegeneration, 

Depression, Neuroblastoma 

 Apicidin Classes I and II (nM to 

µM) (HDAC 2, 3) 

 Preclinical: 

Neurodegeneration, 

Depression 

Short chain 

fatty acids 

(SCFAs) 

Valproic Acid Class I (HDAC 1,2,3,8) 

and IIa (HDAC 4,5,7,9) 

(mM) 

Phase I, II, III alone or 

in combination 

 

Double blind 

randomized placebo 

controlled trial in 

SMA (NCT01671384, 

Brain Ischemia, Stroke, 

reversal of contextual 

memory deficits, SMA, AD. 
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NCT00661453);  

Double-blind 

randomised placebo 

controlled trial in AD 

(NCT00071721). 

 Phenyl butyrate Class I and IIa (mM) Safety and tolerability 

study in HD 

(NCT00212316) 

Axonal degeneration, HD 

 Butyrate Class I and IIa (mM) Phase II alone or in 

combination 

Phase II - dose 

tolerability study in 

ALS 

 

Memory loss, Depression, 

Fear, improved learning and 

memory, reversal of 

contextual 

memory deficits, restoration 

of dendritic spine 

density in hippocampal 

neurons, alleviation of 

cognitive defects 

Benzamides Entinostat 

(MS-275) 

Class I (HDAC1,2,3,9) 

(µM) 

Phase II alone or in 

combination 

Preclinical: Duchenne 

muscular dystrophy, reduced 

neuroinflammation and 

cerebral amylodosis 

 Mocetinostat 

(MGCD0103) 

Class I (HDAC 2, 3, 

11)(µM) 

Phase I, II alone or in 

combination 

Preclinical: 

Neurodegeneration 

 CI-994 HDAC1, HDAC3 (µM)   

 Belinostat HDAC 1-10   (μM)  Preclinical: Glioma treatment 

 Mocetinostat HDAC 1,2,3,11  (μM)  Preclinical: Post-ischemic 

fibrosis 

 Crebinostat HDAC1,2,3,6   (μM)  Preclinical: Enhances 

memory formation, Enhances 

neurotropic factors and 

neurite growth 

Abbreviations: CTCL, cutaneous T-cell lymphoma; PTCL, peripheral T-cell lymphoma; HD, Huntington’s disease; AD, 

Alzheimer's disease; SMA, Spinal Muscular Atrophy; 

 

 

Histone deacetylases and brain disease 

Alterations in levels or homeostasis of acetylation are considered as a major signaling event in different clinical diseases 

such as cancer and CNS diseases. Hypoacetylation of histone, which is mediated by histone deacetylase (HDAC), plays 

a relevant role in the etiology of several brain disorders as such neurodegenerative and neurodevelopmental cognitive 

disorders and psychiatric diseases [62, 80, 129, 130].  

 

Memory and learning 

Chromatin alterations via histone acetylation are involved in the regulation of learning, memory synaptic plasticity as 

well as adult neurogenesis [65, 67, 117, 131]. Acetylation of the hippocampal histones (H2B, H3, and H4) are 

transiently increased in normal mice during learning processes, suggesting that histone acetylation is essential for 

memory consolidation [132-134]. In mouse models, changes in histone acetylation have been associated with cognitive 

impairment, particularly in learning and memory [135-137]. It was first reported that an overexpression neuron-specific 

HDAC2 decreases dendritic spine density, synapse number, synaptic plasticity, and memory formation in mice; instead, 

HDAC2 deletion leads to increase synapse number and improvements of learning and memory supporting the crucial 

role of histone acetylation and deacetylation in human diseases associated with memory impairment, such as AD [134, 

138]. It has also been shown that deletion of both HDAC1 and HDAC2 in mice during embryogenesis causes 
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abnormalities in hippocampal, cortical, and cerebellar development, as well as lethality because of triggered apoptosis 

[139].  

Increasing evidence suggests that adult neurons respond to various environmental signals via dynamic changes in DNA 

methylation and histone modifications. These processes are important to mechanisms of memory formation and 

cognition via modulation of genes involved in synaptic plasticity, such as brain-derived neurotrophic factor (BDNF) 

and reelin [131, 140]. Therefore, inhibition of the catalytic activity of HDAC could serve as a therapeutic approach 

towards enhancing the learning and memory processes for different neurodegenerative diseases [104, 141]. 

 

Neurodegenerative diseases 

Changes in chromatin structure due to post-translational modifications of histones can also be associated with different 

neurodevelopmental disorders (such as Rubinstein-Taybi syndrome and Rett syndrome, Fragile X syndrome) and 

neurodegenerative diseases (AD, HD and PD) [25, 53, 77, 142]. Chronic dysregulation of the acetylation/deacetylation 

activity can lead to neuronal cell death as manifested in neurodegenerative disorders [143]. Rouaux and colleagues were 

the first to find decreased levels of histone neuronal acetylation in neurodegeneration [144]. Since then, the linkage 

between histone hypoacetylation and neurodegeneration has been well established in many cognitive and movement 

disorders [103, 145-147]. 

The HDAC proteins may regulate the level of histone acetylation and the expression of some important genes, which 

are associated with the memory and cognition, involved in AD [146, 148]. An increased expression of HDAC2 and 

HDAC6 with subsequent hypoacetylation of histones has been found in the brains of AD patients and in AD model 

mice that may contribute to learning and memory deficits in this disease [149, 150]. 

HDACIs exhibit neuroprotective and neuroregenerative properties in animal model of these disorders [151]. HDACIs 

(such as VPA, butyrate, or SAHA) restore histone acetylation status ameliorating cognitive deficits and memory 

impairment in various AD animal models [104, 105]; the neuroprotective efficacy of HDACIs can be due to down-

regulation of neurotoxic proteins or factors like β-amyloid (Aβ) peptide, inhibition of Aβ-induced hyperphosphorylation 

of tau protein and  up-regulation of neuroprotective factors [105, 146]. Moreover, it has been suggested that the effect 

of HDACIs in AD was also mediated by increasing the expression of neuroprotective factors, including progranulin, 

BDNF and gelsolin [152, 153].  

Lacosamide, is an HDAC inhibitor, developed for the treatment of epilepsy [154]. HDAC plays an important role in 

memory and in AD [146]. Recently it has been found that Lacosamide at a dose of 30 mg/kg reduced the HDAC levels 

in the cerebral cortex indicating memory-enhancing potential, which can be well correlated with an improvement in 

memory in of AD [155].  

Altered neuronal histone acetylation is an important early feature also of HD [156, 157]. The therapeutic potential of 

HDACIs has also been evaluated in various animal models of HD reporting that SAHA, butyrate, phenylbutyrate, TSA, 

and VPA improve the motor impairment in these models [118, 158-160]. This improvement in motor performance is 

consistently associated with increased histone acetylation and thus, strongly points towards a loss of neuronal 

acetylation homeostasis during neurodegeneration [145, 161]. It has been suggested that the pathophysiology of HD is 

intimately coupled to BDNF and HSP70 deficiency in affected brain regions [162]. Since the expression of both BDNF 

and HSP70 is regulated by class I and II HDACIs, it is conceivable that restoring BDNF and HSP70 to their normal 

levels contributes to the beneficial effects of HDACIs in various HD models [77].  Thomas et al. found that an SAHA-

http://topics.sciencedirect.com/topics/page/Granulin
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related HDACI called HDACI 4b could ameliorate the disease phenotypes in HD transgenic mice even when the 

treatment was initiated after the onset of motor deficits [163].  

Several HDACIs which are undergoing clinical trials have, or currently include, patients with HD; some of these studies 

have indicated beneficial effects of VPA in myoclonic hyperkinesias in HD patients, suggesting the possible application 

of VPA as an alternative treatment for HD [164]. 

Alterations in histone modifications are also involved in PD and treatment with HDACIs result in beneficial effects in 

in vivo and in vitro models of PD [165-167]. HDACIs improved the neurodegeneration involved in PD through the 

protection of dopamine neurons or increase of dopamine level; furthermore, the effect of HDACIs on the dopamine 

neurons was also mediated by increasing the expression of neurotrophic factors, including GDNF and BDNF in 

astrocytes to protect DA neurons [147, 168-170]. Therefore, the potential therapeutic effectiveness of HDACIs in PD is 

via neuroprotection in two ways: 1) down-regulation of neurotoxic proteins or factors like α-synuclein, rotenone, and 

MPTP; 2) up-regulation of neurotrophic factors like GDNF and BDNF. Some clinical trials have also been initiated to 

investigate the possible therapeutic potential of HDACIs in patients with PD [147].  

Epigenetic alterations have also been described in other neurodegenerative pathologies, such as ALS and SMA [171, 

172]. ALS is familial and associated with mutation in the Super Oxide Dismutase (SOD1) gene; VPA treatment has 

been shown to improve the survival of ALS mouse models with an SOD mutation (SOD1/G93A) [173]. Other authors 

have also found that, in SOD1 mutant mice, VPA treatment, maintained normal levels of histone acetylation, 

significantly suppressed the death of motor neurons, with beneficial effects on motor dysfunction onset, motor deficits, 

and survival time [118, 174, 175]. 4-phenylbutyrate administration in transgenic ALS mouse models before or shortly 

after symptom onset resulted in extended survival and improved pathological phenotypes [176]. In the same ALS 

transgenic mice, combined treatment with phenyl butyrate and riluzole, the only FDA-approved drug for treating ALS, 

was more effective than either drug alone in increasing survival and improving pathological phenotypes [177]. 

The homozygous deletion of the SMN gene that encodes the full-length survival motor neuron protein plays a genetic 

causative role in the SMA disorder. HDACIs (butyrate, 4-phenylbutyrate, VPA, SAHA, TSA and romidepsin) showed 

neuroprotective effects in this disorder via an increase of histone acetylation of the SMN promoter with consequent 

increased SMN gene expression and protein levels [178-181]. 

Recent studies indicate that butyrate may be useful to ameliorate neurological symptoms and motor function as well as 

suppressed spinal motor neuronal degeneration and muscular atrophy and increase survival in models of SMA [182-

184]. SAHA treatment was found to prevent death and improve survival in two transgenic mouse models of SMA 

[185]. Different studies in SMA patients showed that HDACIs (4-phenyl butyrate, VPA and M344) increased 

transcription of SMN2 and altered the splicing pattern to produce more full-length protein encoded by SMN2 [179, 186-

188]. Sodium 4-phenylbutyrate increased the expression of SMN protein in the leukocytes of SMA patients [189]. 

Patients with type III/IV SMA treated with VPA for 8 months showed an increased muscle strength and function [190]. 

VPA was also found to decrease the excitation in the axon terminals of motorneurons in lymphoblastoid cells isolated 

from SMA patients. This inhibitor additionally showed inhibition of the voltage-gated Ca2+ channels essential for motor 

neuron excitation [191].  In addition to neurodegenerative disorders, HDACIs may have the potential to treat 

neurodevelopmental disorders such as Rubinstein-Taybi syndrome and Rett’s syndrome that are caused by mutations 

affecting transcriptional and epigenetic mechanisms [25, 137]. 

 

 

http://topics.sciencedirect.com/topics/page/Phenotype
http://topics.sciencedirect.com/topics/page/Neurotrophic_factors
http://topics.sciencedirect.com/topics/page/Glial_cell_line-derived_neurotrophic_factor
http://topics.sciencedirect.com/topics/page/Astrocyte
http://topics.sciencedirect.com/topics/page/Rotenone
http://topics.sciencedirect.com/topics/page/MPTP
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Stroke 

Histone hypoacetylation was found in the ischemic brain of the middle cerebral artery occlusion (MCAO) stroke model 

of rats or mice, which could be restored by treatment with HDACIs, preventing neuronal death [89, 192]. HDACIs also 

altered the expression patterns of genes involved in protecting ischemic insult by increasing the acetylation patterns of 

core histone H3, ameliorating neuronal death and cognitive deficits in mouse models of focal ischemia [193]. Thus, 

different studies have shown the ability of HDACIs to exert neuroprotection in the MCAO models of ischemic stroke 

[194]; administration of SAHA after induction of ischemic stroke by MCAO prevented H3 deacetylation, stimulated the 

expression of some neuroprotective proteins (Bcl-2 and Hsp70), and reduced infarct volume, indicating a 

neuroprotective action for SAHA [195]. Similar protection against brain injury and neurological deficits caused by 

ischemic stroke has been described following administration of VPA. VPA stimulated HSP70 expression and histone 

H3 acetylation [192].  The HDACI TSA, conferred stroke protection in wild-type mice subjected to mild, but not severe 

ischemic damage [196]. TSA ameliorated neuronal injury in wild-type mice subjected to MCAO in vivo [197] further 

emphasizing the role of histone acetylation in ischemia-induced neuronal death. The effectiveness of HDACIs seems to 

be due to their anti-inflammatory effects via their down-regulation of specific proteins, nuclear factors, 

proinflammatory factors, enzymes (like IL-6, NF-κB, iNOS, TNF-ɑ, COX-2, MMP-9 and MCP-1) which were induced 

or activated by ischemia in the ischemic brain but also to their neuroprotective effects via up-regulation of 

neuroprotective factors or proteins like HSP70, BDNF and gelsolin [193, 198]. 

 

Psychiatric disorders 

Evidence derived mostly from a large body of research in animal models suggests that histone modifications also play 

an important role in numerous psychiatric disorders, including schizophrenia, depression, drug addiction and anxiety 

disorders [15, 199-201]. Class I and II HDACs are modified in psychiatric diseases making these of interest as drug 

targets [83, 202, 203]. Alterations in HDAC activity are associated with bipolar disorder (BD) and VPA is used for BD 

patients who are resistant to lithium therapy [204].  

The involvement of HDAC dysfunction in the pathophysiology of mood disorders was also shown for instance, by an 

increased expression of HDAC2 and HDAC5 mRNA in the peripheral blood cells of patients with major depressive 

disorders (MDD) and BD during depressive episodes, suggesting that an altered expression of HDACs may be 

associated with the pathophysiology of depression [205]. In a postmortem study, individuals with BD had higher 

baseline levels of total acetylated histone 3 levels compared to subjects with schizophrenia  [206, 207]. 

It has also been found that an enhanced acetylated histone H3 occurs, associated with decreased levels of HDAC2 

expression in the nucleus accumbes (NAc) of mice subjected to chronic social defeat stress, a validated model of 

depression [83, 208, 209]. Similar effects has been observed in the NAc of individuals with MDD, demonstrating the 

relevance of chromatin remodeling in human depression [82, 83, 210].  Due to their potential ability to reverse 

dysfunctional epigenetic regulation, diverse CNS-penetrant HDACIs have been suggested as potential therapies for the 

treatment of mood disorders. Interestingly, butyrate shows antidepressant properties and enhances the efficacy of the 

selective serotonin reuptake inhibitor fluoxetine [81, 123, 200, 211]. Administration of HDACIs (SAHA and MS-275) 

in the NAc, hippocampus and amygdala, results in increased acetylation of histone H3 and significant antidepressant 

like effects in the chronic social defeat stress model in mice, indicating that directly targeting HDAC may be a new 

approach for the treatment of depression and mood disorders [83, 212]. 
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Anxiety is often present in mood disorders. In models of anxiety such as extinction of conditioned fear, a significant 

increase in histone H4 acetylation around the BDNF P4 gene promoter was found; VPA treatment potentiated the effect 

of weak extinction training on histone H4 acetylation around both the BDNF P1 and P4 gene promoters and on BDNF 

exon IV mRNA expression [213]. This suggests that HDACIs may become a useful pharmacological adjunct to 

standard psychotherapy for human anxiety disorders. Other studies found that HDACIs enhanced initial learning in 

contextual fear conditioning, possibly involving the ERK/MAPK pathway, associated with the pathophysiology of 

mood disorders [214, 215]. 

 

In summary, in disorders of the brain, in which the dysregulation of gene expression has been implicated in different 

neurological and psychiatric diseases, there is enormous potential to restore patterns of gene expression and neuronal 

function through the use of epigenetic drugs. Furthermore, HDACIs also hold promise for therapy relevant to several 

neurological disorders [199]. For these reasons, HDACs represent attractive molecular targets for the treatment of these 

diseases [141, 216]. 

 

Histone deacetylases and epilepsy 

For many years, it has been assumed that epilepsy occurs only as a result of cortical damage. Today, it is known that 

epilepsy can also arise as a consequence of traumatic brain injury, stroke, brain abnormalities, toxic-metabolic factors, 

inflammation, autoimmunity, or an imbalance in inhibitory and excitatory synaptic transmission [217]. Epilepsy can 

also arise as a consequence of spontaneous or inherited gene mutations, the latter including many channelopathies, in 

which epileptic seizures arise due to mutations in neuronal ion-channel genes or in other genes that control development 

and neuronal function of the brain [218, 219]. 

In the past few years, many genes have been linked to epilepsy and control voltage-gate channels (e.g. Na+, K+, Ca2+, 

and Cl–) or ligand-gated channels (e.g. nicotinic acetylcholine and GABA receptors). Alterations not only in 

transcription, but also covalent modifications of DNA, histone code modifications, chromatin remodeling, and 

noncoding RNA (ncRNA) expression are involved in the pathogenesis of epilepsy and in the process of epileptogenesis 

[11, 13].  

Altered gene expression may be related to molecular and cellular mechanisms of normal neuronal homeostasis, 

excitability, cell survival, and inflammatory processes leading to the development of epilepsy [8, 14, 20].  

Epigenetic modifications affect the expression of genes encoding epigenetic proteins as growth or transcription factors, 

inflammation associated proteins and neuropeptides involved in epilepsy. In particular, abnormalities of neural network 

by posttranslational modifications of proteins include increased expression of immediate early genes (IEGs), growth 

factor (BDNF), diverse transcriptional regulators (e.g. CREB, c-fos, and c-jun), GABAA receptor subunit composition. 

and the glutamate receptor 2 (GluR2) AMPA receptor subunit that lead to deregulated neural circuits and a 

predisposition towards epileptic seizures [3, 220-222]. The epilepsy-induced changes in gene expression of several 

proteins are probably guided by epigenetic mechanisms, comprising chromatin modifications such as histone 

modifications [223, 224]. Epigenetic factors such as HDACs can modulate many processes such as neurogenesis and 

gliogenesis, neural cell migration, and synaptic plasticity; dysregulation of these epigenetic factors can lead to 

apoptosis, aberrant neuronal migration, impaired glial function, neuronal hyperexcitability, all of which can contribute 

to epileptogenesis, and epilepsy. Moreover, the hyperexcitability associated with epilepsy can also impact the 

expression of genes that regulate the epigenetic state [11, 22]. Although only limited studies have investigated histone 



15 

 

modifications in epilepsy, recent evidence has now described that posttranslational histone modifications represent an 

epigenetic mechanism that affects the epileptic disease [225]. Abnormal histone modifications and altered gene 

expression are hallmark features of animal models of status epilepticus (SE) and human temporal lobe epilepsy (TLE) 

[13]. Emerging data have recently demonstrated that both chemically or electrically induced-seizures influence histone 

modifications in vivo [226-229] (Table 3). Induction of SE or prolonged seizures by pilocarpine or kainate can trigger 

numerous changes in gene expression (as gene upregulation) that are thought to contribute to the development of 

epilepsy [230, 231].  

Kainate stimulation induces the expression of several IEGs including two commonly used markers, c-fos and c-jun 

genes in neurons in vivo and in vitro. IEGs belong to a class of genes that are rapidly induced, usually in a transient 

fashion, in response to intracellular signaling cascades. Among IEGs, c-fos and c-jun gene induction by different stimuli 

have been associated with histone modifications. Studies in vitro showed that c-fos induction is associated with histone 

H3 phosphorylation  [232], while both of c-fos and c-jun inductions are associated with both histone H3 

phosphorylation and H4 acetylation [233, 234]. 

Emerging evidence has demonstrated marked and different changes in the expression of the class I and class IV HDACs 

as well as class II HDACs in two mouse TLE models after an acute SE, during epileptogenesis and in chronic epilepsy 

[235, 236]. A marked decrease in the expression of the class I HDAC (1 and 2) and class IV HDAC (11) in the granule 

cell and pyramidal cell layers of the hippocampus during acute pilocarpine and kainate-induced SE has also been found 

[235] (Table 3).  

The decrease HDAC expression may cause an augmented acetylation state of histones and thus induce increased 

expression of numerous genes; indeed, the decreased expression of class I HDAC in both seizure models contributes to 

hyperacetylation of H4 histone at c-fos, c-jun and BDNF promoters and increased c-fos, c-jun and BDNF expression 

[226, 228, 229]. It is worth noting that BDNF can exert both pro- and anti-convulsive/-epileptogenic actions [237, 238]. 

The kainate-induced SE in rats promotes a rapid but temporary phosphorylation of histone H3 and a histone H4 

hyperacetylation, correlated with induced mRNA expression of c-fos and c-jun genes particularly in dentate gyrus 

neurons of the hippocampus [229]. Both histone modifications are associated with the c-fos gene promoter after kainate 

stimulation, while only histone acetylation with the c-jun gene [229, 239, 240]. c-fos and c-jun are a subgroup of 

inducible transcription factors known as IEGs, activated rapidly and transiently in response to cellular stimuli and 

stimulate cell growth, differentiation signals, and neuronal survival.  

Pretreatment with TSA, a potent HDACI, increased the basal level of histone H4 acetylation and the c-fos and c-jun 

genes expression in the hippocampus after kainate administration suggesting that the expression of these IEGs is 

regulated by gene-specific histone modifications in neurons. Histone acetylation might play a role in the regulation of 

both gene expressions after kainate stimulation [229, 239, 240]. Interestingly, it has also found that pretreatment with 

curcumin (an anti-inflammatory constituent of turmeric), which has a HAT inhibitory activity specific for CBP/p300, 

decreased the level of histone H3 phosphorylation, the expression of IEGs (c-fos and c-jun), and also reduced the 

severity of kainate-induced SE [229, 239]. Therefore, histone modifications induced by kainate may have a crucial role 

not only in IEG expression but also in the development of epilepsy. An important increase in H3 phosphorylation was 

found in some brain structures after pilocarpine-induced SE that significantly seem to depend on neuronal excitation. 

The excessive neuronal excitation induces chromatin remodeling in neurons, thereby altering gene expression; H3 

phosphorylation is a good indicator of strong neuronal excitation [241]. 

http://www.nature.com/cr/journal/v21/n3/full/cr201122a.html
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Jagiardar et al., 2015 showed also that in the chronic phase of kainate-induced seizures, only class I HDAC (1, 2, 3, and 

8) mRNAs was significantly up-regulated in the hippocampus. Similar changes were detected after a pilocarpine-

induced SE except that a decrease in HDACs 3 and 8 were also seen at the chronic phase [235]. The increased 

expression of all class I HDACs during the epileptogenic phase, can be related to decreased histone acetylation, which 

could lead to decreased expression of certain proteins and thereby promote epileptogenesis. Thus, addressing HDAC 

expression may have a therapeutic potential in interfering with SE and with the manifestation of TLE [235]. 

This finding is consistent with an upregulation of HDAC2 protein in patients with TLE and in the lithium-pilocarpine 

rat model of induced seizures (TLE) [242]. The increased HDAC2 expression level during the acute and chronic period 

TLE rat model in the hippocampus and adjacent cortex seems to enhance neuronal excitability and promote excitatory 

circuit reorganization that lead to epilepsy. Also, abnormal HDAC2 expression in patients with TLE is consistent with a 

possible role of this protein in the pathophysiology of TLE. It has been supposed that HDAC2 may be implicated in 

enhancing neuronal excitability via regulating synaptic plasticity and lead to epileptic discharges. In particular, an 

upregulation of HDAC2 protein in TLE patients suggests that the activity of HDAC2 protein synthesis could be one 

step in a group of different events that induce changes of synaptic plasticity-related gene expression in the epileptic 

temporal neocortex area [242]. Changes in the expression patterns of class II HDACs mRNAs have also been found by 

[236] in the same animal models of kainate- and pilocarpine-induced epilepsy [236]. Nevertheless, in contrast to the 

class I and IV HDACs, the expression of class II HDACs (5 and 9), was markedly increased during the SE [235](Table 

3). 

Up-regulated expression of HDAC5 and 9 mRNAs, that coincided with pronounced granule cell dispersion in the 

hippocampus, were observed after kainate injection; this increase seems to be related to the highest period of seizure 

activity during the SE. This increased expression may result in reduced acetylation of histones H3 and H4 at some 

promoters and consequently in down-regulation of some genes. In contrast, in the pilocarpine model, that does not show 

granule cell dispersion, a marked down-regulation of the class II HDAC 5 and 9 mRNAs has been observed; these 

changes in the pilocarpine model may also be associated with the SE of the animals. This particular pattern of HDAC 

mRNA expression suggests a role in epileptogenesis and granule cell dispersion [236]. 

Crosio et al. (2003) have also reported that kainate or pilocarpine-induced seizures promote chromatin remodeling in 

hippocampal neurons, including transient hyperphosphorylation of histone H3 at serine 10 and acetylation at lysine 14 

[227]. These histone modifications are coupled with rapid activation of extracellular regulated kinase (ERK) and with c-

fos upregulation which are mechanisms that mediate epileptogenesis [227, 243]. Therefore, H3 phosphorylation at 

Serine10 and acetylation at Lisine14 are normally used markers for identifying histone modification [227, 229] (Table 

3). 

Other studies have shown that electroconvulsive seizures induce histone H4 hyperacetylation at c-fos and BDNF gene 

promoters, while decreasing acetylation levels at the CREB promoter, in correlation with mRNA levels of these genes 

[228]. BDNF upregulation following seizure activity was believed to contribute to epileptogenesis, and BDNF 

administration in epileptic animals can trigger seizures [244]. 

CREB is an important transcription factor, involved in the transcriptional control of different genes, many of which are 

rapidly expressed in response to an increase of cytoplasmic cAMP or Ca2+ levels (as are IEGs). Therefore, CREB may 

be involved in inducing IEGs in seizure activity. Furthermore, CREB is important for controlling activity-dependent 

processes in neurons; among other activities, it modulates the expression of the GABAA receptor in the hippocampus 

and plays an important role in the epileptogenic process. Activation of CREB and ERK appears to modulate seizure 
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susceptibility in both human and animal epilepsy models [245-249]. Changes in the state of chromatin affect the 

expression of specific genes involved in seizure generation. The expression of HDAC2, a class I  HDAC implicated in 

brain development, is up-regulated in experimental and human epilepsy [226, 242]; the effects of changes in HDAC 

activity comprise transcriptional responses for several genes implicated in synaptic function, including ionotropic and 

metabotropic glutamate receptors [250]. Epigenetic changes are also observed following electroconvulsive seizures 

(ECS); repeated treatment with ECS induces an up-regulation of HDAC2 expression, correlated with reduced 

expression of genes involved in the N-methyl-D-aspartate (NMDA) receptor signaling pathway in the rat frontal cortex 

[251].  

Repeated ECS treatments caused down regulation of c-Fos Egr1, Nrn1, Nr2a, Nr2b, and Camk2α, which are major 

components of NMDA receptor-related signaling, and down regulation of histone deacetylation in their promoter region 

in the rat frontal cortex and hippocampus. This alteration suggests that histone modifications could play an important 

role in ECS-induced gene expression changes [228, 251]. Administration of butyrate, recovered the ECS-induced down-

regulation of genes in the rat frontal cortex [252]. 

Epileptic seizures produce gene expression changes, including alterations in mRNA levels for glutamate receptor 2 

(GluR2) and BDNF, two well-characterized epileptogenesis-related genes.  Huang et al. (2002) showed an increased 

histone H4 acetylation at the BDNF gene promoter, but a reduction of histone H4 acetylation at the GluR2 (a subunit of 

the AMPA receptor) gene promoter after pilocarpine-induced SE in rat hippocampal CA3 neurons [226] as an early 

event in SE.  The expression of the AMPA receptor subunit GluR2 was suppressed, leading to an increase in GluR2-

lacking AMPA receptors (Ca2+-permeable), at hippocampal synapses and neuronal hippocampal death [220, 221, 226] 

while BDNF expression was increased  [222, 228, 253] (Table 3).  

Decreased expression of GluR2 in animal models of epilepsy results in potent AMPA receptor-mediated pro-convulsive 

effects [221, 254]; therefore, the alterations in expression of these proteins contributes to the pathophysiology of 

recurrent seizures [220]. Interestingly, pretreatment with TSA prevented and rapidly reversed deacetylation of histone 

H4 associated with the GluR2 promoter (encoding the GluA2, a subunit of the AMPA receptor that restricts Ca2+ 

permeability and therefore possesses neuroprotective effects) suggesting that gene-specific changes in histone 

acetylation may be responsible for pathological processes triggered by SE. Thus, changes in chromatin structure 

potentially involved in the process of epileptogenesis and HDACi demonstrate to reverse the seizure-induced decrease 

in histone acetylation at specific epileptogenesis-related genes like GluR2 [226]. 

It has also been shown that a mouse model lacking histone deacetylase 4 (HDAC4) exhibited spontaneous convulsions 

[255]. HDAC4 has been implicated in neuronal function and survival [256, 257], therefore, loss of HDAC4 could lead 

to a dysfunction of synaptic transmission and neuronal excitability that underlies epileptic seizures [255]. 

Recent evidence has shown that kainite (KA)-induced seizures cause an increased histone H3, acetylated at lysine 9 of 

the TLR4 gene; pretreatment with SAHA suppressed seizures and inflammatory mediator production by inhibiting the 

TLR4/MyD88 signaling pathway associated with activated microglia. SAHA suppressed H3K9 acetylation levels and 

then reduced TLR4 gene expression in KA-induced seizures. Thus, SAHA possesses antiepileptic and neuroprotective 

effects providing new insights into its possible use as a protective compound against seizure-induced brain damage 

[258]. The important epilepsy-triggered changes may be guided by epigenetic mechanisms [223, 224].  

Finally, it is worth mentioning that the expression of sirtuins (SIRTs) is also altered in epilepsy. The sirtuin SIRT1, a 

protein deacetylase with nuclear and cytoplasmatic functions, is lastingly over-expressed in the kindling induced-

lithium/pilocarpine model of epilepsy and in human TLE, indicating an important role of this protein deacetylase in the 
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pathogenesis of epilepsy [259]. In addition, SIRT4, a mitochondrial sirtuin, is up-regulated after administration of KA 

in wild-type mice. In SIRT4 knockout (KO) mice, the loss of SIRT4 leads to a more severe reaction to KA and 

decreased glutamate uptake that is correlated with a decreased glutamate transporter expression and function in the 

brain. Consequently, SIRT4 may protect against excitotoxicity by promoting glutamate uptake in the brain, and loss of 

SIRT4 increases sensitivity to excitotoxic insults. This neuroprotective role of SIRT4 has implications in epilepsy, but 

also for other brain disorders such as traumatic brain injury, and neurodegeneration [260]. Recently Li and Liu 2016 

have found an important association between SIRT5, (mostly expressed in the brain) and epilepsy.  SIRT5 knockout 

(KO) mice show an increased KA-induced seizure susceptibility compared to wild type controls; SIRT5 deficiency 

greatly exacerbated severity and mortality of seizures, dramatically increased hippocampal neuronal death and 

degeneration in mice exposed to KA, supporting the neuroprotective role of SIRT5 in this seizure model [261]. 

 

In summary, the above studies illustrate the effect of epigenetic mechanisms, in the form of histone modifications, on 

the regulation of genes implicated in control of epileptiform activity. Therefore, epigenetic mechanisms like altered 

histone acetylation may have a crucial role in epilepsy and epileptogenesis. These studies suggest a crucial role of 

expression of HDACs in the epigenetic regulation of seizure-induced expression of neuropeptides and proteins and 

thereby promote the development of epilepsy as well as the formation of anticonvulsive mechanisms.  

A number of drugs that target the epigenetic machinery are consequently, potential therapeutic agents for epilepsy. The 

most common HDACIs in clinical trials to date are the short-chain fatty acids, (such as butyrate, phenyl butyrate, and 

VPA), and the hyroxamic acids, (such as TSA and SAHA) (Abel and Zukin, 2008). SAHA and TSA promote neuronal 

survival in animal models of epilepsy [224, 226, 240]. VPA has been used to control seizures for decades in patients 

with epilepsy and was also found to be a potent inhibitor of class-I HDAC isoforms in addition to effects on ion 

channels and neurotransmission  [112]. Interestingly, the anticonvulsant effects of VPA increase over time, which could 

be consistent with an epigenetic effect on gene transcription. Unfortunately, long-term treatment with VPA may be 

associated with serious toxic effects, since VPA administration in pregnant epilepsy patients is known to cause neonatal 

malformations [262]. VPA also increases expression of neuropeptide Y in the reticular nucleus thalami of rats 

suggesting that the expression of neuropeptide Y may be under the control of HDAC [263]. Neuropeptide Y becomes 

over-expressed by recurrent seizures and represents a potent endogenous anticonvulsant [264]. Thus, down-regulation 

of HDACs may lead to an anticonvulsive effect by increasing neuropeptide Y expression in the same way as their 

inhibition by treatment with VPA. HDACIs may have other beneficial effects in epilepsy. Altered gene expression 

within hippocampal neurons is believed to induce disturbed neurogenesis that may be responsible of epilepsy 

development [265]. It has been reported that seizure-generated granule cells have the potential to interfere with 

hippocampal function and contribute to cognitive impairment caused by KA-induced seizures within the hippocampal 

circuitry [266]. VPA administration in rats after KA-induced SE, reduces the aberrant neurogenesis in the hippocampus, 

and protects the animals from seizure-associated cognitive deficits. This effect of VPA appeared to be mainly mediated 

by HDAC inhibition with a subsequent normalization of HDAC-dependent gene expression [266].  

In addition, VPA blocks neurogenesis and differentiation of hippocampal progenitor cells in vivo with corresponding 

increases in histone acetylation [267]. The anticonvulsant and neuroprotective effects of VPA but also of SAHA 

treatment were also reported after SE [268]. VPA is neuroprotective after chemically induced seizures but also in a rat 

model of epilepsy, due to electrical stimulation of the basal amygdala [113, 269].Another study found that VPA 
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treatment could significantly reduce seizure-induced expression of c-fos and c-Jun, reinforcing the idea that VPA 

belongs to a class of antiepileptic drugs that normalizes the expression of seizure-induced genes [270].  

HDACI-mediated neuroprotection and stabilization of existing brain circuitry could be a possible mechanism for 

preventing the spread or progression of epilepsy, and limiting the accompanying cognitive deficits that result from 

poorly controlled seizures in epileptic patients. The efficacy of HDACIs in epilepsy can be due to their ability to 

enhance the survival of neurons in existing circuits that might otherwise succumb to excitotoxic cell death due to hyper-

excitation and the resulting ionic imbalances.  

Despite their proven neuroprotective effects in epilepsy and other brain diseases, VPA and other HDACIs are non-

specific drugs and can cause changes in the state of other epigenetic factors including global DNA demethylation [271, 

272], resulting in cell death. Therefore, there is an urgent need in the future to develop new HDAC inhibitors with 

greatly enhanced specificity and reduced toxicity in order to facilitate their evaluation as potential novel therapeutic 

agents. 

 

Table 3.  Epigenetic modifications in experimental epilepsy models and human epilepsy. 

Epilepsy 

Animal models 

Brain region 

involved 

Epigenetic modifications Affected gene Refs 

Model of pilocarpine-

induced SE 

Hippocampus / H4 acetylation 

 H3 phosphorylation 

CREB-TF 

/ BDNF 

 GluR2 

 c-fos 

[226] 

[227] 

[249] 

Model of kainate-induced 

SE 

Hippocampus  H3 phosphorylation 

/ H4 acetylation 

 NRSF/REST-TF 

NF-κB-TF 

 c-fos 

 c-jun 

 CBP 

  HCN1 

/ BDNF 

 GluR2 

[227] 

[229] 

[239] 

[266]  

Electrically- induced 

seizures (ECS) 

Hippocampus 

Frontal cortex 
/ H4 acetylation 

/ H3 acetylation 

CREB-TF 

/ c-fos 

/ CREB 

/ BDNF 

[228, 

273] 

Electrical kindling Hippocampus NRSF/REST-TF / BDNF 

/ TrkB 

[274] 

Human TLE and  

pilocarpine-induced 

seizures 

Neocortex 

Hippocampus 
 HDAC2  Reelin [242] 

 

Abbreviations: CREB, cAMP response element; TF, transcription factor; BDNF, brain-derived neurotrophic factor; 

GluR2, glutamate receptor 2; c-fos, NRSF, neuron-restrictive silencer factor; REST, RE1-silencing transcription factor; 

NF-κB, nuclear factor kappa B; CBP, CRE-binding protein; HCN1, potassium/sodium hyperpolarization-activated 

cyclic nucleotide-gated channel 1; ECS, electroconvulsive seizure; TrkB, tropomyosin-related kinase B; TLE, Temporal 

lobe epilepsy; SE, status epilepticus. 

 

 

 

Conclusions 

Epigenetic changes and their role in a variety of human diseases constitutes an important emerging field of research that 

will help us to better understand the pathophysiology and treatment of brain disorders, including epilepsy. Recent 

evidence demonstrates that epilepsy is characterized not only by genetic predisposition and environmental insults but 

also by epigenetic mechanisms. Alterations not only in transcription, but also epigenetic mechanisms are involved in the 

pathogenesis of human epilepsy and in the process of epileptogenesis. In particular, chromatin histone modifications are 
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seen as an important component of the epigenetic changes associated with epilepsy and may thus represent potential 

therapeutic targets. 

This review provides an overview of the role of HDACs in experimental and human epilepsy and reflects on what 

functional interventions targeting this important protein family can tell us about the role of epigenetics in the 

pathogenesis of epilepsy and their potential effectiveness for epilepsy therapeutics. HDACs epigenetically play an 

important role in controlling neuronal functions, probably by regulating the expression and function of genes (e.g. 

different classes of ion channels and receptors) and gene networks that regulate the intrinsic excitability and synaptic 

connectivity of individual neurons and of neural networks. 

Several studies have indicated changes in the acetylation state of specific promoters of genes presumably related to 

epileptogenesis. Seizure induction can trigger a myriad of gene upregulations, which could in turn, be regulated by 

histone modifications, and are now thought to contribute to the development of epilepsy. Moreover, in parallel (as in 

cancer), epigenetic modifications can affect multidrug trasporters and induce pharmacoresistence in epilepsy. The 

histone modifications might also be useful as early biomarker indicators of epileptic disease, and thus be targeted with 

epigenetic drugs such as HDACIs already clinically approved for treating patients with cancer and autoimmune 

disorders, or with new preclinical drugs that more selectively target histone deacetylase. Indeed, targeted epigenetics 

offers a potentially powerful strategy for blocking the epileptogenic process and for remodeling neural networks whose 

balance between excitation and inhibition is altered in epilepsy.  

The beneficial effects of HDACI have been reported in preclinical models of epilepsy and other neurological diseases. 

The realization of these models with a focus on translational therapy in clinics has not however, been completely 

achieved. Furthermore, lack of understanding of HDAC function in neurons and the CNS in general, is a major reason 

for this impediment. Thus, additional epigenetic studies are necessary to better understand the contribution of HDAC 

function to epilepsy and epileptogenic process, and to improve treatment or prevention of this pathology. 

Finally, it is worth commenting that most of the currently used HDACIs act non-specifically and target several classes 

of HDACs and thus, such treatments in a clinical setting, face the risk of undesired side effects, not only in target 

tissues, but also whole body-wide. A few isoform-specific HDACIs are however, now available for testing, but 

additional compounds, including both isoform-specific and nonspecific drugs, need to be developed. Unsolved 

problems include the development of drugs that have the ability to penetrate the BBB and ameliorate neuronal death 

with minimal toxicity. The BBB permeability and cytotoxic profiles of existing HDACIs also require more critical 

evaluations. Despite the fact that research in this area is still in its infancy, HDAC inhibition is a promising new avenue 

for therapeutic intervention in neurological disorders such as epilepsy. In order to develop more potent and more 

selective epigenetic treatments against epilepsy, a better understanding of the epigenetic machinery is thus required. 
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