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ABSTRACT 

Tuna, billfish, and oceanic sharks (hereafter referred to as “mobile oceanic fishes 

and sharks”, MOFS) are characterised by conservative life-history strategies and 

highly migratory behaviour across large, transnational ranges. Intense 

exploitation over the past 65 years by a rapidly expanding high-seas fishing fleet 

has left many populations depleted, with consequences at the ecosystem-level 

due to top-down control and trophic cascades. Despite increases in both CITES 

and IUCN Red Listings,  the demographic trajectories of oceanic sharks and 

billfish remain poorly quantified and resolved at geographic and population 

levels. Of all MOFS tunas are generally considered better understood, yet several 

populations remain either overfished or of unknown status. MOFS population 

trends and declines therefore remain contentious, partly due to challenges in 

deriving accurate abundance and biomass indices. Two major management 

strategies are currently recognised to address conservation issues surrounding 

MOFS: (1) internationally ratified legal frameworks and their associated regional 

fisheries management organisations (RFMOs); and (2) spatio-temporal fishery 

closures, including no-take marine protected areas (MPAs). In this context, we 

first review fishery-dependent studies relying on data derived from catch 

records and from material accessible through fishing extraction, under the 

umbrella of RFMO-administrated management. Challenges in interpreting catch 

statistics notwithstanding, we find that fishery-dependent studies have 

enhanced the accuracy of biomass indices and the management strategies they 

inform, by addressing biases in reporting and non-random effort, and predicting 

drivers of spatial variability across meso- and oceanic scales in order to inform 

stock assessments. In contrast and motivated by the increase in global MPA 

coverage restricting extractive activities, we then detail ways in which fishery-

independent methods are increasingly improving and steering management by 

exploring facets of MOFS ecology thus far poorly grasped. Advances in telemetry 

are increasingly used to explore ontogenic and seasonal movements, and provide 

means to consider MOFS migration corridors and residency patterns. The 

characterisation of trophic relationships and prey distribution through 

biochemical analysis and hydro-acoustics surveys has enabled the tracking of 

dietary shifts and mapping of high quality foraging grounds. We conclude that 
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while a scientific framework is available to inform initial design and subsequent 

implementation of MPAs, there is a shortage in the capacity to answer basic but 

critical questions about MOFS ecology (who, when, where?) required to track 

populations non-extractively, thereby presenting a barrier to empirically 

assessing the performance of MPA-based management for MOFS. This sampling 

gap is exacerbated by the increased establishment of large (>10,000 km2) and 

very large MPAs (VLMPAs, >100,000 km2) - great expanses of ocean lacking 

effective monitoring strategies and survey regimes appropriate to those scales. 

To address this shortcoming, we demonstrate the use of a non-extractive 

protocol to measure MOFS population recovery and MPA efficiency. We further 

identify technological avenues for monitoring opportune at the VLMPA scale, 

through the use of spotter planes, drones, satellite technology, and horizontal 

acoustics, and highlight their relevance to the ecosystem-based framework of 

MOFS management. 

 

Keywords: Pelagic sharks, Tuna, Migratory, MPA, RFMO, Spatial management  
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I. INTRODUCTION 

(1) Pelagic predicaments  

The onset of industrialised fisheries in the 1950s catalysed the widespread 

exploitation of mobile oceanic fish and sharks (hereafter ‘MOFS’) such as tuna 

(Thunini), swordfish (Xiphiidae), billfish (Istiophoridae) and pelagic sharks (e.g. 

oceanic white tips, Carcharinus longimanus; blue sharks, Prionace glauca). In the 

decades that followed, the large-scale and unregulated removal of these apex 

predators pushed several populations of long-living, slow-breeding and hence 

vulnerable MOFS species to collapse (Collette et al., 2011; Worm et al., 2013; 

Dulvy et al., 2014) with direct consequences for trophic integrity (Baum & 

Worm, 2009; Estes et al., 2011), ecosystem productivity (Srinivasan et al.,  2010), 

and resilience to environmental change (Sumaila et al., 2011). In spite of evident 

population declines and cases of resource mismanagement, fishing effort 

continues to intensify to this day (Anticamara et al., 2011) as fleets supported by 

government subsidies venture further into the high seas and away from ports 

(Swartz et al., 2010). Management decisions remain contentious due to the 

trans-jurisdictional and competitive nature of numerous MOFS fisheries on the 

high seas, all generally unwilling to forgo a loss in resource access to the 

perceived benefit of others (Hardin, 1968; White & Costello, 2014). 

A major challenge in quantifying the biological footprint of worldwide fisheries 

lies in that much of the global take goes unreported and is not subject to 

independent updates or verification, making MOFS catch rates notoriously hard 

to assess. For example, existing estimates of shark landings from the Food and 

Agriculture Organisation (FAO) are four times lower than those derived from 

available market sale statistics in the same year (Clarke et al., 2006). Likewise, 

only four tunas (bigeye, Thunnus obesus, albacore, Thunnus alalunga, skipjack, 

Katsuwonus pelamis, and yellowfin, Thunnus albacares) reportedly contribute to 

90% of the ca. 6 million metric tonnes (Mt) of tuna harvested annually (FAO), but 

this evaluation likely overlooks substantial incidental and illegal catches 

(surpassing quotas by  approximately 300% , Gewin, 2004; Metuzals et al., 

2009). 
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As MOFS are highly mobile and generally occur in low densities (though some 

may form large schools), the logistical difficulties in obtaining ecologically 

meaningful data for these animals have fuelled heavy debates regarding the 

extent of population declines (Myers & Worm, 2003; Sibert et al., 2006; Juan-

Jordá et al., 2011). The lack of consensus is further hindered by a poor grasp of 

the animals’ distributions (Worm & Tittensor, 2011), their complex relationships 

with physical habitats (Morato et al., 2010; Bouchet et al., 2014), their intricate 

population dynamics compared with lower trophic levels (Blower et al., 2012), 

and their high spatio-temporal heterogeneity (Block et al., 2005).  

(2) Missing management or missing data? 

Regional fisheries management organizations (RFMOs) have been formed by a 

number of fishing nations to develop cooperative management arrangements for 

wild population of MOFS that primarily entail gear regulations, catch quotas, and 

fishing behaviour changes. In the Pacific Ocean for example, recognition of the 

value of the tuna fishery, which yields 50% of global annual tuna landings, led to 

the establishment of the Western and Central Pacific Fisheries Commission 

(WCPFC) in 2004 by countries with vested interests, including Australia, Palau, 

and Papua New Guinea. The WCPFC is primarily responsible for guaranteeing the 

sustainability of high seas fisheries in the western Pacific and typically sets 

quotas and recommended levels of effort, including those for highly migratory 

species. In spite of calls for restraint to curb industry expansion, purse seining 

efforts increased by ~20% in the equatorial Pacific between 2004 to 2007, and 

management successes were initially low (Langley et al., 2009). The recent 

implementation of both the ‘vessel day scheme’, which restricts the number 

fishing days for purse-seine vessels, and shark finning bans, have been found to 

have little effect on fishing effort and activities (Clarke et al., 2013; Havice, 2013). 

Incorporating socio-economic dynamics in effort and catch allocation 

programmes, rather than soles reliance on reported catch statistics (Bailey et al., 

2013), may be a more pragmatic way of reducing catches, but high-seas 

management remains challenging in general (Cullis-Suzuki & Pauly, 2010).   
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To combat the severe impact of commercial fishing bycatch, single species 

protection measures have also been put in place to foster MOFS recovery. 

Several species of commercially important elasmobranchs such as the oceanic 

white tip and three species of hammerhead (Sphyrna lewini, Sphyrna zygaena, 

Sphyrna mokarran) have recently become listed on Appendix II of the 

Convention on International Trade in Endangered Species of Wild Fauna and 

Flora (CITES, www.cites.org), which restricts the international trade of these 

animals. Experience from migratory species in terrestrial systems indicates that 

the CITES listing of a single threatened species may translate to other vulnerable 

ones (Branton & Richardson, 2011) more efficiently than the protection of areas 

with high biodiversity (hotspots, Watson et al., 2011), but it remains unclear 

whether similar mechanisms are operating in the marine realm. 

Large and pelagic marine protected areas (MPAs) have been presented as a 

conservation strategy for a range of marine mega-vertebrates, including seabirds 

(Camphuysen et al., 2012), turtles (Scott et al., 2012), cetaceans (Gormley, 

Slooten, & Dawson, 2012) and MOFS (Game et al., 2009; Koldewey et al., 2010). 

While MPAs are primarily established to avert biodiversity loss, they may also 

provide a buffer for threatened MOFS species that would otherwise be exploited 

under conventional fishery management schemes or current legal frameworks. 

Due to the rate at which MOFS distributions change temporally and spatially, 

management strategies that incorporate ‘moving’ MPAs in order to reduce MOFS 

bycatch are increasingly advocated (Hobday et al., 2011). Such a ‘dynamic ocean 

management’ framework may be particularly efficient for mobile species 

compared with static management regimes (Maxwell et al., 2015) but requires 

real-time data from remote sensing, telemetry, and catch data (Hobday & 

Hartmann,  2006). Whether fisheries closures are moving or static, 

understanding the contribution of large (>10,000 km2) and very large MPAs 

(>100,000 km, VLMPA) to MOFS management is essential given their increasing 

number in the last decades (from 1 to 76 large MPAs, and from 1 to 34 VLMPAs, 

between 1975 and 2015, Fig. 3). These areas typically contain extensive open-

water habitats which may be sufficiently wide to cover the ontogenic migration 

routes of species such as skipjack and yellowfin tuna (Sibert & Hampton, 2003).  

http://www.cites.org/
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Critical knowledge gaps exist with respect to the overall efficiency of MPAs in 

protecting or supporting the recovery of MOFS (Davies et al., 2012; Sibert et al., 

2012), particularly when MPAs are implemented ‘residually’ where they are easy 

to establish and conflict is minimised, rather than by following a rigorous 

scientific rationale (Devillers et al., 2014). Moreover, the successful 

implementation and enforcement of large-scale pelagic MPAs may require a 

more flexible infrastructure regime than coastal MPAs to match the dynamic 

nature of offshore environments and the highly mobile behaviour of MOFS, 

presenting new challenges.  

Common to all these strategies is the need for reliable, accurate data that allow 

MOFS population trajectories to be resolved and their responses to 

geographically explicit management measures examined. This is particularly 

crucial in no-take MPAs where areal closures terminate the collection of fishery 

data. Murphy & Jenkins (2010) provided a summary of some of the non-

extractive techniques available to study habitats and fish 

communities/assemblages inside and around MPAs. However, their review was 

limited to small-bodied shallow-water species and to surveys of costal 

environments such as seagrass meadows or coral reefs. Here, we complement 

this effort by reviewing the observational and analytical methods available for 

assessing the status of mid-water, far-ranging, pelagic MOFS and summarise 

their wider implications for both fishery management and conservation 

planning. Firstly, recognising the challenges associated with traditional fishery 

administration and the assessment of long-term population trajectories, we 

review the declines reported for MOFS through fishery catch records. We further 

identify fishery-dependent methodologies and the aspects in which these have 

supported RFMO management of MOFS through the improvement of abundance 

indices and the exploration of poorly known facets of MOFS ecology. Secondly, 

motivated by the increase in both MPA areal coverage and pelagic fishery 

closures, we review non-extractive methodologies currently available for 

ecological studies and monitoring in areas closed to fishing activities. Thirdly, 

with a view to the future, we highlight new protocols that show promise for 

application on the necessary scale of VLMPAs, and MOFS population processes.  
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II. CATCH RECORDS AND FISHERY-DEPENDENT SAMPLING 

Contention surrounding the status of the oceans’ large predators has mainly 

been fuelled by the restricted coverage of most monitoring datasets and the 

complex relationship between catch and abundance (Walker et al., 2010; Pauly, 

Hilborn, & Branch, 2013). Fishery catch records provide some of the most 

spatially and temporally extensive information available (with the exception of 

by-caught species, Clarke et al., 2006), so population assessments and, by 

extension, management schemes are conventionally established using fishery-

dependent data derived from commercial fishing activities and monitoring 

programmes. Catch records are typically standardized by some overarching 

measure of effort such as the number of hooks (Worm et al., 2013), estimates of 

fuel consumption (Bastardie et al., 2010), or individual biomass measurements 

for each gear (Maunder & Punt, 2004) to derive catch-per unit effort (CPUE) 

indices which stand as proxies of population status. Since there are cases when 

catch rates are decreasing but abundance is constant, or vice versa (Hilborn & 

Walters, 1992), standardization models are applied to account for changes in 

fishing behaviour and efficiency (Maunder & Punt, 2004). For MOFS, this has 

resulted in several attempts to assess trends, and thus to estimate the impact of 

global fishing effort (Fig. 1) for decisions on management regimes. Ferretti et al. 

(2010) reviewed shark population trajectories and highlighted widespread 

declines in pelagic, coastal, and demersal systems. The authors further 

summarized the evidence pertaining to trophic cascades resulting from these 

declines, and suggested mechanisms in which these could be sustained. Here, we 

restrict our focus to species deemed truly pelagic (Dulvy et al., 2008), but review 

both teleosts and oceanic sharks (see sources listed in the supplementary 

material, Fig. 1 and Fig. 2).  

Our review of the primary literature documents declines for most MOFS 

populations for which data exist (97.5%). Of 80 population trajectories 

identified, 79 estimates stemmed from fishery-dependent records 

(supplementary material, Fig. 1 and Fig. 2). The spatial and taxonomic resolution 

of these trajectories are highly variable and have been estimated using CPUE-

based indices at the scale of the assemblage (Myers & Worm, 2003), and stock 
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assessment at the level of the region and species (Sibert et al., 2006), and of the 

population (Juan-Jordá et al., 2011). Broadly speaking, oceanic sharks have 

expressed the most substantial declines (up to a 1000-fold decrease, Fig. 2), 

followed by billfish (between 70 and 80%) and tunas (approx 60 %, from recent 

estimates Fig. 1). Geographically, the highest declines across all species were 

observed in the Mediterranean, probably due to a long history of human 

exploitation and limited geographic connectivity between source populations 

(Gubili et al., 2011). Multiple attempts to consider the same catch records 

typically yielded different results, due to different decisions by the authors 

regarding the analytical treatment of fishing behaviour, practices in data pooling, 

and the inclusion of contrasting ecological parameters in stock assessment and 

recruitment models. The most recent estimates showing average population 

declines of 56% for tunas (Juan-Jordá et al., 2011) were generally less 

pessimistic than earlier evaluations of around 90 % for the species-aggregated 

MOFS assemblage (Myers & Worm, 2003). The earlier estimates relied primarily 

upon CPUE derived indices (Myers & Worm, 2003; Baum et al., 2003), whereas 

the later estimates typically relied upon full stock assessments. Only a single 

stock assessment was identified for oceanic sharks, that of the blue shark from 

Sibert et al. (2006). Stock assessments are considered superior to CPUE-based 

metrics in that they combine multiple sources of information (such as scientific 

fishery surveys, size, and age distribution, Branch et al., 2011; Juan-Jordá et al., 

2013), although they are often unavailable for  numerous important fisheries 

(Kleisner et al., 2013). Stock assessments are thus preferentially used by RMFOs, 

compared with CPUE-based indices. Improvement in fishery-dependent 

estimates of MOFS population trajectories falls broadly in two categories: (1) 

through consideration of changes in catch-reporting and fishing practices and 

(2) through elucidation of migration behaviour and spatio-temporal variability 

of MOFS. 

(1) Catch record accuracy and non-random effort 

The utility of catch-statistics in guiding MOFS management hinges on the 

accurate reporting of catches. While catch record-keeping is primarily contingent 

upon an incentive to report, it is further complicated by the typical omission of 
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(1) recreational fishing, (2) illegal, unreported and unregulated (IUU) fisheries, 

and (3) discards, which may have considerable impacts on both commercial and 

non-commercial species (McPhee, Leadbitter, & Skilleter, 2002; Metuzals et al.,  

2009; Kleiven, Olsen, & Volstad, 2011). While global discards have been 

estimated at 7.3 million tonnes for all fisheries and species combined (Kelleher, 

2005), assessing the scale of IUU fishing is a pervasive problem with global 

estimates ranging between 10 million and 26 million tonnes (Agnew et al., 

2009). However, estimates of IUU activities are improving, for example by 

identifying the characteristics and flagging behaviour most typical of IUU vessels, 

thereby allowing for their identification (Miller & Sumaila, 2014).  

Several ground-truthing protocols have been implemented to detect biases and 

generate error budgets for MOFS catch reports, most notably through the use of 

RFMO observer programmes. Successes in observer programmes have been 

mixed, as variability in coverage between vessel types can be high. In 2010 for 

instance, observer coverage in the fleet managed by the WCPFC ranged between 

5-25% for long-line and 10-55% for purse-seine vessels respectively (Nicol et al., 

2012). Several case studies have demonstrated both observer-related effects, 

where the presence of observers influences fishing practices, and deployment-

related effects, where the distribution of observers is non-random (Benoît & 

Allard, 2009). Observer programmes do not necessarily provide data with high 

taxonomical resolution, and spatial coverage can be low in hard-to-manage 

fisheries. For instance, prior to the closure of fisheries in the Chagos Marine 

Reserve, observers were present on only 1 to 5% of vessels (Koldewey et al., 

2010). The prevalence and success of observer programmes on a global scale 

have yet to be the topics of a dedicated review, which makes a formal assessment 

of their overall efficiency difficult, and arguably overdue.  

With respect to reducing observer biases, recently developed quantitative 

training approaches where observers are provided feedback on the average of an 

observer group estimate, rather than the true values, may be fruitful in training 

surveyors (Wintle et al., 2012). Possible technological solutions to low observer 

coverage include the further development of vessel monitoring systems (VMS), 

where GPS trackers are fitted to fishing vessels. Although VMS are not yet 
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widespread on the high seas (particularly on vessels flagged to developing 

countries), they are extensively used in a few heavily managed fisheries 

(European-Commission, 2009) and show promise in enabling the correct 

recording of vessel locations and the particular source of the catches from 

logbooks, in addition to discerning fishing practises and fleet behaviours. As an 

alternative to VMS, Automatic Identification System (AIS) satellite data could be 

utilized for tracking fishing vessels (Natale et al., 2015). This system was initially 

introduced to avoid ship collision and may be preferable from a research point of 

view, as AIS data access is less restricted by confidentiality than VMS (Hinz et al., 

2013).  

Increasingly, electronic monitoring programmes are being considered in order to 

improve reporting accuracy, as both a complement and an alternative to 

observer programmes (Stanley et al., 2015). Electronic monitoring of MOFS 

fisheries has been proposed (Piasente et al., 2012), and would likely involve 

review of dockside and fisheries events from video records. Combined with 

incentives such as a government support that is conditional on improved catch-

monitoring, such programmes could form part of a dual ‘carrot and stick’ 

solution1 to enforcement, with likely greater chance of success than mono-

faceted approaches (Stanley et al., 2015). 

(2) Migration and spatio-temporal variability 

Recognition of the aggregative and migratory behaviours of many MOFS species 

has triggered efforts to capitalise on material readily extracted from commercial 

catches in order to elucidate spatio-temporal variability in yearly and ontogenic 

time scales. For instance, observations of patterns in long-line catches suggest 

that billfish, skipjack and bigeye tuna as well as some species of pelagic sharks 

cluster around reefs, shelf breaks, seamounts (Holland & Grubbs, 2007; Morato 

et al., 2010) and thermal fronts (Worm et al., 2005) and often coincide with 

zooplankton and coral reef hotspots (Worm, Lotze, & Myers, 2003). The use of 

geomorphic variables as proxies of MOFS distributions is a budding field of 

research, with real-world applications for spatial planning (Bouchet et al., 2015). 
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Since their introduction in the 1950s, mark-recapture techniques have been 

pivotal in exploring global patterns of animal mobility (Ortiz et al., 2003), travel 

speeds, vertical distribution, diving behaviour (Michielsens et al., 2006; IOTC,  

2008), seasonal movements and residency (Ortiz et al., 2003), with direct 

implications for the development of adaptive legislation and spatial planning. For 

example, Sibert & Hampton (2003) showed median lifetime displacements for 

yellowfin and skipjack tuna ranging from 336 to 470 nautical miles, emphasizing 

the need for large-scale and therefore transnational resource management in the 

Western Pacific Ocean. However, while the simplicity of mark-recapture 

programmes enables long time-series to be gathered, such studies typically 

hinge on commercial or recreational fishers returning tags from caught 

specimens. For example, out of 370,000 tags deployed on billfish globally, only 

1.1% have been recovered from re-captured animals (Ortiz et al., 2003). In its 

purest form, mark-recapture therefore only provides binary information related 

to the presence of the individual at the point of capture and recapture, and 

resulting inferences on distribution and migration patterns are heavily 

influenced by the distribution of fishing effort and the life stages captured. 

The large numbers of fish killed by commercial vessels has also enabled the 

collation of fish ear bones (otoliths), which would otherwise be inaccessible. 

These collections provide some of the largest data sets available to explore 

ontogenic migrations. Otoliths consist of calcium carbonate deposits that 

precipitate in a fish’s auditory system as the animal grows, and thus provide a 

venue to assess the effects of different environmental conditions on physiology 

throughout the individual’s life stages (Secor & Rooker, 2000). Classically used to 

assess growth, otoliths are increasingly relied up on to discern spatial structure 

based on variation in chemical structure. For instance, in the Pacific, the chemical 

analysis of otoliths extracted from commercially caught bluefin tuna has 

identified multiple spawning grounds from elemental differences retained in 

their lithium, magnesium, calcium, manganese, and strontium signatures, with 

juveniles hatching in the East China Sea, the Sea of Japan, and the sea of Skikoku 

(Rooker et al., 2001). Similarly, in bluefin otoliths from the Indian Ocean, 

elemental concentrations of sodium, magnesium, manganese, sodium, strontium 
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and barium are indicative of a single bluefin tuna spawning population (Wang et 

al., 2009). In the Atlantic Ocean, the combination of elemental and isotopic 

otolith analyses with satellite telemetry has identified tuna populations with 

overlapping feeding grounds in the Eastern and Central Atlantic but disparate 

spawning grounds in the Mediterranean and Western Atlantic (Rooker et al., 

2008), helping the distinction of the two breeding populations by the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) RFMO. 

Fishery-dependent catch records have a number of restrictions, but because they 

are spatially and temporally extensive, they are particularly useful for inferring 

processes on large biogeographical scales (>100 km), and to identify areas of 

conservation importance such as hotspots, when these are the only data 

available (Morato et al., 2010; Bouchet et al., 2014). To address the lack of 

spatially consistent sampling required for temporal monitoring and the lack of 

resolution on the meso-scale, fishery surveys by scientific trawling vessels that 

employ standardized fishing gear are becoming increasingly commonplace as a 

monitoring tool and as an integral aspect of management in large marine 

ecosystems, in order to inform stock assessments (Olsen et al., 2009; Needle & 

Catarino, 2011; Ferretti et al., 2013). While most scientific sampling actively 

seeks to reduce or otherwise account for gear-associated biases, scientific fishery 

surveys use gear compliant with industry standards, looking to resolve the 

issues arising from non-random effort allocation by running spatio-temporally 

consistent and sampling designs with random effort (Conners, Hollowed, & 

Brown, 2002). Due to their random survey designs, the resulting CPUE indices 

and stock assessments are usually considered superior to those derived from 

commercial catch records alone. Scientific surveys commonly have a restricted 

spatial extent, meaning they are unable to elucidate the broad patterns observed 

in fishery-dependent data. Moreover, scientific fishery (and lethal) surveys are 

inappropriate (1) in no-take MPAs and other areas of ecological and 

conservation importance (Bach et al., 2003), (2) for rare or Red Listed species, 

and (3) when the lethal take/capture of the animal raises ethical concerns.  

While the capacity to generate reliable abundance indices is improving through 

the use of scientific survey data, sophisticated observer programmes, and 
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advances in modelling complex catch data, robust stock assessments remain 

absent for many population of MOFS, as reflected in the relatively high number 

of ‘data-deficient’ species on the IUCN Red List (4 out of 39 neritic and epipelagic 

shark species, Dulvy et al., 2014; 3 out of 9 billfish species, and 1 out of 7 tuna 

species, Collette et al. 2011). Moreover, the historical and on-going trend of 

increased MPA coverage (Fig. 3), is limiting the use of fisheries catch statistics 

and the spatial extent of extractive scientific surveys, since lethal sampling is 

inconsistent with the offered protection. Modelling efforts on fisheries 

abundance indices with hypothetical closures suggests that the presence of 

closed areas may lead to biases in the population indices derived from the 

fisheries still operating, the degree of bias being proportional to the size of the 

population contained within the closed area (Ono, Punt, & Hilborn, 2015). In line 

with the recommendations of Ono, Punt & Hilborn (2015), we agree that the 

development of indices based on non-extractive methodologies in the closed 

area is to be preferred to the alternative means of analysis that requires 

subsequent time-series to be restricted to areas fished continuously.  

III. FISHERY INDEPENDENT AND NON-EXTRACTIVE SAMPLING   

A variety of non-extractive approaches have been employed to address 

methodological and data gaps associated with MOFS ecology (Table 1). Some 

emerged in a fishery-related context, for example hydro-acoustic echosounders 

were initially employed as ‘fish-finder’ devices following the invention of 

military sonars, but we have opted to classify them as fishery-independent as 

they are appropriate for use in no-take MPAs. Moreover, while most scientific 

methods are invasive in the strictest sense, we pragmatically make the 

distinction between lethal techniques, where animals are killed, and non-

extractive ones, where some degree of animal handling may be required but 

without consequences for the animals’ survival.  The gold standard of sampling is 

that which requires no handling and does not cause any disruption of the 

animals’ natural behaviour, yet we recognise that very few techniques currently 

meet this aspiration. Here, we outline non-extractive techniques and discuss 
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ways in which they provide information that is relevant to MOFS ecology, and 

how they can be used for management purposes in an MPA context. 

(1) Telemetry 

Telemetry is a key bio-logging technique that is increasingly supplementing 

traditional mark-recapture studies as a non-lethal way of examining patterns in 

ontogenic and seasonal MOFS migration. In contrast to mark-recapture, 

telemetry can be implemented independently of fishing activity, although fishing 

gear is still a primary way of catching MOFS to deploy tags. Satellite tagging (for 

a review, see Hammerschlag, Gallagher, & Lazarre, 2011) has enabled the 

tracking and monitoring of salmon sharks (lamna ditropis, Weng et al., 2005), 

bluefin tuna (Thunnus thynnus, Block,  1998), white sharks (Carcharodon 

carcharias, Weng et al., 2007), blue sharks (Prionace glauca, Queiroz et al., 2012) 

and porbeagle sharks (Lamna nasus, Saunders, Royer, & Clarke, 2010) across 

entire ocean basins. In the Atlantic, a wealth of knowledge has been generated on 

the population structure and life-history of bluefin tuna, resulting in the 

recognition of two distinct breeding stocks by the ICCAT (Block et al., 2005) 

analogous to those identified in isotope analyses of otoliths obtained by lethal 

sampling (Rooker et al., 2008). Satellite telemetry has further revealed strong 

connectivity and behavioural sensitivity between MOFS and oceanic processes 

such as frontal features on meso- (Queiroz et al., 2012) and ocean-basin scales 

(Block et al., 2011), further corroborating observations stemming from catch 

statistics. On a smaller scale (10s km), acoustic telemetry has offered insights 

into the habitat use and movements of yellowfin and bigeye tuna, highlighting 

their associations with seamounts and floating fish aggregation devices (FADs, 

Holland, Kleiber, & Kajiura, 1999).  

Movement data from electronic telemetry can be utilised as part of fisheries 

stock assessments, by informing population spatial structure. Although this field 

of research remains at its infancy (for a review, see Sippel et al., 2015), it is 

showing promise for MOFS in particular, due to advances in spatial assessment 

models (Hampton & Fournier,  2001; Hazen, Maxwell, & Bailey, 2012). Routinely 

small sample sizes mean the generality of the observed behaviours in the 
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population can be unclear, but provide important information that is key for 

effective management, particularly with respect to habitat usage and residency. 

While there has been a number of studies that consider the minimum sample 

size required for population level inferences of air-breather such as birds and 

turtles (e.g Hawkes, Witt et al. 2011; Soanes, Arnould et al., 2013), we could find 

none which considered MOFS, making this an important topic for future 

research. A recent review of telemetry studies (Hussey, Kessel, et al., 2015a) 

highlighted the importance of global telemetry consortia such as the Ocean 

Tracking Network (http://oceantrackingnetwork.org/), where data-sharing 

necessary for effective management and conservation can be encouraged. While 

the long-term consequences of tagging on fitness and survival remain unknown, 

great care is typically taken by scientists to minimise tagging mortality related to 

accidental gut-hooking or by-catch, through the use of circle-hooks and the 

minimisation of fishing gear soaking time (Hammerschlag et al., 2011). 

(2) Genetic and biochemical analyses 

While conventionally associated with lethal sampling, molecular genetics and 

biochemical analyses are increasingly performed non-lethally on species of 

conservation concern using fin clips, tissue punches and blood samples (Cunjak 

et al.,  2005; Hanisch et al., 2010). Although these methods may require the 

capture and physical handling of the animal, the molecular analysis of tissue 

samples can yield important information on population connectivity, structure, 

and abundance. For instance, despite decades of protection, the effective 

population size of white sharks in Australia is estimated to be ca. 1500 

individuals based on mitochondrial microsatellite DNA (mtDNA) markers (one 

or two order below historical size estimates, Blower et al., 2012). The study of 

Blower et al (2012) relied in part upon samples stemming from accidentally 

captured individuals by commercial and recreational fishers (63% of all 

samples) and was therefore not strictly speaking fisheries independent and non-

extractive, but their analytical approach (mtDNA analysis) did not in itself 

require the killing of the animals. While mtDNA studies have demonstrated little 

genetic heterogeneity in yellowfin tuna across the Indo-Pacific Ocean (Appleyard 

et al., 2001), further analysis around Sri Lanka have revealed very complex 
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population structures on the meso-scale in the Indian Ocean (Dammannagoda, 

Hurwood, & Mather, 2008). These results suggest that low apparent 

heterogeneity between populations in the Western Indian Ocean (Seychelles) 

and in the Western Pacific (Taiwan, see Wu et al., 2010) may mask fine 

population structures and connectivity barriers important for assessing 

recruitment levels and for spatial planning. 

Stable isotope analysis can provide important information on trophic and 

functional ecology (Popp et al., 2007) and, in the context of MOFS, may help 

identify dietary relationships and functional roles (Hussey, MacNeil, et al., 

2015b). For instance, niche partitioning has been identified between silky and 

blue sharks, with the former having a more substantial inshore dietary 

component to their diet. When movement and prey distribution data are 

available, Bayesian mixing models (Moore & Semmens, 2008) have been 

developed to elucidate the relative importance of different focal habitats for 

foraging behaviours. Such information is particularly important when assessing 

the residency of animals inside MPAs, and can be combined with telemetry 

information (Carlisle et al., 2012). Moreover, change in dietary components can 

be assessed over time, thus providing sensitive means with which to detect 

trophic and functional shifts (Utne-Palm et al., 2010). 

(3) Active hydro-acoustics 

Active hydro-acoustics such as sonars and echosounders are utilized in marine 

studies as fishery-independent monitoring tools. During hydroacoustic surveys, 

sound is emitted vertically at regular intervals (usually 1 s) and fish abundance 

is estimated by integrating the intensities of the returning echo, enabling 

abundances and distribution of target species to be assessed. Acoustic data are 

increasingly collected from ships of opportunity, and data access is further 

facilitated through publically available online databases, such as the Australian 

Integrated Marine Observing System’s Bio-Acoustic Ship Of Opportunity 

Programme (IMOS, Ryan, 2011).  

Historically, concerns were raised that fish would avoid acoustic survey vessels 
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thereby resulting in biased biomass or abundance indices, however, a study 

using autonomous underwater vehicle fitted with echosounders observed that 

fish responses to both vessel and echosounder noise were minimal, and that 

hydroacoustics survey were therefore appropriate for non-extractive sampling 

(Fernandes et al., 2000). Translating acoustic data into biomass indices requires 

knowledge of the acoustic properties of the focal animals, which are typically 

summarised by target strength models (Josse & Bertrand, 2000). In the presence 

of multiple species, these models can be used to identify a single species from the 

acoustic record and then scale acoustic data to biomass estimates (Bertrand, 

2003). Acoustic target strength models have been obtained for commercially 

important, schooling MOFS such as yellowfin and bigeye tuna (Bertrand & Josse, 

2000; Josse & Bertrand, 2000), and have facilitated estimation of school biomass. 

In some systems, this has further enabled estimates of total regional biomass, 

assuming the distribution and size of the target species is sufficiently known to 

inform survey design (Atkinson et al., 2009).  

In addition to provision of biomass indices, acoustic data can offer quantitative 

descriptions of density and aggregation characteristics (Fig. 4 and 5, Josse & 

Dagorn, 2000; Brierley & Cox, 2015). Both the fishing industry (Trenkel, 

Mazauric, & Berger, 2008) and scientists (see Chu, 2011 for a review) have 

utilized hydroacoustics to monitor MOFS populations, for example using 

sounders fitted on fish aggregation devices (FAD, Dagorn, Holland & Restrepo 

2012.  Since ground-truthing the acoustic signals is required when the exact 

nature of the target is unknown, acoustics surveys of MOFS have been conducted 

in tandem with scientific longline surveys or trawl catches (Bertrand & Josse, 

2000), allowing for better interpretation of the resulting indices.  

Because they lack swim bladders and are weak acoustic scatterers, 

elasmobranchs (and therefore oceanic sharks) remain poorly studied using 

hydroacoustics. Ex situ work to date has been limited to large species (> 5 m) 

such as the basking shark (Cetorhinus maximus) using specialty sounders like 

sector scanning sonars (Harden Jones, 1973) or more recently, multibeam 

imaging sonars (Lieber et al., 2014). Parsons et al. (2014) demonstrated that 

multibeams like the Gemini 20i 300M (Tritech, UK) can be used in the detection 
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of smaller elasmobranchs (1.4-2.7 m), particularly when the seafloor backscatter 

is low or absent, as is the case in the open ocean. This experimental field of 

research has therefore potential applications for the monitoring of oceanic 

sharks.  

While enabling target species to be surveyed, echosounders also provide 

important insights into the distributions of prey fields (Irigoien et al., 2014), 

which are themselves good predictors of predator habitat quality, providing 

spatial cues to predator foraging grounds (Boersch-Supan et al., 2012). Yellowfin 

and bigeye tuna both feed on mesopelagic micronekton (Sabatié et al., 2004; 

Flynn & Paxton, 2012), which are important components of shallow and deep 

scattering layers (Fig. 4). Many species of oceanic sharks, such as blue and mako 

sharks (Isurus spp.) feed directly on prey with well-known acoustic targets (such 

as clupeids). The identification of the distribution, intensity, and characteristics 

of scattering layers (and automation thereof, see Proud et al., 2015) and the 

observation of fish schools provide strong clues to the distribution and presence 

of MOFS, and can further guide MPA designation. 

 

(4) Baited remote underwater video systems 

Baited remote underwater video systems (BRUVS) have been extensively used to 

document the structure of demersal fish assemblages, and more recently have 

been applied to MOFS in the mid-water (Letessier, Meeuwig, et al., 2013b; 

Bouchet & Meeuwig, 2015). Impact on the target animals is minimal and 

requirement for bait is typically low (Hardinge et al., 2013), making them 

attractive for non-extractive sampling in MPAs. Originally developed for in situ 

studies of deep-sea organisms (Isaac & Schwarzlose, 1975; Mallet & Pelletier, 

2014), videos from BRUVS enable species identification and the computation of 

relative abundance metrics such as MaxN (see Bailey, King, & Priede, 2007). 

Other important indices include time-of-first-arrival, which is a highly sensitive 

proxy for low abundance species such as some deep sea fish, and which has been 

successfully correlated with CPUE-derived abundance from demersal trawls 

(Priede & Merrett,  1996). Baited cameras are effective in sampling predators 
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because of their preferential attraction to the bait (Langlois et al., 2010) and 

their use is thus particularly relevant for monitoring MOFS. BRUVS can also be 

fitted with stereo cameras (Letessier et al., 2015), allowing for body lengths to be 

measured with high precision using specialised computer software. These 

individual length estimates can in turn be used to determine demographic 

characteristics such as size structure (Mclean, Harvey, & Meeuwig, 2011; 

Langlois et al., 2012) and therefore spawning stock biomass indices. The 

relatively low cost of novel stereo-camera technology (Letessier, Kawaguchi, et 

al., 2013a) means that multiple units can be deployed simultaneously and 

repeatedly. In demersal systems, this has so far yielded sufficient power to detect 

temporal and spatial changes in coral trout (Mclean et al., 2011) and population 

structure (Langlois et al., 2012) of fish assemblages. Trials in pelagic 

environments indicate that, assuming adequate sampling regimes, stereo-BRUVS 

can provide information on the diversity, abundance and size structure of MOFS 

with similar power (Fig. 4 and 5, Letessier, Meeuwig, et al., 2013b) and yield 

distribution models with predictive capacity (Bouchet & Meeuwig, 2015). Mid-

water stereo-BRUVS may therefore be a promising avenue to investigate the 

spatial and temporal distribution of MOFS.  

The capacity to determine spatial patterns in the pelagic zone has received little 

attention to date (Heagney et al., 2007; Letessier, Meeuwig, et al., 2013b) and 

several questions related to spatio-temporal trends and camera sampling 

catchment due to bait plume variability are largely unanswered (Bouchet & 

Meeuwig, 2015). Such questions form key targets to establish robust population 

indices appropriate for MOFS monitoring. A future avenue of research may arise 

from combining both stereo-BRUVS and hydroacoustic surveys, with the former 

providing the information required to inform the acoustic models (Fig. 4, 5, and 

6), and the latter estimating the sampling range and catchment of the individual 

stereo-BRUVS. Indeed, mid-water BRUVS can provide observations of species 

diversity, relative abundance and population length structure, thereby enabling 

the parameterisation of acoustic target strength models and the estimation of 

total MOFS biomass at increased temporal and spatial resolution. 
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Non-extractive sampling methods exploring unknown aspects of MOFS ecology, 

such as those described here (Table 1), have direct benefits for both fishery 

management and conservation planning. By addressing temporal and spatial 

variability, these methods have refined catch-derived CPUE indices and stock 

assessments, and helped facilitate spatial management by identifying population 

connectivity, key spawning and nursery habitats, and by estimating effective 

breeding population size. However, while our review has provided an exhaustive 

list of such methodologies, we could identify no study employing these methods 

to unravel MOFS population trajectories through time. A single study reporting 

on MOFS trajectories obtained by non-extractive methods was published at the 

time of submission of this review (2015). It stemmed from a remarkable time 

series (1993-2013) resulting from a unique set of circumstances: pelagic shark 

observations made by dive masters conducting underwater visual census at an 

oceanic archipelago in a large-scale MPA (White et al., 2015). This study 

demonstrated the power of citizen science when combined with the foresight of 

accurate, long-term record keeping. However, the exceptional circumstances 

required for the analysis mean that the study is unlikely to be replicated in other 

locations. Of the many species of sharks considered, the authors identified 

declines in the species considered most migratory (scalloped hammerheads and 

silky sharks) and further hypothesised that this was due to low residency of 

these species inside the MPA. As has previously been reported for demersal fish 

species in small-scale MPAs (McCook et al., 2010) the response of MOFS to 

reduced fishery-dependent mortality in large-scale MPAs was identified as 

species-specific, with the greatest response to protection realised by those 

species subjected to highest fishing mortality and lowest rate of movement. 

Considering the overwhelming evidence for the benefits of MPAs in enhancing 

demersal and benthic species diversity and abundance (Lester, Halpern, & 

Grorud-Colvert, 2009; MacNeil et al., 2015), methodologies establishing non-

extractive baselines and subsequent time-series of MOFS population indices are 

an urgent requirement to study responses to different management regimes and 

for the informed and successful administration of an expanding global network 

of MPAs. 
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IV. FUTURE PROSPECTS FOR OCEANIC MONITORING 

In the last decades, global MPA coverage has been expanded primarily by the 

contribution of a growing number of large-scale MPAs (Fig. 3). A subset of these 

can be classified as very large MPAs (Singleton & Roberts, 2014), which typically 

include the entire EEZ of remote islands, themselves often overseas territories of 

developed nations. Examples of these now include the Papahānaumokuākea 

Marine National Monument in 2006 (360,000 km2), the Chagos/British Indian 

Ocean Territory in 2010 (640,000 km2), and the Coral Sea Marine Reserve in 

2012 (990,000 km2), which forms part of the Australian Commonwealth marine 

reserve network (Devillers et al., 2014). Seventeen VLMPAs are now in place, 

with many more likely to follow, such as those declared in New Caledonia, the 

Cook Island, and the Pitcairn Islands (Singleton & Roberts, 2014). Additionally, 

far-reaching MPA proposals have been put forward, including closing the entire 

high-seas to fishing (White & Costello, 2014; Sumaila et al., 2015). 

Common to all sampling methods that we identify (both extractive and non-

extractive, Table 1) is that areal coverage scales relatively linearly with sampling 

effort. For example, fishery-dependent CPUE indices are scaled up by virtue of 

the great level of fishing effort reported globally. Telemetry tracking is limited by 

the behaviour of the tagged animals and number of tags (satellite tracking 

typically require surface swimming) but can be mitigated by intense effort and 

tagging of more individuals and species (Block et al., 2011). Hydroacoustics 

surveys are limited by the speed at which high quality data are collected by the 

vessel but can be scaled up through more vessel time (Kloser et al., 2009; 

Irigoien et al., 2014). Therefore, while non-extractive methods are a necessary 

requirement for successful monitoring of MOFS, they will likely under-sample 

the ocean in time and space (Maclennan & Simmonds, 2005), particularly at the 

scale of VLMPAs, unless very intense effort can be mobilised.  

Modelling proxies of MOFS distribution provide some means to predict areas of 

high usage and diversity, such as hotspots, in locations that are data poor and 

across distances requiring long survey times. Several studies have observed that 

MOFS aggregate in topographically complex areas (Morato et al., 2008; 2010; 
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Bouchet et al., 2014), and around frontal features with strong sea-surface height 

and temperature gradients (Worm et al., 2005; Game et al., 2009). These 

variables are considered good predictors of high quality, prey-rich feeding 

grounds (Alpine & Hobday, 2007) and areas of high MOFS residency (Humphries 

et al.,  2010). Remote environmental observations derived from satellite sensing 

as well as geomorphic (Yesson et al., 2011; Bouchet et al., 2014) or biological 

indices (such as seabird foraging events, Maxwell & Morgan, 2013) and long 

running plankton sampling programmes such as the continuous plankton survey 

(Letessier, Cox, & Brierley, 2009) all provide important yet indirect proxies of 

MOFS distribution and hotspots. Though they are unlikely to substitute 

monitoring and time-series containing direct observations, they are useful 

alternatives to real observations in data-poor environments.  

While we identify data shortage as a challenge for non-extractive monitoring of 

MOFS spatial management, some emerging methods of observation have been 

devised specifically for use at the necessary scale (>100,000 km2) and may 

therefore be promising for consideration as monitoring tools inside VLMPAs. 

Spotter planes have been used to conduct aerial surveys for identifying ocean 

life, because of their ability to cover large areas. Planes have to date been 

involved primarily in the observation of conspicuous wildlife that leave clear 

surface clues, such as marine mammals (Koski et al., 2009). Monitoring 

programmes have in some cases relied on airborne visual surveys to elucidate  

associations between tunas and frontal features (and as so has the fishing 

industry, Lutcavage & Kraus, 1995; Eveson, Farley, & Bravington, 2011; Schick, 

Goldstein, & Lutcavage, 2004). While the requirements of person-hours may be 

high for manned aircraft, robotic and satellite technologies originally developed 

for remote military observations are increasingly employed in commercial and 

scientific settings, with the potential to substantially cut down on personnel time 

and costs. Example of such usage for observation of marine mammals includes 

unmanned aerial vehicles (such as drones, Hodgson, 2007) and very high 

resolution satellite imagery (VHRSI, Fretwell, Staniland, & Forcada, 2014). If 

drones and VHRSI were used for the identification of tuna schools at the surface, 
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several avenues of research would thus become available, theoretically allowing 

aerial transects to be scaled up to the level of an ocean basin. 

Aerial and remote satellite observation techniques are necessarily limited to 

animals that are visible at the surface, and provide little information on deeper-

living species and greater depth horizons. Toward this purpose, autonomous 

underwater and ocean gliders (Leonard et al., 2010) are increasingly being 

utilised for long-term (>1 year) environmental monitoring of temperature, 

salinity, chlorophyll fluorescence and currents. Gliders have recently been fitted 

with both passive and active acoustics sensors (Send, Regier, & Jones, 2013), 

with applications toward the assessment of free-ranging MOFS (Bingham et al., 

2012). Gliders are slow-moving by design, and thus face similar limitations with 

respect to scale compared with traditional sampling methods. However, they can 

be operated remotely and at depth, and often for long periods of time (up to 4-5 

years), making them attractive in remote and hard-to-access VLMPAs. 

The novel use of ‘horizontal’ hydro-acoustics arrays, or Ocean Acoustics 

Waveguide Remote Sensing (OAWRS, Makris et al., 2006) has also enabled 

instantaneous mapping of fish schools and their behaviour over thousands of 

km2. The OAWRS can resolve fish schools at the order of tens of meters in range 

and 1° in bearing and studies have so far been focused on clupeid fish with very 

well known acoustic properties, in environments where water column 

stratification enables the ocean to function as an acoustic waveguide (such as on 

continental shelves, Makris et al., 2006; 2009). The OAWRS is theoretically 

capable of observing a variety of animals, such as Antarctic krill (Euphausia 

superba) or Alaskan pollock (Theragra chalcogramma), in other habitats such as 

seamounts (Makris, Jagannathan, & Ignisca, 2010), as long as certain key 

parameters like typical population density, average target strengths, and 

seafloor scattering are known (see Jagannathan et al., 2009 for a review). The 

array could therefore be utilised for the instantaneous mapping of tuna schools, 

allowing insights into the animals’ migration patterns and habitat use over 

seasonal cycles. Using acoustic parameters from Atlantic bluefin tuna, 

Jagannathan et al. (2009) determined that OAWRS would be able to detect tuna 

densities ranging from 0.25 to 3 x 10-6 m-2. Moreover, Jagannathan et al. (2009) 
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observed a school of fish with swimming speed and behaviour consistent with 

that of tuna, and estimated densities of the school at 5 x 10-4 m-2. This school was 

spotted during instantaneous acoustic imagining of 8000 km2, suggesting a 

potential of OAWRS in MOFS monitoring in VLMPAs. Monitoring regimes of 

large-scale areas such as those sampled by OAWRS and aerial surveys are 

simplified by reports that average school size distribution appears independent 

of total regional biomass (Brierley & Cox, 2015). Using a combination of 

multibeam sonars and traditional echosounders, Brierley & Cox (2015) reported 

consistent school size for krill and pelagic fish across increasing regional 

biomass. This has substantial implication for monitoring: a sufficiently robust 

abundance index may be reached by simply counting the numbers of school 

across the desired area. 

Increased VLMPA implementation has received criticism for a variety of reasons 

(for a review of the arguments, see Singleton & Roberts, 2014), but their 

popularity is bolstered by suggestions that bigger closures, such as closing the 

high seas to fishing, may increase yield and profits (White & Costello, 2014), 

reduce income inequality between fishing nations (Sumaila et al., 2015), and 

offer rebuilding potential for MOFS (Armsworth et al., 2010). There is currently 

considerable debate and controversy surrounding the best course of action. For 

example, a modelling study exploring constant effort scenarios in response to 

MPA closure suggested that high seas MPAs will result in very little tangible 

effects on bigeye tuna populations in the Western Pacific (Sibert et al., 2012), 

whereas another study suggested substantial species-specific responses in 

catches of both tunas and oceanic sharks in the North Atlantic and Gulf of Mexico 

(Baum et al., 2003). These studies and those of White et al. (2014) or Sumaila et 

al. (2015) typically rely on spatial models of fleet behaviour or ecosystem 

models (such as SEAPODYM, Lehodey, Senina, & Murtugudde, 2009) to predict 

the responses of MOFS populations to different high seas management regimes, 

thus forming an integral part in highlighting the consequences of fisheries 

closures. However, in the absence of empirical evidence, the provision of which 

may well stem from methods outlined in this review, the benefits of MPAs to 
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MOFS will remain uncertain and the paradigm of the large marine reserve 

unresolved. 

V. CONCLUSION 

1) Top-down forcing by apex predators is increasingly recognised as 

a fundamental process of ecological change in nature (Estes et al., 2011), on land 

as well as in the sea. There is now a growing body of evidence that stable and 

abundant populations of apex predators serve to promote diversity in meso-

predators and herbivores and that their removal may provoke trophic cascades 

(Myers et al., 2007; Baum & Worm, 2009; Ferretti et al., 2010) with consequence 

for ecosystem function (D’agata et al.,  2014), and resilience (Llope et al., 2011). 

Complex trophic structure in MOFS (Hussey, MacNeil, et al.,  2015b) leaves these 

mechanisms poorly understood and difficult to predict, but their implications are 

likely severe given the low functional redundancy in marine apex predators 

(Heithaus et al., 2013). 

2) Due to their conservative life-history characteristics, and 

transnational distributions, MOFS are particularly prone to over-fishing (Collette 

et al., 2011; Davidson, Krawchuk, & Dulvy, 2015; Juan-Jorda et al., 2015). Their 

ecological and conservation status is further complicated by their wide-ranging 

nature, clumped distributions, and migratory behaviour, which delay and 

challenge their effective management on the high seas and across jurisdictional 

boundaries. There is therefore a critical need to understand MOFS population 

trajectories, particularly for sharks and billfish, whose current status is generally 

less well known than that of tunas. 

3) Improvements in catch record-keeping and fleet supervision are 

leading to a greater understanding of spatio-temporal patterns, superior 

abundance indices and stock assessments for RFMO-based management 

strategies. However, fundamental limitations in data quality related to sampling 

biases, fishery practises, and gear use leave several aspects of MOFS ecology 

understudied. The advent of fisheries-independent sampling regimes in 

conjunction with advances in fisheries-dependent modelling techniques has 

enabled the predictions of MOFS distribution (Morato et al., 2010; Bouchet et al., 
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2014) and that of their prey (Letessier et al., 2009), providing scientific rationale 

for spatial planning and the designation of pelagic MPAs. 

4) The review of Murphy & Jenkins (2010) concerning monitoring 

demersal species and habitats highlight numerous methodologies that are 

available for determining the efficiency of coastal MPAs. In contrast, we find that 

methods available for determining MOFS conservation outcomes inside pelagic 

MPAs are lacking, primarily owing to a dearth of non-extractive monitoring 

techniques. However, the general recommendation of Murphy & Jenkins (2010) 

of a multifaceted approach to monitoring and ecological study still applies to the 

mid-water realm and to the predators that reside there. Motivated by this 

incentive we recommend that MOFS populations potentially benefitted by MPAs 

be monitored using a combination of mid-water stereo-BRUVS, hydro-acoustics, 

and telemetry. Mid-water BRUVS and acoustic surveys run in tandem would 

enable the tracking of MOFS biomass and abundance, and important aspects 

surrounding MOFS residency patterns and connectivity between populations 

inside and outside the reserves can be explored through the use of satellite 

telemetry and genetic analysis. 

5) The expanding global MPA network is bolstered primarily by the 

disproportionally high contribution of large and very large MPAs (>10,000 km2 

and >100,000 km2). Several techniques show promise for monitoring at the 

necessary scales such as horizontal acoustics and satellite imagery analysis, yet 

the elusive nature of MOFS behaviour and the spatio-temporal dimensions of 

their ecology will likely necessitate further technological innovation. Mapping of 

MOFS status and distribution required for assessment of spatial management 

regimes of the high seas and VLMPAs will remain sporadic and at the 

experimental level until such technological advances are forthcoming, or until 

extremely high survey efforts of non-extractive sampling can be mobilised. 
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 1 
Fig 1. Declines in tuna and billfish reported by CPUE and stock assessment in the literature over the last 12 years globally, in order of 2 

declining median (See supplementary material for data and sources). Abbreviation for species and ocean names: BF, Bluefin; AB, 3 

aggregated assemblage biomass; WT, Whitetip; GOM, Gulf of Mexico. For sources see (Myers & Worm,  2003; Baum & Myers,  2004; 4 

Ward & Myers,  2005; Hampton et al.,  2005; Sibert et al.,  2006; Juan-Jordá et al.,  2011). 5 
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 6 

Fig 2. Declines in oceanic sharks reported by CPUE and other means in the literature over the last 12 years globally, in order of declining 7 

median (See supplementary material for data and sources). Abbreviation for species and ocean names: WT, Whitetip; GOM, Gulf of 8 

Mexico. For sources see Baum et al.  (2003), Ward & Myers  (2005), Sibert et al. (2006) Ferretti et al. (2008), Clarke et al. (2013), White 9 

et al. (2015). 10 
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 11 

 12 
Fig 3. Historical trends in global marine protected area (MPA) coverage. The top 13 

panel is adapted from Maxwell, Ban & Morgan (2014) and shows the geographic 14 

distribution of large (>= 10,000 km2, in orange) and very large MPAs (>=100,000 15 

km2, in blue). Stripe fills denote areas that are partially or entirely no-take 16 

(where all extractive activities are prohibited). The bottom panel displays the 17 

cumulative number of large and very large MPAs, using the same colour coding. 18 

Also shown are trends in maximum MPA size, and percentage contribution to 19 

worldwide coverage (data obtained from IUCN-UNEP, 2015). 20 
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 23 
Fig 4. Non-lethal and non-extractive sampling of MOFS using hydro-acoustics 24 

inside the Chagos Marine Reserve. A calibrated split-beam echosounder (Simrad 25 

EK60, Kongsberg Maritime AS, Horten, Norway) was deployed from a rigid 26 

hulled inflatable boat using an overside mount (deployment depth = 1 m) to 27 

investigate prey field and fish schools across a shallow seamount (denoted by a 28 

red star in the inset map). The operating frequency was 38 kHz with a ping 29 

interval of 4 s, and with a pulse duration of 1.024 ms and a beam width of 12°. 30 

Colour scale on the echogram is in dB. Image courtesy of Dr Martin Cox, and Dr 31 

Phillip Boersch-Supan). 32 

 33 
Fig 5. Two approaches to the non-extractive sampling of MOFS using mid-water 34 

BRUVS, over the seamount represented in Fig. 4. Dots represent individual mid-35 

water BRUVS moored to the seabed using an anchor as per Letessier et al. 36 

(2013). Lines represent individual drifting mid-water cameras as per Bouchet & 37 

Meeuwig (2015). Two longlines of 5 mid-water BRUVS were deployed 38 

simultaneously, 200 meters apart and suspended at 10 m, and were allowed to 39 

drift freely for 2 hrs.  40 
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 42 
 43 

Fig 6. MOFS observed on mid-water BRUVS. The silky shark (Carcharinus 44 

falciformis, A), and shortfin mako shark (Isurus oxyrinchus, B) were observed in 45 

the Chagos Marine Reserve (7.12°S, 72.11°E) on deployments conducted 46 

simultaneously to the hydroacoustics survey described in Fig. 2. The blue shark 47 

(Prionace glauca, C) was observed in Western Australia (32°S, 115°E). 48 
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Table 1. Methodologies available for assessing MOFS population status, practical benefits and shortcomings, and implication for managerial 50 

regimes 51 

Source of data Emerging 
or in-use 
in the 
MOFS 
context 

Information derived Benefits Shortcomings Non-
extractive 

Example study and 
implication for MOFS 
management and 
conservation  

Active Hydro-
acoustics 

In-use Biomass, density, 
prey fields, 
schooling behaviour 

Method is of 
relative low 
cost in 
consideration 
of volume of 
water sampled.  

Provide limited  
information in the 
absence of 
independent 
ground-truthing. 
Biased toward 
species with well 
understood 
acoustic properties 

✓ 
 
 

Monitoring and population 
assessment (Josse, Bertrand, 
& Dagorn,  1999). Schooling 
behaviour (Josse & Dagorn,  
2000) 

Mid-water BRUVS In-use Habitat association, 
relative abundance 
and biomass 

Relatively low 
cost, easy to 
standardize 
and deploy and 
generate large 
data sets. 

Does not, in it self, 
capture the 
migratory aspect of 
MOFS. 

✓ Monitoring of MPA efficiency. 
Oceanographic characteristics 
are important for MPA zoning 
(Heagney et al.,  2007; 
Letessier, Meeuwig, et al.,  
2013b; Bouchet & Meeuwig,  
2015) 

Catch-per-unit 
effort from 
commercial and 
scientific survey 
catch statistic 

In-use Long term 
abundance patterns, 
population 
structure.  

Most spatially 
and temporally 
extend data set 
currently 
available 

High sampling and 
reporting bias. 
Most long term and 
spatially extent 
data set available 

 Long term assessment of 
abundance (Myers & Worm,  
2003) (Baum & Myers,  2004) 
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are of variable 
quality. 

Stock assessment In-use Population status Reliable High data 
requirements, 
which are absent 
for many stocks 

 Long term and reliable 
assessment of abundance 
(Sibert et al.,  2006; Juan-
Jordá et al.,  2011) 

Satellite Telemetry  In-use Habitat association, 
horizontal range. 
Ontogenic 
migration, 
distribution, 
behaviour, 
energetics 

Long distance 
tracking, suited 
to migratory 
species 

Satellite tagging is 
labour intensive 
and tags are 
expensive 

✓ 
 

Identification of area suitable 
for fishery closure (Alpine & 
Hobday,  2007; Block et al.,  
2011) 

Acoustic Telemetry In-use Habitat association, 
homing range, 
behaviour 

Provide high-
resolution data 
on movement 
and residency 
patterns. 

Labour intensive to 
deploy acoustic 
recorders, and to 
catch and perform 
invasive surgery. 

✓ 
 

Determination of fishing 
practise (Girard, Benhamou, 
& Dagorn,  2004), provision of 
spatial assessment models 
(Hampton & Fournier,  2001) 

Archival tags In-use Habitat association, 
behaviour, 
ontogenic changes 

Low cost to 
recover data. 
High resolution 
data collected 
for several 
years 

Labour intensive  
 

Assessment of fishery 
practices, stock assessment 
(Block et al.,  2005) 

Molecular genetics In-use Relatedness  Relatively low 
cost, only way 
to assert 
genetic 
relations 

Difficult to get 
tissue samples from 
rare species 

✓ 
 

IOTC recognising multiple 
yellowfin tuna population in 
the Indian Ocean 
(Dammannagoda et al.,  
2008). Assessment of spill-
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over effect (Harrison et al.,  
2012). 

Stable isotopes In-use Trophology Only non-lethal 
way of 
investigating 
diet 

Labour intensive to 
collect samples 

 Identification of feeding 
habitats valuable for MPA 
protection of great white 
sharks (Carlisle et al.,  2012) 

Aerial 
surveys/Spotter 
plane 

In-use Biomass/abundance 
index 

Ability to cover 
large areas of 
VLMPAs  

Linking visual cues 
with true 
abundance is still at 
its infancy 

✓ 
 

Monitoring of MOFS 
population abundance 
(Eveson et al.,  2011) 

Aerial 
surveys/Drones 

Emerging Biomass/abundance 
index 

Ability to cover 
large areas of 
VLMPAs 

Linking visual cues 
with true 
abundance is still at 
its infancy 

✓ 
 

Monitoring of MOFS 
population abundance and 
distribution (Hodgson,  2007) 

       

Ocean/Underwater 
Gliders (fitted with 
echosounders) 

Emerging Biomass/abundance 
measurement 

Ability to cover 
remote areas of 
VLMPAs 

Provide limited  
information in the 
absence of 
independent 
ground-truthing. 
Biased toward 
species with strong 
and well 
understood 
acoustic properties 

✓ 
 

Monitoring of MOFS 
population (Send et al.,  2013) 

       

Horizontal Emerging Biomass/abundance Ability to Very high power ✓ Behavioural mechanics and 



 38 

Acoustics OAWRS measurement instantaneously 
visuals large 
areas 
(thousands of 
km2) 

requirements. Need 
for very specific 
oceanographic 
conditions. 

 population monitoring 
(Makris et al.,  2009) 

  52 
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