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Abstract

Machine learning methods have been successfully used to analyse neuroimaging data

for a variety of applications, including the classification of subjects with different brain

disorders. However, most studies still rely on the labelling of the subjects, constraining

the study of several brain diseases within a paradigm of pre-defined clinical labels,

which have shown to be unreliable in some cases. The lack of understanding regarding

the association between brain and behaviour presents itself as an interesting challenge

for more exploratory machine learning approaches, which could potentially help in

the study of diseases whose clinical labels have shown limitations. The aim of

this project is to explore the possibility of using eigen-decomposition approaches to

find multivariate associative effects between brain structure and behaviour in an

exploratory way.

This thesis addresses a number of issues associated with eigen-decomposition

methods, in order to enable their application to investigate brain/behaviour re-

lationships in a reliable way. The first contribution was showing the advantages

of an alternative matrix deflation approach to be used with Sparse Partial Least

Squares (SPLS). The modified SPLS method was later used to model the associations

between clinical/demographic data and brain structure, without relying on a priori

assumptions on the sparsity of each data source. A novel multiple hold-out SPLS

framework was then proposed, which allowed for the detection of robust multivariate

associative effects between brain structure and individual questionnaire items.

The linearity assumption of most machine learning methods used in neuroimag-

ing might be a limitation, since these methods will not have enough flexibility to

detect non-linear associations. In order to address this issue, a novel Sparse Canon-

ical Correlation Analysis (SCCA) method was proposed, which allows one to use

sparsity constraints in one data source (e.g. neuroimaging data), with non-linear

transformations of the data in the other source (e.g. clinical data).
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Impact Statement

With the increase in data collection that has been observed in recent years, several

datasets are no longer comprised of a single data type coming from a single source,

but of different types of data collected from multiple sources. In some situations, one

may be interested in modeling the underlying relationships in a dataset containing

information coming from two different sources (i.e. views), e.g. neuroimaging data and

clinical/demographic data, in order to gain insights into the unobserved latent process

which generated the data. This type of modeling has been undertaken in many

applications, including: language [Hardoon and Shawe-Taylor, 2011], genetics [Witten

et al., 2009, Parkhomenko et al., 2009], neuroimaging [Hardoon et al., 2007], and

facial expression recognition [Zheng et al., 2006].

Although, this type of model has applications which span many different fields,

the potential medical applications may have a paradigm-shifting impact, by helping

redefine the way in which diagnosis is currently carried out, particularly in the

psychiatric field. Current diagnostic labels in psychiatry are not very reliable, indeed,

they have failed to predict treatment response, which suggests that the labels may

not accurately reflect the underlying disease process [Insel et al., 2010]. In order to

gain insights into these processes, one has to look at brain diseases from different

angles simultaneously, which can be achieved by using eigen-decomposition methods.

By making use of more exploratory modeling approaches, one may be able to combine

large amounts of heterogeneous data to find patterns which allow for its stratification.

This thesis has provided several contributions to the neuroimaging field, by

providing novel ways to model the relationships between brain and behaviour. The

first contribution (Chapter 4) showed the advantages of using an alternative matrix

deflation approach with sparse eigen-decomposition methods. This approach was

then used with a sparse eigen-decomposition method to model the association



between clinical/demographic features and brain structure without relying on a priori

assumptions regarding the sparsity of each view (Chapter 5). A multiple hold-out

framework was then proposed (Chapter 6), which allowed for the detection of robust

multivariate associative effects between brain structure and individual questionnaire

items. Chapter 7 proposed an adaptation of the Alternating Least Squares (ALS)

algorithm, which is a commonly used approach to solve eigen-decomposition problems,

this adaptation allowed the ALS to converge more often, while providing comparable

results. The ALS was finally adapted to solve a novel eigen-decomposition method

(Chapter 8), which allowed one to enforce sparsity in views where the dimensionality

is high, while simultaneously exploring non-linear relationships in views where the

dimensionality is lower.

The benefits provided by a better understanding of brain disorders goes beyond

the realm of academia, it is an essential step to refine current diagnostic tools. This is

indeed a very important issue, but a very challenging problem as well, which is why it

is unlikely that it will be solved by the work of a single research group. Nevertheless,

this thesis has made some contributions which will hopefully enable other researchers

to better understand the relationships between brain and behaviour, helping to pave

the way for future work which may lead to the improvement of psychiatric diagnosis.
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Chapter 1

Introduction

1.1 Neuroimaging and machine learning
For many years, one of the main limitations when studying the human brain was the

fact that acquiring in vivo data was only possible using very invasive procedures (e.g.

electro-physiological recordings). The introduction of neuroimaging techniques, such

as Magnetic Resonance Imaging (MRI), drastically changed the field, by making it

possible to acquire in vivo brain images in a non-invasive way.

MRI allows the acquisition of 3D brain images by using the magnetic properties

of the atoms in the body, more specifically, the hydrogen nuclei in the water molecules.

These images are comprised of many voxels, where each voxel can be seen as a pixel

in a 3D space, i.e. whereas a pixel is a 2D square containing information about a

small region of a 2D image, a voxel is a 3D cube containing information about the

signal in a small region of a magnetic resonance (MR) image. Depending on the

particular MRI acquisition sequence, different types of images can be obtained. One

of the most commonly used types of structural MR images is the T1-weighted image,

due to the fact that it provides a reasonable contrast between the different brain

tissues, more specifically, between Grey Matter (GM) and White Matter (WM), and

between GM and Cerebrospinal Fluid (CSF) [Chu, 2009].

The raw images provided by the MRI scanners cannot be directly used to

perform a statistical analysis, as the MR signal intensities and brain shapes will be

different between the images coming from different subjects. Therefore, structural

MR images are subjected to a pre-processing pipeline before they are analysed,

which is usually comprised of three main steps: segmentation, normalisation, and

smoothing [Ashburner and Friston, 2005]. The segmentation step is applied to identify
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the different types of tissue in the brain and create separate images based on the

probability of each voxel corresponding to a particular tissue (e.g. GM, WM, CSF),

this is done in order to normalise the values of each pixel to a range between 0 and

1 [Chu, 2009], enabling comparisons across different MR images. These probability

maps are then normalised to a standard brain template, so that brains from different

subjects, which have different shapes, can be analysed together. Finally, the images

are usually subjected to a final spatial smoothing step, in order to remove some of

the higher spatial frequency signal, which is usually associated with noise [Chu, 2009].

This smoothing is performed by performing a convolution between the images and

a Gaussian kernel with a pre-determined Full Width at Half Maximum (FWHM),

essentially “blurring” the images.

One of the most common ways to analyse structural differences in the pre-

processed MR images is by using Voxel-Based Morphometry (VBM) [Ashburner

and Friston, 2000], which allows one to determine which specific voxels in the brain

are significantly correlated with the variable that is being tested, by performing

a statistical test on each individual voxel. Although VBM is still very popular in

neuroscience, it is an univariate approach, which means that each voxel is tested

individually, without taking into account the interaction between all the voxels. In

order to model this interaction, one has to use multivariate approaches, such as

machine learning methods. These methods change the question that VBM tries to

answer; instead of estimating which voxels are individually correlated with the effect,

machine learning methods look for general patterns in the data which allow one to

perform several tasks, including: classifying the subjects as belonging to a particular

class (e.g. diseased subjects vs. healthy subjects), predicting a clinical/demographic

score (e.g. age), gaining novel insights by finding associations between different types

of data (MRI scans and clinical/demographic scores), etc.

Machine learning methods have been successfully used to analyse neuroimaging

data for a variety of applications, including the study of neurological and psychiatric

diseases. So far, however, most of these studies have focused on supervised binary

classification problems, i.e. they attempt to summarise clinical assessment into

a single measure (e.g. diagnostic classification) and the output of the models is

limited to a probability value and, in most cases, a binary decision (e.g. healthy
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vs. patient) [Ecker et al., 2010, Mourão-Miranda et al., 2005, Nouretdinov et al.,

2011, Orrù et al., 2012, Rao et al., 2011, Klöppel et al., 2008]. This paradigm may

present itself as a limitation when studying brain diseases whose underlying disease

process is not yet completely understood and, therefore, might have an unreliable

categorical classification. Indeed, this is a well known problem in psychiatry [Insel

et al., 2010], where insights regarding the associations between brain and behaviour

are still limited.

The lack of understanding regarding the associations between brain and be-

haviour presents itself as an interesting challenge for more exploratory machine

learning approaches, such as eigen-decomposition methods, including several variants

of Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS). These

methods can model the associations between brain and behaviour, by finding a latent

subspace where these associations are the strongest.

1.2 Outline and contributions
The aim of this thesis is to explore the possibility of using eigen-decomposition

approaches to find multivariate associative effects between brain structure and

behaviour. Several variants of these methods will be tested, including versions that

allow for sparse and non-linear solutions. As a proof of concept, all the methods

explored in this thesis used dementia datasets, as the relationships between brain

regions and behaviour are better understood in dementia, allowing for more reliable

comparisons with previous studies.

The thesis is laid out as follows:

• Chapter 2 will introduce some basic machine learning concepts, with an em-

phasis on supervised learning. It will conclude with some remarks regarding

the limitations of these methods, and the motivation for exploring the use of

eigen-decomposition methods in this thesis.

• Chapter 3 will describe some of the most relevant eigen-decomposition methods

used in this thesis. It will serve as a general introduction and review of these

methods, before presenting the main contributions of this thesis in the following

chapters.

• Chapter 4 proposes an alternative matrix deflation step to be used with Sparse
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Partial Least Squares (SPLS), which tries to address a limitation of the deflation

approach originally proposed by Witten et al. [2009]. Publication associated

with the chapter: Monteiro et al. [2014].

• Chapter 5 describes an alternative permutation based framework to optimise the

SPLS hyper-parameters, along with an earlier application of SPLS to dementia

using different levels of sparsity for both neuroimaging and clinical/demographic

data. Publication associated with the chapter: Monteiro et al. [2015].

• Chapter 6 takes the type of analysis performed in Chapter 5 a step further. In

this chapter, a multiple-holdout framework is proposed, which is able to find

robust multivariate associations between brain and behaviour. The framework

was applied to a novel experimental setup, using whole-brain structural MRI

data and individual items from a clinical questionnaire. This experimental setup

allowed us to find multivariate associations between a subset of brain voxels,

and a subset of the individual questionnaire items, which was not previously

shown in the literature. Addition comparisons regarding the influence of the

sparsity constraints and the influence of the matrix deflation step were also

made. Publication associated with the chapter: Monteiro et al. [2016].

• Chapter 7 presents the background for Chapter 8. It proposes an adaptation

of the Alternating Least Squares (ALS) algorithm to solve several Sparse CCA

(SCCA) and SPLS optimisation problems. It also compares seven different eigen-

decomposition methods, some of these comparisons have not been previously

made in the literature.

• Chapter 8 proposes a novel primal-dual SCCA method. This method allows

one to model the multivariate associations between brain and behaviour by

using both sparsity constraints, and non-linear transformations of the data.

• Chapter 9 provides a general summary of the conclusions of this thesis, along

with considerations for future work.
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Pattern analysis

The automatic detection of patterns in a dataset is an essential part of solving

machine learning problems. These patterns are defined as any relations, regularities

or structure that can be used to extract any meaningful information from the

data [Shawe-Taylor and Cristianini, 2004]. In order to detect these patterns, a number

of examples must be provided to a machine learning method. These examples are

called samples, which can be represented as vectors with a certain dimension.

To illustrate these concepts, consider a dataset of whole-brain structural MRI

scans from 100 patients which will be used as input to a machine learning method. The

number of samples is equal to the number of subjects (n= 100) and the dimension of

each sample is equal to the number of features. In this case, each feature corresponds

to a voxel in the image, i.e. if the number of voxels is 100000, then each sample lies

on a 100000 dimensional space: xi ∈ R1×100000, i ∈ {1, . . . ,n}. The dataset can be

organised in a data matrix X ∈ Rn×p, where n is the number of samples, p is the

number of features, and each row of X corresponds to a sample xi.

The information contained in the data matrix X can be used for many different

tasks. The type of machine learning method used depends on the task at hand. In

neuroimaging, the most popular machine learning methods belong to two main types:

supervised learning and unsupervised learning.

Supervised learning methods are used when one is trying to predict a value

yi associated with an example xi, i.e. these methods try to answer the following

question: “Given an example xi, what is its associated yi?”. The type of supervised

learning method used to answer this question will depend on the nature of what

one is trying to predict (yi), thus, supervised learning problems are sub-divided into
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two main categories: classification and regression. The former deals with cases in

which the aim is to predict whether an example belongs to a certain pre-defined class

(e.g. healthy vs. diseased), while the latter deals with cases in which the aim is to

predict a continuous score (e.g. age). Therefore, in a classification setting, yi will

be an integer number which denotes the label of xi (e.g. yi = 0: healthy vs. yi = 1:

diseased), whereas in a regression setting yi will be a continuous value which denotes

the target that one is trying to predict (e.g. age).

Unsupervised learning focuses on trying to find patterns in the data without

any concern for labels or targets. These are normally used as exploratory approaches

to find structure in the data which can then be used for several tasks, including data

compression, data visualisation, clustering, or even as a step for further analysis

using supervised learning.

The aim of this chapter is to make an overview of some of the general machine

learning concepts, with an emphasis on supervised learning (Sections 2.1 to 2.2.3).

The chapter will conclude with a few examples of applications of supervised learning

methods in the neuroimaging literature, and some considerations regarding their

general limitations when applied to clinical problems in neuroimaging (Section 2.3).

In an attempt to address some of these limitations, this project has used more

exploratory machine learning approaches, which shall be presented in Chapter 3.

2.1 Model training
Some of the concepts presented in this chapter are applicable in both supervised

and unsupervised learning settings. However, in order to keep the introduction to a

reasonable size, the examples will be given in a supervised learning setting. More

specifically, in a regression setting, as some of the concepts associated with regression

problems will be important for Chapters 7 and 8.

Let X ∈ Rn×p be a data matrix containing n samples with p features (with

n > p), and y ∈ Rn×1 be a vector with the targets associated with each sample. In

a supervised learning setting, the aim is to find a function f that maps each input

xi ∈X to each output yi ∈ y. The trivial solution to this problem would be to

make an exact map of each input to its corresponding target (f(xi) = yi ∀ {1, . . . ,n}).

However, one also wishes to make f a general function that can handle samples x′

which were not in the original dataset X. In other words, the aim is to train a model



2.1. Model training 35

f which, given a new example x′, makes a reasonable prediction of its target y′:

f : X → y

f : x′→ y′

The distance between the values given by f(X) and the actual targets y is given

by the loss function L. The optimal function f will be the one which minimises the

loss:

f = argmin
f

L(f,y) (2.1)

In some settings, one may train a model f which perfectly fits the data (f(xi) =

yi ∀ i ∈ {1, . . . ,n}) while providing poor predictions for new examples x′. In these

cases, it is said that the model f is too complex and it overfits the data. One of the

ways to avoid these scenarios, is by penalising solutions of f which are too complex,

thus, an extra penalty function P is added to Equation 2.1. The loss function (L)

plus the penalty function (P ) will constitute the objective function J that one tries

to minimise:

f = argmin
f

J(f,y) ⇔ f = argmin
f

L(f,y) +γP (f) (2.2)

where γ is the hyper-parameter of the model, which controls the trade-off between

the loss and the penalty.

In general, more complex functions f lead to lower losses L, which decrease the

cost J (Equation 2.2). However, the penalty term P increases with the complexity

of f , which results in the increase of J . Therefore, in order to minimise J , there

must be a compromise between the loss and the complexity. Note that if the penalty

hyper-parameter γ is too small, the complexity of f will be too high, and the model

will overfit. However, if γ is too large, then f will not have enough complexity to

properly model the data, and the model f will underfit.

There have been several loss functions (L) and penalty functions (P ) proposed

in the literature, which contain different properties, leading to different solutions. In

order to better illustrate these concepts, a regression example is provided below.
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2.1.1 Linear regression

Consider a case in which one wishes to find a function f that uses the information

from a sample vector xi ∈X to predict a continuous target variable yi. One of the

ways to solve this problem is by using a model called linear regression. This model

uses a loss function known as the squared loss:

L=
n∑
i=1

(yi−f(xi))2 (2.3)

Since the model is linear, this implies that f is a linear function, thus, the

predictions provided by f consist of a weighted linear combination of the input

features:

f(x) =
p∑
j=1

(xjwj) + b (2.4)

where wj are known as the weights, and b is known as the bias term.

If the targets y and the features of X are mean-centered, i.e. the mean of the

targets y is equal to zero and the mean of each column of X is equal to zero, then

b= 0 and Equation 2.4 can be re-written as:

f(x) = xw

where w ∈ Rp×1 is known as the weight vector . By writing the problem using matrix

notation, the squared loss (Equation 2.3) can be re-written as:

L(X,y,w) = ‖y−Xw‖22

where ‖ · ‖2 denotes the l2-norm (also known as the Euclidean norm).

In its simplest version, linear regression does not contain a penalty term, therefore,

the objective function will be equal to the loss function, i.e. J = L. In order to find

the minimum of the objective function J , one has to find the weight vector w which

makes the function f model the data with the smallest possible loss. The problem

can thus be written as the following optimisation problem:

w = argmin
w

J(X,y,w) ⇔ w = argmin
w

‖y−Xw‖22 (2.5)
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The optimisation problem expressed in Equation 2.5 can be re-written as:

J(X,y,w) = (y−Xw)ᵀ(y−Xw) (2.6)

which can then be differentiated to calculate its minimum [Shawe-Taylor and Cris-

tianini, 2004]:

∂J

∂w
= 0

−2Xᵀy+ 2XᵀXw = 0

XᵀXw =Xᵀy

w = (XᵀX)−1Xᵀy (2.7)

If p= 1, then the solution will be a line whose fit minimises the squared distance

between yi and f(xi), an example can be seen in Figure 2.1. For higher dimensional

problems (p > 1), the solution given by w will correspond to a hyperplane.
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Figure 2.1: Example of a linear regression.

The solution to the optimisation problem expressed in Equation 2.5 may overfit

the data, thus, it is often desirable to add a penalty term. This is especially true if

p > n, which is known as an ill-conditioned problem, where the optimisation problem

will not have an unique solution.

There are several types of penalties that can be chosen, which will result in

different solutions for w. One of these is the l2-norm penalty (P (w) = ‖w‖22), also
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known as the ridge penalty. By using this penalty, one has to re-write the problem

expressed in Equation 2.5 as:

w = argmin
w

‖y−Xw‖22 +γ‖w‖22 (2.8)

Following the same procedure used to derive Equation 2.7, one obtains the

following solution:

w = (XᵀX+γI)−1Xᵀy

where I ∈ Rp×p is an identity matrix.

The ridge penalty provides solutions for w in which all the features are included

in the model, and the ones that are not informative are down-weighted. However, in

some cases, it might be desirable to obtain a sparse solution, i.e. a solution where the

contribution of certain features is set to zero (wj = 0). These approaches perform

feature selection, which is a desirable property to have if only a subset of the features

contains relevant information, since non-informative features are excluded from the

model.

One of the most popular sparse penalty functions is the l1-norm penalty. When

used in a regression setting, it gives rise to the popular method known as Least

Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996]:

w = argmin
w

‖y−Xw‖22 +γ‖w‖1 (2.9)

Despite the popularity of the LASSO, one of its disadvantages is that it tends

to exclude variables which are correlated with other variables already included in

the model, e.g. if feature x1 is correlated with feature x2, the tendency is for only

one of the features to be included: w1 6= 0,w2 = 0; or w1 = 0,w2 6= 0. This may lead

to informative features being excluded from the model, based solely on the fact they

are correlated with other informative features. In order to address this issue, Zou

and Hastie [2005] proposed an approach known as the elastic net, which consists in

adding an extra l2-norm penalty to the LASSO optimisation problem, resulting in a
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method that provides sparse solutions while maintain a grouping effect:

w = argmin
w

‖y−Xw‖22 +γ1‖w‖1 +γ2‖w‖22

where γ1 and γ2 denote the hyper-parameters that control the influence of the l1-norm

and l2-norm penalties, respectively.

The description of the algorithms available to solve the LASSO and elastic net

optimisation problems is beyond of the scope of this thesis, for more details, please

refer to the papers by Efron et al. [2004] and Friedman et al. [2010].

2.1.2 Kernel methods

So far, all the methods presented were linear methods, i.e. the solution consists of a

linear combination of the features, which is expressed by the weight vector. However,

sometimes the patterns of interest in the data are non-linear. This means that linear

methods may not be able to estimate a model f which is able to predict well the

labels/targets y′ for new data points x′. One of the ways to address these situations

is by mapping the data in the original input space into a higher dimensional space,

where the problem is linearly solvable.

Consider the classification example on the left hand side of Figure 2.2. In this

case, the aim is to classify the two groups of data points (red and blue) by finding a

function f which defines a boundary separating the two groups. As one can see, it is

impossible to do this with a linear function, i.e. there is no straight line which is able

to separate the two groups (Figure 2.2 - left). However, if a new variable is introduced

x3 = x2
1 +x2

2, then the groups are linearly separable using a plane (Figure 2.2 - right).

Figure 2.2: Mapping a dataset into a higher dimensional feature space. A new feature
x3 = x2

1 +x2
2 is introduced, making the classes linearly separable.
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Performing this mapping can be done explicitly, by introducing new features

(Figure 2.2), or done implicitly, by using a kernel.

This section will give a brief overview of some of the properties of kernels, and

how they can be used in machine learning methods.

2.1.2.1 Kernels

In order to understand how kernels are constructed, consider an hypothetical input

vector x ∈ Rp, and a function φ that maps this vector into a feature space F ⊆ RP ,

where P > p:

φ : x ∈ Rp 7→ φ(x) ∈ F ⊆ RP

A kernel function takes two input vectors xi,xj ∈X, maps them into a higher

dimensional feature space and performs the dot product between the two:

κ(xi,xj) = 〈φ(xi),φ(xj)〉

The results are then stored in a kernel matrix (also known as a kernel):

K =


κ(x1,x1) · · · κ(x1,xn)

... . . . ...

κ(xn,x1) · · · κ(xn,xn)


Thus, the kernel can be seen as a matrix containing information about how close xi
is to xj in the feature space F .

The type of kernel depends on the transformation φ(·) that the samples are

subjected to. If a linear kernel is used, then no transformation is performed on the

input vectors prior to the dot product (φ(x) = x). Thus, the kernel function will

simply be the dot product of the arguments:

κ(xi,xj) = 〈xi,xj〉

In this case, the results will be equivalent to running the machine learning method

in the original input space [Shawe-Taylor and Cristianini, 2004]. The kernel can be
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computed by multiplying the input data matrix with its transpose:

K =XXᵀ (2.10)

This will provide some computational advantages for cases in which p� n, due to

the fact that one will work with the kernel matrix K ∈ Rn×n, instead of the larger

data matrix X ∈ Rn×p. However, this is not the main strength of kernel methods.

The main reason why these methods are popular, is due to a property known as

the kernel trick, which allows one to obtain a mapping into a higher dimensional

feature space F without explicitly performing the mapping φ(·) in the original input

space. This can be done by computing the kernel K using (2.10) and then applying

a transformation on K.

Some of the more popular types of non-linear kernels include the polynomial

kernel (κd) and the Gaussian kernel (κG):

κd(xi,xj) = (〈xi,xj〉+R)d

and

κG(xi,xj) = exp
(〈xi,xj〉

σ2 − 〈xi,xi〉2σ2 − 〈xj ,xj〉2σ2

) (2.11)

where d is the degree of the polynomial kernel, R is a hyper-parameter which

controls the influence of the linear terms for the polynomial kernel, and σ is an

hyper-parameter which controls the flexibility of the Gaussian kernel [Shawe-Taylor

and Cristianini, 2004].

Note that the kernel matrixK contains all the information necessary to compute

the distance between two vectors. However, some information is lost when the input

matrix X is converted to K, namely, the orientation of the dataset with respect to

the origin [Shawe-Taylor and Cristianini, 2004]. In order to make the concept of the

kernel trick clearer, an example is provided below.

Example: Non-linear mapping using a polynomial kernel

Let X ∈ Rn×p denote a data matrix with n samples and p features. For a low

dimensional problem (e.g. p = 2), if one would want to include all the possible
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combinations of polynomials of degree 2, one could perform the following mapping:

φ(x) = [x2
1,x

2
2,
√

2x1x2,
√

2Rx1,
√

2Rx2,R] (2.12)

As mentioned previously (Equation 2.11), the term R controls the contribution of

the linear terms, i.e. the larger it is, the stronger the influence of the linear terms is,

which should help prevent overfitting.

As one can see in Equation 2.12, this mapping increased the number of variables.

However, one could use a kernel instead, which avoids performing this explicit

mapping.

Let x and z be two row vectors from matrix X (i.e. two samples from the

dataset). The dot product between 〈φ(x),φ(z)〉 is equivalent to:

〈φ(x),φ(z)〉= (〈x,z〉+R)d

The proof for this equivalence is done by expanding the polynomial kernel κd
(Equation 2.11) using the binomial theorem [Shawe-Taylor and Cristianini, 2004]:

κd(x,z) = (〈x,z〉+R)d =
d∑
s=0

(
d

s

)
Rd−s〈x,z〉s =

=
(

2
0

)
R2〈x,z〉0 +

(
2
1

)
R1〈x,z〉1 +

(
2
2

)
R0〈x,z〉2

=R2 + 2R〈x,z〉+ 〈x,z〉2

=R2 + 2R(x1z1 +x2z2) + (x1z1 +x2z2)2

=R2 + 2Rx1z1 + 2Rx2z2 +x2
1z

2
1 + 2x1z1x2z2 +x2

2z
2
2 (2.13)

Note that performing the explicit mapping of x and z using Equation 2.12, and

then performing the dot product (〈φ(x),φ(z)〉) will lead to the same expression in

the last line of Equation 2.13, therefore, both operations are equivalent. However,

using the kernel trick is much more efficient, as the number of non-linear features will

grow very large with the number of features in X and the degree of the polynomial.

A kernel method is essentially a machine learning method which takes kernels

K as inputs, instead of the original data matrices X. The algorithms used in

kernel methods work with different types of kernels, making the methods more



2.1. Model training 43

modular [Shawe-Taylor and Cristianini, 2004], i.e. one can use different types of

linear and non-linear models simply by swapping the kernel that is used. In order to

illustrate some of the concepts associated with kernel methods, the adaptation of

ridge regression (Equation 2.8) into its kernel formulation is presented below.

2.1.2.2 Kernel Ridge Regression (KRR)

The ridge regression problem expressed in Equation 2.8 can be adapted to be solved

using kernels. The first step is to write the objective function in matrix notation

(similar to Equation 2.6):

J(X,y,w) = (y−Xw)ᵀ(y−Xw) +γwᵀw

Then, the problem is transformed from its primal representation, into its dual

representation, by representing the weight vectors w as a combination of the training

samples, w =Xᵀα:

J(X,y,α) = (y−XXᵀα)ᵀ(y−XXᵀα) +γαᵀXXᵀα (2.14)

By using Equation 2.10, one can re-write Equation 2.14 as:

J(K,y,α) = yᵀy−yᵀKα−αᵀKy+αᵀK2α+γαᵀKα (2.15)

This in turn can be differentiated with respect to α and set to 0, in order to find its

minimum:

∂J

∂α
= 0

0−Ky−Ky+ 2K2α+ 2γKα= 0

−2Ky+ 2K(K+γI)α= 0

α= (K+γI)−1y

where I ∈ Rn×n is an identity matrix.

This method is known as the Kernel Ridge Regression (KRR), it has a dual

solution, given by α, which is referred to as a dual variable [Shawe-Taylor and

Cristianini, 2004]. Its solution is equivalent to the one provided by ridge regression
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(as described in Section 2.1.1) if K corresponds to a linear kernel. In this case, the

primal variable w can be recovered using the dual variable α, i.e. w =Xᵀα.

As previously mentioned, one of the advantages of kernel methods is that K

can be non-linear, which means that the optimisation problem will be equivalent

to solving a ridge regression problem in a non-linear, higher dimensional feature

space F . This may provide better results, if the patterns that one is trying to detect

are non-linear. However, it may lead to overfitting, and moreover, it will not be

straightforward to recover the weights w in the original input space.

2.2 Model validation
As mentioned in Section 2.1, when training a supervised machine learning model,

the main goal is to find a function f which, given a new sample x′, is able to make a

reasonable prediction of its corresponding label/target y′. In order to check if the

training was successful, the ability of the model to generalise for new data should be

assessed, i.e. one should validate the model. For a classification problem, this can be

formulated as the following question: “Given a new set of data {X ′,y′} with N new

samples, how many samples does the model f correctly classify?”. More specifically,

one wants to determine the fraction of times f(x′i) = y′i. This metric is known as the

accuracy of the model.

In the case of a regression problem, the question one is trying to answer is:

“Given a new set of data {X ′,y′} with N new samples, how large is the distance

between the predictions f(x′i) and the true targets y′i?”. More specifically, one is

interested in quantifying the error that the model f makes when predicting the

targets y′. One of the most commonly used metrics to quantify this error is the

Mean Squared Error (MSE):

MSE = 1
N

N∑
i=1

(y′i−f(x′i))2

The strategies used for validation will depend not only on the research question,

but also on the model itself and the amount of data available. One of the main factors

which influences the choice in validation strategy is the existence of hyper-parameters

that have to be optimised.

A brief overview of the classical methods used for model validation (with and
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without hyper-parameter optimisation) will be made in the following sections.

2.2.1 Validation without hyper-parameter optimisation

A hyper-parameter will be defined as any term which controls the complexity of a

model. For example, this could be the penalty hyper-parameter γ (as defined in

Equation 2.2), or an hyper-parameter which controls the complexity of a kernel, i.e.

the d hyper-parameter for polynomial kernels, or the σ hyper-parameter for Gaussian

kernels (as described in Equation 2.11).

Let f be a model without hyper-parameters (or with hyper-parameter values

fixed a priori) that one wishes to validate, the simplest ways to validate a model,

is simply to take all the available data and split it into a train set and a test set

(Figure 2.3). The model f is then trained using the train data, and the test data is

used to compute the performance metric (e.g. accuracy, MSE, etc.).

TestTrain

Figure 2.3: Single train/test data split scheme.

This approach will usually work well if the dataset has a large number of samples.

However, if this is not the case, then the estimated model may not be able to achieve

a good performance, since it will be trained using a very small dataset. Moreover,

the estimation of the model’s performance may be very different from the “true”

performance, since a very small dataset is used to estimate it.

The datasets available in neuroimaging usually do not contain enough samples

to justify using the approach described in Figure 2.3. One of the most common

ways to address this issue is to use an approach known as k-fold Cross-Validation

(k-fold CV). The process is illustrated in Figure 2.4, which starts by splitting the

data into k non-overlapping sets with the same size. For the first fold (k = 1) the set

k is left out of the dataset ({Xk,yk}) and the model is trained with the remaining

data ({X(−k),y(−k)}). Then, the set of data that was left out is used to compute

the performance metric. The process is repeated for each fold, and the performance

is estimated based on the average of the performances across all the test folds.

Due to the scarce amount of data available in neuroimaging, it is very common

to use an extreme case of CV where k = n, i.e. the number of folds is equal to the
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X{
...

1

K

Test2

Test

TestTrain

Train Train

Train

Figure 2.4: k-fold cross-validation scheme.

number of subjects. This is known as the leave-one-out CV. From all the classical CV

approaches, this provides the greatest amount of data available for training at each

fold. However, due to the large similarity between the train sets, the estimation of

the model’s performance will have a very high variance [Hastie et al., 2009]. Although

this approach is still very popular in neuroimaging, it has recently received some

criticism in the literature, e.g. Varoquaux et al. [2017] have shown that it leads to

biased and unstable results. One of the alternatives to k-fold CV is to use several

random splits of the data, instead of non-overlapping folds. This idea is further

explored in Chapter 6.

2.2.2 Validation with hyper-parameter optimisation

Sometimes, it is necessary to add penalty terms to a machine learning model in

order to prevent overfitting (Section 2.1). The penalties are controlled by one or

more hyper-parameters, whose values will affect the solutions provided by the model.

Therefore, it is usually desirable to optimise these hyper-parameters, in order to

obtain the best performance.

Let f be a model with one hyper-parameter to optimise. In this setting, the

aim is usually to select the value of this hyper-parameter from a set of pre-defined

candidates (e.g. γ ∈ {10−3,10−2, . . . ,103}), such that f achieves the best possible

performance for new data. Although this may seem like a trivial task, it has to be

performed carefully. If one were to perform a single train/test split (Figure 2.3) to
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train several models using each one of the candidates (e.g. {fγ=10−3 , . . . ,fγ=103}),

and then select the one with the best performance on the test data, one would

probably be over-estimating the performance of the model. This is due to the fact

that the hyper-parameter was optimised based on the performance of model f for

this particular test set, and not for an independent test set which was not used before.

Therefore, the validation schemes described in the previous section (Figures 2.3

and 2.4) should be modified to accommodate for the hyper-parameter optimisation

step.

The train/test split validation scheme (Figure 2.3) can be adapted to the three-

way split validation scheme (Figure 2.5). In this validation scheme, the data are

split in three sets (Figure 2.5): train, test, and hold-out. The first, is used to

train the model with the different candidates for the hyper-parameter values. The

performance of each hyper-parameter value is assessed on the test set. Finally, the

model performance is estimated on the hold-out dataset.

TestTrain Hold-out

Figure 2.5: Three-way split validation scheme.

By using this splitting approach, one guarantees that the data which were used

to evaluate the different hyper-parameter values (test data), are not the same as

the data that were used to evaluate the final model (hold-out data). However, the

three-way split validation suffers from the same problem as the single train/test split

(Figure 2.3): it will not work well when the amount of available data is small.

One of the ways to validate a model with hyper-parameter optimisation for small

datasets, is to adapt the CV procedure to accommodate for the hyper-parameter

optimisation step. This type of CV is known as nested cross-validation (nested-CV),

and is summarised in Figure 2.6. The procedure starts by splitting the dataset in

a train set and in a test set, these are known as the outer folds. Then, for each

candidate value of γ, the train set {X(−k),y(−k)} is subjected to an inner CV with

Kin inner folds. The value of γ that leads to the best performance on the inner CV

is fixed and used to train the model f using the outer train fold {X(−k),y(−k)}, and

the performance is estimated on the outer test fold {Xk,Y k}. The process is then

repeated for all Kout folds, and the overall model performance is estimated as the
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average performance on all the outer test folds.

...

1

Kout Kin

1 ...
Select�best

hyper-parameter�

Test�with�best
hyper-parameter

Train Train

Train TrainTest

Test

Test

Test

Figure 2.6: Nested cross-validation scheme. Sets represented with lighter shades of blue
and green correspond to the sets used for hyper-parameter selection in each
inner CV fold.

This procedure can be quite computationally expensive, since several inner CVs

have to be performed for each fold of the outer CV. Some strategies to decrease the

computational time include using a smaller number of inner folds (Kin <Kout) and a

small number of candidates for the hyper-parameter values. However, it can still be

quite computationally expensive, especially if there is more than one hyper-parameter

that has to be optimised. This will be further discussed in Chapter 6.

2.2.3 Permutation tests

After one estimates a model’s performance, it is often desirable to assess if that

performance could have been achieved by chance alone. One of the ways to assess

this is by performing a permutation test.

The test consists of randomly permuting the order of the samples while main-

taining the order of the targets unchanged, i.e. generating a new data matrix X∗ in

which the order of the rows no longer corresponds to the order of the elements on y.

Then, the validation scheme is repeated B times, permuting the order of the rows

of X each time, and the performance cb for each permutation is saved. Finally, the

p-value associated with the permutation test is computed based on the number of

times the models trained using the permuted datasets performed at least as well as

the model trained using the non-permuted data:

p= 1 +
∑B
b=1 1cb>c

1 +B
(2.16)
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where B is the number of permutations, c is the performance metric obtained when

training the model using the non-permuted data, and cb is the performance metric

obtained when training the models using the permuted dataset during permutation b.

The addition of 1 in the nominator and denominator of Equation 2.16 is equivalent to

including c in the permutations. This will guarantee that p > 0 and that a minimum

number of permutations will have to be performed in order to obtain a low enough

p-value.

Note that the inequality cb > c in Equation 2.16 only makes sense if the metric

used to evaluate the model increases with the increase in performance (e.g. accuracy).

For metrics which decrease with the increase in model performance (e.g. MSE), the

inequality is changed to cb 6 c.

The model’s performance is considered statistically significant if p is smaller

than a pre-defined threshold α. In the neuroscience literature, this value is usually

set to α= 0.05.

2.3 Applications in neuroimaging
The use of supervised machine learning approaches in neuroimaging is quite

widespread. These have been used not only in neuroscience applications [Mourão-

Miranda et al., 2005], but also in clinical applications, such as: autism [Ecker et al.,

2010], depression [Costafreda et al., 2009, Nouretdinov et al., 2011], schizophre-

nia [Mourao-Miranda et al., 2012], Alzheimer’s disease [Klöppel et al., 2008, Da-

vatzikos et al., 2008, Rao et al., 2011], etc. Although supervised machine learning

methods have been used during this project [Schrouff et al., (accepted)], they are not

the main focus of this thesis, for a detailed review of some of the earlier applications

of supervised learning in neuroimaging, please refer to the papers by Pereira et al.

[2009] and Orrù et al. [2012].

Despite their valuable contributions to the study of several brain diseases,

these methods still have one fundamental limitation: they rely on the labeling of

the subjects. More specifically, they only allow one to study a disease within the

framework of pre-defined clinical labels. In some fields, e.g. psychiatry, the labels

provided by current diagnostic tools are considered to be unreliable and, not only

have they failed to predict treatment response, but they have also failed to align

with results from neuroscience and genetics [Insel et al., 2010].
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By using more exploratory machine learning approaches, one could potentially

gain new insights into different brain disorders, which could help redefine the way

diagnosis is performed. Some of the methods that can be used to try to address this

issue are called eigen-decomposition methods. These will be the focus of the next

chapter.



Chapter 3

Eigen-decomposition methods

Not all machine learning problems fall under the category in which one tries to

estimate a function f that predicts a single label or target y based on an input

x. In some cases, one might wish to analyse the data in an exploratory way, in

order to find novel multivariate relationships between two sets of variables. These

relationships might help us to better understand the observed phenomenon, and

discover underlying patterns in the data. One way to achieve this is by finding

components which encode these relationships, these can be computed using a few

methods generally referred to as eigen-decomposition methods.

This chapter will start by introducing some of the basic concepts necessary to

understand eigen-decomposition methods (Section 3.1). It will then give a brief

overview of some of these methods (Sections 3.1.1, 3.1.2, 3.2, 3.3), and conclude by

describing some of its applications in neuroimaging (Section 3.5).

3.1 Eigenvalues and eigenvectors

The first step to understand eigen-decomposition methods, is to understand the

concepts of eigenvalues and eigenvectors. This section aims to provide a basic

introduction to these concepts, along with an explanation of two eigen-decomposition

methods: Singular Value Decomposition (Section 3.1.1) and Principal Component

Analysis (Section 3.1.2). These will be important to introduce the main eigen-

decomposition methods in the following sections (Sections 3.2 to 3.4).

Let A∈Rn×n be a non-singular matrix, i.e. invertible. λ and v are an eigenvalue

and eigenvector of A if:

Av = λv
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where ‖v‖2 = 1 and v 6= 0 [Shawe-Taylor and Cristianini, 2004]. This means that if

the matrix A is projected onto its eigenvector v, the result will be the scaling of v

by the eigenvalue λ, i.e. v will not change direction.

Note that a matrix may contain more than one eigenvalue/eigenvector pair

{λh,vh}. For symmetric matrices (i.e. A = Aᵀ), different eigenvectors vh are

orthogonal: 〈vi,vj〉= 0 ∀ i 6= j. These pairs are often obtained individually, using

the first pair {λ1,v1} (corresponding to the largest eigenvalue) to transform matrix

A before obtaining the next pair {λ2,v2}, and so on: {{λ1,v1}, . . . ,{λk,vk}}, where

λ1 > λ2 > · · ·> λk. This is done using a process called matrix deflation, where the

pair {λh,vh} is used to transform Ah, such that the corresponding λh is shrank to

zero, and then computing the next eigenvalue/eigenvector pair [Shawe-Taylor and

Cristianini, 2004]:

Ah+1 =Ah−λhvhvᵀh (3.1)

Note that vh is orthogonal to the subspace spanned by Ah+1:

Ah+1vh =
(
Ah−λhvhvᵀh

)
vh =Ahvh−λhvhvᵀhvh = λhvh−λhvh = 0

The matrix deflation method expressed in Equation 3.1 is sometimes referred to

as the Hotelling’s deflation [Mackey, 2008]. This method will be further explored in

Chapter 4, with special emphasis on cases in which the properties of Equation 3.1

do not hold, and some practical consequences of this.

If all the eigenvectors are grouped as columns of a matrix V , and the eigenvalues

are placed in a diagonal matrix Λ, with Λ(h,h) = λh, then:

AV = V Λ (3.2)

Equation 3.2 is known as the eigen-decomposition of A [Shawe-Taylor and

Cristianini, 2004]. Note that V is an orthonormal matrix, i.e. it exhibits the

properties of orthogonal matrices (V V ᵀ = V ᵀV = I =⇒ V ᵀ = V −1), and each

column vh of V has l2-norm equal to 1 (‖vh‖2 = 1). This means that Equation 3.2

can be written as:

A= V ΛV ᵀ (3.3)
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Therefore, matrix A can be decomposed using its eigenvalues and eigenvectors.

Moreover, one could compute an approximation of matrix A by using a subset of its

top eigenvalue/eigenvector pairs.

There are several methods that can be used to perform an eigen-decomposition,

one of the simplest is the power method [Strang, 2006], which is described in Algo-

rithm 3.1. The method starts by randomly initialising a vector v and updating it

by Av, then, v is normalised and the process is repeated until v converges, i.e. the

difference between the current v and the v from the previous iteration is smaller

than a pre-defined threshold. Finally, matrix A is deflated using Equation 3.1, and

the process is repeated until k eigenvalue/eigenvector pairs are computed.

Algorithm 3.1 Power method. V (:,h) denotes the column h of matrix V
1: k = rank(A) . A ∈ Rn×n
2: Initialise V = 0 . V ∈ Rn×k
3: Initialise Λ = 0 . Λ ∈ Rk×k
4: for h= 1, . . . ,k do
5: Initialise v ∈ Rn×1 as a random vector with ‖v‖2 = 1
6: repeat
7: v←Av
8: v← v/‖v‖2
9: until convergence

10: λ= vᵀAv . Compute eigenvalue
11: A←A−λvvᵀ . Deflate matrix A using (3.1)
12: V (:,h) = v and Λ(h,h) = λ
13: end for
14: return V , Λ

The power method is used as the basis of several machine learning methods,

since eigenvector computation is often an essential part of the procedure. Some of

those methods include Singular Value Decomposition (SVD) (Section 3.1.1), Principal

Component Analysis (PCA) (Section 3.1.2), Canonical Correlation Analysis (CCA)

(Section 3.2), and Partial Least Squares (PLS) (Section 3.3).

3.1.1 Singular Value Decomposition (SVD)

When one wishes to decompose a rectangular matrix M ∈ Rn×p, the eigen-

decomposition (Equation 3.3) cannot be used, as this can only be applied to square

matrices. However, there is a similar method called Singular Value Decomposition

(SVD):

M =UDV ᵀ (3.4)
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where U ∈Rn×n and V ∈Rp×p are orthonormal matrices (Section 3.1), andD ∈Rn×p

is a diagonal matrix whose entries dh ∈ {1, . . . ,k} are called the singular values ofM .

The columns of U are eigenvectors of MMᵀ, the columns of V are eigenvectors of

MᵀM , and the singular values are the square roots of the non-zero eigenvalues of

both MMᵀ and MᵀM [Strang, 2006].

This decomposition can be performed using the power method. However, since

matrix M is not square, Algorithm 3.1 has to be modified to Algorithm 3.2.

Algorithm 3.2 Singular Value Decomposition (SVD).
1: k = rank(M) .M ∈ Rn×p
2: Initialise U = 0 . U ∈ Rn×k
3: Initialise V = 0 . V ∈ Rp×k
4: Initialise D = 0 . D ∈ Rk×k
5: for h= 1, . . . ,k do
6: Initialise u ∈ Rn×1 as a random vector with ‖u‖2 = 1
7: Initialise v ∈ Rp×1 as a random vector with ‖v‖2 = 1
8: repeat
9: u←Mv

10: u← u/‖u‖2
11: v←Mᵀu
12: v← v/‖v‖2
13: until convergence
14: d= uᵀMv . Compute singular value
15: M ←M −duvᵀ . Deflate matrix M
16: U(:,h) = u, D(h,h) = d, V (:,h) = v
17: end for
18: return U , D, V

SVD is a widely used method for matrix decomposition, whose application spans

many fields of research. However, the interest of SVD to the present work is its

connection with Partial Least Squares (PLS), which shall be explained in Section 3.3.

3.1.2 Principal Component Analysis (PCA)

As mentioned in Section 3.1, the power method (Algorithm 3.1) is a very important

procedure for several eigen-decomposition methods. In this section, one of the

most popular eigen-decomposition methods will be described: Principal Component

Analysis (PCA). This will serve not only as an example of a practical application of

eigen-decomposition, but also to introduce some of the concepts necessary for the

description of the main eigen-decomposition methods used in this thesis (Sections 3.2

to 3.4).
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PCA is an unsupervised machine learning method, which allows one to explore the

covariance of the features in a dataset. Let X ∈ Rn×p be a data matrix containing n

samples with p> 1 mean-centered features, which have some linear dependencies. The

objective of PCA is to find a set of orthogonal principal components {v1, . . . ,vk}, k < p

which capture the directions of maximum covariance in the data:

maximise
vh

vᵀhCxxvh

subject to

‖vh‖2 = 1 ∀ h ∈ {1, . . . ,k} and vi⊥vj ∀ i 6= j

where Cxx ∈ Rp×p is the covariance matrix XᵀX.

These components can be obtained by performing an eigen-decomposition (Equa-

tion 3.3) of matrix Cxx. Figure 3.1 shows a simulated two dimensional dataset, and

the principal components computed by PCA.
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Figure 3.1: Simulated two dimensional dataset (blue dots), and its principal components
multiplied by the corresponding eigenvalues {λ1v1,λ2v2}.

PCA allows one to encode the data in a lower dimensional subspace, subject

to a certain amount of information loss, depending on how many components k are

used. In other words, it allows one to compress the data. Thus, PCA is considered a

dimensionality reduction technique, where each sample is represented by a smaller

number of k dimensions. These dimensions are obtained by projecting the original

dataset X onto a subset of k principal components.

A common application of PCA is in data denoising, which can be achieved by
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performing PCA, and then projecting the data onto a subset of the top k principal

components. By doing this, one removes the variance explained by the smaller

eigenvalues, which is usually associated with noise [Shawe-Taylor and Cristianini,

2004]. However, one should keep in mind that PCA is an unsupervised learning

method. If PCA is used as a step to reduce the dimensionality of the data before a

supervised machine learning method is applied, one has to bear in mind that the

components with the smallest eigenvalues might actually contain the signal that one

wishes to use for the supervised learning task [Shawe-Taylor and Cristianini, 2004].

3.2 Canonical Correlation Analysis (CCA)

There are situations in which one is not interested in how the data vary in X,

but in the relationships between data coming from two sources X and Y . One of

the ways to explore these relationships is by using Canonical Correlation Analysis

(CCA) [Hotelling, 1936].

Let X ∈ Rn×p and Y ∈ Rn×q be two matrices with data coming from the same

n subjects. X and Y are called the views of a paired dataset, where the information

expressed in each one is originated from a latent process, i.e. the data in X and Y

are generated by an underlying process which is not directly observed. For example,

X may contain data coming from MRI scans, while Y may contain data coming

from clinical exams, both from the same subjects.

CCA tries to find a weight vector pair u ∈ Rp×1 and v ∈ Rq×1, such that the

projections of the data matrices onto the weight vector pair are maximally correlated.

In other words, let the projections be denoted by ξ = Xu and ω = Y v, CCA

computes u and v, such that ρ is maximised:

ρ= Cov(ξ,ω)
Var(ξ)Var(ω) (3.5)

Equation 3.5 can be re-written as:

ρ= uᵀCxyv√
uᵀCxxu

√
vᵀCyyv

(3.6)

where Cxy =XᵀY (covariance matrix ofX and Y ), Cxx =XᵀX (covariance matrix

of X), and Cyy = Y ᵀY (covariance matrix of Y ).
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The solution to this problem is invariant to the rescaling of u and v, thus it

can be obtained by solving the following optimisation problem [Shawe-Taylor and

Cristianini, 2004]:

maximise
u,v

uᵀCxyv

subject to uᵀCxxu= 1 and vᵀCyyv = 1
(3.7)

There are several ways in which classical CCA (Equation 3.7) can be solved,

including: solving a standard eigenvalue problem [Hotelling, 1936], solving a gener-

alised eigenvalue problem [Bach and Jordan, 2002], and using SVD [Healy, 1957].

However, a detailed description of these algorithms is beyond the scope of this thesis.

For a more detailed review, please refer to the paper by Uurtio et al. [(accepted)].

3.2.1 Regularised Canonical Correlation Analysis

As mentioned in Section 2.1.1, it is often necessary to add some regularisation to the

model, in order to limit its complexity. One of the most common ways to do this is

by imposing penalties on the norm of the weight vectors, this can also be done for

CCA, by re-writing Equation 3.6 as:

ρ= uᵀCxyv√(
(1− τx)uᵀCxxu+ τx ‖u‖22

)(
(1− τy)vᵀCyyv+ τy ‖v‖22

) (3.8)

where τx and τy are regularisation hyper-parameters.

The regularisation hyper-parameters can be varied between 0 and 1. If

{τx, τy}= {0,0}, the optimisation problem is equal to non-regularised CCA. However,

if {τx, τy}= {1,1}, then the optimisation problem maximises the covariance between

the projections, instead of the correlation. This is known as a Partial Least Squares

(PLS) problem, and will be addressed in Section 3.3. Thus, the hyper-parameters τx
and τy allow for a smooth interpolation between CCA and PLS [Shawe-Taylor and

Cristianini, 2004].

Note that there are other strategies to regularise CCA, including strategies using

sparsity constraints [Hardoon and Shawe-Taylor, 2011, Chi et al., 2013, Avants et al.,

2014]. These ideas will be further explored in Chapters 7 and 8.
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3.2.2 Kernel Canonical Correlation Analysis (KCCA)

As previously mentioned in Section 2.1.2, sometimes the patterns of interest in the

data are not linear, which means that linear methods may not be able to properly

detect them. Both CCA (Equation 3.6) and regularised CCA (Equation 3.8) are

linear methods, which means that they may not be able to model the relationships

between X and Y , if these happen to be non-linear. One of the ways to address this

issue, is by adapting CCA into Kernel CCA (KCCA) using non-linear kernels [Lai

and Fyfe, 2000].

The first step is to change from the original primal formulation into a dual

formulation. Just like in Section 2.1.2.2, this consists in expressing the weight vectors

as a function of the input data:

u=Xᵀαx and v = Y ᵀαy

The optimisation problem expressed in Equation 3.7, can then be re-written as:

maximise
αx,αy

αᵀ
xXX

ᵀY Y ᵀαy

subject to

αᵀ
xXX

ᵀXXᵀαx = 1 and αᵀ
yY Y

ᵀY Y ᵀαy = 1

(3.9)

By using Equation 2.10, the data matrices X and Y in Equation 3.9 can be

substituted by kernels:

maximise
αx,αy

αᵀ
xKxKyαy

subject to

αᵀ
xK

2
xαx = 1 and αᵀ

yK
2
yαy = 1

(3.10)

An analogous KCCA optimisation problem can be written for the regularised

version of CCA expressed in Equation 3.8:

maximise
αx,αy

αᵀ
xKxKyαy

subject to

(1− τx)αᵀ
xK

2
xαx+ τxα

ᵀ
xKxαx = 1 and (1− τy)αᵀ

yK
2
yαy + τyα

ᵀ
yKyαy = 1

(3.11)
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Just as in the case of CCA (Section 3.2), there are several ways in which these

KCCA problems (Equation 3.10 and 3.11) can be solved, including some strategies

using matrix decomposition methods, such as the Cholesky decomposition [Shawe-

Taylor and Cristianini, 2004]. However, as previously mentioned, a detailed review

of these methods is beyond the scope of this thesis.

3.3 Partial Least Squares (PLS)

When X ∈ Rn×p or Y ∈ Rn×q are ill-conditioned, i.e. p > n or q > n, CCA may

encounter numerical issues. Indeed, some CCA algorithms (e.g. using SVD) rely on

the computation of (XᵀX)−1/2 and (Y ᵀY )−1/2, which cannot be properly computed

if X or Y are ill-conditioned, as the necessary operations involve matrix inversions.

One of the ways to address this issue is by regularising CCA (Section 3.2.1), or by

using Partial Least Squares (PLS). The latter could be seen as an extreme form of

regularised CCA, i.e. solving Equation 3.8 with {τx, τy}= {1,1}.

PLS is not a single method, but a class of different methods which, unlike CCA,

aim to maximise the covariance between the projections, instead of the correlation.

In this section, an overview of the general concepts of PLS will be made, along with

some of its classical variants.

Let X ∈Rn×p and Y ∈Rn×q be the two mean-centered and normalised matrices

(each feature has zero mean and standard deviation equal to 1) of a paired dataset, i.e.

each row of X and Y contains information about a sample coming from two sources

of information (e.g. neuroimaging and clinical scores). The first PLS approaches were

introduced by Wold [1985] and, essentially, try to find a set of projections ξ =Xu

and ω = Y v which have a maximum covariance [Wegelin, 2000]:

maximise Cov(ξ,ω) = maximise
‖u‖2=1,‖v‖2=1

Cov(Xu,Y v) (3.12)

In order to compute the solution to the problem expressed in Equation 3.12, one

can use the Non-linear Iterative Least Squares (NIPALS) [Wold, 1974] (Algorithm 3.3).

After a pair of projection vectors {ξ,ω} is computed using Algorithm 3.3, this

can be used to deflate the data matrices X and Y in order to find subsequent

weight vector pairs. The main difference between the classical types of PLS is in
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Algorithm 3.3 NIPALS algorithm [Rosipal and Krämer, 2006].
1: Initialise ω randomly.
2: repeat
3: u←Xᵀ ω

ωᵀω
4: u← u/‖u‖2
5: ξ←Xu

6: v← Y ᵀ ξ
ξᵀξ

7: v← v/‖v‖2
8: ω← Y v
9: until convergence

the deflation procedure, which means that these PLS variants will provide the same

solution for the first weight vector pair, but subsequent weight vector pairs will be

different. Some of the most common PLS variants are briefly described below, for a

more detailed review of these methods, please refer to the papers by Wegelin [2000]

and Rosipal and Krämer [2006].

PLS Mode-A

The data matrices are deflated using the loadings, which are computed as follows [Rosi-

pal and Krämer, 2006]:

γh =Xᵀ
h

ξh
ξᵀhξh

and δh = Y ᵀ
h

ωh
ωᵀ
hωh

The matrix deflations are then performed as [Rosipal and Krämer, 2006]:

Xh+1 =Xh−ξhγ
ᵀ
h and Y h+1 = Y h−ωhδᵀh (3.13)

Since the deflation of both data matrices is done in the same way, i.e. each data

matrix is deflated using its corresponding projections and loadings, PLS Mode-A is

considered a symmetric variant of PLS.

PLS1 and PLS2

PLS2 is a method used to predict the variables in one view from the other, i.e. it can

be seen as a regression problem in which the projections of X ({ξ1, . . . ,ξk}) are used

to predict Y . The deflation is performed in the following way [Rosipal and Krämer,

2006]:

Xh+1 =Xh−ξhγ
ᵀ
h and Y h+1 = Y h−

ξhξ
ᵀ
hY h

ξᵀhξh
= Y h−ξhvh
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PLS1 is a special case of this approach, in which Y corresponds to a single

column. Unlike PLS Mode-A, PLS1 and PLS2 are asymmetric versions of PLS, due

to the fact that X and Y are deflated differently.

PLS-SVD

PLS-SVD is a symmetric variant of PLS. Unlike PLS Mode-A, it does not perform

matrix deflation based on ξ, ω, γ and δ. Instead, the method computes u and v by

applying SVD (Section 3.1.1) to the covariance matrix XᵀY and then uses these

weight vectors to directly deflate the covariance matrix [Wegelin, 2000]. In other

words, the vectors that solve the optimisation problem described in Equation 3.12, are

the principal components of the covariance matrix. The whole procedure (including

the deflation) is equivalent to the one described in Algorithm 3.2, however, matrixM

is substituted by C =XᵀY . Although it is possible to use this variant for prediction,

it is usually used in the context of modeling [Wegelin, 2000].

One of the main differences between PLS-SVD and PLS Mode-A, is in the

orthogonality of the projections. Let Ξ be a matrix where each column corresponds

to a projection ofX ({ξ1, . . . ,ξk}), and Ω be a matrix where each column corresponds

to a projection of Y ({ω1, . . . ,ωk}). One of the consequences of PLS-SVD is that,

usually, neither ΞᵀΞ nor ΩᵀΩ are diagonal, but ΞᵀΩ is. The opposite is true for

PLS Mode-A, i.e. ΞᵀΞ and ΩᵀΩ are diagonal, but ΞᵀΩ is not [Wegelin, 2000].

3.4 Sparse Partial Least Squares (SPLS)
In high-dimensional settings, such as when using neuroimaging data, it is often

desirable to remove non-informative features from the model. This will usually

improve both the model’s performance, and the interpretability of the solution, since

the latter will include only a subset of the features. Sparse Partial Least Squares

(SPLS) is an extension of PLS which allows the computation of sparse solutions,

i.e. sparse weight vectors pairs. Several SPLS methods have been proposed around

the same time with different names [Lê Cao et al., 2008, Parkhomenko et al., 2009,

Witten et al., 2009], but with very similar properties. This section will start by

focusing on one of the most popular ones [Witten et al., 2009], and explain the

differences between this method and two similar methods from around the same

time. It will then described some of the methods proposed in the literature for

SPLS hyper-parameter optimisation (Section 3.4.1), and for statistical evaluation
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(Section 3.4.2).

Witten et al. [2009] derived a sparse version of PLS by starting with a CCA

optimisation problem and writing it as follows:

maximise
u,v

uᵀXᵀY v subject to uᵀXᵀXu6 1, vᵀY ᵀY v 6 1

Then, a sparse version of CCA was obtained by adding two l1-norm constraints

to the CCA optimisation problem:

maximise
u,v

uᵀXᵀY v

subject to

uᵀXᵀXu6 1, vᵀY ᵀY v 6 1, ||u||1 6 cu, ||v||1 6 cv

Due to the high dimensionality of the data, the matrices XᵀX and Y ᵀY were

substituted by identity matrices, which lead to the final optimisation problem [Witten

et al., 2009]:
maximise

u,v
uᵀXᵀY v

subject to

||u||22 6 1, ||v||22 6 1, ||u||1 6 cu, ||v||1 6 cv

(3.14)

where cu and cv are the regularisation hyper-parameters that control the l1-norm

(‖ · ‖1) constraints of u and v, respectively. The l1-norm constraints impose sparsity,

which means that the lower the values of cu and cv are, the stronger the l1 constraint

on the corresponding view is and, consequently, the fewer features are included in

the model. In order for both l1-norm and l2-norm constraints to be active, the

values of the hyper-parameters must be 1 6 cu 6
√
p and 1 6 cv 6

√
q [Witten et al.,

2009]. Although the l2-norm constraints are expressed as inequalities, in practice the

l2-norms of both u and v will be set to 1 (Algorithm 3.4).

This method is referred to as “diagonal penalised CCA” in the original paper by

Witten et al. [2009]. However, what is being maximised is no longer the correlation

between the projections, but the covariance, which makes this problem equivalent to

SPLS.

The weight vectors u and v have the same length as the number of features in
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the corresponding view, i.e. u ∈ Rp×1 and v ∈ Rq×1. They represent the latent space

found by SPLS, capturing multivariate associative effects between the two views.

Since sparsity constraints are applied to the model, several entries of u and v will be

equal to zero. By looking at the paired vectors, one can identify the features in each

view related with each associative effect.

The problem expressed in Equation 3.14 is solved by using Algorithm 3.4, which

allows one to obtain k pairs of sparse weight vector pairs.

Algorithm 3.4 SPLS algorithm [Witten et al., 2009].
1: Initialise U = 0 . U ∈ Rn×k
2: Initialise V = 0 . V ∈ Rp×k
3: Initialise D = 0 . D ∈ Rk×k
4: Let C←XᵀY
5: for h= 1, . . . ,k do
6: Initialise v to have ‖v‖2 = 1
7: repeat
8: u←Cv
9: u← S(u,γu)

‖S(u,γu)‖2
, where γu = 0 if this results in ‖u‖1 6 cu; otherwise, γu is

set to be a positive constant such that ‖u‖1 = cu.

10: v←Cᵀu
11: v← S(v,γv)

‖S(v,γv)‖2
, where γv = 0 if this results in ‖v‖1 6 cv; otherwise, γv is

set to be a positive constant such that ‖v‖1 = cv.
12: until convergence
13: d= uᵀCv
14: C←C−duvᵀ . Deflate matrix C
15: U(:,h) = u, D(h,h) = d, V (:,h) = v
16: end for
17: return U , D, V

The operator S(·, ·) (steps 9 and 11) is the soft-thresholding operator, defined

as S(a,γ) = sgn(a)(|a|−γ)+, where γ > 0 is a constant and x+ is equal to x if x > 0

and x = 0 if x 6 0 [Witten et al., 2009]. The initialisation of v in step 6 can be

done in several ways [Witten et al., 2009, Parkhomenko et al., 2009, Waaijenborg

et al., 2008], in this thesis, it was done by taking vector v from the first weight

vector pair given by the SVD of C [Witten et al., 2009]. γu and γv have to be set so

that the l1-norm constraints are obeyed. This is done by iteratively searching for γu
and γv, such that ‖u‖1 ≈ cu and ‖v‖1 ≈ cv.

Note that Algorithm 3.4 has some similarities with SVD using the power method

(Algorithm 3.2), the key difference between the two algorithms is the addition of the
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soft-thresholding operators S(·, ·), which impose sparsity on the solutions. Indeed,

the power method has been used to solve PLS-SVD (Section 3.3), which means that

SPLS can be seen as a sparse version of PLS-SVD.

In other SPLS algorithms, such as the ones by Lê Cao et al. [2008] and

Parkhomenko et al. [2009], the sparsity is set by adjusting γu and γv instead of the

l1-norm constraints (cu and cv). This will make the algorithms faster, since γu and γv
do not have to be searched iteratively. However, by setting γu and γv directly, there

are situations in which these values might be too high and all the entries of u or

v will be set to zero, i.e. no variables are included in the model. The exact values

of γu and γv for which this happens is dataset depended. On the other hand, by

using cu or cv to set ‖ · ‖1 = 1, there is a guarantee that at least one entry of the

corresponding weight vector will be different than zero (i.e. at least one variable is

included), making the range of the regularisation hyper-parameters easier to define.

Another difference between the algorithm proposed by Witten et al. [2009] and

the one proposed by Lê Cao et al. [2008], is the deflation step. Witten et al. [2009]

uses the Hotelling’s deflation (i.e. the symmetric deflation step used in SVD and

PLS-SVD), whereas Lê Cao et al. [2008] uses an asymmetric deflation step, in order

to use SPLS in a regression formulation (Section 3.3).

Several other variants of SPLS have been proposed, including supervised versions

and formulations with more than two views [Witten and Tibshirani, 2009]. However,

their description is outside the scope of this thesis.

Although Algorithm 3.4 describes how to solve the SPLS optimisation problem,

it can be adapted to solve a Sparse Canonical Correlation Analysis (SCCA) problem.

Parkhomenko et al. [2009] proposed a similar algorithm in which steps 9 and 11 are

substituted by simple soft-thresholding operators (like Lê Cao et al. [2008]), but C

was computed as:

C← (XᵀX)−1/2(XᵀY )(Y ᵀY )−1/2 (3.15)

Note that ifXᵀX and Y ᵀY are substituted by identity matrices in Equation 3.15,

then, SPLS is recovered.

3.4.1 Hyper-parameter optimisation

There are two sparsity hyper-parameters which have to be set when using SPLS (cu
and cv). It has been argued that, in some cases, these can be fixed a priori [Witten
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et al., 2009, Lê Cao et al., 2008, 2009], however, this does require a fair amount

of assumptions about the data, i.e. one assumes to know approximately how many

informative features exist in each view of the dataset. By letting SPLS select the

hyper-parameters automatically, one takes a more data-driven approach to the

problem, by letting the model choose the adequate amount of sparsity necessary

to model the multivariate associations in the data. This section aims to give an

overview of some of the approaches proposed in the literature for hyper-parameter

optimisation in SPLS.

Waaijenborg et al. [2008] selected the hyper-parameters using a CV framework.

For each hyper-parameter combination, the authors performed a k-fold CV where

the average difference between the train set correlation and test set correlation was

computed:

∆ρ= 1
K

K∑
k=1

∣∣∣∣∣∣Crr
(
X(−k)u(−k),Y (−k)v(−k)

)∣∣∣− ∣∣∣Crr
(
Xku(−k),Y kv(−k)

)∣∣∣∣∣∣
where, for fold k, X(−k) and Y (−k) are the train data matrices (subset k has been

removed); Xk and Y k are the test data matrices; u(−k) and v(−k) are the weight

vectors computed using the train data; and Crr(Xu,Y v) denotes the correlation

between the projections, as described in Equation 3.6. Thus, the selected hyper-

parameter combination will be the one in which the correlations on the train data

and test data agree more closely, i.e. ∆ρ is small. This criteria was also used more

recently by Lin et al. [2014].

Parkhomenko et al. [2009] argued that the criteria proposed by Waaijenborg

et al. [2008] was not well-motivated, since it penalises cases in which the correlation

on the test set is higher than on the train set [Parkhomenko et al., 2009]. Moreover,

note that there might exist some cases in which both the correlation on the train and

test data are close to zero, which will lead to a small ∆ρ, even thought the model

does not fit the data well. Parkhomenko et al. [2009] adopted the average absolute

correlation on the test set as the criteria:

ρ̄= 1
K

K∑
k=1

∣∣∣Crr
(
Xku(−k),Y kv(−k)

)∣∣∣
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Witten et al. [2009] proposed a hyper-parameter selection procedure based on

permutations. In this case, for each hyper-parameter combination {cu, cv}, matrix

X was fixed, and matrix Y was permuted B times. The model was estimated each

time and the correlation of the projections was computed:

ρb = Crr(Xub,Y bvb)

where Y b denotes the permuted data matrix; ub and vb denote the weight vectors

obtained using the data matrices X and Y b, for permutation b. The p-value was

then given by:

p= 1
B

B∑
b=1

1ρb>ρ

where ρ = Crr(Xu,Y v). The hyper-parameter combination {cu, cv} was chosen

based on the smallest p-value [Witten et al., 2009]. Alternatively, the standard

deviation (σ) of ρb can be taken into account [Witten and Tibshirani, 2009]. In such

cases, the hyper-parameter combination was chosen so that (ρ− 1
N

∑
b ρb)/σ is the

largest. Note that these approaches do not use a CV framework (as in the papers by

Waaijenborg et al. [2008] and Parkhomenko et al. [2009]), the data matrices are not

split into train and test sets.

In SPLS regression frameworks, such as the one proposed by Lê Cao et al. [2008],

the hyper-parameters were set using a CV framework, with the prediction error as

the criteria for selection. However, this criteria was only used for simulated data, in

the real dataset, the authors arbitrary set the number of non-zero weights [Lê Cao

et al., 2008].

Despite the emphasis of this thesis on hyper-parameter selection, there have been

studies in the literature which made use of other approaches, such as stability selection.

This approach was originally introduced by Meinshausen and Bühlmann [2010] for

the LASSO, however, other applications and variations have been proposed [Rondina

et al., 2014]. The method consists in fixing the sparsity hyper-parameters, and

subsampling the data set (e.g. sampling random rows of the data matrix X), fitting

a model for each subsample. Then, the variables are selected based on how often

they were included in the models trained with the different subsamples. The final

model is trained using only the features whose frequency of selection was above a
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certain threshold [Rondina et al., 2014]. Although stability based approaches have

been proposed for SPLS [Lê Cao et al., 2011, Labus et al., 2015], they are very

computationally expensive. Further comments on this computational cost are made

in the discussion of Chapter 6.

3.4.2 Statistical evaluation

As mentioned in Section 2.2.3, it is often desirable to assess the statistical significance

of the results given by machine learning approaches. One of the most popular ways

to perform this assessment is by using permutation tests. However, there is no unified

procedure to perform these tests in the SPLS literature. In this section, a brief

overview of some of the previously proposed approaches will be made.

Waaijenborg et al. [2008] proposed a permutation framework using the projections

of the test data, without re-training the model. For each CV fold k, and for B

permutations, ξk =Xku(−k) were permuted while ωk = Y kv(−k) were fixed, then,

the differences between the correlations of the train and the permuted test sets were

computed:

∆ρk,b = Crr(ξ(−k),ω(−k))−Crr(ξk,b,ωk), ∀k ∈ {1, . . . ,K}, ∀b ∈ {1, . . . ,B},

where the train data projections are denoted as ξ(−k) =X(−k)u(−k) and ω(−k) =

Y (−k)v(−k). These were then compared with the same procedure performed on the

non-permuted test sets:

∆ρk = Crr(ξ(−k),ω(−k))−Crr(ξk,ωk), ∀k ∈ {1, . . . ,K}

Note that Crr(ξk,b,ωk) should be close to zero, thus, if there is no statistically

significant association, then ∆ρk,b ≈∆ρk.

In the papers by Witten et al., the statistical significance of the weight vector

pairs was given by the same procedure which was used to select the SPLS hyper-

parameters (Section 3.4.1) since this was based on the computation of p-values [Witten

et al., 2009, Witten and Tibshirani, 2009].

Le Floch et al. [2012] performed a permutation test using a CV for each hyper-

parameter combination, i.e. for a fixed hyper-parameter combination, the data were

subjected to B permutations of Y and, for each permutation b, a 10-fold CV was
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performed and the average correlation ρ̄b was computed:

ρ̄b = 1
K

K∑
k=1

∣∣∣Crr
(
Xku(−k),b,Y k,bv(−k),b

)∣∣∣
The p-value was then obtained by comparing these correlations with ρ̄ computed

with the non-permuted data. This procedure was repeated for each hyper-parameter

combination, i.e. each hyper-parameter combination had an associated p-value. The

p-values were then corrected for multiple comparisons. Note that the authors did not

performed a nested-CV (Section 2.2), this was due to the very large computational

time associated with nested-CV [Le Floch et al., 2012].

Lin et al. [2014] tested the statistical significance of their results by obtaining

u and v based on the optimal hyper-parameters and calculating the correlation

between the projections, i.e. Crr(Xu,Y v). Then, the order of the samples in one

view was randomly permuted B times, and the correlation was computed using the

same weight vectors u and v to project the data [Lin et al., 2014]. The p-value was

then estimated by counting how many times the correlations computed during the

permutations were higher or equal to the one computed with non-permuted data.

Note that this approach does not re-train the model after each permutation.

3.5 Applications in neuroimaging
This section will give a brief overview of some applications of CCA and PLS in

neuroimaging studies. It will cover several variants of the methods, including its

sparse versions: SCCA and SPLS.

3.5.1 Canonical Correlation Analysis (CCA)

As mentioned in Section 3.2, the objective of CCA is to find pairs of weight vectors

which maximise the correlation between the projections of both views.

Usually, CCA is applied with some sort of regularisation. However, there are a

few examples of non-regularised CCA in the literature, including studies which explore

the autocorrelation of Functional Magnetic Resonance Imaging (fMRI) signals [Borga

et al., 2002], and model the hemodynamic response with spatial relationships in

fMRI [Friman et al., 2001]. Some studies have also used non-regularised CCA, but

combined with dimensionality reduction steps like PCA [Smith et al., 2015, Rosa

et al., (in preparation)] and ICA [Miller et al., 2016].
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In its kernel version, KCCA has been used to find associations between: fMRI

data and visual stimuli [Hardoon et al., 2007], brain volume and genetics [Hardoon

et al., 2009], fMRI and hemodynamic responses [Wang et al., 2005], fMRI and

multivariate labels [Blaschko et al., 2011], cortical thickness and clinical/demographic

variables for autism [Misaki et al., 2012], etc.

Although it is outside the scope of this thesis, there have been extensions of

CCA algorithms proposed in the literature which accommodate for more than two

views, including: combining multi-set canonical correlation analysis (mCCA) with

joint independent component analysis (jICA) to study schizophrenia using three

views (fMRI, diffusion tensor imaging, and methylation data) [Sui et al., 2012];

using mCCA to study fMRI and EEG data on a trial-to-trial covariation across the

modalities [Correa et al., 2010]; and using mCCA to study schizophrenia using three

types of data (functional MRI, diffusion MRI, and structural MRI) [Sui et al., 2015a].

3.5.2 Partial Least Squares (PLS)

PLS has been applied in neuroimaging for many different tasks, including modeling

and prediction. The specific name given to the PLS version applied in each study is

often not related with the algorithm itself, but with the type of experimental design.

The experimental designs of each one of these studies is outside the scope of this

thesis, for a more detailed review, please refer to the paper by Krishnan et al. [2011].

The technique was fist introduced in functional neuroimaging by McIntosh et al.

[1996] to compare encoding and recognition of faces using PET data as one view,

and the reaction time of the subjects during a face matching and recognition task

as the other view. Since then, PLS has been applied in many different studies,

including: the study of Alzheimer’s disease (AD), by combining PET data with other

clinical information [Price et al., 2004]; to examine the relationship between brain

and neuropsychological test scores in a schizophrenia dataset [Nestor et al., 2002]; to

find relationships between cognitive abilities and grey matter morphology in healthy

subjects [Ziegler et al., 2013]; to study emotional processing [Keightley et al., 2003b];

memory [Nyberg et al., 1996, Della-Maggiore et al., 2000]; personality [Keightley

et al., 2003a], etc.

As stated in Section 3.3, PLS can be used to predict variables in a set Y from

variables in a set X, which is is sometimes referred to as Partial Least Squares
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Regression (PLSR) [Krishnan et al., 2011]. This method had been applied for

behaviour prediction, e.g. Giessing et al. [2007] used it to predict the effects of

nicotine on behaviour. However, it has also been applied in other tasks, such as,

finding shape dependencies between sub-cortical brain regions [Rao et al., 2008].

3.5.3 Sparse CCA and Sparse PLS

Since there seems to be a lack of a unified naming convention in the literature, it

is not always clear which algorithms the authors apply in the various SCCA/SPLS

studies, i.e. some studies claim to solve a SCCA optimisation problem, when it fact

it is an approximation which makes it closer/equivalent to SPLS. Therefore, the

applications of SCCA/SPLS will be described together in the same section.

SCCA/SPLS has been used in several genetics studies, since it is a field which

deals with high dimensional data, thus, the ability to select smaller and more inter-

pretable subsets of genes is an advantage. Indeed, several papers which proposed

the first SCCA/SPLS approaches used such datasets to demonstrate their perfor-

mance [Waaijenborg et al., 2008, Lê Cao et al., 2008, Parkhomenko et al., 2009,

Witten et al., 2009, Witten and Tibshirani, 2009].

The use of SCCA/SPLS is still not as common in neuroimaging. However, there

are a few examples in the literature of combining neuroimaging information with

genetics. Le Floch et al. [2012] applied SPLS to a dataset comprised of 1054068

Single Nucleotide Polymorphisms (SNPs) and 34 fMRI Regions of Interest (ROIs)

from subjects performing a general cognitive assessment fMRI task. The framework

included a dimensionality reduction step applied to the SNPs, using an univariate

filter prior to applying SPLS. The first two weight vector pairs were computed, and

sparsity was only applied on the filtered SNPs (not on the fMRI ROIs) [Le Floch

et al., 2012]. Both the sparsity hyper-parameter and the univariate filter threshold

were optimised. SPLS was also compared with other methods, including PLS and

CCA. Other SPLS studies using genetic and neuroimaging data include the ones

by Lin et al. [2014] and Grellmann et al. [2015], which applied it to datasets from

patients with schizophrenia. Unlike the study by Le Floch et al. [2012], these studies

used whole-brain data, and did not apply a dimensionality reduction step. Moreover,

Lin et al. [2014] applied a group sparse version of SPLS, which took into account a

priori assumptions regarding the data structure.
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SCCA/SPLS has been used in studies related to neurodegenerative diseases.

Avants et al. [2010] applied the method proposed by Witten and Tibshirani [2009]

to the study of Frontotemporal Dementia (FTD) and Alzheimer’s Disease (AD),

using imaging data in two views: structural T1-weighted MRI and Diffusion Tensor

Imaging (DTI). One of the most interesting results of the study is that it applied

a linear regression model using the projections of both views to predict the scores

of neuropsychological tests. The results showed that the projections of each disease

had an association with their corresponding clinical neuropsychological test, i.e. the

images from patients with AD showed a significant association with the Mini-Mental

State Examination (MMSE) and no significant association with verbal fluency, while

the reverse was observed for patients with FTD [Avants et al., 2010]. Despite these

interesting results, there were some limitations of the study, namely: the sparsity

levels were set a priori; only the first weight vector pair was considered; and only

unidirectional associations were investigated, i.e. positivity constrains were imposed

on the weights in order to improve the interpretability of the model [Avants et al.,

2010], however, these constraints may also limit the relationships captured by the

weight vector pairs. The use of neuroimaging data in both views has also been

used in other settings. For example, Rosa et al. [2015] used SPLS to estimate the

similarity between two Arterial Spin Labeling (ASL) datasets from the same subjects

using different drugs, and Sui et al. [2015b] used it to analyse a dataset comprised of

T1-weighted structural MR images and DTI data.

In another study by Avants et al., neurodegenerative diseases were again the

focus. However, this time the authors used SCCA to find correlations between

structural MR data (grey matter) and clinical variables coming from the Philadelphia

Brief Assessment of Cognition (PBAC) [Avants et al., 2014]. This test contains 20

variables grouped into 5 psychometric sub-scales, which test different cognitive and

behavioral/comportment deficits. Avants et al. [2014] performed 5 tests, each one

with the MR images as one view and the clinical variables of a specific sub-scale as

the other view. The results showed that the dimensionality reduction provided by

SCCA enhanced the ability to detect associations between multivariate psychometric

batteries and network level grey matter density measures, claiming to be the first

study to have done it [Avants et al., 2014]. However, this study applied sparsity on
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the image voxels only and, once again, imposed positivity constraints on the weight

vectors.

Other studies have applied SPLS to study the relationship between clinical scores

and brain regions. Olson Hunt et al. [2014] have applied the method to a dataset

comprised of brain ROIs (X) and the final score of the Modified Mini-Mental State

Examination (Y ). The authors then fitted several models with different number

of components ({u1, . . . ,uk}), and sparsity levels for X, in order to determine how

often each ROI was selected across all the models.

SPLS can also be used in a supervised classification setting, in this case, the

variables of Y are categorical, this is known as Sparse Partial Least Squares Discrim-

ination Analysis (SPLS-DA). Labus et al. [2015] applied SPLS-DA to study pain, the

authors used a dataset with patients with Irritable Bowel Syndrome (IBS) and con-

trols, the features in X were derived from structural brain ROIs while Y contained

the labels. The sparsity was set by stability selection, and the predictive ability of

the final model was assessed on a hold-out dataset. This ability was characterised

by supervised learning classification metrics, such as: sensitivity, specificity, positive

predictive value, and negative predictive value.

Note that there have been other extensions of SPLS/SCCA methods with

different kinds of sparsity penalties, which are usually chosen based on a priori

assumptions regarding data structure [Lin et al., 2014, Du et al., 2015]. However,

these specific adaptations are beyond the scope of this thesis.

3.5.4 Limitations

Although there is an increased interest in the application of sparse eigen-decomposition

methods to neuroimaging data, there are still a few limitations. The first is the

fact that the proposed SPLS methods use matrix deflation approaches which are

inherited from their non-sparse versions [Lê Cao et al., 2008, Witten et al., 2009].

However, it is known that these deflation strategies rely on assumptions which do

not hold in sparse settings, and will lead to weight vector pairs which are no longer

orthogonal [Mackey, 2008]. This issue is addressed in Chapter 4 with the proposal of

an alternative deflation approach [Monteiro et al., 2014]. The issue is later revisited

in Chapter 6 [Monteiro et al., 2016].

Despite the previous use of SCCA/SPLS with datasets containing neuroimaging
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and clinical/demographic data [Avants et al., 2014, Olson Hunt et al., 2014], these

usually rely on the use of sparsity on a single view. However, there might be an

advantage to use sparsity in both views, and to apply different levels of sparsity per

weight vector pair and per view, in order to capture the effects without relying on

the assumption that the data on the demographic/behavioral view is not sparse.

The first steps towards this direction are presented in Chapter 5 [Monteiro et al.,

2015], and are later explored in Chapter 6, by going one level deeper, and finding

associations between whole-brain MRI data and the individual items of a clinical

exam [Monteiro et al., 2016].

Due to the high dimensionality of the neuroimaging data, most studies with

eigen-decomposition methods in neuroimaging have focused on the use of linear

models [Hardoon et al., 2007, Blaschko et al., 2011]. There are a few examples in the

literature which use non-linear versions of CCA for specific applications with low

dimensional data [Dong et al., 2015]. In exploratory approaches using neuroimaging

and behaviour, the dimensionality of the view containing the behaviour data is

usually much lower than the view containing the neuroimaging data. Therefore, it is

interesting to explore the possibility of modeling potential non-linearities on the lower

dimensional view, while maintaining sparsity constraints on the higher dimensional

view. In order to explore this possibility, a novel primal-dual SCCA approach is

proposed in Chapter 8, which contains both sparsity and non-linear properties.





Chapter 4

Alternative matrix deflation strategy

for SPLS

As mentioned in Section 3.5.4, the deflation step originally proposed by Witten et al.

[2009] does not provide orthogonal sparse weight vector pairs. The consequence of

this non-orthogonality is that each weight vector pair obtained after matrix deflation

might not express a new effect in the data, instead, it may fit the same effect described

by its predecessor.

In this chapter, an alternative deflation step is described, which tries to address

this issue [Monteiro et al., 2014].

4.1 Introduction
Witten et al. [2009] proposed a SPLS approach which has gained some popularity in

neuroimaging, being applied in a few studies, either directly or with some variant

[Wan et al., 2011, Rosa et al., 2015]. The algorithm computes a set of sparse

weight vector pairs, by computing each pair individually and deflating the covariance

matrix between the two views in order to compute the next pair (Algorithm 3.4).

However, this step is performed using Hotelling’s deflation, which may not be the

most adequate procedure for sparse methods, failing to provide sets of orthogonal

weight vectors [Mackey, 2008].

In this chapter, the use of an alternative deflation method is proposed, which

tries to enforce orthogonality between the weight vector pairs. This should be of

utmost importance if one wants to acquire a set of sparse weight vector pairs which

express different effects in the data.

In order to test the proposed deflation strategy, the SPLS method described by
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Witten et al. [2009] was implemented and applied to an open-access dementia dataset

consisting of T1-weighted MRI images and clinical/demographic information [Marcus

et al., 2009]. The weight vectors were then obtained with the Hotelling’s deflation

step described by Witten et al. [2009] and the proposed deflation step. By comparing

both methods in terms of the orthogonality of the computed weight vector pairs, the

features that each one selects, and how these influence the projections of the subjects

onto the latent space, this chapter aims to provide some intuition as to why one

should adopt a deflation step different from the one proposed by Witten et al. [2009].

4.2 Materials and Methods

4.2.1 Proposed deflation

The Hotelling’s deflation has been used in many algorithms, including PLS, SPLS,

PCA, and Sparse PCA (SPCA). However, as noted by Mackey [2008], the use of

this deflation strategy with a sparse method is usually not appropriate. Mackey

[2008] focused on SPCA, and notes that by imposing sparsity on the optimisation

problem, the solutions will no longer correspond to the eigenvectors of XᵀX, but

to pseudo-eigenvectors. In other words, sparse weight vectors which try to explain

the maximum covariance in the data, but some of the properties associated with

eigenvectors no longer hold, including the orthogonality between them [Mackey, 2008].

A similar parallel can be drawn for the use of the Hotelling’s deflation with SPLS.

Let C be the covariance matrix between X and Y , and C̃ the covariance matrix

after being deflated. C̃ can be computed by computing the deflated versions of

Xᵀ and Y , and multiplying them: C̃ = X̃
ᵀ
Ỹ . These can be computed using the

projection deflation:

X̃ =X(Ix−uuᵀ) and Ỹ = Y (Iy−vvᵀ) (4.1)

where u and v are the weight vectors of X and Y , respectively; Ix and Iy are the

identity matrices of X and Y , respectively.
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The deflated covariance matrix can be computed as:

C̃ = X̃ᵀ
Ỹ

= (Ix−uuᵀ)ᵀXᵀY (Iy−vvᵀ)

=XᵀY −XᵀY vvᵀ−uuᵀXᵀY +uuᵀXᵀY vvᵀ

=XᵀY −XᵀY vvᵀ−uuᵀXᵀY +duvᵀ (4.2)

It can be shown that the projection deflation (as expressed by Equation 4.2) is

equivalent to the Hotelling’s deflation, if u and v are true singular vectors and d its

corresponding singular value.

Equation 3.4, states that SVD decomposes a matrix M in the following way:

M =UDV ᵀ. Note that PLS-SVD (which is the basis for SPLS), is equivalent to

applying SVD to the covariance matrix C (Section 3.3), therefore, let M =C, since

U and V are orthonormal matrices, Equation 3.4 can be re-written as:

CV =UD or UᵀC =DV ᵀ

This means that, for a singular weight vector pair, one can write the following:

XᵀY v = du and uᵀXᵀY = dvᵀ (4.3)

By substituting (4.3) in (4.2), the Hotelling’s deflation is recovered:

C̃ =XᵀY −XᵀY vvᵀ−uuᵀXᵀY +duvᵀ

=XᵀY −duvᵀ−duvᵀ +duvᵀ

=XᵀY −duvᵀ (4.4)

However, due to the sparsity constraints imposed by SPLS, u and v are not true

singular vectors, which means that Equations 4.2 and 4.4 are not equivalent.

Witten et al. [2009] do acknowledge the lack of orthogonality of the weight

vector pairs using their deflation method. However, their proposed alternative tries

to enforce the orthogonality of {u1, . . . ,uk}, while not guaranteeing that the same

will hold for {v1, . . . ,vk}. Subsequent publications using SPLS with neuroimaging



78 Chapter 4. Alternative matrix deflation strategy for SPLS

data seem to adopt the original Hotelling’s deflation. Thus, this chapter will focus

on comparing the Hotelling’s deflation (Equation 4.4) with projection deflation

(Equation 4.2)

4.2.2 Dataset

A subset from the “OASIS: Longitudinal MRI Data in Nondemented and Demented

Older Adults” dataset (www.oasis-brains.org) was used to compare both deflation

strategies. The dataset includes T1-weighted MRI scans from subjects at different

time points, with the corresponding clinical information [Marcus et al., 2009]. In this

study, a subset of 142 subjects from the first time point was used. These included

58 male subjects and 84 female subjects with an average age of 75.4 years ± 7.7

years. Among these, 72 were considered as being healthy, 56 as demented, and 14 as

“converted”. The “converted” subjects correspond to subjects which were considered

as healthy at the first time point, but later developed dementia.

All images were preprocessed using SPM12b [Ashburner et al., 2013]. The

first step was to average all the repeats for each session followed by a grey matter

segmentation, then, the segmented images were registered using DARTEL [Ashburner,

2007], normalised to MNI space [Mazziotta et al., 1995] with isotropic 2 mm voxels

and smoothed with a Gaussian kernel with a Full Width at Half Maximum (FWHM)

of 8 mm. In addition, the head size was regressed out of the data and a mask

was applied to select voxels that had a probability of being grey matter equal or

above 20%. The grey matter probability maps within the mask were used as the

neuroimaging view (X) of SPLS.

For each subject, the following clinical/demographic information was used as the

clinical view (Y ) of SPLS: age, Socioeconomic Status (SES), education, Mini-Mental

State Examination (MMSE), and Clinical Dementia Rating (CDR). The SES was

assessed by the Hollingshead Index of Social Position and classified into five categories

from 1 (highest SES) to 5 (lowest SES), the MMSE is a clinical score used to grade

the cognitive state of patients from 0 (worst) to 30 (best), and the CDR is a score

grouping the subjects into 4 categories: “no dementia” (CDR = 0), “very mild

Alzheimer’s Disease (AD)” (CDR = 0.5), “mild AD” (CDR = 1) and “moderate AD”

(CDR = 2). For more information, please refer to the paper by Marcus et al. [2009].

All features in both views were mean-centered and normalised, such that each

www.oasis-brains.org
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feature vector had zero mean and l2-norm equal to 1.

4.2.3 Comparison framework

In order to compare both deflation approaches in their ability to provide sets of

orthogonal weight vectors, 100 random subsamples of 50% of the data were performed.

For each subsample, SPLS was used to compute the first three weight vector pairs

using Hotelling’s deflation (Equation 4.4), and using the proposed approach with

projection deflation (Equation 4.2), i.e. the covariance matrix C was deflated twice

with each deflation method. This choice allows one not only to assess if consecutive

weight vector pairs are orthogonal (i.e. u1 ⊥ u2 and u2 ⊥ u3), but also to assess if

non-consecutive weight vector pairs are orthogonal (i.e. u1 ⊥ u3). The dot products

between the weight vectors were then compared. In other words, for each random

subsample, the following dot products were computed: 〈u1,u2〉, 〈u1,u3〉, 〈u2,u3〉,

〈v1,v2〉, 〈v1,v3〉, and 〈v2,v3〉.

The sparsity hyper-parameters were set to cu = 50 and cv =
√

5 for both deflation

procedures. This hyper-parameter combination will not only guarantee that both

l1-norm and l2-norm constraints are active (Section 3.4), but it will also force u to be

sparse, while not being strong enough to force v to be sparse. This strategy allows

one to observe the effects of the deflation strategies in a view with sparsity, and in a

view without sparsity. Note that finding the optimal level of sparsity is not the aim

of this chapter, therefore, the hyper-parameter values were fixed a priori. The main

focus of this chapter is on the effects of the deflation step. Further investigations

into strategies for hyper-parameter selection will be presented in Chapters 5 and 6.

4.3 Results and Discussion

The dot products between the weight vector pairs were computed for each one of the

100 random subsamples of the data, these dot products were then plotted for both

deflation methods (Figure 4.1). Note that the dot product between two unit vectors

(i.e. ‖ · ‖2 = 1) will be equal to 0 if they are orthogonal, and to -1 or 1 if they are

collinear.

As one can see in Figure 4.1(a), the clinical weight vectors (v) computed using

Hotelling’s deflation were not orthogonal, the dot products were actually close to 1,

which means that the computed weight vectors were close to being collinear. On the
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other hand, the dot products of the clinical weight vectors computed using projection

deflation were all very close to 0 (they ranged between −1.04×10−15 and 1.05×10−15),

which means that projection deflation was able to provide approximately orthogonal

clinical weight vectors.

Figure 4.1(b) shows the dot products of the image weight vectors (u). Unlike the

dot products for the clinical weight vectors using Hotelling’s deflation, these were not

gathered close to 1, they were distributed along a larger range of values. This may be

due to the fact that they were sparse and had a much higher dimensionality, which

means that some features might be selected for some random subsample of the data

but not for another, making the dot products less consistent. However, projection

deflation was still able to compute approximately orthogonal weight vectors. The

distribution of the dot products was broader (Figure 4.1(b)) than the one for the

clinical weight vectors (Figure 4.1(a)), but still quite narrow (they ranged between

−0.03 and 0.06) and centered at 0.
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Figure 4.1: Dot product between the computed weight vectors.

One of the advantages of trying to enforce the orthogonality of the weight vectors

can be seen in Figure 4.2, which shows the weight maps for the first three image

weight vectors {u1,u2,u3} computed using all available data. The first weight vector

will be the same, since the covariance matrix (C) has not been deflated yet. However,

after the first deflation, one can see that the weight vector computed using Hotelling’s

deflation (u2) selected features surrounding the ones selected by the previous weight

vector (u1), and the third weight vector (u3) selected features surrounding the ones

selected by the second weight vector (u2). This is not the case for projection deflation,
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where each new weight vector selected features located in different regions.

Figure 4.2: First three image weight vectors computed using each deflation step. Red
regions correspond to positive weight values and blue regions correspond to
negative weight values.

An analogous effect was observed in the clinical weight vectors (Figure 4.3).

Even though these were not sparse, the use of Hotelling’s deflation had little effect on

the values of the entries from the second and third weight vector pairs. This was not

the case for the clinical weight vectors computed using projection deflation, whose

entries changed after each deflation step.

These results suggest that SPLS with Hotelling’s deflation detected the same

effect in the data for each weight vector pair. By trying to enforce the weight vectors

to be orthogonal, the effects described by the previous weight vectors were removed

from the data, allowing new effects to be detected.

The weight vectors were also used to plot the projections of the subjects onto the

lower dimensional sub-space (Figure 4.4). As one can see in Figures 4.4(a) and 4.4(b),
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Figure 4.3: First three clinical weight vectors computed using each deflation step.

the non-orthogonality of the weight vectors computed using Hotelling’s deflation lead

to projections which lie along a line, failing to capture the covariance of the data.

By using a projection deflation scheme (Figures 4.4(c) and 4.4(d)), the covariance

of the data is explored for subsequent weight vector pairs. It may even lead to

situations in which the separation between groups becomes more apparent, this can

be seen in Figure 4.4(c), where the demented (red) vs. non-demented (blue) subjects

form two separate clusters. However, one should note that some of the clinical features

are correlated with the group membership (i.e. demented and non-demented), which

explains why the algorithm was able to explore this information to split the groups.

Figure 4.4(d) shows that the projection of the subjects onto u2 and u3 computed

using projection deflation allowed from some demented subjects to move further

away from the non-demented ones, when compared with the same projections using

Hotelling’s deflation (Figure 4.4(b)). However, the separation is not as clear as in

the projection onto the clinical weight vectors (Figure 4.4(c)).
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(d) Projection def. – Image proj.

Figure 4.4: Projections of the data matrices onto the weight vectors computed using
both deflation strategies. Blue – Non-demented; Green – Converted; Red –
Demented.

4.4 Conclusion

Due to the increased interest in PLS and CCA, several neuroimaging and genetics

studies have applied, and continue to apply, sparse variants of these methods using

Hotelling’s deflation [Lin et al., 2013, 2014, Rosa et al., 2015], perhaps unaware

of the issues associated with this deflation strategy. More specifically, the lack

of orthogonality between the weight vectors. Therefore, it is important to raise

awareness for the practical consequences of this lack of orthogonality.

The results show that projection deflation performed better when trying to

enforce the orthogonality of the weight vectors, for both sparse and non-sparse

views. Even though the weight vectors computed using projection deflation were

not exactly orthogonal, they were substantially closer to being orthogonal than the

ones computed using Hotelling’s deflation. Moreover, despite the introduction of two

terms to the deflation operation, i.e. the proposed deflation method (Equation 4.2)
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includes two extra terms which do not exist in the Hotelling’s deflation (Equation 4.4),

the increase in computational time was negligible when compared with the time

necessary to compute each SPLS weight vector pair.

By trying to enforce orthogonality between the weight vectors, new brain regions

were found, which suggests that using projection deflation may help uncover more

associative effects in the data, instead of computing weight vector pairs which describe

the same effect after each deflation.

In order to capture the covariance of the data in the sub-space spanned by

the weight vector pairs, it is very important to try to enforce the orthogonality of

these vectors. The results showed that new directions capturing more covariance in

the data were found when applying projection deflation, as opposed to Hotelling’s

deflation.

The analysis of the projection sub-space could provide very useful information

regarding the underlying relationships between the two views. These might contain

information which may improve the understanding of brain function, assist with the

diagnosis of brain diseases, or enable patient stratification. For example, one may

be able to find different directions of covariance which are associated with different

subgroups of patients, which may provide insights into previously unknown properties

of certain brain disorders.

Note that there are other popular deflation strategies which could be used

with SPLS besides the Hotelling’s deflation, e.g. the deflation strategy used by PLS

Mode-A (Section 3.3). Further comparisons between this deflation strategy and

projection deflation will be presented in Chapter 6.



Chapter 5

SPLS using two-view sparsity

constraints

So far, all the experiments with SPLS have been performed with fixed sparsity hyper-

parameters {cu, cv} (Chapter 4). Fixing one or both SPLS sparsity hyper-parameters

has been proposed in the literature [Avants et al., 2010, 2014], however, this relies

heavily on assumptions regarding the structure of the data, i.e. it assumes that one

knowns a priori how many informative features exist in each view. In order to study

the dataset in an exploratory way, one should select the hyper-parameters {cu, cv}

based on the data, and not on previous assumptions.

This chapter will describe a framework that was proposed to acquire multiple

pairs of SPLS weight vectors {uh,vh} with different sparsity levels for each one [Mon-

teiro et al., 2015]. These results showed an early application of SPLS to cases in

which one wishes to obtain solutions that are sparse in both views, where these are

comprised of whole-brain neuroimaging data (X) and clinical/demographic data

(Y ).

5.1 Introduction
Exploratory approaches, such as SPLS and SCCA, may provide useful insights into

the brain’s mechanisms, by finding relationships between different types of measures

(i.e. views) from the same subjects. Some applications of these methods include

finding associations between genetic information and brain ROI information [Le

Floch et al., 2012], genetics and whole-brain [Grellmann et al., 2015], two different

neuroimaging modalities [Avants et al., 2010, Sui et al., 2015b, Rosa et al., 2015], and

neuroimaging and clinical/demographic scores [Avants et al., 2014, Monteiro et al.,
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2014]. However, previous studies often overlook the possibility of using a combination

of sparsity in both views and different levels of sparsity for each weight vector pair.

This idea was proposed by Lê Cao et al. [2008] for genetics. However, as far as we

are aware, it had not been applied to explore the relationships between whole-brain

voxel-wise structural MRI data, and clinical/demographic scores [Monteiro et al.,

2015].

Each SPLS weight vector pair expresses a multivariate association between two

data matrices (X and Y ), which can be viewed as a “multivariate associative effect”

in the data. The use of sparsity constraints may improve the interpretability of

a model, by removing uninformative features. However, the adequate amount of

sparsity necessary to express each one of these multivariate associative effects is

usually not known a priori. Therefore, by optimising the sparsity levels separately

for each weight vector pair, one can hopefully estimate a data-driven model of

the multivariate associative effects present in the data without relying on a priori

assumptions.

This chapter will describe a proposed framework to find multivariate associations

between combinations of clinical/demographic features and brain voxels, which

provides a solution with different levels of sparsity per weight vector pair and per

view. The framework automatically selects the sparsity level to describe the strongest

effect in the data, removes it from the data using projection deflation (Chapter 4),

and repeats the process until all the statistically significant weight vector pairs are

found.

5.2 Materials and Methods

5.2.1 Proposed framework

Each view was organised in a data matrix where each row corresponded to a subject

and each column to a feature. This was done for both image (X) and clinical (Y )

views, i.e. X ∈ Rn×p and Y ∈ Rn×q, where n corresponds to the number of subjects,

and p and q to the number of features in each view, respectively.

The SPLS hyper-parameters {cu, cv} (Equation 3.14) were selected by grid-search.

In other words, for each {cu, cv} pair, the following procedure was performed:

1. Compute one SPLS weight vector pair using the procedure described in Algo-
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rithm 3.4.

2. Project the data onto the computed weight vector pair and calculate the

covariance between the projections: σ = Cov(Xu,Y v).

3. Repeat 1000 times:

(a) Randomly permute the rows of Y , i.e. permute the order of the subjects

in one of the views.

(b) Compute one SPLS weight vector pair using Algorithm 3.4.

(c) Project the data onto the computed weight vector pair and calculate the

covariance between the projections (σ∗b ).

4. Fit a Gaussian distribution to the covariance values calculated in Step 3(c)

(σ∗b ), and compute the p-value by integrating the area under the distribution

function for which the values are greater or equal σ (Step 2).

After the p-value for each hyper-parameter combination was determined, the

chosen weight vector pair was the one with the lowest p-value. The reason a Gaussian

distribution was fitted to the values calculated in Step 3(c) (σ∗b ) instead of merely

calculating the p-value by computing the fraction of times σ∗b > σ, is because several

hyper-parameter combinations might have the same number of permutations where

σ∗b > σ, which leads to a situation where the best hyper-parameter combination

cannot be determined. However, if a Gaussian distribution is fitted to the values of

σ∗b , then, it will also take into account the spread of σ∗b , which makes it less likely that

two hyper-parameter combinations will have the same p-value. Note that there might

be a situation where several hyper-parameter combinations have the same p-value.

In such cases, a criterion based on interpretability can be used, by choosing among

the possible candidates the solution which provides the sparsest clinical weight vector

which explains the maximum covariance.

The selection of the hyper-parameters allows the framework to find the sparsity

combination in both views which expresses the strongest effect in the data.

The ranges of values used for grid search were cx = {10,20, . . . ,√p} and cy =

{1.0,1.1, . . . ,√q}. All models were run using the same permutations.

After the optimal hyper-parameter pair {cu, cv} was selected, it was used to

compute a weight vector pair {u,v}, which was then used to deflate the data matrices
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using a projection deflation strategy (Equation 4.1). Then, the next weight vector

pair was computed using the steps described above. The process was repeated until

k weight vector pairs were computed, where k = min{rank(X),rank(Y )}.

By performing these deflations, one removes the previous effect from the data,

allowing new effects to be detected, which will be “ranked” by the amount of

covariance they explain. In other words, the first weight vector pair will explain

the maximum covariance in the data, and after this is removed, the weight vector

pair that explains the second largest covariance in the data will be obtained, and

so on until the computed weight vector pairs are no longer statistically significant

(p> 0.05). When that point is reached, the computed weight vectors will start to fit

noise.

Note that a similar permutation based framework was proposed by Witten and

Tibshirani [2009]. However, in that approach, a Gaussian function was not fitted to

σ∗b , the covariance matrix was deflated using Hotelling’s deflation, and the correlation

was used as a metric to compute the p-values. In the proposed framework, the

covariance was used as a metric, so that it is consistent with the objective function

that SPLS tries to maximise (Equation 3.14).

5.2.2 Dataset

The dataset used in the current chapter, including the image preprocessing, was the

same as the one in Chapter 4. However, the head size was not regressed out of the

data. Moreover, in order to keep the approach consistent with previous publications

using SPLS, all features in both views were mean-centered and normalised, so that

each one had a mean of zero and a standard deviation equal to 1.

The final dataset contained 174548 features in the data matrix X (i.e. each

feature corresponding to a voxel), and six features in the data matrix Y (the “sex”

variable was added to the model as well): sex, age, Socioeconomic Status (SES),

education, Mini-Mental State Examination (MMSE) and Clinical Dementia Rating

(CDR).

5.3 Results and Discussion

From the six weight vectors pairs computed by SPLS (min{rank(X),rank(Y )}= 6),

three were considered statistically significant. As one can see in Table 5.1, the p-value
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suffered a large increase from the 3rd to the 4th weight vector pair, which suggests

that all the relevant effects were captured by the first three weight vector pairs.

Table 5.1: Optimal sparsity hyper-parameters per weight vector pair.

Weight vector pair cu cv p-value
1 140 1.0 0.0000
2 90 2.2 5.1614e-13
3 10 1.5 2.1624e-07
4 10 1.0 0.3238
5 50 1.8 0.6316
6 390 1.0 0.7376

The statistically significant clinical weight vectors are shown in Figure 5.1, and

the corresponding image weight vectors in Figure 5.2

The first weight vector pair captured the effect of age (Figure 5.1), which

seems to be spread throughout multiple brain regions (Figure 5.2(a)). Grey matter

density decreases with age, so the effect is expressed by a positive weight on age and

corresponding large clusters of negative weights in the image view. After deflation,

this effect is removed from the data, which explains why age is no longer selected in

the remaining statistically significant clinical weight vectors (Figure 5.1).

The second weight vector pair described a combination of multiple clini-

cal/demographic features, with MMSE and CDR having the largest absolute weights.

These correspond to scores for clinical tests performed in individuals with dementia.

It is interesting to note that the corresponding image weights selected large clusters

of voxels in the hippocampus and temporal regions (Figure 5.2(b)), which have been

previously associated with dementia [Jack et al., 2000]. Note that Figures 5.2(a)

and 5.2(b) show the same image slices, if one compares the figures, it is possible to

see that the effects observed in the hippocampus in the second weight vector were

not present in the first weight vector, which suggests that the algorithm was able

to separate effects related with aging (first weight vector) from effects related with

dementia (second weight vector).

The third effect was mainly guided by the “sex” variable and it associates

four clinical/demographic features to three small clusters: one in the thalamus

(Figure 5.2(c)) and two on the posterior region of the temporal lobes.
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Figure 5.1: Statistically significant clinical weight vectors obtained with the corresponding
clinical features.

(a) Image weight vector #1 (b) Image weight vector #2 (c) Image weight vector #3

Figure 5.2: Image weight vectors. Blue regions correspond to negative weight values, and
red regions to positive weight values.

5.4 Conclusion

SPLS was able to find statistically significant multivariate associative effects in a

dementia dataset between clinical/demographic information and whole-brain MRI

scans. These were described by sparse weight vectors pairs, with adaptive sparsity

levels per view and per pair. This contrasts with previous work using sparse eigen-

decomposition methods to study brain and behaviour [Avants et al., 2014], where

some a priori assumptions are made on the sparsity of the weight vectors.

The adaptive nature of the algorithm allowed not only to determine an optimal

sparse solution, but also provided the flexibility to select the adequate number of

clinical/demographic features and voxels to describe each multivariate associative

effect, removing it from the data before finding the next one. This enabled it to
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distinguish the effects associated with age from the ones associated with dementia.

Despite the encouraging results obtained with the proposed framework, one

should bear in mind that it is also a computationally expensive approach, due to

the fact that a grid search has to be performed to find the best hyper-parameter

combination {cu, cv} for each individual weight vector pair, which in this study

resulted in the computation of SPLS 630000 times per weight vector pair. Moreover,

even though using a Gaussian function to fit the distribution of σ∗b has shown good

results for the considered dataset, it might not provide the best possible fit. Future

work on permutation based frameworks should focus on determining the best way to

fit the distribution of σ∗b . Moreover, comparisons between metrics, i.e. correlation vs.

covariance, should also be made.





Chapter 6

Multiple hold-out framework for SPLS

Despite the promising results obtained with the framework described Chapter 5,

subsequent tests showed some disadvantages which would make it unsuitable to

analyse some datasets. More specifically, the framework showed the tendency to give

the same low p-value to several hyper-parameter combinations, which meant that

one could not rely on a single metric for hyper-parameter selection. Moreover, the

framework only selected a hyper-parameter combination based on how the model

performed using all the data available. This did not give any insights into how SPLS

would fit data which were not used for the training, and how robust were these fits

to perturbations in the dataset.

This chapter will describe a multiple hold-out framework which was proposed to

be an alternative to both permutation based frameworks (such as the one described

in Chapter 5), and a nested-CV approach (Section 2.2.2). The framework was applied

to investigate multivariate associations between voxel-wise neuroimaging data and

individual questions/tasks from a cognitive test which, at the time this study was

published, was a novel application [Monteiro et al., 2016].

6.1 Introduction
As shown in Chapter 5, exploratory machine learning approaches, such as SPLS, may

provide useful insights into the brain’s mechanisms by finding relationships between

different measures (i.e. views) from the same subjects, more specifically, between

neuroimaging and clinical/demographic data in a clinical population. By identifying

these relationships, one can potentially improve the current understanding of disease

mechanisms.

One of the advantages of using a sparse method, such as SPLS, is that it
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removes noisy features from the model, which greatly improves interpretability. The

number of features that are included in the model is controlled by a pair of sparsity

hyper-parameters (one for each view). These should be tuned, in order to select the

adequate amount of sparsity per view. As described in Section 3.4.1, Witten et al.

[2009] proposed a framework to perform this selection based on permutations, i.e.

for each hyper-parameter pair {cu, cv} a permutation test was performed using the

whole dataset and the hyper-parameter pair which resulted in the lowest p-value was

chosen. A variant of this method was proposed and applied to a dementia dataset in

Chapter 5. However, subsequent tests showed that it presented some disadvantages.

In some cases, several hyper-parameter combinations tended to have the same very

low p-value, which made the choice of the optimum not obvious. In addition, the

behaviour of the framework for small values of cu could be a bit unpredictable, e.g.

some models would select a single voxel as being the optimal number of features

for the neuroimaging view, which is not biologically plausible for structural MRI

data. Moreover, a permutation based framework will select the hyper-parameter

combination which gives rise to the lowest p-value obtained by permuting the whole

dataset and re-training many times. However, there is no guarantee that this hyper-

parameter combination will lead to a good performance in data that were not used to

train the initial model. The framework is also unable to give any insights on whether

this hyper-parameter combination is robust to perturbations in the initial dataset.

This property is important, since one wishes to find an effect that is consistent in the

dataset, and not a result that would arise by relying solely on the initial configuration

of the data.

In order to train a model which generalises well for unseen data, one could

use a three way split approach (Figure 2.5). However, since neuroimaging datasets

are not large enough, one would usually adopt a nested-CV approach (Figure 2.6).

Hyper-parameter tunning would then be performed in the following way: for each

train fold, the optimal hyper-parameter combination is selected by performing a

grid-search over all combinations using a cross-validation (CV) procedure to test

each combination. The results are then statistically evaluated by performing a

permutation test on the nested-CV, i.e. the order of the data is randomly permuted

in one of the views, and the nested-CV procedure is repeated many times. Using this
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procedure with SPLS for high-dimensional datasets with two hyper-parameters to

optimise is not viable, due to the very large computational time. Indeed, Le Floch

et al. [2012] acknowledged that they were unable to use nested-CV in their study,

due to the fact that the computational cost required to statistically evaluate their

results with a permutation test would be too high.

In order to make the method computationally feasible, and to check the reliability

of the computation of the weight vector pairs, this work proposes a novel framework

which uses multiple hold-out datasets. The framework selects the hyper-parameters

based on train/test subsets created using random subsamples of the data, and

investigates how robust is this selection for different splits of the dataset. The

proposed framework addresses limitations of previous approaches, as it shows how

generalisable are the significant associative effects, and finds the optimal sparsity

levels for each effect with much lower computational cost than the one needed for a

nested-CV framework.

By studying the effects described by the SPLS weight vector pairs, one can

understand the relationships between patterns of brain anatomy and clinical variables

in specific patient populations (e.g. dementia). In addition, by projecting the data

onto these weights (latent space), one can try to stratify the patients in a less rigid way,

which may help refine current clinical assessment tools. Despite previous applications

of SPLS to study sparse associations between brain scans and clinical/demographic

variables [Monteiro et al., 2015], the use of sparsity on the clinical scores is still

often overlooked. Moreover, the clinical scores used are usually summary results of

clinical exams. Some of these exams have several questions/tasks covering different

areas of cognition, e.g. the Mini-Mental State Examination (MMSE), which is often

used in patients with dementia. In some cases, it might be useful to study not how

different clinical/demographic variables are associated with the brain, but how the

questions/tasks from a specific clinical exam associate with the brain. Such studies

might help to refine the current clinical exams, which can be achieved by finding

which questions/tasks are associated with changes in brain structure. However, it

is also a more challenging problem, since the information encoded in individual

questions/tasks is noisier than a summarised clinical exam score.

As mentioned in Section 3.5, a closely related method to SPLS, Sparse Canonical
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Correlation Analysis (SCCA), has been applied by Avants et al. [2014] to investigate

correlations between structural MRI data (grey matter) and clinical variables coming

from the Philadelphia Brief Assessment of Cognition (PBAC) [Avants et al., 2014].

The PBAC test contains 20 variables grouped into 5 psychometric sub-scales, which

test different cognitive and behavioral/comportment deficits. The authors fitted

5 models, each one with the MRI scans as one view and the clinical variables of

a specific sub-scale as the other view, using the first SCCA weight vector pair for

each model. The results showed that SCCA was able to find relationships between

psychometric batteries and grey matter density, claiming to be the first study to

have done it [Avants et al., 2014].

The proposed SPLS framework was applied to a dementia dataset containing

whole-brain structural MRI data as one view, and the scores for each individual

MMSE question/task as the other view, which appears to be the first published

study to do so [Monteiro et al., 2016]. Sparsity was applied to both views and no

a priori information about the structure of the data was provided to the model,

which distinguishes the present work from previous studies [Avants et al., 2014, Lin

et al., 2014]. The lack of a priori assumptions allows the model to freely look for

associations in the data without being constricted by pre-defined brain regions or

sub-scales of clinical test scores. This is especially important when the condition

being studied still lacks strong evidence to make assumptions regarding behaviour

and its relationship with brain structure.

Finally, the performances of both PLS and SPLS were compared using the

proposed framework, and two deflation strategies were compared in their ability to

generate statistically significant weight vector pairs, and how well they generalise for

unseen data.

6.2 Materials and Methods

6.2.1 Learning and validation framework

The proposed framework is divided into three main parts: hyper-parameter opti-

misation, statistical evaluation, and matrix deflation. These will be addressed in

sections 6.2.1.1, 6.2.1.2, and 6.2.1.3, respectively.
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6.2.1.1 Hyper-parameter optimisation

Several studies have used k-fold CV (Section 2.2) to select the optimal model hyper-

parameters using the correlation between the projections as a metric [Parkhomenko

et al., 2009]. Since the number of samples available in neuroimaging datasets is

usually small, the natural tendency would be to use more folds, leading to an

increase in train samples for each fold, and a decrease in test samples for each

fold. However, this will increase the variance of the CV results [Hastie et al., 2009].

Indeed, this issue has received some recent attention in the neuroimaging literature,

in which Varoquaux et al. [2017] showed that using a leave-one-out CV (k = n)

in a classification setting lead to a very higher variance in the estimation of the

model performance. Some of our initial investigations also showed that the number

of folds affected the hyper-parameter estimation, i.e. the optimal hyper-parameter

combination would change if the number of folds in the k-fold CV was changed. In

order to overcome this limitation, the proposed framework uses an approach based

on the random subsampling of the data.

The proposed framework started by removing 10% of the data randomly and

keeping it as a hold-out dataset (Figure 6.1), which was used later for the statistical

evaluation (Section 6.2.1.2). Then, the remaining dataset (i.e. train/test dataset)

was randomly split 100 times into a train set (80% of the data) and a test set (20%

of the data). For each split, the model was trained on the train set, the test data

were projected onto the resulting weight vector pair, and the absolute correlation

between the projections of the two views was computed, using the same correlation

metric as Parkhomenko et al. [2009] (Section 3.4.1):

ρk =
∣∣∣Crr

(
Xku(−k),Y kv(−k)

)∣∣∣
where Xk and Y k denote the test sets; and u(−k) and v(−k) are the weight vectors

computed using the train data.

The average correlation of K splits (where K = 100) for a specific hyper-

parameter combination {cu, cv} was then computed using the arithmetic mean:

ρ̄cu,cv = 1
K

∑K
k=1 ρk. This procedure was repeated for several hyper-parameter com-

binations spanning the full hyper-parameter range, and the combination with the

highest average correlation was selected, i.e. a grid-search was performed. The
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selected hyper-parameter combination was then used to train the models in the

statistical evaluation step (Section 6.2.1.2).

By doing this random subsampling procedure, both the number of correlation

values (ρk) used to compute the average correlation (ρ̄cu,cv) and the size of the test

datasets were increased, which should make the estimation of the average correlation

per hyper-parameter combination (ρ̄cu,cv) more stable. Note that the same random

splits were performed for each hyper-parameter combination. Also, the grid-search

was performed using 40 equidistant points in 1 6 cu 6
√
p and 1 6 cv 6

√
q, which

made a total of 1600 hyper-parameter combinations. The plots showing the average

absolute correlation for different hyper-parameter combinations (i.e. “hyper-parameter

space”) are provided in Appendix B.2.
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Figure 6.1: Hyper-parameter optimisation framework.

As previously mentioned, SPLS maximises the covariance between the projec-

tions, and not the correlation between the projections, the latter is maximised by using

CCA. Indeed, this was the reason for using the covariance between the projections

in the framework proposed in Chapter 5. However, one should keep in mind that the

framework proposed in Chapter 5 selected the optimal hyper-parameter combinations

by using a “distance” metric between the covariances obtained using permuted data

from the covariances obtained using non-permuted data. In a train/test scheme, such

as the one proposed in the present chapter, the covariance between the test data

projections should not be used. When one maximises the covariance between the

projections, one tries to find a sparse weight vector pair {u,v}, such that uᵀXᵀY v
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is maximised. Note that the more features are included in the model, the higher the

covariance will be. In other words, if the covariance between the test data projections

were to be used, the less sparse model would always be chosen. On the other hand,

the absolute correlation between the projections is computed as:

Crr(Xu,Y v) =
∣∣∣∣ uXᵀY v√
uXᵀXu

√
vY ᵀY v

∣∣∣∣
In this case, the increase in the number of included features will not always in-

crease the absolute correlation, as the features will also increase
√
uᵀXᵀXu and/or

√
vᵀY ᵀY v, which in turn will decrease the absolute correlation. Therefore, the

absolute correlation between the projections will be a value between 0 and 1, which

will penalise models whose features increase
√
uᵀXᵀXu or

√
vᵀY ᵀY v more than

they increase uᵀXᵀY v.

6.2.1.2 Statistical evaluation

When testing the statistical significance of an associative effect using a permutation

test with a nested-CV framework, one has to re-train the model for every permutation,

including the hyper-parameter optimisation step. Unfortunately, when dealing with

very high-dimensional data, such as whole-brain MRI scans, this can be computa-

tionally prohibitive. In order to assess the statistical significance of the weight vector

pairs without performing a hyper-parameter optimisation for each permutation, an

approach which uses hold-out datasets {X∗,Y ∗} is proposed.

The statistical evaluation step is summarised in Figure 6.2, which started by

training a model with all the train/test data using the optimal hyper-parameters

selected in the previous step (Section 6.2.1.1), the hold-out data were projected onto

these vectors and the absolute correlation between the projections was computed:

ρ= |Crr(X∗u,Y ∗v)| (6.1)

where u and v are the weight vectors computed by training the model with the

train/test dataset.

During the permutation, the order of the samples in one of the views was

permuted while leaving the other view untouched, thereby destroying the relationship

between the two views. The model was then trained again with the permuted data
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and the absolute correlation between the projections was computed:

ρb = |Crr(X∗ub,Y ∗vb)|

where ub and vb are the weight vectors computed by training the model with the

permuted train/test dataset for permutation b. The process was then repeated B

times (re-training the model with the permuted dataset, and projecting the hold-out

data onto the computed weight vectors).

Finally, the statistical significance of the weight vector pair was tested using

the following null-hypothesis, Hs: “There is no relationship between the two views,

therefore the correlation obtained with the original data is not different from the

correlation obtained with the permuted data”. If the probability of obtaining a

correlation as large (or larger) than the original one was very low, i.e. p-value is very

low, then one can reject the null-hypothesis and conclude that the found associative

effect is statistically significant.
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Figure 6.2: Permutation framework.

The p-value was computed using the expression described in Equation 2.16.

Due to the small sample sizes usually associated with neuroimaging datasets,

the p-value may be estimated using a small hold-out dataset, which can lead to high

variance in the results, depending on how the data were split. In order to make
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the model estimation more robust, the proposed framework used several hold-out

datasets. After the p-value was obtained, the process went back to the beginning

(Section 6.2.1.1) and was repeated 9 times, which means that in the end 10 p-values

were obtained: one for each random split of the hold-out dataset. A criteria was then

necessary to determine if there were any statistically significant effects in the data

that were being fitted by SPLS, this can be done by using the concept of the omnibus

hypothesis. The omnibus hypothesis was previously proposed for mass-univariate

statistical tests, where a statistical test is performed on each voxel j in region R, in

order to test a null-hypothesis Hj . In this case, the combined hypothesis HR over all

the voxels is the following: “All the hypotheses Hj are true”. This is known as the

omnibus hypothesis and, as one can see, will be rejected if any of the Hj hypothesis

is rejected [Holmes, 1994, Nichols and Holmes, 2001]. In the present work, the use of

this concept to evaluate groups of random splits of the data is proposed. In this case,

the omnibus hypothesis Homni is: “All the null-hypothesis Hs are true”. In other

words, if any of the 10 p-values (obtained using the 10 random splits of the data)

was statistically significant, then, the omnibus hypothesis would be rejected. All the

p-values should be corrected for multiple comparisons by performing a Bonferroni

correction, i.e. in order to have a family-wise error rate of 0.05: α= 0.05/10 = 0.005.

Therefore, the omnibus hypothesis was rejected if any of the 10 splits had p < 0.005.

Finally the statistically significant weight vector pair with the lowest p was

selected to be used for matrix deflation (Section 6.2.1.2). In case several weight

vector pairs had the same p-value, the one with the highest hold-out correlation

(Equation 6.1) was selected.

6.2.1.3 Matrix deflation

If the omnibus hypothesis was rejected (Section 6.2.1.2), then the effect found by

SPLS was statistically significant and needs to be removed from the data, in order to

look for potential additional effects. This was done by matrix deflation, removing the

effect described by the weight vector pair h before computing the next pair (h+ 1).

As previously mentioned, Witten et al. [2009] proposed the used of the Hotelling’s

deflation to accomplish this. However, as shown in Chapter 4, the orthogonality

property of the Hotelling’s deflation does not hold. Thus, projection deflation was

used instead (Equation 4.1).
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As described in Section 3.3, there is another family of deflation strategies which

uses the projections of the data to deflate the data matrices, and which are commonly

used with PLS Mode-A, PLS1, and PLS2 (Section 3.3) [Wegelin, 2000, Rosipal

and Krämer, 2006]. These type of deflation strategies have been previously used in

SPLS [Waaijenborg et al., 2008, Lê Cao et al., 2008, 2009, Chun and Keleş, 2010,

Chun et al., 2011, Yoshida et al., 2013], although, it was mostly used in its asymmetric

version, i.e. in SPLS regression variants.

The symmetric deflation version, used in PLS Mode-A (Equation 3.13), was

compared with the projection deflation approach (Equation 4.1) used in the proposed

framework. As far as we are aware, there is no study comparing the results obtained

using both these deflation strategies with SPLS. By performing this comparison, this

thesis aims to provide some insights into how projection deflation performs compared

with the most popular symmetric deflation strategies proposed for SPLS: Hotelling’s

deflation (Chapter 4), and PLS Mode-A deflation (this chapter). These two deflation

methods are not equivalent, please refer to Appendix A.1 for the proof.

The SPLS results were also compared with the results acquired by applying the

same framework with PLS. In this case, there are no hyper-parameters to optimise,

thus, the step described in Section 6.2.1.1 was not performed.

6.2.2 Projection onto the SPLS latent space

The data can be projected onto the statistically significant weight vectors from both

image and clinical views. As previously mentioned, these weight vectors represent

the SPLS latent space. The projection of the data onto this space may bring insights

about their structure, which can potentially be used for patient stratification.

6.2.3 Dataset

The data used in this chapter were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial Magnetic

Resonance Imaging (MRI), Positron Emission Tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be combined to measure

the progression of mild Mild Cognitive Impairment (MCI) and early Alzheimer’s

Disease (AD). For up-to-date information, see www.adni-info.org.

adni.loni.usc.edu
www.adni-info.org
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SPLS was applied to investigate the association between the grey matter maps

and the individual scores of the questions/tasks of the MMSE, which is a quite

widely used exam that is performed on patients with dementia [Folstein et al., 1975].

The dataset consisted of a subset of 592 unique subjects from the ADNI: 309 males

(average age 74.68 ± 7.36) and 283 females (average age 72.18 ± 7.50). These subjects

were clinically labeled as being either healthy, suffering from MCI, or suffering from

AD. Further details about the demographics of the dataset can be seen in Table 6.1.

Table 6.1: Demographic information of the dataset. The gender information represents the
number of males/females.

Healthy MCI AD
Gender 69/78 184/151 56/54
Age 73.6279 ± 5.8357 71.6475 ± 7.7534 74.3409 ± 7.9054

MMSE 28.9728 ± 1.1642 27.7403 ± 2.0579 21.9364 ± 4.1003

The T1 weighted MRI scans were segmented into grey matter probability maps

using SPM12, normalised using DARTEL [Ashburner, 2007], converted to MNI

space [Mazziotta et al., 1995] with isotropic 2 mm voxels and smoothed with a

Gaussian kernel with a FWHM of 2 mm. A mask was then generated, this selected

voxels which had an average probability of being grey matter equal or higher than

10% for the whole dataset. This resulted in 168130 voxels per subject being used.

Each question/task of the MMSE was encoded in the following way: the subjects

were given a score of 1 if the answer was correct, or the task was performed correctly;

and a score of 2 if the answer was wrong, or the task was not performed correctly. The

exam is conducted by a clinician and is divided into five categories, each containing

different questions/tasks, which test five different cognitive domains [Folstein et al.,

1975]:

• Orientation (questions 1 to 10) — These are related with temporal and spatial

orientation.

• Registration (questions 11 to 13) — The clinician names three objects and asks

the patient to repeat all three. There is an extra question (13.a) in which the

clinician writes down the number of trials that the subject had to take.

• Attention and Calculation (questions 14 to 18) — The subject is asked to

spell the word “world” backwards (i.e. “D”, “L”, “R”, “O”, “W”). A score is
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attributed for each letter, and the subject is only given a good score if the

letter is in the correct order.

• Recall (questions 19 to 21) — The subject is asked to name the three objects

named before (questions 11 to 13).

• Language (questions 22 to 30) — These questions/tasks involve recognising

and naming objects (e.g. naming a watch and a pencil), repeating a sentence,

understanding verbal commands (e.g. “take a paper with the right hand”, “fold

it in half”, “put it on the floor”), reading, writing, and drawing.

For a detailed list of the questions/tasks, please refer to Appendix B.1. All the

features in both views (image and clinical) were mean-centered and normalised to

have standard deviation equal to 1.

6.3 Results
6.3.1 Statistical significance testing

Table 6.2 shows the p-values obtained by using PLS with the proposed framework,

as one can see, the omnibus hypothesis Homni (Section 6.2.1.2) could not be rejected,

i.e. p> 0.005. Although the proposed framework would stop as soon as a statistically

significant weight vector pair could not be found, i.e. in the first associative effect for

the considered dataset, we allowed the algorithm to run until 3 associative effects

were found, in order to assess how the different deflation methods behave with PLS

and SPLS.

The p-values obtained with SPLS can be seen in Table 6.3. In this case, Homni

was rejected twice: for the first and second associative effect using projection deflation.

No statistically significant results were obtained when using a PLS Mode-A deflation.

6.3.2 Generalisability of the weight vectors

Figure 6.3 shows the average absolute correlation on the 10 hold-out datasets obtained

with both PLS and SPLS, using the two types of deflation. The average absolute

correlation on the hold-out datasets decreased with subsequent weight vector pairs

(i.e. decreased after each deflation), moreover, it seemed to be higher when PLS

Mode-A deflation was applied with PLS. However, when SPLS was used, projection

deflation seemed to perform better, exhibiting higher average correlation values on
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Table 6.2: PLS p-values computed with 10000 permutations. All p-values are rounded to 4
decimal places.

Split

PLS
{u,v} pair

PLS deflation Proj. deflation
1 2 3 2 3

1 0.0690 0.0193 0.8619 0.4635 0.9853
2 0.2825 0.0655 0.0422 0.0323 0.3175
3 0.0120 0.2718 0.0173 0.4599 0.0609
4 0.0902 0.4255 0.4968 0.0742 0.4836
5 0.0924 0.9607 0.9855 0.9152 0.2106
6 0.0844 0.3984 0.1593 0.3412 0.5270
7 0.0866 0.1860 0.7745 0.9767 0.8342
8 0.0894 0.0479 0.1417 0.3052 0.6869
9 0.1233 0.1396 0.3932 0.3170 0.5775
10 0.0224 0.0289 0.1805 0.9831 0.7565

Rej. Homni No No No No No

Table 6.3: SPLS p-values computed with 10000 permutations (statistically significant results
are shown in bold). All p-values are rounded to 4 decimal places.

Split

SPLS
{u,v} pair

PLS deflation Proj. deflation
1 2 3 2 3

1 0.0007 0.2476 0.3754 0.0376 0.0583
2 0.0068 0.2365 0.3585 0.0041 0.1769
3 0.0002 0.6051 0.0460 0.5298 0.5029
4 0.0002 0.9637 0.2013 0.0509 0.2841
5 0.0001 0.5711 0.9273 0.0012 0.3978
6 0.0005 0.6613 0.1107 0.0782 0.3267
7 0.0001 0.6073 0.3526 0.0256 0.0066
8 0.0016 0.9777 0.4515 0.0405 0.1126
9 0.0004 0.0713 0.4301 0.0002 0.0692
10 0.0001 0.1618 0.1817 0.2745 0.4399

Rej. Homni Yes No No Yes No

the hold-out datasets, and having smaller standard deviation values (which was

reflected by the smaller error bars).

6.3.3 Weight vectors or associative effects

6.3.3.1 PLS

Since PLS was not able to reject the omnibus hypothesis, no weight vectors are

presented in this section. For comparative purposes, the average of the weight vectors
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Figure 6.3: Average absolute correlation on the hold-out datasets.

for the first effect can be seen in Appendix B.3.1.

6.3.3.2 SPLS

Unlike PLS, SPLS found statistically significant sparse weight vectors, representing

associative effects between clinical (Figure 6.4) and image views (Figure 6.5). This

section will only present the statistically significant weight vectors, which were

obtained using projection deflation. For comparative purposes, the averages of the

weight vectors for the second effect using PLS Mode-A deflation and projection

deflation are presented in Appendix B.3.2.

First associative effect

As previously mentioned, each weight vector pair represents a multivariate associative

effect between the two views (brain voxels and clinical variables), i.e. the clinical weight

vector will show a subset of clinical variables associated with a subset of brain voxels

displayed in the image weight vector. Figure 6.4(a) shows the first clinical weight

vector. It is possible to see that only 15 out of 31 clinical variables were selected.

These belonged mainly to the “Orientation”, “Attention and Calculation”, and

“Recall” domains. One variable was selected in the “Language” domain. The weight

vector corresponding to the first image weight vector can be seen in Figure 6.5(a).

As one can see, the weight map is very sparse and the regions found have been

previously associated with memory (e.g. hippocampus and amygdala) [Jack et al.,

2000].

Using the Automated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer et al.,
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(a) First clinical weight vector.
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(b) Second clinical weight vector.

Figure 6.4: SPLS clinical weight vectors. The sign of the second weight vector was inverted
for visualisation only (in order to be consistent with the first weight vector
pair).

2002], it is possible to summarise the image weight vectors by ranking the regions of

the atlas by their average absolute weight value. The average was used to take into

account the different atlas region sizes, i.e. the larger the fraction of voxels equal

to zero in a region is, the lower the average absolute weight in that region will be.

Table 6.4 shows the top 10 regions for the first image weight vector. For the complete

list of regions, please refer to Appendix B.4.

Second associative effect

The second clinical weight vector (Figure 6.4(b)) was not as sparse as the previous

one: 28 out of 31 variables were selected. The magnitudes of the weights for the

“Recall” domain were substantially smaller than on the previous weight vector pair,

while the absolute values of the weights on the “Registration”, “Attention and

Calculation”, and “Language” domains were greater. The voxels found by the second

image weight vector (Figures 6.5(b) and 6.5(d)) were less localised than the ones

in the first image weight vector, these were present mostly in the temporal lobes,
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(a) First image weight vector. (b) Second image weight vector.

(c) 3D visualisation of the features selected
for the first image weight vector.

(d) 3D visualisation of the features selected
for the second image weight vector.

Figure 6.5: SPLS image weight vectors. Red regions denote positive weights and blue
regions denote negative weights (very small region on the second weight vector).
The sign of the second weight vector was inverted for visualisation purposes
only (in order to be consistent with the first weight vector pair).

hippocampus, and amygdala. The second associative effect seems to capture an

association between all domains of the MMSE score and mainly temporal regions in

the left brain hemisphere.

The top 10 regions for the second image weight vector can be seen in Table 6.5.

For the complete list of regions, please refer to Appendix B.4.

Note that most voxels in Figures 6.5(a) and 6.5(b) have positive weights, while

most entries of the corresponding clinical weight vector have negative signs (Fig-
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Table 6.4: Top 10 atlas regions for the first image weight vector.

Atlas Region # voxels found
Amygdala_L 98
Amygdala_R 90

Hippocampus_R 175
Hippocampus_L 152

ParaHippocampal_R 92
ParaHippocampal_L 44

Lingual_L 9
Precuneus_L 2
Precuneus_R 1

Temporal_Pole_Sup_L 1

Table 6.5: Top 10 atlas regions for the second image weight vector.

Atlas Region # voxels found
Amygdala_L 36

Temporal_Inf_L 292
Hippocampus_L 88
Amygdala_R 11

ParaHippocampal_L 53
Fusiform_L 78

Temporal_Inf_R 64
Hippocampus_R 22
Occipital_Inf_L 12
Temporal_Mid_L 76

ures 6.4(a) and 6.4(b)). This means that both effects follow the same tendency: high

grey matter density (high image weights) are associated with generally low values

in the clinical questions/tasks (i.e. the task was performed correctly, Section 6.2.3),

and vice versa.

6.3.4 Projection onto the SPLS latent space

The data were projected onto the weight vector pairs computed using SPLS (Fig-

ures 6.4 and 6.5), in order to bring insights about structure in the data, and to

potentially stratify patients (Section 6.2.2). Since PLS was not able to find statis-

tically significant weight vector pairs, the projections for this method will not be

presented.

Figure 6.6(a) shows the projection of the data onto both SPLS image weight

vectors, while Figure 6.6(b) shows the projection of the data onto both SPLS clinical

weight vectors. Each point represents the projection of one subject’s data onto the
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subspace defined by the weight vector pair, where its color is given based on the

clinical diagnosis. The horizontal axes (Xu1 and Y v1) correspond to the projections

onto the first weight vector pair, and the vertical axes (Xu2 and Y v2) correspond

to the projections onto the second weight vector pair. For the plots showing the

projections per weight vector pair ({Xu1,Y v1} and {Xu2,Y v2}), please refer to

Appendix B.5.

As one can see, there were no defined clusters, however, there seems to be a

continuous distribution of subjects from lower to higher degrees of neurodegeneration.
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Figure 6.6: Projection of the data onto the SPLS weight vector pairs.

6.4 Discussion
The results show that the proposed SPLS framework was able to detect two sta-

tistically significant associative effects between grey matter maps and individual

questions/tasks of the MMSE score when using sparsity constraints in both views.

These results were particularly interesting as the information encoded on the in-

dividual question/task level is very noisy, however, it also expresses more subtle

effects in the data when compared with a summarised final exam score. The first

effect captured an association mainly between the “Orientation”, “Attention and

Calculation” and the “Recall” domains on the clinical view, and brain regions such as

the amygdala and hippocampus. The second effect captured an association between

most clinical variables, and regions mainly on the left brain hemisphere, including

temporal regions. These results were achieved by imposing sparsity in both views,

and without using any a priori assumption regarding data structure, which might be
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useful when it is not possible to have one. Moreover, the projection of the subjects

onto the latent SPLS space showed a consistent distribution of the subjects from

lower to higher degrees of neurodegeneration.

Projection deflation has shown to provide more reliable weight vectors when

compared with the commonly used PLS Mode-A deflation method. When comparing

the different deflation approaches, the results showed that only by using projection

deflation was it possible to find a second statistically significant associative effect

with SPLS. Moreover, projection deflation provided a higher average correlation on

the hold-out datasets, i.e. the model generalised better for unseen data.

The proposed framework was also tested with PLS. The results showed that SPLS

performed better than PLS, not only by being able to find statistically significant

associative effects, but also by improving the interpretability of the weight vector

pairs due to their sparsity, and by generalising better for unseen data (which can be

demonstrated by an increase in average correlation obtained in hold-out datasets).

6.4.1 Multiple hold-out framework

In this study, a SPLS framework which uses multiple random splits for the hold-out

dataset was proposed. By performing a significance test on each random split, the

framework checked how reliable the weight vector computation is to data perturba-

tions, making it more robust than approaches based on a single hold-out split [Labus

et al., 2015].

The estimation of the sparsity levels for both views without a priori assumptions

allows for greater flexibility when trying to find the best model to describe a particular

associative effect in the data. Moreover, these levels were not fixed for every weight

vector pair, which means that each associative effect will be described by the right

level of sparsity in each view, i.e. the proposed approach will find the necessary

number of voxels and clinical variables to describe each associative effect.

One of the main advantages of the proposed framework when compared with a

more widespread nested-CV approach is its computational time. Nested-CV consists

in performing a two level CV (Section 2.2.2), where, for each train fold, an inner CV

procedure is performed for every hyper-parameter combination, in order to select the

optimal hyper-parameter combination to be applied in the outer fold (Section 2.2).

This is a quite computationally intensive procedure, since hyper-parameter selection
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will have to be repeated for each permutation during the statistical evaluation. Even

if nested-CV was applied to this problem with a small number of folds (5 inner

folds and 5 outer folds) and permutations (1000), it would require 40045005 SPLS

computations, whereas the proposed framework with 100 subsamples (which should

provide a more stable hyper-parameter selection) and 10000 permutations, computed

SPLS 1700010 times, which corresponds to approximately 4% of the number of

computations that would have been necessary with a nested-CV framework. For the

details of how these values are calculated, please refer to Appendix B.6.

There are other approaches in the literature for selecting the level of sparsity

based on stability criteria [Lê Cao et al., 2011, Nybo et al., Labus et al., 2015].

These consist of fixing the sparsity hyper-parameters, and then computing the SPLS

weight vector pairs multiple times with many subsamples of the data, in order to

select the features which are stable across the several splits. This procedure is very

computationally expensive, due to the fact that it has to be repeated for every CV

fold in every permutation. For example, even with a common validation procedure

using 1000 subsamples, a 5-fold CV (just like the approach by Nybo et al.), and a

1000 permutation test, one would have to perform SPLS at least 5000000 times (as

opposed to the 1700010 times required by the multiple hold-out framework).

Witten and Tibshirani [2009] proposed a hyper-parameter optimisation procedure

based on permutations where, for each hyper-parameter combination, the p-value

of the correlation using all the data was computed and the combination with the

lowest p was selected. This method will choose the hyper-parameters for which

the distance between the correlation computed with the non-permuted data and

the null distribution of the correlations is the largest, however, this might not be

the same hyper-parameters that maximise the correlation between the projections

using test data, which is what the proposed subsampling approach will try to

achieve (Section 6.2.1.1). Although a permutation based framework would require

the computation of SPLS slightly less times than the proposed framework (1600000

times per weight vector pair), there is no guarantee that the actual computational

time would be less, as some of our earlier experiments indicated that SPLS takes

longer to converge when computing weight vector pairs with permuted data.
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6.4.2 Statistical significance testing

SPLS with projection deflation was able to find two statistically significant associative

effects in the data, while PLS was not able to find any. This result may be related

to the fact that SPLS provided a higher average hold-out correlation (Figure 6.3).

The sparsity constraints used by SPLS allowed the method to exclude noisy features,

which resulted in a model with a better ability to generalise for unseen data.

6.4.3 Comparison between deflation approaches

Projection deflation performed substantially better when applied to SPLS than the

commonly used PLS Mode-A deflation, being able to provide higher values of average

correlation on the hold-out datasets (Figure 6.3).

The role of the deflation step is to remove the associative effect expressed in the

obtained weight vector pair from the data matrices. As previously mentioned, both

PLS and SPLS capture the strongest effect in the data with the first weight vector

pair, after the covariance explained by this vector pair is removed, the signal-to-noise

ratio in the data will decrease. This property allows the effects to be ranked, since

each weight vector pair will explain more covariance in the data than the following

ones.

These results reinforce the conclusion from Chapter 4 [Monteiro et al., 2014]:

using deflation strategies inherited from non-sparse methods might not be the best

approach when dealing with sparse methods, these algorithms should have their own

appropriate deflation steps.

6.4.4 Multivariate associative effects

The first SPLS clinical weight vector is particularly interesting (Figure 6.4(a)). The

domains with the most prominent contribution to the weight vector were consistent

with what it would be expected from a population with AD patients. All the

questions in the “Recall” domain were chosen, while none of the questions in the

“Registration” domain were selected. This suggests that whether patients remember

words that were recently presented to them explains more covariance in the data than

whether they repeat the words when they are first presented (which is reflected by

the “Registration” domain). This was expected, since the inability to remember new

information is one of the earliest and most prominent symptoms of AD [Galton et al.,

2001]. The regions associated with these variables, displayed by the image weight
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vector (Figures 6.5(a) and 6.5(c), and Table 6.4), have been previously described as

being associated with dementia [Jack et al., 2000, Chan et al., 2001, Galton et al.,

2001]. Moreover, Table 6.4 and Figure 6.5(c) show that there is symmetry in the

regions selected (e.g. hippocampus, parahippocampal gyrus, and amygdala), which

is consistent with the symmetric brain region atrophy that has been described in the

AD literature [Chan et al., 2001, Galton et al., 2001].

Another interesting result is that only the last three variables (out of five) in

the “Attention and Calculation” domain were selected, and with increasing absolute

weight. During this part of the MMSE, the subject is trying to spell the word “world”

backwards, each variable corresponds to whether the subject replied with the correct

letter or not. The results suggest that there might be some effect during this task

that is dependent on the order of the letters.

Unlike previous studies [Avants et al., 2014, Lin et al., 2014], no a priori

assumptions regarding the structure of the data were used. The exclusion of virtually

two entire domains (“Registration” and “Language”) was purely data-driven. Also,

no information regarding brain structure was provided to the algorithm, e.g. region

information based on a brain atlas.

For the second weight vector pair, it is interesting to see that most of the top

regions are in the left side of the brain. Previous studies comparing AD with Semantic

Dementia (SD), found that SD is characterised by a greater atrophy of structures

on the left side of the brain (compared with the corresponding structures on the

right side), particularly, the temporal lobe, parahippocampal gyrus, and fusiform

gyrus [Chan et al., 2001, Galton et al., 2001]. Patients with SD exhibit impairment

of semantic memory, e.g. patients have difficulties with word meaning [Chan et al.,

2001]. SPLS selected these regions when the questions/tasks from the “Language”

domain were included in the model (Figure 6.4(b)), which suggests that the second

weight vector pair is picking up effects primarily related with semantics, while the

first is picking up effects primarily related with memory.

6.4.5 Projection onto the SPLS latent space

The projection of the subjects’ data onto the SPLS weight vectors (Figure 6.6) shows

that, although there are no defined clusters, the subjects seem to form a continuous

distribution from healthier subjects, to progressively worse cases of neurodegeneration.
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It is also interesting to note that on the projections of the subjects onto the two

clinical weight vectors (Figure 6.6(b)), the second clinical weight vector does not

seem to separate subjects based on diagnosis as well as the first, which suggests that

the effect detected is less directly associated with the clinical labels.

6.4.6 Limitations and future work

The proposed framework should provide more reliable results, by evaluating multiple

splits of the data. However, despite the promising results that were obtained

with this framework, one of its possible limitations is the fact that the statistical

evaluation step, using 10 different splits of the data with a Bonferroni correction

for multiple comparisons, is rather strict, which might lead to some false negative

results. Therefore, the framework may require large amounts of data in order to

detect statistically significant associative effects, which may not be easily available.

Nevertheless, the current trend in neuroscience is to invest in projects which collect

large amounts of data [Thompson et al., 2014, Sudlow et al., 2015, nsp], which means

that exploratory approaches, such as the one proposed, may become more relevant

in the future.

In future work, it would be interesting to apply this framework to data in which

clinical categories have shown to have limitations, such as, psychiatric data [Insel

et al., 2010]. In these cases, the use of SPLS to find associative effects between brain

images and individual exam questions/tasks may provide valuable information that

could help with patient stratification.

6.5 Conclusion
The results presented in this chapter represent a proof of concept that the proposed

multiple hold-out framework is able to find meaningful multivariate associative

effects. This framework was used to find associations between the individual items

from the MMSE and whole-brain grey matter maps, which had not been previously

demonstrated [Monteiro et al., 2016]. Furthermore, the comparison of two deflation

methods (projection deflation vs. PLS Mode-A deflation) showed that projection

deflation performed better in this dataset, which provides further evidence that this

should be the preferred deflation method when using SPLS in an exploratory setting.





Chapter 7

Alternating Least Squares (ALS)

method for SCCA and SPLS

Although SPLS has shown to provide good results using the multiple hold-out

framework (Chapter 6), one of its possible limitations is that the correlation between

the projections is used as a metric, even though SPLS maximises the covariance

between the projections. This means that the model may under-perform, due to the

fact that the hyper-parameters are chosen based on a different performance metric.

One of the ways to address this problem would be to adopt the permutation based

framework proposed in Chapter 5, however, this has shown to have several limitations

(Chapter 6). Another solution to the problem would be to use a sparse eigen-

decomposition method which maximises the correlation between the projections, such

as, Sparse Canonical Correlation Analysis (SCCA). Note that the under-performance

issue is not specific to the multiple hold-out framework, but to any SPLS framework

which uses the correlation as a metric [Witten et al., 2009, Witten and Tibshirani,

2009, Parkhomenko et al., 2009, Lin et al., 2014, Grellmann et al., 2015].

There have been several extensions of CCA using different regularisation con-

straints, however, each one takes a slightly different approach to solve the corre-

sponding optimisation problem, which means that there is no unified framework

to perform CCA with different regularisation constraints. Some of these methods

include: solving a standard eigenvalue problem [Hotelling, 1936], solving a generalised

eigenvalue problem [Bach and Jordan, 2002], using SVD [Healy, 1957], and using

gradients [Fu et al., 2016]. For an extensive review of some of these CCA methods,

please refer to the paper by Uurtio et al. [(accepted)].
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This chapter will explore the Alternating Least Squares (ALS) method as

a general framework to solve several CCA problems with different regularisation

constraints. The ALS approach for CCA was popularised partially by Golub and Zha

[1992], although the idea is older [van der Burg, 1988]. Indeed, this has been used

in the literature to solve different CCA problems [Lykou and Whittaker, 2010, Chi

et al., 2013, Wilms and Croux, 2015, Polajnar, 2015], although not always explicitly

mentioned.

The ALS consists of solving the CCA problem by alternately performing two

regression steps: one to compute u by having the projection Y v as a target, and

another to compute v by having the projection Xu as a target. One of the main

advantages of the ALS is its flexibility, by changing the regression steps, one can

use this approach to solve different kinds of CCA problems with different types of

penalties in a flexible way.

This chapter will serve mainly as a background introduction to the novel SCCA

method proposed in Chapter 8. However, it does describe two contributions, which

are presented in two separate sections. The first contribution (Section 7.1) is an

adaptation of the ALS algorithm which forces it to converge in situations where it

would otherwise oscillate between a set of similar solutions. The second contribution

(Section 7.2) is a comparison between seven CCA and PLS formulations:

• non-penalised CCA;

• non-penalised PLS;

• SCCA solved using ALS with the LASSO;

• SCCA solved using ALS with the elastic net;

• SPLS solved using the power method (as in Chapters 4, 5, and 6);

• SPLS solved using ALS with the LASSO;

• SPLS solved using ALS with the elastic net;

The use of the power method and the ALS to solve SPLS have been previously

proposed in the literature [Witten et al., 2009, Chi et al., 2013]. However, as far as

we are aware, no comparisons between their performances have been made.
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7.1 SCCA using ALS

7.1.1 Materials and Methods

As described in Chapter 3, CCA tries to solve the following optimisation problem:

maximise
u,v

uᵀXᵀY v

subject to uᵀXᵀXu= 1 and vᵀY ᵀY v = 1

Note that the CCA optimisation problem can also be written in terms of the

projections of the data, i.e. one is trying to find the projections ξ =Xu and ω = Y v

which solve the following:

maximise
ξ,ω

〈ξ,ω〉

subject to ‖ξ‖22 = 1 and ‖ω‖22 = 1

which is equivalent to maximising the cosine of the angle between two unit vectors (ξ

and ω), i.e. minimising the angle between the projections [Björck and Golub, 1973,

Uurtio et al., (accepted)]. This means that the CCA problem can be re-written as:

minimise
u,v

‖Xu−Y v‖22

subject to

‖Xu‖22 = 1, ‖Y v‖22 = 1

(7.1)

The problem expressed in Equation 7.1 can be solved by fixing u and solving

it for v, and vice versa, until it converges to a solution. This is known as the ALS,

which is described in (Algorithm 7.1) [Golub and Zha, 1992].

The ALS algorithm is a straightforward approach, which consists of iteratively

estimating each weight vector u and v by performing alternating least squares

regression steps, using the projection of the opposite view as a target. The solutions

are re-scaled in steps 6 and 9 in order to obey the l2-norm constraints expressed in

Equation 7.1.

As previously mentioned, the use of exploratory sparse methods may improve

the interpretability of the results, by removing features which do not encode relevant

information. This property can be included in CCA as well, which gives rise to a
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Algorithm 7.1 Alternating Least Squares (ALS) algorithm to solve the optimisation
problem expressed in (7.1).
1: Initialise u ∈ Rp×1 as a random vector.
2: Initialise v ∈ Rq×1 as a random vector.
3: repeat
4: ω← Y v
5: Solve the least-squares problem: u← argminu ‖ω−Xu‖

2
2

6: u← u/‖Xu‖2 . Normalise u so that it obeys the constraint

7: ξ←Xu
8: Solve the least-squares problem: v← argminv ‖ξ−Y v‖

2
2

9: v← v/‖Y v‖2 . Normalise v so that it obeys the constraint
10: until convergence
11: return u, v

type of method known as Sparse CCA (SCCA). By using other regression functions

in steps 5 and 8 of Algorithm 7.1, one can adapt ALS to solve different types of CCA,

including sparse formulations.

The CCA problem described in Equation 7.1 was adapted to a SCCA optimisation

problem:
minimise

u,v
‖Xu−Y v‖22

subject to

‖Xu‖22 = 1, ‖Y v‖22 = 1, |Iu|6 pu, |Iv|6 qv

(7.2)

where Iu := {j | uj 6= 0}, Iv := {j | vj 6= 0}, pu ∈ {1,2, . . . ,p} and qv ∈ {1,2, . . . , q}. The

inequalities in Equation 7.2 define an upper bound on the number of features included

in the model, i.e. the number of features selected by u and v.

The problem expressed in Equation 7.2 can be solved by substituting the non-

penalised regressions (Steps 5 and 8) in Algorithm 7.1, by LASSO regression steps

(Equation 2.9). However, since the solutions are sparse, each update in steps 5 and 8

causes features to be abruptly removed from the model, which in practice led to

oscillations of the algorithm, not allowing it to converge. One of the ways to avoid

these oscillations, is by gradually updating the weight vectors, taking several steps

to shrink the weights towards zero, as opposed to abruptly removing the features

from the model in a single step. In order to obtain a smoother convergence to the

solution, the addition of an update step (Algorithm 7.2) to the ALS is proposed.

Instead of directly updating the weights by the result of the latest regression step
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wi+1, the update function takes the weight vector from the previous iteration wi

and updates it towards the new weight vector wi+1. Note that if an entry j of the

latest regression step wi+1
j is equal to 0, and the same entry from the previous weight

vector |wij | < ε (Step 3), where ε is a very small number, then the feature will be

removed during the weight update (Step 6). The use of this function is inspired by

gradient based algorithms for CCA [Fu et al., 2016], and constitutes the contribution

of this section.

Algorithm 7.2 Proposed update weight function.
1: function update(w(i+1),w(i),M , δ)
2: w(i+1) =w(i+1)/‖Mw(i+1)‖2
3: Iw :=

{
j | w(i+1)

j = 0
∧
|w(i)
j |< ε

}
4: ∆w = δ

(
w(i+1)−w(i)

)
5: w(i+1)←w(i) + ∆w
6: w

(i+1)
j = 0, j ∈ Iw

7: w(i+1) =w(i+1)/‖Mw(i+1)‖2
8: return w(i+1)

9: end function

The proposed ALS approach is described in Algorithm 7.3. The glmnet package

was used to solve the LASSO regression steps [Friedman et al., 2010, Qian et al.,

2013], and the convergence criteria was met when all the following conditions were

true:

1. ‖u(i+1)−u(i)‖2 < 10−5

2. ‖v(i+1)−v(i)‖2 < 10−5

3. |Iu|6 pu

4. |Iv|6 qv

Moreover, the vectors u(0) and v(0) were initialised using the first singular vectors of

XᵀY , in order to provide a good first estimate of the weight vectors.

Our initial investigations performed with the proposed ALS approach revealed

that the algorithm still tended to oscillate in certain conditions, even with the

introduction of the update function (Algorithm 7.2). This was most common on

the last iterations of ill-conditioned problems, i.e. when ‖u(i+1)−u(i)‖2 ≈ 10−4 and

‖v(i+1)−v(i)‖2 ≈ 10−4. This might be an indication that ALS tends to oscillate



122 Chapter 7. Alternating Least Squares (ALS) method for SCCA and SPLS

around very similar solutions, this was indeed observed in several cases, e.g. the

weight vectors would periodically change within a small set of very similar vectors.

In order to avoid oscillations due to a very large step size δ in Algorithm 7.2, an

option to update the step size was introduced (Step 11 in Algorithm 7.3). The ALS

was considered to be oscillating if all the following conditions where met:

1. ‖u(i+1)−u(i)‖2 < 10−3

2. ‖v(i+1)−v(i)‖2 < 10−3

3. |Iu|6 pu

4. |Iv|6 qv

5. the correlation between the projections of the train data Crr(Xu(i+1),Y v(i+1))

is approximately equal (the difference is less than 10−6) to a correlation observed

in past iterations.

Algorithm 7.3 SCCA using ALS. The update function is described in Algorithm 7.2.

1: Set u(0) and v(0) equal to the first singular vector pair of XᵀY .
2: Set δ = 0.5
3: repeat

4: b← Y v(i)

5: Solve u(i+1)← argminu ‖b−Xu‖
2
2 +γ ‖u‖1, with γ such that |Iu| ≈ pu

6: u(i+1)← update(u(i+1),u(i),X, δ)

7: b←Xu(i+1)

8: Solve v(i+1)← argminv ‖b−Y v‖
2
2 +γ ‖v‖1, with γ such that |Iv| ≈ qv

9: v(i+1)← update(v(i+1),v(i),Y , δ)

10: if ALS is oscillating then
11: δ← δ/2
12: end if

13: i← i+ 1
14: until convergence
15: return u, v

Note that there are other ALS formulations proposed in the literature, including

methods which penalise the covariance matrices XᵀX and Y ᵀY , such as the one

proposed by Chi et al. [2013]. In this case, the update of u would be performed as
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follows (an analogous update would be performed for v):

u← argmin
u

1
2‖C̃

−1/2
xx XᵀY v− C̃−1/2

xx u‖22 +γ‖u‖1

with

C̃xx = λxmxI+ (1−λx)Cxx

where Cxx =XᵀX, mx is the average eigenvalue of Cxx, and λx ∈ [0,1] is a mixing

coefficient which shrinks Cxx towards mxI. The latter appears to be analogous

to the parameter τx in the classical regularised CCA formulation (Equation 3.8).

However, this means that two extra hyper-parameters are included in the model

(λx and λy), which would result in more hyper-parameters that would have to be

optimised. Moreover, this formulation also requires the computation XᵀX, which

might be expensive in some settings. Therefore, the ALS method proposed in this

section (Algorithm 7.3) is based on simpler ALS approaches for SCCA previously

proposed in the literature [Wilms and Croux, 2015, Polajnar, 2015].

In this section, three algorithms were compared: ALS in its simplest version

(without the update steps); ALS using the update steps, but without updating δ;

and ALS using both the update steps and updating the value of δ.

An upper limit on the number of iterations was set, i.e. if the algorithm did not

converge after 1000 iterations, it was considered as “not converged”.

7.1.1.1 Dataset

The first experiments performed with SCCA using ALS revealed that the glmnet

package does not scale very well with the number of features. This means that it

was not possible to run ALS on very high dimensional datasets (e.g. whole-brain

voxel-wise neuroimaging data), as the computational time was too large. Other

software packages where tested in early preliminary experiments (e.g. the lars [Efron

et al., 2004]), however, it was clear that the computational time increased with

the number of features as well. The best performing package was glmnet, this

observation aligns with earlier publications suggesting that glmnet performs better

in terms of computational time [Friedman et al., 2010]. Therefore, all the experiments

in Chapters 7 and 8 were run on a lower dimensional dataset. Note that the focus

of this section is on empirically assessing the convergence properties of the ALS
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algorithm, its scalability is outside the scope of this section.

A subset of 701 subjects at baseline from the ADNI dataset was used for this

chapter. The demographic information is expressed in Table 7.1.

Table 7.1: Demographic information of the dataset. The gender information represents the
number of males/females.

Healthy MCI AD
Gender 117/109 154/136 94/91
Age 75.86 ± 5.05 74.84 ± 7.44 75.20 ± 7.38

A total of 145 ROI volumes taken from the UPENN Section of Biomedical Image

Analysis (SBIA) volumes were used as features in X, a complete list can be found

in Appendix C.1.3. A subset of 7 clinical/demographic variables was used in Y :

Age, Education, ADAS11 [Mohs, 1994], ADAS13 [Petersen et al., 2005], Mini-Mental

State Examination (MMSE) [Folstein et al., 1975], RAVALT_immediate [Schmidt

et al., 1996], and Functional Assessment Questionnaire (FAQ) [Pfeffer et al., 1982].

ADAS11 and ADAS13 denote two variants of the Alzheimer’s Disease Assessment

Scale (ADAS) [Rosen et al., 1984], and RAVALT_immediate denotes the sum

of the scores from the 5 first trials of the Rey Auditory Verbal Learning Test

(RAVALT) [Schmidt et al., 1996, Moradi et al., 2016]. For more information, please

refer to the ADNI manual [adn, 2006]. These clinical scores were chosen due to the

fact that they provided a fair amount of information regarding the cognitive ability

of the subjects, and did not have any missing data.

In this section, the performances of the ALS algorithms were investigated using

two settings: a well-conditioned problem (p,q < n), and an ill-conditioned problem

(p,q > n). For the ill-conditioned problem, a dataset {X ′,Y ′} was created by adding

1000 columns of uncorrelated Gaussian noise to each data matrix:

X ′ = [X, Ex] and Y ′ = [Y , Ey]

where Ex ∈ Rn×1000 and Ey ∈ Rn×1000 are matrices where each column contains

randomly generated numbers following a Gaussian distribution, and Ex 6= Ey.

The {X ′,Y ′} dataset allowed not only to test ALS in an ill-conditioned setting,

where the majority of the features are comprised of noise, but also to check whether

the weight vectors computed by SCCA contain the “true” features, i.e. features in
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{X,Y }.

All the tests were performed using the multiple hold-out framework described

in Chapter 6. Since the aim of the section is to assess the convergence properties of

the proposed ALS approach, all the experiments were restricted to the first weight

vector pair.

A small change was introduced to the framework. On the original publica-

tion [Monteiro et al., 2016], the metric used throughout the framework was the

absolute correlation (Equation 3.4.1), this was done to be coherent with previous

publications, such as the paper by Parkhomenko et al. [2009]. However, it may

actually be unnecessary, due to the fact that SCCA tries to maximise the correlation

between the projections, therefore, the train correlation will always be positive. This

means that if the test correlation is negative, the method is not generalising well,

which usually happens during permutations. Thus, by using the absolute correlation

as a metric, one is in fact overestimating the amount of times the method using

permuted data outperforms the original correlation, which may lead to a decrease in

statistical power. Therefore, all the tests performed in this chapter used the corre-

lation between the projections as the performance metric (instead of the absolute

correlation).

The hyper-parameter range explored for the optimisation was determined based

on the number of features in each view. More specifically, if the number of features in

X is given by p, then the hyper-parameter range was set to: pu ∈ {0.1p,0.2p, . . . ,p}.

An analogous range was applied for Y . However, for the {X,Y } dataset, Y only has

7 features, thus, in this case the hyper-parameter range was set to: qv ∈ {1,2, . . . ,7}.

In Chapter 6, the data were mean-centered and normalised as a pre-processing

step, due to the fact that mean-centering and normalising such large data matrices for

each data split during validation would increase the computational time. Moreover,

our initial investigations revealed that this did not have a noticeable impact on the

hyper-parameter optimisation. Since high dimensionality is no longer an issue, in

this chapter and in Chapter 8, the data were mean-centered and normalised based

on the train data.
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7.1.2 Results and Discussion

The results will be presented in three sections. The first (Section 7.1.2.1) will show

the performance obtained with the proposed ALS method for both datasets ({X,Y }

and {X ′,Y ′}), i.e. how consistent were the correlations obtained during the hyper-

parameter selection step across the 10 different hold-out splits. The second section

(Section 7.1.2.2) will present the weight vector pairs obtained, and how these compare

with the results obtained in Chapter 6. Finally, the last section (Section 7.1.2.3)

will compare the performance of the proposed ALS formulation, with two simpler

ALS formulations, both in terms of the obtained test correlations, and how often the

algorithms converged.

7.1.2.1 Test correlations

SCCA using ALS (Algorithm 7.3) was able to find statistically significant effects

(p < 0.005 for all the hold-out datasets), for both {X,Y } and {X ′,Y ′}. The

correlations on the hold-out datasets, with the corresponding p-values, are presented

in Appendix C.1.1.

Figure 7.1 shows the correlation values on the test datasets (used for hyper-

parameter selection) and on the hold-out datasets. As one can see, the introduction

of noise decreased the average correlations, however, these were still quite high for

both cases.
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Figure 7.1: Average correlations for both datasets.

Figure 7.2 shows the average test correlations obtained during hyper-parameter
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selection, for all hyper-parameter combinations across the 10 hold-out splits. As one

can see, the hyper-parameter estimation was fairly consistent across the 10 splits,

which indicates that SCCA was robust to perturbations in the data. The optimal

hyper-parameters selected also indicate that all the clinical/demographic features

(Y ) should be included in the model, while only approximately half the ROI features

(X) should be included.

In the case of the ill-conditioned dataset {X ′,Y ′}, the optimal hyper-parameter

combination was the one corresponding to the sparsest solution (Figure 7.3). This

result was expected, since most of the features in the data matrices were comprised of

noise. Note that one might obtain an even better solution for pu < 0.1p and qv < 0.1q,

but these were the smallest hyper-parameters tested.

The plots in Figure 7.3 show that the correlations did not change much when

the hyper-parameter is low in one view, and high in the other view, i.e. low pu with

high qv, and vice versa. This is due to the fact that the solutions obtained with

these hyper-parameter combinations sometimes contain far less features than the

ones defined by the constraints {pu, qv} (Equation 7.2). When the LASSO problem is

solved using the glmnet, the package sometimes outputs a solution which is sparser

than the specified upper bound on the number of features (pu or qv). In other words,

even with a generous upper bound (pu or qv), glmnet removed some of the noisy

features. This resulted in a difference between the number of features included by

the weight vectors {u,v} and the model constraints {pu, qv}. For more information

regarding this difference, please refer to the results presented in Appendix C.1.2.
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Figure 7.2: Average test correlations for each hyper-parameter optimisation step. Original
dataset ({X,Y }).
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Figure 7.3: Average test correlations for each hyper-parameter optimisation step. Noisy
dataset ({X ′,Y ′}).
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7.1.2.2 Weight vectors

Figure 7.4 shows the average of the 10 ROI weight vectors for both datasets used. As

one can see, the weight with the largest magnitude corresponded to the hippocampus,

which is consistent with previous findings in the AD literature [Jack et al., 2000]

and with the results presented in Chapter 6. However, it is interesting to note

that only the left hippocampus was selected with such a large weight, the right

hippocampus had a much smaller weight, which was not observed in Chapter 6,

where both hippocampi had similar weights. This may be due to the fact that the

ALS method uses LASSO regression steps, which are known to down-weight/exclude

features which correlate with other features already included in the model [Zou and

Hastie, 2005].

The addition of noise to the dataset ({X ′,Y ′}) caused the weights to change

(Figure 7.4(b)). However, one can see that the top weight was still the same as in

the original dataset (left hippocampus). Other top weights are also reasonable from

a biological point of view, e.g. the hippocampus and the amygdala have weights

with opposite signs to the ones in the ventricles, which is consistent with how their

volumes tend to change with dementia: hippocampus and amygdala decrease in

volume, while ventricles increase.

Variable

L.
 H

ipp
oc

am
pu

s

Bra
in 

Ste
m

R. I
nf

. L
at

. V
en

t.

L.
 In

f. 
La

t. 
Ven

t.

Fro
nt

. lo
be

 W
M

 R
.

R. M
SFG S

up
. F

ro
nt

. G
yr

us
 M

ed
. S

eg
.

Ant
. li

m
b 

of
 in

te
rn

al 
ca

ps
ule

 R
.

L.
 P

all
idu

m

L.
 P

In
s P

os
t. 

ins
ula

L.
 O

CP  o
cc

ipi
ta

l p
ole

W
ei

gh
t

-0.015

-0.01

-0.005

0

0.005

0.01
Top 10 weights

(a) {X,Y } – Mean u. Top 10 weights.
Variable

L.
 H

ipp
oc

am
pu

s

R. I
nf

. L
at

. V
en

t.

L.
 In

f. 
La

t. 
Ven

t.

R. A
nG

  a
ng

ula
r g

yr
us

R. A
m

yg
da

la

L.
 O

CP  o
cc

ipi
ta

l p
ole Nois

e

Fro
nt

. lo
be

 W
M

 R
.

R. O
pI

FG o
pe

rc
ula

r p
ar

t I
nf

. F
ro

nt
. g

yr
us

L.
 S

M
G  s

up
ra

m
ar

gin
al 

gy
ru

s

W
ei

gh
t

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Top 10 weights

(b) {X’,Y ’} – Mean u. Top 10 weights.

Figure 7.4: Mean ROI weight vectors across the 10 hold-out splits. Red bars correspond
to features coming from the original dataset X and blue bars correspond to
noisy features from Ex.

The average clinical weights are presented in Figure 7.5. As one can see, the top

weights on the noisy dataset were all associated with variables in the original dataset
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{X,Y } (Figure 7.5(b)). However, two of the clinical features were not included in

the top 10: ADAS11 and Education. The former was not selected in any of the 10

data splits, which may be due to the fact that it is very correlated with ADAS13,

which was included in the model. All the “true” features presented in Figure 7.5(b)

had the same sign as the ones in Figure 7.5(a), i.e. if a feature had a positive weight

when using Y , it also had a positive weight when using Y ′, and vice versa.
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Figure 7.5: Mean clinical weight vectors across the 10 hold-out splits. Red bars correspond
to features coming from the original dataset Y and blue bars correspond to
noisy features from Ey.

7.1.2.3 Comparison of ALS algorithms

Three algorithms are compared in this section: ALS without the update step, i.e.

Algorithm 7.3 where the update steps are substituted by vector rescaling steps

(u← u/‖Xu‖2 and v← v/‖Y v‖2); ALS with the update step, but with a fixed

value of δ; and the final proposed algorithm with the update step and with the

update on the value of δ, as described in Algorithm 7.3.

The results presented below summarise the performance during the hyper-

parameter selection steps for all the 10 hold-out data splits, i.e. each hyper-parameter

combination was evaluated using 1000 data splits.

Figure 7.6 shows the results obtained when using the original dataset without

the addition of noisy features ({X,Y }). By comparing how ALS performed before

(red) and after (green) the addition of the update step, one can see that there was a

slight improvement in the fraction of times it converged (Figure 7.6(a)). The update

of the value of δ provided even better results (blue). Despite this improvement, one
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can see that the impact on the test correlations was negligible (Figure 7.6(b)), which

seems to support our initial hypothesis that, by not forcing the algorithm to converge

to a result using the proposed ALS method, there is the risk that it will oscillate

between a set of very similar solutions.
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Figure 7.6: Comparison of ALS algorithms using original dataset {X,Y }. Both plots show
results for hyper-parameter selection across the 10 hold-out splits. Red – ALS
without the update step; Green – ALS with the update step, but with a fixed
δ; Blue – proposed algorithm, i.e. ALS with update step and update on the
value of δ.

Figure 7.7 shows the same results as Figure 7.6, but using the dataset with added

noisy features ({X ′,Y ′}). In this case, one can see that the algorithms behave quite

differently. Figure 7.7(a) shows that for the optimal hyper-parameter combination,

the addition of the update step (green) improved the fraction of times the algorithm

converged from 0.4530 to 0.5180, which was further improved by the update on the

value of δ (blue) from 0.5180 to 0.9820. However, this was not the case for most

hyper-parameter combinations, where the original ALS formulation (red) converged

as often as the proposed formulation (blue).

Figure 7.7(b) shows that, unlike the results with the original dataset (Fig-

ure 7.6(b)), the correlation obtained on the test sets actually changed with the ALS

algorithm. For most of the hyper-parameter combinations, the proposed method

actually performed worse (blue) than the original ALS (red), or the ALS with the

update step but without the update on the value of δ (green). This result may be

due an implementation issue, where the proposed ALS formulation assumes that the

algorithm is oscillating too soon, and prematurely decreases the value of δ, forcing

ALS to converge to a sub-optimal solution.
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Despite these results, the difference between the correlation obtained by the

three different ALS algorithms for the optimum hyper-parameter combination was

negligible: there was a small increase from 0.6714 (red) to 0.6717 (blue). Therefore,

the proposed ALS algorithm will still choose the same hyper-parameter combination

as the other two ALS algorithms. This result leads us to believe that using the

proposed ALS algorithm is the best option, as it will provide comparable solutions,

while converging more often. This last property is especially attractive, since it will

decrease the computational time, by preventing the algorithm from spending time

oscillating between very similar solutions.
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Figure 7.7: Comparison of ALS algorithms using dataset with added noise {X ′,Y ′}. Both
plots show results for hyper-parameter selection across the 10 hold-out splits.
Red – ALS without the update step; Green – ALS with the update step,
but with a fixed δ; Blue – proposed algorithm, i.e. ALS with update step and
update on the value of δ.

7.1.3 Conclusion

This section has served mainly as an introduction to the remaining work presented

in this thesis (Section 7.2 and Chapter 8). However, it also proposes a different

formulation of the ALS algorithm [Golub and Zha, 1992]. This differs from earlier

ALS formulations [Lykou and Whittaker, 2010, Chi et al., 2013, Wilms and Croux,

2015, Polajnar, 2015] by introducing an extra update step on the weight vectors, in

order to prevent the algorithm for oscillating between similar solutions.

The algorithm was tested on a dementia dataset containing ROI information

and clinical/demographic information ({X,Y }), and on a higher dimensional dataset

where p,q > n and most features were comprised of noise ({X ′,Y ′}). This was done

to assess whether the ALS algorithm could be used for SCCA when the problem was
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ill-conditioned. The results have shown that the ALS was indeed able to provide

statistically significant results, which were robust to perturbations in the data.

There were still a few cases in which ALS did not converge, due to the fact that

the constraints could not be obeyed. This was especially common in cases where the

constraints on the number of features were very strict, i.e. only one or two features

were allowed. In some of these cases, the glmnet package was not able to provide

a solution which obeyed the constraints. Nevertheless, SCCA was able to compute

weight vector pairs which were able to generalise well for test data.

One of the possible limitations of the ALS is the fact that its computational time

did not scale well with the number of features. This scalability will be dependent

on the algorithm used to solve each LASSO regression step. As mentioned in

Section 7.1.1.1, glmnet was chosen due to the fact that it was the best performing

algorithm in early preliminary experiments. However, the computational time of

ALS can be further reduced if the LASSO regression steps are solved using a faster

algorithm.

Despite the encouraging results, there are still questions that should be inves-

tigated, more specifically: how do these results compare with SPLS; is it possible

to use other types of penalties besides the LASSO; and is it possible to solve SPLS

using ALS. These shall be addressed in Section 7.2.

7.2 SCCA vs. SPLS
7.2.1 Introduction

Section 7.1 discussed some of the properties of the ALS approach when used with

a LASSO penalty to solve a SCCA problem. However, no comparisons have been

made between this method, and other potential candidates, such as: SCCA using an

elastic net penalty, SPLS, CCA, and PLS.

In this section, a comparison between these different approaches is made. How-

ever, a direct comparison between SCCA in its current ALS formulation and SPLS

is not completely fair, as the latter is solved using a different algorithm (the power

method). This section tries to address this issue by solving a SPLS problem using

ALS.

As mentioned in the introduction of this chapter, one of the advantages of using an

ALS framework is that the SCCA penalties can be easily changed, provided that there
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are functions available to solve the corresponding regression steps. By substituting

the LASSO regression step by an elastic net regression step, the properties of SCCA

should become more similar with the properties of an elastic net. Thus, by changing

these regression steps, the following methods were compared using the ALS approach:

SCCA using LASSO (SCCA-ALS-L1), SPLS using LASSO (SPLS-ALS-L1), SCCA

using elastic net (SCCA-ALS-EN), SPLS using elastic net (SPLS-ALS-EN), and

non-penalised CCA. These were also compared with two PLS approaches solved

using the power method: PLS (Algorithm 3.2) and SPLS (Algorithm 3.4).

Note that the use of ALS to solve SPLS has been previously proposed in the

literature [Chi et al., 2013]. However, as far as we are aware, no comparisons have

been made between the performance of SPLS using ALS, and SPLS using the power

method. By making these comparisons, this section aims not only to determine which

method provides the best test correlations, but also how consistent are the methods

across the different hold-out splits, which features are selected by the different

methods, and how different are the projections of the data onto the computed weight

vector pairs.

7.2.2 Materials and Methods

7.2.2.1 SPLS using ALS

In order to make the comparisons between SCCA and SPLS consistent, an adaptation

of the ALS algorithm presented in Section 7.1 is proposed to solve SPLS.

By looking at the ALS algorithm for SCCA (Algorithm 7.3), one can see that

the essential steps are the regression operations performed to estimate u (Step 5)

and v (Step 10). These steps can be re-written to solve a SPLS problem.

Consider the update steps for each weight vector in the PLS-SVD algorithm

(Algorithm 3.2), i.e. the power method applied to the covariance matrix XᵀY :

u←XᵀY v and v← (XᵀY )ᵀu (7.3)

The steps performed by the power method (Equation 7.3), can be re-written as

regression steps:

u← argmin
u
‖XᵀY v−u‖22 and v← argmin

v
‖(XᵀY )ᵀu−v‖22 (7.4)
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If the regression steps described in Equation 7.4 are performed in an ALS

framework, and the weight vectors are re-scaled by their l2-norms (instead of the

norms of their projections), then one obtains an algorithm to solve PLS using ALS.

In order to use ALS to solve a SPLS problem, one has to add sparse penalies. The

regression steps described in Equation 7.4 are then re-written as LASSO regression

steps:
u← argmin

u
‖XᵀY v−u‖22 +γ‖u‖1

and

v← argmin
v
‖(XᵀY )ᵀu−v‖22 +γ‖v‖1

(7.5)

In the papers by Chi et al. [2013] and Grellmann et al. [2015], the authors

describe a SCCA algorithm whose steps look very similar to the ones expressed in

Equation 7.5. Where each weight is fixed alternately and a regression problem is

solved. In other words, for a fixed v, u is computed using Algorithm 7.4. Which is

an indication that the problem the authors solved was a SPLS problem, and not a

SCCA problem.

Algorithm 7.4 Regression step described by Chi et al. [2013] and Grellmann et al.
[2015].
1: u← argmin‖u‖2=1

1
2‖X

ᵀY v−u‖22 +γ‖u‖1
2: u← u/‖u‖2

As previously mentioned in Section 7.1.1, Chi et al. [2013] proposed an extension

of this formulation which may be closer to SCCA, however, the connection between

SCCA and SPLS is not explicitly made.

Note that the expressions in Equation 7.5 are equivalent to:

u← argmin
u
‖bv−Iuu‖22 +γ‖u‖1 and v← argmin

v
‖bu−Ivv‖22 +γ‖v‖1

where bv =XᵀY v, bu = (XᵀY )ᵀu, and Iu ∈Rp×p and Iv ∈Rq×q are identity matri-

ces. The use of these identity matrices allows one to use several popular regression

packages (e.g. glmnet), whose functions typically require a data matrix as an input

argument.

Based on the ALS algorithm for SCCA (Algorithm 7.3), a method is proposed

to solve a SPLS problem using ALS (Algorithm 7.5).
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Algorithm 7.5 SPLS using ALS. The update function is described in Algorithm 7.6.
1: Set C =XᵀY
2: Set u(0) and v(0) equal to the first singular vector pair of C.
3: Set δ = 0.5
4: Define the identity matrices Iu ∈ Rp×p and Iv ∈ Rq×q
5: repeat

6: bv =Cv(i)

7: Solve u(i+1)← argminu ‖bv−Iuu‖
2
2 +γ ‖u‖1, with γ such that ‖u‖1 6 cu

8: u(i+1)← update(u(i+1),u(i), δ)

9: bu←Cᵀu(i+1)

10: Solve v(i+1)← argminv ‖bu−Ivv‖
2
2 +γ ‖v‖1, with γ such that ‖v‖1 6 cv

11: v(i+1)← update(v(i+1),v(i), δ)

12: if Algorithm is oscillating then
13: δ← δ/2
14: end if

15: i← i+ 1
16: until convergence
17: return u, v

Algorithm 7.6 Update weight function.
1: function update(w(i+1),w(i), δ)
2: w(i+1) =w(i+1)/‖w(i+1)‖2
3: Iw :=

{
j | w(i+1)

j = 0
∧
|w(i)
j |< ε

}
4: ∆w = δ

(
w(i+1)−w(i)

)
5: w(i+1)←w(i) + ∆w
6: w

(i+1)
j = 0, j ∈ Iw

7: w(i+1) =w(i+1)/‖w(i+1)‖2
8: return w(i+1)

9: end function

The differences between Algorithm 7.3 and Algorithm 7.5 are: the projection

steps, the weight vector re-scaling in Algorithm 7.6 (so that the SPLS l2-norm

constraints are obeyed), and the setting of the γ penalty terms in the LASSO

regression steps (so that the SPLS l1-norm constraints {cu, cv} are obeyed).

As mentioned in Section 2.1.1, one of the disadvantages of the LASSO [Tibshirani,

1996] is that it tends to exclude variables that are correlated with other variables

already included in the model. Zou and Hastie [2005] proposed an approach known as

the elastic net, which consists in adding a l2-norm penalty to the LASSO optimisation
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problem, which results in a method that provides sparse solutions while maintain a

grouping effect:

minimise
w

‖y−Xw‖22 +γ2‖w‖22 +γ1‖w‖1 (7.6)

The problem expressed in Equation 7.6 can be re-written as:

minimise
w

1
2n‖y−Xw‖

2
2 +γ

(
(1−α)1

2‖w‖
2
2 +α‖w‖1

)
(7.7)

which is the formulation that is used in the glmnet package [Friedman et al., 2010].

Note that 1/(2n) and 1/2 are scaling terms. These are included to simplify the

derivatives of the squared norms.

The α term in Equation 7.7 (not to be confused with the α commonly used to

refer to dual weight vectors) is a hyper-parameter between 0 and 1, which controls

the trade-off between the l1-norm penalty and the l2-norm penalty. Thus, instead

of directly controlling the penalty hyper-parameters {γ1,γ2} (Equation 7.6), this

alternative formulation controls how much the penalty influences the result (γ) and

how much that penalty is influenced by the l1-norm or the l2-norm of w (which is

controlled by α). This means that if α= 1 the optimisation problem is equivalent

to the LASSO (Equation 2.9), and if α= 0, the problem becomes a ridge regression

(Equation 2.8). Values between 0 and 1 provide an interpolation between the two

optimisation problems, i.e. the elastic net optimisation problem.

Note that, if the sparsity penalties are not included, PLS solved using the

classical ALS approach and PLS solved using the power method are mathematically

equivalent (proof in Appendix A.2). However, this is not the case for SPLS. Therefore,

only the results for PLS solved using the power method will be presented in this

section, whereas the SPLS results will be presented using both the ALS and the

power method.

7.2.2.2 Experiments

All the experiments were performed using the {X,Y } dataset from Section 7.1 with

the multiple hold-out framework. The following seven methods were tested:

• Non-sparse methods:

– CCA: non-penalised CCA solved using ALS;
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– PLS: non-penalised PLS solved using the power method;

• SCCA methods:

– SCCA-ALS-L1: SCCA solved using ALS with the LASSO;

– SCCA-ALS-EN: SCCA solved using ALS with the elastic net;

• SPLS methods:

– SPLS-PM: SPLS solved using the power method (Algorithm 3.4);

– SPLS-ALS-L1: SPLS solved using ALS with the LASSO;

– SPLS-ALS-EN: SPLS solved using ALS with the elastic net;

As previously mentioned, the elastic net (Equation 7.7) has two hyper-parameters

to tune {γ,α}. However, the value of α was fixed a priori to 0.5, otherwise, both

SCCA-ALS-EN and SPLS-ALS-EN would have four hyper-parameters to tune, which

would drastically increase the computational time of the hyper-parameter selection

steps.

The hyper-parameter values used for hyper-parameter selection were comprised

of 40 equidistant points for pu ∈ [0.01p,p] and qv ∈ {1, . . . ,7} for both SCCA-ALS-L1

and SCCA-ALS-EN. For all the SPLS methods, 40 equidistant points were used

between cu ∈ [1,√p] and cv ∈ [1,√q].

7.2.3 Results and Discussion

7.2.3.1 Test correlations

All the results were statistically significant, for a complete list of the hold-out

correlations and corresponding p-values, please refer to Appendix C.2.1.

Figure 7.8 shows the averages of the best correlations obtained during the hyper-

parameter selection step. These are plotted instead of the correlations obtained in

the hold-out datasets (Appendix C.2.1) due to the fact that each one is based on

the average of 100 fits, which should make them more robust estimates for model

comparison.

The results show that SCCA-ALS-L1 performed the best, however, the cor-

relations were very similar to the ones obtained with SCCA-ALS-EN. The SPLS

methods performed worse than the SCCA methods, with a difference in the average
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Figure 7.8: Average of the optimal test correlations for all the seven methods tested.

test correlation larger than between SCCA-ALS-L1 and SCCA-ALS-EN. This was

expected, since SCCA optimises the performance metric, i.e. correlation between the

projections, whereas SPLS optimises the covariance between the projections.

Among the non-sparse methods, CCA performed better than PLS, in fact, CCA

performed even better than all the SPLS methods. This was expected, since CCA is

maximising correlation instead of covariance, and the dataset is fairly low dimensional,

which means that sparsity is less likely to provide a relatively large improvement.

Figure 7.9 shows the average test correlation obtained during the hyper-parameter

optimisation step for all 10 hold-out splits using SPLS-PM. As one can see, the

hyper-parameter selection was quite consistent across the 10 splits. Note that the x

and y axes are different than the ones from previous figures in this chapter (Figures 7.2

and 7.3). The axes in Figures 7.2 and 7.3 represent the upper bound on the number of

features (pu and qv), whereas the axes in Figure 7.9 represent the l1-norm constraint

on the SPLS weight vectors (just as in Chapter 6).

Figure 7.10 shows the same information as Figure 7.9, but for SPLS-ALS-EN.

As one can see, these results are different from the ones obtained with SPLS-PM

(Figure 7.9), this suggests that SPLS solved with the power method leads to different

results from SPLS solved using ALS. The results for SPLS-ALS-L1 were similar to

the ones shown in Figure 7.10, these are presented in Appendix C.2.2.

The SCCA-ALS-L1 and SCCA-ALS-EN provided similar results to the ones

shown in the previous section (Figure 7.2), these can be found in Appendix C.2.2.
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Figure 7.9: Average test correlations for each hyper-parameter optimisation step, using
SPLS-PM.
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Figure 7.10: Average test correlations for each hyper-parameter optimisation step, using
SPLS-ALS-EN.
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The similarity between the results acquired by both methods was expected, since

they have also shown very similar correlations on the test sets (Figure 7.8).

7.2.3.2 Weight vectors

The weights in the clinical/demographic view (Y ), were not very sparse. In fact, the

SCCA methods selected 6 features (ADAS11 was excluded), while the SPLS methods

selected all 7 features. Due to the low dimensionality of this view, this section will

focus mainly on the results on the view containing the ROI data (X).

A summary of the ROI weights (u) selected by the models is presented in

Figure 7.11. As one can see, the SCCA methods computed solutions with a similar

number of features (Figure 7.11(a)). This was not the case for the SPLS methods,

where SPLS-ALS-L1 and SPLS-ALS-EN computed solutions selecting all the ROI

features, while SPLS-PM computed sparse solutions. This result was expected, since

Figures 7.9 and 7.10 show that the optimal hyper-parameter combinations for each

SPLS method were very different.

Another interesting aspect to explore is how correlated were the features that

were selected by each method. In order to answer this question, the correlation matrix

between the variables of X was computed, and the average absolute correlation for

the subset of all the features selected by each method was calculated. Figure 7.11(b)

shows how correlated the selected features were with each other. The baseline

correlation is shown in red, i.e. the average absolute feature correlation obtained

using non-sparse methods. As one can see, both SCCA methods selected a less

correlated set of features than the baseline provided by non-sparse methods. This was

not the case for SPLS-ALS-L1 and SPLS-ALS-EN, which provided the same average

absolute feature correlation as the baseline correlation. This result was expected,

since all the ROI features were included when using these methods. Interestingly,

SPLS-PM provided sparse solutions whose features tended to be more correlated

with each other than in all the other methods.

Figure 7.11 provides some information regarding the overall properties of the

weight vectors, however, it does not contain any information regarding which weights

were attributed to which features. In order to further analyse these weights, the

following procedure was performed:

1. Compute the average weight vectors u and v across the 10 hold-out data splits,
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Figure 7.11: Properties of features selected in X by each one of the methods tested.

for all the 7 methods tested;

2. For each average weight vector u and v from each method, perform the

following:

(a) Re-order the features in X and Y according to the absolute weight values,

e.g. for the average SPLS-PM weight vector u, reorder the columns of X,

such that the first columns correspond to the ones with the largest |uj |

while the last columns correspond to the ones with the smallest |uj |;

(b) Compute the correlation matrices using the reordered X and Y data

matrices;

These matrices will contain information regarding the correlations between the

features with the largest weights, which should provide some insights into the

properties of the (S)CCA and (S)PLS methods.

Figure 7.12 shows the absolute correlation between the variables selected by

each one of the non-sparse methods. One can see that, for the view containing the

ROI data (Figure 7.12(a)), CCA tended to attribute weights with large absolute

values to several highly correlated variables. While PLS has shown a similar effect

(Figure 7.12(c)), the method also attributed high absolute weights to two ROIs which

were very correlated between themselves (left and right inferior lateral ventricles),
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Figure 7.12: Correlation matrices between the variables selected by the average u and v
for the non-sparse methods. The rows/columns were ordered by absolute
weight value. The absolute correlation values are shown.

but had a low absolute correlation with the remaining ones.

Figure 7.13 shows the absolute correlation between the features selected by each

one of the SCCA methods. One can see that the order of the rows/columns in the

correlation matrices corresponding to the features selected by v (Figures 7.13(b)

and 7.13(d)) did not change, which means that changing the penalty from a LASSO

penalty (SCCA-ALS-L1) to an elastic net penalty (SCCA-ALS-EN), did not have a

large effect on the relative weight of each feature in Y . However, there were some top

features selected by the SCCA-ALS-EN u vector (Figure 7.13(c)) which were more

correlated between themselves than the top features in the SCCA-ALS-L1 u vector

(Figure 7.13(a)). Although the effect was not very pronounced, it is consistent with

what one would expect from an elastic net penalty, which tends to keep correlated

features in the model. Unlike a LASSO penalty, which tends to down-weight/exclude
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Figure 7.13: Correlation matrices between the variables selected by the average u and v
for the SCCA methods. The rows/columns were ordered by absolute weight
value. The absolute correlation values are shown.

correlated features.

Figure 7.14 shows the same information as Figure 7.13, but for the SPLS methods.

As one can see, the results were very different between the different SPLS approaches,

more specifically, between the SPLS methods solved using ALS, and SPLS solved

using the power method. By looking at the features selected by u (Figures 7.14(a),

7.14(c), and 7.14(e)), one can see that the methods based on ALS selected two

groups of highly correlated features among the top 10. The features in each group

were very correlated between other features in the same group, but had a very low

correlation with features from the other group. This was not the case for SPLS-PM

(Figure 7.14(e)), whose pattern was more similar to the one obtained by the SCCA

methods (Figures 7.13(a), and 7.13(c)). However, the features selected by SPLS-PM

(Figure 7.14(e)) were more correlated with each other than the ones selected by
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the SCCA methods (Figures 7.13(a) and 7.13(c)). This result was expected, since

the features selected by SPLS were, on average, more correlated with each other

(Figure 7.11).
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Figure 7.14: Correlation matrices between the variables selected by the average u and v
for the SPLS methods. The rows/columns were ordered by absolute weight
value. The absolute correlation values are shown.
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7.2.3.3 Projections

Figure 7.15 shows the projections of the subjects onto the computed weight vector

pairs for each non-sparse method. These projections seem to form a continuous

distribution from smaller to greater degrees of neuro-degeneration, which is consistent

with the results shown in Chapter 6. Moreover, one can see that the projections

provided by CCA (Figure 7.15(a)) seem to be more elongated, when compared with

the projections provided by PLS (Figure 7.15(b)), i.e. they seem to be more aligned

along a line. This is consistent with the results which showed that CCA was able to

provide higher test correlations (Figure 7.8).
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Figure 7.15: Data projected onto the best weight vector pair for each one of the non-sparse
methods tested.

Figure 7.16 shows the projections of the data onto the weight vector pairs

computed by the SCCA methods. Just as in previous results, they seem to form a

continuous distribution from smaller to greater degrees of neuro-degeneration. One

can see that the projections are quite similar, which was expected, since all the

results presented so far have shown that these two methods had a similar behaviour.

Figure 7.17 shows the projections obtained using the weight vector pairs com-

puted by the SPLS methods. All the projections appeared to be more spread out than

the ones given by the SCCA methods (Figure 7.16). This was expected, since the

average correlations on the test sets for the SPLS methods were lower (Figure 7.8),

which means that the projections onto the latent space given by (Xu,Y v) should

align less along a line. Among the SPLS projections, SPLS-PM seemed to provide

projections which aligned better along a line. Again, this was expected, due to the
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Figure 7.16: Data projected onto the best weight vector pair for each one of the SCCA
methods tested.

fact that this method provided an average higher correlation in the test sets during

the hyper-parameter selection steps (Figure 7.8).

One interesting property of the SPLS projections is that the separation between

healthy controls and patients with dementia seems to be clearer along the Y v axis

(Figure 7.17), when compared with the SCCA methods (Figure 7.16). This may be

due to the fact that, for the SPLS methods, the top weights of v were associated

with clinical scores, while age had the smallest absolute weight. In the case of the

SCCA methods, age had the largest absolute weight. The greater contribution of the

clinical variables (relative to the others) in the SPLS methods may be the driving

force behind the separation along the Y v projection.
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Figure 7.17: Data projected onto the best weight vector pair for each one of the SPLS
methods tested.

7.2.4 Conclusion

In this section, seven eigen-decomposition methods have been implemented and

compared. By making these comparisons, this section aimed not only to determine

which method provided the best test correlation, but also how consistent were the

methods across the different hold-out splits, which features were selected by the

different methods, and how different were the projections of the data onto the

computed weight vector pairs.

All the methods provided solutions which were robust to perturbations in the

data, and projections which where consistent with previous results in dementia

datasets. From the seven methods tested, the SCCA methods have shown the best

performance, by providing higher average correlations between the projections of the

test data.
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Although the use of ALS to solve SPLS has been previously proposed in the

literature [Chi et al., 2013, Grellmann et al., 2015], its performance relative to SPLS

using the power method had not been assessed. The experiments performed in this

section have shown that by solving SPLS using ALS, one might not be solving the

same optimisation problem as the one solved by SPLS using the power method.

However, when compared with non-sparse PLS, all the SPLS methods were still able

to provide a higher average correlation between the projections of the test data.

7.3 Chapter conclusion
This chapter has explored the use of ALS approaches to solve CCA and PLS problems.

The first section (Section 7.1) proposed a modification of the ALS algorithm

for SCCA. The modification allowed it to converge more often, while providing

comparable results for the optimal hyper-parameter combinations. The algorithm

was tested using a dementia dataset, both in its original form and with added

noisy features (i.e. in an ill-conditioned setting). The results have shown that

ALS was indeed able to provide statistically significant results, which were robust

to perturbations in the data, and consistent with previous results from the AD

literature.

The second section (Section 7.2) compared seven eigen-decomposition methods.

Our investigations showed that solving SPLS using an ALS approach, or solving SPLS

using the power method, provided different results, which has not been previously

shown. Unfortunately, the reasons for this behaviour were not very clear. In the

future, further investigations into the different properties of these algorithms should

be performed.

Despite the contributions presented in this chapter, its aim was mainly to serve

as an introduction to Chapter 8, where ALS is used to solve a novel SCCA method.





Chapter 8

Primal-dual SCCA

8.1 Introduction

Although linear methods have been the focus of this thesis so far, it is important

to acknowledge that, in some situations, they might not provide the best possible

fit. Sometimes, the patterns of interest may be non-linear, which means that linear

models will not have enough complexity to fit the data properly, i.e. they will underfit.

One of the ways of addressing this issue is by implicitly mapping the data onto a

higher dimensional space using kernel methods (Section 2.1.2). These allow one to

fit a better model, by leveraging the non-linear relationships in the data. However,

this will also decrease the interpretability of the model, which will now make use of

all the features and its non-linear transformations at the same time. Moreover, if

non-linear kernels are used, it is not straightforward to recover the weights in the

original input space.

In order to use CCA with non-linear fits, a kernel version of CCA (KCCA)

has been proposed in the literature (Section 3.2.2) [Lai and Fyfe, 2000]. However,

the first implementations of KCCA were dual-dual formulations, i.e. the data on

both views are transformed into kernel space {Kx,Ky}. There are situations in

which one may wish to maintain one of the views in a primal formulation, e.g. to

model the correlation between a linear combination of the features in one view with

a non-linear combination of features in the other view. This version of KCCA, where

one of the views is in the primal formulation and the other in the dual formulation, is

referred to as primal-dual KCCA [Zheng et al., 2006, Van Vaerenbergh et al., 2008].

Note that an equivalent formulation of the primal-dual KCCA can be performed

with a dual-dual KCCA with a linear and a non-linear kernel, however, it might be
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computationally inefficient to perform if n > p for the view with the linear kernel.

In addition to the potential computational advantages of primal-dual versions of

KCCA, these may also be adapted to explore both sparse and non-linear properties

of the data. Hardoon and Shawe-Taylor [2011] proposed a primal-dual version of

SCCA, where sparsity was applied to both views, which means that correlations were

found between a subset of features in the primal view, and a subset of kernel entries

in the dual view (i.e. subset of samples).

Despite the popularity of this approach [Nybo et al., Rousu et al., 2013, Uurtio

et al., 2015], the method proposed by Hardoon and Shawe-Taylor [2011] was designed

for the specific type of problem that the authors were trying to address. The authors

were interested in document retrieval, i.e. finding a sparse set of words in a language

(primal view) correlated with a sparse set of documents in another language (dual

view) [Hardoon and Shawe-Taylor, 2011]. However, in a clinical/neuroscience context,

one is usually not interested in enforcing sparsity in the dual view. In this context,

the aim is usually to detect an effect in a dataset containing a relatively small number

of samples, therefore, one would usually want to use all the samples in the population,

while still excluding features which do not contain relevant information.

The use of non-linear kernels is not as common in neuroimaging, although there

are a few examples in the literature for specific low dimensional applications [Dong

et al., 2015]. One of the main reasons is the fact that the dimensionality of the

data is usually very high, therefore, providing extra complexity is usually not a

good strategy, as this will tend to overfit the data. However, in a CCA setting, the

dimensionality of one view may be much smaller than the dimensionality of the other

view, e.g. if one view is comprised of a small number of clinical/demographic features,

while the other contains a larger number of neuroimaging derived features. In these

cases, one may be interested in modeling each view with very different degrees of

complexity, e.g. by enforcing sparsity in the high dimensional view, while exploring

non-linear relationships in the low dimensional view.

In this section, a novel primal-dual SCCA method is proposed, which enforces

sparsity in the primal view, while including all the samples in the dual view, with

the possibility of modeling them using a non-linear kernel. This was solved using an

ALS approach. The method allows one to take advantage of the flexibility provided
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by the use of non-linear kernels in one view, while still taking advantage of the

interpretability provided by sparsity constraints in the other view. This may prove

to be very useful when one is only interested on the interpretability of one view.

By moving away from strictly linear CCA models, one might be able to find novel

relationships between brain and behaviour, which may only be found by taking into

account possible non-linear relationships in one of the views.

The proposed primal-dual SCCA method was tested using three types of kernels

(linear, polynomial, and Gaussian), in order to determine if it is possible to find statis-

tically significant correlations between neuroimaging data and clinical/demographic

data, using both sparsity constraints and non-linear transformations. The following

experimental setups were tested: using kernels on both views ({Kx,Ky}), using a

kernel on the clinical/demographic view only ({X,Ky}), and using a kernel on the

neuroimaging view only ({Kx,Y }).

8.2 Materials and Methods

8.2.1 Primal-dual SCCA

Let M ∈ Rn×p be a data matrix for the primal view, and K ∈ Rn×n be a kernel

matrix for the dual view. The original primal-dual SCCA optimisation problem

proposed by Hardoon and Shawe-Taylor [2011] was the following:

minimise
w,α

‖Mw−Kα‖22 +γw‖w‖1 +γα‖α̃‖1

subject to

‖α‖∞ = 1

(8.1)

where α̃ = [α1, . . . ,αj−1,αj+1,αn]ᵀ. In other words, there will be one entry αj for

witch αj = 1, and this value will be the maximum value in all the entries of α (i.e.

‖α‖∞ = 1). The remaining entries (α̃) will be subjected to a l1-norm penalty.

The optimisation problem expressed in Equation 8.1 was solved using an algo-

rithm specifically designed for it. Since the method proposed in this chapter solves a

different optimisation problem, the description of the algorithm proposed by Hardoon

and Shawe-Taylor [2011] is beyond the scope of this thesis.

The SCCA problem described in Equation 8.1 was originally proposed for mate-

retrieval, where one tries to match a document written in one language to a paired
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document in another language. In a clinical/neuroscience setting, this would result

in finding a subset of features in M that would maximally correlate with a subgroup

of subjects in K. This problem is quite different from the ones commonly found

in neuroscience and clinical applications, where one would usually be interested in

including all the subjects in the model. Therefore, it does not make sense to enforce

sparsity on α, as this means that only a subset of subjects will be selected. However,

it is desirable to enforce sparsity on w, as this will select a subset of features in M .

Therefore, a novel primal-dual SCCA formulation is proposed:

minimise
w,α

‖Mw−Kα‖22 +γαᵀKα

subject to

‖Mw‖22 = 1, ‖Kα‖22 = 1, |Iw|6 pw

(8.2)

where M ∈ Rn×p is a data matrix; K ∈ Rn×n is a kernel matrix; w ∈ Rp×1 and

α ∈ Rn×1 are weight vectors; Iw := {i | wj 6= 0}, and pw ∈ {1,2, . . . ,p}. Note that the

term γαᵀKα corresponds to a ridge penalty in kernel space (Equation 2.15), where

γ is the hyper-parameter which controls the ridge penalty.

The optimisation problem described in Equation 8.2 can be solved using Algo-

rithm 8.1.

Since the solutions will no longer be sparse in α, the update step is only

performed on the sparse weight vector w (Step 9 of Algorithm 8.1).

In order to prevent overfitting, especially when K corresponds to a non-linear

kernel, Step 5 of Algorithm 8.1 is performed using a kernel ridge regression (Equa-

tion 2.14).

Note that the optimisation problem will be quite different from the one proposed

by Hardoon and Shawe-Taylor [2011], as sparsity is only enforced in one view, no

l∞-norm constraint is used, and a ridge penalty is applied to α.

8.2.2 Experiments

Three types of kernel functions (Section 2.1.2.1) were tested: linear kernel (LK),

second degree polynomial kernel (PK), and Gaussian kernel (GK). These were tested

in both views of the data. In order to distinguish between these methods, the

following notation will be used: SCCA-X-Y , where X and Y correspond to the
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Algorithm 8.1 Primal-dual SCCA using ALS. The update function is described in
Algorithm 7.2.
1: Set w(0) and α(0) equal to the first singular vector pair of MᵀK.
2: Set δ = 0.5
3: repeat

4: b←Mw(i)

5: Solve α(i+1)← argminα ‖b−Kα‖
2
2 +γαᵀKα

6: α(i+1)←α(i+1)/‖Kα(i+1)‖2

7: b←Kα(i+1)

8: Solve w(i+1)← argminw ‖b−Mw‖22 +γ1 ‖w‖1, with γ1 such that |Iw| ≈ pw
9: w(i+1)← update(w(i+1),w(i),M , δ)

10: if ALS is oscillating then
11: δ← δ/2
12: end if

13: i← i+ 1
14: until convergence
15: return w, α

type of regression that was applied to the corresponding view, e.g. “SCCA-PK-L1”

denotes a primal-dual SCCA with a polynomial kernel on X and a LASSO on Y ,

where X denotes the view containing the neuroimaging derived features (ROIs) and

Y denotes the view containing the clinical/demographic data.

Note that the CCA methods using only kernels (KCCA-LK-LK, KCCA-PK-PK,

and KCCA-GK-GK) are not exactly the same penalised KCCA methods described

in Equation 3.11. The KCCA versions used in this chapter are equivalent to solving

a CCA problem with a penalty on the l2-norm of u and v, while the classical

regularised KCCA method described in Equation 3.11 penalises the solution by

solving an optimisation problem which is an interpolation between CCA and PLS.

All the experiments were performed using the same dataset and the same

validation procedure as the ones in Chapter 7. The hyper-parameters tested for the

LASSO regression step were the same as in the experiments from Section 7.2 (40

equidistant points pw ∈ [0.01p,p]), and the ridge penalty hyper-parameters tested

were: γ ∈ {10−3,10−2, . . . ,108}. The σ hyper-parameter of the Gaussian kernel

(Equation 2.11) was set using the “median trick”, which consists of setting the value

of σ equal to the median of the squared distance between the training points [Song
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et al., 2010]. For the polynomial kernel, the R hyper-parameter was set to be equal

to the number of features (i.e. p or q, depending on the view in which the kernel

was applied). As mentioned in Section 2.1.2.1, R controls the influence of the linear

terms in the polynomial kernel in order to prevent overfitting (i.e. the larger it is, the

more influence the linear terms have). When performing a feature mapping using

all the polynomial terms of degree d, the number of terms may grow very large (as

shown in Equation 2.13), therefore, one may want to scale R with the number of

features in the data matrix, so that the influence of the linear terms is balanced with

the introduction of a large amount of new non-linear terms.

The aim of this chapter is not to demonstrate a clear performance improvement

by using primal-dual SCCA in this particular dataset, but to provide a proof of

concept that the proposed method is able to compute solutions which are both robust

to perturbations in the data, and provide results which align with previous findings

in the AD literature.

8.3 Results and Discussion
8.3.1 Correlations

All the methods provided statistically significant results (p< 0.005). For the complete

list of correlations on the hold-out datasets and corresponding p-values, please refer

to Appendix D.1.

Figure 8.1 shows the average optimal correlation obtained for each one of the

10 hyper-parameter selection steps. With the exception of KCCA-GK-GK and

SCCA-GK-L1, all the methods provided similar performances, which were also close

to the ones obtained in Section 7.1. These results show that primal-dual SCCA using

non-linear kernels was able not only to obtain statistically significant results, but also

to provide correlations on test data comparable to primal-primal SCCA approaches

(Chapter 7).

The non-sparse methods (i.e. using KCCA) provided correlations above 0.7, with

the exception of KCCA-GK-GK, which was one of the worst performing methods

(above 0.5), the other one being SCCA-GK-L1. Interestingly, this was not the case for

SCCA-L1-GK, which suggests that using a Gaussian kernel to model the relationships

in the clinical/demographic data (Y ) is a better approach than using it to model

the ROI data in X (SCCA-GK-L1). This result supports the idea that mapping the



8.3. Results and Discussion 159

KCCA-L
K-L

K

KCCA-P
K-P

K

KCCA-G
K-G

K

SCCA-L
1-

LK

SCCA-L
1-

PK

SCCA-L
1-

GK

SCCA-L
K-L

1

SCCA-P
K-L

1

SCCA-G
K-L

1

T
ra

in
/T

es
t C

rr
.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
No sparsity
Sparse X
Sparse Y

Figure 8.1: Average optimal test correlation across the 10 different data splits.

view with the higher dimensionality (X) into a even higher dimensional space, might

not be a good approach, however, mapping the view with the lower dimensionality

(Y ) may provide good results.

The plots showing the average test correlation for the different hyper-parameter

combinations (i.e. “hyper-parameter space”) for all the methods tested in this chapter

are provided in Appendix D.2.

8.3.2 Projections

Just as in previous chapters, the data were projected onto the best weight vector

pairs computed by each method. Figure 8.2 shows the projections of the data

onto the weight vectors computed using the non-sparse methods: KCCA-LK-LK,

KCCA-PK-PK, and KCCA-GK-GK. As one can see, these show a distribution from

individuals with higher to lower degrees of neuro-degeneration, which is consistent

with the results from Chapters 6 and 7. The results presented in Figure 8.2 show

that the projections provided by KCCA-GK-GK were less aligned along a line (when

compared with the other KCCA approaches). These results are consistent with

Figure 8.1, which shows that KCCA-GK-GK provided lower average correlations

between the projections of test data.

Figure 8.3 shows the projections of the data onto the weight vector pairs

computed by the primal-dual SCCA methods: SCCA-L1-LK, SCCA-L1-PK, SCCA-

L1-GK, SCCA-LK-L1, SCCA-PK-L1, and SCCA-GK-L1. Just as in previous results,

the projections show a distribution from individuals with higher to lower degrees
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Figure 8.2: Projections of the subjects onto the weight vectors computed using non-sparse
methods.

of neuro-degeneration, but no projection provided a clear separation between the

groups. Moreover, as expected by the results presented in Figure 8.1, the projections

provided by SCCA-GK-L1 were less aligned along a line.

One of the possible applications of these methods is to try to predict which

subjects will convert from MCI to AD. Figure 8.4 shows the projections of the MCI

subjects onto the computed weight vector pairs, encoding which subjects converted

from MCI to AD after six months. As one can see, there was no clear separation

between these two groups for all methods tested. The plots for the non-sparse

methods are presented in Appendix D.3.
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Figure 8.3: Projections of the subjects onto the primal-dual SCCA weight vectors. Each
column corresponds to applying a kernel on either X (ROI data) or Y (clini-
cal/demographic data), i.e. the left column corresponds to using Kx and the
right column corresponds to using Ky. Each row corresponds to a different
type of kernel.
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Figure 8.4: Subject conversion from MCI to AD after 6 months. Each column corresponds
to applying a kernel on either X (ROI data) or Y (clinical/demographic data),
i.e. the left column corresponds to using Kx and the right column corresponds
to using Ky. Each row corresponds to a different type of kernel.
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8.4 Conclusion
In this chapter, a novel primal-dual SCCA method was proposed and tested using

different types of kernels for each view.

Our experiments have shown that primal-dual SCCA was able to provide sta-

tistically significant results whose performance on test data was comparable with

primal-primal SCCA (Chapter 7). Moreover, the projections provided by the method

showed that the subjects lied along a continuous distribution, from healthy subjects

to subjects suffering from greater degrees of neuro-degeneration, which is consistent

with previous results from Chapters 6 and 7.

Although the proposed primal-dual SCCA method did not out-perform other

CCA approaches for this particular dataset, this chapter still provided a proof of

concept that the proposed method was able to compute weight vector pairs which

were both robust to perturbations in the data, and provided results which align with

previous findings.

Future work should explore the use of primal-dual SCCA for other low di-

mensional neuroimaging datasets, especially in problems which linear approaches

have failed to find strong associations between the views. These may also include

problems with other types of data, which may provide better features to be used with

non-linear kernels, including: brain ROI features based on shape, brain connectivity

data [Smith et al., 2015], Cerebrospinal Fluid (CSF) biomarkers [Young et al., 2014],

and genetics [Altmann et al., 2014].





Chapter 9

General Conclusions

9.1 Summary of the main contributions
The use of computational approaches to study neuroimaging data has been increasing

for several years, starting with mass-univariate statistical models [Friston et al.,

1994], to more recent applications using machine learning [Ecker et al., 2010, Mourão-

Miranda et al., 2005, Nouretdinov et al., 2011, Orrù et al., 2012, Rao et al., 2011,

Klöppel et al., 2008]. However, most machine learning studies still rely on the labeling

of the subjects, constraining the study of several brain diseases within a paradigm of

pre-defined clinical labels, which have shown to be unreliable in some cases [Insel

et al., 2010].

The lack of understanding regarding the associations between brain and be-

haviour presents itself as an interesting challenge for more exploratory machine

learning approaches, which could potentially help in the study of diseases whose clin-

ical labels have limitations. The aim of this project was to explore the possibility of

using eigen-decomposition approaches to find multivariate associative effects between

brain structure and behaviour in an exploratory way.

The first contribution of this thesis (Chapter 4) was to show the advantages

of using an alternative matrix deflation approach with sparse eigen-decomposition

methods, more specifically, Sparse Partial Least Squares (SPLS) [Monteiro et al.,

2014]. The proposed deflation approach was able to provided sparse weight vectors

which were approximately orthogonal, providing a much better approximation than

the deflation strategy proposed in the original publication [Witten et al., 2009].

After demonstrating the advantages of the alternative deflation strategy, the

second contribution was to use SPLS with the modified deflation step to model
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the association between clinical/demographic features and brain structure using

sparsity in both views, i.e. without relying on the a priori assumption that the

multivariate associative effects were not sparse in the clinical/demographic view

(Chapter 5) [Monteiro et al., 2015].

The type of analysis performed in Chapter 5 was taken a step further in Chapter 6.

In this chapter, a multiple hold-out framework was proposed, which allowed for the

detection of robust multivariate associative effects between brain structure and

individual questionnaire items, while being computationally less intensive than

nested-CV [Monteiro et al., 2016].

Even though the correlation was used as a metric to evaluate the model in

Chapter 6, its use with SPLS does present some issues. Therefore, one should look

into alternative sparse eigen-decomposition methods to be used with this metric,

such as, Sparse Canonical Correlation Analysis (SCCA). Chapter 7 proposed an

adaptation of the ALS method to solve several sparse eigen-decomposition problems,

presenting comparisons between seven variants of CCA and PLS, which have not

been previously shown in the literature.

Despite the popularity of strictly linear models in neuroscience, one of their

limitations is their assumption that the patterns of interest are linear. However, this

may not be the case, which means that these methods will not have enough flexibility

to detect non-linear associations between brain and behaviour. Nevertheless, the

choice of whether non-linear associations should be taken into account has to be

based, among other things, on the dimensionality of the data. Therefore, a novel

primal-dual SCCA method was proposed in Chapter 8, which allowed one to enforce

sparsity in views where the dimensionality is high, while simultaneously exploring

non-linear relationships in views where the dimensionality is lower.

9.2 Limitations and directions for future research
Despite the encouraging results provided by exploratory eigen-decomposition meth-

ods, one of the disadvantages of these approaches is that they may require large

amounts of data, when compared with commonly used supervised classification

approaches. However, the current trend in neuroscience is to fund projects which aim

to collect increasingly larger datasets, and making them available to the scientific

community [Thompson et al., 2014, Sudlow et al., 2015, nsp], therefore, exploratory
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methods may start to gain more visibility in future neuroscience/clinical applications.

Some of these future applications could be built on some of the contributions of

this thesis, namely, one could apply the framework proposed in Chapter 6 to datasets

in which stratification is the main challenge. These include not only psychiatric

datasets, but also datasets from the general population. One of the possible datasets

to explore in future work is the one acquired by the NeuroScience in Psychiatry

Network (NSPN). This consists of a joint venture between the University of Cambridge

and University College London to study the development of the adolescent brain,

containing data from over 2000 subjects [nsp].

As the datasets available to the scientific community start to grow, so should the

complexity of methods used to analyse them. By adapting these methods to explore

non-linearities in the data, one could potentially extract more information from the

increasingly larger datasets available. Some contributions in this direction have been

made in Chapter 8. Although the proposed non-linear methods did not show an

improvement relative to the linear methods, the proposed approach was able to

provide robust results. These methods could potentially enable the identification of

non-linear associations using other types of data, including: brain ROI features based

on shape, brain connectivity data [Smith et al., 2015, Rosa et al., (in preparation)],

CSF biomarkers [Young et al., 2014], and genetics [Altmann et al., 2014].

By applying the strategies proposed in this thesis, future work could explore

the potential for stratifying patients based on their associations between brain and

behaviour, which will hopefully help shift the paradigm used to study several brain

disorders.





Appendix A

Proofs

A.1 Projection deflation vs. PLS Mode-A deflation

Projection deflation (Chapter 4):

Xh+1 =Xh

(
I−uhuᵀ

h

)
=Xh−Xhuhu

ᵀ
h (A.1)

PLS Mode-A deflation (Section 3.3):

Xh+1 =Xh−ξhγ
ᵀ
h

where:

ξh =Xhuh and γh =Xᵀ
h

ξh
ξᵀhξh

γh can be re-written as:

γh =Xᵀ
h
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hX

ᵀ
hXhuh

Thus, PLS Mode-A deflation can be re-written as:

Xh+1 =Xh−Xhuh

(
Xᵀ

hXhuh
uᵀ
hX

ᵀ
hXhuh

)ᵀ

(A.2)

As one can see, projection deflation (A.1) and PLS Mode-A deflation (A.2)

are equivalent iff Xᵀ
hXh = I. As noted by Wegelin [2000], the vectors obtained by

PLS-SVD are the singular vectors of XᵀY . However, this is not the case for all

types of PLS, including PLS Mode-A.
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A.2 PLS vs. PLS-ALS
Each update step in the PLS-ALS method is performed by solving the regression

problems expressed in Equation 7.4, which can be re-written as follows:

u← argmin
u
‖bv−Iuu‖22 and v← argmin

v
‖bu−Ivv‖22

where bv =XᵀY v, bu = (XᵀY )ᵀu, and Iu ∈Rp×p and Iv ∈Rq×q are identity matri-

ces.

The solution for a non-penalised least squares regression is expressed in Equa-

tion 2.7, which can be re-written for this case as:

u← (IᵀuIu)−1Iubv and v← (IᵀvIv)−1Ivbu

u←XᵀY v and v← (XᵀY )ᵀu

which are the exact same update steps used in PLS-SVD (Algorithm 3.2). Thus,

both methods are equivalent.
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Chapter 6

B.1 Mini-Mental State Examination

Table B.1 gives a brief description of the questions/tasks performed during the

MMSE [Folstein et al., 1975].

Table B.1: MMSE questions/tasks.

Domain Question/Task

Orientation

1. What is today’s date?
2. What year is it?
3. What month is it?
4. What day of the week is today?
5. What season is it?
6. What is the name of this hospital?
7. What floor are we on?
8. What town or city are we in?
9. What county (district) are we in?
10. What state are we in?

Registration

11. Name object (ball)
12. Name object (flag)
13. Name object (tree)
13a. Number of trials

Att. & Calc.

14. D
15. L
16. R
17. O
18. W

Recall
19. Recall Ball
20. Recall Flag
21. Recall Tree

Language

22. Show a wrist watch and ask “What is this?”
23. Show a pencil and ask “What is this?”
24. Repeat a sentence.
25. Takes paper in right hand.
26. Folds paper in half.
27. Puts paper on floor.
28. Read and obey a command (“Close your eyes”).
29. Write a sentence.
30. Copy design.
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B.2 Hyper-parameter optimisation
When performing the hyper-parameter optimisation step, the average absolute

correlation was computed for each hyper-parameter combination. Figure B.1 shows

the values of the mean absolute correlation obtained for the first weight vector pair,

in all 10 random splits of the data. As one can see, the surfaces are smooth and fairly

consistent across splits, which further supports the reliability of the model. The

corresponding results for the second weight vector pair can be seen in Figure B.2.

In both multivariate associative effects, the relaxation of the sparsity constraint

in the neuroimaging view (cu) decreased the mean absolute correlation between the

projections, which means that both effects are better expressed by a relatively small

subset of the image voxels. On the other hand, the optimal constraint on the clinical

view (cv) was in the middle of the hyper-parameter range on the first effect, but

more relaxed on the second effect (closer to the upper limit of the hyper-parameter

range). Which means that the first effect will be described by a smaller subset of

clinical variables than the second.

This behaviour was not observed if PLS Mode-A deflation was used instead

of projection deflation (Figure B.3). In this case, the surfaces were not smooth,

the average absolute correlations were lower, and the maximum hyper-parameter

combination changes quite a bit when a different split of the data is used. This is

consistent with the results that showed a lower average absolute correlation on the

hold-out datasets, and lack of statistical significance associated with these weight

vectors.
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Weight�vector�pair�#1

Figure B.1: Mean absolute correlation value computed for each split of the data (indicated
by the numbers on the top left corners) for the first weight vector pair during
the hyper-parameter optimisation step.
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Weight�vector�pair�#2

with�projection�deflation
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Figure B.2: Mean absolute correlation value computed for each split of the data (indicated
by the numbers on the top left corners) for the second weight vector pair
during the hyper-parameter optimisation step, using projection deflation.
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Figure B.3: Mean absolute correlation value computed for each split of the data (indicated
by the numbers on the top left corners) for the second weight vector pair
during the hyper-parameter optimisation step, using PLS Mode-A deflation..
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B.3 Weight vectors or associative effects
B.3.1 PLS

The average of the clinical weight vectors is presented in Figure B.4, and the

corresponding image weight vector can be seen in Figure B.5. As expected, these are

not sparse, all the available clinical variables and image voxels are included in the

model. As one can see, the weights are higher in the hippocampus and amygdala

regions. However, since these are weights and not p-values (as the ones obtained in

an mass-univariate statistical test), they cannot be thresholded.
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Figure B.4: Mean of clinical weight vector using PLS.

Figure B.5: Mean of image weight vectors using PLS.
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B.3.2 SPLS with PLS deflation

This section shows the results obtained for the second weight vector pair when the

common PLS deflation (Equation 3.13) was performed, instead of the projection

deflation (Equation 4.1), which was used in this study.

Figure B.6(b) shows the mean clinical weight vector obtained using a PLS

deflation. The weight vectors are less reliable than the ones obtained with SPLS

using projection deflation (Figure B.6(a)), which can be observed by the larger

standard deviation bars. Also, the weight vectors in Figure B.6(b) had to be forced

to have a consistent direction before averaging, i.e. the direction of the weight vectors

flipped from one split to another, which was not observed when using projection

deflation (the direction was consistent). If this was not done, the standard deviation

bars for the PLS deflation would be even larger. Thus, it is interesting to see that

the non-statistical significance of the weight vectors is consistent with their lack of

reliability.
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Figure B.6: (a)Mean of second clinical weight vectors using SPLS with projection deflation;
(b) Mean of second clinical weight vectors using SPLS with PLS deflation.
The weights vectors in (b) were forced to have a consistent direction before
averaging.
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(a) (b)

Figure B.7: (a) Mean of second image weight vectors using SPLS with projection deflation;
(b) Mean of second image weight vectors using SPLS with PLS deflation.

The mean second image weight vector computed using the projection deflation

is shown in Figure B.7(a), this appears to be sparser than the one obtained when

using SPLS with a PLS deflation (Figure B.7(b)).

B.4 Atlas regions for each SPLS image weight vector

Table B.2: Atlas regions for the first image weight map. Only regions with selected voxels
are shown.

Atlas Region # voxels found
Amygdala_L 98
Amygdala_R 90

Hippocampus_R 175
Hippocampus_L 152

ParaHippocampal_R 92
ParaHippocampal_L 44

Lingual_L 9
Precuneus_L 2
Precuneus_R 1

Temporal_Pole_Sup_L 1
Fusiform_R 2
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Table B.3: Atlas regions for the second image weight map. Only regions with selected
voxels are shown.

Atlas Region # voxels found
Amygdala_L 36

Temporal_Inf_L 292
Hippocampus_L 88
Amygdala_R 11

ParaHippocampal_L 53
Fusiform_L 78

Temporal_Inf_R 64
Hippocampus_R 22
Occipital_Inf_L 12
Temporal_Mid_L 76
Temporal_Mid_R 36

Heschl_R 1
Precuneus_L 17
Angular_R 4

Occipital_Mid_L 14
Temporal_Pole_Mid_L 1

Occipital_Mid_R 3
ParaHippocampal_R 4
Cingulum_Mid_L 5

Angular_L 2
Temporal_Pole_Sup_R 1

Insula_R 2
Precentral_R 2
Insula_L 4

Parietal_Inf_L 1
Lingual_L 2

Parietal_Inf_R 1
Caudate_L 1
Thalamus_L 1

B.5 Projections
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(a) Projection of the image data onto the first
weight vector pair {u1,v1}.
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(b) Projection of the image data onto the
second weight vector pair {u2,v2}.

Figure B.8: Projection of the data onto the SPLS weight vector pairs.
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B.6 Number of SPLS computations
In order to statistically evaluate one weight vector pair, the number of times SPLS

has to be performed in a nested cross-validation is given by:

NSPLS = (ko(npki) +ko) +B(ko(npki) +ko)

where ko is the number of outer folds, ki is the number of inner folds, np is the

number of hyper-parameter combinations, and B is the number of permutations.

The proposed framework requires a number of SPLS computations given by:

NSPLS = S(Knp+ 1) +SB

where S is the number of hold-out splits, and K is the number of subsample splits.
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C.1 SCCA using ALS
C.1.1 p-values

Table C.1: Correlations on the 10 hold-out sets, with the corresponding p-values in paren-
thesis. Statistically significant p-values are shown in bold.

{X,Y } {X′,Y ′}
No update No δ update δ update No update No δ update δ update

1 0.6898 (0.0001) 0.6899 (0.0001) 0.6901 (0.0001) 0.6862 (0.0001) 0.6853 (0.0001) 0.6853 (0.0001)
2 0.8000 (0.0001) 0.8001 (0.0001) 0.8005 (0.0001) 0.7592 (0.0001) 0.7598 (0.0001) 0.7598 (0.0001)
3 0.8409 (0.0001) 0.8409 (0.0001) 0.8409 (0.0001) 0.8244 (0.0001) 0.8283 (0.0001) 0.8252 (0.0001)
4 0.6880 (0.0001) 0.6879 (0.0001) 0.6866 (0.0001) 0.6371 (0.0001) 0.6376 (0.0001) 0.6376 (0.0001)
5 0.8009 (0.0001) 0.8009 (0.0001) 0.7970 (0.0001) 0.7959 (0.0001) 0.7959 (0.0001) 0.7963 (0.0001)
6 0.7436 (0.0001) 0.7435 (0.0001) 0.7434 (0.0001) 0.6269 (0.0001) 0.6277 (0.0001) 0.6264 (0.0001)
7 0.7867 (0.0001) 0.7868 (0.0001) 0.7868 (0.0001) 0.7395 (0.0001) 0.7392 (0.0001) 0.7392 (0.0001)
8 0.7886 (0.0001) 0.7885 (0.0001) 0.7885 (0.0001) 0.6811 (0.0001) 0.6790 (0.0001) 0.6786 (0.0001)
9 0.7780 (0.0001) 0.7780 (0.0001) 0.7780 (0.0001) 0.7035 (0.0001) 0.7032 (0.0001) 0.7032 (0.0001)

10 0.6577 (0.0001) 0.6576 (0.0001) 0.6575 (0.0001) 0.6175 (0.0001) 0.6193 (0.0001) 0.6187 (0.0001)
Rej.
Homni

Yes Yes Yes Yes Yes Yes

C.1.2 Distance to constraint

In order to quantify how far were the number of features of the final solutions (Iu, Iv)

from the corresponding constraints (pu, qv), the “relative distance to the constraint”

expressed as a percentage was computed in the following way:

Du = Iu−pu
max{Iu,pu}

×100 and Dv = Iv− qv
max{Iv, qv}

×100

Please note that positive values of D indicate that the final solution was sparser

than the one specified by the constraint, and negative values of D indicate that the

algorithm was not able to converge to a point where the constraints expressed in

Equation 7.2 were obeyed, i.e. the number of features exceeded the constraint.

The results are expressed in Figure C.1. Although not entirely consistent, there

seems to be a general tendency for the relative distance to the constraint to increase,
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the further away the hyper-parameter combination is from the optimal.
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Figure C.1: Relative distances to the constraints (Du and Dv), for both datasets (with
and without noise).
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C.1.3 ROI variables

Table C.2: Complete list of ROI volumes used as features in X.

X X (cont.)
Right ACgG anterior cingulate gyrus Right PP planum polare
Left ACgG anterior cingulate gyrus Left PP planum polare

Right AIns anterior insula Right PrG precentral gyrus
Left AIns anterior insula Left PrG precentral gyrus

Right AOrG anterior orbital gyrus Right PT planum temporale
Left AOrG anterior orbital gyrus Left PT planum temporale

Right AnG angular gyrus Right SCA subcallosal area
Left AnG angular gyrus Left SCA subcallosal area

Right Calc calcarine cortex Right SFG superior frontal gyrus
Left Calc calcarine cortex Left SFG superior frontal gyrus

4th Ventricle Right SMC supplementary motor cortex
Right CO central operculum Left SMC supplementary motor cortex
Left CO central operculum Right SMG supramarginal gyrus

Right Cun cuneus Left SMG supramarginal gyrus
Left Cun cuneus Right SOG superior occipital gyrus

Right Ent entorhinal area Left SOG superior occipital gyrus
Left Ent entorhinal area Right SPL superior parietal lobule

Right FO frontal operculum Left SPL superior parietal lobule
Left FO frontal operculum Right STG superior temporal gyrus

Right FRP frontal pole Left STG superior temporal gyrus
Left FRP frontal pole Right TMP temporal pole

Right FuG fusiform gyrus Left TMP temporal pole
Left FuG fusiform gyrus Right TrIFG triangular part of the inferior frontal gyrus
Right GRe gyrus rectus Left TrIFG triangular part of the inferior frontal gyrus
Left GRe gyrus rectus Right TTG transverse temporal gyrus

Right IOG inferior occipital gyrus Left TTG transverse temporal gyrus
Left IOG inferior occipital gyrus Right Accumbens Area

Right ITG inferior temporal gyrus Left Accumbens Area
Left ITG inferior temporal gyrus Right Amygdala

Right LiG lingual gyrus Left Amygdala
Left LiG lingual gyrus Brain Stem

Right LOrG lateral orbital gyrus Right Caudate
Left LOrG lateral orbital gyrus Left Caudate

Right MCgG middle cingulate gyrus Right Cerebellum Exterior
Left MCgG middle cingulate gyrus Left Cerebellum Exterior
Right MFC medial frontal cortex 3rd Ventricle
Left MFC medial frontal cortex Right Cerebellum White Matter
Right MFG middle frontal gyrus Left Cerebellum White Matter
Left MFG middle frontal gyrus Right Hippocampus

Right MOG middle occipital gyrus Left Hippocampus
Left MOG middle occipital gyrus Right Inf Lat Vent
Right MOrG medial orbital gyrus Left Inf Lat Vent
Left MOrG medial orbital gyrus Right Lateral Ventricle

Right MPoG postcentral gyrus medial segment Left Lateral Ventricle
Left MPoG postcentral gyrus medial segment Right Pallidum
Right MPrG precentral gyrus medial segment Left Pallidum
Left MPrG precentral gyrus medial segment Right Putamen

Right MSFG superior frontal gyrus medial segment Left Putamen
Left MSFG superior frontal gyrus medial segment Right Thalamus Proper

Right MTG middle temporal gyrus Left Thalamus Proper
Left MTG middle temporal gyrus Right Ventral DC

Right OCP occipital pole Left Ventral DC
Left OCP occipital pole Cerebellar Vermal Lobules I-V

Right OFuG occipital fusiform gyrus Cerebellar Vermal Lobules VI-VII
Left OFuG occipital fusiform gyrus Cerebellar Vermal Lobules VIII-X

Right OpIFG opercular part of the inferior frontal gyrus Left Basal Forebrain
Left OpIFG opercular part of the inferior frontal gyrus Right Basal Forebrain
Right OrIFG orbital part of the inferior frontal gyrus frontal lobe WM right
Left OrIFG orbital part of the inferior frontal gyrus frontal lobe WM left

Right PCgG posterior cingulate gyrus occipital lobe WM right
Left PCgG posterior cingulate gyrus occipital lobe WM left

Right PCu precuneus parietal lobe WM right
Left PCu precuneus parietal lobe WM left

Right PHG parahippocampal gyrus temporal lobe WM right
Left PHG parahippocampal gyrus temporal lobe WM left

Right PIns posterior insula fornix right
Left PIns posterior insula fornix left

Right PO parietal operculum anterior limb of internal capsule right
Left PO parietal operculum anterior limb of internal capsule left
Right PoG postcentral gyrus posterior limb of internal capsule inc. cerebral peduncle right
Left PoG postcentral gyrus posterior limb of internal capsule inc. cerebral peduncle left

Right POrG posterior orbital gyrus corpus callosum
Left POrG posterior orbital gyrus
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C.2 SCCA vs. SPLS
C.2.1 p-values

Table C.3: Correlations on the 10 hold-out sets for the non-sparse methods, with the
corresponding p-values in parenthesis. Statistically significant p-values are
shown in bold.

CCA PLS
1 0.6634 (0.0001) 0.4407 (0.0120)
2 0.7443 (0.0001) 0.6808 (0.0034)
3 0.8180 (0.0001) 0.5542 (0.0126)
4 0.6298 (0.0001) 0.3172 (0.0343)
5 0.7358 (0.0001) 0.5238 (0.0096)
6 0.6742 (0.0001) 0.3656 (0.0170)
7 0.7748 (0.0001) 0.4332 (0.0102)
8 0.7391 (0.0001) 0.5817 (0.0014)
9 0.7559 (0.0001) 0.3266 (0.0322)

10 0.6158 (0.0001) 0.4842 (0.0070)
Rej. Homni Yes Yes

Table C.4: Correlations on the 10 hold-out sets for the sparse methods, with the corre-
sponding p-values in parenthesis. Statistically significant p-values are shown in
bold.

SCCA-ALS-L1 SCCA-ALS-EN SPLS-ALS-L1 SPLS-ALS-EN SPLS-PM
1 0.6901 (0.0001) 0.6900 (0.0001) 0.6324 (0.0013) 0.6343 (0.0012) 0.5850 (0.0005)
2 0.8003 (0.0001) 0.7975 (0.0001) 0.7347 (0.0004) 0.7349 (0.0005) 0.8019 (0.0001)
3 0.8390 (0.0001) 0.8298 (0.0001) 0.6536 (0.0036) 0.6544 (0.0031) 0.7412 (0.0001)
4 0.6873 (0.0001) 0.6861 (0.0001) 0.6076 (0.0014) 0.6087 (0.0013) 0.5743 (0.0004)
5 0.8027 (0.0001) 0.8027 (0.0001) 0.6819 (0.0008) 0.6837 (0.0006) 0.6838 (0.0001)
6 0.7426 (0.0001) 0.7426 (0.0001) 0.5749 (0.0036) 0.5767 (0.0035) 0.6989 (0.0001)
7 0.7756 (0.0001) 0.7756 (0.0001) 0.5697 (0.0041) 0.5717 (0.0041) 0.6156 (0.0002)
8 0.7885 (0.0001) 0.7863 (0.0001) 0.5331 (0.0054) 0.5374 (0.0042) 0.6471 (0.0002)
9 0.7806 (0.0001) 0.7823 (0.0001) 0.5358 (0.0118) 0.5421 (0.0102) 0.4805 (0.0098)

10 0.6590 (0.0001) 0.6590 (0.0001) 0.5625 (0.0040) 0.5647 (0.0035) 0.6216 (0.0001)
Rej. Homni Yes Yes Yes Yes Yes
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C.2.2 Hyper-parameter optimisation
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Figure C.2: Average test correlations for each hyper-parameter optimisation step, using
SPLS-ALS-L1.
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Figure C.3: Average test correlations for each hyper-parameter optimisation step, using
SCCA-ALS-L1.
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Figure C.4: Average test correlations for each hyper-parameter optimisation step, using
SCCA-ALS-EN.
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D.1 p-values

Table D.1: Correlations on the 10 hold-out sets using the KCCA methods, with the corre-
sponding p-values in parenthesis. Statistically significant p-values are shown in
bold.

KCCA-LK-LK KCCA-PK-PK KCCA-GK-GK
1 0.6962 (0.0001) 0.7103 (0.0001) 0.4959 (0.0024)
2 0.7918 (0.0001) 0.7919 (0.0001) 0.6908 (0.0009)
3 0.8230 (0.0001) 0.8268 (0.0001) 0.6298 (0.0009)
4 0.6889 (0.0001) 0.7004 (0.0001) 0.4329 (0.0058)
5 0.7920 (0.0001) 0.7938 (0.0001) 0.6347 (0.0007)
6 0.7052 (0.0001) 0.7337 (0.0001) 0.4576 (0.0024)
7 0.7636 (0.0001) 0.7781 (0.0001) 0.5313 (0.0013)
8 0.7985 (0.0001) 0.7734 (0.0001) 0.6850 (0.0001)
9 0.7624 (0.0001) 0.7685 (0.0001) 0.4527 (0.0071)

10 0.6535 (0.0001) 0.6621 (0.0001) 0.5719 (0.0003)
Rej. Homni Yes Yes Yes

Table D.2: Correlations on the 10 hold-out sets using the primal-dual SCCA methods, with
the corresponding p-values in parenthesis. Statistically significant p-values are
shown in bold.

SCCA-L1-LK SCCA-L1-PK SCCA-L1-GK SCCA-LK-L1 SCCA-PK-L1 SCCA-GK-L1
1 0.6895 (0.0001) 0.6618 (0.0001) 0.6704 (0.0001) 0.6947 (0.0001) 0.7136 (0.0001) 0.4933 (0.0012)
2 0.8011 (0.0001) 0.8083 (0.0001) 0.7560 (0.0001) 0.7906 (0.0001) 0.7817 (0.0001) 0.6877 (0.0002)
3 0.8337 (0.0001) 0.8335 (0.0001) 0.7796 (0.0001) 0.8294 (0.0001) 0.8373 (0.0001) 0.6310 (0.0002)
4 0.6903 (0.0001) 0.6811 (0.0001) 0.6498 (0.0001) 0.6862 (0.0001) 0.7234 (0.0001) 0.6327 (0.0001)
5 0.8010 (0.0001) 0.8030 (0.0001) 0.7334 (0.0001) 0.7948 (0.0001) 0.8026 (0.0001) 0.6564 (0.0004)
6 0.7417 (0.0001) 0.7391 (0.0001) 0.7086 (0.0001) 0.7220 (0.0001) 0.7339 (0.0001) 0.4901 (0.0005)
7 0.7743 (0.0001) 0.7697 (0.0001) 0.6850 (0.0001) 0.7723 (0.0001) 0.7886 (0.0001) 0.6074 (0.0002)
8 0.7888 (0.0001) 0.7707 (0.0001) 0.7825 (0.0001) 0.7983 (0.0001) 0.8006 (0.0001) 0.6492 (0.0001)
9 0.7797 (0.0001) 0.7675 (0.0001) 0.6952 (0.0001) 0.7635 (0.0001) 0.7797 (0.0001) 0.5387 (0.0013)

10 0.6580 (0.0001) 0.6645 (0.0001) 0.6599 (0.0001) 0.6569 (0.0001) 0.6608 (0.0001) 0.5478 (0.0008)
Rej.
Homni

Yes Yes Yes Yes Yes Yes
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D.2 Hyper-parameter optimisation

10 10

Ridge y
10 0

Hold-out split #1

10 -1010 -10
10 0

Ridge x

0.8

0.6

0.4
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #2

10 -1010 -10
10 0

Ridge x

0.8

0.6

0.4
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #3

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #4

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #5

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #6

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #7

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #8

10 -1010 -10
10 0

Ridge x

0.6

0.4

0.8

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #9

10 -1010 -10
10 0

Ridge x

0.4

0.8

0.6

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #10

10 -1010 -10
10 0

Ridge x

0.4

0.8

0.6

10 10

A
vg

. C
rr

Figure D.1: Average test correlations for each hyper-parameter optimisation step, using
SCCA-LK-LK.
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Figure D.2: Average test correlations for each hyper-parameter optimisation step, using
SCCA-PK-PK.



192 Appendix D. Chapter 8

10 10

Ridge y
10 0

Hold-out split #1

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #2

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #3

10 -1010 -10
10 0

Ridge x

1

-1

0

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #4

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #5

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #6

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #7

10 -1010 -10
10 0

Ridge x

-1

1

0

10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #8

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #9

10 -1010 -10
10 0

Ridge x

1

0

-1
10 10

A
vg

. C
rr

10 10

Ridge y
10 0

Hold-out split #10

10 -1010 -10
10 0

Ridge x

-1

1

0

10 10

A
vg

. C
rr

Figure D.3: Average test correlations for each hyper-parameter optimisation step, using
SCCA-GK-GK.
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Figure D.4: Average test correlations for each hyper-parameter optimisation step, using
SCCA-L1-LK.
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Figure D.5: Average test correlations for each hyper-parameter optimisation step, using
SCCA-L1-PK.
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Figure D.6: Average test correlations for each hyper-parameter optimisation step, using
SCCA-L1-GK.
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Figure D.7: Average test correlations for each hyper-parameter optimisation step, using
SCCA-LK-L1.
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Figure D.8: Average test correlations for each hyper-parameter optimisation step, using
SCCA-PK-L1.
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Figure D.9: Average test correlations for each hyper-parameter optimisation step, using
SCCA-GK-L1.
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D.3 Projections
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Figure D.10: Subject conversion fromMCI to AD after 6 months, using non-sparse methods.
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Cerebrospinal Fluid (CSF) 29, 163

Clinical Dementia Rating (CDR) 78, 88
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data matrix 33

deflation 52

Diffusion Tensor Imaging (DTI) 71

dimension 33

dual representation 43

eigen-decomposition 52
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eigenvector 51
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feature 33
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Frontotemporal Dementia (FTD) 71

Full Width at Half Maximum (FWHM) 30, 78

Functional Assessment Questionnaire (FAQ) 124

Functional Magnetic Resonance Imaging (fMRI) 68

Grey Matter (GM) 29

hyper-parameter 35, 45

kernel 40

Kernel Ridge Regression (KRR) 43

kernel trick 41

label 34

Least Absolute Shrinkage and Selection Operator (LASSO) 38

linear regression 36

loss function 35

Magnetic Resonance Imaging (MRI) 29

Mean Squared Error (MSE) 44

Mild Cognitive Impairment (MCI) 102

Mini-Mental State Examination (MMSE) 71, 78, 88, 95, 103, 124

nested cross-validation (nested-CV) 47

objective function 35

omnibus hypothesis 101
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optimisation problem 36

orthonormal 52

overfitting 35

Partial Least Squares (PLS) 31, 57, 59

Partial Least Squares Regression (PLSR) 69

penalty 35

permutation test 48

power method 53

primal representation 43

primal-dual 153, 155

Principal Component Analysis (PCA) 54

projection 56

Region Of Interest (ROI) 70

Rey Auditory Verbal Learning Test (RAVALT) 124

ridge penalty 38

sample 33

Single Nucleotide Polymorphism (SNP) 70

singular value 54

Singular Value Decomposition (SVD) 53

Socioeconomic Status (SES) 78, 88

sparse 38

Sparse Canonical Correlation Analysis (SCCA) 64
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Sparse Partial Least Squares (SPLS) 61

Sparse Partial Least Squares Discrimination Analysis (SPLS-DA) 72

stability selection 66

target 34

underfitting 35

view 56

voxel 29

Voxel-Based Morphometry (VBM) 30

weight vector 36

White Matter (WM) 29
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