Morphological homogeneity, phylogenetic heterogeneity and systematic complexity in species-rich groups: a case study of floral evolution in Myrteae (Myrtaceae)

Thais Nogales da Costa Vasconcelos

University College London ('UCL')

A thesis submitted as part of the requirements for a PhD degree in Systematics and Evolutionary Biology

Research Department of Genetics, Evolution and Environment - University College London

Comparative Plant and Fungal Biology Department - Royal Botanic Gardens, Kew

'I, Thais Nogales da Costa Vasconcelos, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.'

ABSTRACT

Myrteae is the most diverse tribe in the species-rich angiosperm family Myrtaceae. Myrteae species play a critical ecological role in tropical forests and savannas, biomes with some of the highest biodiversity on earth. Hence there is a growing interest in its use as a model for evolutionary, ecological and conservation studies. However, morphologically homogeneous reproductive structures cause taxonomic instability and jeopardize modelling and conservation initiatives. This study demonstrates how evolutionary patterns are underpinned by floral traits in Myrteae. Aims are approached using combined phylogenetic and morphological analyses in two work packages (WP): WP1 increases understanding of systematics and floral evolution in Myrteae based on multiloci molecular matrices for a near complete generic sample. The framework is used to interpret biogeography, diversification and over-arching patterns of floral morphology and development; data are reciprocally combined to illuminate those processes. WP2 presents four case studies using floral development and multidimensional trait analysis to address questions related to systematic complexity, phylogenetic heterogeneity and theoretical cladistics concepts, such as evolution of homoplastic traits. Results harness Myrteae as a model group to address relevant questions in plant evolution and systematics; the applicability of this approach to similar questions in other diverse tropical angiosperm groups is discussed.

Key words: diversification; macro-evolution; Myrtaceae; phenotypic evolution; phylogenetics; systematics.

This thesis is dedicated to the

kindness

of countless people

•

Thanks!

3

"The biologists who enter this field must resign themselves to the fact that they can never achieve certainty. Their end point must always be a judgement as to which several hypothesis appears to be most plausible on the basis of presently available factors."

G.L. Stebbins ("Flowering Plants: evolution above the species level"; 1974, p.viii)

Table of Contents

Notes	.15
Introduction: An overview of Myrteae	.16
I.1 What is Myrtaceae?	.16
I.2 What is Myrteae?	.17
I.3 Brief history of Myrteae systematics	.17
I.4 Morphological vs. phylogenetic heterogeneity	.19
I.5 Thesis objectives	.20

Work Package I – Systematics and flower evolution of Myrteae
CHAPTER 1: Myrteae phylogeny, calibration, biogeography and diversification patterns:
increased understanding in the most species rich tribe of Myrtaceae
INTRODUCTION
1.1 Myrteae systematics and diversity24
1.2 Myrteae global geographic distribution
1.3 Study aims
MATERIALS AND METHODS
1.4 Taxonomic sampling27
1.5 Extraction and sequencing27
1.6 Phylogenetic analysis
1.7 Fossil calibration and dating28
1.8 Historical biogeography inference29
1.9 Diversification rates analysis
RESULTS
1.10 Phylogenetic tree analysis - Grouping and Main lineages
1.11 The Australasian group
1.12 The <i>Myrtus</i> group
1.13 Main Neotropical lineage
1.14 Ungrouped genera: Myrtastrum and Amomyrtus
1.15 Dating inference
1.16 Biogeographical patterns
1.17 Diversification rate shifts40
DISCUSSION41
1.18 Systematic implications41
1.19 Comparative dating analysis43
1.20 Biogeographical inference44
1.21 Changes in diversification rates, key innovations and mega-diverse genera51
CONCLUSION
APPENDIX
CHAPTER 2: Systematic and evolutionary implications of stamen posture in Myrteae
(Myrtaceae)76

INTRODUCTION	77
2.1 Myrteae taxonomic complexity and absence of diagnostic characters	77
MATERIALS AND METHODS	79
2.2 Sampling	79
2.3 Herbarium material	79
2.4 SEM analyses	79
2.5 Anthesis type observation	80
RESULTS	80
2.6 Stamen posture	80
2.7 Anthesis type	84
DISCUSSION	85
2.8 Systematic implications of stamen posture and anthesis type in myrteae	85
2.9 Relationship between stamen posture and hypanthium extension	88
2.10 Evolutionary implications of hypanthial extension, stamen posture in the bud and floral	ecology
	88
2.11 Systematic implication for straight stamens in Myrtales	89
CONCLUSION	90
CHAPTER 3: A systematic overview of floral diversity in Myrteae (Myrtaceae)	91
INTRODUCTION	92
MATERIAL AND METHODS	92
GENERAL OVERVIEW	93
3.1 Perianth (calyx and corolla)	93
3.2 Androecium and hypanthium extension	95
3.3 Gynoecium	97
3.4 Hairs and trichomes	99
3.5 Oil glands and elaiophores	101
3.6 Andromonoecy: more common than acknowledged	103
3.7 Ovule oversupply	104
3.8 Herkogamy and strategies to avoid selfing	105
3.9 Common pollination strategies	106
3.10 Uncommon pollination strategies	107
SYSTEMATIC OUTLINE	108
3.11 Australasian group	108
3.12 Myrtus group	108
3.13 Blepharocalyx, Myrcia and Plinia groups	109
3.14 Myrceugenia group	109
3.17 Eugenia group	111
3.15 Pimenta group	111
3.16 Myrteola group	112
3.17 Incertae sedis	114
CONCLUSION	118

Work Package II – Case studies on systematics and floral evolution of Myrteae 128 CHAPTER 4: Augmenting phylogenetic signal for homoplastic traits: the evolutionary 129 INTRODUCTION 130 4.1 Trait homoplasy in the molecular era 130 4.2 Perianth fusion in Myrtaceae 130 4.3 Aims 131 MATERIALS AND METHODS 132 4.4 Study group and sampling approach 132 4.5 Ontogenetic study 132 4.6 Anatomical survey 132 4.7 Phylogenetic assessment and placement of <i>Pleurocalyptus</i> 132
history of perianth fusion in Myrtaceae flowers129INTRODUCTION1304.1 Trait homoplasy in the molecular era1304.2 Perianth fusion in Myrtaceae1304.3 Aims131MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
INTRODUCTION.1304.1 Trait homoplasy in the molecular era1304.2 Perianth fusion in Myrtaceae1304.3 Aims131MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
4.1 Trait homoplasy in the molecular era1304.2 Perianth fusion in Myrtaceae1304.3 Aims131MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
4.2 Perianth fusion in Myrtaceae1304.3 Aims131MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
4.3 Aims131MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
MATERIALS AND METHODS1324.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
4.4 Study group and sampling approach1324.5 Ontogenetic study1324.6 Anatomical survey132
4.5 Ontogenetic study 132 4.6 Anatomical survey 132
4.6 Anatomical survey
-
4.7 Phylogenetic assessment and placement of <i>Plaurocaluptus</i> 132
4.8 Character reconstruction and estimates of phylogenetic signal133
RESULTS133
4.9 Calyptra homology133
4.10 The calycine calyptra133
4.11 The corolline calyptra135
4.12 The pseudocalyptra136
4.13 Calyptra anatomical profile and functional traits138
4.14 Re-coding characters and adjustment of phylogenetic signal
DISCUSSION141
4.15 A matter of semantics: standardising the terminology for calyptrate structures in Myrtaceae
4.16 Reciprocal illumination: the calyptra in Myrtaceae systematics142
4.17 Functional advantage of repeated selection of calyptrate flowers
4.18 Reinforcing the importance of morphological studies in phylogenetically well-known groups
CONCLUSION
CHAPTER 5: Floral heterochrony promotes lability of reproductive strategies in the
morphologically homogeneous genus Eugenia (Myrtaceae)
INTRODUCTION
5.1 Floral ontogeny in studies of systematics and evolution
5.2 Deficit of floral development data for large tropical genera
MATERIALS AND METHODS
5.3 Sampling
5.4 Ontogenetic examination
5.5 Flower measurements and correlation analysis
5.6 Supporting analysis of character reconstruction158

RESULTS	159
5.7 Floral Structure in Eugenia	159
5.8 Flower development in Eugenia punicifolia	159
5.9 Heterochronical pattern 1: Perianth growth rate	166
5.10 Heterochronical pattern 2: Style gigantism in Eugenia sect. Umbellatae	167
5.11 Heterochronical pattern 3: Hypanthium elongation and androecium development	169
5.12 Hypanthial heterochrony effects on androecium/gynoecium proportion	170
DISCUSSION	171
5.13 Eugenia flower development in the context of Myrtaceae	171
5.14 Heterochronic trends and adaptative features	172
5.15 Hypanthium vs. androecium: space matters	173
5.16 Relevance of hypanthium/androecium dependency for early Myrteae evolution	173
CONCLUSION	175
APPENDIX	176
CHAPTER 6: Links between parallel evolution and systematic complexity in angiosp	erms: a
case study of floral development in <i>Myrcia</i> s.l. (Myrtaceae)	186
INTRODUCTION	187
6.1 Morphology vs. molecular evidence in systematics of flowering plants	187
6.2 Parallel evolution and deep homology	188
MATERIALS AND METHODS	188
6.3 Study group	188
6.4 Myrcia s.I. flower structure	190
6.5 Sampling	190
6.6 Ontogenetic analysis	190
6.7 Phylogenetic reconstruction	191
6.8 Phylogenetic signal analysis	192
6.9 Ancestral reconstruction of characters	192
RESULTS	192
6.10 Myrcia s.I. floral development survey	192
6.11 The "aposepalous" developmental pathway	193
6.12 The "gamosepalous" developmental pathway	195
6.13 The "hyper-hypanthium" developmental pathway	196
6.14 Specific stage character variation	198
6.15 Phylogenetic signal of developmental variation	200
6.16 Ancestral reconstruction of developmental pathways	201
DISCUSSION	202
6.17 Parallelism in <i>Myrcia</i> s.l.	202
6.18 Parallelism in systematics of flowering plants	204
6.19 The impact of parallelism on flower evolution	205
CONCLUSION	206
APPENDIX	207

CHAPTER 7: Innovation is not always the key: how one of the most diverse a	nd abundant
Neotropical tree genera achieved success by staying the same	215
INTRODUCTION	216
7.1 Evolutionary theory behind tropical rainforest species and trait richness	216
7.2 Considering mega-diversity in the lack of clear phenotypic innovations	216
MATERIAL AND METHODS	217
7.3 Study group	217
7.4 Choosing a representative sample for phenotypic data	218
7.5 Phenotypic data – Floral display and additional information	218
7.6 Data Annotation	222
7.7 Phylogenetic reconstruction	223
7.8 Trait correlations and phylogenetic signal tests	223
7.9 Morphospace and morphological disparity	224
7.10 Null hypothesis significance tests	224
7.11 Analytical methods for interpreting phylogenetic heterogeneity	225
RESULTS	225
7.12 Descriptive statistics and phylogenetic signal	225
7.13 Myrcia floral morphospace	236
7.14 Phenotypic disparity and species diversity	239
7.15 Floral specializations and environmental variables (NHSTs)	240
7.16 Macro-evolutionary dynamics	244
DISCUSSION	246
7.17 Innovation is not (always) the key: centripetal selection of floral phenotypes	246
7.18 Walking in circles at the top of an advantageous adaptive peak	246
7.19 The dry diagonal did not destabilize the system	248
7.20 Implications for macroevolution dynamics of tropical lineages	248
CONCLUSION	250
APPENDIX	251
CHAPTER 8 - General Discussion and Concluding Remarks	277
8.1 Key findings	277
8.2 Taking this study forward	277

References	279
Acknowledgements	301

Table list

CHAPTER 1

Figure list

Figure I.1: Examples of habitats where Myrteae occurs	.16
Figure I.2: Myrteae morphological features	.18
CHAPTER 1	
Figure 1.1: Biodiversity of Myrteae represented by the characteristic polystemonous white	flowers
and fleshy, berry-like fruits	.25
Figure 1.2: Myrteae ML phylogenetic tree resulting from the combined (nuclear and chlor	roplast)
dataset analysis	.33
Figure 1.3: Global species distribution of Myrteae	.34
Figure 1.4: Comparative dating analysis in Myrteae generated based on two distinct fos	sil sets
Figure 1.5: Myrteae biogeographic inference recovered from BioGeoBEARS	.39
Figure 1.6: Phylorate showing the single best shift configuration recovered from BAMM	.41
Figure 1.7: Graph comparing crown node ages of macrofossil calibration and poller	
calibration	.43
CHAPTER 2	
Figure 2.1. Comparison between three Myrteae molecular phylogenies	.78
Figure 2.2: SEM images of buds of species from the Australasian group, <i>Eugenia</i> group and	-
Figure 2.3: SEM images of buds of <i>Pimenta</i> group and <i>Myrceugenia</i> group species	
Figure 2.4: SEM images of buds of species from the Plinia and Myrcia group and in Algrized	a minor
	.83
Figure 2.5. Distinct anthesis types in Myrteae	.84
Figure 2.6: Variation in stamen posture in Myrteae	.86
Figure 2.7: Summary tree of Myrteae phylogeny with stamen patterns per clade	.87
CHAPTER 3	
Figure 3.1: Patterns of perianth arrangement in Myrteae	.94
Figure 3.2: Patterns of stamen development along the hypanthium and common system of	anther
dehiscence and pollen exposure in Myrteae	.96
Figure 3.3: Diagrams of transversal cuts in ovaries of Myrteae	.98
Figure 3.4: Diagrams of tangential and longitudinal cuts in ovaries of Myrteae	.100
Figure 3.5: Distortions in flower architecture caused by differential development of gynoe	cium in
two closely related genera	.102
Figure 3.6: Trichomes, elaiophores and anther glands in Myrteae	.103
Figure 3.7: Andromonoecy in Decaspermum parviflorum.	.104
Figure 3.8: Degrees of ovule oversupply in fruits of similar size.	.105
Figure 3.9: Diversity of floral display in Myrteae.	.107
Figure 3.10: Simplified phylogeny of Myrteae and floral diagrams of selected species (Austra	alasian,
Myrtus, Blepharocalyx, Plinia, Myrcia and Myrceugenia groups).	.109

Figure 3.11: Simplified phylogeny of Myrteae and floral diagrams of selected species (Myrteola,
Pimenta and Eugenia groups)112
CHAPTER 4
Figure 4.1: Calyptrate and non-calyptrate flowers in Myrtaceae (illustration)
Figure 4.2: Calycine calyptra in Syzygieae134
Figure 4.3: Calycine calyptra in Myrteae and Xanthostemoneae
Figure 4.4: Calycine and coralline development in Eucalypteae136
Figure 4.5: Pseudocalyptra and free-perianth development in Syzygieae and Eucalypteae137
Figure 4.6: Anatomical profiles of three species with free perianth and seven species with calyptrate
flowers in three distinct Myrtaceae lineages138
Figure 4.7: Calyptrate flowers mapped on to the Myrtaceae phylogeny140
Figure 4.8: Changes in phylogenetic placement of calyptrate flowers when levels of homology are
clarified
Figure 4.9: Variation in perianth tearing within individuals143
CHAPTER 5
Figure 5.1: Field pictures of flowers in distinct Eugenia clades
Figure 5.2: Floral diagram of Eugenia punicifolia162
Figure 5.3: Early stages of floral ontogeny in <i>Eugenia punicifolia</i> 163
Figure 5.4: Late stages of floral ontogeny in Eugenia punicifolia164
Figure 5.5: Variation of perianth developmental rate in Eugenia.
Figure 5.6: Comparative style development in Eugenia Sect. Umbellatae and other clades. 168
Figure 5.7: Comparative hypanthium and androecium development in Eugenia and differential rate
of pollen sac maturation according to number of stamens per flower
Figure 5.8: Correlation between total diameter of the floral receptacle and total stamen number per
flower and total ovule number per flower171
Figure 5.9: Style gigantism and resulting herkorgamy of Eugenia Sect. Umbellatae
Figure 5.10: Evolution of androecium development in Eugenia and related taxa
CHAPTER 6
Figure 6.1: Simplified traditional classifications of <i>Myrcia</i> s.l. based on floral characters and after
molecular analysis
Figure 6.2: Floral diversity in <i>Myrcia</i> s.l
Figure 6.3: The "aposepalous" pathway as exemplified by Myrcia fenzliana and Myrcia sp 194
Figure 6.4: The "gamosepalous" pathway, as exemplified by Calyptranthes pallens and
Calyptranthes multiflora195
Figure 6.5: The "hyper-hypanthium" pathway, as exemplified by Marlierea umbraticola 197
Figure 6.6: Stage specific variation in Myrcia s.l. floral organ development
Figure 6.7: Comparison between phylogenetic signal based on log likelihood of character variation
in distinct developmental stages201
Figure 6.8: Distribution of the three developmental pathways in the Myrcia s.l. phylogeny202
Figure 6.9: Historical taxonomic problems in Myrcia s.I. as a result of parallel and convergent
evolution

CHAPTER 7

Figure 7.1: Myrcia s.I. distribution and flower display in different clades
Figure 7.2. Schematic drawing of <i>Myrcia</i> flower in longitudinal section
Figure 7.3: Presence and absence of anther oil gland
Figure 7.4: Data collection using herbarium specimen220
Figure 7.5: Inflorescence categories according to position in the plant
Figure 7.6: Inflorescence categories according to degree of floral clustering
Figure 7.7: Examples of flower measurements using a Nikon ShuttlePix
Figure 7.8: Correlations between floral measurements based on a non-parametric Spearmen
correlation test
Figure 7.9: Map of continuous characters over <i>Myrcia</i> phylogeny
Figure 7.10: Profile of each floral measurement per clade of <i>Myrcia</i>
Figure 7.11: <i>Myrcia</i> floral morphospace inferred by a PCA analysis
Figure 7.12: Myrcia phylomorphospace showing 118 data points that correspond to the phylogeny
terminals238
Figure 7.13: Relationships between clade diversity, age and morphological disparity in Myrcia.
Figure 7.14: Null hypothesis significance test plots for correlations between Myrcia floral
morphology and environmental variables
Figure 7.15 – Macroevolutionary homogeneity in <i>Myrcia</i> 245
Figure 7.16: Myrcia floral morphospace with roman numeral indicating species with reproductive
biology information available248
Figure 7.17: Proportional inflorescence investment in <i>Myrcia</i> phylogeny

Appendix list

Appendix 1.1: Sample list, collection localities and Genbank accession numbers for the species
used in the Myrteae phylogenetic analysis53
Appendix 1.2: Primers used for sequencing62
Appendix 1.3: PCR conditions63
Appendix 1.4: Previous studies with Myrteae dating estimates
Appendix 1.5: Myrteae fossil survey (Cretaceous to Eocene)
Appendix 1.6: BioGeoBEARS supporting data and matrices
Appendix 1.7: BAMM supporting data and matrices71
Appendix 1.8: BI phylogeny based on cpDNA dataset74
Appendix 1.9: BI phylogeny based on nuclear (ITS) dataset.
CHAPTER 3
Appendix 3.1: List of analysed specimens in Chapters 2 and 3
CHAPTER 4
Appendix 4.1: Pleurocalyptus pancheri ITS and ndhF sequences and BLAST search evidencing
relationship with Xanthostemon146
Appendix 4.2: Vouchers used in ontogenetic and anatomical analysis of Myrtaceae calyptrate
flowers
Appendix 4.3: Myrtaceae phylogeny (modified from Thornhill et al., 2015)
Appendix 4.4: Trait coding per tip for each phylogenetic signal analysis of calyptrate flowers in
Myrtaceae150
CHAPTER 5
Appendix 5.1 Character matrix for reconstruction of androecium evolution in Myrtoideae 176
Appendix 5.2 Floral ontogenetic aspects that are not linked to heterochronies in <i>Eugenia</i> (Plates 1
- 6)
CHAPTER 6
Appendix 6.1: List of analysed samples in the ontogenetic survey per clade of Myrcia s.l207
Appendix 6.2: List of analysed species and GenBank accession numbers in the phylogenetic
reconstruction of Myrcia s.l
Appendix 6.3: Myrcia s.I. morphological matrix against phylogeny used in phylogenetic signal
estimation and character reconstruction214
CHAPTER 7
Appendix 7.1: Voucher list and Myrcia floral morphological data
Appendix 7.2: Myrcia dated phylogeny (modified from Santos et al., 2017)270
Appendix 7.3: Computed correlation used spearman-method with listwise-deletion271
Appendix 7.4: Plots from macro-evolutionary dynamics analysis in <i>Myrcia</i> using BAMM, TESS and
RPANDA (plots 1 - 4)273
Appendix 7.5: Morphospace distribution of 165 Myrcia specimens (large size)276

Notes

Chapters 1 to 7 of this study correspond to manuscripts already, or to be, submitted for publication individually. Manuscripts have been adapted to form integral parts of the thesis, but individual introductions were not changed and contain some repeated content. Slight inconsistencies in figure format between chapters reflect rules of target journals for publication.

Introduction: An Overview of Myrteae

All taxa discussed in this thesis (with the exception of some genera and species studied in Chapter 4) form a single monophyletic group of flowering plants: tribe Myrteae DC. Basic knowledge of general aspects of Myrteae systematics and evolution are desirable to understand the relevance of this study. This introduction summarises information on this topic and highlights the questions and hypotheses that are addressed in this thesis.

I.1 What is Myrtaceae?

Myrtaceae Juss. is a family of flowering plants comprising around 5500 species of shrubs and trees with highest diversity in Australasia and South America (WCSP, 2017). Myrtaceae is the third most species-rich family of angiosperms in number of tree species (Beech et al., 2017). Among its main characteristics are aromatic leaves with entire margins, white polystemonous flowers, oil gland dots and flaky bark (Wilson, 2011). Some of the best known Myrtaceae include eucalypt trees (the tallest angiosperms in the world; Ashton, 1958), the clove (*Syzygium aromaticum*), the tea tree (*Melaleuca*) and edible fleshy fruits that are cultivated around the world, such as "pitangas", "guavas" and "jambos" (*Eugenia, Psidium* and *Syzygium*, respectively).

I.2 What is Myrteae?

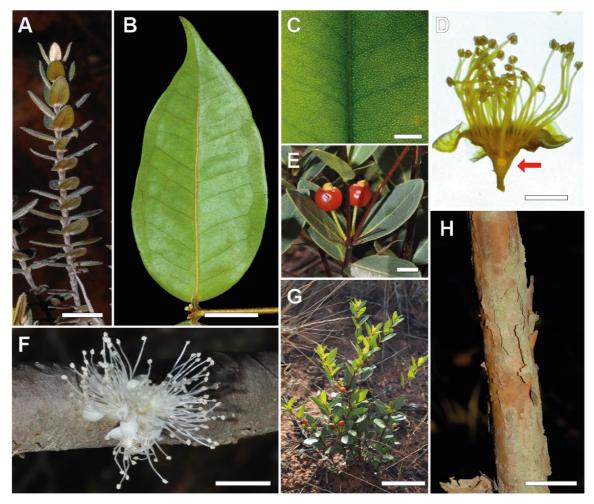

Myrteae is one of the major Myrtaceae lineages, described at the taxonomic level of tribe by De Candolle (1828), circumscribed by traditional cladistic methods based on morphological characters (Briggs and Johnson, 1979) and supported as a monophyletic group by molecular data (Wilson et al., 2001, 2005; Lucas et al., 2007). Myrteae is the richest tribe in Myrtaceae both in number of genera (c. 50) and species (c. 2500), making up over half of the family's biodiversity. Myrteae is almost entirely restricted to tropical areas (see examples in Fig. I.1), with highest diversity (c. 2000 species, 80% of the total) in the Neotropics. Significant biodiversity is also found in New Caledonia (c. 200 species), Southeast Asia and Australia (c. 150 species) and Africa and Madagascar (c. 150 species), although in the latter it is represented by a single genus, *Eugenia*. The only European genus, *Myrtus*, completes the tribe's geographical distribution. Morphological traits that characterise Myrteae are all those described above for Myrtaceae plus opposite leaves, brochidodromous venation, inferior ovaries and fleshy berries (Fig. I.2).

Figure I.1 (next page): Examples of habitats where Myrteae occurs. (A) "Igapó" Amazonian forest; (B) "Terra firme" Amazonian forest; (C) High altitude humid forests; (D) "Restinga" coastal vegetation; (E) Montane atlantic rainforest; (F) New Caledonian valleys and mountains; (G) "Caatinga" dry forest; (H) Brazilian savanna or "Cerrado" *sensu stricto*; (I) "Campo rupestre" high altitude savanna. All photos taken during field expeditions between 2014 and 2016.

I.3 Brief History of Myrteae Systematics

Myrteae is a group of historical taxonomic complexity. Linnaeus described the first four genera of Myrteae in the Species Plantarum (1753): the Neotropical Eugenia, Plinia, Psidium and the European Myrtus, the last of which was taken as the nomenclatural type of Myrteae (De Candolle, 1828), the family Myrtaceae (Jussieu, 1789) and the order Myrtales (Reichenbach, 1828). The first comprehensive treatments of Myrteae genera, however, came years later as substantial numbers of Myrtaceae collections were sent from Latin America to European herbaria by naturalists during the 18th and 19th century. The work of De Candolle (1826) and O. Berg (1855) represents the first complete efforts to address all Myrteae biodiversity comparatively in a single piece of work. De Candolle's major contribution to Myrteae systematics, besides giving the tribe its name, was the description of embryo traits that are still relevant as diagnostic characters at the infra-tribal level (e.g. see Landrum and Kawasaki, 1997; Lucas et al., 2007). Berg's major contribution to Myrteae systematics are the detailed descriptions of flower morphology, including placentation, number of ovary locules and number of ovules. Berg was also first to note the importance of the calyx and hypanthium in separating Myrteae genera and to use inflorescence morphology to distinguish sections in the giant genus Eugenia (see discussion in Mazine et al., 2014). Together, De Candolle and Berg described c. 2300 Myrteae taxa (IPNI, 2017), among genera, species and subspecies, shaping the tribe as a mega-diverse tropical plant group.

Figure I.2: Myrteae morphological features. (A) Opposite leaves in *Myrcia sp.* (B) Simple leaf with entire margins and brochidodromous venation of *Psidium sp.* (C) Translucid glands spread throughout the leaf blade of *Myrcia neuwiedeana*. (D) Arrow pointing to the inferior ovary of *Myrcia rubella*. (E) Fleshy berries of *Eugenia punicifolia*. (F) White polyandrous flowers of *Plinia cauliflora*. (G) As "E", showing plant habit. (H) Flaky bark of *Eugenia sp.* Scale: 5mm (C,D,F), 1cm (A,B,E), c. 20cm (G,H). All photos taken during field expeditions between 2014 and 2016.

At this point, the limited access to collections (due to distribution often restricted to tropical areas with difficult access) and morphological complexity (caused by widespread homoplastic traits) was already a clear drawback to fully understanding evolutionary relationships within Myrteae. While other prolific taxonomists continued to describe and reorganize Myrteae species names, more than a century passed after Berg until all tribal diversity was treated systematically again. In this sense, the studies of Kausel (1956) and Mc Vaugh (1968) were the most comprehensive, and their focus on large Neotropical groups with difficult circumscriptions represented a significant advance in Myrteae systematics. Neither Kausel nor McVaugh, however, included the c. 20% of Myrteae species with Australasian distributions in their studies. One of Mc Vaugh's quotes stresses the challenge in interpreting Myrteae relationships in light of its morphological homogeneity:

"The species of American Myrtaceae are distressingly alike in aspect and in most individual characters, making identification and classification of both genera and species a correspondingly difficult and tedious matter. The leaves are essentially all opposite and entire, and of similar venation throughout; the inflorescences are of a few basic types; the flowers are all much alike except for occasional species in which the stamen-number is drastically reduced, or those relatively few which are set apart by some strong morphological character like the calyptrate calyx of *Calyptranthes*. [...] In the absence of more obvious distinctions, the taxonomist of the Myrtaceae is often constrained to consider details of ovarian structure, of placentation, and of ovule number, but even these sometimes fail to provide the evidence necessary for a satisfactory conclusion." (Mc Vaugh, 1968, p. 359)

After a long period of accumulation of taxonomic uncertainty, Myrteae systematics resurfaced in the last 30 years. Chronologically, this phase started with the important works of Landrum in the Neotropics (e.g. 1981, 1984, 1986, 1988a, 1988b), and Scott (e.g. 1978, 1979a, 1979b, 1985) and Snow (Snow 2000, 2004, 2007; Snow and Guymer, 2001; Snow et al., 2003) in the Australasian region. Focusing on small genera or groups of species with somewhat restricted geographical distribution, these systematic reviews provided detailed morphological analysis and highlighted several circumscription problems. Resulting taxonomic inflation and deflation during this period led to a significant number of new genera to be described from species that could not be fitted into any system (e.g. *Accara*, Landrum, 1990; *Chamguava*, Landrum, 1991; *Curitiba*, Salywon & Landrum, 2007; *Gossia* and *Lenwebbia*, Snow et al., 2003; *Kanakomyrtus*, Snow, 2009). Most of these genera are also shown to be distinct by molecular data (see Chapter 1 of this thesis).

In the 21st century, Myrteae systematics arrived in the molecular era. The first significant works in this sense are those of Wilson (et al., 2001, 2005), who updated the Myrteae circumscription in the context of the whole Myrtaceae, and Lucas (et al., 2005, 2007), who produced the first comprehensive Myrteae phylogenetic trees. These studies also tackled the largest genera and provided infra-generic structure allowing smaller monophyletic groups to be treated separately (e.g. Snow et al., 2011; Mazine, et al., 2014; Staggemeier et al., 2015; Santos et al., 2016; Bünger et al., 2016). Alpha-taxonomists, often working in collaboration with molecular systematists, also illustrated Myrteae mega-diversity in the Neotropics; Sobral, for example, has described more than 150 species in the last 15 years (IPNI, 2017).

The studies of the last decades have consolidated current systematic understanding of Myrteae to the extent that it has been lifted from almost complete neglect to a particularly data-rich tropical tribe. The significant increase in Myrteae data available has given rise to research in other areas to address hypotheses related to conservation, ecology and evolution, turning Myrteae into an important model group, especially in the Neotropics (e.g. Biffin et al., 2010; Staggemeier et al., 2010; Thornhill et al., 2012; Lucas and Bünger, 2015; Giaretta et al., 2015; Murillo-A et al., 2016).

I.4 Morphological vs. Phylogenetic heterogeneity

Contrary to expectations however, newly available information and more studies has brought more questions than answers to Myrteae systematic and evolutionary understanding, especially in the dichotomy between molecular and morphological evidence. Even though most generic delimitations are supported by molecular data, many traits traditionally used to diagnose natural groups are shown to be highly artificial (see discussions in Lucas et al., 2005, 2007, and throughout this thesis). Consequentially, traditional classifications of suprageneric (i.e. subtribes) and infrageneric (i.e. sections) relationships often feature para- and polyphyletic groups in phylogenetic trees after molecular analysis (e.g. Lucas et al., 2007, 2011; Snow et al., 2011; Mazine et al., 2014). Such ambiguity is not restricted to Myrteae and is frequently found in other diverse tropical plant groups (e.g. *Miconia*, Michelangeli et al., 2004; *Croton*, Berry et al., 2005; *Mimosa*, Simon et al., 2011).

Contrast of molecular vs. morphological evidence is a central component of this thesis, where Myrteae is assumed to be an effective model of such idiosyncrasies in plant systematics. There are two main motives for the focus of this work on the relevance of plant morphology in the molecular era. The first is practical; morphology diagnoses natural groups in the field and herbaria, correctly places fossils in phylogenies (see Saraswati and Srinivasan, 2015) and supplements molecular information for taxonomic decision making, allowing a holistic understanding of biodiversity. The second is theoretical, as morphological (or phenotypical) changes result from natural selection and provide footprint evidence of interactions between organisms and their environment over the long term (Darwin, 1859). It is for this reason that combination of phenotypic information with phylogenetic trees is so powerful for understanding the evolutionary history of organisms and their biomes (e.g. Simon et al., 2009; Crips et al., 2011; Bacon et al., 2015). Despite its morphological homogeneity, Myrteae shows high disparity in species diversity per clade with almost 80% of species grouped in two gigantic genera (Myrcia and Eugenia), leaving the remaining c. 50 genera relatively species poor. Myrteae therefore, with its unusual morphological homogeneity and phylogenetic heterogeneity, provides a valuable example of discreet/cryptic phenotypical adaptations radically changing plant lineage fitness and increasing or decreasing diversification rates.

Fleshy-fruits have been proposed as the key-innovation responsible for the disparity between Myrteae's mega-diversity and other Myrtaceae tribes (Biffin et al., 2010). Fruits however, cannot explain the heterogeneous distribution of species diversity within the tribe as they are all fleshy berries. Myrteae flowers are also superficially similar but possess subtle variations never fully explored in the context of systematics and macroevolutionary dynamics. The studies presented here consider floral phenotype in different ways, each addressing the phenotypic and ecological factors that generate the documented high levels of species disparity described.

I.5 Thesis Objectives

This thesis sets phylogenetic and floral phenotype information of Myrteae in a comparative framework. The main objectives are three:

1) Reconstruct the evolutionary framework of Myrteae.

The most comprehensive Myrteae phylogeny was published 10 years ago (Lucas et al., 2007). Since then, new analytical tools are available and newly described fossils can be used to time-calibrate the phylogeny. Additionally, c.15 genera remained phylogenetically unplaced and will be included in a reconstructed Myrteae phylogeny based on the broadest molecular matrix and

generic sample to date. The resultant topology is used to explain chronological, biogeographical and diversification patterns in the tribe (Chapter 1).

2) Describe floral phenotypic variation in Myrteae

A systematic review of floral morphology and development in Myrteae illuminates generic relationships and potentially adaptive features (Chapters 2 and 3).

3) Angiosperm evolution: phylogeny vs. morphology

Case studies show how clarification of morphological homology improves phylogenetic signal estimation (Chapter 4); how reproductive strategies in morphologically homogeneous groups are modified by heterochrony (Chapter 5); how interpretation of convergence and parallelism leads to uncertainty for the systematics of complex and/or large genera (Chapter 6); and how phenotypic homogeneity enhances the general success of Neotropical tree lineages (Chapter 7).

Work Package I – Systematics and flower evolution of Myrteae

Comparative analysis of molecular data is currently the most reliable way to infer natural relationships between organisms. Chapter 1 presents an almost generically complete molecular phylogeny of Myrteae, alongside dating analysis, biogeography and diversification patterns; Chapter 2 demonstrates implications of stamen posture for interpretation of these phylogenetic results; Chapter 3 presents a systematic survey of Myrteae floral diversity, highlighting evolutionary patterns and characters that can be further explored for diagnosis of natural lineages.

Chapter 1: Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae

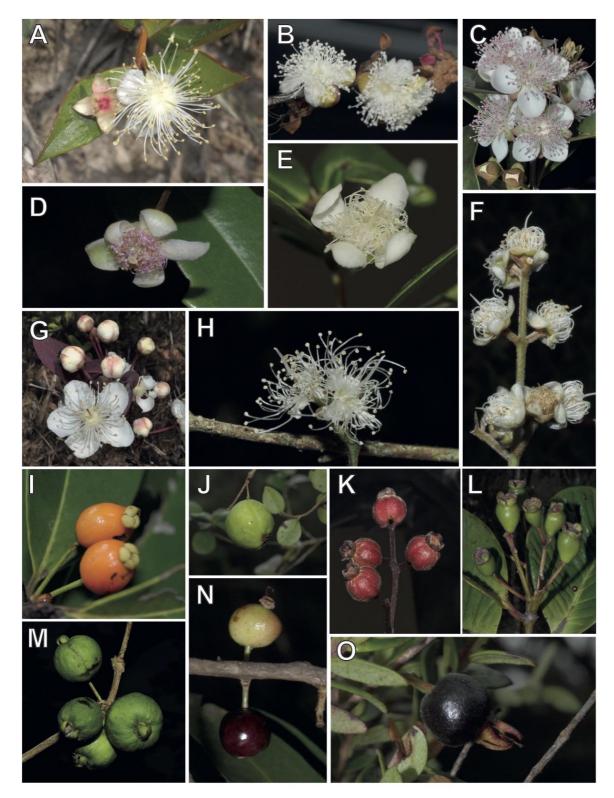
Published as: Vasconcelos et al., 2017. "Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae" *Molecular Phylogenetics and Evolution* 109: 113–137 https://doi.org/10.1016/j.ympev.2017.01.002

 T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, DNA sequencing, phylogenetic and statistical analyses and writing of manuscript.

ABSTRACT

Myrteae (c. 2500 species; c.50 genera) is the largest tribe of Myrtaceae and an ecologically important group of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A wellsupported and robust phylogenetic hypothesis was targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former *Pimenta* group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.

Key words: Eugenia, evolution, Myrcia, Myrtus, Psidium, systematics.


INTRODUCTION

1.1 Myrteae systematics and diversity

Myrtaceae is a large family of woody flowering plants represented by around 5500 accepted species, classified in 144 genera and 17 tribes (Wilson et al., 2005; Wilson, 2011; WCSP, 2016). Myrtaceae represents an old, mid-Cretaceous lineage within the order Myrtales (c. 85 million years old, Berger et al., 2016) and is characterized by a strong southern-hemisphere, Gondwanan distribution (Thornhill et al., 2015). Myrtaceae is an important floristic component in the areas where it is most species diverse, especially in the forests of Southeast Asia, Australia and South America (e.g. Johnson and Briggs, 1981; Kochummen et al., 1990; Oliveira-Filho and Fontes, 2000; Flora of Brazil, 2016). In Neotropical environments, all Myrtaceae diversity (excluding a single species from tribe Metrosidereae, Metrosideros stipularis, restricted to Chile; Pillon et al., 2015) is represented by a sole lineage: tribe Myrteae (Wilson et al., 2005; Lucas et al., 2007). Myrteae is the most diverse tribe within Myrtaceae both in number of species (c. 2500) and genera (51), representing half of the family's biodiversity (Wilson, 2011; WCSP, 2016). Myrteae species are ecologically important in many Neotropical environments due to the fleshy berries eaten by birds and mammals and the white generalist flowers that supply pollen and resources to a variety of bee species (Mori et al., 1983; Nic Lughadha and Proença, 1996; Gressler et al., 2006; see Fig. 1.1). Due to its ecological importance, a growing interest has been addressed by researchers using Myrteae as a model group for evolutionary, ecological and conservation studies in Neotropical biomes (e.g. Murray-Smith et al., 2009; Lucas and Bünger, 2015; Staggemeier et al., 2015; Giaretta et al.; 2015).

A common barrier encountered by those wishing to study Myrteae is the problematic systematics of the group. The homogeneous morphology of flowers, fruits and vegetative characters between even distantly related Myrteae species makes taxonomy in the tribe a tiresome process even for specialists and until recently resulted in its neglect (McVaugh, 1968; Landrum and Kawasaki, 1997; Lucas et al., 2005). Recent phylogenetic systematic studies and taxonomic revision of individual clades within the tribe has improved the understanding of relationships and characterization of smaller groups (e.g. Landrum, 1981, 1986; Proença, 1990; Grifo, 1992; Lucas et al., 2011; Murillo-A et al., 2012; Mazine et al., 2014; Staggemeier et al., 2015). However, narrower distributed genera not sampled at the molecular level until now remain phylogenetically unplaced. To place such taxa in a broader phylogenetic system is central to improve the understanding of relationships and evolution within this ecologically important tribe.

Although morphologically similar, Myrteae lineages have an uneven, heterogeneous distribution of biodiversity in terms of species per genus. Two thirds of the diversity of described species occurs in only two genera, *Eugenia* s.l. (sensu Mazine et al., 2014) and *Myrcia* s.l (sensu Lucas et al., 2011), which are also two of the largest angiosperm genera (Frodin, 2004) with c. 1000 and 700 species, respectively (WCSP, 2016). Furthermore, these two genera have been consistently proved to be sister to species poor lineages in the tribe (Lucas et al., 2007; this study), increasing the extant diversity disparity between closely related clades.

Figure 1.1: Biodiversity of Myrteae represented by the characteristic polystemonous white flowers (A -H) and fleshy, berry-like fruits (I - O). (A) *Accara elegans*; (B) *Calyptrogenia cuspidata*; (C) *Eugenia involucrata*; (D) *Archirhodomyrtus turbinata*; (E) *Luma apiculata*; (F) *Myrcia splendens*; (G) *Campomanesia adamantium*; (H) *Myrciaria floribunda*; (I) *Eugenia punicifolia*; (J) *Hottea neibensis*; (K) *Myrcia sp1* (voucher T. Vasconcelos 307); (L) *Gossia clusioides*; (M) *Chamguava schippii*; (N) *Siphoneugena densiflora* (O) *Myrtastrum rufopunctatum*. Size of reproductive structures varies between c. 0.5 to 3cm. (all photos taken during field expeditions between 2014 and 2016)

1.2 Myrteae global geographic distribution

Although most extant biodiversity of Myrteae is restricted to the Neotropics, at least 15 genera (Wilson, 2011) and c. 450 species are found in other continents. These are predominantly from Southeast Asia, Northeast Australia and the Pacific islands, including New Caledonia and New Zealand (Scott, 1978; Snow, 2000; Wilson, 2009; Snow et al., 2011; WCSP, 2016). A few species of Eugenia are also found in Africa, Madagascar and Mauritius (Van Wyk, 1982, van der Merwe et al. 2005, Snow, 2008) and an additional genus, Myrtus, represents the only European/Northern African lineage (Lucas et al., 2007; Migliore et al., 2011). On the American continent, most species diversity is found in the rainforests and savannah of central and eastern Brazil, the Guiana shield and Caribbean (McVaugh, 1968; Mori et al., 1983; Oliveira-Filho and Fontes, 2000; Holst, 2003, Murray-Smith et al.: 2009): less but still significant biodiversity is found in continental Central America and the low-land Amazon basin (Landrum, 1992; WCSP, 2016). Species diversity is relatively low in the subtropical and temperate areas of southern South-America (Patagonia) and the high altitude Andes, but these areas boast a significant array of endemic genera (e.g. Ugni, Amomyrtus, Legrandia, Luma; Landrum, 1981, 1986, 1988). Previous phylogenetic analyses consistently showed Myrtus representing a sister clade to all of the extant Myrteae (Lucas et al., 2005, 2007; Biffin et al., 2010; Thornhill et al., 2015). In these studies, most Australasian genera also group in a distinct clade, sister to the that containing all Neotropical clades (Lucas et al., 2005, 2007). The relative position of these clades in the tribe, in addition to biogeographical analysis in a broader Myrtaceae context (Thornhill et al., 2015) shows that Australia represents the most likely ancestral range in the family and that Neotropical genera are likely a result from a more recent event of vicariance between Australia and South America, while the distribution of Myrtus is attributed either to a previous wider distribution of the tribe or to an old long distance dispersion and establishment (henceforward coined LDDE) event.

1.3 Study aims

Despite recent progress in understanding relationships within Myrteae using molecular tools (e.g. Lucas et al., 2011; Snow et al., 2011; Murillo-A et al., 2012; Mazine et al., 2014; Staggemeier et al., 2015; Santos et al., 2016), available studies have focused mainly on smaller clades and still lack complete generic sampling, ultimately preventing proper examination of relationships within the tribe. Improving taxonomic and DNA sampling when building phylogenetic trees is known to solve controversial relationships in plants (e.g. APG IV, 2016). Results from such improved phylogenies are key to elucidating systematic problems and also to detect consistent evolutionary patterns as low statistically supported and unbalanced phylogenetic trees may present unreliable branching patterns, branch lengths and substitution models, all of which are ultimately misleading when estimating dates or any other subsequent analysis. Improved phylogenetic resolution in Myrteae will allow more reliable systematic, biogeographic and evolutionary hypotheses of diversity in the tribe. Therefore, the aims of this study are to:

 Develop a well-supported and robust phylogenetic chronogram for Myrteae including all main lineages (46 out of 51 genera and all main clades within large genera).

- 2) Propose a biogeographical hypothesis of evolution of the tribe allowing detection of variation (shifts) in ancestral geographical ranges within a global perspective.
- Estimate diversification rate variation to understand the evolution of heterogeneous diversity among closely related lineages.

MATERIALS AND METHODS 1.4 Taxonomic sampling

The selected sample includes a large range of lineages and geographical distributions within Myrteae. In the case of the mega-diverse genera *Myrcia s.l.* and *Eugenia s.l.*, at least one species was sampled from each informal group (soon to be recognized as formal sections, Mazine et al. 2016; Lucas et al. in revision.) in each genus, following the clade classifications of Lucas et al. (2011) for the nine *Myrcia* s.l. clades and Mazine et al. (2014) and Bünger et al. (2016) for the ten *Eugenia* s.l. clades (clades 1 to 9 and section *Speciosae*). Fieldwork was conducted in Brazil, Jamaica, Costa Rica, Dominican Republic, New Caledonia, Singapore and Malaysia to collect missing taxa for DNA extraction. Sample was supplemented from the living collection of the Royal Botanic Gardens Kew (K). Duplicate vouchers were deposited in local herbaria and in the Kew herbarium.

The final sample comprises 115 terminals representing 114 species. These include 99 species representing 46 of the 51 genera of Myrteae, 16 genera more than the previous published sample (Lucas et al., 2007). *Blepharocalyx salicifolius* was sampled twice, due to inconsistent placement in past studies (Lucas et al., 2005, 2007; Murillo-A et al., 2012; de-Carvalho, 2013). Fifteen species were chosen as outgroups based on previous phylogenetic works (Lucas et al., 2007; Biffin et al., 2010; Thornhill et al., 2015). These represent five tribes of Myrtaceae: Leptospermeae (*Leptospermum scoparium*, defined as the furthermost outgroup in all analysis), Eucalypteae (*Eucalyptus perriniana*), Metrosidereae (*Metrosideros perforata, M. stipularis* and *M. nervulosa*), Tristanieae (*Xanthomyrtus compacta* and *X. montivaga*) and Syzygieae (*Syzygium jambos*, S. *maire*, S. gustavioides, S. buxifolium, S. paniculatum, S. amplifolium, S. muellerii and *S. guineense*). Previous studies provide evidence that Metrosidereae, Syzygieae and Tristanieae are closely related to Myrteae (part of the BKMMST clade *sensu* Biffin et al., 2010). See Appendix 1.1 for a full list of sampled species and vouchers.

1.5 Extraction and Sequencing

DNA extraction followed the CTAB extraction protocol for long term DNA storage (Doyle and Doyle, 1987, with modifications following Lucas et al., 2007, and Staggemeier et al., 2015). Approximately 200 milligrams of leaf tissue were used for each extraction. Eight DNA regions were selected for sequencing based on their informative quality evidenced in previous Myrtaceae studies (Lucas et al., 2005, 2007; Snow et al., 2011; Murillo-A et al., 2012; Mazine et al., 2014; Staggemeier et al., 2015). These are the nuclear region ITS and seven chloroplast regions: *psbA-trnH*, *matK*, *ndhF*, *trnI-trnF*, *trnQ-rps16*, *rpl16* and *rpl32-trnL*. Sequencing was performed using traditional Sanger sequencing protocol, following Lucas et al. (2007). Information on primers and PCRs conditions are available in Appendices 1.2 and 1.3. Raw sequences were imported and assembled using Geneious (v. 9, Kearse et al., 2012). Resulting contigs were aligned separately for each

region using Muscle (Edgar, 2004) implemented in Geneious and adjusted manually. A total of 535 new sequences were generated in this study. Sequences sourced from Genbank are listed in Appendix 1.1.

1.6 Phylogenetic Analysis

The seven chloroplast regions were concatenated resulting in a matrix of 6453 base pairs, hereafter referred to as the 'cpDNA dataset'. This and the 'nuclear dataset', including only the ITS region (916 base pairs), were used to run two independent Bayesian Inference (BI) phylogenetic analysis. The best evolutionary model was estimated prior to phylogenetic reconstruction using jModelTest 2 (Darriba et al., 2012). Estimation resulted in a best model of GTR gamma+inv for both nuclear and cpDNA datasets. Models were then implemented in MrBayes on XSEDE V. 3.2.6 (Ronguist and Huelsenbeck, 2003) executed in Cipres and run for 15,000,000 generations using default parameters. After visual comparison between phylogenies based on nuclear and cpDNA datasets separately (see section Phylogenetic tree analysis - Grouping and Main lineages, p.), both nuclear and cpDNA matrices were concatenated resulting in a final matrix of 7369 base pairs, hereafter referred to as the 'combined dataset'. For this matrix, Maximum Likelihood (ML) and BI were run independently to compare topologies and node support (bootstrap vs. posterior probabilities, respectively). For the ML analysis, the final concatenated alignment (available as Supplementary Material in the online article) was converted into a simplified Nexus file in Mesquite v3.04 (Maddison and Maddison, 2015) and sourced as input to RAxML-HPC2 (Stamatakis, 2014) analysis implemented in Cipres (Miller et al., 2010). Outputs of all phylogenetic analysis were read using Figtree v1.4.2 (Rambaut, 2014).

1.7 Fossil calibration and Dating

Dates of Myrteae diversification events are controversial. Myrtaceae and Myrteae phylogenies have been dated using fossil calibration and molecular clock approaches in at least seven previous studies (Sytsma et al., 2004; Biffin et al., 2010; Thornhill et al., 2012a, 2015; Murillo-A et al., 2016; Staggemeier et al., 2015; Berger et al., 2016 – see Appendix 1.4). Except on the occasions where studies were conducted by the same research group, most obtain different dates for similar nodes, sometimes extremely (e.g. Berger et al. [2016] date the crown node of Myrteae at 18 million years old, whilst Murillo-A et al. [2016] date the same node at 92 million years old). The differences in dates appear partially related to phylogeny sample size and balance, but distinctly dependent on the fossils selected and their position in calibration analysis. Because phylogenetic node age is key to interpretation of historical biogeography, reliable fossil selection, calibration and dating analysis is critical; it is discouraging to realise that these decisions are so subjective and open to interpretation. In dating estimation using fossil calibration the standard protocol is to place the estimate minimum date of a fossil on the stem node of a related extant monophyletic taxa in the phylogeny (Forest, 2009). A survey of the oldest fossil records with affinity to Myrteae was conducted and a relatively good fossil record was found assigned to the tribe in the literature. Many fossil descriptions tentatively link them to modern genera (see Appendix 1.5) however, in reality it is very difficult to identify individual Myrteae genera based on only a few morphological characters. For this reason, the safest approach is to choose the oldest fossil

remains confidently described as any genus in Myrteae and place them in the deepest nodes of the tribe.

The oldest fossil records of Myrteae are represented by macrofossil from the upper Cretaceous of Antarctica and represent remains of wood (*Myrceugenelloxylon antarcticus*) and leaves (*Myrciophyllum santacruzensis*) that are similar to extant *Luma* and *Myrcia* respectively (Berry, 1939; Poole et al., 2003). Other wood and leaf fossils from the Paleocene at extreme southern latitudes show affinity in form and distribution to modern genera (e.g. Ragonese, 1980; Troncoso et al., 2002). The most popular fossil from this period used for calibration of Myrteae studies, however, is *Paleomyrtinae*, a fossil fruit with affinity to *Psidium* or *Mosiera* recorded far from any other Myrteae records, in Northern North America (Pigg et al., 1993). Recently, another Paleocene/Eocene macrofossil from the northern hemisphere was described and placed in Myrteae: *Myrtineoxylon maomingensis*, from China (Oskolski et al., 2013). This is stated to be similar to extant Australasian group genera (*sensu* Lucas et al., 2007). Macrofossils assigned to Myrteae found in Eocene deposits are also common and show similar distribution to modern Myrteae (see Appendix 1.5).

Pollen fossil in Myrteae is, contrariwise, only found in more recent, mid-late Eocene deposits. Myrtaceae pollen fossil (represented by the genus *Myrtacedeites*) was recently reviewed by Thornhill and Macphail (2012) and even though these are found in deposits as old as the Cretaceous, only one species, *M. verrucosus*, shows morphology that undoubtedly places it as Myrteae. Myrteae pollen morphology is conservative (Thornhill et al., 2012b) and in this sense, *Myrtacedeitees verrucosus* represents the most reliable fossil record for Myrteae. At least two varieties of *Myrtaceideites verrucosus* are found in late Eocene deposits of Australia, New Zealand, Patagonia and Panama, suggesting Myrteae was an already widespread and diverse group during that period. *Myrtacedeites verrucosus* is not however, found in deposits of earlier periods (Thornhill and Macphail, 2012).

An important and antagonistic reasoning arises here; pollen fossil of Myrtaceae was recently reviewed and is found to be up to 90 million years old (Thornhill and Macphail, 2012), however, the morphotype that closely matches Myrteae only appears and apparently diversifies in mid Eocene deposits. Added to the hypothesis that pollen is usually the first structure to fossilize when an angiosperm group diversifies (Sauquet et al., 2012), it appears that Myrteae had not diversified before the mid Eocene. Alternatively, if identification of the late cretaceous and Paleocene macrofossils assigned to Myrteae are correct, then Myrteae has to be older than the dates showed by fossil pollen. Furthermore, it is not possible to combine pollen and macrofossil datasets in this case, because they would be placed on similar nodes or represent paradoxal calibration (e.g. if the fossil Myrceugenia chubutenses is used to calibrate the stem node of Myrceugenia at 66mya, the oldest Myrtacedeites verrucosus remains cannot be used to calibrate the whole of the Neotropical Myrteae at 37mya, because the first represents a shallower node in the phylogeny than the second). The solution adopted by this study is to compare two calibration approaches using two distinct fossil sets: a macrofossil set, based on the oldest fossil remains assigned to Myrteae in the literature; and a pollen fossil set, based on different records of Myrtacedeites verrucosus remains. The macrofossil approach referred to as Approach A,

considered three fossil records: *Myrceugeneloxylon antarticus*, the oldest fossil in Myrteae, was placed on the crown node of Myrteae calibrating it at 66 million years ago (mya). The following fossils were placed based on their geographical distribution: the crown of the Australasian group was calibrated at 41mya, based on the minimum age estimate of *Myrtineoxylon maomingensis*, a fossil remain from China with affinity to *Octamyrtus*. *Paleomyrtineae princetonensis* from the Paleocene was used to calibrate the crown node of the *Myrtus* group+Main Neotropical Lineage clade at 56mya, given its reported affinities to modern *Psidium* and *Mosiera* and its distribution closer to extant Neotropical Myrteae.

The second approach is referred to as Approach B and considers three distinct records of Myrtacedeites verrucosus (revised by Thornhill and Macphail, 2012) and additional secondary calibration points. The placement of the three remains of *M. verrucosus* was geographically based, following a similar protocol to that of Thornhill et al. (2012a). The oldest record of the pollen in the Neotropics (Myrtacedeites verrucosus from the mid-Eocene of Panama and Argentina) was placed on the crown node of the Myrtus group+Main Neotropical Lineage clade, calibrating it at 37mya. The oldest Myrtacedeites verrucosus recorded for Australia was placed on the crown node of the Australasian group, calibrating it at 35 mya. Finally, Myrtacedeites verrucosus remains found in New Zealand from 23mya was used to calibrate the crown node of the Myrteola group, the only clade currently found in New Zealand (Lucas et al., 2007, this study). Secondary calibration points from the broader Myrtaceae analysis of Thornhill et al. (2012a, 2015) were used to calibrate the crown of Myrteae at 41mya and the crown of the BKMMST clade (Myrteae + sister tribes, sensu Biffin et al., 2010) at 66 mya. In both approaches A and B, the root of the family was constrained to be no older than 85 mya (following Berger et al. 2016). A summary of the calibration points used and the rate parameters applied in Beast are summarized in Table 1.1. Both approaches A and B were used to produce dated phylogenies using a lognormal relaxed clock set for Birth-Death speciation and 50,000,000 generations in BEAST v.1.8.3. (Drummond et al., 2012). Two analyses were run for each approach, results were checked for convergence in Tracer v1.6.0 (Rambaut et al., 2013), burnin was selected as 0.1% of total trees and final chronograms (dated phylogenies) were visualised in Figtree v1.4.2 (Rambaut, 2014).

1.8 Historical Biogeography Inference

BioGeoBEARS (Matzke, 2013) implemented in R (R Core Team, 2016) was used to analyze ancestral geographical range variation over resulting chronograms (Approaches A and B). BioGeoBEARS allows implementation of a third free parameter "j" (founder event/jump speciation) that permits a daughter lineage to have a different area from the direct ancestor a feature that improves the log likelihood of resulting inferences of ancestral areas in comparison to a model with only two free parameters (e.g. dispersion/extinction only in Lagrange; Ree and Smith, 2008). BioGeoBEARS does not work well when many possible ancestral areas are implemented unless the maximum number of areas any species may occupy is reduced. Range area per terminal in the phylogeny was therefore coded in relation to species distributions, not genera. In this way, most terminals are restricted to single area. Area coding aimed to consider the current distribution of the group and historical geology and tectonics. The seven areas chosen were: (A) South America, (B) Central+North America (including the greater Antilles in the Caribbean), (C) Australia and New Guinea (referred to as Australia+NG), (D) New Caledonia and New Zealand (referred to as NCNZ, representing the Zealandia plate; Trewick et al., 2007), (E) Africa (here including Madagascar), (F) Mediterranean Europe and (G) Southeast Asia (referred to as SEAsia). Distribution ranges, time slice matrices and values of area adjacency through time are available in Appendix 1.6.

Approach A: Macrofossil	Node	Age (in million years ago)	Rate
Myrceugenelloxylon antarcticus	Myrteae crown	66 (late-Cretaceous)	Lognormal
Myrtineoxylon maomingensis	Australasian	40 (Mid-Eocene)	Lognormal
	group crown		
Paleomyrtinae princetonensis	Neotropical	56 (late-Palaeocene)	Lognormal
	lineage crown		
Approach B – Pollen fossil			
Secondary calibration point –	Crown BKMST	63.1 (early-Paleocene)	Normal
Thornhill et al. (2012)			
Secondary calibration point –	Crown Myrteae	41 (early-Eocene)	Normal
Thornhill et al. (2012)			
Myrtaceideites verrucosus	Neotropical	37.2 (late-Eocene)	Lognormal
(Panama, Argentina)	lineage crown		
Myrtaceideites verrucosus	Australasian	35 (late-Eocene)	Lognormal
(Australia)	group crown		
Myrtaceideites verrucosus	Myrteola group	23 (late-Oligocene)	Lognormal
(New Zealand)	crown		
Both approaches:			
Secondary calibration point –	Myrtaceae	85 (Cretaceous)	Normal
Berger et al. (2016)	crown		

 Table 1.1: Summary of two fossil sets and secondary calibration points selected to estimate diversification rates in Myrteae. Rate (normal or lognormal) is based on Beast parameters. For fossil reference see Supplementary Material 5.

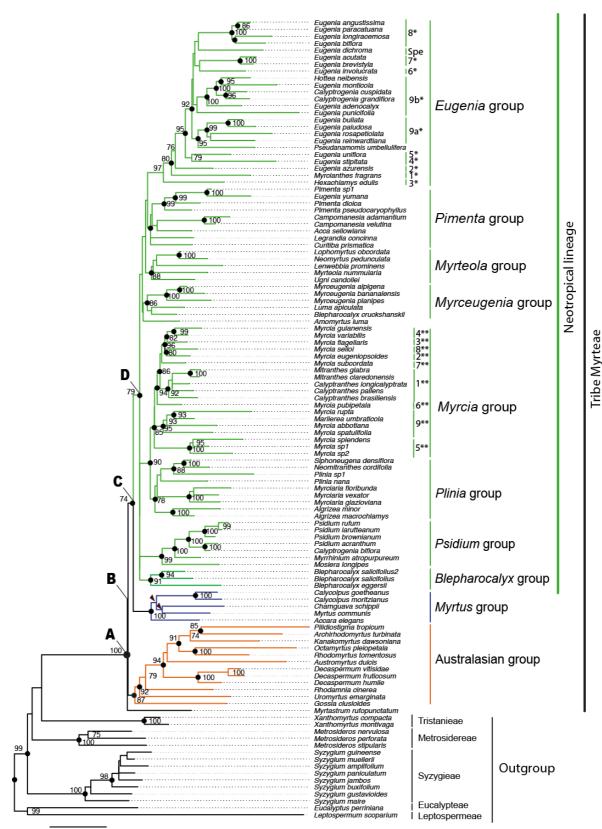
1.9 Diversification Rates Analysis

Configuration shifts in diversification rates were calculated using speciation/extinction model type analysis in BAMM (Rabosky et al., 2014). BAMM works with incomplete phylogenetic datasets and allows a certain degree of phylogenetic uncertainty (see BAMM documentation). Missing taxa per tip or clade in the phylogenetic tree was estimated using previously published works (Wilson et al., 2005; Wilson, 2011; Lucas et al., 2007, 2011; Mazine et al., 2014; Staggemeier et al., 2015; Santos et al., 2016; WCSP, 2016). In the largest genera, *Myrcia* s.l. and *Eugenia* s.l., the numbers of species per clade was estimated by specific studies (Mazine et al., 2014) and unpublished data (Lucas et al., in revision; Faria, 2014; Bünger, 2015). Priors for the BAMM control file were generated using the dated phylogenetic tree input into the function *setBAMMpriors* in the package *BAMMtools* v2.5.2 implemented in R (R Core Team, 2016), estimating 2500 species in Myrteae. The control file was set for 100,000,000 generations and the analysis was run twice as

recommended (see BAMM documentation), giving similar results. Resultant MCMC Log likelihoods were tested against generation number for convergence using the *coda* package implemented in R (R Core Team, 2016). All other outputs contained in the "*event_data*" file were analysed using *BAMMtools* in R. A recent paper casted doubt in the reliability of results produced by BAMM (Moore et al., 2016), but the criticism concerning the priors used by the software were adjusted in the latest version (see BAMM documentation). Other problems cited by that study can be applied to most macroevolutionary methods (e.g. estimation of extinct clades) and in this sense BAMM was not considered better or worse than similar softwares. Priors and proportion of samples per clade are given in Appendix 1.7.

RESULTS

1.10 Phylogenetic tree analysis - Grouping and Main lineages


Phylogenetic analysis shows Myrteae to be a coherent, well defined group with >0.95 posterior probability and 100% bootstrap support in cpDNA, nuclear and combined datasets analyses (node A, Fig. 1.2, Appendices 1.8 and 1.9). The next deepest node in the tribe's phylogeny (node B, Fig. 1.2) is poorly supported by all datasets while the two following nodes (nodes C and D, Fig. 1.2) are recovered with strong posterior probability (>0.95) and high bootstrap support (>70) in the combined and cpDNA datasets. Four lineages result from divergences at these four nodes (A, B, C and D). One of them represents a single, ungrouped monotypic genus (*Myrtastrum*) and the other three are here informally coined: the Australasian group, the *Myrtus* group and the Main Neotropical Lineage (colour coded in Fig. 1.2 as orange, blue and green respectively).

The backbone of the Main Neotropical Lineage is poorly supported in all dataset analyses, but eight major clades with high bootstrap (>70) and/or posterior probability (>0.95) supports are recovered in the combined dataset and here informally named: the *Eugenia*, *Pimenta*, *Myrteola*, *Myrceugenia*, *Myrcia*, *Plinia*, *Blepharocalyx* and *Psidium* groups. These eight clades are also recognized with similar representing taxa and support in the cpDNA dataset analysis (Appendix 1.8). The nuclear dataset analysis presents poor support for most of the deepest nodes in the phylogeny and is mostly non-informative to analyse relationship between and within these clades. The relationship between *Plinia* sp1 as sister to *Myrrhinium atropurpureum* is the only strongly supported arrangement in the nuclear dataset analysis that differs from the cpDNA and combined datasets (Appendix 1.9). In the next sections, relationships within each of the ten clades (the eight clades within the Main Neotropical Lineage plus *Myrtus* and Australasian groups) and two ungrouped genera (*Myrtastrum* and *Amomyrtus*) are discussed based on the combined dataset (Fig. 1.2). Diversity estimates per clade are taken from WCSP (2016) and Wilson (2011).

1.11 The Australasian group

The Australasian group (in orange, Fig. 1.2) has similar configuration to the informal Australasian group *sensu* Lucas et al. (2007). It is positioned as sister to the *Myrtus* group+Main Neotropical lineage clade and includes species within the genera *Gossia*, *Uromyrtus*, *Rhodamnia*, *Austromyrtus*, *Decaspermum*, *Octamyrtus*, *Rhodomyrtus*, *Kanakomyrtus*, *Pilidiostigma* and *Archirhodomyrtus*. This lineage comprises genera restrictedly distributed in Southeast Asia, Australia and Pacific islands (Fig. 1.3A) and an estimated c. 250 accepted species. Supports both

from ML and BI analysis are high (>70 bootstrap and/or 0.95 posterior probability) for most internal nodes in the clade, except for the positions of *Austromyrtus*.

0.02 substitutions/site

Figure 1.2 (previous page): Myrteae ML phylogenetic tree resulting from the combined dataset analysis. Bootstrap percentages greater than 50 are shown above branches; clades receiving posterior probabilities greater than 0.95 in equivalent BI analysis are indicated by black circles. Arrows indicate clades that were not recovered in BI analysis. *Clade numbers *sensu* Mazine et al. (2014). **Clade numbers *sensu* Lucas et al. (2011). 'Spe': section Speciosae sensu Bünger et al. (2016).

1.12 The Myrtus group

The *Myrtus* group (in blue, Fig. 1.2) contains the only European genus *Myrtus* and three Neotropical genera: *Accara, Chamguava* and *Calycolpus*. This group is recovered in all molecular dataset analyses, although relationships within the group vary slightly depending on the dataset under examination and the type of phylogenetic analysis (ML or BI). The main distinction is the placement of *Accara* and *Myrtus* that swap positions between sister to the rest of the group or to *Chamguava*. The two species of *Calycolpus* always appear as a strong supported group. Based on these results, *Myrtus* group present a peculiar discontinuous distribution throughout Mediterranean and Neotropical areas (Fig. 1.3B) and an estimated diversity of c. 20 species.

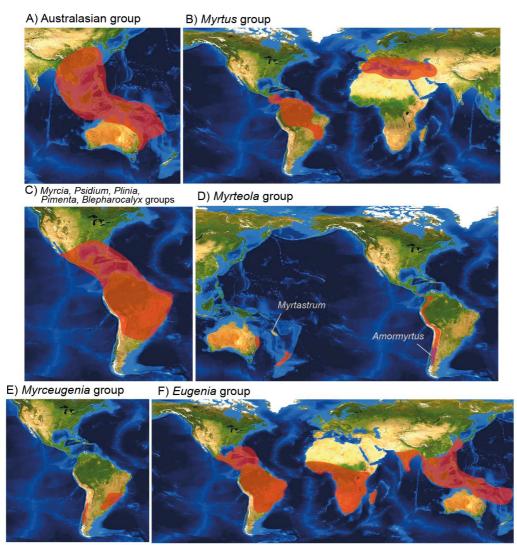


Figure 1.3: Global species distribution of Myrteae, as sourced from the WCSP (2016).

1.13 Main Neotropical lineage

The Main Neotropical Lineage (in green, Fig. 1.2) presents eight well supported (PP >0.95, BS >70) clades: the *Blepharocalyx*, *Psidium*, *Pimenta*, *Myrteola*, *Myrceugenia*, *Plinia*, *Myrcia*, *Eugenia* groups. The latter five are very similar to the circumscription of Lucas et al. (2007). With the exception of the consistently well supported relationship between the *Plinia* and *Myrcia* groups, the relationship between these groups is poorly resolved within the Neotropical lineage. The *Blepharocalyx* group is endemic to the Neotropics (Fig. 1.3C) and includes *Blepharocalyx salicifolius* and *B. eggersii*. *Blepharocalyx* is a genus of only four accepted species and future additions to the phylogeny may also place *Blepharocalyx myriophyllus* (the only unsampled *Blepharocalyx* species in this study) in this group increasing diversity to three accepted species. Currently accepted *Blepharocalyx cruckshanksii* is nested in the *Myrceugenia* group. The *Psidium* group includes the genera *Mosiera*, *Myrrhynium*, *Psidium* and at least one species of the polyphyletic *Calyptrogenia* (*C. biflora*).

The Pimenta group includes the genera Curitiba, Acca (A. sellowiana), Campomanesia, Legrandia, Pimenta and at least one species of Eugenia (Eugenia yumana), nested within Pimenta. Taken in this sense, the group is endemic to the Neotropics (Fig. 1.3C) and includes an estimated c. 50 species. The Myrteola group includes the genera Lophomyrtus, Neomyrtus, Myrteola, Ugni and Lenwebbia, and contains c. 15 species. This group presents an atypical geographical distribution within the tribe, with two genera (Ugni and Myrteola) endemic to Patagonia and the alpine biomes of South and Central America, one genus endemic to Australia (Lenwebbia) and two genera endemic to New Zealand (Neomyrtus and Lophomyrtus) (Fig. 1.3D). The Myrceugenia group includes the genera Luma, Myrceugenia and one species of the polyphyletic Blepharocalyx (B. cruckshanksii); an estimated c. 50 species are assigned here. This group presents a somewhat restricted distribution to sub-temperate and subtropical biomes of South America, mainly Chile and Southern Brazil (Fig. 1.3E). The *Plinia* group includes the genera *Plinia* (emerging paraphyletic), Algrizea, Myrciaria, Siphoneugena and Neomitranthes and an estimated diversity of c. 120 species. The Myrcia group includes four genera: Mitranthes, Myrcia, Marlierea and Calyptranthes. This group is estimated to include around 700 species. Both Plinia and Myrcia groups are endemic to the Neotropics (Fig. 1.3C). The Eugenia group includes the genera Myrcianthes, Hottea, Pseudanamomis, and Calyptrogenia. Clade 9 (sensu Mazine et al., 2014) appears polyphyletic in our analysis with all old world species (including Eugenia roseopetiolata, E. reinwardtiana, E. bullata and E. paludosa, here defined as clade 9a) appearing monophyletic in an unrelated, well supported clade. The Eugenia group is the most diverse and widespread group in Myrteae, with around 1000 species and a pantropical distribution (Fig. 1.3F).

1.14 Ungrouped genera: Myrtastrum and Amomyrtus

Two genera, *Myrtastrum* and *Amomyrtus*, appear ungrouped in the combined dataset. *Myrtastrum*, a monotypic genus endemic to New Caledonia (shown in orange, Fig. 1.3D), appears either isolated as sister to all extant Myrteae in the combined and nuclear datasets, or as sister to *Myrtus* group+Main Neotropical lineage, in the cpDNA dataset analysis. *Amomyrtus*, a genus of two species endemic to Patagonia (shown in purple, Fig. 1.3D), appears as sister to *Myrceugenia* group in both the cpDNA and combined dataset, though this relationship presents a poor support

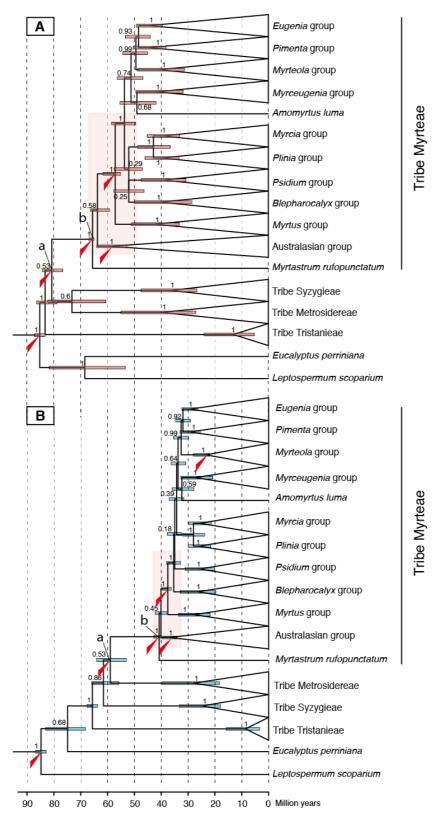
in the latter. This relationship is not supported by the nuclear dataset, where it appears as sister to *Legrandia,* again with a low support.

1.15 Dating inference

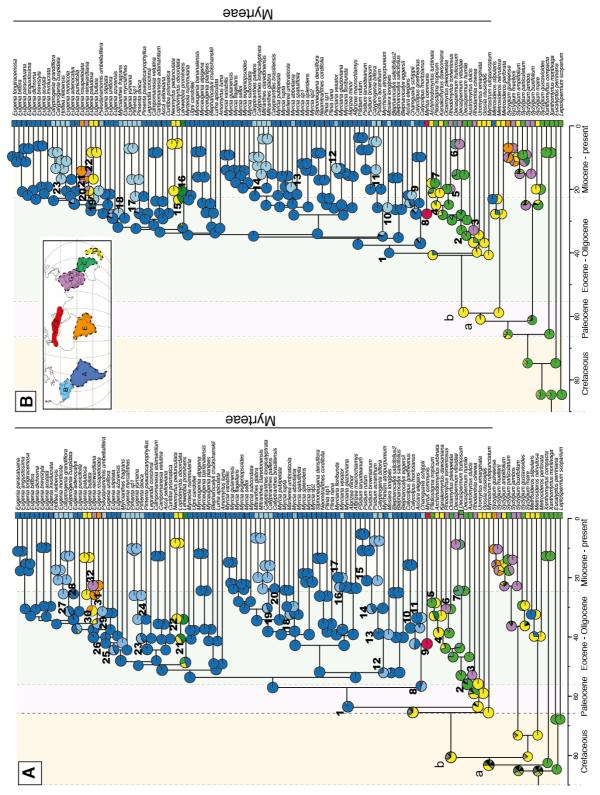
Figure 1.4 contrasts results from calibration using the two fossil datasets (approaches A and B). Relationships between the *Eugenia*, *Pimenta* and *Myrteola* groups receive high statistical support (PP >0.95) in the chronograms compared to the lower support returned from the ML and BI analysis. Other aspects of the topology, including outgroup relationships, show discreet differences between chronograms where node support is low.

Because the macrofossil ages are older, approach A returns older dates for all nodes within Myrteae. In this analysis, the stem node of Myrteae (Fig. 1.4A"a") is estimated as being from the late-Cretaceous (80.72 mya) and the crown node (Fig. 1.4A"b") from the Cretaceous-Paleocene boundary (KT boundary, 65.55 mya). Approach A also suggests that the three major clades within Myrteae (the Australasian group, *Myrtus* group and the Main Neotropical Lineage) split soon after initial Myrteae diversification, in the Paleocene and early-Eocene, between 63 mya and 53 mya (highlighted in Fig. 1.4A). The diversification of all major clades within the Main Neotropical Lineage are estimated in this analysis to have taken place in the Eocene, between 52 and 39 mya. The oldest crown nodes in this analysis are: the Australasian group (59.05 mya), the *Eugenia* group (44.42 mya) and the *Pimenta* group (44.41 mya). The youngest crown nodes in this analysis are: the *Plinia* group (39.61 mya), the *Myrcia* group (39.19 mya) and the *Psidium* group (39.12 mya).

	Approach A (Macrofossil) Age (95% HPD) in million of years		Approach B (Microfossil) Age (95% HPD) in million of years	
Clade	Stem	Crown	Stem	Crown
	80.72 (76.64 –	65.55 (65.03 –	58.96 (53.00 - 64.07)	40.76 (40.03 – 42.76)
Myrteae	84.27)	66.80)		
Australasian	63.73 (59.25 –	59.05 (52.80 –	40.09 (38.01 – 42.22)	36.88 (34.16 – 39.62)
Lineage	66.24)	63.96)		
(Australasian				
group)				
	57.09 (55.06 –	42.34 (33.20 –	37.56 (36.27 – 39.73)	27.78 (21.80 – 33.60)
Myrtus group	61.68)	51.04)		
	52.03 (46.33 –	39.12 (30.75 –	35.01 (32.34 – 37.70)	25.62 (20.14 – 31.07)
Psidium group	57.60)	47.47)		
Blepharocalyx	52.03 (46.33 –	40.15 (28.49 –	35.36 (32.80 – 38.03)	26.38 (19.64 – 32.90)
group	57.60)	49.95)		
	42.85 (36.57 –	39.19 (33.04 –	27.99 (23.83 – 31.98)	25.58 (21.32 – 29.73)
Myrcia group	48.76)	45.17)		
Myrceugenia	49.00 (41.84 –	41.40 (31.72 –	32.32 (27.85 – 35.86)	27.33 (20.83 – 32.62)
group	55.34)	49.42)		
	42.85 (36.57 –	39.61 (33.35 –	27.99 (23.83 – 31.98)	25.86 (21.66 – 29.93)
Plinia group	48.76)	46.00)		
	48.36 (44.01 –	44.42 (39.58 –	31.93 (29.16 – 34.63)	29.29 (26.55 – 32.29)
<i>Eugenia</i> group	53.22)	49.17)		


 Table 1.2: Median age estimations and 95% confidence intervals (CI) for dates of the main Myrteae

 nodes based on BEAST analysis.

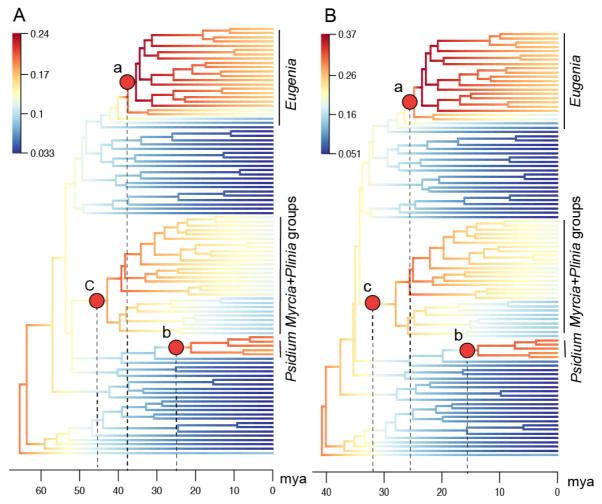

Myrteae pollen fossil is younger than the macrofossils and consequently ages estimated from this fossil set (approach B, Fig. 1.4B) are younger than those from approach A. In this approach, the stem node of Myrteae (Fig. 1.4B"a") is estimated from the late-Paleocene (58.96 mya) and the crown node (Fig. 1.4B"b") dates to the mid-late Eocene (40.76 mya), around 25 mya younger than the same nodes in approach A. In approach B the three major clades within Myrteae (Australasian and Myrtus groups and the Main Neotropical Lineage) again split immediately after initial Myrteae diversification (highlighted in Fig. 1.4B) but these events are estimated to have occurred between 40 mya and 35 mya, in the late Eocene. In this approach the diversification of all major clades within the Main Neotropical Lineage are estimated to have taken place between the late-Eocene and Oligocene. The oldest and youngest crown nodes in this analysis are similar to approach A but between 15 mya and 20 mya younger. The oldest groups in this analysis are: the Australasian group (36.88 mya), the Pimenta group (29.40 mya) and the Eugenia group (29.29 mya). The youngest crown nodes in this analysis are: the Psidium group (25.62 mya), the Myrcia group (25.58 mya) and the Myrteola group (23.39 mya). Median age estimates and 95% confidence intervals (CI) for diversification dates of the main nodes of both analysis are plotted and contrasted in Table 1.2.

1.16 Biogeographical patterns

BioGeoBEARS was applied to chronograms resulting from both calibration approaches (Fig. 1.5). In each case results indicate a higher value of log likelihood for three parameters (DEC+j, LnL = -156.72 and LnL = -161.48 for approaches A and B respectively) in comparison to two parameters (DEC, LnL= -202.75 and LnL= -207.92 for approaches A and B respectively) showing jump speciation (i.e. dispersal between non-adjacent areas) as an important pattern in range variation of Myrteae. The most probable ancestral areas for the stem and crown nodes of Myrteae (Fig. 1.5 "a", "b" respectively) is NCNZ in both analyses. In the Australasian group the ancestral range of the crown node also has high probability of being NCNZ in both dating approaches but subsequent nodes show multiple shifts from NCNZ to Australia+NG and SEAsia and back to NCNZ. These shifts are estimated to date from the Eocene-Oligocene (shifts 2-7, Fig. 1.5A) in approach A and from the Oligocene to late Miocene (shifts 2-7, Fig. 1.5B) in approach B. The clade composed of the Myrtus group + Main Neotropical Lineage share a most likely ancestral area of South America for both approaches shifting from a previous NCNZ range (shift 1, Fig. 1.5) during the Paleocene (approach A) or the late-Eocene (approach B). The estimate of ancestral range for the stem and crown node of the Myrtus group presents an important difference between approaches A and B. In approach A an early South American range shifts to Central+North America range during the late Paleocene (shift 8, Fig. 1.5A) influenced by the distribution of Chamguava on the latter tectonic plate. This then shifts to the Mediterranean during the mid-Eocene for Myrtus (shift 9, Fig. 1.5A) and to South America for Calycolpus and Accara in the late-Eocene to early-Oligocene (shifts 10 and 11, Fig. 1.5A). In dating approach B, the crown node of the Myrtus group presents high probability of ancestral range in South America, shifting from there to the Mediterranean area during the late Oligocene for Myrtus (shift 8, Fig. 1.5B) and to Central+North America in the early Miocene for Chamguava (shift 9, Fig. 1.5B).

Figure 1.4: Comparative dating analysis in Myrteae generated by Beast and based on two distinct fossil sets. (A) Calibration using macrofossil dataset (approach A). (B) Calibration using microfossil dataset (approach B). "a" and "b" indicate Myrteae stem and crown nodes respectively. Highlighted areas show divergence between the three major clades (Australasian and *Myrtus* groups and the Main Neotropical lineage) in each calibration. Fossil placements used to calibrate each chronogram are marked with red arrows and refer to estimations presented in Table 1.1.

Figure 1.5: Biogeographic inference recovered from BioGeoBEARS analysis in phylogenies dated with (A) Macrofossil dataset (j=0.0574; LnL=-156.72), and (B) pollen fossil data set (j=0.055; LnL=-161.48). "a" and "b" represent Myrteae stem and crown node respectively. Range shifts are numerated above pie charts.


In the Main Neotropical Lineage the most likely areas of ancestral range for both Approaches A and B is South America. In approach A, nine shifts from South to Central+North America (shifts 12, 14, 16, 18, 19, 23, 25, 27, 29, Fig. 1.5A) and seven shifts back to South America (shifts 13, 15, 16, 20, 24, 26, 28, Fig. 1.5A) are detected in this lineage. These occurred during the Eocene-Oligocene time slice and are observed in all clades with the exceptions of the *Myrceugenia* and *Myrteola* groups. In approach B, the same nine shifts from South to Central+North America are detected in the same groups (shifts 10, 11, 12, 13, 14, 17, 18, 19, 23, Fig 1.5B). In approach B however, these shifts are no older than the early Miocene and no shifts back to South America are observed. Events of dispersion from the Neotropics (areas A and B) to the region of Australia+NG and NCNZ (areas C and D) are observed in the *Myrteola* and in *Eugenia* groups. In the *Myrteola* group this event is estimated in approach A to have occurred from South America to Australia+NG in the late Eocene (in *Lenwebbia*, shift 21, Fig. 1.5A) and afterwards to NCNZ (in *Neomyrtus* + *Lophomyrtus*, shift 22, Fig. 1.5A). In approach B, the same event is estimated to have occurred in the late Oligocene and with a higher probability for the route NCNZ to Australia+NG than the other way around (shifts 15 and 16, Fig. 1.5B).

The *Eugenia* group presents a more complex series of dispersion events. In both approaches A and B, a shift from the Central+North America region to NCNZ is observed in the common ancestor of the clade containing the Australasian and African species (shift 29 in Fig. 1.5A and 20 in Fig. 1.5B). This lineage subsequently disperses to Africa+Madagascar (represented by *Eugenia rosapetiolata,* shift 30 in Fig. 1.5A and 21 in Fig. 1.5B) and to Southeast Asia (represented by *Eugenia reinwartdiana,* shift 31 in Fig. 1.5A and 22 in Fig. 1.5B). Even though the geographic sequence of events in this *Eugenia* clade is the same, the estimated date for these dispersion events in approach A is the late Oligocene, while in approach B it is at least 10 million years later, in the Miocene.

1.17 Diversification Rate Shifts

Number of configuration shifts and log likelihood were higher than 1000 (significantly more than the recommended minimum of 200) after burnin for all BAMM analyses. Convergence between log likelihood and number of generations was observed in analysis with both callibrations (Approach A and B). The 95% credible set of rate shift configurations sampled with BAMM included 91 distinct shift configurations for approach A and 73 for approach B, of which the configurations with the highest probability included two or three shifts for both approaches. Posterior probability for a null model (i.e. no diversification rate shifts) was lower than could be estimated in both cases, therefore a Bayes factor was not calculated (see BAMM documentation). Thus, diversification rate heterogeneity is clear in the dataset. Mean phylorate through time is plotted for both chronograms in Figure 1.6. In both approaches, the best configuration shift indicates three points of increasing diversification rates, all of which occur in the Main Neotropical Lineage. The highest shift configuration probability shows three shifts towards acceleration of diversification rates positioned in similar branches in the two analyses: one in the common ancestor of most extant species of *Eugenia*, (Fig. 1.6Aa, Ba), one in the crown node of *Psidium* (Fig. 1.6Ab, Bb) and one in the

common ancestor between *Plinia* and *Myrcia* groups (Fig. 1.6Ac, Bc). In approach A, shifts in the *Eugenia* and *Plinia+Myrcia* groups occurred at the mid or late-Eocene, while that in *Psidium* occurred at the Oligocene/Miocene boundary. In approach B, both shifts in the *Eugenia* and *Plinia+Myrcia* groups occurred at the Oligocene, while the one in *Psidium* dates to the mid-Miocene. Due to its younger dating estimation, approach B presents higher diversification rates through the tribe than approach A.

Figure 1.6: Phylorate showing the single best shift configuration recovered from BAMM in chronograms resulting from (A) macrofossil calibration and (B) pollen fossil calibration. Three accelerating shifts on diversification rates (marked by "a", "b" and "c") are detected in each case. Color coding (blue to red) is in scale of species per million years.

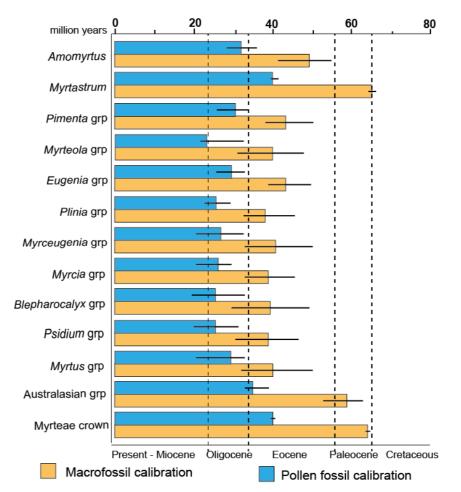
DISCUSSION

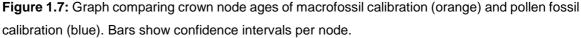
1.18 Systematic Implications

The phylogeny of Myrteae resulting from the combined dataset was reconstructed by a more informative molecular matrix and has considerably broader lineage sampling and higher statistical support in the deep nodes than those in previous works (e.g. Wilson et al., 2005; Lucas et al., 2005, 2007; Murillo-A et al., 2012; Thornhill et al., 2015) and can be used to understand the systematics, evolution and ecology of the tribe more accurately. Low support in most branches from the nuclear database makes it difficult to evaluate potential incongruence between nuclear and

cpDNA trees. There is not enough evidence to detect, for example, the role of ancient hybridization events in Myrteae history, usually noted by incongruence between these genomes (e.g. Soltis and Kuzoff, 1995). The only clear incongruence, the position of *Plinia* sp1 as sister to *Myrrhinium atropurpureum*, has to be investigated but may be an artefact of the sequencing process (e.g. contamination).

One of the main differences between this and previous phylogenetic hypotheses is the relative position of the three main lineages: the Australasian and Myrtus groups and the Main Neotropical Lineage. In the first phylogenetic works focused on the tribe (Lucas et al., 2005, 2007), Myrtus communis appeared as the sister lineage to all extant Myrteae and the Australasian clade appeared sister to the equivalent Main Neotropical Lineage clade. With this broader sample however, it is evident that Myrtus forms part of a predominantly Neotropical lineage. Within the Main Neotropical lineage, novel subtribal relationships are the inclusion of the *Blepharocalyx* group, formally ungrouped (Lucas et al., 2005, 2007; Murillo-A et al., 2012) or placed next to Pimenta (de-Carvalho, 2013) and the position of Algrizea, previously unplaced (Lucas et al., 2007), within Plinia group (also shown but not discussed in Staggemeier et al., 2015). Another novelty is the division of the former Pimenta group genera (sensu Lucas et al., 2007) into two groups, the Pimenta group and the new Psidium group, and one ungrouped species Amomyrtus luma. The placement of Amomyrtus luma fluctuates, but the high support of the relationship between Amomyrtus and the Myrceugenia group in the cpDNA sataset, in addition to similar geographical distribution, might mean that this genus will be treated as Myrceugenia group in the future. Further analysis to better place this genus within Myrteae is desirable.


Genera that will require nomenclatural adjustment include: *Hottea, Pseudanamomis* (both nested inside *Eugenia*), *Calyptrogenia* (polyphyletic, with species nested in *Eugenia* and *Psidium*), *Mitranthes* (nested within *Myrcia* s.l.), *Eugenia* (polyphyletic, with at least one species nested in *Pimenta*) and *Plinia* (paraphyletic). *Blepharocalyx* is known to be polyphyletic since the first molecular works in the tribe, likely requiring the resurrection of the genus *Temu* for *Blepharocalyx cruckshanksii* (see Lucas et al., 2007). *Calyptrogenia biflora* is noted to strongly resemble the continental America species *Psidium amplexicaule* Pers., but formal synonimization is required. A further important result from this phylogenetic topology is that it seems that the Caribbean, previously considered home to four endemic genera, apparently has no generic endemism in Myrteae, *as Hottea, Calyptrogenia, Mitranthes, and Pseudanamomis* are all nested inside larger widespread genera.


Of the five here unsampled, accepted genera in Myrteae (based on Wilson, 2011), *Meteroromyrtus* has recently been shown to be nested in *Eugenia* (Wilson and Heslewood, 2016). The remaining four (*Myrtella* from New Guinea, Andean *Amomyrtella*, *Lithomyrtus* from Australia and *Stereocaryum* from New Caledonia) are still to be placed. These four genera present straight stamens in the bud, so based on this consistent morphological character it is likely that their positions will be other than within the *Myrcia*, *Plinia* or *Blepharocalyx* groups, in which stamens are consistently incurved (Vasconcelos et al., 2015 [Chapter 2 in this study]). These results, in addition to the already proven polyphyletism of the classical subtribal classification based on embryo

morphology (Lucas et al., 2007) brings consistency to the current understanding of Myrteae and its classification.

1.19 Comparative Dating analysis

Results from comparative fossil calibration show important distinctions between estimated crown node ages using different approaches. Thornhill et al. (2012a) also contrast macro and microfossil calibration in Myrtaceae, combining the two fossil sets in a third calibration analysis. The fossils selected in the study presented here however, had to be placed on the same nodes so a combined dataset was not possible. Since calibration was performed with fossils of different ages on similar nodes in each approach, the resulting date distinction is expected but it is useful to demonstrate subjectivity when choosing fossil placement and how this influences interpretation of dates. Even though dates stabilize towards shallower nodes, especially when considering confidence intervals, overlap between dates from approaches A and B is still low (see Fig. 1.7).

Approach A, using only macrofossil data finds estimated dates similar to Sytsma et al. (2004) and Staggemeier et al. (2015), suggesting a first event of Myrteae diversification in the Paleocene. An estimated age near the KT boundary might link increased Myrteae species diversity to increased mammal and bird diversity following dinosaur extinction (Cracraft, 2001; Penny and

Phillips, 2004). A preference of mammals and birds for fleshy berries may have provided a selective advantage over the capsular fruits of closely related tribes of Myrtaceae (Friis, 1987; Biffin et al., 2010). On the other hand, approach B finds a similar dates to Biffin et al. (2010) and Thornhill et al. (2012a), suggesting a first event of Myrteae diversification in the Eocene. In this approach, the explanation for the KT boundary above could be applied to the BKMSST clade (Myrteae and sister tribes; *sensu* Biffin et al., 2010) as this clade has other fleshy fruited Myrtaceae tribes and appears in approach B to date from the KT boundary (Thornhill et al., 2012a). In further support of approach B, the younger dates returned better explain the current distribution of Myrteae with less necessary LDDE events (see section below).

1.20 Biogeographical inference

The biogeographical analyses presented here provides a hypothesis of how Myrteae acquired its present Pantropical geographical distribution. Thornhill et al. (2015) and Berger et al. (2016) using a smaller Myrteae sample, recovered Australia as the most likely ancestral area of early diversification for Myrtaceae. The present study infers NCNZ as the ancestral range of Myrteae, with high probability in both approaches A and B (Fig. 1.5"a","b"). There is evidence, however, that large portions of Zealandia, including New Caledonia and New Zealand, were underwater between the Eocene and Oligocene (Gibbs, 2004), casting doubt on a potential NCNZ Eocene origin suggested by the more recent dates of approach B. Some hypothesis, however, indicate that other adjacent land portions of the Zealandia continent were above sea level when NCNZ was submerged; these neighbouring islands could have acted as refugia, preserving representative biodiversity in Zealandia from lineages that have since undergone extinction in other continents (e.g. Australia) even when NCNZ was submerged (e.g. Condamine et al., 2016). This pattern would explain the survival and present distribution of Myrtastrum, a monotypic genus endemic to New Caledonian and sister to the rest of Myrteae. Even though a possible NCNZ origin can be explained, the safest conclusion may be that Myrteae shows an eastern Gondwana ancestral area that today is represented by NCNZ and also Australia+NG. Reasons for this include the proximity of the Zealandia and Australian plate during that period (Trewick et al., 2007), the possibility that NCNZ species diversity observed today is a relict of more widespread lineages (as reasoned above) and the possibility that incomplete sampling of some deeper-node genera is biasing the analysis (Gossia and Uromyrtus, for instance are also diverse in Australia+NG [WCSP, 2016] but area coding according to species distribution influenced the reconstruction towards NCNZ).

Approaches A and B show similar area shifts (numbered in Fig. 1.5), but occurring during distinct time periods. The older age estimation of approach A causes it to present more area shifts (32 in comparison with 23 from approach B), perhaps due to area adjacencies of different time slices (see Appendix 1.6). The dating divergences between approaches also affect the number of LDDE events necessary to explain the current distribution in Myrteae (see summary in Table 1.3). Although events of LDDE are an important process in angiosperm biogeography (Crisp et al., 2011), long transmarine diversification events are considered less likely than short distance dispersion and diversification by vicariance or continental population isolation (Howe and Smallwood, 1982). The first area shift recorded in both approaches A and B is the transition from NCNZ to South America

from the stem to the crown node of the clade containing *Myrtus* group and the Main Neotropical Lineage (shift 1, Fig. 1.5A,B). LDDE is unlikely here as until around 40 mya, South America was still linked to portions of eastern Gondwana, forming a single continent connected by Antarctica (McLoughlin, 2001). It is possible that, after initial diversification in eastern Gondwana, Myrteae became widespread throughout Antarctica and South America; there is evidence that global temperature was much warmer in the early Cenozoic (Huber et al., 1995) and that rainforest vegetation covered Antarctica until around 30 mya (Francis and Poole, 2002; Francis et al., 2008). Abundant Myrtaceae fossil records found at high latitudes in South America, southern Patagonia and nearby Antarctica (Appendix 1.5; Eklund, 2003; Hayes et al., 2006; Francis et al., 2008) also provide evidence for this hypothesis. The scenario of a widespread Myrteae throughout these continents, followed by their late-Eocene disconnection (McLoughlin, 2001) and Miocene Antarctica glaciation (Kennett et al., 1975) with consequent vicariance between the Australasian group and *Myrtus* group+Main Neotropical Lineage on distinct sides of the globe is likely in both dating scenarios.

In the Australasian group, most area shifts between SE Asia, Australia+NG and NCNZ, in both approaches, occurred in a period range where proximity between these continents did not require LDDE events. The only exception is *Rhodamnia cinerea* that shifts from Australia+NG to SE Asia (shift 3, Fig. 1.5A,B) in the Eocene to early Oligocene; this may only be explained by LDDE, given the distance between these areas in that period (McLoughlin, 2001). In both approaches A and B, there is evidence for a quick northerly vertical expansion into the whole of South America soon after initial diversification in that continent. In approach A, a series of shifts back and forth South America and Central+North America are observed occurring mostly from the early Eocene to the late Oligocene. Such area shifts, however, would require multiple LDDE events, because these two continents were too far apart during that period (McLoughlin, 2001). Similar area shifts in approach B are estimated to have occurred much more recently, mostly during the Miocene, when South and North America were closer together or connected by the Panama Isthmus (Montes et al., 2015) suggesting short distance dispersion events. The only exception is the diversification of *Myrcianthes fragrans* to the greater Antilles that would require an LDDE event in both approaches.

Table 1.3 (following page): Summary of most likely events responsible for area shifts in Myrteae based on age period and confidence intervals. LDDE events were considered when distance between areas are recorded as 0.1 or 0.5 for the time slice (see Appendix 1.6)

Shift Number	Approach A shifts (Fig 1.5A)	Area shift	Age (CI 95%)	Geological time	Likely nature of event inferred by period age
Number				Geological time	Land migration and
1	Neotropical stem - crown	From NCNZ to South America	63.73 (59.25 - 66.24)	early-Paleocene	vicariance
					Short distance dispersal
2	Australasian group - first shift to Australia	From NCNZ to Australia+NG	55.93 (49.52 - 61.56)	early-Eocene	and/or vicariance
3		From Australia+NG to SE Asia	52.89 (46.14 - 58.78)	early-Eocene	LDDE only
					Short distance dispersal
4	Australasian group - shift to Zealandia	From Australia+NG to NCNZ	43.96 (37.16 - 50.39)	mid-Eocene	and/or vicariance
					Short distance dispersal
5	Australasian group - second shift to Australia	From NCNZ to Australia+NG	28.64 (20.27 - 36.84)	early-Oligocene	and/or vicariance
					LDDE, but lower CI limit
					also allows short distance
6	Australasian group - Rhodomyrtus	From NCNZ to SE Asia	30.76 (22.17 - 38.85)	early-Oligocene	dispersal and/or vicariance
					LDDE, but lower CI limit
					also allows short distance
7	Australasian group - Decaspermum	From Australia+NG to SE Asia	24.52 (15.79 - 33.66)	late-Oligocene	dispersal and/or vicariance
		From South America to			Short distance dispersal
8	Myrtus group - North American shift	Central+North America	57.08 (55.06 - 61.68)	late-Paleocene	and/or vicariance
					Short distance dispersal
		From South America to			and/or vicariance (via
9	/ 0 1 /	Mediterranean area	42.34 (33.19 - 51.04)	mid-Eocene	North America)
	Myrtus group - South American shift	From Central+North to South			
10	(Calycolpus)	America	37.37 (28.58 - 46.19)	late-Eocene	LDDE only
		From Central+North to South			LDDE only
11	Myrtus group - South American shift (Accara)	America	33.56 (24 - 42.78)	early-Oligocene	
					LDDE, but upper Cl limit
		From South to Central+North			also allows short distance
12	Psidium group - stem	America	52.03 (46.33 - 57.6)	early-Eocene	dispersal and/or vicariance
		From Central+North to South			
13	Psidium group - first shift to South America	America	39.12 (30.75 - 47.47)	mid-Eocene	LDDE only

		From South to Central+North			LDDE, but lower CI limit also allows short distance
14	Psidium group - Caribbean Psidium	America	30.5 (22.7 - 38.74)	early-Oligocene	dispersal or vicariance
14	Psidium group - second shift to South	From Central+North to South	50.5 (22.7 - 56.74)	earry-Oligocerie	Short distance dispersal or
15	America		21.15/14.66 29.0	aarly Miacana	vicariance
15	America	America	21.15 (14.66 - 28.9)	early-Miocene	LDDE, but lower CI limit
		Francisco Cauthe ta Cauthada Nanth			'
16		From South to Central+North	22.45 (45.00. 24.20)		also allows short distance
16	Plinia group - Myrciaria	America	23.15 (15.89 - 31.29)	late-Oligocene	dispersal or vicariance
		From Central+North to South			Short distance dispersal
17	Plinia group - Myrciaria	America	20.23 (12.97 - 28.33)	early-Miocene	and/or vicariance
		From South to Central+North			LDDE only
18	Myrcia group - first North American shift	America	32.98 (26.47 - 40.14)	early-Oligocene	
					LDDE, but lower CI limit
		From Central+North to South			also allows short distance
19	Myrcia group - shift to South America	America	30.59 (22.72 - 37.25)	early-Oligocene	dispersal and vicariance
					LDDE, but lower CI limit
		From South to Central+North			also allows short distance
20	Myrcia group - second North American shift	America	23.79 (16.89 - 30.79)	late-Oligocene	dispersal and vicariance
					Short distance dispersal
					and/or vicariance (via
21	Myrteola group - New Zealand	From South America to NCNZ	40.64 (31.28 - 48.68)	mid-Eocene	Antarctica)
					Short distance dispersal
22	<i>Myrteola</i> group - Australia	From NCNZ to Australia+NG	34.14 (23.40 - 43.89)	late-Eocene	and/or vicariance
		From South to Central+North			
23	Pimenta group - North American shift	America	41.58 (34.48 - 48.24)	mid-Eocene	LDDE only
		From Central+North to South			
24	Pimenta group - Pimenta pseudocaryophyllus	America	34.08 (26.07 - 41.98)	late-Eocene	LDDE only
		From South to Central+North			
25	Eugenia group - Myrcianthes	America	44.42 (39.58 - 49.17)	mid-Eocene	LDDE only
		From Central+North to South			
26	Eugenia group - shift back South America	America	42.01 (37.38 - 46.86)	mid-Eocene	LDDE only

	Eugenia group - shift clade 9b to Caribbean	From South to Central+North			LDDE only
27	area	America	31.38 (26.55 - 36.41)	early-Oligocene	
28	<i>Eugenia</i> group - shift clade 9b back to South America	From Central+North to South America	25.7 (20.33 - 30.93)	late-Oligocene	LDDE, but lower CI limit also allows short distance dispersal and vicariance
29	Eugenia group - Pseudanamomis	From South to Central+North America	35.42 (31.02 - 39.08)	late-Eocene	LDDE only
30	Eugenia group - NCNZ	From Central+North America to NCNZ	31.24 (25.69 - 36.73)	early-Oligocene	LDDE only
31	<i>Eugenia</i> group - Africa	From NCNZ to Africa	25.72 (20.04 - 31.55)	late-Oligocene	LDDE only
32	Eugenia group - SA Asia	From Africa to SE Asia	22.75 (16.15 - 28.88)	early-Miocene	Land migration
Shift Number	Approach B shifts (Fig 1.5B)	Nature and timing of tested geological event	Age (HPD 95% interval)	Geological time	Likely nature of event inferred by age
1	Neotropical stem - crown	From NCNZ to South America	40.09 (38.01 - 42.21)	late-Eocene	Land migration and vicariance
2	Australasian group - first Australia shift	From NCNZ to Australia+NG	35.15 (31.99 - 38.61)	late-Eocene	Short distance dispersal and/or vicariance
3	Australasian group - <i>Rhodamnia</i>	From Australia+NG to SE Asia	33.37 (29.81 - 36.96)	early-Oligocene	LDDE only
4	Australasian group - shift to Zealandia	From Australia+NG to NCNZ	25 (21.07 - 29)	late-Oligocene	Short distance dispersal and/or vicariance
5	Australasian group - <i>Rhodomyrtus</i>	From Australia+NG to SE Asia	19.85 (14.64 - 24.64)	early-Miocene	Short distance dispersal and/or vicariance
6	Australasian group - Decaspermum	From Australia+NG to SE Asia	5.87 (2.75 - 9.9)	late-Miocene	Short distance dispersal and/or vicariance
7	Australasian group - <i>Pilidiostigma</i>	From NCNZ to Australia+NG	18.23 (13.35 - 23.15)	early-Miocene	LDDE, but upper CI limit also allows short distance dispersal and vicariance
8	Myrtus group - Myrtus	From South America to Mediterranean area	27.78 (21.79 - 33.60)	late-Oligocene	LDDE, but lower CI limit also allows short distance dispersal and vicariance (via North America)

		From South to Central+North			Short distance dispersal
9	Myrtus group - Chamguava	America	22.03 (15.88 - 28.22)	early-Miocene	and/or vicariance
					LDDE, but lower CI limit
		From South to Central+North			also allows short distance
10	Psidium group - Mosiera	America	25.62 (20.14 - 31.07)	late-Oligocene	dispersal and vicariance
		From South to Central+North			Short distance dispersal
11	Psidum group - Caribbean Psidium	America	13.73 (9.38 - 18.58)	mid-Miocene	and/or vicariance
		From South to Central+North			Short distance dispersal
12	Plinia group - Myrciaria	America	13.55 (8.38 - 18.86)	mid-Miocene	and/or vicariance
		From South to Central+North			Short distance dispersal
13	Myrcia group - Mycia abbotiana	America	19.59 (14.70 - 24.39)	early-Miocene	and/or vicariance
		From South to Central+North			Short distance dispersal
14	Myrcia group - Calyptranthes	America	12.73 (8.27 - 17.35)	mid-Miocene	and/or vicariance
		From South America to			Land migration and
15	Myrteola group - Australia	Australia+NG	23.39 (22.04 - 28.02)	late-Oligocene	vicariance (via Antarctica)
					LDDE, but upper CI limit
					also allows short distance
16	Myrteola group - New Zealand	From Australia+NG to NCNZ	20.45 (14.55 - 26.16)	early-Miocene	dispersal and vicariance
		From South to Central+North			Short distance dispersal
17	Pimenta group - North American shift	America	22.52 (17.52 - 27.46)	early-Miocene	and/or vicariance
		From South to Central+North			LDDE only
18	Eugenia group - Myrcianthes	America	27.72 (24.83 - 30.71)	late-Oligocene	
					LDDE, but lower Cl limit
		From South to Central+North			also allows short distance
19	Eugenia group - Pseudanamomis	America	23.44 (21.88 - 27.99)	late-Oligocene	dispersal and vicariance
		From Central+North America to			LDDE only
20	Eugenia group - NCNZ	NCNZ	20.69 (17.24 - 24.1)	early-Miocene	
21	Eugenia group - Africa	From NCNZ to Africa	16.87 (12.07 - 20.43)	early-Miocene	LDDE only
22	Eugenia group - SE Asia	From Africa to SE Asia	14.96 (10.82 - 19.06)	mid-Miocene	Land migration
		From South to Central+North			Short distance dispersal
23	<i>Eugenia</i> group - Clade 9b	America	16.93 (13.58 - 20.36)	early-Miocene	and/or vicariance

Based on past phylogenic position and northern hemisphere distribution, past studies proposed that the current geographical range of Myrtus might be a relic from a much wider distribution of Myrteae (Berry, 1915; Thornhill et al., 2015). However, the highly supported sister relationship of Myrtus to exclusively Neotropical genera, including Central American Chamguava, provides evidence of vertical movement through the American continents towards the Mediterranean, perhaps by relatively short distance dispersal via what is today Greeenland and northern Europe, under a warmer paleo-climatic regime (Zachos et al., 2001). Possible evidence for this event is the presence of the Paleomyrtineae fossil from this period in North Dakota (Pigg et al., 1993). The diversification of the Myrtus group from South to Central+North America in the Paleocene as estimated by approach A (shift 8, Fig. 1.5A) is possible without LDDE events due to the Nicoya island complex, which linked present day Ecuador and Central America during that period (Dengo, 1975; Gentry, 1982). In approach B, the shift between South America to Central+North America in the stem node of the Myrtus group is not recovered. In this approach, the estimated shift occurs from South America straight to Mediterranean Europe (shift 8, Fig. 1.5B). Nevertheless, much later dates for this shift in this approach means that a similar route from South to Central+North America and Europe would be possible without LDDE events, because of the proximity of these continents in the Miocene. Myrtus genetic diversification varies however, from the east to west of its range (Migliore et al., 2011), not congruent with vertical movement through the American continent. This complex pattern requires future research.

Two clades (*Myrteola* and *Eugenia* groups) within the Main Neotropical Lineage also have representatives in Australia+NG, SE Asia and Africa, but these colonisation events likely occurred in different periods and by different processes. Antarctica remained habitable and in proximity to NCNZ and South America until the late Oligocene (Francis et al., 2008). In both approaches A and B (when considering upper confidence interval limits), the shift in ancestral area in the *Myrteola* group from South America to NCNZ and Australia+NG occurred before this bridge was severed by ice-sheet formation, suggesting the possibility of terrestrial migration or Antarctic colonization followed by vicariance, giving the *Myrteola* group a *Nothofagus*-like distribution (van Stenis, 1971; Swenson et al., 2001). Adaptations that may have allowed this group to achieve this range and survival in Antarctica until later than sister lineages even in colder climates, include their shrubby habit, winter seed dormancy (Smith-Ramirez et al., 1998) and likely frost resistant wood anatomy (Schmid and Baas, 1984), uncommon in other Myrteae (Lucas et al., 2007).

Due to stabilization of dates at the shallower nodes and considering the confidence intervals, Australasian and African *Eugenia* events of dispersion are estimated to have occurred at similar dates, around the late Oligocene-early Miocene, in both dating approaches. Considering an ancestral area of Central+North America for the clade and that Antarctica was already covered by ice-sheets and no longer habitable (Zachos et al., 1991, Ivany et al., 2006) at the Miocene, the only scenario possible to explain *Eugenia's* current pantropical distribution is a series of LDDE events (similar to other plant groups such as *Psychotria*, Matzke, 2013; and Simaroubaceae, Clayton et al., 2009). The picture proposed by the results of biogeographic analysis is that this event was towards the east, from the Caribbean (in *Pseudanamomis*) colonizing first NCNZ, then Africa and

lastly SE Asia, but a larger *Eugenia* sample from these regions may prove otherwise. Particular abilities of the *Eugenia* lineage that underwent long-distance dispersal, to cross marine boundaries, might explain why species of this group are also found in many islands of the Indian and Pacific oceans. Many (possibly all) South African species of *Eugenia* are cryptically dioecious, a character unrecorded for the genus out of Africa (van der Merwe et al., 2005; Vasconcelos pers. obs.; see also Chapter 3). Dioecy is linked to small green or white flowers, generalistic pollination systems and to island floras where in extreme cases, such as Hawaii, over a quarter of the species can be dioecious (Bawa, 1980). It is possible that dioecy of extant South African *Eugenia* species is a legacy of island-hopping ancestors. Further research focused on innovative reproductive characteristics necessary for such dispersal, such as co-evolution with migratory birds, seed resistance and self-compatibility (Baker, 1955) will be necessary to better understand the unique distribution patterns of this group.

1.21 Changes in diversification rates, key innovations and mega-diverse genera

This study demonstrates heterogeneity of diversification rates in Myrteae. Both dating approaches return similar results in this case: the three main accelerating shifts of diversification rates occurred in the Main Neotropical lineage. This explains why species diversity of the tribe in this continent is ten times higher than in the Old World (Lucas et al., 2007; WCSP 2016). In evolutionary biology, some of the most plausible explanations for changes in diversification rates are related to acquisition of new biological traits in the lineage (e.g. key-innovations; Donoghue, 2005). This is a reasonable hypothesis for Myrteae: differences in characters related to embryo morphology in *Myrcia, Plinia* and *Eugenia* have been proposed as adaptive advantages for these groups (Landrum, 1986; Landrum and Stevenson, 1986). The *Plinia* and *Eugenia* groups, with independent origins, present homogeneous cotyledons that have been related to seedling starch storage (Landrum, 1986) while *Myrcia* have leaf-like, well developed embryos that allow faster germination. These embryo forms are different from extant Myrteae that do not exhibit these specialisations.

The accelerating diversification rate shift in *Psidium* however, is less likely to be linked to the embryo as in this group it is similar to those found in the Australasian and *Pimenta* groups (Landrum and Stevenson, 1986). A possible explanation for the success of *Psidium* may be linked to cytogenetic events: *Psidium* is the Myrteae lineage with the highest documented cases of polyploidy (Costa et al., 2008), frequently associated with increased fitness (Wood et al., 2009; Madlung, 2013). The bony *Psidium* testa opening via an operculum (a synapomorphy of the genus) through which germination occurs (Landrum and Stevenson, 1986) may also be a factor, promoting mechanical seed dormancy conducive to success in seasonal environments. It is also notable that all invasive species of Myrteae are *Psidium* (Richardson and Rejmanek, 2011), showing adaptive features of this lineage that might be linked to its higher diversification rate.

The analysis of diversification rate shifts in Myrteae provides an unexpected result. Evidence presented here shows that species richness in the Myrcia and Plinia group lineages result from a single acceleration of diversification rates. There is a tendency to assume that taxonomic levels such as genus and species reflect different evolutionary units (reviewed by Frodin, 2004) and that lineages that are more diverse are more successful (e.g. Raikow, 1986).

Based on this, it can be assumed that the Myrcia group is more successful than the Plinia group (700 vs. 100 species respectively). Thus, interpretation of evolutionary success in each lineage depends on where the taxonomic line is drawn, emphasizing that taxonomic ranking can mislead evolutionary understanding.

CONCLUSIONS

This chapter provides an up to date phylogeny to be used as a base for further systematic and modelling studies in Myrteae. The dating, biogeography and diversification patterns analyses clarify the evolutionary picture of the most diverse tribe in Myrtaceae, but also raise a number of avenues for future studies. These include, for instance: a better resolution for the relationships in the backbone of the main Neotropical lineage; nomenclatural changes in poly and paraphyletic genera; formalization of subtribal nomenclature; detailed biogeographical analysis of individual clades; the importance of high southern latitudes in early Myrteae diversification events; and better links between acceleration shifts in diversification rates and trait evolution (see also Chapter 7). Results from the comparative dating approaches using macro and microfossil separately show how the choice of fossil set and placement interpretation affects all interpretation of subsequent evolutionary analysis. Calibration using pollen fossil evidence (approach B) requires less LDDE events to explain current Myrteae distribution. This, in addition to the reasoning provided in the 1.7 *Fossil calibration and Dating* section suggests that this dating approach is more reliable and should be preferred by future studies in Myrteae.

APPENDIX

Appendix 1.1: Sample list, collection localities and Genbank accession numbers for the species used in the Myrteae phylogenetic analysis. *Accession numbers represent different vouchers from those indicated in the voucher column (see Genbank for more information). Blank spaces represent missing data in the molecular matrix.

					M	olecular marke	ers (DNA regio	Molecular markers (DNA region)							
Species	Voucher	Collection locality	ITS	matK	ndhF	psbA-trnH	rpl16	rpl32-trnL	trnL-trnF	trnQ-rps16					
		RBG Kew													
Acca sellowiana (O.Berg) Burret	E. Lucas 205	(cultivated)	AM234067	AM489973		AM489807			MF954134						
	Т.														
	Vasconcelos	Brazil (Minas													
Accara elegans (DC.) Landrum	485	Gerais)	MF954013	MF954518	MF954431	MF954271	MF954309	MF954197							
Algrizea macrochlamys (DC.)	A. Giulietti														
Proença & NicLugh.	1648	Brazil (Bahia)	AM234126	AM489975	MF954432	AM489809	MF954310	MF954198	JN091320	KP722283					
	J.E.Q. Faria														
Algrizea minor Sobral, Faria & Proença	4157	Brazil (Bahia)	MF954014		MF954433	MF954272	MF954311	MF954199		MF954078					
Amomyrtus luma (Molina) D.Legrand	RBGE 1996-	RBG Edinburgh													
& Kausel	1065	(cultivated)	AM234073	KM065305*	MF954434	AM489811		MF954200	MF954135						
Archirhodomyrtus turbinata	J. Soewarto														
(Schltr.) Burret	HB 11	New Caledonia	MF954015		MF954435	MF954273	MF954312	MF954201	MF954136	MF954079					
Austromyrtus dulcis (C.T.White)	S. Belsham	Australia													
L.S.Sm.	M77	(Queensland)	MF954016	AM489977	MF954436	AM489813				MF954080					
Blepharocalyx cruckshanksii (Hook.	RBGE 1998-														
& Arn.) Nied. in H.G.A.Engler &	073D; ^a Murillo	RBG Edinburgh													
K.A.E.Prantl	4219	(cultivated)	AM234070	AM489978	MF954437	AM489814	JN660956ª	JN661055ª		JN661105 ^a					
	Т.														
Blepharocalyx eggersii (Kiaersk.)	Vasconcelos														
Landrum	458	Brazil (Bahia)	MF954017	MF954519	MF954438	MF954274	MF954313	MF954202	MF954137	MF954081					
Blepharocalyx salicifolius (Kunth)															
O.Berg	E. Lucas 78	Brazil (Sāo Paulo)	AM234084	AM489979	MF954439	AM489815	JN660984*	JN661083*	MF954138	JN661133*					

	Т.									
Blepharocalyx salicifolius (Kunth)	Vasconcelos	Brazil (Minas								
O.Berg	482	Gerais)	MF954018	MF954520	MF954440	MF954275	MF954314		MF954139	MF954082
	Т.									
Calycolpus goetheanus (Mart. ex	Vasconcelos									
DC.) O.Berg	332	Brazil (Amazonas)	MF954019	MF954521	MF954441	MF954276	MF954315	MF954203	MF954140	MF954083
Calycolpus moritzianus (O.Berg)	(all from									
Burret	GenBank)	Colombia	KU945986	KU945991		KU945999				
		Brazil (Espirito								
Calyptranthes brasiliensis Spreng.	E. Lucas 930	Santo)	MF954020		MF954443	MF954277	MF954317	MF954205		
	Т.									
Calyptranthes longicalyptrata	Vasconcelos									
B.Holst & M.L.Kawas.	523	Costa Rica			MF954444		MF954318		MF954142	MF954085
	T.									
	Vasconcelos									
Calyptranthes pallens Griseb.	534	Costa Rica	MF954021		MF954445	MF954278	MF954319		MF954143	
	T. Vasconcelos	Dominican								
Calyptrogenia biflora Alain	565	Republic	MF954022		MF954446	MF954279	MF954320	MF954206	MF954144	MF954086
	T.	керивіс	WIF954022		1017934440	WF934279	1017934320	1017934200	1017934144	WF954080
	Vasconcelos	Dominican								
Calyptrogenia cuspidata Alain	593	Republic	MF954023		MF954447	MF954280	MF954321	MF954207	MF954145	MF954087
	Т.		111 33 1023			111 33 1200	111 33 1321	111 33 1207	1011 33 11 13	111 33 1007
	Vasconcelos	Dominican								
Calyptrogenia grandiflora Burret	588	Republic	MF954024		MF954448	MF954281	MF954322	MF954208	MF954146	MF954088
	Т.									
Campomanesia	Vasconcelos	Brazil (Minas								
adamantium (Cambess.) O.Berg	474	Gerais)	MF954025		MF954449	MF954282	MF954323	MF954209	MF954147	MF954089
	Т.									
Campomanesia velutina (Cambess.)	Vasconcelos	Brazil (Distrito								
O.Berg	507	Federal)	MF954026		MF954450	MF954283	MF954324	MF954210	MF954148	MF954090

Chamguava schippii (Standl.)	D. Aguilar									
Landrum	9833	Costa Rica	MF954027	MF954523	MF954451	MF954284	MF954325	MF954211	MF954149	MF954091
Curitiba prismatica (D.Legrand)										
Salywon & Landrum	D.F. Lima 551	Brazil (Paraná)	MF954028	MF954524	MF954452	MF954285	MF954326	MF954212	MF954150	MF954092
	Т.									
Decaspermum fruticosum J.R.Forst.	Vasconcelos									
& G.Forst	730	Malaysia (Sabah)	MF954029		MF954453	MF954286	MF954327	MF954213		MF954093
Decaspermum humile (Sweet ex	S. Belsham	RGB Melbourne								
G.Don) A.J.Scott	M82	(cultivated)	AM234128		AY498780*	AM489824	MF954328		MF954151	
	Т.									
	Vasconcelos									
Decaspermum vitis-idaea Stapf	729	Malaysia (Sabah)	MF954030		MF954454	MF954287	MF954329	MF954214	MF954152	
Eucalyptus perriniana F.Muell. ex		RBG Kew								
Rodway	E. Lucas 283	(cultivated)	AM234139	AM489985	MF954455	AM489825	MF954330	MF954215	MF954153	MF954094
	Т.									
	Vasconcelos	Brazil (Distrito								
<i>Eugenia acutata</i> Miq.	506	Federal)	MF954031		MF954456	MF954288	MF954331	MF954216		MF954095
	A. Giaretta									
Eugenia adenocalyx DC.	1441	Brazil (Roraima)	MF954042		MF954470	MF954299	MF954342	MF954219		MF954105
	Т.									
	Vasconcelos									
Eugenia angustissima O.Berg	405	Brazil (Goias)	MF954032		MF954457	MF954289	MF954332	MF954217	MF954154	MF954096
	J.E.Q. Faria									
Eugenia azurensis O.Berg	4186	Brazil (Bahia)	MF954033		MF954458	MF954290	MF954333	MF954423	MF954155	
	F.F. Mazine									
Eugenia biflora (L.) DC.	1075	Brazil	KJ187610	MF954525	MF954459	KJ469659			MF954156	
Eugenia brevistyla D.Legrand	F.F. Mazine									
	993	Brazil	KJ187614		MF954460	KJ469663			MF954157	
	Т.									
	Vasconcelos									
Eugenia bullata Pancher ex Guillaumin	608	New Caledonia	MF954034		MF954461	MF954291	MF954334	MF954424	MF954158	MF954097

	Т.									
Eugenia bunchonsiifolia Nied.	Vasconcelos	Brazil (Espirito								
	466	Santo)	MF954041		MF954469	MF954298	MF954341	MF954218		MF954104
	T.									
Eugenia involucrata DC.	Vasconcelos	Brazil (Distrito								
	256	Federal)	MF954035		MF954462	MF954292	MF954335	MF954425	MF954159	MF954098
	Т.	,								
Eugenia longiracemosa Kiaersk.	Vasconcelos									
	310	Brazil (Amazonas)	MF954036		MF954463	MF954293	MF954336	MF954426		MF954099
	Т.									
Eugenia monticola (Sw.) DC.	Vasconcelos	Dominican								
	566	Republic	MF954037	JQ588481*	MF954464	MF954294	MF954337	MF954427	MF954160	MF954100
	Savassi ESA									
Eugenia myrcianthes Nied.	85681	Brazil	KJ187652	MF954526	AY498784	KJ469702	MF954346	MF954223		MF954108
	Т.									
Eugenia paludosa Pancher ex Brongn.	Vasconcelos									
& Gris	646	New Caledonia	MF954038		MF954465	MF954295	MF954338	MF954428	MF954161	MF954101
Eugenia paracatuana O.Berg	P.O. Rosa									
	1399	Brazil (Goias)	MF954039			MF954296	MF954339	MF954429		MF954102
Eugenia punicifolia (Kunth) DC.	F.F. Mazine	Brazil (Mato								
	1065	Grosso)			MF954466	AM489827*			MF954162	
Eugenia reinwardtiana (Blume) DC.										
	B. Holst 8870	MSBG (cultivated)		KM894685*	MF954467		AY463131*		MF954163	
Eugenia roseopetiolata N.Snow &	Т.									
Cable	Vasconcelos	RBG Kew								
	s.n.	(cultivated)	MF954040		MF954468	MF954297	MF954340	MF954430	MF954164	MF954103
	Т.									
<i>Eugenia stipitata</i> McVaugh	Vasconcelos	Singapore BG								
	677	(cultivated)	MF954043		MF954471	MF954300	MF954343	MF954220	MF954165	
		RBG Kew								
Eugenia uniflora L.	E. Lucas 207	(cultivated)	AM234088	AM489986	MF954472	AM489828	AF215627*		KP722326	KP722202

	Т.	Dominican								
Eugenia yumana Alain	Vasconcelos	Republic	MF954044		MF954473	MF954301	MF954344	MF954221	MF954166	MF954106
Gossia clusioides (Brongn. & Gris)	J. Soewarto									
N.Snow	HB 14	New Caledonia	MF954045		MF954474	MF954302	MF954345	MF954222	MF954167	MF954107
	Т.									
	Vasconcelos	Dominican								
Hottea neibensis Alain	590	Republic	MF954046		MF954476	MF954303	MF954347	MF954224	MF954168	MF954109
	Т.									
Kanakomyrtus dawsoniana N.Snow	Vasconcelos									
	639	New Caledonia	MF954047		MF954477	MF954304	MF954348	MF954225		
	RBGE 1999-	RBG Edinburgh								
Legrandia concinna (Phil.) Kausel	0656	(cultivated)	AM234072	AM489990	MF954478	AM489839				
Lenwebbia prominens N.Snow &		Australia								
Guymer	N. Snow 7463	(Queensland)	MF954048	AY521538*		MF954305		MF954226		
Leptospermum scoparium J.R.Forst.	E 1.0000 204		414224142	44400001	444225422	41440040	414225450	N4505 4227	KEE01267	
& G.Forst.	E. Lucas 284		AM234142	AM489991	AM235423	AM489840	AM235459	MF954227	KF591267	
Lophomyrtus obcordata (Raoul)	S. Belsham M41	New Zealand	AM234146	AM489993	MF954480	AM489842	MF954349	MF954228		
Burret	10141	RBG Kew	AIVI254140	AIVI469995	1015954460	AIVI409042	1015954549	1015954226		
Luma aniculata (DC) Burret	E. Lucas 208	(cultivated)	AM234101	AM489995	AY498795	AM489843	JN660959*	MF954229	KP722331	KP722209
Luma apiculata (DC.) Burret	M.A.D. Souza	(cultivateu)	AIVI254101	Alvi405555	A1490795	Alvi403043	11000939	1017934229	KF722551	KF722209
Marlierea umbraticola (Kunth)	s.n.	Brazil (Amazonas)	KP722392		KP722470	KP722300	MF954350	MF954230	KP722350	KP722246
O.Berg	(all from		KI 722552		KI 722470	KI 722300	1011 334330	1011 554250	KI 722550	RI 722240
<i>Metrosideros nervulosa</i> C.Moore & F.Muell.	GenBank)		JF950784	DQ088535	AY498802		DQ088395		JF950929	
	Genbanky	RBG Kew	31330704	20000000	A1450002		20000333		31330323	
<i>Metrosideros perforata</i> (J.R.Forst. & G.Forst.) Druce	E. Lucas 209	(cultivated)	AM234141	AM489998	MF954481	AM489848	MF954351	MF954231	MF954169	
· · ·	(all from	(00.0.000)								
<i>Metrosideros stipularis</i> (Hook. & Arn.) Hook.f.	GenBank)		AM234071	AF368222		AM489884				
	Т.									
Mitranthes clarendonensis (Proctor)	Vasconcelos									
Proctor	511	Jamaica	MF954049		MF954482	MF954306	MF954352		MF954170	MF954110
Mitranthes glabra Proctor	E. Lucas 1224	Jamaica	MF954050		MF954483	MF954307	MF954353	MF954232	MF954171	MF954111

Mosiera longipes (O.Berg) Small	Salywon 1183	U.S.A. (Florida)	MF954051		MF954484	MF954308	MF954354	MF954251	MF954172	
Myrceugenia alpigena (DC.)		Brazil (Minas								
Landrum	E. Lucas 167	Gerais)	AM234098	JN660991	KP722441	AM489854	JN660941.	MF954252	KP722376	JN661090
Myrceugenia bananalensis Bezerra	J.E.Q. Faria	Brazil (Distrito								
& Landrum	4049	Federal)	MF954052		MF954485	MF954309	MF954355	MF954253	MF954173	MF954112
Myrceugenia planipes (Hook. &	L. Landrum									
Arn.) O.Berg	s.n.	Chile	MF954053	JN661027*	MF954486	MF954310	MF954356	MF954254		
	Т.									
	Vasconcelos	Dominican								
<i>Myrcia abbotiana</i> (Urb.) Alain	571	Republic	MF954054				MF954357	MF954255		
	Т.									
Myrcia rupta M.L.Kawas. & B.Holst	Vasconcelos									
	311	Brazil (Amazonas)	MF954055		MF954487	MF954311	MF954358	MF954256		MF954113
<i>Myrcia eugeniopsoides</i> (D.Legrand & Kausel) Mazine	E. Lucas 61	Brazil (Sao Paulo)	AM234107	AM489996	KP722429	AM489845	MF954359	MF954257	JN091327	KP722205
Myrcia flagellaris (D.Legrand) Sobral	E. Lucas 83	Brazil (Sao Paulo)	AM234113	AM489989	KP722430	AM489836	MF954360	MF954258	JN091350	KP722206
Myrcia guianensis (Aubl.) DC.	Harley 50307	Brazil	JN091225						JN091351	
Myrcia pubipetala Miq.	E. Lucas 86	Brazil (Sao Paulo)	AM234114	AM490001	KP722426	AM489855	MF954361	MF954259	JN091364	KP722273.
Myrcia selloi (Spreng.) N.Silveira	E. Lucas 110	Brazil	JN091240	JN091315	KP722436	JN091431	MF954363	MF954261	JN091371	KP722212
	J.E.Q. Faria									
Myrcia sp2	4193	Brazil (Bahia)	MF954057		MF954489	MF954313	MF954364	MF954262		
	Т.									
	Vasconcelos									
Myrcia sp1	307	Brazil (Amazonas)	MF954056		MF954488	MF954312	MF954362	MF954260	MF954174	MF954114
	J.E.Q. Faria									
Myrcia spathulifolia Proença	4214	Brazil (Bahia)	MF954058		MF954490	MF954314	MF954365	MF954263		MF954115
	Т.									
	Vasconcelos	Dominican								
Myrcia splendens (Sw.) DC.	587	Republic	MF954059		MF954491	MF954315	MF954366	MF954264	MF954175	

		Brazil (Minas								
Myrcia subcordata DC.	M. Santos 586	Gerais)	MF954060		MF954492	MF954316	MF954367	MF954265	MF954176	MF954116
Myrcianthes fragrans (Sw.) McVaugh	B. Holst 8862	Guyane	KJ187655	KJ772955	AY498803*	KJ469705				
<i>Myrciaria floribunda</i> (H.West ex Willd.) O.Berg	T. Vasconcelos 388	Brazil (Amazonas)	MF954062		MF954494	MF954318		MF954267	MF954178	MF954118
<i>Myrciaria glazioviana</i> (Kiaersk.) G.M.Barroso ex Sobral	T. Vasconcelos 413	Brazil (Bahia)	MF954061		MF954493	MF954317	MF954368	MF954266	MF954177	MF954117
<i>Myrciaria vexator</i> McVaugh	T. Vasconcelos 709	Singapore BG (cultivated)	MF954063	AY521544*	MF954495	MF954319		MF954268	MF954179	MF954119
Myrrhinium atropurpureum Schott in K.P.J.Sprengel	Costa, I.R. 594	Brazil (Rio de Janeiro)	MF954064		MF954496	MF954320		MF954269	MF954180	MF954120
<i>Myrtastrum</i> <i>rufopunctatum</i> (Pancher ex Brongn. & Gris) Burret	J. Soewarto HB 10	New Caledonia	MF954065	MF954527	MF954497	MF954321		MF954270	MF954181	MF954121
Myrteola nummularia (Lam.) O.Berg	RBGE 1996- 1096	RBG Edinburgh (cultivated)	AM234068	AM490008	MF954498	AM489871		MF954419	MF954182	MF954122
Myrtus communis L.	E. Lucas 211	RBG Kew (cultivated)	AM234149	AM490009	MF954499	AM489872	JN660939*	MF954420	KP722327	КР722221
Neomitranthes cordifolia (D.Legrand) D.Legrand	Forster 1011	Brazil	AM489410			AM489569		MF954421	JN091386	MF954123
Neomyrtus pedunculata (Hook.f.) Allan	S. Belsham M42	New Zealand	AM234144	AM490010		AM490637	MF954369			
Octamyrtus pleiopetala Diels	R. Johns s.n.	New Guinea	AM234130		MF954500	AM489873	MF954370	MF954422	MF954183	
Pilidiostigma tropicum L.S.Sm.	Forster 27636	Australia (Queensland)	MF954066		MF954501	MF954322		MF954233		MF954124
Pimenta dioica (L.) Merr.	E. Lucas 212	RBG Kew (cultivated)	AM234081	AM490011	MF954502	AM489874	MF954371		MF954184	
Pimenta pseudocaryophyllus (Gomes) Landrum	E. Lucas 161	Brazil	AM234083		MF954503	AM489876	MF954372	MF954234	MF954185	MF954125

	Т.									
	Vasconcelos	Dominican								
Pimenta sp1	576	Republic	MF954067			MF954323	MF954373	MF954235	MF954186	MF954126
	F.F. Mazine	Brazil (Minas								
Plinia nana Sobral	662	Gerais)	MF954068		MF954504	MF954324	MF954374	MF954236	MF954187	
Plinia sp1	B. Holst 9482	French Guiana	MF954069		MF954505	MF954325	MF954375	MF954237	MF954188	
	Т.									
Pseudanamomis	Vasconcelos	Dominican								
umbellulifera (Kunth) Kausel	572	Republic	MF954070		MF954506	MF954326	MF954376	MF954238	MF954189	MF954127
	Т.									
	Vasconcelos	Dominican								
Psidium acranthum Urb.	578	Republic	MF954073		MF954509	MF954329	MF954379	MF954240		MF954129
	Т.									
	Vasconcelos									
Psidium brownianum Mart. ex DC.	465	Brazil (Bahia)	MF954071		MF954507	MF954327	MF954377	MF954239	MF954190	MF954128
	J.E.Q. Faria									
Psidium laruotteanum Cambess.	2362	Brazil (Bahia)		MF954522	MF954442	MF954277	MF954316	MF954204	MF954141	MF954084
	J.E.Q. Faria	Brazil (Minas								
Psidium rufum Mart. ex DC.	4270	Gerais)	MF954072		MF954508	MF954328	MF954378	MF9542	MF954191	
	Т.									
	Vasconcelos									
Rhodamnia cinerea Jack	672	Singapore	MF954074	KJ709064*	MF954510	MF954330	MF954380	MF954241	MF954192	MF954130
	T.	Cincerne DC								
Rhodomyrtus tomentosa (Aiton)	Vasconcelos 678	Singapore BG		45105002*		N4505 4221	N4505 4281	N4505 4242	N4505 4102	NAEOE 4121
Hassk		(cultivated)	MF954075	AF105093*	MF954511	MF954331	MF954381	MF954242	MF954193	MF954131
Siphoneugena densiflora O.Berg	F.F. Mazine 1050	Brazil	AM489412		KP722444	AM489571	MF954382	MF954243	JN091389	KP722220
Siphoneugenu densijioru O.Berg	(all from		AIVI405412		KF722444	AIVI405571	1015334382	1015334243	11031203	Nr / 2222U
Syzygium amplifolium L.M.Perry	GenBank)		EF026620	DQ088556	DQ088381		DQ088416			
	(all from				-			1		
Syzygium buxifolium Hook. & Arn.	, GenBank)		KP093045	KP093852	DQ088491	KJ687225	DQ088424		AB817604	

	(all from									
Syzygium guineense (Willd.) DC.	GenBank)		EF026628	DQ088581	DQ088500		DQ088432			
Syzygium gustavioides (F.M.Bailey) B.Hyland	(all from GenBank)		AY187194	DQ088582	DQ088501		DQ088433			
<i>Syzygium jambos</i> (L.) Alston in H.Trimen	E. Lucas 214	RBG Kew (cultivated)	AM234135	AM490017	MF954512	AM489882	DQ088434*	MF954244	MF954194	
Syzygium muellerii (Miq.) Miq.	(all from GenBank)		EF026634	DQ088593	DQ088511		DQ088439			
Syzygium maire (A.Cunn.) Sykes & GarnJones	NZFRI29089	New Zealand	KM064865	KM065310	DQ088508	AM489883	DQ088438			
<i>Syzygium oblatum</i> (Roxb.) Wall. ex A.M.Cowan & Cowan	(all from GenBank)		KR532632	AB924759		KR532989				
Syzygium paniculatum Gaertn.	(all from GenBank)		KM065112	KM065271	DQ088515		DQ088441			
<i>Ugni candollei</i> (Barnéoud) O.Berg	T. Vasconcelos s.n.	RBG Kew (cultivated)	MF954076	MF954528	MF954513	MF954332	MF954383	MF954245	MF954195	MF954132
<i>Uromyrtus emarginata</i> (Pancher ex Baker f.) Burret	T. Vasconcelos 628	New Caledonia	MF954077	MF954529	MF954514	MF954333	MF954384	MF954246		
Xanthomyrtus compacta (Ridl.) Diels	P. Edwards 4214A	New Guinea	AM234148		MF954515	AM489887	MF954385	MF954247	MF954196	MF954133
Xanthomyrtus montivaga A.J.Scott	E. Lucas 16	New Guinea	AM234147		MF954516	AM489886	MF954386	MF954248		

DNA	Primers	Sequence 5' – 3'	Reference
Regions			
ITS	AB101 (F)	ACGAATTCATGGTCCGGTGAAGTGTTCG	Sun et al., 1994
	AB102 (R)	GAATTCCCCGGTTCGCTCGCCGTTAC	Sun et al., 1994
psbA-trnH	PsbA (F)	CGAAGCTCCATCTACAAATGG	Hamilton, 1999
	trnH (GUG) (R)	ACTGCCTTGATCCACTTGGC	Hamilton, 1999
Rpl16 (intron)	Rpl16-F71 (F)	GCTATGCTTAGTGTGTGACTCGTTG	Jordan et al., 1996
	Rpl16-R1516 (R)	CCCTTCATTCTTCCTCTATGTTG	Jordan et al., 1996
Rpl32-trnL	trnL(UAG) (R)	CTGCTTCCTAAGAGCAGCGT	Shaw et al., 2007
	Rpl32(F)	CAGTTCCAAAAAACGTACTTC	Shaw et al., 2007
	MYtrnL(UAG) (R)	CGTTTTCGTAGTTTATGCTCTCCT	Faria, 2014
	MYrpl32 (F)	ACAAGATGTTCAGTTCAGGCCA	Faria, 2014
trnQ-rps16	trnQ(UUG) (F)	GCGTGGCCAAGYGGTAAGGC	Shaw et al., 2007
	Rps16x1 (R)	GTTGCTTTYTACCACATCGTTT	Shaw et al., 2007
	MYtrnQ (R)	AGTTGATGTAAAGGAAGATTTAGACTC	Murillo-A et al., 2012
	MYrps16 (F)	GCGTAAAAWGAGGAAATGCTTAATG	Murillo-A et al., 2012
trnL-trnF	B49317 (R)	CGAAATCGGTAGACGCTACG	Taberlet <i>et al.,</i> 1991
	A50272 (F)	ATTTGAACTGGTGACACGAG	Taberlet <i>et al.,</i> 1991
ndhF	1252 (F)	GATGAAATTMTTAATGATAGTTGGT	Biffin <i>et al.,</i> 2006
	2063 (R)	CATTTGGAATTCCATCAATTA	Biffin <i>et al.,</i> 2006
matK	390 (F)	CGATCCTTTCATGCATT	Johnson and Soltis, 1994
	1326 (R)	GTATTAGGGCATCCCATT	Johnson and Soltis, 1994

Appendix 1.3: PCR conditions.

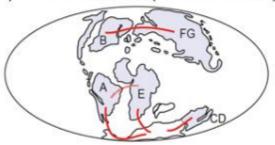
DNA region	PCR conditions
ITS	94°C/2min, 30x cycle[94°C /1min, 50°C /1min, 72°C /1.5min], 72°C /4min
psbA-trnH	80°C /5min, 35x cycle[95°C /1min, 48°C /1min, 65°C /5min] 65°C /4min
trnQ-rps16	95°C /3min, 20x cycle[95°C /1min, 60°C *-0.5°C /1min, 65°C /1min], 20x [95°C /1min, 50°C /1min, 65°C /1min] 64°C /4min
rpl32-trnL	80°C /5min, 35 [95°C /1min, 50°C /1min, 65°C /5min] 65°C /4min
rpl16	80°C /5min, 35x cycles[95°C /1min, 50°C /1min, 65°C /5min] 65°C /4min
ndhF	80°C /5min, 35x cycles[95°C /1min, 50°C /1min, 65°C /5min] 65°C /4min
trnL-trnF	95°C /3min, 35x cycles[95°C /1min, 50°C /1min, 65°C /1.5min], 65°C /4min
matK	80°C /5min, 35x cycles[95°C /1min, 50°C /1min, 65°C /5min], 65°C /4min

Appendix 1.4: Previous studies with Myrteae dating estimates.

Dates estimation for Myrtea			
Reference	Myrteae crown age (million years ago)	95% Confidence Interval	Obs.
	years age/		Focused on Myrtales.
Sytsma et al., 2004	56	NA	Narrower Myrteae sample.
			Too recent to consider
Biffin et al., 2010	28	34 - 22	macro fossil evidence.
			Sample focused on Myrcia.
Staggemeier et al., 2015	56	doesn't say	Only one fossil considered.
			Narrower Myrteae sample;
Thornhill et al., 2012 (pollen			too recent to consider
fossil only)	41	37.5 – 46.5	macro fossil evidence.
			Narrower Myrteae sample;
Thornhill et al., 2012			too recent to consider
(macrofossil only)	51	50 – 54.6	macro fossil evidence.
			Narrower Myrteae sample;
Thornhill et al., 2012			too recent to consider
(combined fossil set)	50.9	50 – 53.6	macro fossil evidence.
			Narrower Myrteae sample;
			too recent to consider
Thornhill et al., 2015	50.7	50 - 51.4	macro fossil evidence.
			Narrower Myrteae sample;
			too recent to consider
Berger et al., 2016	18.4	doesn't say	macro fossil evidence.
			Narrower Myrteae sample;
			too old to consider late
		00.00 404.00	Cretaceous crown of
Murillo-A et al., 2016	92.09	82.32 – 101.69	Myrtaceae.

Appendix 1.5: Myrteae fossil survey (Cretaceous to Eocene). This is not an extensive list, but represents the diversity of fossil records in Myrteae by period.

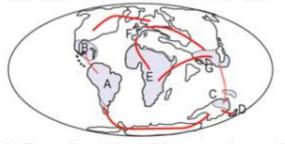
Fossil	Age (mya)	Modern taxa affinity	Location	Reference	Obs:
Upper Cretaceous					
Myrceugenelloxylon antarcticus (wood)	72.1 - 66	Luma	Antarctica (Seymour Island)	Poole et al. (2003)	Seems OK (according to Oskolki et al., 2013).
Myrciophyllum santacruzensis (leaves)	84.9 - 66	Myrcia	Antarctica (King George Island)	Dutra and Batten (2000)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Eugenia camparabilis (leaves)	66	Eugenia	Venezuela	Berry (1939)*	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Paleocene					
<i>Myrceugenia chubutense</i> (wood)	65 - 56	Myrceugenia	Chile	Ragonese (1980)	Wood characters also present in <i>Melaleuca</i> (according to Oskolki et al., 2013)
Myrcia cf. reticulato- venosa (leaves)	61 – 47	Myrcia	Chile	Troncoso et al. (2002)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Palaemyrtinae princetonensis (fruit)	56	Mosiera, Psidium	USA (North Dakota)	Pigg et al. (1993)	Seems OK and it is a popular choice for calibration analysis; fruit characters are, however, also common in Lythraceae.
Eocene					
<i>Myrtineoxylon maomingensis</i> (wood)	56 - 40	<i>Calycolpus</i> or <i>Octamyrtus</i> , "Australasian group"	China	Oskolski et al. (2013)	Seems OK. The only extant Myrteae with such distribution are <i>Decaspermum</i> , <i>Rhodamnia</i> and <i>Rhodomyrtus</i> . <i>Octamyrtus</i> and <i>Rhodomyrtus</i> are sister groups.
<i>Eugenia</i> sp. (leaves)	55.8 - 33.9	Eugenia	Venezuela	Berry (1936)*	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Calyptranthes myrtifolia (leaves)	48.6 to 37.2	Calyptranthes	USA (Florida)	MacGinitie (1941)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Myrcia chubutense (leaves)	52	Myrcia	Chile	Wilf et al. (2005)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.

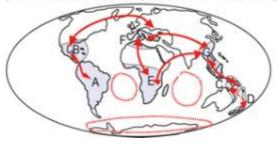

Myrtaceae (leaves)	55.8 - 33.9	Eugenia, Myrcia, Psidium, Myrcianthes	Argentina	Panti (2014)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Myrtaceidites verrucosus (pollen)	33.9 mya	Myrteae	Australia	Reviewed by Thornhill and Macphail (2012)	Seems OK. Placed by geographical location at the crown node of "Australasian group"
Myrtaceidites verrucosus (pollen)	23 mya	Myrteae	New Zealand	Reviewed by Thornhill and Macphail (2012)	Seems OK. Placed by geographical location at the crown node of "Myrteola group"
<i>Myrtaceidites verrucosus</i> (pollen)	Around 37	Myrteae	Argentina	Reviewed by Thornhill and Macphail (2012)	Seems OK. Placed by geographical location at the crown node of "Myrtus group"+ Main Neotropical Lineage
Myrtaceidites verrucosus (pollen)	Around 37	Myrteae	Panama	Reviewed by Thornhill and Macphail (2012)	Seems OK. Placed by geographical location at the crown node of "Myrtus group"+ Main Neotropical Lineage
<i>Myrtaceidites oceanicus</i> (pollen)	33 – 28 mya	Myrteae	South Africa, Ninetyeast Ridge	Reviewed by Thornhill and Macphail (2012)	Can also be assigned to other Myrtaceae tribes.
Rhodomyrtus australis (leaves)	48.6 to 23.03	Rhodomyrtus	Western Australia (near Perth)	Hill and Merrifield. (1993)	Fossil leaves were not considered due to the lack of morphological characters that can assign them confidently into Myrteae.
Myrceugenelloxylon	Eocene - Oligoce		Chile (Mocha Island)	Nishida (1984)	Seems OK (according to Oskolki et al., 2013), it was not used because would have similar calibration placement as <i>Myrceugenelloxylon antarcticus</i> .
pseudoapiculatum (wood) Myrceugenellites	ne Eocene - Oligoce	Luma	Chile	Nishida (1988)	Seems OK (according to Oskolki et al., 2013), it was not used because would have similar calibration placement as <i>Myrceugenelloxylon antarcticus</i> .
maytenoides (wood)	ne	Luma			

Appendix 1.6: BioGeoBEARS supporting data.

Comments on area adjacency

Most area dispersion probabilities are based on Buerki et al. (2011). Some 0.5 dispersion probability (dashed line) were added, based on the distance between continents during times slices under consideration (see Figure below). LDDE event is considered whenever a shift occurs between areas that present either 0.5 or 0.1 dispersion probability. Continuous line: dispersion probability 1; Dashed line: dispersion probability 0.5; All other connections between areas (not indicated by lines) correspond to 0.1 dispersion probability.


A) Time slice: 85 - 65 (Late Cretaceous)


B) Time slice: 65 - 56 (Paleocene)

C) Time slice: 56 - 23 (Eocene, Oligocene)

D) Time slice: 23 - 0 (Miocene - Present)

######AREA_CODE_TIP

115 7(ABCDEFG)Eugenia longiracemosa 1000000 Eugenia biflora 1100000 Eugenia paracatuana 1000000 Eugenia angustissima1000000 Eugenia acutata 1000000 Eugenia brevistyla 1000000 Eugenia involucrata 1000000 0100000 Eugenia monticola Hottea_neibensis 0100000 Calyptrogenia cuspidata 0100000 Calyptrogenia grandiflora 0100000 Eugenia adenocalyx 1000000 1000000 Eugenia punicifolia Eugenia dichroma 1000000 Eugenia_bullata 0001000 Eugenia paludosa 0001000 Eugenia_reinwardtiana 0000001 Eugenia rosapetiolata 0000100 0100000 Pseudanamomis umbellulifera Eugenia uniflora 1000000 Eugenia_stipitata 1000000 Eugenia azurensis 1000000 Hexachlamys edulis 1000000 Myrcianthes_fragrans0100000 Eugenia yumana 0100000 Pimenta_sp1 0100000 Pimenta dioica 0100000 Pimenta pseudocaryophyllus1000000 Campomanesia_adamantium1000000 Campomanesia_velutina 1000000 Acca sellowiana 1000000 Legrandia_concinna 1000000 Curitiba prismatica 1000000 Lophomyrtus obcordata 0001000 Neomyrtus_pedunculata 0001000 Lenwebbia prominens 0010000 Myrteola nummularia 1000000 Ugni candollei 1000000 Psidium brownianum 1000000 Psidium larutteanum 1000000

Psidium rufum 1000000 Calyptrogenia_biflora 0100000 Psidium acranthum 0100000 Myrrhinium atropurpureum 1000000 Mosiera longipes 0100000 Calyptranthes longicalyptrata 0100000 Calyptranthes pallens 0100000 Mitranthes claredonensis 0100000 Mitranthes glabra 0100000 Calyptranthes brasiliensis 1000000 Myrcia subcordata 1000000 Myrcia flagellaris 1000000 Myrcia selloi 1000000 Myrcia eugeniopsoides 1000000 Myrcia pubipetala 1000000 Myrcia rupta 1000000 Marlierea umbraticola 1000000 Myrcia_abbotiana 0100000 Myrcia spatulifolia 1000000 Myrcia_splendens 1000000 Myrcia sp1 1000000 1000000 Myrcia sp2 Myrcia guianensis 1000000 Myrcia_variabilis 1000000 Myrciaria vexator 0100000 Myrciaria_floribunda 1000000 Myrciaria glazioviana 1000000 Algrizea macrochlamys 1000000 Algrizea minor 1000000 Neomitranthes cordifolia 1000000 Siphoneugena densiflora 1000000 Plinia sp1 1000000 1000000 Plinia nana Myrceugenia bananalensis 1000000 Myrceugenia_alpigena 1000000 Myrceugenia planipes 1000000 Luma apiculata 1000000 Blepharocalyx_cruckshanskii 1000000 Blepharocalyx salicifolius2 1000000 Blepharocalyx salicifolius 1000000 Blepharocalyx eggersii 1000000 Amomyrtus luma 1000000 Chamguava schippii 1000000 Calycolpus_goetheanus 1000000 Calycolpus moritzianus 1000000 1000000 Accara elegans Myrtus communis 0000110 Archirhodomyrtus turbinata 0001000

Pilidiostigma tropicum 0010000 Kanakomyrtus_dawsoniana 0001000 Rhodomyrtus_tomentosus 0000001 Octamyrtus pleiopetala 0010000 Decaspermum_vitisidae 0000001 Decaspermum_fruticosum 0010001 Decaspermum humile 0010000 Rhodamnia cinerea 0000001 Uromyrtus_emarginata 0001000 Gossia clusioides 0001000 Austromyrtus_dulcis 0010000 Myrtastrum_rufopunctatum 0001000 Xanthomyrtus montivaga 0010000 Xanthomyrtus compacta 0010000 Metrosideros_nervulosa 0001000 Metrosideros_perforata 0001000 Metrosideros stipularis 1000000 Syzygium_guineense 0000100 Syzygium muellerii 0000001 Syzygium_amplifolium 0001000 Syzygium_paniculatum 0010000 Syzygium_jambos 0000001 Syzygium buxifolium 0000001 Syzygium_gustavioides 0010000 Syzygium maire 0001000 Eucalyptus_perriniana 0010000 Leptospermum scoparium 0010000

####DISTANCE

А	В	С	D	Е	F	G
1	0.1	1	1	0.5	0.1	0.1
0.1	1	0.1	0.1	0.1	1	1
1	0.1	1	1	1	0.1	0.1
1	0.1	1	1	1	0.1	0.1
0.5	0.1	1	1	1	0.1	0.1
0.1	1	0.1	0.1	0.1	1	1
0.1	1	0.1	0.1	0.1	1	1
А	В	С	D	Е	F	G
1	1	1	1	0.1	0.1	0.1
1	1	0.1	0.1	0.1	1	0.1
1	0.1	1	1	1	0.1	0.1
1	0.1	1	1	1	0.1	0.1
0.1	0.1	1	1	1	0.5	0.1
0.1	1	0.1	0.1	0.5	1	1
0.1	0.1	0.1	0.1	0.1	1	1

А	В	С	D	Е	F	G
1	0.5	1	0.1	0.1	0.1	0.1
0.5	1	0.1	0.5	0.1	1	0.1
1	0.1	1	1	0.1	0.1	0.5
0.1	0.5	1	1	0.1	0.1	0.1
0.1	0.1	0.1	0.1	1	1	1
0.1	1	0.1	0.1	1	1	1
0.1	0.1	0.5	0.1	1	1	1
А	В	С	D	Е	F	G
1	1	0.5	0.5	0.5	0.1	0.1
1	1	0.1	0.1	0.1	1	0.1
0.5	0.1	1	0 5	0 5	0.4	4
	0.1	T	0.5	0.5	0.1	1
0.5	0.1	1 0.5	0.5 1	0.5 0.1	0.1 0.1	1 0.1
0.5 0.5						
	0.1	0.5	1	0.1	0.1	0.1

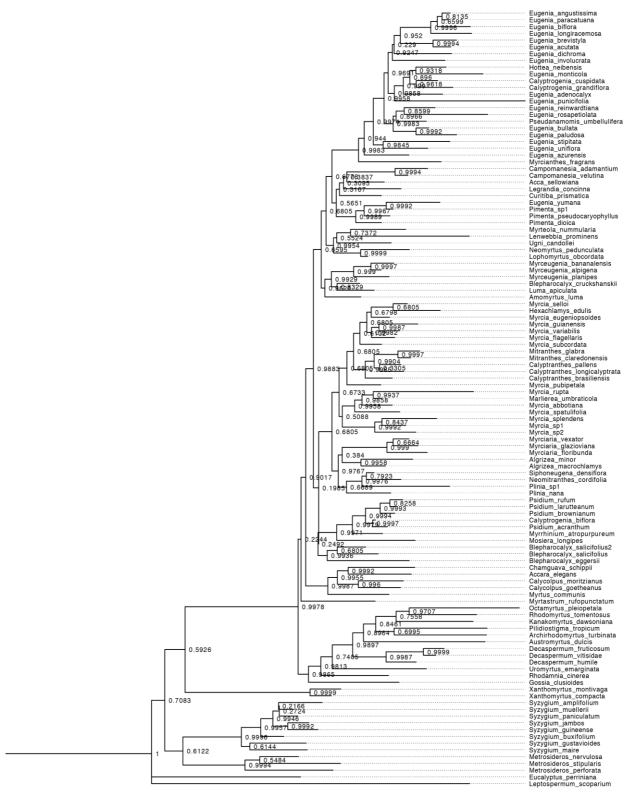
END

#####TIME_SLICE_MYA

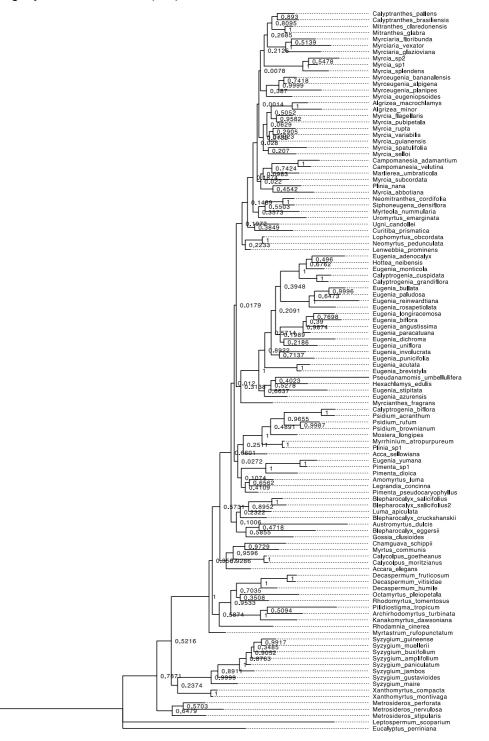
Appendix 1.7: BAMM analysis supporting information and matrices.

#sample size

1.0			
Eugenia_longiracemosa	arace	0.066	
Eugenia_biflora	race	0.066	
Eugenia_paracatuana	race	0.066	
Eugenia_angustissima	race	0.066	
Eugenia_acutata		clyc	0.07
Eugenia_brevistyla	clyc	0.07	
Eugenia_involucrata	phyl	0.05	
Eugenia_monticola	umbl	0.0127	
Hottea_neibensis	umbl	0.0127	
Calyptrogenia_cuspidat	a	umbl	0.0127
Calyptrogenia_grandifle	ora	umbl	0.0127
Eugenia_adenocalyx	umbl	0.0127	
Eugenia_punicifolia	umbl	0.0127	
Eugenia_dichroma	went	0.125	
Eugenia_bullata	oldc	0.024	
Eugenia_paludosa	oldc	0.024	
Eugenia_reinwardtiana	oldc	0.024	
Eugenia_rosapetiolata	oldc	0.024	
Pseudanamomis_umbe	ellulifera	oldc	0.024
Pseudanamomis_umbe Eugenia_uniflora	ellulifera sten	oldc 0.05	0.024
			0.024
Eugenia_uniflora	sten	0.05	0.024
Eugenia_uniflora Eugenia_stipitata	sten dich	0.05 0.05	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis	sten dich clad	0.05 0.05 0.05	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis	sten dich clad hexa	0.05 0.05 0.05 0.125	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans	sten dich clad hexa myct	0.05 0.05 0.05 0.125 0.029	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana	sten dich clad hexa myct pime	0.05 0.05 0.05 0.125 0.029	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime	sten dich clad hexa myct pime 0.25 0.25	0.05 0.05 0.05 0.125 0.029	0.024
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime	sten dich clad hexa myct pime 0.25 0.25 ohyllus	0.05 0.05 0.125 0.029 0.25	
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium	0.05 0.05 0.125 0.029 0.25	0.25
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium	0.05 0.05 0.125 0.029 0.25 pime camp	0.25 0.064
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium	0.05 0.05 0.125 0.029 0.25 pime camp camp	0.25 0.064 0.064
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin Acca_sellowiana	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium	0.05 0.05 0.125 0.029 0.25 pime camp camp acca	0.25 0.064 0.064
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin Acca_sellowiana Legrandia_concinna	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium la	0.05 0.05 0.125 0.029 0.25 pime camp camp acca 1	0.25 0.064 0.064
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin Acca_sellowiana Legrandia_concinna Curitiba_prismatica	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium ha legr curi aloph	0.05 0.05 0.125 0.029 0.25 pime camp acca 1 1	0.25 0.064 0.064
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin Acca_sellowiana Legrandia_concinna Curitiba_prismatica Lophomyrtus_obcordata	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium la legr curi aloph a	0.05 0.05 0.125 0.029 0.25 pime camp acca 1 1 0.666	0.25 0.064 0.064 1
Eugenia_uniflora Eugenia_stipitata Eugenia_azurensis Hexachlamys_edulis Myrcianthes_fragrans Eugenia_yumana Pimenta_sp1 pime Pimenta_dioica pime Pimenta_pseudocaryop Campomanesia_adama Campomanesia_velutin Acca_sellowiana Legrandia_concinna Curitiba_prismatica Lophomyrtus_obcordata	sten dich clad hexa myct pime 0.25 0.25 ohyllus antium a legr curi aloph a lenw	0.05 0.05 0.125 0.029 0.25 pime camp acca 1 1 0.666 loph	0.25 0.064 0.064 1


Ugni_candollei ugni	0.25		
Psidium_brownianum	psid	0.0625	
Psidium_larutteanum	psid	0.0625	
Psidium_rufum psid	0.0625		
Calyptrogenia_biflora	psid	0.0625	
Psidium_acranthum	psid	0.0625	
Myrrhinium_atropurpure	um	myrr	0.333
Mosiera_longipes	mosi	0.031	
Calyptranthes_longicaly	ptrata	clpt	0.019
Calyptranthes_pallens	clpt	0.019	
Mitranthes_claredonens	is	clpt	0.019
Mitranthes_glabra	clpt	0.019	
Calyptranthes_brasilien	sis	clpt	0.019
Myrcia_subcordata	symp	0.037	
Myrcia_flagellaris	gomi	0.016	
Myrcia_selloi tome	0.833		
Myrcia_eugeniopsoides	eugn	0.045	
Myrcia_pubipetala	pubi	0.05	
Myrcia_rupta aulb	0.05		
Marlierea_umbraticola	aulb	0.05	
Myrcia_abbotiana	aulb	0.05	
Myrcia_spatulifolia	aulb	0.05	
Myrcia_splendens	sple	0.03	
Myrcia_sp2 sple	0.03		
Myrcia_sp1 sple	0.03		
Myrcia_guianensis	gui	0.06	
Myrcia_variabilis	gui	0.06	
Myrciaria_vexator	myri	0.136	
Myrciaria_floribunda	myri	0.136	
Myrciaria_glazioviana	myri	0.136	
Algrizea_macrochlamys	algr	1	
Algrizea_minor algr	1		
Neomitranthes_cordifoli	а	plin	0.043
Siphoneugena_densiflo	ra	plin	0.043
Plinia_sp1	plin	0.043	
Plinia_nana plin	0.043		
Myrceugenia_bananale	nsis	myrc	0.07
Myrceugenia_alpigena	myrc	0.07	
Myrceugenia_planipes	myrc	0.07	
Luma_apiculata luma	0.5		
Blepharocalyx_crucksha	anskii	blcr	1

Blepharocalyx_salicifolius2	blep	1	
Blepharocalyx_salicifolius	blep	1	
Blepharocalyx_eggersii blep	1		
Amomyrtus_luma amom	0.333		
Chamguava_schippii cham	0.333		
Calycolpus_goetheanus caly	0.25		
Calycolpus_moritzianus caly	0.25		
Accara_elegansacra 1			
Myrtus_communis	mytu	0.5	
Archirhodomyrtus_turbinata	arch	0.2	
Pilidiostigma_tropicum pili	0.166		
Kanakomyrtus_dawsoniana		kana	0.166
Rhodomyrtus_tomentosus	rhmy	0.05	
Octamyrtus_pleiopetala octa	0.166		
Octamyrtus_pleiopetala octa Decaspermum_vitisidae deca	0.166 0.088		
		0.088	
Decaspermum_vitisidae deca	0.088	0.088	
Decaspermum_vitisidae deca Decaspermum_fruticosum	0.088 deca	0.088	
Decaspermum_vitisidae deca Decaspermum_fruticosum Decaspermum_humile deca	0.088 deca 0.088	0.088	
Decaspermum_vitisidae deca Decaspermum_fruticosum Decaspermum_humile deca Rhodamnia_cinerea rhod	0.088 deca 0.088 0.028 0.043	0.088	
Decaspermum_vitisidae deca Decaspermum_fruticosum Decaspermum_humile deca Rhodamnia_cinerea rhod Uromyrtus_emarginata urom	0.088 deca 0.088 0.028 0.043	0.088	



Appendix 1.8: BI phylogeny based on cpDNA dataset.

0.0080

Appendix 1.9: BI phylogeny based on nuclear (ITS) dataset.

0.03

Chapter 2: Systematic and evolutionary implications of stamen posture in Myrteae

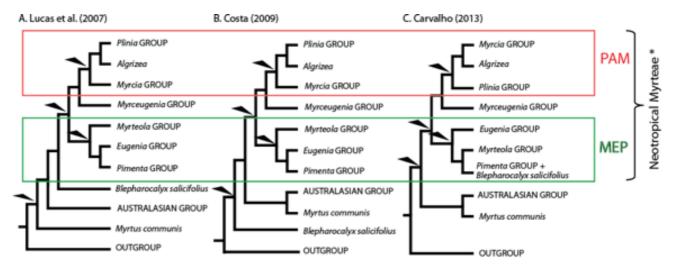
(Myrtaceae)

Published as: Vasconcelos et al., 2015. "Systematic and Evolutionary Implications of Stamen Position in Myrteae (Myrtaceae)" *Botanical Journal of the Linnean Society* 179(3):388-402 https://doi.org/10.1111/boj.12328

• T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, genaration of SEM images and writing of manuscript.

ABSTRACT

As previously discussed, taxonomy of Myrteae is notoriously difficult. Although the phylogeny has been improved, the morphological characteristics that support its cladistic configuration are still unknown. The present study evaluates stamen posture and anthesis type as characters of systematic and evolutionary relevance. 69 species from 41 genera across the tribe were checked using herbarium material and spirit collections. Results recognize three patterns of stamen posture in the pre-anthetic bud: straight, semi-curved and strongly incurved. The three patterns of stamen posture correspond to the phylogenetic structure of the tribe, supporting the topology of the clades. Incurving of stamens along the evolutionary history of Myrteae appears linked to hypanthium extension and leads to different anthesis types that may be related to shifts in pollination strategy. The accessibility of stamen posture and its systematic consistence makes this character a useful tool for field and herbarium identification and allows inference of relationships for taxa not yet sampled in molecular analyses.


Key-words: anthesis, evolution, Eugenia, flower development, Myrcia, Myrtales, pollination.

2.1 Myrteae taxonomic complexity and absence of diagnostic characters

Myrtaceae (c. 5500 species; Wilson, 2011) is one of the ten most species-rich angiosperm families (Stevens, 2001 onwards; Wilson, 2011). Members of Myrtaceae are particularly diverse in the tropical biomes of America and Asia and throughout Australia, always contributing to a significant proportion of species composition (Govaerts et al., 2008). Many of these areas of highest diversity of Myrtaceae are also home to some of the highest biodiversity on Earth and are under high environmental threat from deforestation (Achard et al., 2002; Geist and Lambin, 2002). Molecular phylogenetic studies in Myrtaceae classified the family into two subfamilies: Psiloxyloideae, with two monospecific tribes, and Myrtoideae, with 15 tribes (Wilson et al., 2005). Among these tribes, Myrteae is the richest in terms of species (c. 2500) and genera (c.50), representing more than half of the family diversity (Wilson, 2011). With the exception of the a single species of *Metrosideros* (tribe Metrosidereae), Myrteae is also the only tribe in the family that naturally occurs in the New World (Wilson et al., 2005; Lucas et al., 2007; Wilson, 2011).

Taxonomy of Myrteae is notoriously difficult resulting in routine mis-naming or no-naming of species in floristic inventories that often underpin conservation initiatives (Mc Vaugh, 1968; Kawasaki, 1989; Barroso, 1994; e.g. Carvalho and Braga, 2007 in Atlantic Rainforest; Moro et al., 2014 in Caatinga). The consequences of this problem are exacerbated given that Myrteae represents 10 - 15% of tree species diversity in Brazilian savannas and Atlantic forests (Sobral et al., 2014) which are habitats under most acute pressure from deforestation (Mori et al., 1983; Oliveira-Filho and Fontes, 2000).

Prior to the first DNA-based phylogenies, tribe Myrteae was classified into three sub-tribes based on characters of the embryo (Berg, 1855-56, 1857-59). Preliminary molecular phylogenetic analysis demonstrated that these sub-tribes are not monophyletic and characters of the embryo are not congruent with the sub-tribal classification (Lucas et al., 2005). Lucas et al. (2007) recovered seven morphologically cohesive clades within Myrteae and informally named them: Plinia group, Myrcia group, Myrceugenia group, Myrteola group, Eugenia group, Pimenta group and Australasian group. Three species remained ungrouped: Algrizea macrochlamys (DC.) Proença & NicLugh, Blepharocalyx salicifolius (Kunth) O.Berg and Myrtus communis L.. This initial study has been revisited by Costa (2009), De-Carvalho (2013) and in this study (Chapter 1). These added more molecular information (i.e. DNA regions and taxa) and recognized overall a similar phylogenetic structure, with two main clades for the Neotropical lineages consistent throughout the studies: one clade formed by Plinia Group, Algrizea and Myrcia group (henceforward PAM clade), which appears as sister of Myrceugenia group in all studies, and the other formed by Myrteola, Eugenia and Pimenta groups (the latter including Psidium group, following Lucas et al., 2007; henceforward MEP clade) (Fig. 2.1). The most significant changes between the topologies of Lucas et al. (2007), Costa (2009) and De-Carvalho (2013) relate to the relationship inside the PAM and MEP clades, the position of Blepharocalyx salicifolius within the tribe (discussed by De-Carvalho, 2013) and the position of *Myrtus communis* as sister to the Australasian group.

Figure 2.1. Comparison of three Myrteae molecular phylogenies, all three using data both from nuclear and chloroplast sequences. Arrows indicate Bayesian probabilities greater than 0.95. * all Neotropical with exception of c. 10% of the species in *Eugenia* and the New Zealand genera *Neomyrtus* and *Lophomyrtus* (*Myrteola* group).

The supra-generic groups of Myrteae are poorly understood in an evolutionary point of view and only few morphological characters support the phylogenetic structures. Recent studies on the evolution in the tribe have struggled to score morphological characters into homologous states for phylogenetic reconstruction and character optimization (e.g. Lucas et al., 2007, 2011); results demonstrate low phylogenetic signal from these characters and high levels of homoplasy. To understand the tribal evolution and relationship is crucial revisiting morphological aspects. A better understanding of Myrteae evolutionary aspects may contribute to ecological studies in Neotropical biomes in which they are most diverse. Such a framework can then be used in conjunction with dating, historical biogeography and identification of diversification rate shifts to provide insight into the origins of the biomes in which they are found.

In Myrtales flowers, the hypanthium often extends into a cup which can influence the development of the androecium, i.e. stamens, filaments and anthers (Ronse DeCraene and Smets, 1991; see also Chapter 3). Descriptive studies on the development of the hypanthium and stamen behaviour in the bud show differences in these characters in various species within Myrteae (Proença and Gibbs, 1994; Belsham and Orlovich, 2002, 2003). Proença and Gibbs (1994) also observed differences in anthesis among different genera in Myrteae, possibly as a consequence of the different arrangement of the stamen in the bud. However, these studies were produced before any molecular phylogeny was available and were based on few species without detailed systematic and evolutionary discussion.

The pattern of stamen posture in the bud and the anthesis type are easy characters to access in the field or herbarium material. Incurved stamens in the bud are considered a synapomorphy in the angiosperm order Myrtales (Stevens, 2001 onwards), with exceptions recorded in Vochysiaceae, Onagraceae and the Myrtaceae subfamily Psiloxyloideae (Johnson and Briggs, 1984; Dahlgren and Thorne, 1984). However, this character has never before been considered for Myrteae as a feature of systematic importance. The aims of this study were to

investigate patterns of stamen posture in the buds of the main clades of Myrteae, correlate this character to the anthesis type in Myrteae and associate it to the most recent phylogenetic hypotheses and evolution in Myrteae.

MATERIALS AND METHODS 2.2 Sampling

At least one species from 41 genera in Myrteae was sampled. *Heteropyxis natalensis* Harv. (Psiloxyloideae) was also sampled to represent the exceptional character of straight stamens in Myrtales. Buds were sampled from herbarium material, spirit collection, and from field collections (more details in the next sections). Buds were analysed pre-anthesis, i.e. mature buds in the final stage before flower opening. This standardised the observations and maximized the sampling because most herbarium material was found to be at this stage. When available, younger buds were also studied. Species were analysed using a stereo microscope, scanning electron microscope and field photography. The mega species-rich genera *Eugenia* (c. 1000 spp.) *sensu* Mazine *et al.* (2014, including *Calycorectes*), and *Myrcia* (c. 700 spp.) *sensu* Lucas *et al.* (2011), were represented by at least one species per subgeneric clade reported by those studies. List of analysed specimens is available in Appendix 3.1 (p.).

2.3 Herbarium material

Samples were preferentially taken from the vouchers from the Lucas et al. (2007) phylogeny. When these vouchers did not have buds, or when they were unavailable, material identified by specialists was used. Buds from each sample were rehydrated in boiling water and dissected using fine tweezers, a razor blade and a dissecting microscope. Buds were analysed in two ways: (1) a frontal view from above after removing sepals and petals and (2) a longitudinal cut of the whole bud. Aims when dissecting were: (1) to verify the visibility of anthers in top view within the bud and (2) to determine the nature of the filaments (straight or incurved). Digital images were taken with a Nikon coolpix 4500 digital camera mounted on a Leica WILD M3Z binocular microscope. Images were used as basis for schematic drawings using Adobe Illustrator CS5. The analysed buds were returned to the herbarium voucher. All vouchers, besides Faria J.E.Q. collections, are deposited at the Royal Botanic Gardens, Kew (K). Faria J.E.Q. collections are deposited at the Universidade de Brasilia herbarium (UB).

2.4 SEM analyses

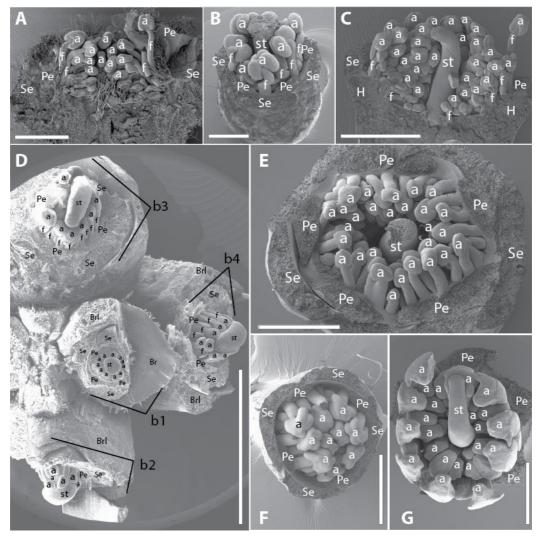
SEM analysis of alcohol preserved material was carried out in parallel to the study on herbarium samples. At least one species of each informal group of Myrteae sensu Lucas *et al.* (2007) was included as well as the still not firmly placed *Blepharocalyx salicifolius* and the ungrouped *Myrtus* and *Algrizea.* The SEM images of pre-anthesis buds were analysed in the same way as the herbarium dissections. Material was taken from the spirit collections of the following herbaria: K, MO, NY and US. Additional material was added from the living collection at the Royal Botanic Gardens Kew and field collections made in Brazil. Vouchers for field collections are deposited at K and UB herbaria.

Material was dissected in 70% ethanol, dehydrated through an alcohol series to absolute ethanol, and critical-point dried using an Autosamdri-815B critical-point dryer (Tousimis Research,

Rockville, Maryland, USA). Dried material was further dissected and mounted onto specimen stubs using nail polish, coated with platinum using a Quorum Q-150-T sputter coater (Quorum Technologies, East Grinsted, UK) and examined with a Hitachi cold field emission SEM S-4700-II (Hitachi High Technologies, Tokyo, Japan).

2.5 Anthesis type observation

Anthesis pattern of different genera was observed and photographed during fieldworks in Brazil between September and November of 2014. Fieldwork was carried out in the Brazilian Amazon (Amazonas and Roraima states), "Caatinga" dry forests (Bahia state), "Cerrado" savanna vegetation (DF, Goias, Bahia and Minas Gerais states) and Atlantic Rainforest (Bahia, Espirito Santo, Minas Gerais and Sao Paulo states). Flowers in anthesis stage were selected and photographed using a digital Nikon D200 camera with a 60mm macrolens.


RESULTS

2.6 Stamen posture

Results show different stamen posture in pre-anthetic buds for different Myrteae groups in both herbarium and SEM analysis. In all analysed species of the Australasian Group (Archirhodomyrtus beckleri, Decaspermum parviflorum, Gossia bidwillii, Octamyrtus arfakensis, Pilidiostigma tropicum, Rhodamnia dumetorum, Rhodomyrtus tomentosa; see Rhodomyrtus sp. and Octamyrtus sp. Fig. 2.2A, B) and in Myrtus communis (Fig. 2.2C, E) straight filaments with anthers visible from the top in pre-anthetic buds were recorded. The same pattern was found in the Eugenia group and was consistent in all analysed species of Eugenia s.l. (Eugenia adenocalyx (Fig. 2.2D), E. florida, E. involucrata, E. klotzschiana, E. pluriflora, E. pyriformis, E. uniflora (Fig. 2.2F), E. myrcianthes and Calycorectes bergii) and in Myrcianthes fragrans. Straight stamens were also found consistently in all samples of the Myrteola group, (Ugni candollei (Fig. 2.2G), Lophomyrtus obcordata, Neomyrtus pedunculata and Myrteola nummularia). Most species of the Pimenta group also show straight pre-anthesis filaments with anthers visible from the top. However, the pattern is not consistent in this group. Stamens are completely straight in Acca sellowiana (Fig. 2.3A, B) and in all analysed species of *Psidium* (see *P.guineense*, Fig. 2.3C, D) and *Campomanesia*. However, there was variation in the position of stamens in *Pimenta* and *Blepharocalyx salicifolius*. While Pimenta racemosa and Pimenta dioica (herbarium material only) show semi-curved stamens similar to those in the Myrceugenia group (discussed in the next paragraph; see also Chapter 3), Pimenta pseudocaryophyllus (Fig. 2.3E) and Blepharocalyx salicifolius (Fig. 2.3F) show strongly incurved stamens in the pre-anthesis bud, with anthers touching the bottom of the floral disc. In these species, the filaments develop from the rim of the hypanthium cup formed by the hypanthium extension.

A semi-curved pattern was found consistently in the *Myrceugenia* group (*Luma apiculata*, Fig. 2.3G; *Myrceugenia alpigena*, *M. planipes*, Fig. 2.3H; *M. bananalensis*, Fig. 2.3I). Species with this pattern show straight to slightly incurved outer filaments. The hypanthium is also extended in these species and the inner filaments are strongly incurved. The anthers remain facing downwards during development, touching the bottom of the hypanthial cup. On removal of the calyx and corolla, only anthers from the outer whorls are visible from above. *Blepharocalyx* cruckshanksii, also within

Myrceugenia group, was only available as herbarium material and was difficult to interpret. Filaments were clearly incurved, however, it was not clear if stamens were strongly curved as in *Blepharocalyx salicifolius* or semi-curved as in other taxa of the *Myrceugenia* group.

Figure 2.2: SEM images of buds of species from the Australasian group, *Eugenia* group and *Myrtus*. Perianth removed in all. (A) *Rhodomyrtus* sp. (Australasian group), showing straight filaments with anthers facing upwards. (B) *Octamyrtus* sp. (Australasian group) showing anthers visible from above in the bud. (C) and (E) *Myrtus communis* in two different developmental stages: (C) A nearly pre-anthetic bud with straight filaments growing from a slightly extended hypanthia and anthers facing upwards. (E) Anthers already growing upwards in a young bud. (D) Inflorescence of *Eugenia adenocalyx* (*Eugenia* group) with buds in different developmental stages showing filaments always straight and anthers visible from above. (F) *Eugenia uniflora* (*Eugenia* group) showing anthers visible from above. (G) *Ugni candollei* (*Myrteola* group) in pre-anthetic stage, showing anthers visible from above. b1-b4, flower buds from the youngest to oldest; a, anther; Br, bracts; Brl, bracteoles; f, filament; Pe, petal scar; Se, sepal scar; st, style. Scale: 250µm (B), 500µm (E,F), 1mm (A,C,G), 2mm (D).

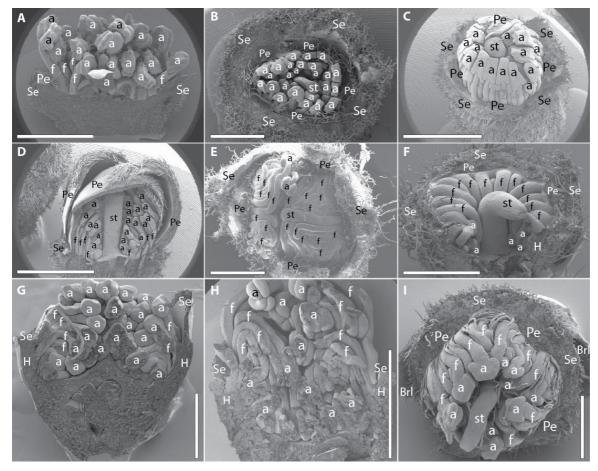
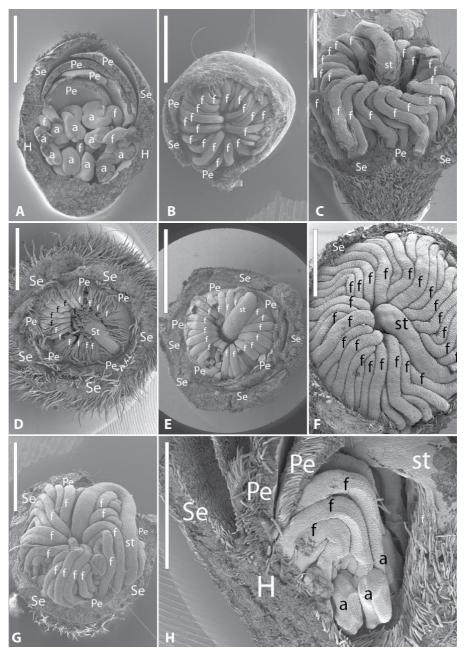



Figure 2.3: SEM images of buds of Pimenta group and Myrceugenia group species. Perianth completely or partly removed in all. (A) and (B) Acca sellowiana (Pimenta group). (A) Bud in a nearly pre-anthetic stage, with straight filaments and anthers upwards. (B) Bud in an earlier developmental stage, with anthers already visible from above. (C) and (D) Psidium guineense (Pimenta group) buds in pre-anthetic stage. (C) Anthers visible from above. (D) Straight filaments with anthers touching inner surface of petals (Pe). (E) Pimenta pseudocaryophyllus (Pimenta group). Exceptional incurved filaments in the pre-anthetic bud with most anthers not visible from above. (F) Blepharocalyx salicifolius (Pimenta group) also showing the exceptional incurved filaments, with anthers touching the bottom of the hypanthia cup formed by the hypanthial extension in a longitudinal view. (G) Luma apiculata (Myrceugenia group) with inner filament whorls curved and outer whorls straight. Only the anthers from the inner whorls touch the bottom of the hypanthia cup. (H) Myrceugenia planipes (Myrceugenia group) in a pre-anthetic stage, showing outer filaments straight and inner filaments curved, with anthers from the later touching the bottom of the hypanthial cup. (I) Myrceugenia bananalensis (Myrceugenia group) showing only anthers from the outer staminal whorls visible from above. a, anther; Br, bracts; Brl, bracteoles; f, filament; Pe, petal scar; Se, sepal scar; st, style. Scale: 500µm (F,I), 1mm (B,E,G,H), 2mm (A,C,D).

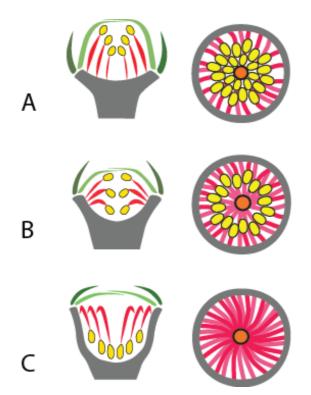
Figure 2.4: SEM images of buds of species from the *Plinia* and *Myrcia* group and in *Algrizea minor*. Perianth completely or partly removed in all. (A) *Plinia cauliflora* (*Plinia* group). Longitudinal section of nearly pre-anthetic bud, showing strongly incurved filaments and anthers facing downwards. Some of them do not fit inside the hypanthial cup due to the reduced size of the bud. Petals and sepals were not removed. (B) *Myrciaria floribunda* (*Plinia* group). Pre-anthetic bud from above, with strongly incurved filaments and anthers not visible. (C) *Myrcia sylvatica*, (D) *Gomidesia* sp., (E) *Myrcia spectabilis* and (F) *Calyptranthes aff. blanchetiana* (all *Myrcia* group) and (G) *Algrizea minor* (ungrouped, sister to *A. macrochlamys*) in pre-anthetic stage, showing filaments strongly incurved with anthers not visible from above. (H) Detail of strongly incurved stamens in mid-development in *Myrcia spectabilis* (*Myrcia* group). Filaments are strongly incurved and force the anthers to the bottom of the hypanthial cup which is formed by the extended hypanthium. a, anther; Br, bracts; Brl, bracteoles; f, filament; Pe, petal scar; Se, sepal scar; st, style. Scale bars = 500µm (A,C), 1mm (B,F,G,H), 2mm (D,E).

In all samples of the *Plinia* group (*Plinia cauliflora*, Fig. 2.4A; *Myrciaria floribunda*, Fig. 2.4B; *Siphoneugena densiflora, Neomitranthes obscura* and *N. cordifolia*), filaments were strongly incurved in the bud, a characteristic that is visible even with the naked eye. *Plinia cauliflora* is exceptional - it has very small buds and even though the filaments are strongly incurved, the anthers are sometimes visible from above because they do not physically fit in the bud and they are therefore pushed outside (Fig. 2.4A). In all samples of the *Myrcia* group (*Calyptranthes aff. Blanchetiana*, Fig. 2.4F; *Gomidesia* sp., Fig. 2.4D; *Myrcia amplexicaulis*, *M. aff. eriopus*, *M. laxiflora*, *M. pubipetala*, *M. splendens*, *M. trimera*, *M. truncada*, *M. spectabilis*, Fig. 2.4E,H; *M. sylvatica*, Fig. 2.4C) and in *Algrizea* (Fig. 2.4G) the stamens are also strongly incurved in the pre-anthetic bud, and the anthers are never visible from above. In both *Plinia* and *Myrcia* groups, as well as in *Algrizea*, the hypanthium is often extended forming a hypanthial cup. In all samples analysed from buds in early stages, the filaments remain strongly incurved throughout the development of the bud forcing the anthers downwards to the bottom of the hypanthial cup (Fig. 2.4H).

2.7 Anthesis type

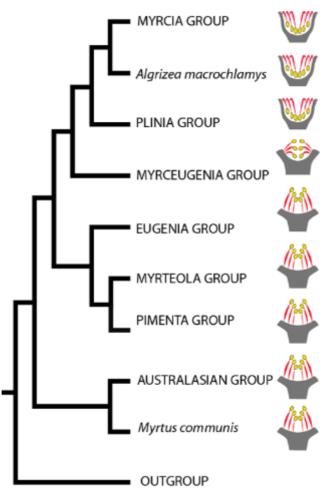
Species of different genera within *Eugenia* group, *Pimenta* group (MEP clade), *Myrcia* group and *Plinia* group (PAM clade) were found with anthetic buds and photographed in the field. All species of the genera *Eugenia* and *Myrcianthes* (*Eugenia* group) as well as *Acca*, *Campomanesia* and *Psidium* (*Pimenta* group) presented a similar type of anthesis. In these species, the anthers are the first organs to appear after anthesis, and their filaments seem to have a continuous growth during and after bud opening (Fig. 2.5A–F). On the other hand, all species of *Myrcia* s.l. (*Myrcia* group), *Myrciaria*, *Plinia* (*Plinia* group) as well as *Blepharocalyx salicifolius* and *B. eggersii* (*Pimenta* group) showed a different type of anthesis. In these species, the filaments (which were strongly incurved before anthesis) are the first part of the androecium to appear, and it has to be unfolded during anthesis to expose the anthers for pollination (Fig. 2.5G–L).

Figure 2.5 (next page). Different anthesis types in Myrteae. Taxa with straight stamens in the bud and anthers which emerge first from the bud found in (A) *Eugenia cristaensis* (*Eugenia* group), (B) *E. stictosepala* (*Eugenia* group), (C) *E. adenocalyx* (*Eugenia* group), (D) *E. involucrata* (*Eugenia* group), (E) *Psidium guajava* (*Pimenta* group) and (F) *P. acutangulum* (*Pimenta* group). Taxa with incurved stamens in which the filaments have to straighten first before the anthers face outwards found in (G) *Calyptranthes brasiliensis* (*Myrcia* group), (H) *Myrcia sect. Aulomyrcia* (*Myrcia* group), (I) *M. splendes* (*Myrcia* group), (J) *M. subavenia* (*Myrcia* group), (K) *Myrciaria floribunda* (*Plinia* group) and (L) *Blepharocalyx eggersii* (*Pimenta* group). (All photos taken during field expeditions between 2014 and 2016).



DISCUSSION

2.8 Systematic Implications of Stamen Posture and Anthesis Type in Myrteae


Results show clear differences in pre-anthetic stamen posture in different genera of Myrteae. In our analyses, we found three different patterns of stamen posture in the bud (Fig. 2.6). (1) Straight stamens. Species with this pattern show straight to slightly curved filaments. Removal of calyx and corolla reveals the anthers of almost all staminal whorls visible from above. Pre-anthesis anthers touch the inner surface of the corolla (Fig. 2.6A). This pattern was found in *Myrtus communis* and the Australasian, *Eugenia, Myrteola* and *Pimenta* groups. (2) Semi-curved stamens. Species with this pattern show straight to slightly incurved outer filaments. The inner filaments on the other hand, present strongly incurved stamens and anthers facing downwards. On removal of the calyx and corolla, only anthers from the outer whorls are visible from above (Fig. 2.6B). This pattern was found consistently in the Myrceugenia group (*Luma apiculata, Myrceugenia alpigena, M. planipes, M. bananalensis*. and *Blepharocalyx cruckshanksii*). (3) Strongly incurved stamens.

Species with this pattern show strongly incurved pre-anthetic stamens. Here, all filaments are acutely curved down towards the centre of the bud and all anthers touch the bottom of the hypanthial cup. After removal of the calyx and corolla, anthers are obscured by filament tissue on the view from above (Fig. 2.6C).

Figure 2.6: Variation in stamen posture in Myrteae. Position of filaments and anthers in longitudinal section (left) and anther visibility from above in the bud after removing petals and sepals (right). (A) Straight stamens pattern. (B) Semi-curved stamens pattern. (C) Strongly incurved stamens pattern. Colours indicate: grey = hypanthium, red = filaments, yellow = anthers, light green = petals, dark green = sepals, orange = gynoecium.

Regarding the type of anthesis, the two different extremes of stamen posture, straight stamens and the strongly incurved stamens, also seem to be related to differences of anthesis types. In the first type, anthers are presented first and the latter filaments have to unfold to anther exposition. Proença and Gibbs (1994) already reported differences in stamen behaviour during anthesis in different Myrteae species. Those authors classified species in which anthers are upright during this phase as "*Psidium* like" (corresponding to 'straight stamens' as defined here) and those where filaments unfold at anthesis to expose the anthers, (corresponding to 'strongly incurved stamens' as defined here) were classified as "*Myrcia* like".

Figure 2.7: Summary tree of Myrteae phylogeny with stamen patterns per clade. Colours indicate same structures as Fig. 2.6.

An examination of pre-anthesis stamen posture and consequently anthesis type against a summary of the phylogenetic Myrteae hypothesis (De-Carvalho, 2013) demonstrates that these characters are congruent with the phylogenetic topology (Fig. 2.7). Straight pre-anthesis stamens with *Psidium* like anthesis appears to be a pleisiomorphic state in Myrteae. This character is found in the *Myrtus communis* + Australasian group clade at the base of the tribe and most of the MEP clade, except *Pimenta* and *Blepharocalyx salicifolius*. The incurved stamens and *Myrcia* like anthesis of the PAM clade as well as in *Pimenta* and *Blepharocalyx salicifolius* may have a secondary evolutionary origin. The PAM clade is recovered in all phylogenetic works with high bayesian and bootstrap support (Lucas *et al.*, 2007; Costa, 2009; De-Carvalho, 2013) and incurved stamens appear to be synapomorphic for this clade. The *Myrceugenia* group at the base of the PAM clade presents semi-curved stamens and it is tempting to interpret this as an intermediate stage between the straight stamens of the MEP clade and the strongly incurved stamens of the PAM clade (see also Chapter 3). Strongly incurved stamens occur in *Blepharocalyx salicifolius* and in *Pimenta*, providing support for a possible placement of *B. salicifolius* within the *Pimenta* group (P.S. De-Carvalho, personal communication).

2.9 Relationship between stamen posture and hypanthium extension

As inferred by previous studies (Proença, 1992; Belsham and Orlovich, 2002, 2003), our study demonstrates a relationship between pre-anthesis stamen posture and hypanthium extension. In general, species with an extended hypanthium have incurved stamens developing just below the hypanthial rim suggesting that hypanthial extension has 'carried' the stamens upwards (also suggested by C.E.B. Proença, in personal communication). On the other hand, species with no hypanthial extension (i.e. a flat floral base) generally have straight stamens and those with short hypanthial extension have a semi-curved pattern.

Nevertheless, exceptions exist to these rules. Belsham and Orlovich (2002, 2003) studied androecium and hypanthium ontogeny in the *Myrteola* group. These studies found *Lophomyrtus* and *Neomyrtus*, two closely related New Zealand genera, to initially have a short hypanthium cup (exceptional within genera with straight stamens) with laterally and slightly incurved stamens resembling *Luma apiculata (Myrceugenia* group). In pre-anthesis bud however, *Lophomyrtus* and *Neomyrtus* stamens assume the straight position as the other species of *Myrteola* group. This also seems to occur in *Campomanesia (Pimenta* group), where the stamens are straight but the hypanthial extension is also variable.

In the *Myrcia* group, where the strongly incurved stamens occur consistently, one clade (*Myrcia* sect. *Myrcia*, sensu Lucas *et al.*, 2011) does not have an extended hypanthium. Interestingly, results for this group also show strongly incurved pre-anthesis stamens despite the non-extended hypanthium (Fig. 2.4C). This suggests that the flat hypanthium may be a secondary condition that arose from the extended-hypanthium state with the remaining curved stamens a 'relictual' arrangement.

2.10 Evolutionary Implications of Hypanthial Extension, Stamen Posture in the Bud and Floral Ecology

The present study concludes that floral evolution played a role in the divergence of Myrteae, together with other aspects associated with dispersal such as embryo type (Landrum and Kawasaki, 1997). Stamens are recognized to be a variable condition in Myrtales (Decraene and Smets, 1991) and the evolution of these characteristics within Myrteae may have been a driving force in its diversification, especially in the Neotropical lineages where stamen posture is a character that separates the two big clades (i.e. the MEP from the PAM + *Myrceugenia* group).

Differences in hypanthium extension (leading to stamen posture in the bud) and anthesis type may be linked to shifts in pollination strategy. Proença (1992) noted that Myrteae species with extended hypanthia often show pollen collection via "buzz-pollination", and the hypanthium extension may assist the bees grip of flowers during vibration. Species of *Myrcia* s.l. (*Myrcia* Group) and *Siphoneugena* (*Plinia* group) with extended hypanthia attract bees that use buzz strategies, while in *Campomanesia*, *Psidium* (*Pimenta* group) and *Eugenia* (*Eugenia* group), species with flat hypanthia, buzzing was not reported (Proença, 1992). Exceptionally, *Myrcia linearifolia*, a species without extended hypanthia (as *Myrcia sylvatica* – Fig. 2.4C), was the only *Myrcia* that did not attract buzz-pollinators. This provides further support for the suggestion that hypanthia are implicated in buzz-pollination. However, Fidalgo and Kleinert (2009) also observed buzz-pollination in species of

Myrteae without hypanthial extension. Further field as well as experimental studies are required to clarify the function of the hypanthium in connection with pollen collecting bees.

An alternative hypothesis of the adaptive advantage of hypanthial extension is linked to the transition from pollen to nectar as the main floral reward. Hypanthial extension ultimately leads to the formation of a hypanthial cup which is frequently linked to nectar production (Harder and Cruzan, 1990). Myrteae flowers are known to be almost exclusively pollen-reward flowers (Nic Lughadha and Proença, 1996). Nevertheless, there are records of nectar presence in flowers of *Plinia* (*Plinia* group; Malerbo *et al.*, 1991; Pirani and Cortopassi-Laurino, 1993), a genus with a hypanthial cup, and also in flowers with hypanthial cups in other tribes of Myrtaceae as Syzygieae (Lack and Kevan, 1984; Crome and Irvine, 1986; Abe, 2006) and Eucalypteae (Bond and Brown, 1979) suggesting that these two characteristics may be linked in the family.

Adaptative advantages in having a flat hypanthium and straight stamens can also be hypothesized. *Eugenia* and *Psidium*, two genera with straight stamens and "*Psidium* like" anthesis have filaments and styles that grow continuously after anthesis (Proença & Gibbs, 1994; Silva & Pinheiro, 2007). Under this scenario, pollen is immediately available at anthesis (Silva and Pinheiro, 2007) which may lead to a higher degree of pollination success. In addition, Silva and Pinheiro (2007) analysed reproductive biology of six species of *Eugenia* and noted that the straight, continuously growing style might help with self-pollination by making contact with mature anthers during growth. Furthermore, Fidalgo and Kleinert (2009) compared *Eugenia speciosa* to five other Myrtaceae species from other genera and found it was the only species with significant fruit production when pollinators were excluded. Proença and Gibbs (1994) also found *Eugenia dysenterica* and *Psidium firmum* to be completely self-compatible, with *Psidium firmum* having an even higher percentage of fruit-set in self-pollinated flowers. More information about the relationship between stamens, hypanthium and Myrteae evolution are presented in Chapters 3 and 5.

2.11 Systematic Implication for Straight Stamens in Myrtales

Classic works (Jonson and Briggs, 1984; Dahlgren and Thorne, 1984) cite incurved stamens in the bud as a synapomorphy of the order Myrtales with exceptions in Onagraceae, Vochysiaceae, *Heteropyxis* and *Psiloxylon*. The present study extends the exception to most taxa of the tribe Myrteae. Buds of *Heteropyxis* were also checked to understand these authors' definition of "straight stamens". Despite *Heteropyxis* having only 5 stamens, these stamens strongly resemble the straight stamens recorded here in polystemonous Myrteae flowers.

Molecular phylogenetic studies in Myrtales in conjunction with character evolution interpretations showed incurved stamens as the likely plesiomorphic state in Myrtales, with straight stamens evolving independently in Onagraceae, Vochysiaceae, *Heteropyxis* and *Psiloxylon* (Johnson and Briggs, 1984; Conti et al., 1997). Conti et al. (1997) further hypothesized that straight stamens are the plesiomorphic condition for the Vochysiaceae + Myrtaceae clade and that this character was lost in the subfamily Myrtoideae. Our results challenge this hypothesis, by suggesting that straight stamens are plesiomorphic in the tribe Myrteae, even though in other tribes of Myrtaceae pre-anthesis stamens are mostly strongly incurved (Drinnan and Ladiges, 1991; Orlovich et al., 1999; Bohte and Drinnan, 2005; Drinnan and Carrucan, 2005). Further character

reconstruction studies are required in order to better understand the evolution of this character across Myrtales (see Chapter 5).

CONCLUSIONS

This study reveals a previously undetected morphological pattern within Myrteae that consolidates taxonomic understanding in the tribe and provides means for specimen identification to genus level. Pre-anthesis buds are the most common phase found in herbarium specimens (T.N.C. Vasconcelos, personal observation) and can be easily manipulated to verify if anthers are visible from above when the perianth is removed. This, aligned with other traditional characteristics can be used as a complementary identification tool in the field and herbarium. At tribal level, stamen pattern is more consistent than the inflorescence, embryo, placentation, number of locules per ovary, number of sepals, and other characteristics that have been used in Myrteae systematics before. Congruent characters are rare in Myrteae, although recent work on the development of the gynoecium (Pimentel et al., 2014) has found other positively correlated characters, indicating that characters of the flower development might be important to understand evolution in Myrteae.

Chapter 3: A systematic overview of floral diversity in Myrteae (Myrtaceae)

Manuscript - to be submitted to Taxon

• T.N.C.Vasconcelos contributions: collection of samples, morphological analyses, generation of SEM images, literature review and writing of manuscript.

ABSTRACT

Myrteae is the largest tribe of Myrtaceae and one of the most diverse groups of flowering plants in the tropical Americas. In light of recent systematics adjustments, the present study is a review and provides new insights into floral diversity and evolution of Myrteae. General aspects of floral ontogeny and morphology for c.40 accepted genera plus all accepted sections within the large genera *Eugenia* and *Myrcia* are described and discussed, and systematic relevance is examined. Results and discussion provide a broader understanding of the floral diversity across the tribe, highlighting developmental modes, ecological traits and specializations in reproductive strategies.

Key words: androecium, evolution, gynoecium, perianth, morphology, ontogeny.

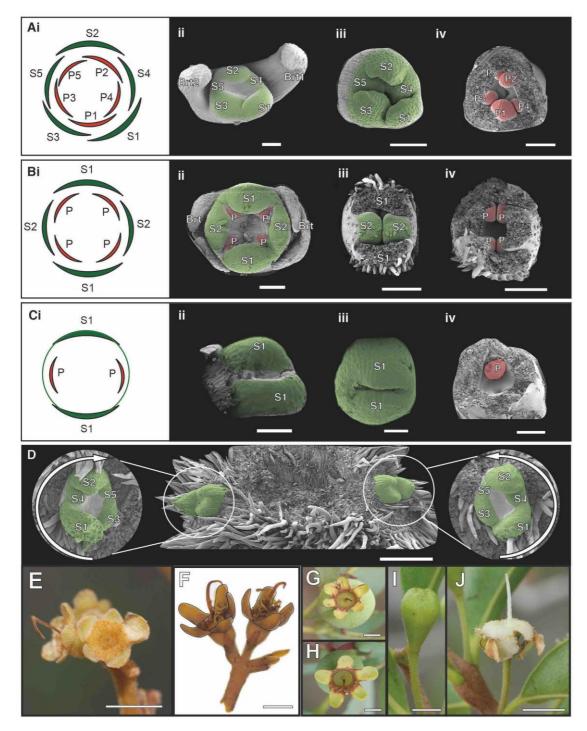
INTRODUCTION

Myrtaceae is a species rich angiosperm family of which half of the biodiversity (c. 2500 species; WCSPF, 2017) occurs within a single monophyletic group with main distribution in the Neotropics: tribe Myrteae (sensu Wilson et al., 2005). Myrteae comprises some of the highest tree species diversity in South American forests and savannas (Oliveira-Filho and Fontes, 2000; Beech et al., 2017) where it has a critical ecological role as a dominant flower and fruit supplier, sustaining associated fauna during the whole year (Staggemeier et al., 2010, 2017). Consequently, recent studies have advocated Myrteae as a useful model group for understanding biodiversity ecology, evolution and conservation in Neotropical environments (Murray-Smith et al., 2009; Lucas and Bünger, 2015; Staggemeier et al., 2015; Giaretta et al., 2015).

Despite its crucial role in Neotropical ecology, Myrteae has been a group of notoriously complicated systematics due to its highly homoplastic traits and superficially homogeneous morphology (Mc Vaugh, 1968; Landrum and Kawasaki, 1997). Initial molecular phylogenetic studies (Lucas et al., 2005, 2007) showed that traditionally used characters, such as the embryo type (Berg, 1855-56), had little power to accurately explain relationships in Myrteae and that morphological characters with which to characterise natural groups are few and poorly understood. In light of recent systematic rearrangements (Lucas et al., 2007; Chapter 1), a search for characters that explain relationships and diagnose natural lineages is required. Chapter 2 highlights stamen posture as a valuable diagnostic characters, demonstrating that dispite its apparent homogeneous morphology floral traits can explain systematics and evolution in Myrteae. Descriptive works are currently out of vogue but reassessment of traits in light of newly available phylogenetic frameworks, in a process of reciprocal illumination, will be of utmost importance for future studies of systematics, ecology and evolution.

This study provides a thorough documentation of floral diversity across Myrteae genera. Information is assembled from literature, herbarium material, floral ontogeny and field observations to propose more reliable diagnostic characters, stimulate debate of form and function and generate new hypothesis to be tested by future studies.

MATERIAL AND METHODS


Buds and flowers were collected in the field, from living collections or sampled from herbarium material. Fruits were analysed in some cases. c.40 genera of Myrteae were surveyed (see Appendix 3.1). For the largest genera (*Myrcia* c. 700 spp, Lucas et al., 2011; Eugenia, c. 1000 spp, Mazine et al., 2016), specimens representing all accepted sections were also analysed. Herbarium specimens surveyed were those identified by specialists and were re-hydrated for dissection. Descriptions of anthesis are based on comparison of buds and open flowers from herbarium specimens and field observations during field expeditions between 2013 and 2016 or occasionally based on pictures sent by specialists. Ontogenetic discussion is based exclusively on specimens collected in ethanol 70% or FAA in the field. For SEM preparation, buds were dissected and passed through an ethanol series until full dehydratation, critical point dried using an Autosamdri-815B critical-point dryer, mount into stubs, platinum coated using a Quorum Q-150-T sputter coater and analysed under a Hitachi cold field emission SEM S-4700-II. The total list of analysed specimens is given in Appendix 3.1.

GENERAL OVERVIEW 3.1 Perianth (calyx and corolla)

Perianth as calyx and corolla are usually treated together (e.g. Endress, 1994) even though they may have distinct evolutionary histories (Ronse DeCraene, 2008). In Myrteae, there is a historical taxonomic interest in the variation of perianth characters (e.g. Landrum, 1984; Lucas et al., 2011), especially the calyx, due to its frequent persistence even at fruiting stage (since Linnaeus 1779, who divided *Myrtus* from *Eugenia* based on merism). The majority of flower diversity in Myrteae can be divided into two main calyx organisations: pentamerous, with classic imbricate quincuncial aestivation (i.e. two sepals without, two sepals within and one in between, Fig.3.1Ai-iv); or tetramerous, with two pairs of sepals developing decussately (Fig.3.1Bi-iv). Dimerous flowers are rare but are the rule for at least one species of *Blepharocalyx* (*B. eggersii*, Fig.1Ci-iv, Fig.2G). Flowers in opposite position in an inflorescence have opposite directions of perianth development (clockwise and anticlockwise, Fig.3.1D).

Sepals are usually of the same size when buds are mature, but both pentamerous and tetramerous flowers may have sepals slightly to strongly unequal in size even at late stages. Such size distinctions carry taxonomic relevance in some groups (e.g. cited in Scott, 1979, for *Rhodomyrtus*, and in Sobral, 2005, for *Eugenia inversa*; see Fig. 3.1E) but usually do not significantly change overall floral symmetry. Calyx fusion is a common trend observed in a few to several species in different lineages (Fig. 3.1I,J; e.g. Landrum, 1984, in *Myrceugenia*; Parra, 2016, in *Myrcianthes*). This is achieved mostly by post-genital fusion, when the base of initially free sepals become a homogeneous tissue just after calyx initiation (see Chapters 4 and 6 for evolutionary interpretation of this character). Anthetic behaviour of this structure varies from a "calyptra" to irregular tearing (as in Fig.3.1J), patterns with historical taxonomic relevance (Mc Vaugh, 1968; Wilson et al., 2016; see also Chapter 6).

The corolla develops after the calyx. Petals are always alternisepalous and are usually present in the same number as sepals. Flowers with five sepals develop five petals in alternate positions, following the same imbricate quincuncial aestivation pattern (Fig.3.1Aiv). Flowers with four sepals tend to have four petals that are almost simultaneously initiated, in contrast to the decussate pattern of the sepals (Fig.3.1Biv). Petals are either rounded or elliptic and are attached to the hypanthium by a very narrow base, making them easily caducous. There are few exceptions in petal arrangement among all the c.50 genera. The most remarkable ones are in the tetramerous genus *Octamyrtus*, where a second corolla whorl and sometimes two extra petals develop (summing up to 10 petals in total; Svott, 1978; Craven, 2006); and *Myrtus* that commonly presents particularly narrow petals developing in somewhat indefinite whorls (Mulas and Fadda, 2004).

Figure 3.1: Patterns of perianth arrangement in Myrteae. (A) Pentamerous flowers with imbricate quincuncial arrangement: (Ai) Floral diagram and (Aii-Aiv) ontogenetic sequence in *Myrcia* cf. *guianensis* (*Myrcia* sect. *Aguava*). (B) Tetramerous flowers with decussate arranged sepals and four equal petals: (Bi) Floral diagram and (Bii-Biv) ontogenetic sequence in *Eugenia stipitata* (*Eugenia* sect. *Pilothecium*); (C) Bimerous flowers blabla: (Ci) Floral diagram and (Cii-Civ) ontogenetic sequence in *Blepharocalyx eggersii*. (D) Clockwise and anticlockwise direction of perianth development in opposite flowers of *Myrcia spectabilis* (*Myrcia* sect. *Gomidesia*). (E) Unequal sepals in old flowers of *Myrcia splendens* (*Myrcia sect. Myrcia*). (F) Variation of merism in two flowers of same inflorescence in *Algrizea minor* and (G,H) in the same individual of *Campomanesia adamantium*. (I,J) Calyx fusion in *Psidum* sp, showing torn calyx after anthesis. S,

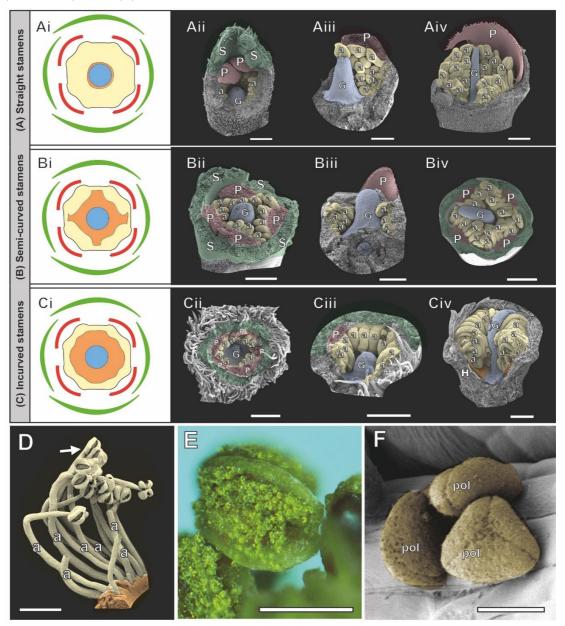
sepals; P, petals. Scale: 50µm (Aii,Bii,Cii,Ciii), 100µm (Aiii,Aiv,Biii,Civ), 150µm (Biv,D), 5mm (E,F, G,I,J). (E-I photos taken during field expeditions between 2014 and 2016).

Shifts back and forth between tetramerous and pentamerous flowers are likely to have occurred multiple times in Myrteae. Variation between four and five perianth parts is commonly observed at infrageneric and even at infraspecific levels (e.g. Fig.3.1F-H). The norm, however, is that the lower the taxonomic level the more stable is merism. Therefore, it is difficult to estimate with precision which pattern is the plesiomophic state for the tribe, but merism is still an important component of generic identification in Myrteae (e.g. keys in Landrum and Kawasaki, 1997; Sobral 2003; Mazine et al., 2014).

3.2 Androecium and hypanthium extension

The androecium has been neglected in Myrteae systematics. The almost invariable polystemonous flowers produce no superficially noticeable variation so specific references to the relevance of the androecium is virtually absent in classical Myrteae taxonomic literature (e.g. even in extensive reviews such as Mc Vaugh 1968 and Landrum and Kawasaki, 1997). However, variations discussed in Chapter 2 show that the androecium harbours valuable taxonomic characters, especially when considered alongside hypanthium development (e.g. Belsham and Orlovich, 2002, 2003; see also Chapter 5).

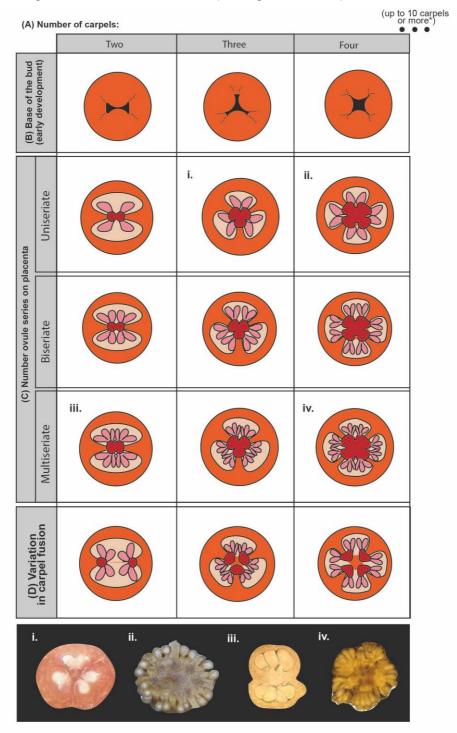
The definition of hypanthium is somewhat obscure in the literature. General floral morphologists define the hypanthium as a cup-shaped structure that involves the ovary in perigineous and epigineous flowers (Weberling 1989, Endress 1994). Werbeling's hypanthium is also somewhat tangled with his definition of the floral receptacle, for which he states that "[perianth and androecium] appear inserted on the edge of the hypanthium, or so called receptacle" (Weberling, 1989, p. 20). While some authors prefer to use the term "receptacle" (e.g. Ronse DeCraene and Smets, 1992, 1993), most Myrtaceae literature adopts the term "hypanthium" to refer to this tissue between perianth and gynoecium (e.g. Proenca et al., 2006; Snow and Wilson, 2010; Amorim and Alves, 2012; Martos et al., 2017). It is on the surface of this tissue that the stamen primordia appear and the stamens of the polyandrous androecium develop (Ronse DeCraene and Smets, 1991; Belsham and Orlovich, 2002, 2003). In this sense, it is impossible to fully separate androecium from hypanthium when discussing floral morphology of Myrteae. In Myrteae, mature flowers present two main hypanthium types: these can be either extended above the ovary, forming a hypanthium tube (e,g, in Myrcia and Siphoneugena) or flat, non-extended above the ovary (e.g. Eugenia). Development of these two patterns is very similar during floral ontogeny; the difference is mainly the extent to which stamen primordia cover the tissue during early stages of development.


Early androecium development in Myrteae occurs by the appearance of two (or more) stamen primordia at the flanks of each petal (Belsham and Orlovich, 2002, 2003; Chapter 5). Sequentially, more primordia develop forming the first staminal ring. This is contrary to other Myrtaceae where secondary polyandry is clear from the appearance of obhapolostemonous first stamen primordia (e.g. *Melaleuca*; Carrucan and Drinnan, 2000); in Myrteae there is no clear definition between primary and secondary stamen primordia (as described for other Myrtaceae by

Ronse Decraene and Smets, 1991). After the first staminal ring is formed, more stamen primordia initiate centripetally. The degree to which these primordia cover the inner hypanthial surface determines the final position of the stamens within the flower (as observed in Chapter 2). When the stamen primordia cover the whole hypanthium tissue up to the stylar base, stamens in the bud appear straight and no hypanthial tube is observed (Fig. 3.2A). When the stamen primordia cover just a restricted area at the hypanthium rim during development, stamens bend into the area provided by the "bare" hypanthium tissue, resulting in curved stamens at anthesis and a hypanthium tube of variable length (Fig. 3.2C). Straight vs. curved stamens proved to be a trait with high systematic relevance, explaining some intrageneric relationships recovered by the molecular phylogeny of Myrteae (Chapter 2). A third variation is the discontinuous androecium observed in *Lewenbbia, Luma, Myrceugenia* and some *Pimenta* species (Belsham and Orlovich, 2003; Snow et al., 2000). In these flowers, the first stamens develop from primordia below each petal whilst only subsequent stamens form the continuous ring (Fig. 3.2B; Belsham and Orlovich, 2003). This discontinuous development gives the stamens a position that can be coarsely described as "semi-folded" in the bud (Chapter 2).

Anthers are always tetrasporangiate, consisting of four pollen sacs that differentiate at later stages of floral development at the distal portion of each filament. Abaxial pollen sacs are usually smaller than adaxial ones, and laterose dehiscence occurs by a simple longitudinal slit (Fig. 3.2D), with the tearing of the thin tissue between each pair of pollen sacs (as in most eudicots; Endress, 1994). Anthers are dorsifixed, except in Ugni and Uromyrtus where they are somewhat basifixed (Snow and Cantler, 2010; Wilson, 2011). During anthesis or even slightly before, tissue that connects each pair of pollen sac tears. At this point, the walls of all four locules retract completely, giving an opening of c. 180 degrees for each lateral pair of pollen sacs (Fig.3.2E). Specialisations in this dehiscence behaviour do occur and examples include apiculate connectives in some species of Campomanesia (Landrum, 1986); reticulate pollen sacs in some species of Eugenia (B.S.Amorim pers. com) and disproportionally long anthers with slightly dislocated pollen sacs of Myrcia sect. Gomidesia (Lucas et al., 2011). In the latter, possibly due to an uneven growth of the connective, locules wall retraction is not always complete, giving a somewhat poricidal aspect that is associated with buzz pollination (Proenca, 1992; Nic Lughadha, 1998). Pollen grains are small to medium sized, triangular shaped and brevicolpate, with very little variation between Myrteae lineages (see recent review by Thornhill et al., 2012).

Figure 3.2 (next page): Three main patterns of stamen development along the hypanthium and common system of anther dehiscence and pollen exposure in Myrteae. (A) Straight stamens developmental pathway, where stamen primordia cover the whole hypanthial tissue; (Ai) Floral diagram and (Aii-iv) ontogenetic sequence in *Eugenia dichroma*. (B) Semi-curved stamen pathway, where stamen primordia is form discontinuous rings on hypanthial tissue; (B) Floral diagram and (Bii-iv) ontogenetic sequence in *Luma apiculata*. (C) Folded stamen developmental pathway, where stamen primordia are restricted to the rims of the hypanthial tissue. (C) Floral diagram and (Cii-iv) ontotogenetic sequence in Myrcia subcordata. (D) Anther dehiscence in *Blepharocalyx salicifolius*, showing most common longitudinal laterorse pattern of dehiscence (arrow). (E) Anther completely open exposing pollen grains in *Myrcia eugeniopsoides*. (F) Small triangular-shaped pollen


characteristic of Myrteae, exemplified by *Eugenia involucrata*. A, androecium; G, gynoecium; P, petal S, sepal; 'pol', pollen grain. Scale: 10µm (F) 250µm (Aii,Aiii,Bii,Biii,Cii,Ciii,E), 500µm (Aiv,Biv,Civ), 1mm (D).

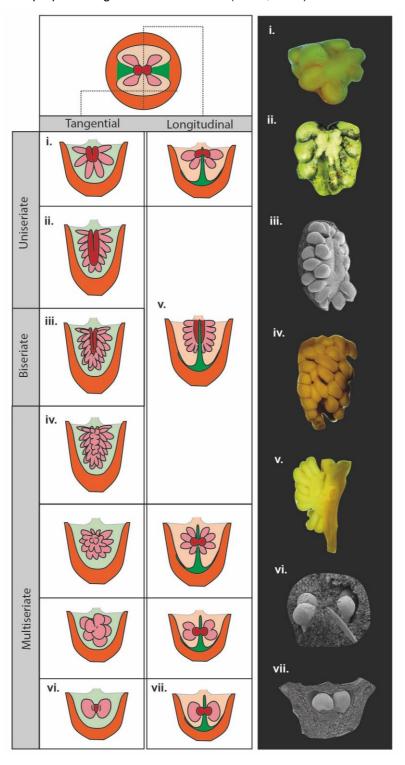
3.3 Gynoecium

The gynoecium is the most variable floral organ complex in Myrteae. Characters related to the gynoecium are present in buds, flowers and fruits (when well dissected, locules and aborted ovules can be seen against the ovary wall; e.g. Fig. 3.8). Traits of the gynoecium are usually infragenerically consistent and intragenerically variable, highlighting the convenience of this character for taxonomic diagnosis (as discussed by Bentham, 1869; and Kausel, 1956). During the last decades, several genera were described based mainly on gynoecium characters (e.g. *Accara*, Landrum, 1990; *Chamguava*, Landrum, 1991; *Gossiam*, Snow et al., 2003). Overall gynoecium morphology also has a strong evolutionary component, as it affects the width of the stigma (e.g. Fig. 3.5), the length of the style, and possibly the number of ovules that can be fertilized (see sections 3.7 and 3.8 in the following pages). Variation in the morphology of this structure is,

however, difficult to record. The position of the inferior ovary and distinct patterns of ovule arrangement, placentation and carpel fusion create a complex system of tunnels and chambers. Consequently, distinct arrangements can only be appreciated when information from transversal, longitudinal and tangential sections are combined (see Figs 3.3 and 3.4).

Figure 3.3– Diagrams of transversal cuts in ovaries of Myrteae; showing variation in number of locules, number of ovule series on placenta and carpel fusion. (A) Number of carpels usually relates to the number of locules, unless fusion is not complete (few exceptions). (B) Fomat of depression left on the base of the bud at early developmental stages, suggesting post genital fusion of carpels. (C) Arrangement of ovules on placenta varies from uniseriate to multiseriate. (D) Examples of when

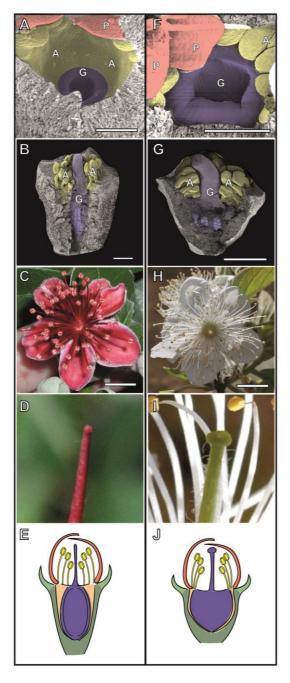
closure of carpels is not complete (as it happens in *Rhodamnia*, *Myrtus* and *Acca*). (i – iv) Examples of (i) trilocular ovary with uniseriate ovule arrangement on placenta (exemplified by *Rhodomyrtus tomentosa*); (ii) multilocular (eight locules) ovary with uniseriate ovule arrangement on placenta (exemplified by *Campomanesia adamantium*); (iii) bilocular ovary with multiseriate ovule arrangement on placenta (exemplified by *Eugenia uniflora*); (iv) multilocular (five locules) ovary with multiseriate ovule arrangement on placenta (exemplified by *Eugenia uniflora*); (iv) multilocular (five locules) ovary with multiseriate ovary and locule wall; red = placenta; pink = ovary.

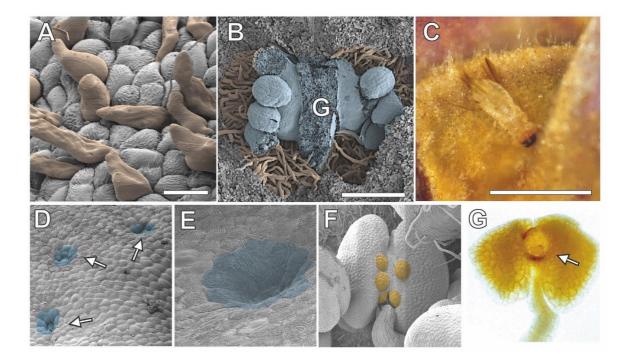

In Myrteae, early stages of gynoecium development are visible by a depression that appears in the centre of the flower base, simultaneous to androecium initiation. Carpel fusion is a combination of congenital fusion at the base and post-genital fusion at the top, so that it is usually possible to recognize how many locules are formed by the shape of the initial depression (Fig. 3.3B, Fig.3.5A,F; see also Chapters 5 and 6) or when the ventral slits are still visible. Sequentially, tissues around the depression swell to form a proto-stigma (Fig.3.5A,F). In species with multiple locules, the depression is larger and consequently the proto-stigma is broader, forming a stigma that is capitate or peltate, contrasting to a simple one in species with fewer locules (Fig.3.5). Meanwhile during early ovary development, each locule forms an individual chamber around the center of the ovary. At this point, a cauline axis protrudes from the base whilst an apical septum elongates from the apex, forming a central septum and the locule walls (Pimentel et al. 2014, Hartmann, 2016). The point where the cauline axis and apical septum meet can be very tightly closed, or slightly to completely open, providing connection between locules in some genera (e.g. Myrtus, Pimentel et al., 2014, Hartmann, 2016; Fig.3.3D). Placentation is axial and the placenta can develop either directly from the "cauline axis" (in Myrcia, Plinia, Eugenia and Blepharocalyx groups; "caulicine placentation" sensu Pimentel et al., 2014) or along the edges of the points where locule walls meet at the centre of the ovary (all other groups; "carpellar placentation" sensu Pimentel et al., 2014). Ovules develop attached to a "u" shape placenta protuberance that bypass the ventral slits on each locule. Ovules can be either organised in a single series around the placenta on each locule (uniseriate), two series (biseriate) or in series of ovules without clear organization (multiseriate). (See Fig.3.3C and Fig.3.4).

Number of ovules per locule and number of locules are commonly variable at lower taxonomic levels. Placenta format, a character cited as important in some studies (Landrum 1991,1992; Snow 2000), may be misleading because it distorts when the number of locules changes. Nevertheless, the systematic relevance of the ovary can be assessed by: 1) How many locules are there? 2) Are the locule septa completely closed or are the ventral slits still distinct? 3) At which point of the septum does the placenta protrude? 4) How many series of ovules exist on the placenta (uniseriate, biseriate, multiseriate)? The answers to these questions usually allow identification to a genus or group of genera with reasonable confidence (see Table 3.1).

3.4 Hairs and trichomes

Pubescence, or the presence of hairs, is a characteristic of most Myrteae flowers. These are mostly single-celled trichomes (Fig 3.6A) that give a silky appearance to the tissue where they grow. The presence or absence of hairs and where they occur on the floral surface is often


taxonomically consistent and thus useful for systematics. Examples include silky appearance of *Myrcia* sect. *Myrcia* buds in contrast to other *Myrcia* sections (Berg, 1855; Lucas et al., 2011), pubescent flowers of the Australasian group that distinguish them from other sympatric Myrtaceae (Low pers.com; Ashton, 2011); dibrachiate hairs that occur in *Myrceugenia* and *Myrcia* (Landrum 1981a,b); hairs on the locule walls in *Eugenia* sect. *Pillothecium* and some *Pimenta* (Fig.3.6B, Faria, 2014). The evolutionary significance for the presence of these hairs is not clear, but similar indumenta are associated with protection against predators (e.g. Breedlove and Ehrlich, 1972; Fig.3.6C) and reflective properties against solar radiation (Miller, 1986).


Figure 3.4 (previous page): Diagrams of tangential and longitudinal cuts in ovaries of Myrteae; showing variation in number of ovule series on placenta length. Note that variation in number of ovule series on placenta can only be noticed by tangential cuts; (ii –iv) have distinct ovule arrangements but present the same aspect in longitudinal cuts (v).). (i – vii) Examples of (i) uniseriate ovule arrangement on short placenta (exemplified by *Pimenta pseudocaryophyllus*); (ii) uniseriate ovule arrangement on medium sized placenta (exemplified by *Lophomyrtus obcordata*); (iii) biseriate ovule arrangement on medium sized placenta (exemplified by *Ugni candolei*); (iv) multiseriate ovule arrangement on medium sized placenta (exemplified by *Myrtus communis*); (v) longitudinal cut in species with medium sized placenta (exemplified by *Myrtus communis*); (vi) multiseriate ovule arrangement on short placenta (exemplified by *Myrcia subcordata*); (vii) longitudinal cut in species with short placenta (exemplified by *Blepharocalyx eggersii*). Color code: orange = ovary; red = placenta; pink = ovule; green = locule wall.

3.5 Oil glands and elaiophores

Myrtaceae are renowned for their oil glands (Evert, 2006), and Myrteae flowers are no exception. Oil glands are present in all floral tissues, but can be particularly prominent on the anther and connective (Fig. 3.6F,G; e.g. Landrum and Kawasaki, 1997). These glands lack stomata or clear secretory specialization, but may present some systematic or ecological relevance (suggested by Landrum and Bonilla, 1996). Correlation of this character with environmental variables is, however, weakly supported (see Chapter 7). A number of species present small cavities on the surface of the floral receptacle, around the stylar base (Fig.3.6D). These are at a similar position to nectary tissue in other Myrtaceae (O'Brien et al., 1996; Ronse DeCraene, 2010), but lack clear secretory structures (Fig.3.6E; see also Chapter 5). Furthermore, there is no strong support for nectar production in Myrteae, even in genera with a hypanthium tube (Gressler et al., 2006). Such cavities were shown to be elaiophores and suggested as nectary relics that are now only phenolic producers (Ciccarelli et al., 2008). These serve to attract pollinators, and although no evidence for scents acting as reward has ever been documented, some Neotropical bees that visit Myrteae species (e.g. *Euglossini*, Nic Lughadha and Proença, 1996) are known to be phenolic foragers (Cameron, 2004).

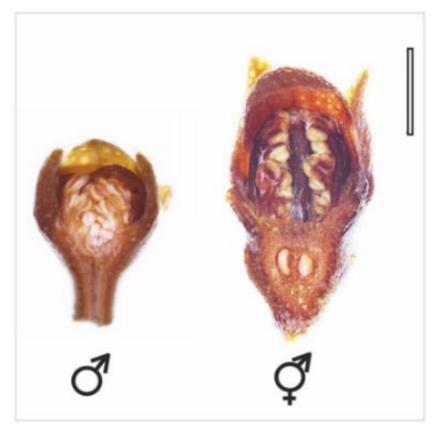

Figure 3.5: Distortions in flower architecture caused by differential development of gynoecium in two closely related genera. (A-E) *Acca sellowiana*; (F-J) *Campomanesia adamantium*; (A,F) early flower development, showing larger ovary depression in (F) *C. adamantium*; (B,G) longitudinal cut in mature bud; note stamens slightly dislocated upwards in "G" due to robust gynoecium; (C,H) flowers post-anthesis; (D,I) comparison between (D) simple stigma of *A. sellowiana* and (I) capitate stigma of *C. adamantium*; (E, J) diagram of longitudinal cut in mature bud showing changes in architecture resultant from variation in gynoecium development. A, androecium; G, gynoecium; P, petal. Scale: 50μ m (A, F) 250μ m (B); 500μ m (G) c.5mm (C, H). Color code: light green = sepals; red = petals, yellow = androecium; blue = gynoecium. (H,D,I photos taken during field expeditions between 2014 and 2016; C from Google images).

Figure 3.6: Trichomes, elaiophores and anther glands in Myrteae flowers. (A) single celled trichomes (hairs) developing on external surface of a *Myrcia splendens* bud; (B) similar trichomes growing on the surface of the locule wall in *Eugenia itajurensis*. (C) Termite inside a pubescent bud of *Myrcia* sect. *Gomidesia*. (D,E) Elaiophores in (D) *Pimenta dioica* (indicated by arrows) and in (E) *Rhodamnia cinerea*. (F,G) Anther oil gland in (F) Rhodomyrtus tomentosa and (G) Myrcia rubella (arrow). G, gynoecium. Scale: 25µm (A), 50µm (E,D), 250µm (B,F,G), 3mm (C).

3.6 Andromonoecy: more common than acknowledged

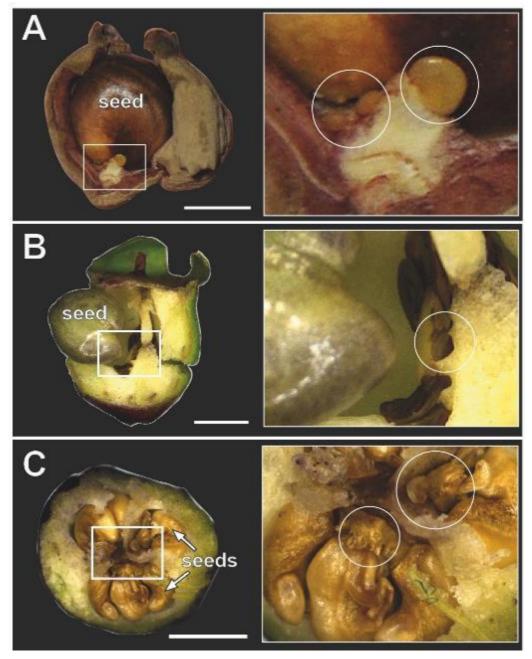
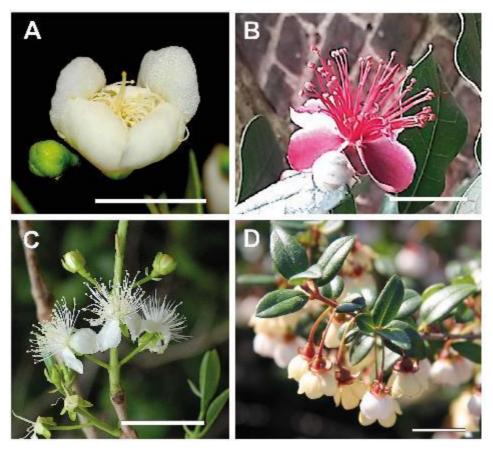

Most Myrteae flowers are hermaphrodite, with an androecium and a gynoecium developing as previously described. In a few species, however, individual plants within a population bear hermaphrodite flowers while others bear only male flowers. This trend known as andromonoecy is fairly common in Myrtaceae (see also Ashton 2011, for *Syzygium*). Andromonoecious species are present in at least seven Myrteae genera (*Pimenta, Psidium, Myrcia, Eugenia, Decaspermum and Kanakomyrtus, Myrtastrum*; Nic Lughada and Proenca, 1996; Snow et al., 2003; Wilson, 2011; pers. obs.) and their broad phylogenetic distribution indicates that this trend might be more common than previously appreciated. Plants bearing male flowers produce buds that either have an atrophied gynoecium (Fig. 3.7) or an additional whorl of stamens at the equivalent position to the gynoecium (pers.obs.). In two genera (*Pimenta* and *Decaspermum*), there is evidence that the breeding system is functionally dioecious, where apparently hermaphrodite plants do not produce viable pollen (Chapman, 1964; Kevan and Lack, 1985).

Figure 3.7: Andromonoecy in *Decaspermum parviflorum*. Flower on the left hand side has aborted gynoecium (staminate flower), while the one on the right hand side has both gynoecium and androecium present (hermaphrodite). Scale bar = 10mm.

3.7 Ovule oversupply

Even though number of ovules varies within a genus, most genera present a standard range of seed number. For most *Eugenia*, *Myrcia*, *Blepharocalyx* and *Luma* species for example, seed number is one or two regardless of the number of ovules produced (Fig. 3.8A,B; Berg, 1855-56; Lucas et al., 2007; Staggemeier et al. 2017). On the other hand, *Plinia*, *Myrceugenia* and *Myrtus* produce few seeds (less than ten, Fig. 3.8C) while *Psidium*, *Campomanesia* and *Acca* produce multiple seeds (Landrum and Kawasaki, 1997). In this way, ovule oversupply, i.e. the production of more ovules than will be fertilized (Rosenheim et al., 2016), occurs at different levels throughout Myrteae. Taxa that are single or few seeded are concentrated in lineages with "caulicine placentation" while multiple seeded taxa are more common in genera with "carpelate placentation". It is possible that the shift from carpellar (the plesiomorphic state; Pimentel et al., 2014) to "caulicine placentation" has constrained the number of ovules that can be fertilized. This may give an advantage to certain lineages, allowing the development of larger seeds that are better adapted to certain environments (e.g. rainforests; Foster, 1986) conferring a shift in quality vs. quantity strategy (Schupp, 1993).

Figure 3.8: Distinct degrees of ovule oversupply in fruits of similar size. Distinct lineages present from a few to several aborted ovules in the mature fruit. (A) *Myrcia spectabilis* showing three aborted ovules and one seed; (B) *Luma apiculata* showing several aborted ovules and one seed; and (C) *Myrtus communis*, showing several aborted ovules and several seeds. Scale bar = c.5mm.


3.8 Herkogamy and strategies to avoid selfing

Distinct genera and groups of genera present different strategies to avoid selfing. In species with folded stamens, the style straightens earlier than the stamens, thus presenting discreet protogyny that may help avoid self-pollination (Fig. 3.9A; most Myrteae are self-incompatible, Nic Lughadha and Proenca, 1996). Species with straight stamens usually have both stamens and style at the same height after anthesis (moment when flower opens), with pollen presentated ready for collection as soon as the flower opens, increasing the chances of self-pollination (see discussion in Chapter 2). Some *Eugenia* and *Psidium* species avoid this by presenting style gigantism, where

the style stands twice as high as the anthers during anthesis (see Chapter 5 for *Eugenia*). This strategy may be linked with higher diversification rates in these groups (Chapter 1), with further evidences from similar trends in other plant groups (de Vos, 2014). Heterostyly is not evident in any species, but cannot be discarded until more extensive surveys are carried out.

3.9 Common pollination strategies

Most pollination biology studies in Myrteae show a similar strategy. Anthesis commonly occurs just before sunrise and is concentrated in the months between September and December (spring in the southern hemisphere; Staggemeier et al., 2010). Myrteae flowers offer pollen as the main or sole reward (Gressler et al., 2006), and are visited by a range of insects, with bees considered the most general and effective pollinators (Nic Lughadha and Proenca, 1996; Gressler et al., 2006). Most Myrteae flowers can be loosely classified into two subcategories based on display. The first is a stamen-dependent display (also called brush blossom, Johnson & Briggs, 1981), where stamens are the main component of floral visual attraction (Fig. 3.9C). In this display, perianth reflexes backwards after anthesis and is thought to play a less important role than the stamens in pollinator attraction. The second trend is a petaloid display and in this case the larger non reflexed petals represent the most obvious component of floral attraction (Fig.3.9D); filaments are commonly shorter than in more stamen dependent displays. Many intermediaries are observed but even closely related groups may represent extremes in this continuum (e.g. Calycolpus vs. Myrtus). A similar variation between stamen-dependent and petaloid display is also observed in other Neotropical pollen-flowers, such as Solanaceae and Melastomataceae (Buchmann and Cane, 1989; Kriebel and Zumbado, 2014), and may be related to sub-syndromes of pollengathering bee pollination.

Figure 3.9: Diversity of floral display strategies in Myrteae. (A) Protogy during anthesis of *Luma apiculata*; (B) Red showy flowers of the bird pollinated *Acca sellowiana*; (C) Brush-blossom display in *Eugenia dichroma*.; (D) Petaloid display in *Ugni candollei*. Scale bar = c.10mm. (Photos taken during field expeditions between 2014 and 2016).

3.10 Uncommon pollination strategies

Pollination by vertebrates is rare in Myrteae, but exists in at least two genera. The bird pollinated *Myrrhinium* and *Acca* show similar floral strategies: decreased numbers of stamens, increased filament length, red coloured display and thick-sweet petals (Fig. 3.9B), the latter being the main reward for pollinators (Roitman, 1997). Reduced number of stamens is especially extreme in *Myrrhinium*, where just four to six stamens develop (Landrum, 1986). The fact that *Acca* and *Myrrhinium* represent species-poor clades (one and three species respectively) of relativelely old crown node ages (Chapter 1) suggests that specialization towards bird pollination has not been advantageous in Myrteae. It is important to reinforce that Myrteae flowers usually do not produce nectar, and thus cannot benefit from the most successful bird pollinators in the Neotropics, hummingbirds (as other diverse and sympatric bird pollinated groups such as Bignonieae (Alcantara and Lohman, 2010) and *Costus* (Kay et al., 2005) have; see also Rocca and Sazima, 2010). Other flowers with unusual shapes and somewhat tubular display and long filaments that resembles a bird or bat pollination syndromes are observed in the Australasian group (e.g. *Octamyrtus*; White 1951, Craven, 2006) and *Eugenia* from the Pacific region (section *Jossinia*; e.g. *Eugenia bullata*), but pollinator data is not available for these taxa.

SYSTEMATIC OUTLINE

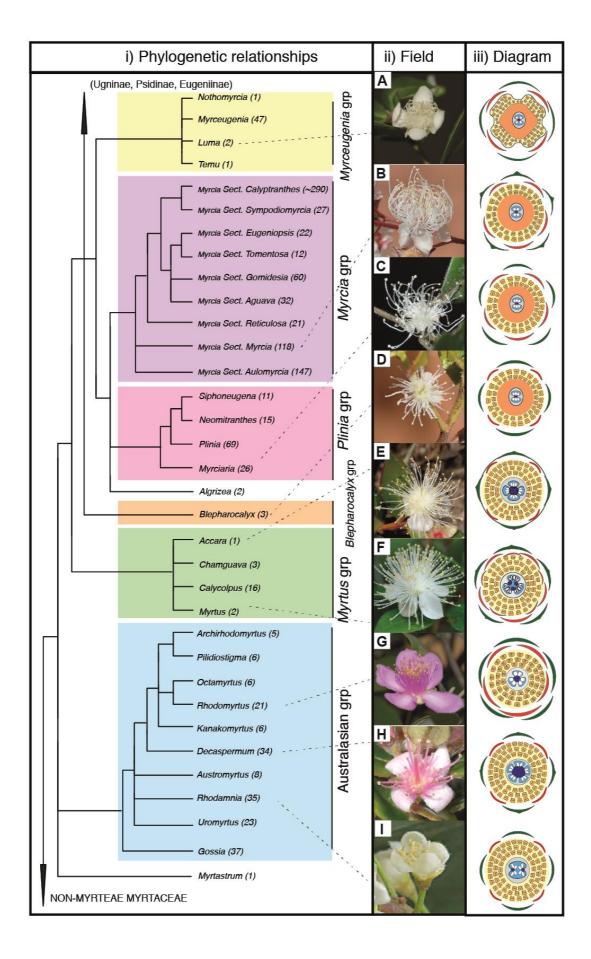
As stated previously, Myrteae flowers present strong morphological conservatism (Mc Vaugh, 1968). Homoplasy, possibly due to parallelisms (Scotland, 2011), is common and similar structures are found distributed throughout the tribe without a strong phylogenetic context (e.g. merism, fused calyx, trichomes, locule and ovule number; see also Chapters 4 and 6). Single apomorphic traits for individual clades are almost absent and therefore observation of a single organ is usually systematically irrelevant. Combinations of traits, however, can identify a genus or a group of genera with fairly confidence (Table 3.1). The overall floral pattern found in each phylogenetic group is described below.

3.11 Australasian group

The Australasian group is the only clade in Myrteae with distribution restricted to the Australasian and Pacific geographic regions (Lucas et al., 2007; Chapter 1). Flowers commonly present a pinkish display (Fig 3.10G,H), distinct from the usually white Neotropical groups. Possibly due to its old age and broad geographical distribution (Chapter 1), morphological characters that are exclusive and constant enough to be defined as diagnostic are few. In general, pentamery is the most common perianth arrangement, although tetramerous flowers are found in Octamyrtus, Rhodamnia and some Decaspermum species (Scott, 1978b, 1979a; Snow, 2000). The fused calyx, a common trend in Neotropical Myrteae, is almost absent and reported only for the male flowers of Kanakomyrtus dawsoniana (Snow, 2003). Staminal primordia are spread over the entire hypanthium, with stamens in a straight position in the bud (Chapter 2). Locule number is variable, but the most common pattern is trilocular. The unilocular ovary of Rhodamnia (Scott, 1979a) is formed by incomplete fusion of the bi or tri-carpellar ovary (Figs 3.3D and 3.10I). Ovule organization on the placenta is mostly uniseriate, in bilocular species giving a lamelliform aspect to the placenta (terminology used by Snow et al., 2003). Gossia is aberrant in the sense that it presents a multiseriate arrangement (Snow et al., 2003). The clade formed by Rhodomyrtus, Octamyrtus, Kanakomyrtus, Pilidiostigma and Archirhodomyrtus ("K+A+R+P+O" clade; supported by PP>0.95 and bootstrap >90; Chapter 1; Snow et al., 2011) has several shared floral modifications. These include a tissue called 'pseudo-septum' (term coined by Scott, 1978b,c) between layers of ovules on the placenta and peltate stigmas. Octamyrtus flowers are similar to those of Rhodomyrtus in general morphology, the main difference being an additional whorl of longer petals that gives its display a characteristic tubular appearance (Craven et al., 2016).

3.12 Myrtus group

The close relationship between the only European Myrtaceae, the genus *Myrtus*, and a group of Neotropical Myrteae has been recently clarified (see Chapter 1). These four genera (*Myrtus*, *Calycolpus*, *Accara* and *Chamguava*) share multiseriate ovule organization and somewhat elongated placentas, in contrast to other sympatric Myrteae genera with multiseriate ovules attached to a minute placenta (e.g. *Eugenia*) (Landrum, 1990; 1991; Landrum and Kawasaki, 1997). Perianth is pentamerous in *Myrtus* (Fig.3.10F) and *Calycolpus* and tetramerous in *Accara* (Fig.3.10E) and *Chamguava*. *Myrtus* frequently has an additional but somewhat reduced whorl of petals (Mulas and Fadda, 2004).


3.13 Blepharocalyx, Myrcia and Plinia groups

The *Blepharocalyx* group, consisting of *Blepharocalyx* as the sole genus, has historically been closely related to the *Pimenta* and *Psidium* groups based mainly on embryo morphology (Landrum, 1986). In terms of floral architecture, however, *Blepharocalyx* flowers are similar to those of the *Myrcia* and *Plinia* groups (Fig. 3.10B-D). Characters shared by all three groups include strongly folded stamens (Chapter 2), "caulicine placentation" (sensu Pimentel et al., 2014), multiseriate ovule arrangement on placenta and low number of ovules per ovary (this study, Lucas et al., 2007). Locules are usually two, less commonly three. Within the *Plinia* and *Myrcia* groups, flowers are very homogeneous and variation that diagnoses infrageneric groups come from traits such as hairs, calyx fusion, hypanthium elevation and thickness of the staminal ring (see Chapters 6 and 7).

3.14 Myrceugenia group

Myrceugenia has been historically associated with *Myrcia* based on of embryo characters (McVaugh, 1968) but in recent phylogenetic studies it has grouped with *Luma* (Lucas et al., 2007; Murillo-A et al., 2012; Chapter 1), *Blepharocalyx cruckshanksii* (or *Temu*, Berg 1855-57) and *Nothomyrcia* (Murillo-A and Ruiz, 2011). All four genera share common floral traits, including tetramery, discontinuous staminal rings that gives a semi-folded aspect prior to anthesis, two-four locular ovaries with uniseriate ovule organization (Fig.3.10A). The style is long and folds on top of the anthers.

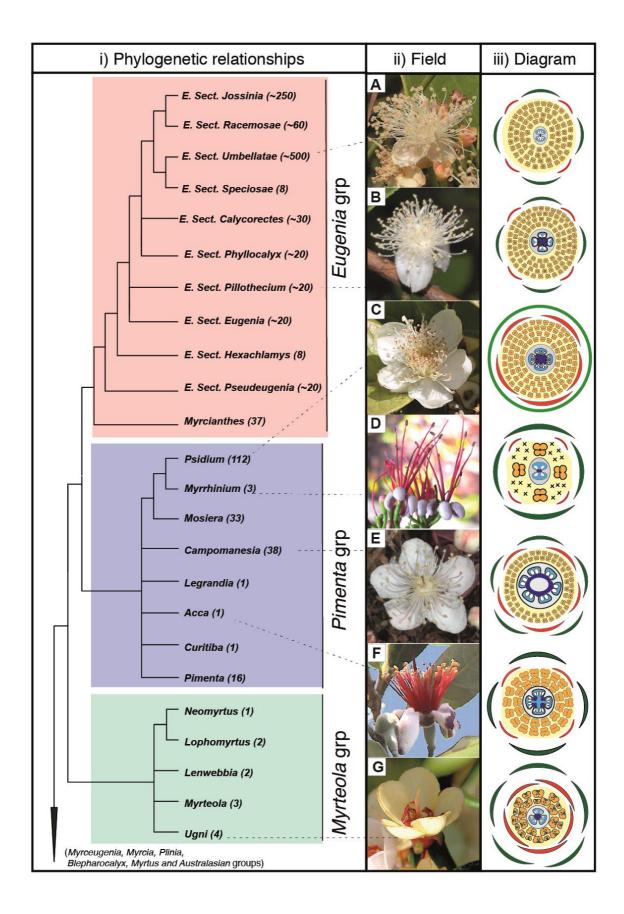
Figure 3.10 (next page): Simplified phylogeny of Myrteae (i), field pictures (ii) and floral diagrams (iii) of selected species. Topology is a summary of total molecular evidence (nuclear and plastidial) found by Lucas et al. (2005, 2007, 2011); Costa (2009); De-Carvalho (2013); Mazine et al., (2014); Bunger et al. (2015), Santos et al., (2017) and Chapter 1. Represented clades are those supported with strong PP and bootstrap by the majority of studies. Poorly supported relationships are collapsed into polytomies. Numbers between brackets represent estimated species diversity. (A) *Luma apiculata*; (B) *Myrcia linearifolia*; (C) *Myrciaria floribunda*; (D) *Blepharocalyx salicifolius*; (E) *Accara elegans*; (F) *Myrtus communis*; (G) *Rhodomyrtus tomentosa*; (H) *Decaspermum vitis-idea*; (I) *Rhodamnia cinerea*. "grp" = group. Color code in floral diagrams: green = sepals, red = petals, yellow = androecium, orange = hypanthium, blue = gynoecium (dark blue = placenta, light blue = locule, white = ovules and ovary walls). (Photos taken during field expeditions between 2014 and 2016).

3.17 Eugenia group

The Eugenia group consists of only two genera, *Myrcianthes* and *Eugenia*. While the first is a small sized genus mostly from the Andean region (Grifo, 1992), the latter is the largest and most widespread genus of Myrteae, with c. 1000 species spread throughout the Neotropics, New Caledonia, Madagascar, Continental Africa and India (Mazine et al., 2014). In general aspects, *Myrcianthes* is pentamerous while almost all *Eugenia* are tetramerous (Mazine et al., 2016). In both genera staminal primordia cover the whole hypanthium during flower development resulting in straight stamens in the bud (Chapter 2; see also Chapter 5). Ovaries are mostly bilocular, with a small central placenta that is cauline in origin and attached to a single point in the septum ovules are multiseriate (Landrum and Kawasaki, 1997).

In general aspects, floral morphology is homogeneous throughout the vast majority of *Eugenia* species (Figs. 3.11A,B) and, traditionally, morphological characters that separate sections and clades within the genus are related to non-floral aspects (e.g. seeds and inflorescences; Mazine et al., 2014). However, some fundamental differences in the gynoecium were observed in two lineages arising from the deepest nodes of *Eugenia*. *Eugenia* Sect. *Pseudeugenia* and sect. *Pilothecium* have somewhat uniseriate placentation and frequently more locules than the bilocular rule (Faria, 2014; Mazine et al., 2016). Other floral variation includes developmental rate (see Chapter 5), presence of trichomes and where they occur (Faria, 2014), the length of the style (Chapter 5) and calyx modifications (aspect and fusion; Bunger et al., 2015). These variations may have systematic relevance. Section *Pilothecium*, for example, can be easily identified by the presence of hairs in the ovary (a character shared with some *Pimenta* group genera; Faria, 2014) while most *Eugenia* sect. *Umbellatae* species have styles that are twice as long as in other clades (see Chapter 5). Furthermore, sect. *Phyllocalyx* is recognizable by the leafy aspects of sepals, which are morphologically similar to the bracteoles (Berg, 1855-57; Bunger et al., 2015).

3.15 Pimenta group


The *Pimenta* group genera present possibly the broadest relative flower diversity. Flowers are either tetramerous or pentamerous, but variation is common even at the species level. Locularity goes from bilocular to multilocular, sometimes reaching 18 locules in some *Campomanesia* (Landrum, 1986). Stamens are mostly straight in the bud, with the exception of *Pimenta*, where stamen primordia develop in a somewhat discontinuous ring (Chapter 2, similar to the *Myrceugenia* group). Stigmas are mostly capitate and this provides a good character to separate the *Pimenta* group from other sympatric Myrteae (Bentham, 1869; Landrum and Kawasaki 1997). *Psidium, Myrhhinium* and *Mosiera* form a strongly supported clade (Chapter 1), but differ in some fundamental aspects of flower organization. *Mosiera* and some *Psidium* (e.g. *Psidium guajava, P. guineense*; Fig. 3.11C), not all, have multiseriate ovule arrangement on placenta and locules that can be only partially fused (Landrum, 1992). Other *Psidium* species (e.g. *P. brownianum*, pers. obs.) present uniseriate ovule arrangement and in this sense are most similar to all other remainder genera in the *Pimenta* group (e.g. *Campomanesia*, Fig.3.11E). *Myrrhinium* presents strong reduction in number of stamens (Fig.3.11D; Landrum and Kawasaki, 1997). In this genus, structures resembling staminodes were observed on the base of the hypanthium and may

represent aborted filaments (crosses in floral diagram, Fig.3.11D). *Acca* flowers are very distinct from the *Pimenta* group and Myrteae. They present hairy anthers, not observed in any other genus, and distinct multilocular ovaries where the central axis is not fused, giving the impression of a unilocular chamber (Fig.3.11F; Dettori and Gaetano, 1991).

3.16 Myrteola group

The Myrteola group is the smallest clade treated here. It represents c. 15 species distributed in five small genera (Lucas et al., 2007; Wilson 2011; Chapter 1). Merism is useful for generic delimitation: Ugni and Neomyrtus are pentamerous while Myrteola, Lophomyrtus and Lenwebbia are mostly tetramerous (Landrum, 1988). Stamens are mostly straight in the bud (Chapter 2). Ovaries are either bi- or tri-locular and ovule arrangement is uni- or bi-seriate, never multiseriate. Ugni has an overall distinct floral morphology, with a campanulate corolla formed by relatively large petals, resembling some Ericaceae (Fig. 3.11G; Wilson, 2011); the red anthers are sagittate and longitudinally covered in oil glands. Lenwebbia has an unusual androecium morphology. The staminal base is slightly fused and the discontinuous rings are similar to those of the Myrceugenia group, giving the stamens a semi-folded aspect in the bud (Chapter 2). Myrteola, a genus with a Patagonian distribution, presents small flowers with few stamens but a non-reduced number of ovules, increasing the ovule/pollen ratio that characterize a possible change in breeding system (Cruden, 1977). Neomyrtus and Lophomyrtus, the only Myrteae native to New Zealand, are positioned together in the phylogeny (Lucas et al., 2007; Chapter 1). In overall flower aspect, however, Neomyrtus is like Ugni (larger glandulous anthers, biseriate ovules on the placenta), whilst Lophomyrtus resembles Lenwebbia (somewhat semi-folded stamens in bud, uniseriate ovules on the placenta) (Belsham and Orlovich, 2002).

Figure 3.11 (next page): Simplified phylogeny of Myrteae (i), field pictures (ii) and floral diagrams (iii) of selected species. Topology is a summary of total molecular evidence (nuclear and plastidial) found by Lucas et al. (2005, 2007, 2011); Costa (2009); De-Carvalho (2013); Mazine et al., (2014); Bunger et al. (2015), Santos et al., (2017) and Chapter 1. Represented clades are those supported with strong PP and bootstrap by the majority of studies. Poorly supported relationships are collapsed into politomies. Numbers between brackets represent estimated species diversity. (A) *Eugenia bimarginata*; (B) *Eugenia stipitata*; (C) *Psidium guajava*; (D) *Myrrhinium atropurpureum*; (E) *Campomaneia adamantium*; (F) *Acca sellowiana*; (G) *Ugni candolei.* "grp" = group. Color code in floral diagrams: green = sepals, red = petals, yellow = androecium, orange = hypanthium, blue = gynoecium (dark blue = placenta, light blue = locule, white = ovules and ovary walls). (Photos taken during field expeditions between 2014 and 2016; except D (Google images)).

3.17 Incertae sedis

Five genera are here considered as incertae sedis (unplaced): Algrizea, Myrtastrum, Amomyrtella, Myrtella and Lithomyrtus. The first two have an uncertain phylogenenetic relationships with other groups (Lucas et al., 2005; 2007; Vasconcelos et al., 2017; Murillo-A et al., 2012); the last three are still to be included in molecular analysis so their phylogenetic position in uncertain. Algrizea is a small genus of two species that present many morphological similarities with Myrcia and Plinia groups, including folded stamens in the bud, bilocular ovaries with "caulicine placentation" (sensu Pimentel et al., 2014) and reduced number of multisseriate organized ovules (Proenca et al., 2006). Algrizea appears either as sister to Myrcia group (Lucas et. al, 2007) or sister to/nested within Plinia group (Staggemeier et al., 2015, Chapter 1), but its unstable position and somewhat mixed morphology makes it difficult to include in either one or the other (Proenca et al., 2006; Sobral et al., 2010). Myrtastrum, a mono-specific genus endemic to New Caledonia, has an unusual floral structure relative to other extant Myrteae. The stigma is capitate but shorter than the anthers (protoandry), a pattern not observed elsewhere in the tribe. Petals are shorter than sepals, restricting the degree to which the corolla reflexes (Snow, 2000). The gynoecium is three locular with incomplete fusion and ovule arrangement and has been described as biseriate (Scott, 1979), but seems to be in fact uniseriate. Amomyrtella, a genus from the Andes, is described as a genus with morphologically distinct flowers (Landrum and Morocho, 2011), with anthers up to 2mm and trilocular ovaries with biseriate ovule arrangement on placenta. Such descriptions place the genus closest to Ugni and predict that Amomyrtella will ultimately be positioned in the Myrteola group. Myrtella and Lithomyrtus have general Australasian group traits: straight stamens in the bud, bi-tetralocular ovaries and a uniseriate ovule arrangement on placenta (Scott, 1978, 1979; Snow and Guymer, 1999). The lack of a capitate/peltate stigma and pseudoseptum between ovules suggest that their position will be other than within the K+A+R+P+O clade.

Clade	Genus	Floral formulae	Ovule arrangement on placenta	Stigma	Position of stamens in the bud
	Archirhodomyrtus	ç²K5* C5* A∞* Ĝ(2-3) Vx∞	Uniseriate	Capitate	Straight
	Austromyrtus	ợ K5* C5* A∞* Ĝ(2) Vx10-20	Apparently biseriate	Simple	Straight
	Decaspermum	ੰ ⊈ K4-5* C4-5* A∞* Ĝ(5) Vx10	Uniseriate	Capitate	Straight
	Gossia	ç²K4-5*C4-5*A∞* Ĝ(2) Vx5-20	Multiseriate	Simple	Straight
Australasian	Kanakomyrtus	ੀ ਕੇ K4-5* C4-5* A∞* Ĝ(2-4) Vx∞	Uniseriate	Capitate (with linear lobes)	Straight to semi-curved
	Octamyrtus	ç³K4* C4*+4*+2↓ A15-20* Ĝ(3) Vx∞	Uniseriate	Capitate	Straight
	Pilidiostigma	ç²K4-5*C4-5*A∞* Ĝ(1-3) ∔ Vp-Vx∞	Uniseriate	Capitate	Straight
	Rhodamnia	ç²K4-5*C4-5*A∞* Ĝ(2-3) Vp10-20	Uni- or biseriate	Simple or capitate	Straight
	Rhodomyrtus	ợ²K5* C5* A∞* Ĝ(3) Vx∞	Uniseriate	Capitate	Straight
	Uromyrtus	ç²K5*C5*A∞* Ĝ(3) Vx10-20	Uniseriate	Simple	Straight
General	ground plan	⊄ੇ K4-5*C4-5*A∞* Ĝ(2-3) +Vx5-∞	Uniseriate	Simple or capitate	Straight
Blepharocalyx	Blepharocalyx eggersii	ợ'K2*C2*A∞* Ĝ(2) Vx4-8	Multiseriate	Simple	Strongly incurved
	Blepharocalyx salicifolius	ợ̃K4*C4*A∞* Ĝ(2) Vx4-16	Multiseriate	Simple	Strongly incurved
General	ground plan	ợ' K2-4*C2-4*A∞* Ĝ(2) Vx4-16	Multiseriate	Simple	Strongly incurved
Eugenia	Eugenia	ੰਊK4*C4*A∞* Ĝ(2) Vx4-∞	Multiseriate	Simple	Straight
	Myrcianthes	ựK5*C5*A∞* Ĝ(2) Vx∞	Multiseriate	Simple	Straight
General	ground plan	ự K4*C4*A∞* Ĝ(2) +Vx4-∞	Multiseriate	Simple	Straight
Myrceugenia	Luma	ự K4*C4*A∞* Ĝ(2) +Vx∞	Uniseriate	Simple	Semi-curved

Table 3.1: Floral formulae, general ground plan and diagnostic characters in Myrteae clades.

	Myrceugenia	र्¢ K4*C4*A∞* Ĝ(2) +Vx∞	Uniseriate	Simple	semi-curved
	Nothomyrcia	਼੍ਰਾਂ K4*C4*A∞* Ĝ(2) +Vx∞	Uniseriate	Simple	semi-curved
	Temu			Simple	
	(Blepharocalyx cruckshanksii)	⊄ K4*C4*A∞* Ĝ(2) +Vx∞	Uniseriate		semi-curved
Gene	al ground plan	¢ K4*C4*A∞* Ĝ(2) +Vx∞	Uniseriate	Simple	semi-curved
Myrcia	Myrcia	⊈ K5*C5*A∞* Ĝ(2-3) +Vx4-6	Multiseriate	Simple	Strongly incurved
	Lenwebbia	ự K4*C4*A∞* Ĝ(3) + Vx∞	Uniseriate	Simple	Semi-curved
	Lophomyrtus	ự K4*C4*A∞* Ĝ(2-3) +Vx∞	Uniseriate	Simple	Semi-curved
Myrteola	Myrteola	ự K4-5*C4-5*A10-30* Ĝ(2-3) ∔Vx∞	Uniseriate	Simple	Straight
	Neomyrtus	ợ² K5*C5*A∞* Ĝ(2) Vp∞	Biseriate	Simple	Straight
	Ugni	ợ² K5*C5*A20-30* Ĝ(3) Vx∞	Biseriate	Simple	Straight
Gener	ral ground plan	ଦୁ' K4-5*C4-5*A20-∞* Ĝ(2-3) +Vx∞	Uni- or Biseriate	Simple	Straight or Semi-curved
	Accara	ự K(4)*C4*A∞* Ĝ(4) Vx∞	Multiseriate	Simple	Straight
Myrtus	Calycolpus	ợ' K5* C5* A∞* Ĝ(4-6) Vx∞	Multiseriate	Simple to slightly capitate	Straight
	Chamguava	ợ K(4)* C4* A∞* Ĝ(2) Vx∞	Multiseriate	Simple	Straight
	Myrtus	ợ K5* C5* A∞* Ĝ(3) ∔Vx∞	Multiseriate	Simple	Straight
Gene	ral ground plan	੍ਰਾੇ K4-5* C4-5* A∞* Ĝ(2-4) +Vx∞	Multiseriate	Simple	Straight
	Acca	ợੌK5* C4–5* A15-30* Ĝ(4)∔Vx∞	Biseriate	Simple	Straight
D . (Campomanesia	ợੌK5* C5* A∞* Ĝ(2-18) Vx ∞	Uniseriate	Capitate	Straight
Pimenta	Curitiba	ợੋK4* C4* A∞* Ĝ(2) Vx∞	Uniseriate	Simple	Straight
	Legrandia	ợੋK4* C4* A∞* Ĝ(2-3) \/x∞	Uniseriate	Simple	Straight
	Mosiera	ợ̃K4* C4* A∞* Ĝ(2-3) Vx∞	Multiseriate	Capitate	Straight

	Myrrhinium	ç²K4*C4*A4–6:∞⁰∂ Ĝ(2) Vx7–15	Uniseriate	Simple	Straight
	Pimenta	ੀਊ K4–5* C4–5* A∞* Ĝ(2) Vx 1–8	Uniseriate	Simple	Semi-curved
	Psidium	ç²K(4–5)* C4–5* A∞* Ĝ(2–5)∔Vx∞	Multiseriate	Capitate	Straight
General	ground plan	⊄K4–5* C4–5* A∞* Ĝ(2–∞)∔Vx∞	Uni- or Multiseriate	Simple or Capitate	Straight
	Myrciaria	⊈K4* C4* A∞* Ĝ(2)+Vx4-6	Multiseriate	Simple	Strongly incurved
Plinia	Neomitranthes	¢ [*] K(4)* C4 ^r * A∞* Ĝ(2) Vx4-8	Multiseriate	Simple	Strongly incurved
	Plinia	ợ'K4* C4* A∞* Ĝ(2) Vx6-10	Multiseriate	Simple	Strongly incurved
	Siphoneugena	⊈K4* C4 * A∞* Ĝ(2) Vx4-8	Multiseriate	Simple	Strongly incurved
General	ground plan	⊄K4* C4* A∞* Ĝ(2) +Vx4-8	Multiseriate	Simple	Strongly incurved

CONCLUSION

The general ground plan of the clades does not differ significantly and is similar to that of other Myrtaceae tribes (Wilson, 2011), but combination of floral traits points with failry high confidence to individual clades. In terms of systematic relevance, the general sequence in order of floral character stability, from higher to lower taxonomic levels is: androecium structure (stamen primordia distribution over the hypanthium and consequent position in the pre-anthetic bud); gynoecium structure (origin of placenta and ovule arrangement), and lastly perianth structure (number of parts and degree of fusion).

In uniform groups such as this, careful morphological studies that reveal discrete changes responsible for flexibility of reproductive strategies are the most relevant. In Myrteae, these include subtle herkogamic effects, changes from brush-blossom to a petaloid display (and vice-versa) and poorly understood evolutionary trends such as andromonoecy and ovule oversupply. The gynoecium, a hidden and difficult structure to analyse, appears to be especially meaningful in the evolution of Myrteae. Ovary development appears to influence the number of seeds, the development of the embryos and to balance inbreeding vs. outbreeding (by strong style elongation in some groups) and pollen competition due to distinct compitum arrangements (Mulcahy and Mulcahy, 1987). Deeper studies of ovary structure and evaluation of its role in these processes will be profitable. Furthermore, fine changes in one floral whorl lead to spatial changes that affect the development of the next whorl (e.g. Fig.3.5), showing the importance of considering the whole flower system in conjunction as a single unit under natural selection.

APPENDIX

Appendix 3.1: List of analysed specimens in Chapters 2 and 3. All vouchers deposited in herbarium K. Species name and authorship according to the WCSP (2017). Clade names according to Figs.3.10 and 3.11.

Clade	Species	Voucher	Collection locality
Australasian	Archirhodomyrtus beckleri (F.Muell.) A.J.Scott	B. Gray 1548	Australia (Queensland)
Australasian	Archirhodomyrtus turbinata (Schltr.) Burret	J. Soewarto HB 11	New Caledonia
Australasian	Archirhodomyrtus turbinata (Schltr.) Burret	PS Green 1258	New Caledonia
Australasian	Austromyrtus dulcis (C.T.White) L.S.Sm.	S. Belsham M77	Australia (Queensland)
Australasian	Decaspermum parviflorum (Lam.) A.J.Scott	T. Vasconcelos 728	Malayisia (Sabah)
Australasian	Decaspermum parviflorum (Lam.) A.J.Scott	T. Vasconcelos 730	Malayisia (Sabah)
Australasian	Decaspermum vitis-idaea Stapf	T. Vasconcelos 729	Malayisia (Sabah)
Australasian	Gossia bidwillii (Benth.) N.Snow & Guymer	L.S. Smith 4516a	Australia (Queensland)
Australasian	Kanakomyrtus longipetiolata N.Snow	H.S. Mackee 32732	New Caledonia
Australasian	Octamyrtus arfancensis Kaneh. & Hatus. ex C.T.White	P. Van Royen 7925	New Guinae
Australasian	Octamyrtus pleiopetala Diels	D.R. Pleyte 209	New Guinae
Australasian	Octamyrtus sp.	Johns 9885	New Guinae
Australasian	Pilidiostigma tropicum L.S.Sm.	S.F. Kajewski 1265	Australia (Queensland)
Australasian	Pilidiostigma tropicum L.S.Sm.	PiF 27636	Australia (Queensland)
Australasian	Rhodamnia cinerea Jack	T.Vasconcelos 672	Singapore
Australasian	Rhodamnia dumetorum (DC.) Merr. & L.M.Perry	Schanzer I. et al. 148c	Australia
Australasian	Rhodomyrtus tomentosa (Aiton) Hassk.	T. Vasconcelos 726	Malayisia (Sabah)
Australasian	Rhodomyrtus tomentosa (Aiton) Hassk.	Amin and Francis SAN116159	NA (from US spirit collection)
Australasian	Rhodomyrtus tomentosa (Aiton) Hassk.	T. Vasconcelos 678	Singapore
Australasian	Rhodomyrtus tomentosa (Aiton) Hassk.	Eyde 4/79	NA (from MO spirit collection)
Australasian	Uromyrtus archboldiana (Merr. & L.M.Perry) A.J.Scott	P. Puradyatmika 7425	New Guinae

Australasian	Uromyrtus emarginata (Pancher ex Baker f.) Burret	T. Vasconcelos 605	New Caledonia
Australasian	Uromyrtus emarginata (Pancher ex Baker f.) Burret	T. Vasconcelos 628	New Caledonia
Blepharocalyx	Blepharocalyx eggersii (Kiaersk.) Landrum	B. W. Nelson 923	Brazil (AM)
Blepharocalyx	Blepharocalyx eggersii (Kiaersk.) Landrum	T.Vasconcelos 458	Brazil (BA)
Blepharocalyx	Blepharocalyx salicifolius (Kunth) O.Berg	J.A. Ratter 5984	Brazil (MS)
Blepharocalyx	Blepharocalyx salicifolius (Kunth) O.Berg	T.R.S. Silva 13494	Brazil (MG)
Blepharocalyx	Blepharocalyx salicifolius (Kunth) O.Berg	J.E.Q Faria 4050	Brazil (DF)
Eugenia	Myrcianthes fragrans (Sw.) McVaugh	T.Vasconcelos 535	Costa Rica
Eugenia	Myrcianthes fragrans (Sw.) McVaugh	R. Chaco'n 350	NA
Eugenia	Myrcianthes pungens (O.Berg) D.Legrand	J.E.Q. Faria 4277	Brazil (DF)
Eugenia (sect. Calycorectes)	Calycorectes acutatus (Miq.) Toledo	T. Vasconcelos 506	Brazil (DF)
Eugenia (sect. Calycorectes)	Calycorectes bergii Sandwith	J.G. Myers 5955	French Guiana
Eugenia (sect. Eugenia)	Eugenia ligustrina (Sw.) Willd.	Hamilton M.A. 570	British Virgin Islands
Eugenia (sect. Eugenia)	Eugenia ligustrina (Sw.) Willd.	TV 570	Dominican Republic
Eugenia (sect. Eugenia)	Eugenia uniflora L.	T. Vasconcelos s.n.	RBG Kew living collection (native to Brazil)
Eugenia (sect. Hexachlamys)	Eugenia splendens O.Berg	J.E.Q.Faria 4196	Brazil (BA)
Eugenia (sect. Hexachlamys)	Hexachlamys edulis (O.Berg) Kausel & D.Legrand	T.M. Pedersen 2756	Brazil (SP)
Eugenia (sect. Jossinia)	Eugenia malangensis (O.Hoffm.) Nied.	Robson 342	South Africa
Eugenia (sect. Jossinia)	Eugenia malangensis (O.Hoffm.) Nied.	Brenan 7962	South Africa
Eugenia (sect. Jossinia)	Eugenia malangensis (O.Hoffm.) Nied.	Brenan 8024	South Africa
Eugenia (sect. Jossinia)	Eugenia malangensis (O.Hoffm.) Nied.	Greenway 8129	South Africa
Eugenia (sect. Jossinia)	Eugenia bullata Pancher ex Guillaumin	T.Vasconcelos 608	New Caledonia
Eugenia (sect. Jossinia)	Eugenia paludosa Pancher ex Brongn. & Gris	T.Vasconcelos 646	New Caledonia
Eugenia (sect. Jossinia)	Eugenia roseopetiolata N.Snow & Cable	T. Vasconcelos s.n.	RBG Kew living collection (native to Madagascar)

Eugenia (sect. Phyllocalyx)	Eugenia involucrata DC.	J.E.Q. Faria 4047	Brazil (DF)
Eugenia (sect. Phyllocalyx)	Eugenia involucrata DC.	T.Vasconcelos 734	Brazil (DF)
Eugenia (sect. Phyllocalyx)	Eugenia involucrata DC.	T.Vasconcelos 256	Brazil (DF)
Eugenia (sect. Pilothecium)	Eugenia itajurensis Cambess.	J.E.Q. Faria 4250	Brazil (BA)
Eugenia (sect. Pilothecium)	Eugenia klotzschiana O.Berg	Heringer et al. 1975	Brazil (GO)
Eugenia (sect. Pilothecium)	Eugenia pohliana DC.	J.E.Q. Faria 4184	Brazil (BA)
Eugenia (sect. Pilothecium)	Eugenia stipitata McVaugh	T.Vasconcelos 677	Singapore (cultivated, native to Brazilian Amazon
Eugenia (sect. Pilothecium)	Eugenia victoriana Cuatrec.	T.Vasconcelos 717	Singapore (cultivated, native to Colombia)
Eugenia (sect. Pseudeugenia)	Eugenia azurensis O.Berg	T.Vasconcelos 433	Brazil (BA)
Eugenia (sect. Pseudeugenia)	Eugenia azurensis O.Berg	J.E.Q. Faria 4186	Brazil (BA)
Eugenia (sect. Pseudeugenia)	Eugenia pyriformis Cambess.	L.M. Borges 1090	Brazil (RJ)
Eugenia (sect. Pseudeugenia)	Eugenia pyriformis Cambess.	Reitz & Klein 11341	Brazil (RJ)
Eugenia (sect. Racemosae)	Eugenia angustissima O.Berg	D.F.Lima 489	Brazil (GO)
Eugenia (sect. Racemosae)	Eugenia biflora (L.) DC.	T.Vasconcelos 589	Dominican Republic
Eugenia (sect. Racemosae)	Eugenia longiracemosa Kiaersk.	T.Vasconcelos 310	Brazil (AM)
Eugenia (sect. Racemosae)	Eugenia modesta DC.	TV 476	Brazil (MG)
Eugenia (sect. Racemosae)	Eugenia modesta DC.	TV 478	Brazil (MG)
Eugenia (sect. Racemosae)	Eugenia paracatuana O.Berg	PO Rosa 1399	Brazil (GO)
Eugenia (sect. Speciosae)	Eugenia dichroma O.Berg	T. Vasconcelos 466	Brazil (ES)
Eugenia (sect. Umbellatae)	Calyptrogenia cuspidata Alain	E. Lucas 1125	Dominican Republic
Eugenia (sect. Umbellatae)	Eugenia bahiensis DC.,	J.E.Q. Faria 4229	Brazil (BA)
Eugenia (sect. Umbellatae)	Eugenia coffeifolia DC. Vel. Eugenia adenocalyx DC.	A. Giaretta 1441	Brazil (RR)
Eugenia (sect. Umbellatae)	Eugenia pluriflora DC.	Hatschbach 19022	Brazil (PR)
Eugenia (sect. Umbellatae)	Eugenia protenta McVaugh	T.Vasconcelos 350	Brazil (AM)

Eugenia (sect. Umbellatae)	Eugenia punicifolia (Kunth) DC.	T.Vasconcelos 475	Brazil (MG)
Eugenia (sect. Umbellatae)	Eugenia punicifolia (Kunth) DC.	J.E.Q. Faria 4051	Brazil (DF)
Eugenia (sect. Umbellatae)	Eugenia punicifolia (Kunth) DC.	T.Vasconcelos 284	Brazil (GO)
Eugenia (sect. Umbellatae)	Eugenia punicifolia (Kunth) DC.	J.E.Q. Faria 4237	Brazil (ES)
Eugenia (sect. Umbellatae)	Eugenia aff. schunkei McVaugh	A.Giaretta 1419	Brazil (AM)
Eugenia (sect. Umbellatae)	Eugenia stictosepala Kiaersk.	J.E.Q. Faria 4269	Brazil (ES)
Eugenia (sect. Umbellatae)	Hottea ekmanii (Urb.) Borhidi	E. L. Ekman 2502c	Dominican Republic
Incertae sedis	Algrizea macrochlamys (DC.) Proença & NicLugh	E. Melo 4496	Brazil (BA)
Incertae sedis	Algrizea minor Sobral, Faria & Proença	J.E.Q. Faria 4157	Brazil (BA)
Incertae sedis	Amomyrtus luma (Molina) D. Legrand & Kausel	RBGE 1996- 1065	RBG Edimburg living collection (native to Chile)
	Myrtastrum rufopunctatum (Pancher ex Brongn. & Gris)		
Incertae sedis	Burret	M.W. Callmander 796	New Caledonia
Myrceugenia	Blepharocalyx cruckshanksii (Hook. & Arn.) Nied.	M.F. Gardner 4193	Chile
Myrceugenia	Luma apiculata (DC.) Burret	T. Vasconcelos s.n.	RBG Kew living collection (native to Chile)
Myrceugenia	Myrceugenia alpigena (DC.) Landrum	J.E.Q. Faria 4264	Brazil (MG)
Myrceugenia	Myrceugenia alpigena (DC.) Landrum	T.Vasconcelos 489	Brazil (MG)
Myrceugenia	Myrceugenia bananalensis Gomes-Bezerra & Landrum	JEQ Faria 4048	Brazil (DF)
Myrceugenia	Myrceugenia bananalensis Gomes-Bezerra & Landrum	JEQ Faria 4049	Brazil (DF)
Myrceugenia	Myrceugenia planipes (Hook. & Arn.) O.Berg	E. J. Lucas s.n.	RBG Kew living collection (native to Chile)
Myrcia (clade Aulomyrcia)	Calyptranthes multiflora Poepp. ex O.Berg	A.Giaretta 1429	Brazil (AM)
Myrcia (clade Aulomyrcia)	Calyptranthes multiflora Poepp. ex O.Berg	A.Giaretta 1431	Brazil (AM)
Myrcia (clade Aulomyrcia)	Calyptranthes multiflora Poepp. ex O.Berg	T.Vasconcelos 379	Brazil (AM)
Myrcia (clade Aulomyrcia)	Myrcia strigipes Mart.	J.E.Q. Faria 6303	Brazil (RJ)
Myrcia (clade Aulomyrcia)	Marlierea excoriata Mart.	T.Vasconcelos 493	Brazil (MG)

Myrcia (clade Aulomyrcia)	Marlierea glabra Cambess.	JEQ Faria 4246	Brazil (ES)
Myrcia (clade Aulomyrcia)	Marlierea neuwiedeana (O.Berg) Nied.	TV 467	Brazil (ES)
Myrcia (clade Aulomyrcia)	Marlierea umbraticola (Kunth) O.Berg	TV 311	Brazil (AM)
Myrcia (clade Aulomyrcia)	Myrcia rubella Cambess.	D.F.Lima 495	Brazil (GO)
Myrcia (clade Aulomyrcia)	Myrcia amazonica DC.	T. Vasconcelos 591	Brazil (SP)
Myrcia (clade Aulomyrcia)	Myrcia hirtiflora DC.	TV 440	Brazil (BA)
Myrcia (clade Calyptranthes)	Calyptranthes aff. blanchetiana O.Berg	E. Lucas 1208	Brazil (BA)
Myrcia (clade Calyptranthes)	Calyptranthes brasiliensis Spreng.	J.E.Q. Faria 4244	Brazil (BA)
Myrcia (clade Calyptranthes)	Calyptranthes chytraculia (L.) Sw.	KC 18-16	Jamaica
Myrcia (clade Calyptranthes)	Calyptranthes grammica (Spreng.) D.Legrand	T.Vasconcelos 483	Brazil (MG)
Myrcia (clade Calyptranthes)	Calyptranthes lucida Mart. ex DC.	T.Vasconcelos 259	Brazil (DF)
Myrcia (clade Calyptranthes)	Calyptranthes pallens Griseb.	T.Vasconcelos 534	Costa Rica
			RBG Kew living collection
Myrcia (clade Calyptranthes)	Calyptranthes thomasiana O.Berg	T.Vasconcelos s.n.	(native to British Virgin Islands)
Myrcia (clade Calyptranthes)	Mitranthes clarendonensis (Proctor) Proctor,	T.Vasconcelos 510	Jamaica
Myrcia (clade Calyptranthes)	Mitranthes ottonis O.Berg	E. Otto 272	Jamaica
Myrcia (clade Eugeniopsis)	Marlierea laevigata (DC.) Kiaersk.	J.E.Q. Faria 4236	Brazil (ES)
Myrcia (clade Eugeniopsis)	Myrcia multipunctata Mazine	T.Vasconcelos 801	Brazil (MG)
Myrcia (clade Gomidesia)	Myrcia fenzliana O.Berg	E. Nic-Lughada H50637	Brazil (BA)
Myrcia (clade Gomidesia)	Myrcia sp.1	T. Vasconcelos 500	Brazil (MG)
Myrcia (clade Gomidesia)	Myrcia spectabilis DC.	E. Lucas 1214	Brazil (BA)
Myrcia (clade Gomidesia)	Myrcia spectabilis DC.	E. Lucas 1210	Brazil (BA)
Myrcia (clade Guianensis)	Myrcia guianensis (Aubl.) DC.	D.F.Lima 463	Brazil (MG)
Myrcia (clade Guianensis)	Myrcia laxiflora Cambess.	E. Lucas 1221	Brazil (BA)
Myrcia (clade Guianensis)	Myrcia nivea Cambess.	D.F. Lima 492	Brazil (GO)
Myrcia (clade Guianensis)	Myrcia sp.2	D.F. Lima 483	Brazil (MG)

Myrcia (clade Myrcia)	Myrcia aff. eriopus DC.	E. Lucas 1205	Brazil (BA)
Myrcia (clade Myrcia)	Myrcia cardiaca O.Berg	T.Vasconcelos 274	Brazil (GO)
Myrcia (clade Myrcia)	Myrcia linearifolia Cambess.	P.O. Rosa 1402	Brazil (GO)
Myrcia (clade Myrcia)	Myrcia paivae O.Berg	T.Vasconcelos 516	Costa Rica
Myrcia (clade Myrcia)	Myrcia paivae O.Berg	T.Vasconcelos 298	Brazil (AM)
Myrcia (clade Myrcia)	Myrcia splendens (Sw.) DC.	T.Vasconcelos 250	Brazil (DF)
Myrcia (clade Myrcia)	Myrcia splendens (Sw.) DC.	T.Vasconcelos 587	Dominican Republic
Myrcia (clade Myrcia)	Myrcia splendens (Sw.) DC.	T.Vasconcelos 753	Brazil (ES)
Myrcia (clade Myrcia)	Myrcia splendens (Sw.) DC.	G.C. Herrera 9932	NA
Myrcia (clade Myrcia)	Myrcia sylvatica (G.Mey.) DC.	E. Lucas 1222	Brazil (BA)
Myrcia (clade Reticulosae)	Myrcia pubipetala Miq.	E. Lucas 477	Brazil (SP)
Myrcia (clade	Myrcia amplexicaulis (Vell.) Hook.f.	E. Lucas 1207	
Sympodiomyrcia)		L. Lucas 1207	Brazil (BA)
Myrcia (clade			
Sympodiomyrcia)	Myrcia mucugensis Sobral	TV 441	Brazil (BA)
Myrcia (clade			
Sympodiomyrcia)	Myrcia mucugensis Sobral	JEQ Faria 4197	Brazil (BA)
Myrcia (clade			
Sympodiomyrcia)	Myrcia subcordata DC.	JEQ Faria 4257	Brazil (ES)
Myrcia (clade	Myrcia trimera Sobral	E. Lucas 1219	
Sympodiomyrcia)		L. Lucas 1219	Brazil (BA)
Myrcia (clade	Myrcia truncada Sobral	E. Lucas 1216	
Sympodiomyrcia)		E. Lucas 1210	Brazil (BA)
Myrcia (clade Tomentosa)	Myrcia laruotteana Cambess.	J.E.Q. Faria 4046	Brazil (DF)
Myrcia (clade Tomentosa)	Myrcia tomentosa (Aubl.) DC.	T.Vasconcelos 262	Brazil (DF)
Myrcia (clade Tomentosa)	Myrcia tomentosa (Aubl.) DC.	PO Rosa 1379	Brazil (DF)
Myrteola	Lenwebbia prominens N.Snow & Guymer	L. Bird AQ424632	Australia (Queensland)

Myrteola	Lenwebbia prominens N.Snow & Guymer	G.P. Guymer AQ424641	Australia (Queensland)
Myrteola	Lophomyrtus obcordata (Raoul) Burret	spirit collection 10291	New Zealand
Myrteola	Lophomyrtus obcordata (Raoul) Burret	Cult Lord Headfort (Kew id:16201)	New Zealand
Myrteola	Lophomyrtus obcordata (Raoul) Burret	Melville 5751	New Zealand
Myrteola	Myrteola nummularia (Lam.) O.Berg	M.F. Gardner 3579	Falklands
Myrteola	Myrteola nummularia (Lam.) O.Berg	G.T.Prance 28535	Falklands
Myrteola	Neomyrtus pedunculata (Hook.f.) Allan	B.H.Macmillan 76/102	New Zealand
Myrteola	Neomyrtus pedunculata (Hook.f.) Allan	Colens 1714	New Zealand
Myrteola	Ugni candolei (Barnéoud) O.Berg	T.Vasconcelos s.n.	RBG Kew living collection (native to Chile)
Myrteola	Ugni myricoides (Kunth) O.Berg	T.Vasconcelos 533	Costa Rica
Myrtus	Accara elegans (DC.) Landrum	T.Vasconcelos 485	Brazil (MG)
Myrtus	Calycolpus goetheanus (Mart. ex DC.) O.Berg	T.Vasconcelos 332	Brazil (AM)
Myrtus	Chamguava schippii (Standl.) Landrum	D.Aguilar 9833	Costa Rica
Myrtus	Chamguava schippii (Standl.) Landrum	P.H. Gentle 8354	Costa Rica
Myrtus	Myrtus communis L.	E. Lucas 211	RBG Kew living collection (native to Mediterranean region)
Myrtus	Myrtus communis L.	T. Vasconcelos s.n.	RBG Kew living collection (native to Mediterranean region)
Pimenta	Acca sellowiana (O.Berg) Burret	T.Vasconcelos s.n.	RBG Kew living collection (native to southern Brazil)
Pimenta	Acca sellowiana (O.Berg) Burret	Spirit collection 14462	RBG Kew living collection (native to southern Brazil)
Pimenta	Campomanesia adamantium	T.Vasconcelos 474	Brazil (GO)

Pimenta	Campomanesia adamantium	T.Vasconcelos 293	Brazil (GO)
Pimenta	Campomanesia guazumifolia (Cambess.) O.Berg	A Lobao 1372	Brazil (SP)
Pimenta	Campomanesia simulans	T.Vasconcelos 472	Brazil (MG)
Pimenta	Campomanesia velutina	T.Vasconcelos 507	Brazil (DF)
Pimenta	Capomanesia adamantium (Cambess.) O.Berg	T. Vasconcelos 273	Brazil (DF)
Pimenta	Legrandia concinna (Phil.) Kausel	Germain s.n.	Chile
Pimenta	Mosiera longipes (O.Berg) Small	M.A. Hamilton 630	Sadle 186 turks and caicos islands
Pimenta	Myrrhinium atropurpureum	A. Stadinik s.n.	Brazil (RJ)
Pimenta	Myrrhinium atropurpureum	C. Farney 2265	Brazil (RJ)
Pimenta	Myrrhinium atropurpureum Schott	G. Hatchbachi 61056	Brazil (RJ)
Pimenta	Pimenta dioica (L.) Merr.	T.Vasconcelos 534	Costa Rica
Pimenta	Pimenta pseudocaryophyllus (Gomes) Landrum	H.S. Irwin 19844	Brazil (GO)
Pimenta	Pimenta pseudocaryophyllus (Gomes) Landrum	A.P. Duarte 8722	Brazil (SP)
Pimenta	Pimenta pseudocaryophyllus (Gomes) Landrum	H.C. de Lima 3453	Brazil (SP)
Pimenta	Pimenta pseudocaryophyllus (Gomes) Landrum	E. Lucas 193	Brazil (SP)
Pimenta	Pimenta pseudocaryophyllus (Gomes) Landrum	T. Vasconcelos 403	Brazil (MG)
Pimenta	Pimenta racemosa (Mill.) J.W.Moore	F. Axelrod 7796	Dominican Republic
Pimenta	Pimenta sp.1	T.Vasconcelos 578	Dominican Republic
Pimenta	Psidium acranthum Urb.	T.Vasconcelos 579	Dominican Republic
Pimenta	Psidium laruotteanum Cambess	J.E.Q. Faria 4276	Brazil (GO)
Pimenta	Psidium brownianum Mart. ex DC.	T.Vasconcelos 465	Brazil (BA)
Pimenta	Psidium firmum O.Berg	T.Vasconcelos 290	Brazil (GO)
Pimenta	Psidium friedrichsthalianum (O.Berg) Nied.	T.Vasconcelos 522	Costa Rica
Pimenta	Psidium guajava L.	T.Vasconcelos 585	Dominican Republic (cultivated)
Pimenta	Psidium guajava L.	T.Vasconcelos 389	Brazil (DF) (cultivated)

Pimenta	Psidium guineense Sw.	T.Vasconcelos 279	Brazil (GO)
Pimenta	Psidium guineense Sw.	B.S.Amorim 1913	Brazil (PE)
Pimenta	Psidium myrsinites DC.	T.Vasconcelos 503	Brazil (GO)
Pimenta	Psidium myrtoides O.Berg	T.Vasconcelos 402	Brazil (SP)
Pimenta	Psidium oligospermum Mart. ex DC.	F.F.Mazine 1346	Brazil (ES)
Pimenta	Psidium oligospermum Mart. ex DC.	F. Franca 5431	Brazil (BA)
Pimenta	Psidium riparium Mart. ex DC.	J.E.Q. Faria 4107	Brazil (TO)
Pimenta	Psidium rufum Mart. ex DC.	J.E.Q. Faria 4271	Brazil (MG)
Plinia	Myrciaria floribunda (H.West ex Willd.) O.Berg,	T.Vasconcelos 380	Brazil (AM)
Plinia	Myrciaria aff. glazioviana (Kiaersk.) G.M.Barroso ex Sobral	T.Vasconcelos 413	Brazil (BA)
Plinia	Myrciaria floribunda (H.West ex Willd.) O.Berg	R.M. Harley 54895	Brazil (BA)
Plinia	Myrciaria glanduliflora (Kiaersk.) Mattos & D.Legrand	T.Vasconcelos 479	Brazil (BA)
Plinia	Neomitranthes cordifolia (D.Legrand) D.Legrand	M.C. Souza 550	Brazil (RJ)
Plinia	Neomitranthes obscura (DC.) N.Silveira	A.M. Carvalho 816	Brazil (SP)
Plinia	Plinia cauliflora (Mart.) Kausel	T.Vasconcelos 388	Brazil (DF) (cultivated)
Plinia	Plinia nana Sobral	A Stadnik s.n.	Brazil (MG)
Plinia	Siphoneugena delicata Sobral & Proença	T.Vasconcelos 760	Brazil (ES)
Plinia	Siphoneugena densiflora O.Berg	G. Martinelii 11939	NA
NON MYRTEAE	Heteropyxis natalensis Harv.	M.F. Correia 594	South Africa

Work Package II - Case studies on systematics and floral evolution of Myrteae

Due to its role in reproduction, floral variability is intimately related to oscillations in reproductive success and adaptive value of a lineage. Understanding development and morphological diversity in these organs is an important tool for comprehension of plant evolution. Work Package II demonstrates how floral development and diversity in Myrteae can help answering general questions in evolution, ecology and systematics of angiosperms. Chapter 4 reassesses homoplastic characters in a phylogenetic context after homologous categories are clarified, observing improved phylogenetic signal and general understanding of a trait's adaptive features. Chapter 5 highlights the importance of parallelisms as a source of systematic strife in large groups. Chapter 6 demonstrates how heterochronies can lead to subtle morphological changes that affect reproductive success even in apparent morphologically homogeneous groups. Finally, Chapter 7 describes an atypical case of conservative flower evolution and macro-evolutionary dynamics in the tropics, using the mega-diverse genus *Myrcia* as an example of long lasting stability in ecological-evolutionary systems.

Chapter 4: Augmenting Phylogenetic Signal for Homoplastic Traits: The Evolutionary History of Perianth Fusion in Myrtaceae Flowers

Manuscript - to be submitted to Cladistics

• T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, generation of SEM and LM images, morphological analyses, phylogenetic analyses and writing of manuscript.

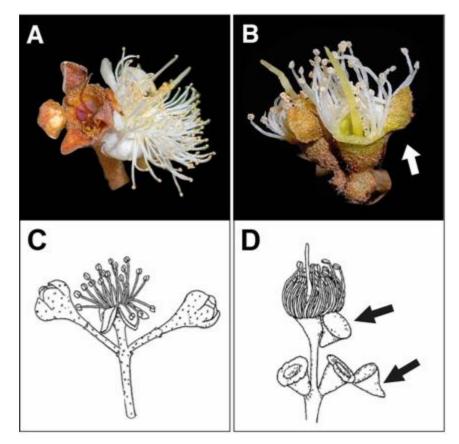
ABSTRACT:

Molecular phylogenies often reveal that traits once credited as systematically useful are often strongly homoplastic. Perianth fusion in Myrtaceae flowers is an example of such a trend, having evolved independently multiple times in the family's evolutionary history. Here we re-visit the homology of the fused perianth in Myrtaceae and use the results as a case study to demonstrate how careful morphological investigation can improve the phylogenetic signal of homoplastic traits. We describe and compare calyptra development and anatomical characteristics in distinct lineages using SEM and LM. Results show equivocality in usage of the terms 'fused perianth' and 'calyptra', as these structures correspond to at least three anatomically and ontogenetically distinct structures. Perianth fusions by the same process are identified and noted in different lineages; despite this, phylogenetic signal increases from $\lambda = 0.634$, when presence/absence of calyptra is plotted without any discrepancy, to $\lambda = 0.651$, $\lambda = 0.782$ and $\lambda = 1$ when homologous calyptra formations are analysed individually against the Myrtaceae phylogeny. This supports the hypothesis that characters previously discarded as systematically irrelevant can actually present a strong phylogenetic signal, once their structural details are clarified and re-assessed under an existing phylogenetic framework. We discuss the recurrence of the calyptrate flower in Myrtaceae in light of functional traits and the possible adaptive role of the structure in distinct niches. We encourage morphological reassessment of homoplastic characters in light of well-known phylogenetic frameworks. Unidentified homoplasy can hide relatively high phylogenetic signals that are key to appreciate underlying evolutionary patterns when trait evolution of individual lineages is analysed at high taxonomic rank.

Key words: calyx, convergence, corolla, functional traits, underlying homology.

INTRODUCTION 4.1 Trait homoplasy in the molecular era

Cladistic studies traditionally rely on the search for synapomorphies, i.e. phenotypic traits shared by organisms decedent from common ancestors, to identify and characterize single evolutionary units (Duncan and Stuessey, 1984). During most of the 20th century, this process was based on annotation of morphological traits, starting from fundamental differences at higher taxonomic ranks to very fine ones at species level systematics (Stebbins, 1974). This approach is, however, often prone to inaccuracies due to the subjective nature of trait classification (see review in Hillis, 1987). Molecular phylogenies, the standard contemporary approach to relationship reconstruction of organisms, are also sensitive to errors (e.g. Palmer, 1992), but they have the advantage in providing larger datasets and a less artificial interpretation of evolutionary history based on DNA level homologies (Felsestein, 2004). Despite their advantages, molecular systematics often do not identify recurring homoplastic traits in phylogenetic trees (i.e. appearance of similar characters in non-related lineages) (Sanderson and Hufford, 1996).


Various processes lead to the appearance of homoplastic traits, including convergences, parallelisms and reversals. Structural convergences appear when ontogenetically distinct structures are superficially similar due to a similar functional role (e.g. Abrahão et al., 2014). Parallelisms and reversals result from ontogenetically identical structures in phylogenetically related but non-sister taxa (Scotland, 2011). These two processes can metaphorically be described as "the most closely related groups of organisms wander in the most similar (adaptive) landscapes [...and...] there are certain easy tracks where there is constant going (parallel evolution) and coming back (evolutionary reversals)" (Endress, 1996a, p.303-304). Prioritizing molecular over morphological data as the basis of systematics has driven the latter into a secondary position (Scotland et al., 2003). However, morphological re-examination of homoplastic traits in an era where algorithms are most heavily relied on to understand nature (Mooi and Gill, 2010) reveals semantic issues and still unexplored evolutionary patterns.

4.2 Perianth fusion in Myrtaceae

In Weberling's (1989) definition of the "perfect flower", the perianth corresponds to the outmost floral part and is formed by two whorls of leaf-like organs. The external whorl, the calyx, is formed by sepals and the internal whorl, the corolla, is formed by petals, which in spite of the leaf-like appearance are sometimes regarded to be evolutionarily closer to the androecium (Ronse De Craene, 2007). Across angiosperms, the calyx most commonly has the role of protection, covering the sensitive sexual organs during flower ontogeny. The corolla, frequently showy, is usually linked to pollinator attraction (Endress, 1994). Nevertheless, variations of these more common functions are commonly observed. A perianth that appears partially or completely fused in the bud, for instance, is a common trend in some angiosperm families (e.g. Euphorbiaceae, Esser, 1999; Solanaceae, D'Arcy, 1986) and specific terminology exists to describe behaviour of these structures during anthesis. "Calyptrate" or "operculate" flowers are designated as such when a perianth appears completely fused in bud, detaching at the base and falling off as a single "cap like" structure during anthesis (e.g. McVaugh, 1956; Fig. 4.1).

Calyptrate flowers are observed in many lineages across angiosperms, such as Vitaceae (Soejima and Wen, 2006), Eupomatiaceae (Endress, 2003), and in the order Myrtales (e.g.

Goldenberg and Meirelles, 2011; Kriebel et al., 2015). In the latter, calyptrate flowers are an especially common trend in Myrtaceae, appearing in at least 17 out of the 144 genera (Wilson, 2011). Drinnan and Ladiges (1980) provide a thorough description and systematic discussion of perianth fusion in *Eucalyptus*, but some of the most diverse Myrtaceae lineages with calyptrate flowers remain to be studied. In spite of its clear homoplastic pattern, this character has not yet been examined in light of the phylogenetic history of the family.

Figure 4.1: Calyptrate and non-calyptrate flowers in Myrtaceae (illustration). "A" and "B" show closely related *Myrcia* and *Calyptranthes* flowers, the former with four free sepals and petals; the latter with a calyptrate perianth (arrow). "C" and "D" are illustrations representing the same trend in *Blepharocalyx* (A and B photos taken during field expeditions between 2014 and 2016; illustration reproduced from Landrum and Kawasaki, 1997).

4.3 Aims

The calyptra in Myrtaceae is a good example of the omission of potentially informative characters from careful study due to an apparent lack of correspondence with the phylogenetic framework. However, careful morphological examination and posterior reassessment of traits on phylogenetic trees increases understanding of underlying evolutionary processes that lead to homoplastic patterns. In this sense, the aims of this study are: 1) To test the homology of the calyptrate flower in Myrtaceae by surveying perianth development and anatomy of distinct calyptrate lineages; 2) To adjust phylogenetic signal for calyptrate flowers in Myrtaceae by recoding the trait after homologous categories are identified; and 3) To use the results to discuss the function of the closed perianth and its role in Myrtaceae evolution.

MATERIALS AND METHODS 4.4 Study group and sampling approach

Calyptrate flowers are distributed in 17 of the 144 accepted genera of Myrtaceae, distributed in four tribes: 11 in Myrteae, one in Xanthostemonae two in Syzygieae, one in Metrosidereae and two in Eucalypteae. Genera and species were assessed for possession of a calyptra and fieldwork expeditions were conducted in Brazil, Central America, SE Asia and New Caledonia, to collect a broad sample of Myrtaceae species with calyptrate flowers. In the case of *Eucalyptus*, samples were collected mainly from the living collection of the Royal Botanic Gardens Kew. Samples were collected in alcohol 70% and FAA. Perianth behaviour during anthesis was also observed and photographed in the field. The list of species and vouchers analysed for ontogeny, anatomy and anthesis behaviour is presented in Appendix 4.1. Perianth ontogeny and anatomy was recorded for calyptrate species and compared with their closest relatives with free perianths.

4.5 Ontogenetic study

Floral buds and flowers were dissected in 70% ethanol, dehydrated through an alcohol series to 100% ethanol, and critical-point dried using an Autosamdri-815B critical-point dryer (Tousimis Research, Rockville, Maryland, USA). Dried material was mounted onto specimen stubs, coated with platinum using a Quorum Q-150-T sputter coater (Quorum Technologies, East Grinsted, UK) and examined with a Hitachi cold field emission SEM S-4700-II (Hitachi High Technologies, Tokyo, Japan). Key stages of perianth development such as organ initiation, point of fusion and degree of fusion at anthesis were noted and described. Distinct types of calyptra are described based the nature of perianth tissue at these stages. These were then classified into three categories of calyptrate flowers (see *Results* sections 4.9-4.12)

4.6 Anatomical survey

Selected closely related taxa were anatomically profiled. Anatomical sectioning was conducted on pre-anthetic buds. For histology, samples passed through a series of alcohol to histoclear (100%) and were then embedded in wax (paraplast 100%) or, when the material was too hard, in resin. Wax was changed every other day for three weeks until the samples were full embedded. Sectioning was performed using a microtome (Leica RM2155) and slides were stained with safranin red and alcian blue. These stains colour lignified tissues in red and cellulose in blue. Samples embedded in resin passed through the same process of staining, but the colours react differently and thus are not comparable to the ones in wax. Slides are accessible in the slide collection of Royal Botanic Gardens Kew.

4.7 Phylogenetic assessment and placement of Pleurocalyptus

The most up-to-date phylogeny of Myrtaceae of Thornhill et al. (2015) was used to test phylogenetic signal. Most lineages with calyptrate buds are represented in this cladogram based on three molecular markers for 199 tips, sourced from the supplementary material of the original publication. The function *bind.tip* (package *phytools* in R; Revell, 2012) was used to add four further taxa, providing a more complete representation of the character under study. These were placed according to phylogenetic positions determined by independent studies (Lucas et al., 2007; Chapter 1). These extra tips comprise a calyptrate species of *Eugenia* (*Calyptrogenia cuspidata*, placed

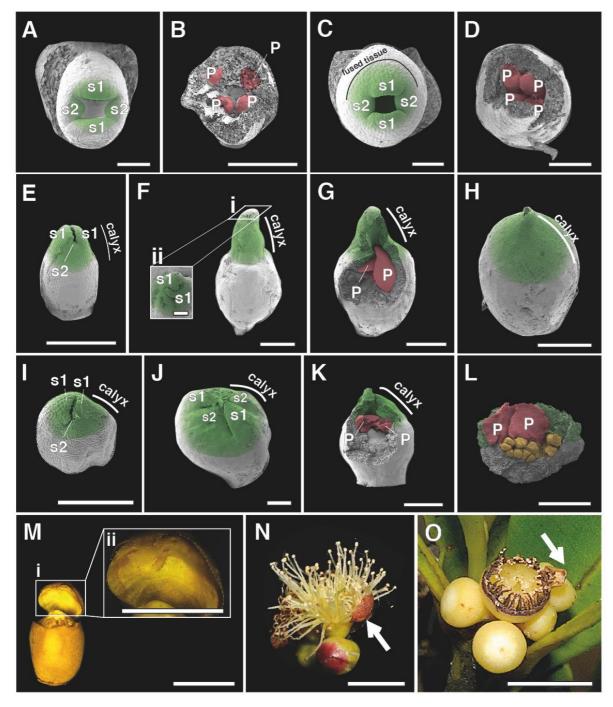
sister to *Eugenia sulcata*), a calyptrate species of *Blepharocalyx* (*Blepharocalyx eggersii*, placed sister to *B. salicifolius*), *Neomitranthes* (*Neomitranthes spp.*, placed sister to *Myrciaria vexator*) and *Pleurocalyptus* (*Pleurocalyptus pancherii*, placed sister to *Xanthostemon chrysanthus*). For unequivocal placement the four tips were placed at a branch length of half distance between the sister species and the common ancestor node. *Pleurocalyptus pancherii*, a species with calyptrate flowers from New Caledonia was thought by Wilson (2011) to be a calyptrate version of *Xanthostemon*. To confirm its position, ITS and *ndhf*, two of the three molecular markers included by Thornhill et al. (2015), were sequenced for *Pleurocalyptus pancherii* (using methods described in Chapter 1, section 1.5; voucher T.Vasconcelos 622). Blast results match both sequences to *Xanthostemon chrysanthus* with c. 98% similarity, corroborating its position in tribe Xanthostemonae (see Appendix 4.2).

4.8 Character reconstruction and estimates of phylogenetic signal

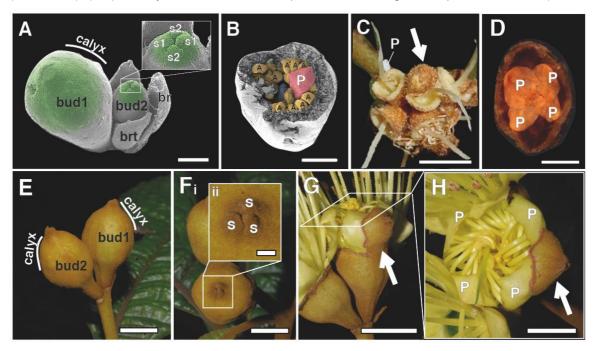
All categories of calyptrate flowers (see *Results* sections 4.9-4.12) can be easily recognized using herbarium material once homologous states are understood. Following ontogenetic survey of the sample selected, categories of calyptra were assigned and extrapolated to all phylogenetic tips. Some *Syzygium* species, particularly those with small buds, were difficult to access due to fragile perianths post-herborisation. As a result, some *Syzygium* species were excluded because no category could confidently be assigned (species marked with "NA", Appendix 4.1). Calyptrate categories in some *Eucalyptus* were coded from the literature (Carr and Carr, 1962; Drinnan and Ladriges, 1988, 1989, 1991; Brooker, 2000).

Characters were reconstructed on the phylogeny using function *ace* (package *ape* in R software; Paradis et al., 2004; R core team, 2017) to map appearance and reversal of the calyptrate state. Phylogenetic signal was measured as the tendency of two closely related species to resemble each other more than two random species, using the function *fitDiscrete* from package *geiger* in R (Harmon et al., 2008). This provides a value of comparable log-likelihood and AIC values that are further corrected into a score from 0 to 1 (*lambda*, or " λ ") based on Brownian motion. The higher the value, the more likely that the phylogenetic framework is affecting the distribution of the character in the tree. In all estimates, traits were coded into simple binary states (presence or absence), first for all calyptrate taxa without distinction of calyptrate categories, each category was coded separately. Scores received from each analysis were compared to assess changes in phylogenetic signal for a given homoplastic trait depending on interpretation of homology.

RESULTS


4.9 Calyptra homology

Ontogenetic and anatomical analyses of selected species confirm that the myrtaceous calyptra cannot be treated as a homologous structure. Closed perianths occur via at least three distinct developmental patterns that involve different organs (calyx or corolla) and types of fusion.


4.10 The calycine calyptra

The calycine calyptra is formed by the calyx, the outmost floral whorl, the usually four lobes of which, initiate free following a decussate pattern (Fig. 4.2A). After a short period of elongation the base of the four sepals fuse into a homogeneous calycine tissue (post-genital fusion; Fig.

4.2C,H,I,J). During this process, the free sepal tips meet or overlap slightly (Fig. 4.2C,E). The now gamosepalous structure continues its development fused until pre-anthesis. At this point, signs of the initial free lobes remain as inconspicuous scars at the top of the buds, characterising this developmental mode (Fig. 4.2F; Fig 4.3A,F). During anthesis, pressure from within the bud tears the calycine tissue at the weakest spot, frequently the base, resulting in a "cap-like" structure that often remains attached to the side of the flower (Fig. 4.2N,O; Fig 4.3G,H). Calycine calyptras may appear in conjunction with all other varieties of corolla development. These include calycine calyptras on top of coralline calyptras (common in Eucalypteae, see below); calycine calyptras on top of free reduced or showy petals (as in Myrteae Fig. 4.3B-D; and Xanthostemoneae Fig. 4.3H) or calycine calyptras on top pseudocalyptras (common in Syzygieae, Fig.4.2M).

Figure 4.2 (previous page): Calycine calyptra in Syzygieae. (A-H, M, N): perianth development in *Syzygium nervosum*. (I-L, O): perianth development in *Piliocalyx* sp. (voucher T.Vasconcelos 651). (A) Decussate development of four free sepals followed by (B) simultaneous initiation of four free petals in the axils of each sepal. (C) Calyx undergoing post genital fusion while (D) petals remain free and overlap. (E) Sepal tips meet and overlap leaving a (F) scar on the top of the bud. (G-H) Continuous development of the bud with fused calyx and free petals. (I, J) Sepal tips meeting and overlapping and (K-L) continuous development of fused sepals and free petals in *Piliocalyx* sp. (M, N) Anthesis in *Syzygium nervosum* highlighting (Mii) petals attached to the calycine calyptra (arrow in N). (O) Arrow showing old calyptra in a *Piliocalyx* sp. flower. S: sepals; P: petals. Scale: 50µm (A,C), 100µm (D,Fii), 150µm (B), 250µm (E,Fi,G,I), 400µm (L), 500µm (K), 1mm(H), 5mm (Mi,Mii,N,O). ('N' photo by A. Lambrianides; 'O' photo taken during field expeditions in 2015)

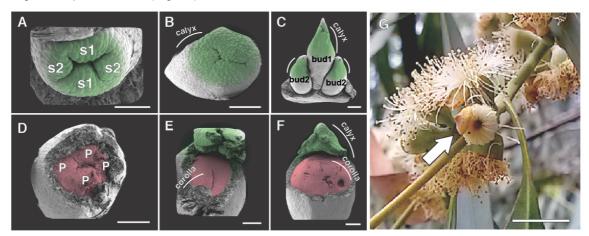


Figure 4.3: Calycine calyptra in Myrteae and Xanthostemoneae. (A) Young inflorescence of *Myrcia aulomyrcioides* showing scar left by the previous free sepals on the top of the bud. (B) Dissected bud showing free petal. (C) Old inflorescence of *Calyptranthes pallens*, showing calyptra attached to the flower (arrow) and remaining reduced petal. (D) An upside-down dissected calyptra of *Calyptranthes pallens*, showing four free, somewhat reduced, petals. (E) Pre-anthetic flowers of *Pleurocalyptus pancherii* showing fused calyx and (F) scar from sepal tips on the top of the bud. (G) Arrow indicating calycine calyptra in *Pleurocalyptus pancherii* flower on top of (H) four free showy petals. S: sepals; P: petals; A: androecium. Scale: 250µm (A,B), 1mm (Fii), 5mm (C, H), 1cm (D, E, Fi, G). (C,E,F,G,H photos taken during field expeditions between 2014 and 2016)

4.11 The corolline calyptra

The corolline calyptra is formed from usually four, fused petals that are free at initiation (Fig. 4.4D) but subsequently fuse and elongate as a homogeneous tissue (Fig. 4.4E,F). This structure is similar to the calycine calyptra in the sense that organs undergo post-genital fusion (Fig.4A-F). The corolline calyptra is only found in Eucalypteae where it often develops in association

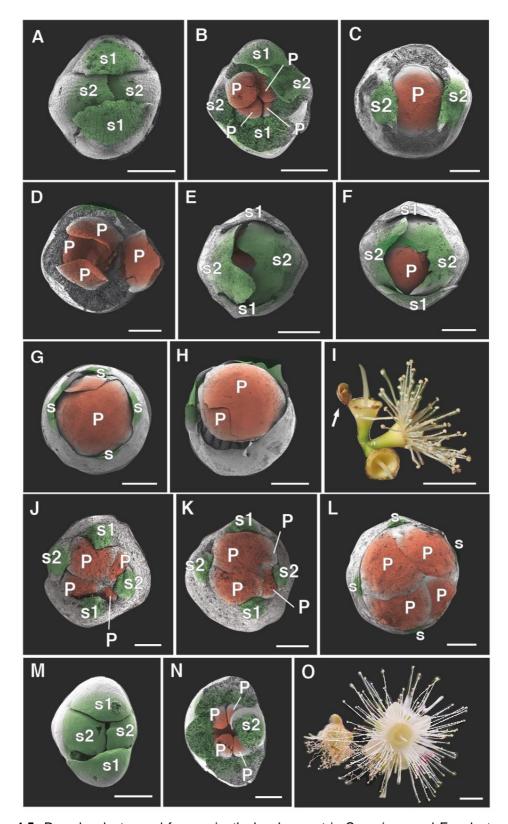

with a calycine calyptra (Fig. 4.4A-C). During anthesis both structures tear at the base and fall as a single, inseparable, unit (Fig.4G).

Figure 4.4: Calycine and coralline development in Eucalypteae (all images from *Eucalyptus perriniana*). (A) Early development of four free sepals in a decussate fashion followed by (B) postgenital fusion of sepals. (C) Young inflorescence showing calycine calyptras in different stages. (D) Early petal development, showing the still recognizable four petals, followed by (E) post-genital fusion and (F) formation of an almost completely homogeneous tissue in mature flowers. (G) Flower at anthesis with two-layered calyptra (arrow). S: sepals, P: petals. Scale: 50µm (A), 100µm (B, D, E, F), 250µm (C), 1cm (G). ('G' photo taken from living collection at Royal Botanic Gardens Kew).

4.12 The pseudocalyptra

Perianth development of pseudocalyptrate species is identical to that of species with a free perianth (Fig. 4.5). The four sepals initiate in a decussate fashion followed by four petals that initiate simultaneously or almost simultaneously in the radius of sepals and soon overlap (Fig 4.5A,B,J-L), forming a tissue of four layers (Fig. 4.5D). Both petals and sepals elongate and develop with no fusion until anthesis (Fig.4.5A-I). However, in species where a pseudocalyptra occurs, sepals either stop developing early or elongate at a slower rate, so that at pre-anthesis the four sepals are barely visible. The surfaces of the four still free, layered petals are strongly attached so that the whole corolla detaches as a single unit at anthesis, remaining attached to the flower as does a calycine or coralline calyptra (Fig. 4.5I). In some species, this pseudocalyptra is associated with calycine calyptras (Fig. 4.2M). In species with a fully free-perianth, sepals and petals never fall as a single unit at anthesis (Fig. 4.5M-O).

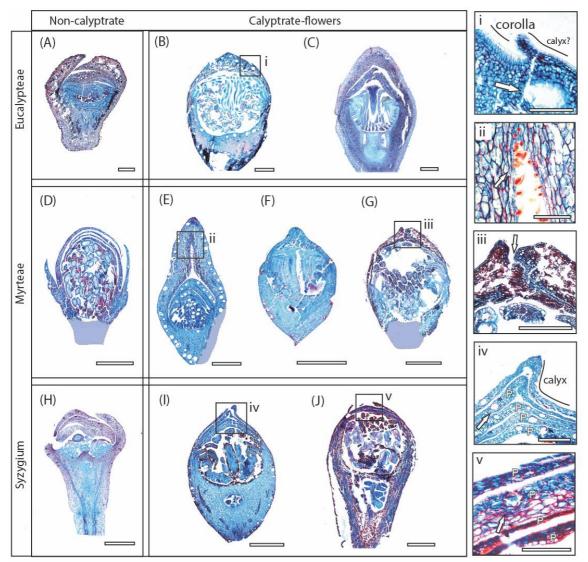


Figure 4.5: Pseudocalyptra and free-perianth development in Syzygieae and Eucalypteae. (A-I) *Syzygium cumini*; (G-L) *Syzygium paniculatum*; (M-O) *Eucalyptus curtisii*. (A) Early development of four free sepals in a decussate fashion. (B) As "A", but further dissected to show the four petals in early stages of development. (C) Slightly older bud with both S1 dissected, showing already overlapping petals. (D) Same as "C", but all sepals dissected and petals forced using tweezers to highlight their free condition. (E-G) Sequential bud development, showing sepals that stop developing and are very reduced in the mature bud. (H) Bud at anthesis, highlighting petals

detaching from the base of the bud as a single unit. (I) Old inflorescence indicating the pseudocalyptra formed by the four layers of petals. (J-L) Sequential bud development in *Eucalyptus curtisii*, highlighting sepals that stop developing and reduced in the mature bud. (M, N) Early development and (O) anthesis in the free-perianth *Syzygium paniculatum*, showing four sepals and petals clearly identifiable at anthesis. S: sepals; P: petals. Scale: 150µm (A, F), 200µm (B), 250µm (C, D, J, K, M), 500µm (E, F, N), 1mm (G, O), 2mm (L), 5mm (I).

4.13 Calyptra anatomical profile and functional traits

Anatomical profiles of calyptrate species of distinct lineages illustrate the organs involved in formation of different calyptras. Histological differences between similar organs are also revealed, especially regarding tissue thickness and cellular structure. Calycine calyptras are observed to be either strongly glandulous or lignified, with variations even within the same lineage (e.g. *Calyptranthes* spp. in Fig.4.6 F,G). In one case in tribe Myrteae, the inner side of the thickened calycine calyptra is observed to be covered in strongly lignified trichomes (Fig. 4.6E,ii). In *Syzygium nervosum*, the upmost petal adheres strongly to the abaxial side of the calyptra (Fig. 4.6iv), which may explain why during anthesis the corolla detaches with the calyptra (Fig. 4.2M). Tissue thickness frequently increases from bottom to top in calycine calyptras, leaving the thinnest layer of tissue at the calyptra base.

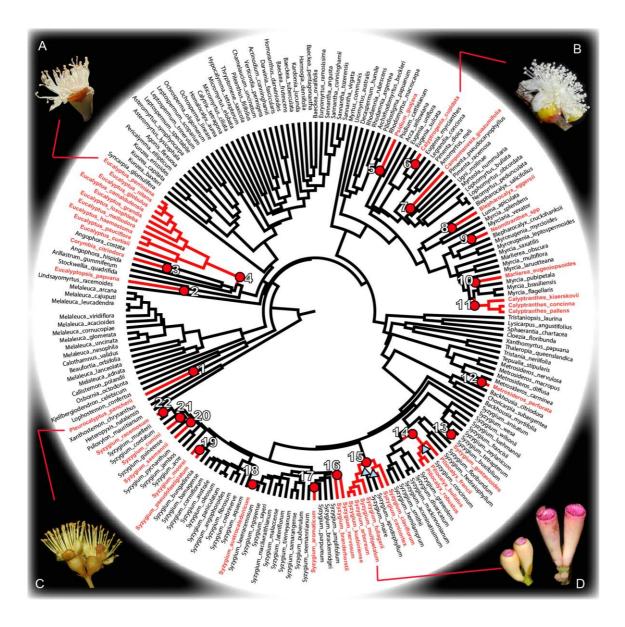
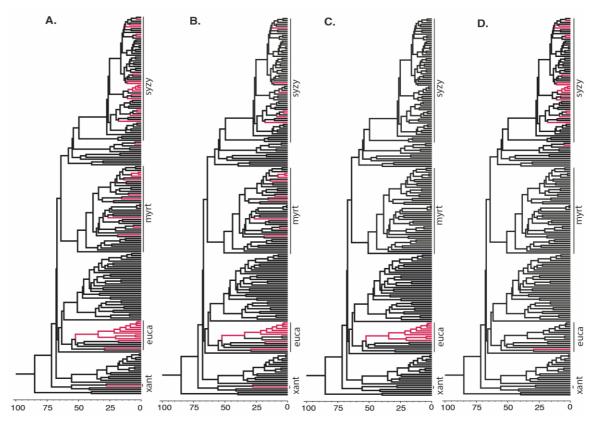


Figure 4.6 (previous page): Anatomical profiles of three species with free perianth and seven species with calyptrate flowers in three distinct Myrtaceae lineages. (A) *Arillastrum gumifferum*; (B) *Eucalyptus pauciflora;* (C) *Corymbia* sp. (voucher TVasconcelos 681, resin embedded); (D) *Decaspermum parviflorum;* (E) *Psidium brownianum;* (F) *Myrcia aulomyrcioides* (G) *Calyptranthes pallens* (H) *Syzygium paniculatum* (I) *Syzygium nervosum* (J) *Syzygium cumini.* Inserts: (i) Arrow indicates gland lumen in *Eucalyptus pauciflora* and possible division between coralline calyptra and calyx. (ii) Internal surface of calycine calyptra in *Psidium brownianum;* arrow shows strongly lignified single celled trichomes. (iii) Apex of calycine calyptra in *Calyptranthes pallens*, highlighting sepal fusion and strongly lignified tissue. (iv) Apex of calycine calyptra and pseudocalyptra in *Syzygium nervosum*, highlighting the upmost petal strongly adhered to the calycine calyptra and strongly glandular tissue. (v) Apex of pseudocalyptra in *Syzygium cumini* showing four layers of lignified petals. Scale: 150µm (ii, iii), 200µm (i), 250µm (iv), 500µm (v), 1mm (A-J).


4.14 Re-coding characters and adjustment of phylogenetic signal

42 out of 199 tips (21 %) are scored as "calyptrate-flower" present (state = 1). Flowers with free perianth (state = 0) constitute the ancestral state of Myrtaceae with calyptrate flowers appearing at least 22 times independently: once in Xanthostemoneae (origin of *Pleurocalyptus* – Fig.7C), three times in Eucalypteae, seven times in Myrteae and eleven times in Syzygieae. Syzygieae also shows three likely reversals to the ancestral state (blue triangles, Fig.4.7). In Myrteae, Metrosidereae and Syzygieae, transitions from non-calyptrate to calyptrate occurred mainly in the Miocene or earlier (Fig. 4.8A). In Eucalypteae, transition to calyptrate appear as far back as the Paleocene (e.g. Fig. 4.7, shift 4, in *Eucalyptus*).

Analysis of phylogenetic signal for calyptrate flowers in Myrtaceae show low a priori phylogenetic signal (λ = 0.634, Fig. 4.8A) indicating weak phylogenetic correlation. When calycine calyptras are distinguished the phylogenetic signal is higher than when calyptrate taxa are coded without distinction (λ = 0.782, Fig. 4.8B). Similarly, when coralline calyptras are coded separately the phylogenetic signal is maximum (λ = 1, Fig.4.8C). The Pseudocalyptra, however, presents phylogenetic signal as low as when calyptrate flowers are coded without distinction (λ = 0.651, Fig.4.8D).

Figure 4.7: Calyptrate flowers mapped on to the Myrtaceae phylogeny. Ancestral character reconstruction shows calyptrate flowers appearing 22 times (red circles) independently in Myrtaceae, with three reversals (triangles) in Syzygieae. (A) *Eucalyptus perriniana*; (B) *Calyptrogenia cuspidate*; (C) *Pleurocalyptus pancheri;* (D) *Syzygium multipetalum.* (All photos taken during field expeditions between 2014 and 2016).

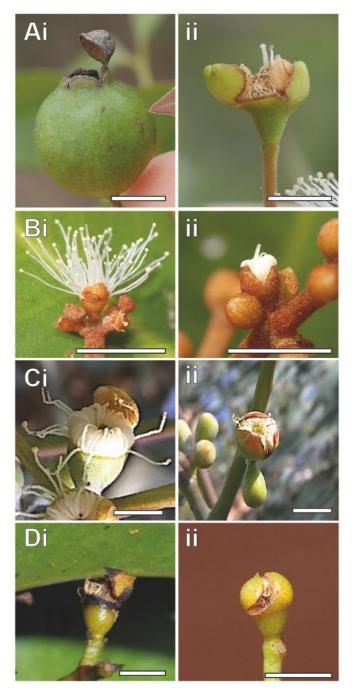
Figure 4.8: Changes in phylogenetic placement of calyptrate flowers when levels of homology are clarified. Red branches represent species with calyptrate flowers. (A) All calyptrate flowers; (B) Calycine calyptra only; (C) Corolline calyptra only; (D) Pseudocalyptra only. "xant", tribe Xanthostemonae; "euca", tribe Eucalypteae; "myrt", tribe Myrteae; "syzy", tribe Syzygieae. X axis represents age in million years.

DISCUSSION

4.15 A matter of semantics: standardising the terminology for calyptrate structures in Myrtaceae

The structure traditionally referred to as a calyptra in Myrtaceae corresponds to at least three distinct, non-homologous structures. This highlights an issue of semantics aggravated by the favouring by authors of slightly different terms to describe the same structure in similar taxa. Even though the impetus in standardising calyptra terminology began as part of the original description of *Eucalyptus* (L'Héritier, 1788), there is not yet terminological consensus for the structural variation in the family. A series of studies of *Eucalyptus* floral development, for instance, describes the combination of fused calyx and corolla as an "operculum" (Drinnan and Ladiges, 1989), whilst a similar structure is referred to as "calyptrate calyx and corolla" in Syzygieae (Ashton, 2011), or as "petaline opercular structures [that] consist of the imbricate petals that cohere and fall as a unit" in Syzygieae (Wilson, 2011, p.216).

Given that a fused perianth is a characteristic that can re-occur throughout Myrtaceae, it is necessary and important to standardise a structurally and evolutionarily coherent terminology. We advocate that a calyptra *sensu stricto* consists of homogeneous tissue formed by post-genital fusion of sepals or petals. Thus, most Syzygieae, some *Metrosideros* and *Eucalyptus curtissii*, described as calyptrate (e.g. Ashton, 2011) are not calyptrate, because their perianth shares the same


developmental pattern as species with a free perianth. Their anthetic behaviour where imbricate petals fall as a unit can still be used as a trait of taxonomic value (see also next section and Chapter 6), but should not be treated as homologous to "true" Myrtaceae calyptras and would be better defined as "pseudocalyptras". Furthermore, the designation of a distinct term such as "operculum" for adhering calycine and coralline calyptras is also inadequate, since homologous coralline and calycine structures may appear independently of each other in the family's evolution.

4.16 Reciprocal illumination: the calyptra in Myrtaceae systematics

Calyptrate flowers have been traditionally used a character of taxonomic relevance in Myrtaceae (e.g. Landrum, 1984). It is here demonstrated (as in other studies, e.g. Biffin et al., 2005) that calyptrate flowers cannot be considered true synapomorphies for any Myrtaceae lineage, as the trait commonly re-occurs during evolution. However, it is noteworthy that phylogenetic signal improves when morphological homologies are clarified. The reason for this is that independent recurrence of calyptrate flowers results from parallelisms that are, in theory, lineage related (Cronk 2002; Scotland 2011). In other words, these trends are phylogenetically linked even though a certain level of homoplasy still persists. It is also noticeable that most reversals from calyptrate to non-calyptrate disappear when homologous calyptras are identified (reversal towards the pseudocalyptra in Eucalyptus curtisii may be persistent due to the low support of that clade; Thornhill et al., 2015). This corroborates the hypothesis that when true calyptras appear in evolution they can be quite stable in a lineage, also increasing phylogenetic signal. The only occasion where phylogenetic signal does not increase when homology is clarified is when pseudocalyptras (developmentally identical to a free perianth) are distinguished. This is because the pseudocalyptra type results from convergence, which in cladistics is defined as a character misinterpretation or a mistake in trait coding (Coddington, 1994), rather than a true developmental variation.

Systematists also note that calyptrate flower anthesis varies between "a perfect dehiscence line at the base of the perianth during anthesis" and "a fused perianth that tears irregularly" (e.g. Lucas et al., 2011). These trends have some taxonomic value but should not be prioritised over the mode of development. Variation in the point or mode of perianth tearing during anthesis is observed to occur even within an individual (Fig.9) and likely depends on the point of post-genital fusion initiation and anatomical idiosyncrasies.

142

Figure 4.9: Variation in perianth tearing within individuals. Column "i" shows a perfect calyptra, column "i" shows irregular tearing. (A) *Psidium* sp; (B) *Calyptranthes brasiliensis*; (C) *Eucalyptus perriniana*; (D) *Blepharocalyx eggersii*. Scale bar: c.5mm. (Photos taken during field expeditions between 2014 and 2016 and from living collection at the Royal Botanic Gardens Kew).

4.17 Functional advantage of repeated selection of calyptrate flowers

Recurrence and persistence of traits in evolution is usually related to two factors: 1) the trait increases adaptive value (i.e. positive effect on survival and reproductive success rates) for the lineage in a given niche; and/or 2) the trait does not bring any negative effect that would lead to a higher extinction risk for the lineage in a given niche (Futuyma, 2009). If a calyptrate perianth appears in Myrtaceae both by processes of parallelism and convergence, assumptions are that certain external pressures are positively selecting this structure multiple times. As previously desribed, sepals and petals protect the flower (mainly sepals) and enhance pollination (mainly

petals) (Endress, 1994). An extra resistant layer that completely covers the floral bud until anthesis can be intuitively associated with protection (e.g. as in *Rosmarinus*, Bottega and Corsi, 2000; and *Spatophea*, Carlson and Harms, 2007). Nevertheless, evidence that calyptrate species appear at distinct times and environments during Myrtaceae evolution (Thornhill et al., 2015, this study) suggests that protection conferred by this structure is not necessarily related to the same environmental pressure.

In this sense, anatomical components of Myrtaceae calyptras, that show high flexibility even within the same genus (e.g. Fig 4.6F-G, I-J), can give directions on functional aspects of the calyptra. These are exemplified by the presence of glandular cavities, trichomes and lignified tissues (Fig.4.6). Oil glands are common in all Myrtaceae tissues, including sepals and petals (Evert, 2006) and the essential oil produced by these glands creates a chemical barrier against predators (Batish et al., 2008). An extra layer of oil glands granted by the calyptra to the bud may be useful to enhance bud survival in certain niches. The presence of lignified tissues could be related to the same function, but these probably also confer physical protection against harsh environments rather than just herbivory. In Eucalyptus, for example, calyptras are evidenced in the fossil record since the Palaeocene (Gandolfo et al, 2011). A strongly lignified bud coverage may have been key to their long survival in dry and fire predisposed environments of Australia (Crisp et al., 2011), especially due to their particularly extensive flowering period (Birtchnell and Gibson, 2006). This hypothesis is also supported by the restricted distribution of Angophora, a much species poorer non-calyptrate genus sister to Eucalyptus, native to more humid environments of eastern Australia (Ladiges et al., 2003). In the Neotropics, a similar tendency is observed in species from the semi-arid regions of Northeast Brazil. Psidium brownianum, for example, presents both a very thick calyptra and abundance of strongly lignified hairs on its inner surface (Fig. 4.6E, iii). This kind of adaptation is similarly found in leaves of plants from very arid environments (e.g. Ammophila. Poaceae) and are related to minimising transpiration by retaining air over the stomata (Purer, 1942).

But if a calyptrate perianth has so many advantages, why do most Myrtaceae species still have an open, non-fused perianth? The reason may be related to the fact that calyptrate flowers often have reduced petals (in the case of calycine calyptra, see e.g. *Calyptranthes* Fig.4.3CD and Chapter 6) or they lose the corolla completely at anthesis (as it is the case of coralline and pseudocalyptras). In many cases, the attraction of Myrtaceae flowers to pollinators relies on the brush-blossom in which the polyandrous androecium is the main showy structure (Johnson and Briggs, 1984; Chapter 3). This system relieves selective pressure for pollinator attraction from the perianth, making the corolla somewhat dispensable from pollinator attraction and thus better used for protection (in a "transference of function", as coined by Corner, 1958). In this way, a shift to a calyptrate perianth may be favourable and thus common. However, this strategy may also represent a two-edged sword, since the acquisition of a calyptra may constrain a lineage to occupy niches where pollinator attraction is perianth dependent (e.g. *Myrrhinium*, Roitman et al., 1997), especially because the acquisition of a calyptrate flower is definite in a lineage (shown by the lack of reversals).

4.18 Reinforcing the importance of morphological studies in phylogenetically well-known groups

For any homoplastic trait, low phylogenetic signal is expected a priori (Revell et al., 2008). Owen (1843) was the first naturalist to define homology in his studies of invertebrate animals. In his definition, homology corresponds to an organ of similar embryological and anatomical origin in distinct taxa, independent of its function. Using these criteria to augment phylogenetic signal *a posteriori* highlights the arbitrariness of trait definition and is useful to clarify underlying evolutionary pattern. Phylogenetic signal may increase once true homologies are categorised, indicating that those traits are lineage related, even though a certain degree of homoplasy still persists. Thus, underlying homologies (i.e. parallelisms) tend to have higher phylogenetic signal than convergences, which is not necessarily lineage related, when a trait is analysed in a large scale. Reassessing morphology to infer trait-function aspects of a structure also allows understanding of the relationship of that lineage to their environment. This tool is especially efficient when dated phylogenies and biogeographical hypothesis are already available, so structural changes can be inserted in the right eco-evolutionary context for the lineage (see e.g. Renner and Schaefer, 2010). This is the case, as exemplified here, of diversity of anatomical characters present in apparently similar calyptrate flowers of Myrtaceae.

CONCLUSION

Identification of underlying homologies in superficially homoplastic characters clarifies systematic and evolutionary interpretation of individual lineages. A step-by-step homology test as presented here can be summarised as: 1) definition of terminology, as distinct authors refer to similar traits in different ways and vice-versa; 2) definition of organs involved; 3) definition of homologous and non-homologous categories; and 4) trait re-coding and adjustment of phylogenetic signal. This homology test shows that characters previously discarded as systematic and evolutionary irrelevant actually have a strong phylogenetic signal once their morphological patterns are clarified and re-assessed under a phylogenetic framework. In Myrtaceae, both parallelisms and convergences are responsible for calyptrate flowers. The recurrence of a perianth that is completely closed in the bud and "disposable" at anthesis is probably linked to selective pressures towards protection and reliance on brush blossoms with the androecium as the main floral display.

APPENDIX

Appendix 4.1: *Pleurocalyptus pancherii* ITS and *ndh*F sequences and BLAST search evidencing relationship with *Xanthostemon* (as suggested by Wilson, 2011).

>its_tv622_consensus_sequence

ACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCGAAACCTGCCTAGCAGAACGACCAGAGA ACCGGTAACGAACTCGATGGGGACGGCGGGGCTCTCCGCCGACGTCCCTCGACGCTCGGATTGCGCG GGCGCCCAGAGCGTCGGGCTTTCCGGGCGGCACAACGAACCCCGGCGGGAACGCGCCAAGGAACT CGAACGAAGAGAGCGTTGCTCCCACCGCCCAGACCTGGTGCGCGCGGGGACGCCATGCGATCTCC TATTTATCCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAACTG CGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGC CATTCGGTCGAGGGCACGTTTGCCTGGGTGTCACACACGGCGTTGCCCCTAATCCCTCGCCTCGATCG GGCGGGCGGGACCTGGGTGCGTACGTTGGCCTCCCGCGACGACCTCGTCCCGGTTGGCCCAAAATTG AGCGTCGGAGCGATTAGCACCGCGACATTCGGTGGTTGATGAGACCCCCAACGTTGAAATGTCGCGCT TGCCGCTCACGCACGTGCTCCGCGAATCTACTCCTCACCAATCGCGACCCCCATCAAGCGAGGCTACC CGCTGAGTTTAAGCATATCAATAAGGCG

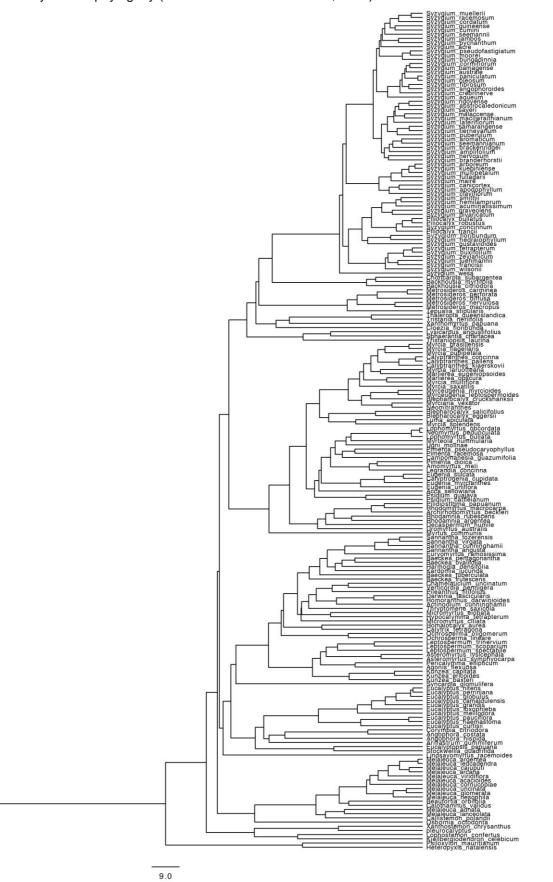
Query ID Description	nucleic acid	:12 pm) Database Name Description Program	Nucle					
Sequences	producing significant alignments:							
Select: All N	None Selected:0							
🕌 Alignmer	nts 🔚 Download 🗸 <u>GenBank</u> <u>Graphi</u>	cs Distance tree of results						¢.
	Descript	ion	Max score		Query cover		ldent	Accession
Xanthost		ion ribosomal RNA gene, partial sequence; interna	score	score	· · · ·	-		Accession <u>KM064986.1</u>
	emon chrysanthus M288 NZFRI 29475 18S		score 1142	score 1142	cover 97%	value	97%	
Xanthost	temon chrysanthus M288 NZFRI 29475 18S	ribosomal RNA gene, partial sequence; interna	score 1142 1116	score 1142 1116	cover 97%	value 0.0	97% 97%	KM064986.1
Xanthost	temon chrysanthus M288 NZFRI 29475 185 temon chrysanthus 18S ribosomal RNA gen temon chrysanthus M391 NZFRI 29337 185	ribosomal RNA gene, partial sequence; interns e, partial sequence; internal transcribed spacer	score 1142 1116 1101	score 1142 1116	cover 97% 93%	value 0.0 0.0	97% 97%	KM064986.1 EF041515.1

>ndhf_tv622_consensus_sequence

AATAAGACATATCGAATTGGTAGTAATGTAAAAAAACAGGATACGCCCTTTTATTACTATTACTCATTTTGG CAATAAAAATACTTTCTCTTATCCTCATGAATCGGACAATACTATGCTATTTTCCATGGTTATATTAGTGCT TATCCAAATTGTTAAATCCGTCTATAAACCTTTTACATCAGAATTCAAATAATTCTATGGATTGGTATGAAT TTGTGACAAATGCAAGTTTTTCTGTTAGTATAGCCTTTTTCGGAATATTTATAGCGTCTTTTTTATAAGC

Job title: Nucleotide Sequence (422 letters)

RID Query ID Description Molecule type Query Length	None nucleic acid	Database Nam Descriptio Prograi	n N	ucleotio			· ·	
Other reports: >	Search Summary [Taxonomy reports] [Distance]	tree of results] [MSA viewe	<u>r]</u>					
Sequences pro	ducing significant alignments:							
Select: All Non								
1 Alignments	Bownload - GenBank Graphics Distance tre	e of results						Contract (1)
	Description		Max core		Query cover		Ident	Accession
<u>Xanthostem</u>	on chrysanthus voucher Xanth chrLGC NADH dehydroge	nase subunit F (ndhF) gene, j	736	736	100%	0.0	98%	EU410135.1
Xanthostem	on chrysanthus NADH dehydrogenase subunit F (ndhF) g	ene, partial cds; chloroplast	736	736	100%	0.0	98%	AY498823.1
Kiellbergiode	endron celebicum NADH dehydrogenase subunit F (ndhF)	gene, partial cds; chloroplast	713	713	100%	0.0	97%	AY498788.1


0 sion 35.

Metrosideros nervulosa NADH dehydrogenase subunit F (ndhF) gene, partial cds; chloroplast 699 699 99% 0.0 97% AY498802.1

Appendix 4.2: Vouchers used in ontogenetic and anatomical analysis of calyptrate flowers of Myrtaceae. All deposited at K herbarium. Names follow the WSPF (2017).

Tribe	Species	Voucher	Collection locality
	Arillastrum gumiferum		
	(Brongn. & Gris) Pancher		
Eucalypteae	ex Baill.	Mc Pherson 4422	New Caledonia
Eucalypteae	Corymbia sp.	T.Vasconcelos 681	Singapore (cultivated)
	Eucalyptus curtisii Blakely		
Eucalypteae	& C.T.White	BGQLD0805	Australia (Queensland)
			RBG Kew living
	Eucalyptus pauciflora		collection (native to
Eucalypteae	Sieber ex Spreng.	T.Vasconcelos s.n.	Australia)
			RBG Kew living
	Eucalyptus perriniana		collection (native to
Eucalypteae	F.Muell. ex Rodway	T.Vasconcelos s.n.	Australia)
	Calyptranthes multiflora		
Myrteae	Poepp. ex O.Berg	A.Giaretta 1429	Brazil (AM)
	Calyptranthes pallens		
Myrteae	Griseb.	T.Vasconcelos 534	Costa Rica
	Decaspermum parviflorum		
Myrteae	(Lam.) A.J.Scott	T.Vasconcelos 728	Malaysia Sabah
	Psidium brownianum		
Myrteae	Mart. ex DC.	T.Vasconcelos 465	Brazil (BA)
Myrteae	Psidium myrsinites DC.	T.Vasconcelos 503	Brazil (GO)
Syzygieae	Piliocalyx sp.	T.Vasconcelos 651	New Caledonia
	Syzygium alatum		
Syzygieae	(Lauterb.) Diels	Barker 115	New Guinea
	Syzygium cumini (L.)		
Syzygieae	Skeels	T.Vasconcelos 296	Brazil (cultivated)
	Syzygium longifolium		
	(Brongn. & Gris)		
Syzygieae	J.W.Dawson	T.Vasconcelos 610	New Caledonia
	Syzygium ngoyense		
Syzygieae	(Schltr.) Guillaumin	T.Vasconcelos 598	New Caledonia
			RBG Kew living
	Syzygium paniculatum		collection (native to
Syzygieae	Gaertn.	T.Vasconcelos s.n.	Australia)
		T. Vasconcelos	
Syzygieae	Syzygium sp.	642	Singapore (cultivated)
Syzygieae	Syzygium sp.	T.Vasconcelos 629	New Caledonia
Syzygieae	Syzygium sp.	T.Vasconcelos 632	New Caledonia
-1 10	Pleurocalyptus pancheri		
	(Brongn. & Gris)	T. Vasconcelos	
Xanthostemonae	J.W.Dawson	627	New Caledonia
	Pleurocalyptus pancheri		
	(Brongn. & Gris)		
Xanthostemonae	J.W.Dawson	T.Vasconcelos 622	New Caledonia
Xanthostemonae	Xantostemon sp.	T.Vasconcelos 687	Singapore (cultivated)

Appendix 4.3: Myrtaceae phylogeny (modified from Thornhill et al., 2015).

species	modeTotal	modeCalyc	modeCorol	modePseu
Psiloxylon_mauritianum	0	0	0	0
Heteropyxis_natalensis	0	0	0	0
Lophostemon_confertus	0	0	0	0
Kjellbergiodendron_celebicum	0	0	0	0
Xanthostemon_chrysanthus	0	0	0	0
Pleurocalyptus	1	1	0	0
Callistemon_polandii	0	0	0	0
Melaleuca_adnata	0	0	0	0
Melaleuca_lanceolata	0	0	0	0
Beaufortia_orbifolia	0	0	0	0
Calothamnus_validus	0	0	0	0
Melaleuca_nesophila	0	0	0	0
Melaleuca_uncinata	0	0	0	0
Melaleuca_glomerata	0	0	0	0
Melaleuca_cornucopiae	0	0	0	0
Melaleuca_acacioides	0	0	0	0
 Melaleuca_viridiflora	0	0	0	0
 Melaleuca_argentea	0	0	0	0
Melaleuca leucadendra	0	0	0	0
Melaleuca_cajuputi	0	0	0	0
Melaleuca_arcana	0	0	0	0
Eucalyptopsis_papuana	1	1	0	0
Stockwellia_quadrifida	0	0	0	0
Syncarpia_glomulifera	0	0	0	0
Lindsayomyrtus_racemoides	0	0	0	0
Osbornia_octodonta	0	0	0	0
Arillastrum_gummiferum	0	0	0	0
Angophora_hispida	0	0	0	0
Corymbia_citriodora	1	1	1	0
Angophora_costata	0	0	0	0
Eucalyptus_curtisii	1	0	1	0
Eucalyptus_pauciflora	1	0	1	0
Eucalyptus_haemastoma	1	0	1	0
Eucalyptus_melliodora	1	1	1	0
Eucalyptus_loxophleba	1	1	1	0
Eucalyptus_grandis	1	1	1	0
Eucalyptus_camaldulensis	1	1	1	0
Eucalyptus_globulus	1	1	1	0
Eucalyptus_nitens	1	1	1	0
Eucalyptus_perriniana	1	1	1	0
Kunzea_baxteri	0	0	0	0
Kunzea_capitata	0	0	0	0
Kunzea_ericoides	0	0	0	0

Appendix 4.4: Trait coding per tip for each phylogenetic signal analysis of calyptrate flowers in Myrtaceae. Tip names according to phylogeny in Appendix 4.3.

Agonis flexuosa 0 0 0 0 Asteromyrtus_lysicephala 0 0 0 0 Asteromyrtus_symphyccarpa 0 0 0 0 Leptospermum_spectabile 0 0 0 0 Leptospermum_spectabile 0 0 0 0 Chrosperma_ligomerum 0 0 0 0 Ochrosperma_lineare 0 0 0 0 Chrosperma_lineare 0 0 0 0 Micromyrtus_cilitat 0 0 0 0 Micromyrtus_cilotata 0 0 0 0 Micromyrtus_cilotata 0 0 0 0 Phyocalymma_tetrapterum 0 0 0 0 Phyocalymma_tetrapterum 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Baeckea_tr	Pericalymma_ellipticum	0	0	0	0
Asteromyrtus_lysicephala 0 0 0 Asteromyrtus_symphyocarpa 0 0 0 0 Leptospermum_soparium 0 0 0 0 Leptospermum_scoparium 0 0 0 0 Ochrosperma_lineare 0 0 0 0 Homalocalyx_aurea 0 0 0 0 Micromyrtus_elilata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Micromyrtus_elilobata 0 0 0 0 Micromyrtus_elilobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Pileanthus_filifolius 0 0 0 0 Darwina_tesaxicola 0 0 0 0 Darwinia_tascicularis 0 0 0 0 Darwinia_tascicularis 0 0 0 0 Baeckea_tuberculata <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Asteromyrtus_symphyocarpa 0 0 0 0 Leptospermum_spectabile 0 0 0 0 Leptospermum_scoparium 0 0 0 0 Chrosperma_lineare 0 0 0 0 Ochrosperma_lineare 0 0 0 0 Homalocalyx_aurea 0 0 0 0 Calytrx_tetragona 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Verticordia_pennigera 0 0 0 0 Verticordia_pennigera 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Baeckea_truberculata 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Baeckea_tuberculata		-	•		
Leptospermum_trinervium 0 0 0 0 Leptospermum_trinervium 0 0 0 0 0 Ochrosperma_lineare 0 0 0 0 0 0 Chrosperma_lineare 0 0 0 0 0 0 Homalocalyx_aurea 0 0 0 0 0 0 Calytrix_tetragona 0 0 0 0 0 0 Micromyrtus_ciliata 0 0 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 0 0 Plieanthus_filifolius 0 0 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 0 0 Darwinia fascicularis 0 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 0 Baeckea_pentagonantha <td></td> <td></td> <td></td> <td></td> <td></td>					
Leptospermum_trinervium 0 0 0 0 Leptospermum_scoparium 0 0 0 0 0 Ochrosperma_lineare 0 0 0 0 0 0 Homalocalyx, aurea 0 0 0 0 0 0 Calytrix_tetragona 0 0 0 0 0 0 Micromyrtus_elobata 0 0 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 0 0 Pileanthus, filifolius 0 0 0 0 0 0 Charnelaucium_uncinatum 0 0 0 0 0 0 Darwina fascicularis 0 0 0 0 0 0 Baeckea_truberculata 0 0 0 0 0 0 Baeckea_truberculata 0 0 0 0 0 0 0 0 0<					
Leptospermum_scoparium 0 0 0 0 Ochrosperma_lineare 0 0 0 0 Homalocalyx_aurea 0 0 0 0 Attragona 0 0 0 0 Micromyrtus_ciliata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 Chamelaucium_cunninghamii 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Baeckea_poratifolia 0 0 0 0 Baeckea_poratifolia <td< td=""><td>· · · ·</td><td>-</td><td>-</td><td></td><td></td></td<>	· · · ·	-	-		
Ochrosperma_lineare 0 0 0 0 Ochrosperma_lineare 0 0 0 0 Homalocalyx_aurea 0 0 0 0 Calytrix_tetragona 0 0 0 0 Micromyrtus_ciliata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Pileanthus_filifolius 0 0 0 0 Verticordia_pennigera 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Baeckea frutescens 0 0 0 0 Baeckea tuberculata 0 0 0 0 Baeckea pentagonantha					
Ochrosperma_lineare 0 0 0 Homalocalyx_aurea 0 0 0 0 Calytrix_tetragona 0 0 0 0 Micromyrtus_ciliata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Pileanthus filifolius 0 0 0 0 Pileanthus filifolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_futerculata 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_futerculata 0 0 0 0 Baeckea_pentagonantha 0	· · · ·		-		
Homalocalyx_aurea 0 0 0 0 Calytrix_tetragona 0 0 0 0 Micromyrtus_cilitata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Thryptomene_saxicola 0 0 0 0 Pileanthus_filfolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_nuberculata 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_pontagonantha 0 0 0 0 Baeckea_ponatha_angusta 0 0 0 0 Sannantha_angusta			•		
Calytrix_tetragona 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Mypocalymma_tetrapterum 0 0 0 0 Pileanthus_filifolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_tozenninghamii					
Micromyrtus_ciliata 0 0 0 0 Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Thryptomene_saxicola 0 0 0 0 Pileanthus filifolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_tozerensis			-		
Micromyrtus_elobata 0 0 0 0 Hypocalymma_tetrapterum 0 0 0 0 Thryptomene_saxicola 0 0 0 0 Pileanthus_filifolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_virgata 0 0 0 0 Quernyrutus_australis			-		
Hypocalymma_tetrapterum 0 0 0 0 Thryptomene_saxicola 0 0 0 0 0 Pileanthus_filifolius 0 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 0 Verticordia_pennigera 0 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 0 Darwinia_fascicularis 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Baeckea_portagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 0 Sannantha_agusta 0					
Thryptomene_saxicola 0 0 0 0 Pileanthus_filifolius 0 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 0 Verticordia_pennigera 0 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 0 Darwinia_fascicularis 0 0 0 0 0 Backea_frutescens 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Harmogia_densifolia 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 Myrtus_communis 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Pileanthus_filifolius 0 0 0 0 Chamelaucium_uncinatum 0 0 0 0 0 Verticordia_pennigera 0 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 0 Darwinia_fascicularis 0 0 0 0 0 Baeckea_frutescens 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 Sannantha_tozerensis 0 0					
Chamelaucium_uncinatum 0 0 0 0 Verticordia_pennigera 0 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 0 Darwinia_fascicularis 0 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 0 Baeckea_frutescens 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Baeckea_tovalifolia 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 0 Sannantha_cornninghamii 0					
Verticordia_pennigera 0 0 0 0 Actinodium_cunninghamii 0 0 0 0 Darwinia_fascicularis 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Kardomia_jucunda 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_comninghamii 0 0 0 0 Myrtus_communis 0 0 0 0 0 Uromyrtus_australis				-	
Actinodium_cunninghamii 0 0 0 0 Darwinia_fascicularis 0 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 0 Baeckea_frutescens 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Harmogia_densifolia 0 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 0 Uromyrtus_australis 0 0<					
Darwinia_fascicularis 0 0 0 0 Homoranthus_darwinioides 0 0 0 0 Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Kardomia_jucunda 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Myrtus_communis 0 0 0 0 Uromyrtus_australis 0					
Homoranthus_darwinioides 0 0 0 0 Baeckea_frutescens 0 0 0 0 0 Baeckea_tuberculata 0 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Harmogia_densifolia 0 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 Decaspermum_humile 0 0 0			-		
Baeckea_frutescens 0 0 0 0 Baeckea_tuberculata 0 0 0 0 Kardomia_jucunda 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Myrtus_communis 0 0<		-			
Baeckea_tuberculata 0 0 0 0 Kardomia_jucunda 0 0 0 0 0 Harmogia_densifolia 0 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 0 Sannantha_stopentitis 0 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 0 Myrus_communis	Homoranthus_darwinioides	0	0	0	0
Kardomia_jucunda 0 0 0 0 Harmogia_densifolia 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 Euryomyrtus_ramosissima 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Myrtus_communis 0 0 0 0 Uromyrtus_australis 0 0 0 0 Decaspermum_humile 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 Pilidiostigma_papuanum 0 <td>Baeckea_frutescens</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Baeckea_frutescens	0	0	0	0
Harmogia_densifolia 0 0 0 0 Baeckea_pentagonantha 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 0 Euryomyrtus_ramosissima 0 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 0 0 0 0 Sannantha_tozerensis 0	Baeckea_tuberculata	0	0	0	0
Baeckea_pentagonantha 0 0 0 0 Baeckea_ovalifolia 0 0 0 0 0 Euryomyrtus_ramosissima 0 0 0 0 0 Sannantha_angusta 0 0 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 0 Sannantha_virgata 0 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 0 0 Pilidiostigma_papuanum 0	Kardomia_jucunda	0	0	0	0
Baeckea_ovalifolia 0 0 0 0 Euryomyrtus_ramosissima 0 0 0 0 Sannantha_angusta 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_virgata 0 0 0 0 Myrtus_communis 0 0 0 0 Uromyrtus_australis 0 0 0 0 Decaspermum_humile 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 Rhodamnia_argentea 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 Psidium_guajava 1 1 0 0 Psidium_cattleianum 0	Harmogia_densifolia	0	0	0	0
Euryomyrtus_ramosissima 0 0 0 0 Sannantha_angusta 0 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 Sannantha_virgata 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 Decaspermum_humile 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 Rhodamnia_argentea 0 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 0 Psidium_guajava 1 1 0 0 0 Psidium_cattleianum 0 0 0 <td>Baeckea_pentagonantha</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Baeckea_pentagonantha	0	0	0	0
Sannantha_angusta 0 0 0 0 Sannantha_cunninghamii 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_tozerensis 0 0 0 0 Sannantha_virgata 0 0 0 0 Myrtus_communis 0 0 0 0 Uromyrtus_australis 0 0 0 0 Decaspermum_humile 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 Rhodamnia_argentea 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 Psidium_guajava 1 1 0 0 Psidium_cattleianum 0 0 0 0 Acca_sellowiana 0 0 0 0 Eugenia_uniflora 0	Baeckea_ovalifolia	0	0	0	0
Sannantha_cunninghamii 0 0 0 0 0 Sannantha_tozerensis 0 0 0 0 0 0 Sannantha_virgata 0 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 0 Decaspermum_humile 0 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 0 Rhodamnia_argentea 0 0 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 0 0 Psidium_guajava 1 1 0 0 0 0 Psidium_cattleianum 0 0 0 0 0 0 0 0	Euryomyrtus_ramosissima	0	0	0	0
Sannantha_tozerensis 0 0 0 0 0 Sannantha_virgata 0 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 0 Decaspermum_humile 0 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 0 Rhodamnia_argentea 0 0 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 0 0 Psidium_guajava 1 1 0 0 0 0 Psidium_cattleianum 0 0 0 0 0 0 Acca_sellowiana 0 0 0 0 0 0 0	Sannantha_angusta	0	0	0	0
Sannantha_virgata 0 0 0 0 0 Myrtus_communis 0 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 0 Decaspermum_humile 0 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 0 Rhodamnia_argentea 0 0 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 0 0 Rhodomyrtus_macrocarpa 0 0 0 0 0 0 Psidium_guajava 1 1 0 0 0 0 0 Acca_sellowiana 0 0 0 0 0 0 0 Eugenia_uniflora 0 0 0 0 0 0	Sannantha_cunninghamii	0	0	0	0
Myrtus_communis 0 0 0 0 0 Uromyrtus_australis 0 0 0 0 0 0 Decaspermum_humile 0 0 0 0 0 0 Rhodamnia_rubescens 0 0 0 0 0 0 Rhodamnia_argentea 0 0 0 0 0 0 Archirhodomyrtus_beckleri 0 0 0 0 0 0 Pilidiostigma_papuanum 0 0 0 0 0 0 Rhodomyrtus_macrocarpa 0 0 0 0 0 0 Psidium_guajava 1 1 0 0 0 0 Acca_sellowiana 0 0 0 0 0 0 0 Eugenia_uniflora 0 0 0 0 0 0 0	Sannantha_tozerensis	0	0	0	0
Uromyrtus_australis0000Decaspermum_humile0000Rhodamnia_rubescens0000Rhodamnia_argentea0000Archirhodomyrtus_beckleri0000Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Sannantha_virgata	0	0	0	0
Decaspermum_humile0000Rhodamnia_rubescens0000Rhodamnia_argentea0000Archirhodomyrtus_beckleri0000Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Myrtus_communis	0	0	0	0
Rhodamnia_rubescens0000Rhodamnia_argentea0000Archirhodomyrtus_beckleri0000Pilidiostigma_papuanum0000Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Uromyrtus_australis	0	0	0	0
Rhodamnia_argentea0000Archirhodomyrtus_beckleri0000Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Decaspermum_humile	0	0	0	0
Archirhodomyrtus_beckleri0000Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Rhodamnia_rubescens	0	0	0	0
Pilidiostigma_papuanum0000Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Rhodamnia_argentea	0	0	0	0
Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Archirhodomyrtus_beckleri	0	0	0	0
Rhodomyrtus_macrocarpa0000Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000	Pilidiostigma_papuanum	0	0	0	0
Psidium_guajava1100Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000		0	0	0	0
Psidium_cattleianum0000Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000		1	1	0	0
Acca_sellowiana0000Eugenia_uniflora0000Eugenia_sulcata0000		0	0	0	0
Eugenia_uniflora0000Eugenia_sulcata0000			0		
Eugenia_sulcata 0 0 0			0		
		-	-	-	
	Eugenia_myrcianthes	0	0	0	0

Calyptrogenia_cupidata	1	1	0	0
Legrandia_concinna	0	0	0	0
Pimenta dioica	0	0	0	0
Amomyrtus_meli	0	0	0	0
Campomanesia_guazumifolia	1	1	0	0
Pimenta_pseudocaryophyllus	0	0	0	0
Pimenta racemosa	0	0	0	0
—	0	0	0	0
Ugni_molinae	0	0	0	0
Myrteola_nummularia		-		
Lophomyrtus_bullata	0	0	0	0
Lophomyrtus_obcordata	0	0	0	0
Neomyrtus_pedunculata	0	0	0	0
Blepharocalyx_eggersii	1	1	0	0
Blepharocalyx_salicifolius	0	0	0	0
Luma_apiculata	0	0	0	0
Myrcia_splendens	0	0	0	0
Myrciaria_vexator	0	0	0	0
Neomitranthes	1	1	0	0
Blepharocalyx_cruckshanksii	0	0	0	0
Myrceugenia_myrcioides	0	0	0	0
Myrceugenia_leptospermoides	0	0	0	0
Myrcia_saxatilis	0	0	0	0
Marlierea_obscura	0	0	0	0
Myrcia_multiflora	0	0	0	0
Myrcia_laruotteana	0	0	0	0
Marlierea_eugeniopsoides	1	1	0	0
Myrcia_pubipetala	0	0	0	0
Myrcia_brasiliensis	0	0	0	0
Myrcia_flagellaris	0	0	0	0
Calyptranthes_kiaerskovii	1	1	0	0
Calyptranthes_concinna	1	1	0	0
Calyptranthes_pallens	1	1	0	0
Tristaniopsis_laurina	0	0	0	0
Lysicarpus_angustifolius	0	0	0	0
Sphaerantia_chartacea	0	0	0	0
Cloezia_floribunda	0	0	0	0
Xanthomyrtus_papuana	0	0	0	0
Thaleropia_queenslandica	0	0	0	0
Tristania_neriifolia	0	0	0	0
 Tepualia_stipularis	0	0	0	0
Metrosideros_nervulosa	0	0	0	0
 Metrosideros_macropus	0	0	0	0
Metrosideros_diffusa	0	0	0	0
Metrosideros_carminea	0	0	0	0
Metrosideros_perforata	1	0	0	1
Backhousia_citriodora	0	0	0	0

Backhousia_myrtifolia 0 0 0 Syzygium_wesa 0 0 0 0 Syzygium_wesa 0 0 0 0 Syzygium_luehmannii 0 0 0 0 Syzygium_luehmannii 0 0 0 0 Syzygium_tetrapterum 0 0 0 0 0 Syzygium_buxifolium 0 0 0 0 0 0 Syzygium_gustavioides 1 1 0 <th>0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0 0 0 0 0</th>	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
Syzygium_wesa 0 0 0 Syzygium_wilsonii 0 0 0 Syzygium_luehmannii 0 0 0 Syzygium_trancisii 0 0 0 Syzygium_zeylanicum 0 0 0 Syzygium_tetrapterum 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_gustavioides 1 1 0 Syzygium_floribundum 0 0 0 Syzygium_concinnum 0 0 0 Piliocalyx_francii 1 1 0 Syzygium_concinnum 0 0 0 Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 Syzygium_acuminatissimum 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_acioretex 1 0 0 Syzygium_anithii 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0
Syzygium_wilsonii 0 0 0 Syzygium_luehmannii 0 0 0 Syzygium_francisii 0 0 0 Syzygium_zeylanicum 0 0 0 Syzygium_tetrapterum 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_dustoides 1 1 0 Syzygium_foribundum 0 0 0 Syzygium_foribundum 0 0 0 Piliocalyx_francii 1 1 0 Syzygium_concinnum 0 0 0 Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 Syzygium_acuminatissimum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_claviflorum 1 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_acuorotrex 1 0 0	0 0 0 0 0 0 0	0 0 0
Syzygium_luehmannii 0 0 0 Syzygium_francisii 0 0 0 Syzygium_zeylanicum 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_floribundum 0 0 0 Syzygium_floribundum 0 0 0 Syzygium_forcncinnum 0 0 0 Piliocalyx_francii 1 1 0 Syzygium_concinnum 0 0 0 Piliocalyx_robustus 1 1 0 Syzygium_graveolens 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_claviflorum 1 0 0 Syzygium_apodophyllum 0 0 0 Syzygium_apodophyllum 0 0 0	0 0 0 0 0	0 0
Syzygium_francisii 0 0 0 Syzygium_zeylanicum 0 0 0 Syzygium_tetrapterum 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_gustavioides 1 1 0 Syzygium_floribundum 0 0 0 Syzygium_hedraiophyllum 0 0 0 Piliocalyx_francii 1 1 0 Syzygium_concinnum 0 0 0 Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 Syzygium_graveolens 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_smithii 0 0 0 0 Syzygium_claviflorum 1 0 0 0 Syzygium_actaviflorum 1 0 0 0 Syzygium_actaviflorum 1 0 0 0 Syzygium_ached	0 0 0 0	0
Syzygium_zeylanicum 0 0 0 Syzygium_tetrapterum 0 0 0 Syzygium_buxifolium 0 0 0 Syzygium_gustavioides 1 1 0 Syzygium_floribundum 0 0 0 Syzygium_hedraiophyllum 0 0 0 Piliocalyx_francii 1 1 0 0 Piliocalyx_francii 1 1 0 0 0 Piliocalyx_bullatus 1 1 0 0 0 0 Piliocalyx_robustus 1 1 1 0 0 0 0 Syzygium_graveolens 0 0 0 0 0 0 0 Syzygium_acuminatissimum 0 0 0 0 0 0 Syzygium_smithii 0 0 0 0 0 0 0 Syzygium_claviflorum 1 0 0 0 0 0	0 0 0	
Syzygium_tetrapterum 0 0 0 Syzygium_buxifolium 0 0 0 0 0 Syzygium_gustavioides 1 1 0	0 0	0
Syzygium_buxifolium 0 0 0 Syzygium_gustavioides 1 1 0 Syzygium_floribundum 0 0 0 Syzygium_hedraiophyllum 0 0 0 Piliocalyx_francii 1 1 0 0 Syzygium_concinnum 0 0 0 0 Piliocalyx_bullatus 1 1 0 0 Piliocalyx_robustus 1 1 0 0 Syzygium_graveolens 0 0 0 0 Syzygium_acuminatissimum 0 0 0 0 Syzygium_achaviflorum 1 0 0	0	0
Syzygium_gustavioides 1 1 0 Syzygium_floribundum 0 0 0 0 0 Syzygium_hedraiophyllum 0 <td></td> <td>0</td>		0
Syzygium_floribundum 0 0 0 Syzygium_hedraiophyllum 0	0	0
Syzygium_hedraiophyllum 0 0 0 Piliocalyx_francii 1 1 0		0
Piliocalyx_francii 1 1 0 Syzygium_concinnum 0 0 0 Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 Piliocalyx_robustus 1 1 0 Syzygium_graveolens 0 0 0 Syzygium_divaricatum 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_claviflorum 1 0 0 Syzygium_apodophyllum 0 0 0 Syzygium_maitellagarii 1 1 <td></td> <td>0</td>		0
Syzygium_concinnum 0 0 0 Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 Syzygium_graveolens 0 0 0 Syzygium_divaricatum 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_hemilamprum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_claviflorum 1 0 0 Syzygium_apodophyllum 0 0 0 Syzygium_maire 0 0 0 Syzygium_maire 0 0 0 Syzygium_maire 1 0 0 Syzygium_maire 0 0 0 Syzygium_marboreum 1 1 0 Syzygium_arboreum 1 0 0 Syzygium_arboreum 1 0 0 <td< td=""><td></td><td></td></td<>		
Piliocalyx_bullatus 1 1 0 Piliocalyx_robustus 1 1 0 0 0 Syzygium_graveolens 0 0 0 0 0 0 Syzygium_divaricatum 0		0
Piliocalyx_robustus 1 1 0 Syzygium_graveolens 0 0 0 Syzygium_divaricatum 0 0 0 Syzygium_acuminatissimum 0 0 0 Syzygium_smithii 0 0 0 Syzygium_hemilamprum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_canicortex 1 0 0 Syzygium_apodophyllum 0 0 0 Syzygium_maire 0 0 0 Syzygium_multipetalum 1 0 0 Syzygium_arboreum 1 0 0 Syzygium_hervosum 1 1 0 Syzygium_amplifolium 0 0 0 Syzygium_aromaticum 1 0 0 Syzygium_aromaticum 1 0 0 Syzygium_amplifolium 0 0 0 Syzygium_seemannianum 0 0 0 <t< td=""><td></td><td>0</td></t<>		0
Syzygium_graveolens 0 0 0 Syzygium_divaricatum 0 0 0 0 0 Syzygium_acuminatissimum 0		0
Syzygium_divaricatum 0 0 0 Syzygium_acuminatissimum 0 0 0 0 Syzygium_acuminatissimum 0 0 0 0 0 Syzygium_acuminatissimum 0 0 0 0 0 0 Syzygium_smithii 0 0 0 0 0 0 0 Syzygium_hemilamprum 0 0 0 0 0 0 0 Syzygium_claviflorum 1 0	0	0
Syzygium_acuminatissimum 0 0 0 Syzygium_smithii 0 0 0 0 Syzygium_hemilamprum 0 0 0 0 Syzygium_claviflorum 1 0 0 0 0 Syzygium_claviflorum 1 0 0 0 0 0 Syzygium_canicortex 1 0	0	0
Syzygium_smithii 0 0 0 Syzygium_hemilamprum 0 0 0 0 0 Syzygium_claviflorum 1 0	0	0
Syzygium_hemilamprum 0 0 0 Syzygium_claviflorum 1 0 0 Syzygium_canicortex 1 0 0 Syzygium_apodophyllum 0 0 0 Syzygium_maire 0 0 0 Syzygium_fullagarii 1 1 0 Syzygium_multipetalum 1 0 0 Syzygium_arboreum 1 0 0 Syzygium_hutipetalum 1 0 0 Syzygium_arboreum 1 0 0 Syzygium_hutipetalum 1 0 0 Syzygium_arboreum 1 0 0 Syzygium_hutipetalum 1 0 0 Syzygium_arboreum 1 1 0 0 Syzygium_arboreum 1 1 0 0 Syzygium_arboreum 1 1 0 0 Syzygium_arboreum 0 0 0 0 Syzygium_arboreum 0	0	0
Syzygium_claviflorum 1 0 0 Syzygium_canicortex 1 0	0	0
Syzygium_canicortex 1 0 0 Syzygium_apodophyllum 0	0	0
Syzygium_apodophyllum 0 0 0 Syzygium_maire 0 0 0 0 Syzygium_fullagarii 1 1 0 0 Syzygium_fullagarii 1 1 0 0 Syzygium_multipetalum 1 0 0 0 Syzygium_arboreum 1 0 0 0 Syzygium_kuebiniense 1 0 0 0 Syzygium_hervosum 1 1 0 0 Syzygium_branderhorstii 1 0 0 0 Syzygium_amplifolium 0 0 0 0 Syzygium_aromaticum 1 0 0 0 Syzygium_seemannianum 0 0 0 0 Syzygium_samarangense 0 0 0 0	0	1
Syzygium_maire 0 0 0 Syzygium_fullagarii 1 1 0 0 Syzygium_fullagarii 1 1 0 0 0 Syzygium_multipetalum 1 0 0 0 0 0 Syzygium_arboreum 1 0	0	1
Syzygium_fullagarii110Syzygium_multipetalum100Syzygium_arboreum100Syzygium_kuebiniense100Syzygium_nervosum110Syzygium_branderhorstii100Syzygium_branderhorstii100Syzygium_brackenridgei000Syzygium_seemannianum000Syzygium_samarangense000	0	0
Syzygium_multipetalum100Syzygium_arboreum100Syzygium_kuebiniense100Syzygium_nervosum110Syzygium_branderhorstii100Syzygium_branderhorstii100Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_samarangense000	0	0
Syzygium_arboreum100Syzygium_kuebiniense100Syzygium_nervosum110Syzygium_branderhorstii100Syzygium_amplifolium000Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_samarangense000	0	1
Syzygium_kuebiniense100Syzygium_nervosum1100Syzygium_branderhorstii1000Syzygium_amplifolium0000Syzygium_brackenridgei0000Syzygium_aromaticum1000Syzygium_seemannianum0000Syzygium_puberulum0000Syzygium_samarangense0000	0	1
Syzygium_nervosum110Syzygium_branderhorstii100Syzygium_amplifolium000Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	1
Syzygium_branderhorstii100Syzygium_amplifolium000Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	1
Syzygium_amplifolium000Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	1
Syzygium_brackenridgei000Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	1
Syzygium_aromaticum100Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	0
Syzygium_seemannianum000Syzygium_puberulum000Syzygium_samarangense000	0	0
Syzygium_puberulum000Syzygium_samarangense000	0	1
Syzygium_samarangense 0 0 0	0	0
	0	0
Syzygium tiernevanum 0 0 0	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	1
	U	0
Syzygium_crebrinerve000	0	0

Syzygium_fibrosum	0	0	0	0
Syzygium_angophoroides	0	0	0	0
Syzygium_paniculatum	0	0	0	0
Syzygium_oleosum	0	0	0	0
Syzygium_australe	0	0	0	0
Syzygium_cormiflorum	0	0	0	0
Syzygium_bamagense	0	0	0	0
Syzygium_bungadinnia	0	0	0	0
Syzygium_pseudofastigiatum	1	0	0	1
Syzygium_moorei	1	0	0	1
Syzygium_acre	0	0	0	0
Syzygium_jambos	0	0	0	0
Syzygium_pycnanthum	0	0	0	0
Syzygium_seemannii	1	1	0	0
Syzygium_guineense	0	0	0	0
Syzygium_cumini	1	0	0	1
Syzygium_cordatum	0	0	0	0
Syzygium_muellerii	0	0	0	0
Syzygium_racemosum	1	0	0	0

Chapter 5: Floral heterochrony promotes lability of reproductive strategies in the morphologically homogeneous genus *Eugenia* (Myrtaceae)

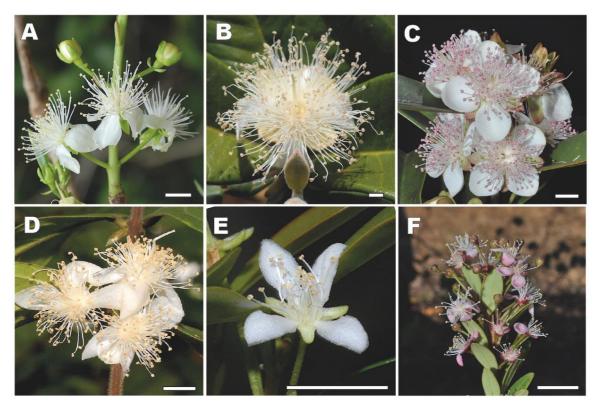
Accepted for publication as: Vasconcelos et al. (in press). "Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). *Annals of Botany*

 T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, generation of SEM images, morphological analyses, phylogenetic analyses and writing of manuscript.

ABSTRACT

Comparative floral ontogeny represents a valuable tool to understand angiosperm evolution. Such an approach may elucidate subtle changes in development that discretely modify floral architecture and underlie reproductive lability in groups with superficial homogeneous morphology. This study presents a comparative survey of floral development in Eugenia (Myrtaceae), one of the largest genera of angiosperms, and shows how previously undocumented ontogenetic trends help to explain the evolution of its megadiversity in constrast to its apparent flower uniformity. Using SEM, selected steps of the floral ontogeny of a model species (Eugenia punicifolia) are described and compared with 20 further species representing all ten major clades in the Eugenia phylogenetic tree. Additional floral trait data are contrasted for correlation analysis and character reconstructions performed against a published phylogenetic tree. Eugenia flowers show similar organ arrangement patterns: radially symmetric, (most commonly) tetramerous flowers with variable numbers of stamens and ovules. Despite a similar general organisation, heterochrony is evident from size differences between tissues and structures at similar developmental stages. These differences underlie variable levels of investment in protection, subtle modifications to symmetry, herkogamic effects and independent and roecium and gynoecium variation, producing a wide spectrum of floral display and contributing to fluctuations in fitness. During Eugenia's bud development, the hypanthium (as defined here) is completely covered by stamen primordia, unusual in other Myrtaceae. This is the likely plesiomorphic state for Myrteae and may have represented a key evolutionary novelty in the tribe. Floral evolution in Eugenia depends on heterochronic patterns rather than changes in complexity to promote flexibility in floral strategies. The successful early establishment of Myrteae, previously mainly linked to the keyinnovation of fleshy-fruit, may also have benefitted from changes in flower structure.

Key words: androecium, gynoecium, hypanthium, Myrteae, ontogeny, perianth.


INTRODUCTION 5.1 Floral ontogeny in studies of systematics and evolution

Flower organs (i.e. calyx, corolla, androecium and gynoecium) and associate tissues are responsible for two main functions in the angiosperm life cycle. The primary function of these organs is forming male and female gametes and their connection for sexual reproduction. The secondary function is to enhance and protect this process, as well as balancing in- and out-breeding (Endress, 1994). In this way, evolutionary changes of floral traits affect reproductive success and promote fitness fluctuations in individual lineages (e.g. de Jager and Ellis, 2013; Antiqueira and Romero, 2016) and comparative floral developmental studies are a useful tool to comprehend evolution in angiosperms (e.g. Endress, 2002, 2006; Rudall and Bateman, 2004). By comparing floral ontogeny in distinct but closely related taxa, changes in rates of organ initiation and development (i.e. heterochronies) are documented, explaining differences in flower architecture (Endress, 1994; Tucker, 2003; Prenner, 2004; Prenner *et al.*, 2008). These alterations in developmental rythyms promote differential investments in organs implicated in adapative features for plant reproduction (e.g. changes in breeding system; see review in Li and Jonhston, 2000).

5.2 Deficit of floral development data for large tropical genera

Such comparative surveys of floral ontogeny are often hampered by a lack of systematic understanding and the difficulty of finding suitable material for analysis of the group of interest (i.e. spirit collections of floral buds in different developmental stages). For that reason, studies on large, tropical and/or taxonomically complicated taxa are rare in comparison to relatively species poor (e.g. Endress, 2003) and/or temperate plant groups (e.g. Webster and Gilmartin, 2003). Systematic complexity in large genera is often a result of morphological homogeneity (e.g. Briggs and Johnson, 1979). The absence of comparative ontogenetic surveys in these groups mean that remarkable but discreet patterns that are key to explain evolutionary trends and diversification patterns are overlooked.

The tropical Myrtaceae genus Eugenia is an example of this deficit. Eugenia, with around 1000 species (WCSP, 2017), is one of the largest angiosperm genera, the second most diverse tree genus (Beech et al., 2017) and listed among the genera with highest diversity of species in threatened Neotropical biomes (Mori et al., 1983; Oliveira-Filho and Fontes, 2000). Being so huge and ecologically important, it is surprising that there is so little information available on the evolution of its floral structure. Flowers of Eugenia are known to display a series of Myrtaceae features: they are epigynous, radially symmetric and polyandrous (Fig. 5.1; see Ronse De Craene and Smets, 1991; Belsham and Orlovich, 2002, 2003; Chapter 3). However, they differ from other Myrtaceae flowers in presenting straight stamens in the bud, a character shared by other related genera within tribe Myrteae (Chapter 2). Certain histogenetic aspects have been described for a few species of Eugenia in isolated studies (Schmid, 1972; Pimentel et al., 2014; Martos et al., 2017); these focus on the highly similar vascular structure and a lack of infrageneric variation, reinforcing the homogeneous aspects of the genus' floral morphology. The absence of information regarding floral evolution in Eugenia is aggravated by sample inaccessability (due to it usually being a tree with a tropical distribution) and, until recently, the absence of a phylogenetic framework (available in Mazine et al., 2014) with which to study an evolutionary coherent sample.

Figure 5.1: Field pictures of flowers in distinct Eugenia clades. (A) Eugenia dichroma (Sect. Speciosae); (B) E. azurensis (Sect. Pseudeugenia); (C) E. involucrata (Sect. Phyllocalyx); (D) E. stipitata (Sect. Pilothecium); (E) E. ligustrina (Sect. Eugenia); (F) E. angustissima (Sect. Racemosae). Scale bar: c.5mm. (all photos taken during field expeditions between 2014 and 2016).

In this study, it is hypothesised that large groups with morphologically homogeneous flowers such as *Eugenia*, rely on heterochronies to promote lability of reproductive strategies. This hypothesis is here tested by documenting floral ontogeny in a phylogenetically representative sample of *Eugenia*. Dimensions of organs and tissues at selected stages are compared to observe changes in developmental rates. Developmental differences are discussed in the context of flexibility of functional traits in the flower (e.g. protection and breeding system). *Eugenia* floral development data is also provides understanding of changes in floral structure associated with heterochrony and their influence on stamen posture in Myrteae, the most species rich tribe of Myrtaceae.

MATERIALS AND METHODS

5.3 Sampling

A complete ontogenetic sequence for *Eugenia punicifolia* (*Eugenia* Sect. *Umbellatae*) is described and used as a base for comparing variation in selected developmental stages between samples from twenty species representing ten consistent clades (i.e. clades that re-occur in independent phylogenetic analysis, Mazine *et al.*, 2014, 2016; Bunger *et al.*, 2016; Vasconcelos *et al.*, 2017b). A list of all analysed species and the clades to which they belong is available in Table I. *Eugenia punicifolia* represents the most common floral phenotype for the genus (tetramery, bilocular ovaries and multiple ovules) and is a common, widespread shrub in South America.

Additional samples for stage specific comparison of development and correlation between ovule number/stamen number and size were selected to represent both phylogenetic variation and geographic distribution of *Eugenia*.

Flower samples of *Eugenia* were collected mainly from their natural environments during field expeditions to South America, the Caribbean and New Caledonia. In a few cases, samples were taken from cultivated collections in botanic gardens. Samples of young inflorescence shoots, flower buds and open flowers were collected and fixed in FAA (formalin, acetic acid and ethanol) or 70% ethanol in falcon tubes; field pictures at anthesis were also registered. Herbarium vouchers for all collections are deposited at the Royal Botanic Garden Kew (K) with duplicates in local herbaria from where the collections originate.

5.4 Ontogenetic examination

Flower buds in different developmental stages were selected and dissected in 50% or 70% ethanol to expose structures of interest, then dehydrated through an ethanol series to 100% ethanol. Critical-point drying was performed using an Autosamdri-815B critical-point dryer (Tousimis Research, Rockville, Maryland, USA). Dried material was mounted onto metal specimen stubs using a carbon stick disk and coated with platinum using a Quorum Q-150-T sputter coater (Quorum Technologies, East Grinstead, UK). Stubs were examined and distinct floral developmental stages were documented using a Hitachi cold field emission SEM S-4700-II (Hitachi High Technologies, Tokyo, Japan).

5.5 Flower measurements and correlation analysis

Additional measurements were taken to analyse correlation and disparity in the number of floral parts as a consequence of changes in developmental patterns. These were: floral receptacle diameter (the base of the flower), total number of stamens and total number of ovules. All measurements were taken in mature, pre-anthetic buds or recently opened flowers and annotated as an average of observations from at least three buds per sample. Missing data correspond to samples that only presented buds in inadequate stages for reliable measurements (e.g. receptacle diameter was not recorded for samples that did not present open flowers, because the staminal ring appears to continuously expand in later stages of development and anthesis). All resulting measurements are presented in Table 5.1.

Linear regressions between flower receptacle diameter and total number of stamens and ovules were performed using the *Im* function in the *stats* package in R (R core team, 2017). This analysis was executed to test correlation between investment in receptacle diameter and formation of male (stamens) and female (ovules) reproductive structures.

5.6 Supporting analysis of character reconstruction

Ancestral state reconstruction analysis was conducted to interpret stamen posture and evolution of the combined androecium-hypanthium development in Myrtaceae. The Myrtaceae cladogram presented is based on the phylogenetic hypothesis published by Thornhill et al. (2015, see Appendix 4.3); it was used to reconstruct the characters as: (1) stamen primordia forming along the whole hypanthial surface; and (2) stamen primordia forming only on the edges of the hypanthial surface. The tree was trimmed to include only the Myrtoideae subfamily (all Myrtaceae except the monotypic and non-polyandrous *Psyloxylon* and *Heteropyxis*). Reconstruction was performed using

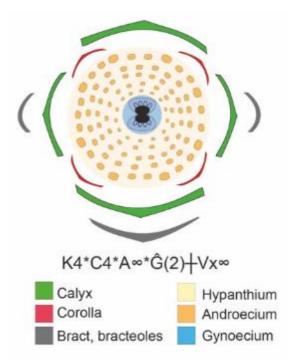
the function *ace* in the R package *ape* (R core team, 2017). The character matrix and associated references are available in the Appendix 5.1.

RESULTS

5.7 Floral Structure in Eugenia

Flowers of *Eugenia* are variable in size, reaching from 5 mm to over 30 mm in diameter when open. Most analysed flowers of *Eugenia* share the same general floral ground-plan and formula (Fig. 5.2; see also Chapter 3). The *Eugenia* calyx and corolla are tetramerous, with decussate aestivation. *Eugenia myrcianthes* is exceptional in its pentamery and imbricate quincuncial aestivation (i.e. two external sepals, two internal and one intermediate; see Appendix 5.2 - Plate 1). Symmetry is radial to slightly asymmetric. The androecium is polyandrous, with stamen number varying from c.30 to c.350 (see Table 5.1). Stamens are free throughout flower development. The ovary is inferior with two (most common phenotype) to three or four locules (see see Appendix 5.2 - Plate 2). Ovules are attached radially to an axillary placenta positioned at a single point on each locule wall of the ovary septum. Number of ovules per locule varied between 2 and 50 in analysed species. The complete ontogenetic sequence of *Eugenia punicifolia* is described below.

5.8 Flower development in Eugenia punicifolia


The complete floral ontogenetic sequence of *Eugenia punicifolia* is divided into five main stages (Stages 1 to 5) and seven substages (Stages 1a, 1b, 2a, 2b, 3, 4, 5), according to meristematic differentiation, from sepal initiation to anthesis. Stages can be summarized as: Stage 1a - calyx initiation, Stage 1b - corolla initiation, Stage 2a - androecium and gynoecium initiation, Stage 2b - hypanthium elongation/expansion, Stage 3 - differentiation of ovules and anthers, Stage 4 - pre-anthetic bud enlargement and final maturation of sexual organs, Stage 5 - anthesis.

At Stage 1a, the first two sepals initiate almost simultaneously in a median position ("S1" and "S1*", Fig. 5.3A) with the abaxial (lower) sepal appearing slighly older than the adaxial one. Shortly after, two sepals form simultaneously in transversal positions, decussate to the first two sepals ("S2", Fig. 5.3A,B). During early bud elongation, the first pair of sepals overlaps the second (Fig. 5.3B,C). At this point, the difference in initiation timing between the two sepals from the first pair ("S1" and "S1*", Fig. 5.3A) is almost indistinguishable ("S1", Fig. 5.3B). Single celled hairs appear on the tips of the sepals at this very early stage. These keep the edges of each pair of sepals tightly closed against each other and act like "eye lashes", protecting the young bud during early floral development (arrow, Fig. 5.3C). Sepals are free throughout flower development.

Table 5.1: Analysed species, vouchers, collection location and selected traits averaged for three flowers per collection of *Eugenia* (except when standard deviation is absent). ¹Nomenclature follows Mazine *et al.*, (2016), except for clade *Jossinia*.

							Ovary
Section ¹	Species	Analysed voucher	Collection locality	Diameter [mm]	Stamen number	Ovule number	locule
	Eugenia punicifolia						
Umbellatae	(Kunth) DC.	J.E.Q. Faria 4051	Brazil (Distrito Federal)	2.1 (±0.1)	88 (±3.3)	23.3 (±0.5)	2
Umbellatae	Eugenia citrifolia Poir.	A. Giaretta 1441	Brazil (Roraima)	4.36 (±0.5)	101 (±3.4)	50 (±2.2)	2
Umbellatae	Eugenia flavescens DC.	J.E.Q. Faria 4168	Brazil (Bahia)	2.47 (±0.1)	92 (±4.5)	16 (±1.5)	2
Umbellatae	Eugenia sp.	T. Vasconcelos 350	Brazil (Amazonas)	1.88 (±0.2)	69 (±3.3)	17 (±0.8)	2
	Eugenia gacognei						
Clade <i>Jossinia</i>	Montrouz.	T. Vasconcelos 595	New Caledonia				
	Eugenia paludosa						
	Pancher ex Brongn. &						
Clade <i>Jossinia</i>	Gris	T. Vasconcelos 646	New Caledonia	3.66 (±0.03)	267 (±5.2)	107.3 (±14.1)	2 or 3
Racemosae	Eugenia inversa Sobral	J.E.Q. Faria 4230	Brazil (Espirito Santo)	1.19 (±0.1)	60 (±2.1)	6.4 (±1.4)	2
	Eugenia angustissima						
Racemosae	O.Berg	D.F.Lima 490	Brazil (Goiás)	1.65 (±0.1)	33 (±3.4)	7.7 (±2.1)	2
	Eugenia longiracemosa						
Racemosae	Kiaersk.	T. Vasconcelos 310	Brazil (Amazonas)	2.02 (±0.1)	67 (±4.9)	21 (±2.1)	2
			RBG Kew (cultivated -				
Eugenia	Eugenia uniflora L.	T. Vasconcelos s.n.	originally from Brazil)	2.06 (±0.2)	43 (±4.2)	19 (±4.9)	2
	Eugenia ligustrina (Sw.)						
Eugenia	Willd.	T. Vasconcelos 570	Dominican Republic	1.5(0.5)	44 (±6.2)	7 (±2.3)	2
	Eugenia stipitata		Singapore (cultivated -				
Pilothecium	McVaugh	T. Vasconcelos 677	originally from Brazil)	3.1 (±0.4)	149 (±13.9)	21 (±8.5)	3 or 4

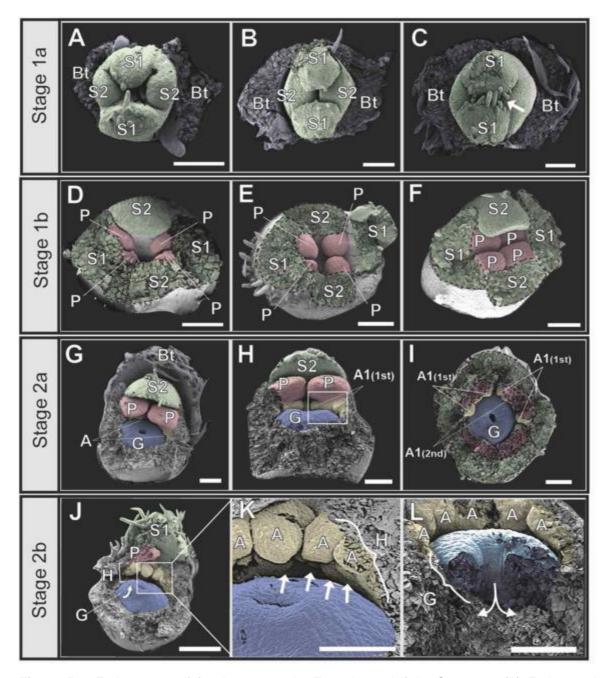
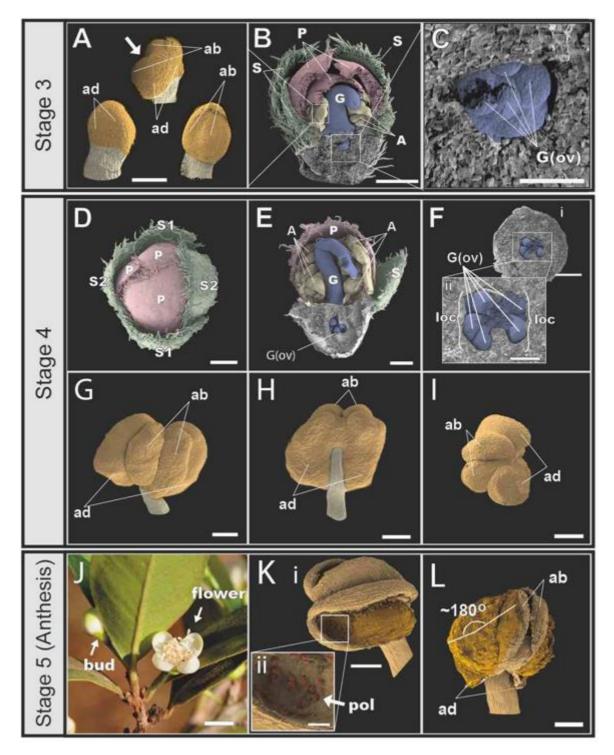

	Eugenia itajurensis						
Pilothecium	Cambess.	J.E.Q. Faria 4250	Brazil (Espirito Santo)	6.2 (±0.3)	180 (±8.7)	18 (±3.2)	2
Pilothecium	Eugenia pohliana DC.	J.E.Q. Faria 4184	Brazil (Bahia)	3.75 (±0.05)	121 (±9.4)	5 (±1.4)	2
	Eugenia azurensis						
Pseudoeugenia	O.Berg	J.E.Q. Faria 4186	Brazil (Bahia)	10.44 (±0.7)	354 (±33.2)	35 (±6.9)	2 or 3
	Eugenia splendens						
Pseudeugenia	O.Berg	J.E.Q. Faria 4196	Brazil (Bahia)	4.05 (±0.3)	149 (±2.6)	34.3 (±4.5)	2
	Eugenia myrcianthes	J.E.Q. Faria					
Hexachlamys	Nied.	6547	Brazil (Brasilia)	5.4 (±0.3)	150 (±8.3)	4 (±0)	2
Calycorectes	Eugenia acutata Miq.	T. Vasconcelos 506	Brazil (Distrito Federal)	5.2 (±0.2)	168 (±14)	32 (±8.3)	2
Phyllocalyx	Eugenia involucrata DC.	T. Vasconcelos 256	Brazil (Distrito Federal)	6.02 (±0.3)	218(±20.1)	66 (±3.5)	2
Speciosae	Eugenia dichroma O.Berg	T. Vasconcelos 466	Brazil (Espirito Santo)	3.86 (±0.1)	130 (±5.7)	34.7 (±4.5)	2

Figure 5.2. Floral diagram of *Eugenia punicifolia*, showing the most common floral ground-plan and floral formula for the genus (bilocular ovaries). For floral formulae interpretation see Prenner et al. (2010). Colour coding: sepals=green, corolla=red, androecium=yellow, gynoecium=blue.

The corolla is the second whorl to develop, during early floral ontogenetic stages. In Stage 1b, four petals initiate almost simultaneously as bulges in alternate positions to the sepals on the inner slopes of the developing hypanthium ("P", Fig. 5.3D). The four petals enlarge, eventually touch each other in the centre of the bud (Fig. 5.3E,F) and overlap in the next stages (Fig. 5.3G-H), providing a cover of four layers of tissue below the calyx on the top of the bud. Because of the nearly simultaneous initiation of the four petals there is no clear pattern of aestivation, even within the same species (see Appendix 5.2 - plate 3). Petals are free throughout flower development.

Stage 2a starts with the initiation of the androecium and gynoecium. The development of the first staminal ring occurs on the hypanthial tissue just underneath each petal ("A", Fig. 5.3G) where two primary staminen primordia are formed flanking each petal ("A1(1st)" Fig. 5.3H,I). The first ring continues to develop laterally and after a longer plastochron, secondary stamen primordia appear between the primary ones ("A1(2nd)", Fig. 5.3I) resulting in a complete first staminal ring. The time gap (plastochron) between the appearance of the first group of stamen primordia and the appearance of the second group of stamen primordia in the first whorl is noticeable at this stage (see also Appendix 5.2 – plate 4) and as the flower continues to develop, this size distinction almost disappears so that the dissimilarity in age between stamens is barely visible in later stages (e.g. Fig. 5.3J,K). The gynoecium originates as a depression that appears on the apical surface of the flower base simultaneously with the appearing of the first androecial primordia ("G", Fig. 5.3G,H).


Figure 5.3. Early stages of floral ontogeny in *Eugenia punicifolia*. Stage 1a: (A) Early sepal development showing transverse bracteoles (removed), and first and second pair of sepals. S1* appears to be slightly older, a discrepancy only noticable at this stage. (B, C) Early sepal development; sepals enclose the bud; single-celled hairs develop at the tips of the sepals (arrow). Stage 1b: (D) Petal initiation; four petals arising simultaneously as bulges alternate to sepals. (E, F) Continuously growing petals eventually meeting in the middle of the bud. Stage 2a: (G, H) Petals overlap; one sepal and one bracteole left to highlight proportion between organs. (H) Lateral view; showing first stamen initiation (A1(1st)) flanking the petals. (I) As "G" and "H", but in frontal view; calyx and corolla removed; primary stamen primordia prominent. Stage 2b: (J) Proto-style developing upwards (arrow) and initiation of second staminal whorl; stamens of the first whorl similar in size. (K) Detail of J, showing stamen primordia covering the hypanthium below the first staminal girdle. (L) Same stage as "J", but further dissected and in lateral view; gynoecium depression (ovary) expands downwards while proto-style grows upwards. Bt, bracteole; S, sepals;

P, Petals; A, androecium; G, gynoecium; H, hypanthium. Bracteoles removed in all. Scale: 50µm (K); 100µm (A, B, C, D, E, G, H, I, L); 250µm (F, J). Colour coding in online version: sepals=green, corolla=red, androecium=yellow, gynoecium=blue.

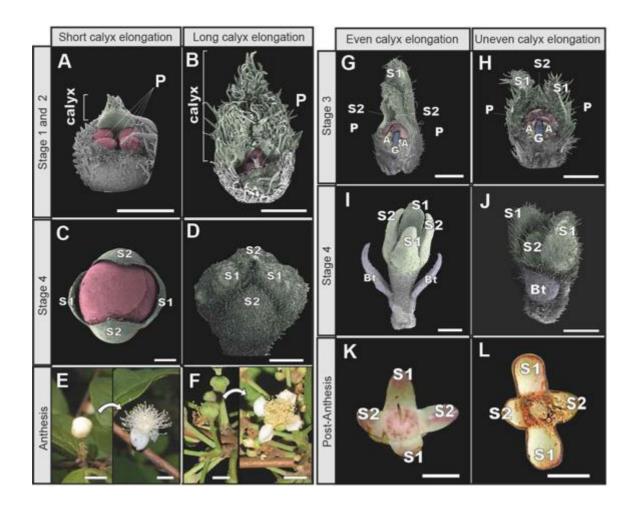
In Stage 2b, the hypanthium tissue expands ("H", Fig. 5.3J,K). Simultaneously, the androecium continues to develop as centripetal and concentric loosely distributed stamen primodia originating along the inner surface of the hypanthium, covering the whole area below the first staminal ring to the gynoecium (arrow in Fig. 5.3K, see Figs. 5.6 and 5.7 below, for other species). During this process, the gynoecium starts to form a proto-style ("G", Fig. 5.3J), whereas the initial depression, now a pore, represents the proto-stigma. As the proto-style develops upwards, the two ovary locules are formed (Fig. 5.3L).

After all organs are formed, the floral bud continually enlarges toward anthesis (Stages 3 and 4). In Stage 3, the stamens differentiate each into a proximal filament and a distal anther. The tetrasporangiate anthers start to differentiate as sagitate structures (Fig. 5.4A) and a longitudinal depression appears in the middle of the abaxial side when the pollen sacs start to form (arrow in Fig. 5.4A). During this process, the style reaches the inner surface of the corolla and bends sidewards on top of the developing anthers ("G", Fig. 5.4B,E). Ovules start to develop at this stage, as protuberances on the axial placentas in both locules ("G(ov)", Fig. 5.4C).

Figure 5.4 (next page). Late stages of floral ontogeny in *Eugenia punicifolia*. (A-C) Initiation of anthers and ovules. Note style bending in "B". (D) Exposure of the corolla prior to anthesis. (E) Longitudinal section of pre-anthetic bud showing maturation of anthers and ovules. Note that the style is sharply bent downwards. (F) Detail of ovule maturation in both ovary locules. (G - I) Mature pollen sacs in pre-anthetic anther. (J) Bud with exposed corolla (arrow) and recently opened flower of *Eugenia punicifolia* (field image). (K, L) thecae opening during anthesis of *Eugenia dichroma*; thecae are reflexed 180 degrees to expose pollen grains. S, sepals; P, Petals; A, androecium; G, gynoecium; G(ov), ovules; A(ant), anther; loc, locule; ad, adaxial pollen sac; ab, abaxial pollen sac; pol, pollen grain. Scale: 50µm (Kii); 100µm (A, C, G, H, I, Ki, L) 200µm (Fii); 500µm (B, D, E, Fi); 5mm (J). Colour coding in online version: sepals=green, corolla=red, androecium=yellow, gynoecium=blue.

In Stage 4, the sexual organs (androecium and gynoecium) finish pre-anthetic development, producing mature ovules and dorsifixed pollen sacs. Mature ovules are organized in loose series on the placenta ("G(ov)", Fig. 5.4E,F). Counts in mature flowers show distinct ovule numbers per locule, apparently reflecting a short plastochron between each locule. The abaxial pollen sacs of each anther ("ab", Fig. 5.4G-I) are slightly smaller than the adaxial pollen sacs ("ad", Fig. 5.4G-I). The stigma is thin and simple, with single celled papillae. During Stage 4, sexual organs mature faster than the perianth elongates (calyx and corolla). As a consequence, the corolla that until this point remains covered by the calyx lobes is pushed upwards and exposed (Fig. 5.4D). This exposure of the corolla is the last step before anthesis. Also at this point, the sepal pairs ("S1"

and "S2") approach in size producing four sepals of similar proportions. This process occurs either by developmental acceleration of "S2", slow-down of "S1" or both ("S1" and "S2", Fig. 5.4D).


Stage 5 represents anthesis. During this process (Fig. 5.4J), the perianth opens, the style straightens and the anthers are exposed. Tissue between each pollen sac (anther locules) opens longitudinally and laterorsely (Fig. 5.4K,L) until the thecae are held at nearly 180 degrees to expose the pollen ("pol" in Fig. 5.4K; Fig. 5.4L). The flower is then ready for pollination.

5.9 Heterochronical pattern 1: Perianth growth rate

Using *Eugenia punicifolia* as a reference, it is possible to compare organ size proportions at similar stages of development between species to infer changes in development rate (heterochronies). The first clear heterochronical pattern is observed when comparing perianth development between species. Most analysed samples showed a similar rate of perianth development as *Eugenia punicifolia*. However, in at least three species (*Eugenia involucrata, E. acutata* and *E. dichroma*) sepal enlargement occurs at a noticeably faster rate (Fig. 5.5A) in early developmental stages. In these taxa the sepals elongate at least twice as fast as in similar stages in other *Eugenia* (see contrast between Fig. 5.5A and B). As a consequence, in these species the calyx covers the whole bud until developmental Stage 4, with no corolla exposure prior to anthesis (see contrast between Fig. 5.5E and F).

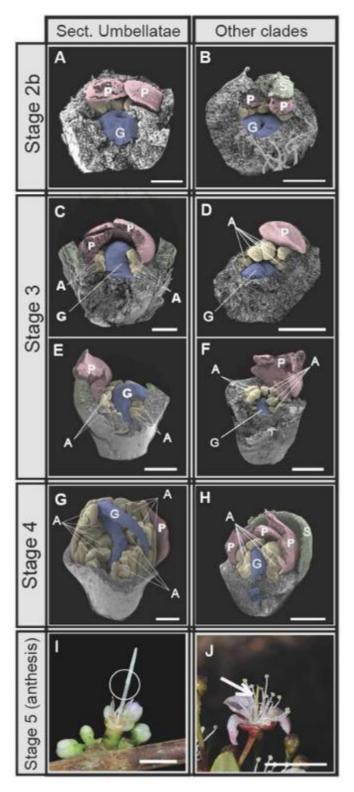

Another distinct pattern of sepal development was observed in *Eugenia inversa* and *E. splendens* (Fig. 5.5G,I,K). In all other species, the ultimate size of the second pair of sepals ("S2") is similar to the first one ("S1") in developmental Stage 4, producing a radially symmetric calyx at anthesis (Fig. 5.5G, I, K). In contrast, in *Eugenia inversa* and *E. splendens* the size difference between sepals S1 and S2 is constant during and after anthesis, resulting in unequal sepals and a disymmetric calyx, still evident in post-anthetic stages (highlighted in Fig. 5.5L).

Figure 5.5 (next page): Variation of perianth developmental rate in *Eugenia*. (A) Early development of *Eugenia* stipitata, showing short calyx contrasting to (B) extremely elongated calyx of *Eugenia acutata*. (C) Pre-anthetic stages in *Eugenia protenta*, showing corolla exposition prior to anthesis; (D) same stage in *Eugenia acutata*, showing sepals that cover the whole buds prior to anthesis. (E) Anthesis in *Eugenia acutata*, highlighting how exposed corolla is in the pre-anthetic stage; (F) Anthesis in *Eugenia acutata*, showing sepals that cover the whole bud prior to anthesis. (G) Stage 3 bud in Eugenia involucrata and in (H) Eugenia inversa, showing S1 more developed than S2. (I) Pre-anthetic buds of *Eugenia dichroma*, with S1 and S2 equally developed in contrast to same stage in (J) Eugenia inversa, where S1 is still more developed than S2. (K) Calyx from post-anthetic flower of Eugenia splendens, showing all sepals the same size contrasted to (L) post-anthetic flower of Eugenia splendens, showing disymmetric calyx with distinctly larger S1 than S2 sepal pairs. Bt, bracteole; S, sepal; P, petal; A, androecium; G, gynoecium. Scale: 250µm (A, B); 500µm (C, D, H); 1mm (G, I, J); 5 mm (E, F, K, L); Colour coding in online version: sepals=green, corolla=red, androecium=yellow, gynoecium=blue. Picture in (F) by Augusto Giaretta.

5.10 Heterochronical pattern 2: Style gigantism in Eugenia sect. Umbellatae

A second heterochronical pattern is found in the rate of stylar growth. Two main patterns of style elongation are observed across the sampled species. In species within Sect. *Umbellatae* (here represented by *Eugenia punicifolia, E. citrifolia, E. flavescens* and *E. protenta*), the style develops faster, reaching the inner surface of the closed corolla early in Stage 3, bending to one side and resting upon the anthers ("Sect. *Umbellatae*" column, Figs. 5.6A, C, E, G, I). In these species, the long style is twice the length of the androecium in anthetic flowers with a visible mark in the middle where it was folded (highlighted in Fig. 5.6K). In all other analysed species, the rate of style development is slower than in *Eugenia punicifolia* ("Other clades" Figs. 5.6 B, D, F, H, J) and the style never bends over the androecium in the pre-anthetic bud (Fig. 5.6J). After anthesis, the style in these species has the same length as the stamens (arrow, Fig. 5.6J). This variation was observed to be particular to each species, with no infraspecific variation that would characterize heterostyly detected.

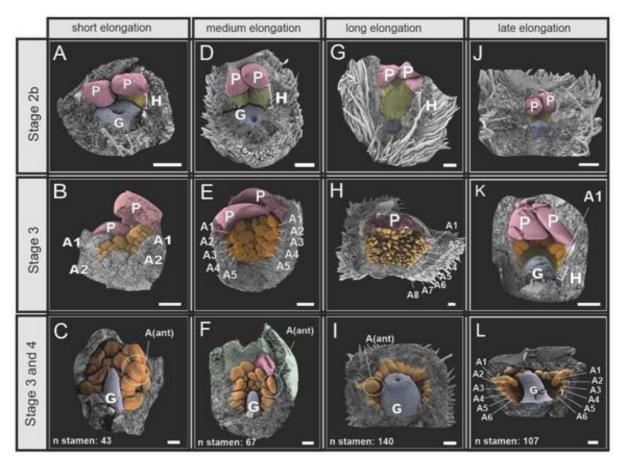


Figure 5.6: Comparative style development in *Eugenia* Sect. *Umbellatae* and other clades. (A) Swollen proto-style in *Eugenia punicifolia*, contrasted to (B) flat proto-style in same stage of *Eugenia angustissima*. (C and E) continuous development of style in *Eugenia punicifolia* and (E) *Eugenia protenta*, showing style bending on top of the anthers (D and F) continuous development of style of *Eugenia angustissma*, showing comparativelely shorter style than in "C" and "E". (G) Pre anthetic bud in *Eugenia protenta*, showing long style that folds on top of the anthers in contrast to (H) *Eugenia angustissima*, where the style is always shorter than the stamens. (I) Open flowers of *Eugenia citrifolia*, with highlighted folding mark in the middle of the style, in constrast to (J) open

flower of *Eugenia angustissima*, showing style at roughly the same height as stamens. Colour coding in online version: sepals=green, corolla=red, androecium=yellow, gynoecium=blue. 150µm (A, B); 250µm (C, D, E, F); 500µm (G, H); 5mm (I, J).

5.11 Heterochronical pattern 3: Hypanthium elongation and androecium development

A third heterochronical pattern concerns early hypanthium elongation and its effects on the initiation and morphogenesis of the androecium. Androecium development is similar in all analysed species: initially, two stamen primordia appear below each petal followed by a continuous sequence of newly appearing stamen primordia in between, forming the first rings of stamens in Stage 2a (Fig. 5.7, see additional images in Appendix 5.2 – plate 4). Sequentially, the hypanthium broadens and stamen primordia cover the entire surface of the hypanthium tissue, from corolla to the stylar base, in Stage 2b. The degree of early hypanthial elongation varies between species and thus the number of stamens also varies from species to species (see Table 5.1). Stamens can be distributed in two to eight or nine rings (Figs. 5.7A-I) depending on the width of the available surface as a result of hypanthium expansion. An additional pattern was observed in the New Caledonian species *Eugenia paludosa* and *E. gacognei* (clade *Jossinia*). In these species, hypanthial expansion occurs later in development, after the first staminal whorl is already prominent (Fig. 5.7J,K). This results in a clearer plastochron between the first and following staminal whorls; the first is already well developed when the later primordia appear. In this case, stamens in the first whorl end up folding slightly towards the centre of the bud in the available cavity (Fig. 5.7L).

Figure 5.7 (previous page): Comparative hypanthium and androecium development in *Eugenia* and differential rate of pollen sac maturation (in orange) according to number of stamens per flower. (A, B) Androecium initiation and hypanthium development of *Eugenia angustissima*, showing two loose stamen whorls forming on the expanded hypanthium. (C) Early maturation of pollen sacs in *Eugenia uniflora*. (D, E) Androecium initiation and hypanthium development of *Eugenia dichroma*, showing five loose stamen whorls forming on the hypanthium. (F) Pollen sacs in maturation process in *Eugenia longiracemosa*. (G, H) Androecium initiation and hypanthium development of *Eugenia azurensis*, showing eight loose stamen whorls forming on the hypanthium. (I) Late pollen sac maturation in *Eugenia stipitata*. (J, K) Androecium initiation and hypanthium development of (J) *Eugenia gacognei* and (K) *E. paludosa*, showing a gap between the development of the first and 5 following stamen whorls. (L) Pollen sac maturation in *Eugenia paludosa*, showing a gap between the development of the first staminal whorl in a more advanced state of development. A(ant), anther; G, gynoecium; S, sepal; P, petal; H, hypanthium. Scale: 100µm (A, B, C, D, F, G, I, J, K, L), 200µm (E, H). Colour coding in online version: sepals=green, corolla=red, androecium=yellow, gynoecium=blue.

Observed variation in androecium development is also responsible for a clear difference in the rate of anther maturation among analysed species. In flowers with fewer stamens, the whole androecium matures faster in comparison to flowers with a higher number of stamens. As a result, flowers at apparently similar stages of development present anthers in different maturation stages according to stamen number (Fig. 5.7C,F,I,L).

5.12 Hypanthial heterochrony effects on androecium/gynoecium proportion

The relative hypanthial expansion in Eugenia flowers is also responsible for the final size of the floral receptacle. Therefore, species with longer initial hypanthial expansion (e.g. Eugenia azurensis, E. itajurensis, E. paludosa) have larger floral receptacles in comparison to those with short hypanthial expansion (e.g. Eugenia angustissima, E. ligustrina, E. punicifolia) (see Table 5.1). Since the production of stamen primordia is continuous throughout hypanthium expansion, stamen number is directly linked to the growth of the hypanthium. This relationship of dependance strongly correlates stamen number with floral receptacle size (p<0.001, r²>0.7, Fig. 5.8A). Thus, larger flowers bear more stamens and consequently more pollen sacs (reproductive male parts). Curiously, however, the same is not true for the relationship between floral receptacle and number of ovules (reproductive female parts). Because the hypanthium expands above the ovary, changes in hypanthium expansion rate have little influence on the number of ovules. Therefore, size of floral receptacle is not significantly correlated with total ovule number per flower (p = 0.214, $r^2 < 0.1$, Fig. 5.8B), meaning that larger flowers do not necessarily bear more ovules than smaller ones. There is a slight difference in ovule size (see Appendix 5.2 – plate 5) but most variation appears to result from differential investment in receptacle tissue. These results suggest that shifts in rate of the hypanthial development, responsible for the total number of stamens formed, affect the final size of the flower and the production of male structures (androecium) but not female floral parts (gynoecium) in Eugenia.

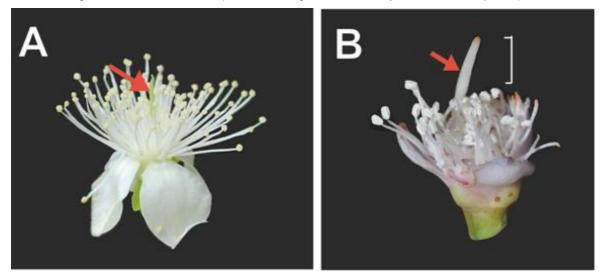
Figure 5.8: Correlation between total diameter of the floral receptacle and: (A) total stamen number per flower (p < 0.001, r2), (B) total ovule number per flower (p = 0.2140, r2).

DISCUSSION

5.13 Eugenia flower development in the context of Myrtaceae

Flower morphology in *Eugenia* is similar to that in other Myrtaceae and Myrtales. The tetramerous-decussate phenotype is very frequent in other Myrtaceae (e.g. *Eucalyptus*, *Syzygium*) and even the variation between tetramerous-decussate and pentamerous-quincuncial aestivation can be found in other closely related genera (e.g. *Myrcia*, see Chapters 3 and 6).

Polyandry is the most frequent androecium arrangement in Myrtaceae (Ronse De Craene and Smets, 1991) and is common in other core eudicot families (e.g. Prenner et al., 2008; Prenner, 2011; Paulino et al., 2014) and in Magnoliales (e.g. Ronse De Craene and Smets, 1998). Eudicots differ from the latter, however, in presenting whorled rather than spiral stamen formation (Ronse De Craene and Smets, 1992, 1998), having evolved from ancestral oligandrous arrangements, i.e. secondary polyandry (Endress, 1996).


The acquisition of secondary polyandry is not as evident in *Eugenia* as it is in other Myrtaceae (e.g. *Melaleuca*, Orlovich et al., 1999), but some heterogenety in the appearance of the first and second group of stamen primordia suggest this pathway in the genus. During androecium initiation, a first group of staminal primordia is formed in an antepetalous position, so that the flower is initially obhaplostemonous. This pattern may represent a relic from a plesiomorphic stage, where these areas would have shown a more apparent primary primordia that would further divide into secondary primordia and sequential rings (Ronse De Craene and Smets, 1992; Endress, 1994).

Diplostemony is hypothesized to be the plesiomorphic state for Myrtales (Dahlgren and Thorne, 1984) but there is no evidence for this state in *Eugenia* or Myrtaceae (Ronse De Craene and Smets, 1995) because even though two primary primordia are flanking each petal, these are arranged in a single whorl.

5.14 Heterochronic trends and adaptative features

When very few changes in complexity are observed within the morphologically homogeneous flowers of *Eugenia* (see Appendix 5.2), lability of reproductive strategies must rely on an alternative strategy. In this sense, heterochronies are an important component of secondary flower function (see definition in the *Introduction* section 5.1). Examples of how heterochronies may affect fitness (i.e. the the efficiency of the flower as reproductive organ) in *Eugenia* are observed in all floral organs. In the perianth development for instance, early calyx elongation in *Eugenia acutata, E. dichroma* and *E. involucrata* may protect the bud in late development stages, hiding the reproductive organs until anthesis (as reported in *Calyptranthes* and *Marlierea*, see Chapter 6). Likewise, the constant disparity between the first and second pair of sepals in *Eugenia inversa* and *E. splendens* causes the open flower to be slightly disymmetric instead of actinomorphic (the most common arrangement in the genus), which in turn may affect pollinator behaviour (Endress, 1999).

Regarding the gynoecium, hyper-style elongation present in all four observed species of *Eugenia* sect. *Umbellatae* creates a spatial gap between the stigma and the anthers after anthesis, i.e. herkogamy, a trait not observed in the other species (Fig. 5.9). Herkogamy is traditionally thought to increase the ratio of cross pollination, by avoiding accidental self-pollination (Webb and Lloyd, 1986). Although flowers of *Eugenia* present a certain degree of self-compatibility (Proença and Gibbs, 1994; Silva and Pinheiro, 2007), higher levels of cross-pollination are related to higher diversification rates (with abundant examples in flowering plants e.g. Ferrer and Good, 2012; de Vos *et al.*, 2014). The systematic consistency of this character and its relationship to the most diverse section of *Eugenia* may implicate this innovation in the accelerated diversification rates found in *Eugenia* Sect. *Umbellatae* (one of the highest in tribe Myrteae; see Chapter 1).

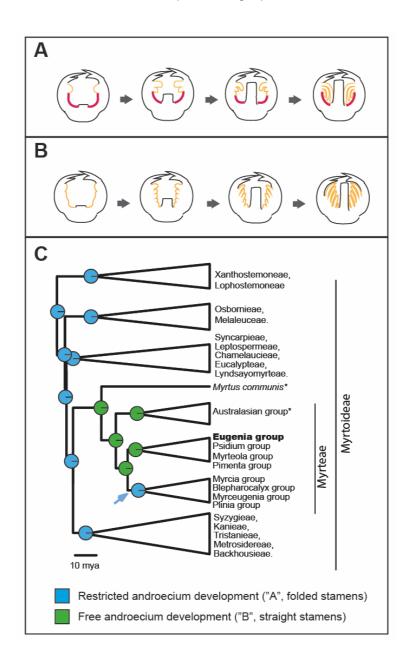
Figure 5.9 Style gigantism and resulting herkorgamy of *Eugenia* sect. *Umbellatae*. (A) Flower of *Eugenia dichroma* (Sect. *Speciosae*), in which the style is at the same height as stamens in the open flower (arrow) and (B) Flower of *Eugenia adenocalyx* (Sect. *Umbellatae*), showing style almost

twice as long as the stamens (arrow). (Photos taken during field expeditions between 2014 and 2016)

5.15 Hypanthium vs. androecium: space matters

The most prominent effects of heterochrony in *Eugenia* flowers are seen in the development of the androecium. Changes in the rate of early hypanthial development are shown to affect the final diameter of the floral receptacle and consequently the number of stamens formed. Variation in stamen number is especially likely to affect aspects of reproductive strategies in *Eugenia*. It has been shown, for example, that the bottle-brush appearance that results from the large number of stamens in Myrtaceae flowers is the main agent of floral display and pollinator attraction (Proença and Gibbs, 1994; Willmer 2011) so changes in stamen number could be related to variations within this syndrome. It is also clear that smaller flowers with fewer stamens undergo faster anther maturation, suggesting that the whole flower might have a faster rate of development. This could relate to a trade-off between investment in receptacle size and number of stamens (floral display) vs. faster maturation with consequences for flowering phenology (Primack 1985, 1987).

An alternative (or additional) hypothesis for variation in stamen number is that these changes affect the proportion of male and female parts in the flower and consequently relate to changes in breeding systems (Cruden, 1977; Charlesworth, 2006). An indication of this is that stamen and ovule numbers respond independently to variations in size of floral receptacle (resulting from hypanthium expansion) in different species (Fig. 5.8). While stamens and anther numbers are highly dependendent on space available after hypantial expansion (similar development of corona size in Passifloraceae; Claßen-Bockhoff and Meyer, 2016), gynoecium configuration is more clade specific, with lower number of ovules characteristic of certain clades (e.g. Faria, 2014). If hypanthium extension rate disparity affects the number of male but not of female parts, this heterochronic pattern might drive, or be implicated in, a labile reproductive system and increased adaptative value of the genus throughout evolution. Pollen counts and ovule viability tests are required to fully test the importance of this character (Harder and Barret, 1993).


5.16 Relevance of hypanthium/androecium dependency for early Myrteae evolution

Even though polyandry is a configuration shared by most members of the Myrtoideae subfamily, the trait varies between lineages. Recent systematic survey shows that *Eugenia*, alongside other related genera within tribe Myrteae, are exceptions within Myrtales in presenting straight (as opposed to folded) stamens in the bud (Chapter 2). Comparison of hypanthium and androecium development in *Eugenia* with that of other Myrtoideae genera (e.g. Drinnan and Ladiges, 1991; Orlovich *et al.*, 1999; Bohte and Drinnan, 2005; see list in Appendix 5.1) suggests the distinction between straight and folded stamens in the bud is related to the area occupied by stamen primordia over the expanded hypanthium.

Eugenia (and related genera) produces an indeterminate number of staminal primordia that cover the whole hypanthial tissue up to the stylar base during androecium development (Fig. 5.4C-J). Conversely, Myrtaceae genera with folded stamens in the bud (including some *Eucalyptus* species with slightly straight stamens in the bud; e.g. McDonald et al., 2009) present staminal primordia development only on a restricted area of the hypanthial rim, below the corolla (Drinnan and Ladiges, 1991; Orlovich et al., 1999; Bohte and Drinnan, 2005; see Chapter 3). The restricted

173

development of stamen primordia on the hypanthial rim during bud development creates an open space below the youngest staminal ring when the hypanthium expands (in red, Fig. 5.10A), forming a hypanthial cup. This explains the position of the stamens in Myrtaceae buds as a physical matter: gravitropy folds the stamens down when adequate space is available (Fig. 5.10A). Meanwhile, *Eugenia* species (and related genera, e.g. *Acca, Ugni*; see Belsham and Orlovich, 2003; see Chapters 2 and 3) do not present any open space during early bud development to allow stamens to fold, as the whole hypanthial tissue is covered by stamen primordia (Fig. 5.10B). This leaves no space for folding and causes stamens to develop in a straight position.

Figure 5.10: Evolution of androecium development in *Eugenia* and related taxa. (A) Restricted androecium development, where stamen primordia appear just in the apical part of the hypanthium leading to folded stamens in the bud. (B) Free androecium development, where stamen primordia cover the whole hypanthium tissue, leading to straight stamens in the bud. Stamens are shown in yellow and "empty" hypanthial tissue in red. Other floral organs were kept the same size to help

interpretation. (C) Reconstruction of stamen posture in the bud on the Myrtaceae phylogeny. Arrow shows reversal to plesiomorphic state in Myrcia, Plinia, Blepharocalyx and Myrceugenia groups. * The position of the Myrtus and Australasian groups are swapped in more recent phylogenies (Chapter 1)

Therefore, the "folded stamen in the bud" trait indicates that androecium development is restricted to the hypanthial rim while "straight stamens in the bud" trait indicates unrestricted androecium development over the hypanthium (as discussed in Chapter 3). By ploting these traits on the Myrtaceae phylogenetic hypothesis, a shift from restricted to unrestricted androecium development is estimated to have occurred at the crown node of tribe Myrtaee (Fig. 5.10C). This shift may also be related to the loss of nectar production: while nectaries are present in many Myrtaceae (e.g. Beardsell et al., 1993; see also Appendix 5.2 – plate 6) favoured also by the hypanthium cup, where the nectar can accumulate (as in other Myrtales, Ronse DeCraene and Smets, 1991), they are absent in most Myrteae.

The unrestricted development state appears then to have reversed to a plesiomorphic restricted development state in *Myrcia* and related genera (Arrow, Fig. 5.10C), the clade in Myrteae with folded stamens (Chapter 2). This shift and the consequent lability of reproductive strategies provided by the association of unrestricted stamen formation on the hypanthium expansion (Fig. 5.8) may have been important in the early evolution of tribe Myrteae. The high acceleration in diversification rates associated with the early evolution of the tribe (Biffin et al., 2010; Berger et al., 2016) have been traditionally linked to the key-innovation of the fleshy-fruit (Biffin et al., 2010), but this study provides evidence that not only fruit, but also adaptations of the flower may have contributed to early establishment of tribe Myrteae.

CONCLUSION

The present study shows that *Eugenia* flowers present diversity in floral strategies despite its morphological similarity. These are mainly driven by subtle changes in developmental rates that altered proportions between floral organs throughout the evolutionary history of the group. Heterochronies in *Eugenia* are shown to be implicated in subtle breeding system changes (affecting differential production of male and female parts), phenology (floral development rate changes) and unbalanced clade diversity (in the case of the style in *Eugenia* sect. *Umbellatae*). This study also provides insights into the evolution of characteristic Myrtaceae polyandry by indicating unrestricted primordia initiation throughout the hypanthium to have been an evolutionary novelty in Myrteae. Recognition that superficially homogeneous flowers may present an array of possible reproductive strategies by fine tuning developmental rhythms is a step forward from traditional deterministic concepts in plant reproductive biology. Future directions include field hypothesis testing and trait dependent diversification rate analyses, particularly regarding longer styles in the mega-diverse *Eugenia* sect. *Umbellatae*.

APPENDIX

Appendix 5.1 Character matrix for reconstruction of androecium evolution in Myrtoideae (based on the phylogeny of Thornhill *et al.*, 2015). 1) stamen primordia developing throughout the hypanthium. 2) stamen primordia restricted to the apical area of the hypanthium.

species	stam
Lophostemon_confertus	2
Kjellbergiodendron_celebicum	2
Callistemon_polandii	2
Melaleuca_adnata	2
Melaleuca_lanceolata	2
Beaufortia_orbifolia	2
Calothamnus_validus	2
Melaleuca_nesophila	2
Melaleuca_uncinata	2
Melaleuca_glomerata	2
Melaleuca_cornucopiae	2
Melaleuca_acacioides	2
Melaleuca_viridiflora	2
Melaleuca_argentea	2
Melaleuca_leucadendra	2
Melaleuca_cajuputi	2
Melaleuca_arcana	2
Eucalyptopsis_papuana	2
Stockwellia_quadrifida	2
Arillastrum_gummiferum	2
Angophora_hispida	2
Corymbia_citriodora	2
Angophora_costata	2
Eucalyptus_curtisii	2
Eucalyptus_pauciflora	2
Eucalyptus_haemastoma	2
Eucalyptus_melliodora	2
Eucalyptus_loxophleba	2
Eucalyptus_grandis	2
Eucalyptus_camaldulensis	2
Eucalyptus_globulus	2
Eucalyptus_nitens	2
Eucalyptus_perriniana	2
Kunzea_baxteri	2
Kunzea_capitata	2
Kunzea_ericoides	2
Pericalymma_ellipticum	2

Agonis flexuosa	2
Agonis_flexuosa Asteromyrtus_lysicephala	2
	2
Asteromyrtus_symphyocarpa	2
Leptospermum_spectabile	2
Leptospermum_trinervium	2
Leptospermum_scoparium	
Ochrosperma_oligomerum	2
Ochrosperma_lineare	2
Homalocalyx_aurea	2
Calytrix_tetragona	2
Micromyrtus_ciliata	2
Micromyrtus_elobata	2
Hypocalymma_tetrapterum	2
Thryptomene_saxicola	2
Pileanthus_filifolius	2
Chamelaucium_uncinatum	2
Verticordia_pennigera	2
Actinodium_cunninghamii	2
Darwinia_fascicularis	2
Homoranthus_darwinioides	2
Baeckea_frutescens	2
Baeckea_tuberculata	2
Kardomia_jucunda	2
Harmogia_densifolia	2
Baeckea_pentagonantha	2
Baeckea_ovalifolia	2
Euryomyrtus_ramosissima	2
Sannantha_angusta	2
Sannantha_cunninghamii	2
Sannantha_tozerensis	2
Sannantha_virgata	2
Myrtus_communis	1
Uromyrtus_australis	1
Decaspermum_humile	1
Rhodamnia_rubescens	1
Rhodamnia_argentea	1
Archirhodomyrtus_beckleri	1
Pilidiostigma_papuanum	1
Rhodomyrtus_macrocarpa	1
Psidium_guajava	1
Psidium_cattleianum	1
Acca_sellowiana	1
Eugenia_uniflora	1

Eugenia_sulcata	1
Eugenia_myrcianthes	1
Legrandia_concinna	1
Pimenta_dioica	1
Amomyrtus_meli	1
Campomanesia_guazumifolia	1
Pimenta_pseudocaryophyllus	1
Pimenta_racemosa	1
Ugni_molinae	1
Myrteola_nummularia	1
Lophomyrtus_bullata	1
Lophomyrtus_obcordata	1
Neomyrtus_pedunculata	1
Blepharocalyx_salicifolius	2
Luma_apiculata	2
 Myrcia_splendens	2
Myrciaria_vexator	2
Blepharocalyx_cruckshanksii	2
Myrceugenia_myrcioides	2
Myrceugenia_leptospermoides	2
Myrcia_saxatilis	2
Marlierea_obscura	2
Myrcia_multiflora	2
Myrcia_laruotteana	2
Marlierea_eugeniopsoides	2
Myrcia_pubipetala	2
Myrcia_brasiliensis	2
Myrcia_flagellaris	2
Calyptranthes_kiaerskovii	2
Calyptranthes_concinna	2
Calyptranthes_pallens	2
Tristaniopsis_laurina	2
Lysicarpus_angustifolius	2
Sphaerantia_chartacea	2
Cloezia_floribunda	2
Xanthomyrtus_papuana	2
Thaleropia_queenslandica	2
Tristania_neriifolia	2
Tepualia_stipularis	2
Metrosideros_nervulosa	2
Metrosideros_macropus	2
Metrosideros_diffusa	2
Metrosideros_carminea	2

Metrosideros_perforata	2
Backhousia_citriodora	2
Choricarpia_subargentea	2
Backhousia_myrtifolia	2
Syzygium_anisatum	2
Syzygium_wesa	2
Syzygium_wilsonii	2
Syzygium_luehmannii	2
Syzygium_francisii	2
Syzygium_zeylanicum	2
Syzygium_tetrapterum	2
Syzygium_buxifolium	2
Syzygium_gustavioides	2
Syzygium_floribundum	2
Syzygium_hedraiophyllum	2
Piliocalyx_francii	2
Syzygium_concinnum	2
Piliocalyx_bullatus	2
Piliocalyx_robustus	2
Syzygium_graveolens	2
Syzygium_divaricatum	2
Syzygium_mackinnonianum	2
Syzygium_acuminatissimum	2
Syzygium_smithii	2
Syzygium_hemilamprum	2
Syzygium_claviflorum	2
Syzygium_canicortex	2
Syzygium_apodophyllum	2
Syzygium_maire	2
Syzygium_fullagarii	2
Syzygium_multipetalum	2
Syzygium_arboreum	2
Syzygium_kuebiniense	2
Syzygium_nervosum	2
Syzygium_branderhorstii	2
Syzygium_amplifolium	2
Syzygium_brackenridgei	2
Syzygium_purpureum	2
Syzygium_aromaticum	2
Syzygium_seemannianum	2
Syzygium_puberulum	2
Syzygium_samarangense	2
Syzygium_tierneyanum	2

Syzygium_malaccense Syzygium_macilwraithianum Syzygium_sayeri Syzygium_ngoyense Syzygium_laxeracemosum Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_fibrosum Syzygium_angophoroides Syzygium_oleosum	2 2 2 2 2 2 2 2 2 2 2 2 2
Syzygium_macilwraithianum Syzygium_sayeri Syzygium_ngoyense Syzygium_laxeracemosum Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_oleosum	2 2 2 2 2
Syzygium_sayeri Syzygium_ngoyense Syzygium_laxeracemosum Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_oleosum	2 2 2 2
Syzygium_ngoyense Syzygium_laxeracemosum Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_oleosum	2 2 2
Syzygium_laxeracemosum Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_paniculatum Syzygium_oleosum	2
Syzygium_austrocaledonicum Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_paniculatum Syzygium_oleosum	2
Syzygium_aqueum Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_paniculatum Syzygium_oleosum	
Syzygium_crebrinerve Syzygium_fibrosum Syzygium_angophoroides Syzygium_paniculatum Syzygium_oleosum	
Syzygium_fibrosumSyzygium_angophoroidesSyzygium_paniculatumSyzygium_oleosum	2
Syzygium_angophoroides Syzygium_paniculatum Syzygium_oleosum	2
Syzygium_paniculatum Syzygium_oleosum	2
Syzygium_oleosum	2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2
Syzyaium australe	2
Syzygium_australe	2
Syzygium_cormiflorum	2
Syzygium_bamagense	2
Syzygium_bungadinnia	2
Syzygium_pseudofastigiatum	2
Syzygium_moorei	2
Syzygium_acre	2
Syzygium_jambos	2
Syzygium_pycnanthum	2
Syzygium_seemannii	2
Syzygium_guineense	2
Syzygium_cumini	2
Syzygium_cordatum	2
Syzygium_muellerii	2
	2
Xanthostemon_chrysanthus	2
Osbornia_octodonta	2
Syncarpia_glomulifera	_
Lindsayomyrtus_racemoides	2

Appendix 5.2 Floral ontogenetic aspects that are not linked to heterochronies in *Eugenia*. All plates colour coded as: sepals=green, corolla=red, androecium=yellow, gynoecium=blue.

Plate 1: Merism in *Eugenia*. Comparison of the most common tetramerous phenotype exemplified by *Eugenia citrifolia* (A - C) with the pentamerous phenotype typical of Sect. *Hexachlamys* shown in *E. myrcianthes* (D – F). (A, D) Mid-stage development with perianth removed to show base of sepals and petals; (B, E) Frontal view of mature bud; (C, F) ground-plan diagrams. S, sepal; P, petal. Scales: 250μ m (A), 500μ m (B, D, E).

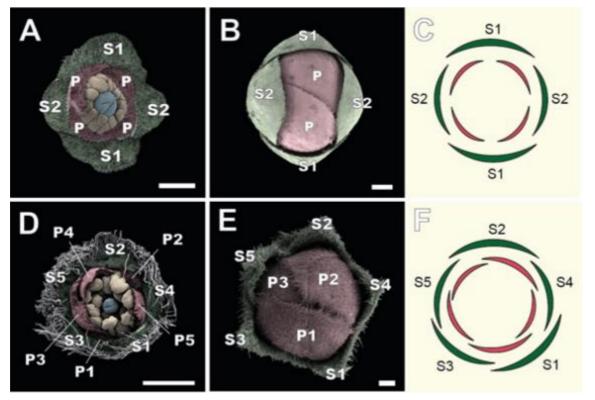


Plate 2: Gynoecium configurations in *Eugenia*. (A, B) Bilocular and trilocular ovaries found in two flowers of the same plant of *E. paludosa*. (C, D) Tetralocular ovaries of *Eugenia stipitata*, showing (C) initiation by four primordia and (D) expansion and fusion of initial primordia, forming a protostyle with a "cross" scar formation. P, petal; loc, ovary locule; G, gynoecium. Scale: 100µm (A, B, C), 250µm (D).

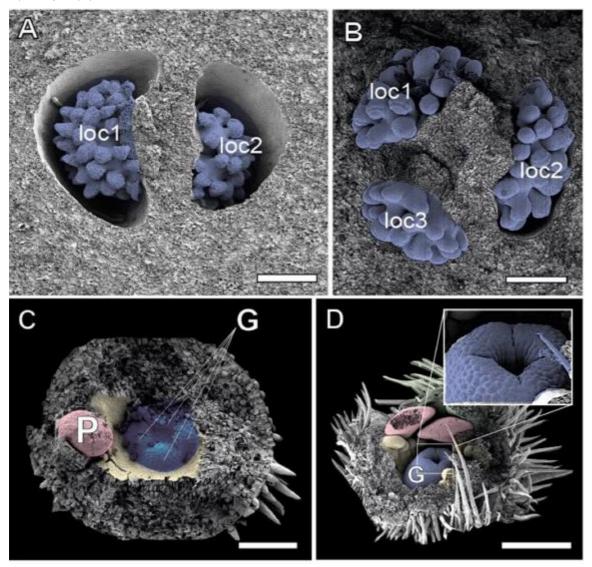


Plate 3: Random corolla aestivation in *Eugenia*. White dot indicates adaxial side. (A) *Eugenia dichroma*; (B) *Eugenia angustissima*; (C) *Eugenia pohliana*. S, sepal; P, petal. Scale: 150µm (C), 250µm(A, B).

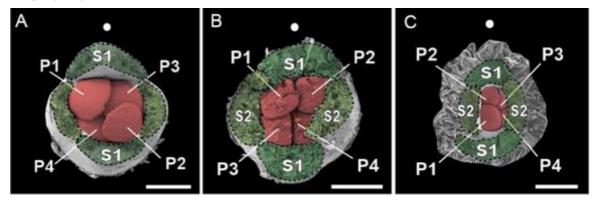


Plate 4: Detail of obhaplostemonous stamen initiation in *Eugenia*. (A) Early androecium development in *Eugenia stipitata*, showing initiation of primary primordia "A1(1st)" and secondary primordia "A1(2nd)" on the apical portion of the hypanthium. (B) Petal and hypanthium portion removed from *Eugenia itajurensis*, showing relative positions of primary stamen primordia "A1(1st)", secondary primordia "A1(2nd)" and initiation of following staminal rings "A2", "A3". A, androecium; G, gynoecium; S, sepal; P, petal. Scale: 100µm (A, B).

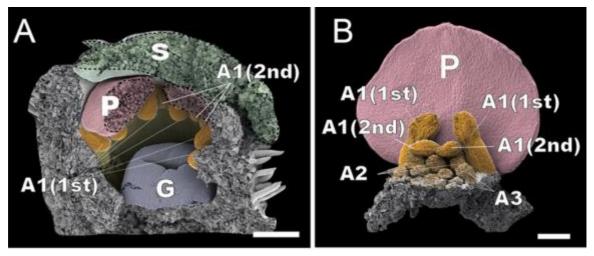
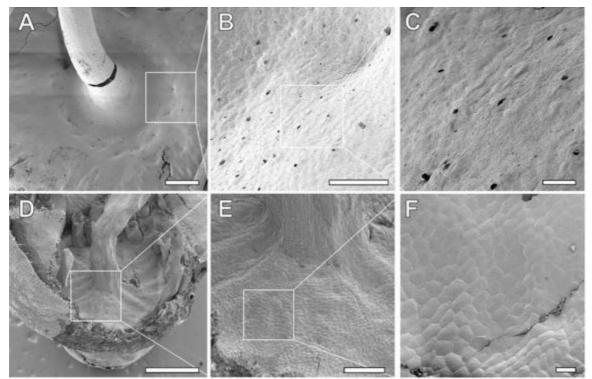



Plate 5: Proportion of reproductive organs in *Eugenia* flowers. Sect. *Umbellatae* appears to have larger styles and comparatively smaller ovules. (A) *Eugenia ligustrina* (sect. *Eugenia*), (B) *Eugenia citrifolia* (Sect. *Umbellatae*); (C) *Eugenia involucrata* (Sect. *Phyllocalyx*); (D) *Eugenia longiracemosa* (Sect. *Racemosae*); (E) *Eugenia dichroma* (Sect. *Speciosae*). All to scale.

Plate 6: Nectaries in Myrtaceae and absence of nectaries in *Eugenia*. (A - C) Floral receptacle of *Syzygium paniculatum*, showing abundance of stomata in a nectary ring around the style (D - F) Same area in *Eugenia protenta*, showing absence of stomata or secretory structures. Scale: 25µm (C), 30µm (F), 100µm (B, E), 50 µm (A, D).

Chapter 6: Links between parallel evolution and systematic complexity in angiosperms a case study of floral development in *Myrcia* s.l. (Myrtaceae)

Published as: Vasconcelos *et al.*, 2017 "Links between Parallel Evolution and Systematic Complexity in Angiosperms – a Case Study of Floral Development in *Myrcia s.l.* (Myrtaceae)". *Perspectives in Plant Ecology, Evolution and Systematics* 24: 11–24. https://doi.org/10.1016/j.ppees.2016.11.001

 T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, generation of SEM images, morphological analyses, phylogenetic analyses and writing of manuscript.

ABSTRACT

The greatest challenge to the modern plant systematist is the interpretation of molecular phylogenies that do not correspond to previous classifications based on morphological data. Characters that on first appearance seem highly diagnostic are brought into focus by phylogeny and frequently shown to have evolved multiple times independently. Parallelism is usually neglected in such systematic studies and the homoplastic distribution of a character in a phylogeny is commonly accredited to convergent evolution. The impact of parallel evolution on angiosperm systematics is examined here using a taxonomically complex and species-rich group of tropical tree genera (Myrcia, Marlierea, Calyptranthes; Myrtaceae) as a case study. These groups are traditionally distinguished by flower characters and have been shown to be polyphyletic by molecular data. Floral ontogeny of distinct lineages is examined using SEM and plotted on a five gene phylogenetic hypothesis to estimate ancestral states and phylogenetic signal for developmental variation. Results show that floral characters responsible for taxonomic confusion are a result of both parallel evolution and convergence. This is contrasted with other diverse and taxonomically complex angiosperm groups and problematic taxonomy appears linked to recent diversification events where the same genetic basis remains latent, demonstrating parallelism to be an important factor in problematic taxonomies. In this study, variations in early stage floral development produce the most labile characters. This is discussed in light of ontogenetic patterns in angiosperms with focus on the evolutionary consequences of homoplastic variation during early vs late floral development. The prevalence of parallelism must be appreciated by taxonomists of complex groups. Future classifications of groups affected by parallelism are likely to require data from detailed, multi-disciplinary studies of key characters to interpret phylogenies correctly.

Key words: convergence, floral evolution, morphology, Myrtaceae, taxonomy.

"[In the early 1800s] Martius, who had recently returned from Brazil with large collections, made his specimens available to De Candolle [...] and in this way for the first time the size and complexity of the American Myrtaceous flora began to become apparent to European botanists. Berg, working only 30 years after De Candolle, recognized about 500 species of what De Cadolle would have called *Myrcia*"

(Mc Vaugh, 1968, p. 355)

INTRODUCTION

6.1 Morphology vs. molecular evidence in systematics of flowering plants

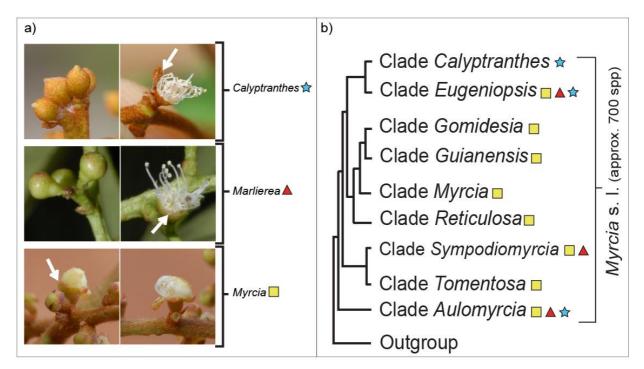
Since the 1990s, systematics has been revolutionized as morphological data was sidelined in favor of molecular surveys increasingly used to present evidence of relationships among taxa (e.g. Bruns et al., 1991; Ragan et al., 1994; Baldwin et al., 1995; Shaffer et al., 1997; Soltis et al., 1997; APG, 1998; Goodman et al., 1998). Currently, the advent of phylogenomics has further enhanced this process, rapidly sampling more DNA and more taxa in a quest for better resolved phylogenies (e.g. Delsuc et al., 2005; Burki et al., 2007; McComarck et al., 2012; LPWG, 2013; Nater et al., 2015). This molecular based progress produces topologies that, in conjunction with fossil, geological and ecological data, allow clarification of the environmental history in which taxa evolved (e.g. Hughes and Eastwood, 2006; Simon et al., 2009; Crisp et al., 2011).

The explosion of such phylo-systematic techniques has resulted in the production of increasingly robust, complete and high statistically supported phylogenetic hypotheses. Contrary to expectation, however, systematic and taxonomic confusion has often increased. It is not uncommon to find classifications based on morphological characters that are highly incongruent with molecular data. Angiosperms, second only to beetles in species number (Wilson, 1999), have many such examples, particularly at lower taxonomic ranks (e.g. Soltis et al., 1996; Sweeney and Price, 2000; Plunkett et al., 2005; Kim et al., 2007; Goldenberg et al., 2008; Swenson et al., 2008; Lucas et al., 2011; Xue et al., 2011). Systematics of flowering plants is heavily based on reproductive characters (i.e. flower buds, flowers, fruits and seeds) as these present more morphological variation at higher taxonomic rank but are constrained within a species by the need for reproductive success. Nevertheless, since these structures are also susceptible to similar selective pressures in the long term, they often show a high degree of convergence (Tiffney, 1984; Fenster et al., 2004) resulting in common homoplastic patterns.

Recently, the search for morphological homologies that explain and support evolutionary relationships in systematically complex groups has intensified; a process of 'reciprocal illumination' (Hennig, 1966). Plant systematists are now focusing their attention on the development of these reproductive structures, where, in theory, convergences would be clarified by careful analysis of developmental patterns, allowing complex but fundamental characters to finally explain the phylogenetic hypothesis. Such studies, however, are often descriptive (Benhard, 1999; Buzgo and Endress, 2000; Koeyan and Endress, 2001) or focus on the discovery of single or few synapomorphies (e.g. Endress, 1986; Schonenberger and Endress, 1998; Benhard and Endress, 1999; Tucker, 2003; Prenner, 2004; Prenner and Rudall, 2007; Vasconcelos et al., 2015). Often ignored are cases where a homoplastic phenotype is found to be the result of similar developmental pathways; i.e. homoplasy at the developmental/structural level (e.g. Bess, 2005), suggesting parallel evolution instead of a convergence (*sensu* Patterson, 1982; reviewed by Hawkins, 2002).

187

6.2 Parallel evolution and deep homology


Parallel evolution (also referred to as "underlying synapomorphy" by Saether, 1983; or "latent homology" by Cronk, 2002) is the repetition of structural or developmental patterns as a result of the similar genetic basis of closely but not directly related lineages (e.g. nodules in legumes, Doyle, 1994, 1998; zygomorphy in angiosperms, Donoghue et al., 1998; Endress, 1999). This is equivalent to the concept of 'deep homology' and relates to the presence of a genotypic basis that is not always phenotypically expressed in one lineage (see also Endress, 2010). Parallel evolution, or parallelism, has often been discussed in terms of evolutionary patterns that repeat themselves in striking ways in unrelated taxa (e.g. evolution of C4 grasses, Giussani et al., 2011) and has been highlighted in gene-expression studies (e.g. Rodman et al., 1998). Parallelism is, however, rarely taken into consideration in systematic studies and taxonomic decisions. Following radical re-evaluation of relationships between major angiosperm groups in recent years, it is surprising that the implications of parallelism have been almost absent from the systematic debate. The theoretical importance of such evolutionary patterns in plants systematics is discussed by Hawkins (2002) and Scotland (2011), but there is still a lack of comprehensive case studies in flowering plants.

In the new era of systematics, morphology is experiencing a revival (Lee and Palci, 2015; Giribet, 2015), especially at the interface of morphology, development and evolution coined 'MorphoEvoDevo' by Wanninger (2015). To stimulate the discussion of the importance of parallel evolution in the context of systematics, we use a taxonomically complex and species rich tree clade traditionally distinguished by flower characters shown to be polyphyletic by molecular data. We characterize floral development in *Myrcia s.l.* and discuss observed variation in the context of the group's evolution and systematics. The importance of considering parallel evolution as well as convergence when analyzing evolutionary and taxonomic problems in flowering plants is discussed here using floral development in *Myrcia s.l.* as a case study.

MATERIALS AND METHODS

6.3 Study group

An example of the conflict between molecular phylogeny and traditional classification can be found in *Myrcia sensu lato* (Lucas et al., 2011), one of the most species-rich Neotropical angiosperm genera (Wilson, 2011). *Myrcia s.l.* includes three genera: *Calyptranthes* Sw., *Marlierea* Cambess and *Myrcia* DC. (*sensu* WCSP, 2016; for detailed nomenclatural chronology see Lucas et al., 2011). These three genera are distinguished by morphological characteristics of the flower, particularly the degree of fusion in the calyx and its behaviour during anthesis (Fig. 6.1a; Berg, 1856-57; Mc Vaugh, 1968). Both *Calyptranthes* and *Marlierea* are recognized by having an almost or completely closed calyx in the bud, i.e. with indistinct calyx lobes or barely distinct in some *Marlierea*. The calyx opens as a cap-like structure (calyptra) during anthesis in *Calyptranthes* or by tearing regularly or irregularly in *Marlierea*. *Myrcia* on the other hand, is characterized by an open calyx in the bud, i.e. with distinct (usually variable between four or five), free sepals. Although McVaugh (1968) recognized that these generic boundaries were tenuous, this classification based on calyx characters was used until very recently (see also discussion in Staggemeier et al., 2015).

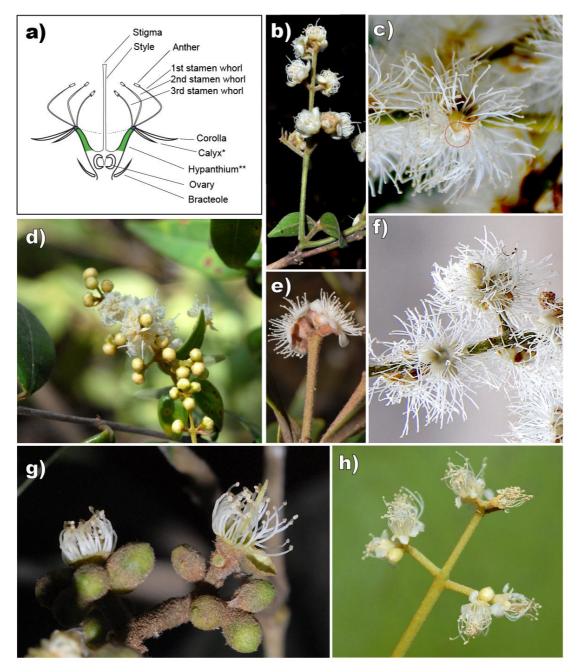
Figure 6.1: Simplified traditional classifications of *Myrcia s.l.* based on floral characters (a). Classification of *Myrcia s.l.* after molecular hypothesis (b). Phylogenetic position of species previously placed *Calyptranthes* (star), *Marlierea* (triangle) and *Myrcia* (square). Arrows indicate the calyptra in *Calyptranthes brasiliensis*, the line of rupture of *Marlierea excoriata* and the free calyx lobes of *Myrcia vittoriana*.

Previous molecular phylogenies of Myrcia s.l. (Lucas et al., 2011; Wilson et al., 2016) demonstrate that the nature of the calyx is not representative of natural lineages and found all of the previously recognized genera to be polyphyletic (Fig. 6.1b). Species originally described as Calyptranthes are found in clades Calyptranthes, Eugeniopsis and Aulomyrcia; species originally described as Marlierea are found in clades Aulomyrcia, Sympodiomyrcia and Eugeniopsis; species originally described as Myrcia are found in all clades except Calyptranthes. The phylogeny of Myrcia s.l. has been regularly revisited (Staggemeier et al., 2015; Wilson et al., 2016; Santos et al., 2016) and nine clades with high statistical support (bootstrap and posterior probability) are currently in preparation for formal publication as sections (Lucas et al., in revision; Santos et al., 2016). As most of these nine sections are still not yet formally published, results and discussion of analyses presented here (and in the following Chapter 7) refer to the informal names of the clades shown in Figure 6.1b. Species inclusion within informal groups of Myrcia s.I. follow the Myrcia s.I. scratchpad (Myrcia s.l. scratchpad, 2016) database and the suggested taxonomy of Lucas et al. (2011). A tendency of the last ten years has been to transfer published species of Marlierea and some Calyptranthes to Myrcia, and to publish new species that would previously been published as Marlierea in Myrcia (e.g. Myrcia rupta M.L.Kawas. & B.Holst and Myrcia elevata M.F.Santos). This is due to anticipated nomenclatural shifts that will be required as the new Myrcia s.l. classification is implemented.

While nomenclatural consensus at the rank of genus is stabilizing, the evolution of the floral characters that misled classical taxonomists for nearly two centuries are still poorly understood.

Meanwhile, floral characters previously considered of less taxonomic relevance such as anther morphology, pubescence and ovary locularity, have proved to be more systematically consistent (Lucas et al., 2011).

6.4 Myrcia s.l. flower structure (see also Chapter 3)


Myrcia s.l. flowers are small, radially symmetric, usually ca. 0.5 cm in diameter with calyx and corolla present. The androecium is polystemonous and organized in three whorls, with centripetal development (Werbeling, 1989; De Craene and Smets, 1991) and inner whorls shorter than outer. The ovary is inferior and usually bi- or tri-locular, with two ovules per locule. Calyx, corolla and stamens are inserted on the rim of the hypanthium, which is often extended above the ovary summit (see scheme in Fig. 6.2). While the number of some floral parts is always constant within a species (e.g. number of locules per ovary), other organ numbers are flexible, even within the same individual. These are, for instance, number of sepals and petals (which usually vary between four or five) and stamen number (usually between 50 and 100, likely related to flower size).

6.5 Sampling

Prior to sampling, a general literature survey (Lucas et al., 2011; Wilson et al.; 2016; Santos et al. 2016) was conducted to select species that would represent the highest possible diversity of flower morphology and phylogenetic lineages. A general survey of floral development was carried out to find developmental characters that appear to be fixed in a species. Flowering material representative of this variation was then gathered in Brazil, Jamaica, Costa Rica and the Dominican Republic. Buds were collected in all different stages and, where possible, more than one inflorescence per plant was collected. Inflorescences, buds and flowers were preserved in FAA or 70% alcohol immediately after collection. A few species critical for this study and not recently collected in the field were sampled from herbarium material and were rehydrated in boiling water for 10 minutes, left to cool overnight and then fixed in 70% alcohol. In total, 97 samples representing 64 species within *Myrcia s.l.* were sampled for comparative ontogenetic analyses. A list of all analysed samples is presented in the Appendix 6.1.

6.6 Ontogenetic analysis

Floral buds and flowers were dissected in 70% ethanol, dehydrated through an alcohol series to 100% ethanol, and critical-point dried using an Autosamdri-815B critical-point dryer (Tousimis Research, Rockville, Maryland, USA). Dried material was mounted onto specimen stubs, coated with platinum using a Quorum Q-150-T sputter coater (Quorum Technologies, East Grinsted, UK) and examined with a Hitachi cold field emission SEM S-4700-II (Hitachi High Technologies, Tokyo, Japan). Where necessary, different stages of development were viewed from different collections of the same species. Flower developmental stages are described from sepal initiation to anthesis. Images were processed using Adobe Illustrator CC 2015 (version 19.2.0). In total 642 images were taken and analyzed.

Figure 6.2: Floral diversity in *Myrcia* s.l. a) Simplified scheme showing longitudinal section of floral parts after anthesis. b-h) Pictures showing typical flowers of *Myrcia* s.l. in the field. b) *Myrcia* splendens. c e f) *Marlierea tomentosa*. Red circle highlights petal. e) *Myrcia sylvatica*. f) *Myrcia* subavenia. g) *Calyptranthes pallens*. h) *Myrcia multipunctata*. * Not applicable to *Calyptranthes*. **Hypanthium extension represented in green.

6.7 Phylogenetic reconstruction

The *Myrcia s.l.* phylogeny was reconstructed using DNA sequences of one nuclear (*ITS*) and four chloroplast (*psbA-trnH*, *trnL-trnF*, *trnQ-rps16*, *ndhF*) regions available from recent molecular studies (Staggemeier et al., 2015; Wilson et al., 2016; Santos et al., 2016). Published regions were sourced from GenBank; unpublished sequences from recently published works (Wilson et al., 2016, and Santos et al., 2016) were contributed by the respective authors. Sixty-five species were included, representing all nine clades of *Myrcia s.l.* and four Myrteae taxa were used

as outgroups (list in Appendix 6.2). Evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest log likelihood (-12337.8258) was used for analysis (Appendix 6.3). Initial trees for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. Phylogenetic analyses were conducted in MEGA 6 (Tamura et al., 2013). The resulting phylogeny represents c. 10% of the c. 700 species of *Myrcia s.l.*

6.8 Phylogenetic signal analysis

Varying morphological traits associated with different stages of floral development were selected for phylogenetic signal analysis to understand how trait modifications correlate to the phylogeny. Since all characters were analysed in simple binary perspective (presence or absence of a given variation), they were always coded as discrete, even if apparently continuous (e.g. number of locules per ovary). See Appendix 6.4 for matrix used in phylogenetic signal estimation.

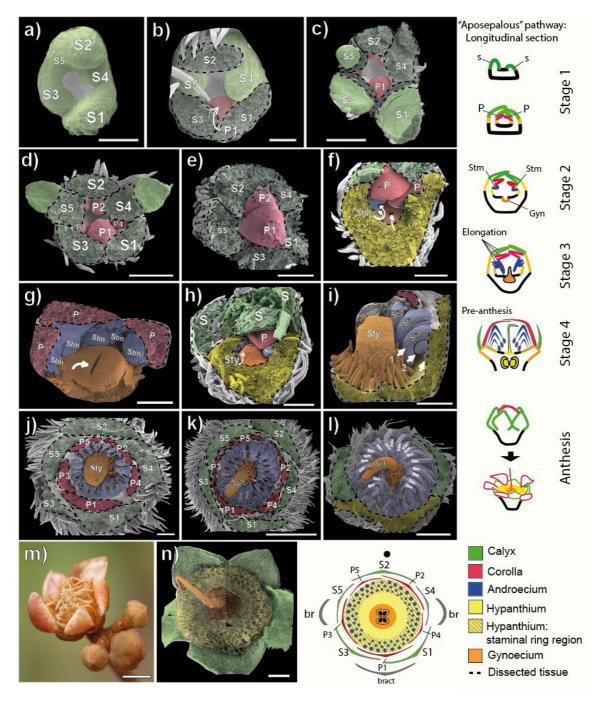
Phylogenetic signal of variation in developmental characters was analysed using the *fitDiscrete* function in package *geiger* (Harmon et al., 2008) implemented in R (R Development Core Team, 2016). This function uses Markov models of trait evolution (see *Geiger* package documentation) developed by Pagel (1994) that estimate the potential for a trait to change between species based on a phylogeny scaled for substitutions per site (genetic distance) and uncorrected for molecular clock. The parameter model = Equal Rates (ER) was chosen, since no estimation of evolutionary rate was available, and thus no transformation in the tree (e.g. lambda, kappa) was applicable. The result of this function generates a value of *InI* (an estimate of log-likelihood) that can be used to rank the phylogenetic signal of discrete traits: the lower the log likelihood, the less well the evolution of a character correlates with the phylogenetic hypothesis. To adjust the phylogeny for this analysis, the function *multi2di*, from package *ape* implemented in R (R Development Core Team, 2016) was used to remove polytomies from the tree. The function *drop.tip* from the same package was used to remove outgroups and species with NA values.

6.9 Ancestral reconstruction of characters

Reconstruction of ancestral characters was performed for the three developmental pathways within *Myrcia s.l.* phylogeny to ensure the characters in question share the same ancestral state, supporting the parallel evolution discussion (according to Scotland, 2011, characters obtained by parallel evolution have to share the same ancestral state). Reconstructions were executed using the *ace* function, with the "type=discrete" parameter, from the *ape* package implemented in R (R Development Core Team 2016). The function *drop.tip* from the same package was again used to remove species with no available information (see Appendix 6.4).

RESULTS

6.10 Myrcia s.l. floral development survey


Floral ontogeny in *Myrcia s.l.* can be divided into four stages. Stage 1 concerns the very early development of the flower, which comprises initiation and early development of the outmost whorls in the flower i.e. bracteole, sepals and petals. Stage 2 represents the initiation and early development of androecium and initiation of gynoecium. Stage 3 concerns the development of all

floral parts prior to the pre-anthetic stage. Stage 4 represents subsequent growth of the flower when the hypanthium elongates and the bud takes its final shape.

During the general ontogenetic survey, three significantly different floral developmental pathways were observed in different species of *Myrcia s.l.* and these are seen to be the main drivers of bud and flower shape. Differences between these pathways are observable from the first stage of development until anthesis. In all analysed samples, the first organs to develop are the two bracteoles at each side of the floral primordium. Even at this very early stage, distinction between the three developmental pathways are clear; these are most clearly characterised by differential rates of development of the calyx *vs* the hypanthium and gamosepalous (calyx tissue homogenous) *vs* aposepalous (free sepals) calyx development. Below, a description of the three developmental pathways is provided.

6.11 The "aposepalous" developmental pathway

The first pathway (Fig. 6.3) is here coined the "aposepalous" pathway. In this pathway, four or (more commonly) five sepals develop spirally, with the first initiating nearly opposite to the second bracteole and the second opposite to the first and so on (Fig. 6.3a). The corolla develops as the second whorl, with the first petal initiating between the first and third sepals (Fig. 6.3b,c) and the next ones following the same spiral sequence, intercalated with the sepals (Fig. 6.3d,e). In the observed material, the number of petals was always found to be the same as sepals; both whorls develop at a continuous rate and remain free throughout floral development. During the second developmental stage, the androecium is the third whorl of organs to develop. The first stamens initiate below the oldest petal (Fig. 6.3f) and tissue continues to differentiate under the remaining petals until the first complete ring of stamens is formed. The gynoecium is the last whorl to initiate; it begins as a depression on the floral apex during initiation of the first staminal whorls (Fig. 6.3f). By expansion of the surrounding tissue an apical pore is formed (Fig. 6.3g - arrow) as the surrounding tissue swells and extends to form the style (Fig. 6.3h). This is then followed by Stage 3, the extension of the floral parts during maturation of the bud (Fig.2 i-k). During this stage, a second and third whorl of stamens differentiates below the first following the same order (Fig. 6.3i). Pre-anthesis (Stage 4), anthers begin to differentiate at the tips of the filaments (Fig. 6.3I) and the bud takes its final shape. The development of the calyx and corolla continues at an even rate throughout all stages in the "aposepalous" pathway. During anthesis the sepals and the relatively showy petals are free and open to reveal the reproductive structures of the flower (Fig. 6.3m,n).

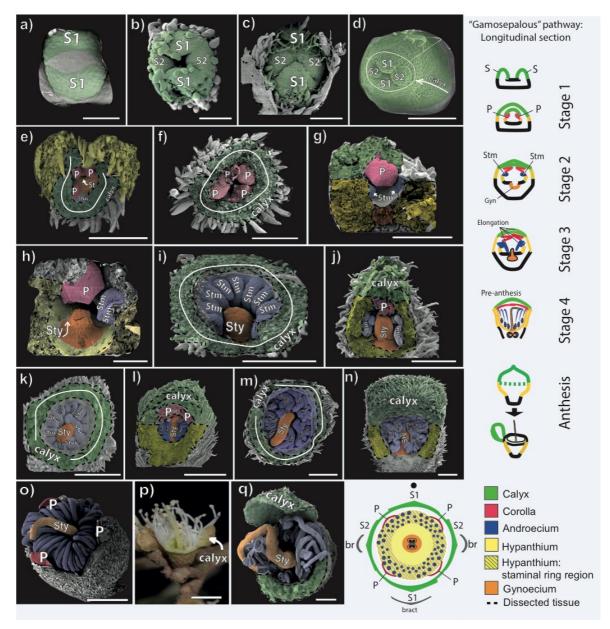
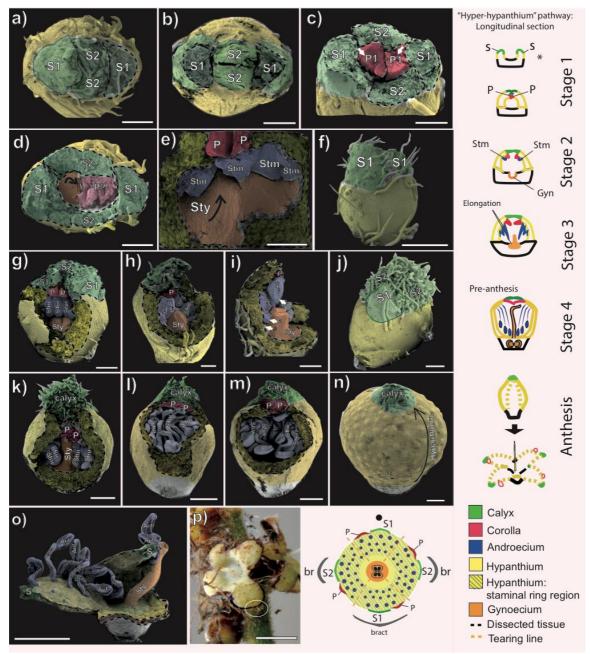


Figure 6.3: The "aposepalous" pathway as exemplified by *Myrcia fenzliana* (all images besides "m" and "n") and *Myrcia* sp. (T.Vasconcelos 439) ("m" and "n") (both clade *Gomidesia*). Removed structures are represented by a dashed line. The right hand side column summarizes stage by stage organ development; floral diagram is shown at the right bottom corner. a) Spiral sepal initiation. b) First petal initiation between first and third sepals. c,d,e) Spiral petal initiation and early petal development; petals alternating with the sepals. f,g) Initiation of first whorl of stamens and stigmatic depression. h) Upward development of style. i) Longitudinal section highlighting the development of first, second and third staminal whorls. j,k) Extension of floral parts prior to anthesis. I) Longitudinal section of pre-anthetic stage. White circles indicate anthers. m) Anthetic flower, showing free sepal lobes and developed petals. n) Flower after anthesis, stamens and petals removed. Br, bracteole; S, sepal; P, petal; Sty, style; Stm, stamen; Scale bars = 50 µm (a, b, g), 100 µm (c, d, e, f), 150µm (h, i, j), 500µm (j, k, l), 1mm (n), 3mm (m).

6.12 The "gamosepalous" developmental pathway

The second developmental pathway is here referred to as the "gamosepalous" pathway; the pair of bracteoles initiate on each side of the floral primordium. The first two sepals then also initiate simultaneously (Fig. 6.4a), followed by two further sepals that produce a decussate pattern relative to the bracteoles (Fig. 6.4b,c). All calvx lobes are free up to this point but now develop as a gamosepalous structure, completely fused and homogeneous at the base. The tips of the calyx remain free; the calyx is closed at the top of the bud, leaving a discreet mark (Fig. 6.4d). Petal initiation is simultaneous or nearly simultaneous (Fig. 6.4e). Unlike the sepals, petals in the "gamosepalous" pathway are free throughout floral development (Fig. 6.4f). The corolla usually does not develop at the same rate as the calyx, remaining poorly developed until anthesis (Fig. 6.40). The initiation of the androecium and the gynoecium during Stage 2 and the extension of floral parts to the pre-anthetic stage during Stages 3 and 4 are very similar to the "aposepalous" pathway. The first staminal whorl develops under the petals while the stigmatic depression appears, shrinks and extends upwards to form stigma and style (Fig. 6.4g-m). Staminal whorls develop downwards and the anthers differentiate at the tips of the filaments in Stage 4 (Fig. 6.4n). This is followed by the pre-anthetic stage (Fig. 6.4o) and anthesis. In the mature bud, anthesis occurs by tearing of the homogeneous calyx tissue in several ways (see Parallelism in Myrcia s.l. in Discussion section). Most commonly the weakest point is at the base of the calyx, leading to a cap like structure that dehisces (Fig. 6.4p,q).

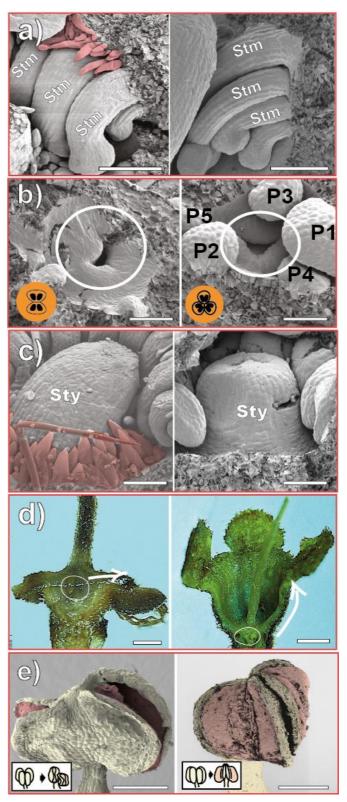

Figure 6.4 (next page): The "gamosepalous" pathway, as exemplified by *Calyptranthes pallens* (Clade *Calyptranthes*, all images besides "a" and "d") and *Calyptranthes multiflora* (Clade *Aulomyrcia*, "a" and "d"). Removed structures are represented by a dashed line. The right hand side column summarizes stage by stage organ development; floral diagrams are shown at the right bottom corner. a) Initiation of the two first sepals in median position. b,c) Initiation and early development of the four decussate sepals. d) Calyx with the free distal sepal lobes and fused base. e) Simultaneous or near simultaneous petal initiation. Depression in the young gynoecium becomes visible. f) Early development of the four petals. g) Longitudinal section showing initiation of first stamens under a petal. h) Early development of stamens and style. i-n) Sequence of floral part elongation prior to anthesis. o) Pre-anthetic phase, calyx removed. p,q) Anthesis highlighting the cap-like structure of the calyx. Br, bracteole; S, sepal; P, petal; Sty, style; Stm, stamen. Scale bars = 50 μ m (a, b, c) 100 μ m (d, e, f, g, h), 300 μ m (h, i, j, k, l, n), 1mm (o, q), 3mm (p).

6.13 The "hyper-hypanthium" developmental pathway

The third developmental pathway is here called the "*hyper-hypanthium*" pathway. Similar to the "*gamosepalous*" pathway, four or five sepals initiate either in a decussate or slightly sequential pattern relative to the bracteoles (Fig. 6.5a,b). The same number of petals then initiate in an intercalated position relative to the sepals (Fig. 6.5c,d). Sepals and petals remain free and their rate of growth becomes imperceptible. In contrast, hypanthium growth accelerates, extending massively and giving the appearance that in stage 2 stamen are formed on the inside of the bud apex, growing upside down (Fig. 6.5e). Gynoecium initiation and early development is similar to the other pathways (Fig. 6.5d,e). Most of what appears to be the outside of the bud at this point is actually extended hypanthium with very reduced calyx lobes remaining at the apex (Fig. 6.5f). During Stage 3, the hypanthium continues its extreme extension, "carrying" the staminal whorls upwards (Fig. 6.5g-j). At Stage 4 anthers differentiate at the tips of the filaments (Fig. 6.5k-m). The pre-anthetic bud from the outside resembles the pre-anthetic bud from the "gamosepalous" pathway. However, most of what is seen from the outside represents the long hypanthium extension, with very reduced calyx lobes on the top of the bud (Fig. 6.5n). At anthesis the reduced

calyx lobes of the mature bud move apart; the subsequent opening is too small to reveal the floral display and the pressure inside the bud increases. The hyper-extended hypanthium then tears along fissures below the sepals to expose the stamens (Fig. 6.5o,p). This anthesis behavior produces a display where the showiest parts of the flower are the hypanthia slices that hold the stamens. Calyx and corolla don't seem to play an important role as attractive to pollinators (see red

circle in Fig. 6.2c).


Figure 6.5: The "hyper-hypanthium" pathway, as exemplified by *Marlierea umbraticola* (clade *Aulomyrcia*). Removed structures are represented by a dashed line. The right hand side column summarizes stage by stage organ development; floral diagram is shown at the right bottom corner. * the earliest initiation of sepals was not observed. a,b) Early development of the four decussate sepals. Apical view. c) Simultaneous or nearly simultaneous initiation of petals alternating with sepals. Lateral view. d) Same bud as in 'a'-'c'; sepals and petals were partially or completely removed to show depression on the young gynoecium (highlighted by black arrow). Apical view. e)

Initiation of stamens below petals and on top of style. Longitudinal section. f) External view of bud in Stage 2. g-i) Longitudinal sections showing early extension of floral parts. j) External view of bud in Stage 3. k-m) Longitudinal sections showing floral parts continuous elongation prior to anthesis. n) External view of pre-anthetic bud in Stage 4. o) Anthesis, showing deep tearing lines up to the top layer of the ovary. Note the stamen insertion on the hypanthium and the tiny sepals on the tip of the hypanthium p) Old buds with the position of sepals encircled. Br, bracteole; S, sepal; P, petal; Sty, style; Stm, stamen; St, stigma. Scale bars = $50\mu m$ (e), $100\mu m$ (a, b, c, d, g, h, i), $200\mu m$ (f, k, l, m, n), 1mm (o), 4mm (p).

6.14 Specific stage character variation

In addition to the three distinct pathways, further variation in floral characters was observed. These variations are independent of the developmental pathway and occur during developmental stages 2 to 4. In all material analysed of clades *Myrcia*, *Gomidesia* and *Reticulosa*, single-celled hairs were observed growing at the base of the staminal ring, usually appearing during early development of the first stamens or the initiation of the second staminal ring in Stage 2 (Fig. 6.6a). The staminal rings are glabrous in all other clades. During the same developmental stage, variation in the shape of the stigmatic depression was observed. This corresponds to the number of locules in the ovary, with a triangular form observed in species with three locules and an "H-shaped" form in species with two locules (Fig. 6.6b). During Stage 3, the base of the style was observed to be glabrous in most samples, however, in all material studied of clades *Myrcia*, *Gomidesia* and *Reticulosa* epithelial cells develop into single-celled hairs during style elongation (Fig. 6.6c).

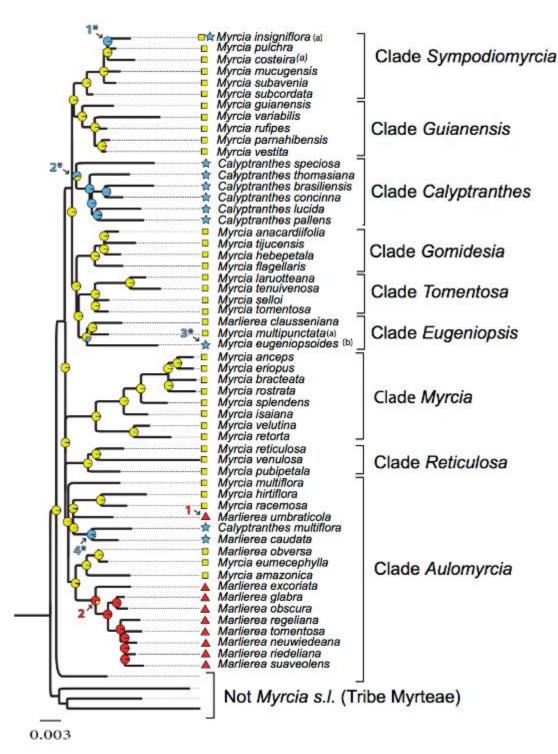
In species that follow the "aposepalous" or "gamosepalous" pathways, the final shape of the hypanthium in the bud varies depending on developmental differences during late bud development (Stage 4). In flowers of the *Myrcia-* and *Gomidesia-*clades, vertical extension of the hypanthium is limited, growth then stops and hypanthial tissue expands horizontally, leaving the mature bud and opened flower without a tube or hypanthial cup as in all other clades (Fig. 6.6d). In the *Myrcia-* and *Gomidesia-* clades the inner surface of the short hypanthium wall is covered in hairs, while it is glabrous in all other clades of *Myrcia s.l.* In all sections, anther development is similar until Stage 4, when differential growth of the connective dislocates anther thecae in the *Gomidesia* clade (Fig. 6.6e), forming a structure that resembles a pore during anthesis. In all other clades, anthers open via longitudinal slits, forming an angle of nearly 180 degrees between the thecae (Fig. 6.6e).

Figure 6.6: Stage specific variation in *Myrcia s.l.* floral organ development. a) Hairy or glabrous base of staminal ring (initiates in Stage 2). b) Definition of bi or tri ovary locularity (Stage 2). c) Hairy or glabrous base of style (initiates in Stage 3). d) Flat or vertically extended hypanthium in longitudinal section (Stage 4). Ovary position is circled. e) Uneven or even growth of anther connective leading to different anther openings (Stage 4) (inside of thecae highlighted in red). Stm, stamen; Sty, style.

6.15 Phylogenetic signal of developmental variation

Results presented here describe three developmental pathways that initiate in the first stage of development and other trait variation that appears in later stages of *Myrcia s.l.* floral development. Key differences were observed during the described developmental stages and can be summarised as follows: Stage 1 – Pathway determination; Stage 2 - Growth of hairs at the base of the staminal ring during androecium development (observed in all analysed samples of clades *Myrcia, Gomidesia* and *Reticulosa*), and determination of locule number (trilocular in samples of clades *Guianensis* and *Reticulosa*, bilocular in the other sections); Stage 3 - Growth of hairs at the base of the style (observed in all analysed samples of clades *Myrcia, Gomidesia* and *Reticulosa*, bilocular in the other sections); Stage 3 - Growth of hairs at the base of the style (observed in all analysed samples of clades *Myrcia, Gomidesia* and *Reticulosa*), Stage 4 - fixation of hypanthium shape (flat and pubescent in all samples of clades *Myrcia* and *Gomidesia*). Even though other small variations of floral development could be observed (e.g. four to five sepals), these were not considered here due to inconsistency at the intraspecific level. The non-independence of traits such as hairs at the base of stamen and style was considered as they are always found in the same species. They were not merged however, as the hairs appear at distinct development stages.

Correlation of key developmental characters with available phylogenetic hypotheses are shown (Fig. 6.7) estimated by means of log likelihood from the correlation of each character with the phylogeny. Results indicate that during floral development in *Myrcia s.l.*, the earlier the development of a structure varies, the lower the phylogenetic signal of this variation is. Consequently, early developing characters are more homoplastic and less congruent with the phylogeny. The most striking example of this is the developmental pathway determination in Stage 1. These show a clearly homoplastic pattern when correlated with the phylogeny and return the lowest log likelihood values (e.g. "*aposepalous*" pathway: -18.73 "*gamosepalous*" pathway: -16.58) in comparison to variation in later developed characters. The "*hyper-hypanthium*" pathway is exceptional in this case, scoring a slightly higher value of log likelihood (-13.38) as it occurs exclusively within the clade *Aulomyrcia*. The homoplastic pattern of similar developmental pathways increases evidences for parallelism in *Myrcia s.l.*

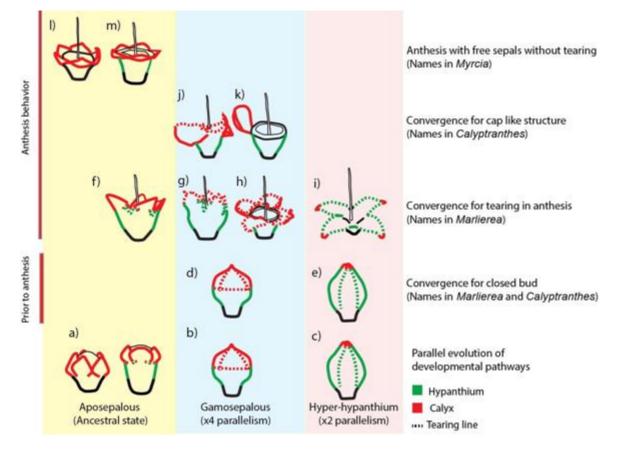

In contrast, characters that undergo later stage developmental variation return higher values of log likelihood and seem to be more phylogenetically congruent. For example, hairy staminal ring and style base, always observed to occur in the same species, return a moderately high (-13.07) log likelihoods; the same is true for the characters of hypanthium elongation and pubescence (-11.55). Uneven growth of the connective, a variation that occur in the last stages of development, is exclusive found Gomidesia and thus score the highest phylogenetic signal (-5.73). Locule number, although consistent in the lineage where it is found, scores the lowest phylogenetic signal (-13.78) among late developed characters.

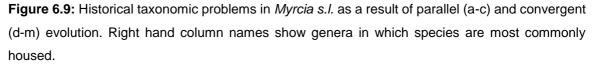
Stage 4 (Anther development and hypanthial shape)	Hypanthiumelongation and texture Uneven growth of the connective:	-11.55 -5.73
Stage 3 (Gynoecium development)	Hairy base of style:	-13.07
Stage 2 (Corolla and Androecium development)	Locule number: Hairy base of stamen ring:	-13.78 -13.07
e 1 opment)	"Aposepalous" pathway:	- 18.73* - 21.30**
Stag Iy devel	"Gamosepalous" pathway:	-16.58* -13.51**
(Ear	"Hyper-hypanthium" pathway:	- 13.38
	Stage 3 (Gynoecium development)	Stage 2 Stage 2 (Corolla and Androecium development) Hairy pase of stamen Liudi Hairy pase of stamen Liudi

Figure 6.7: Comparison between phylogenetic signal based on *log likelihood* of character variation in distinct developmental stages. * *Marlierea glazioviana* is considered "*Gamosepalous*"; ** *Marlierea glazioviana* is considered "*Aposepalous*".

6.16 Ancestral reconstruction of developmental pathways

Ancestral reconstruction of the three developmental pathways indicate that the "aposepalous" pathway is the ancestral state for *Myrcia s.l.* (Fig. 6.8). The "*hyper-hypanthium*" pathway appears to have evolved twice independently inside clade *Aulomyrcia*. The "gamosepalous" pathway evolved independently four times in four different clades. Reversal from "*hyper hypanthium*" or "gamosepalous" pathway to "aposepalous" was not observed. Results show that a given developmental pathway always arises from the same ancestral state regardless of its phylogenetic position. *Marlierea glazioviana* was observed to present both pathways in the same individual. The results show that similar developmental pathways appear independently but can still present the same ancestral state. This is another evidence of parallelism in the evolutionary history of *Myrcia s.l.*


Figure 6.8: Distribution of the three developmental pathways in the *Myrcia s.l.* phylogeny. Yellow squares – "aposepalous" pathway; Red triangles – "hyper-hypanthium" pathway; Blue stars – "gamosepalous" pathway. Shifts from ancestral "aposepalous" to "gamosepalous" pathways are marked * (1–4); shifts from ancestral "aposepalous" to "hyper-hypanthium" are labelled (1–2). (a) Names first described in *Marlierea*. (b) Names first described in *Calyptranthes*.


DISCUSSION

6.17 Parallelism in Myrcia s.l.

Developmental variations in the calyx and hypanthium, which before were considered systematically consistent, can be categorized into three distinct developmental pathways that are

shown to be examples of parallel evolution (Fig. 6.9a-c). These pathways are polyphyletic and thus score low phylogenetic signal, reinforcing their ineffectiveness for classification of *Myrcia s.I.* The "*aposepalous*" pathway (Fig. 6.9a) has evolved just once (the ancestral state). However it has very low phylogenetic signal because it occurs in most lineages and therefore it is not a useful systematic character either. The "*gamosepalous*" pathway (Fig. 6.9b) is also of low systematic value because it has evolved independently at least four times and it scores a low phylogenetic signal. The "*hyper-hypanthium*" pathway (Fig. 6.9c) has more systematic relevance because it is found in a single lineage and scores the highest phylogenetic signal among the developmental pathways. It has, however, evolved at least twice independently within clade *Aulomyrcia* and still returns a value of phylogenetic signal lower than all later developed traits, with the exception of ovary locularity. Variation in floral characters acquired later in the development present a stronger correlation with the phylogeny and the combination of these characters can be more reliably used to accurately classify species.

Systematic problems that arise from parallelisms in *Myrcia s.l.* might be further aggravated by errors of interpretation resulting from the three developmental pathways. These mistakes in interpretation are the root of the observed convergent bud types and behaviours at anthesis. Closed Myrtaceae buds have been associated with protection from dehydration and predation (Weberling, 1989) and prior to anthesis, buds resulting from the "gamosepalous" and "hyper-hypanthium" pathways can be indistinguishable. This has resulted in arbitrary assignments of species to

Marlierea and *Calyptranthes* (Fig. 6.9d,e). The lack of material of *Myrcia s.l.* in adequate phenological phases (i.e. anthetic flowers), in conjunction with very small flowers from which it is difficult to determine hypanthium length, added to the taxonomic confusion.

The nature of opening of the bud is also a taxonomically problematic, convergent character as all three developmental pathways have potential to tear at anthesis (Fig. 6.9f-k). This has given rise to nomenclatural confusion involving the genera *Marlierea* and *Calyptranthes*. Despite the developmental pathway, most species with buds tearing at anthesis were described in *Marlierea* (Fig. 6.9f-i). In species of clade *Eugeniopsis*, however, tearing at anthesis can result in a greater portion of calyx tissue remaining on one side of the hypanthium (Fig. 6.9j) producing a structure reminiscent of, or convergent with, a calyptra (Fig. 6.9k). A systematic example is *Myrcia eugeniopsoides* that opens as described and was first described as *Calyptranthes* (1962; as *C. eugeniopsoides* D. Legrand & Kaussel) then transferred to *Marlierea* (1975; as *M. eugeniopsoides* D. Legrand & Kaussel (Legrand)) and finally placed in *Myrcia* (2014; as part of a current trend transferring all names to *Myrcia*; see Mazine et al., 2014). Species that follow the "aposepalous" pathway without tearing at anthesis (Fig. 6.9l,m) were always described in *Myrcia* regardless in which clade they are found.

This study shows that both parallelism and convergence are responsible for the two-century long problems with an accurate *Myrcia s.l.* taxonomy which has resulted from extreme emphasis on characters of the calyx, hypanthium and the nature of anthesis (see Lucas et al., 2011). In conclusion for the study group, characters related to the hypanthium and the mode of calyx dehiscence cannot be used alone to define a group of species at any systematic level. Characters with stronger phylogenetic signal, are the best for this purpose (e.g. presented here: hairs on the style base or staminal disk, locule number). The best approach to classification in such a group uses molecular data in combination with multiple characters from a broad range of parts of the plant. The floral characters investigated here can only imperfectly indicate broad species relationships and may only be used reliably for classification at the species level, and even then they must be used with care.

6.18 Parallelism in systematics of flowering plants

The persistent lack of consideration of parallelism in systematics is likely due to confusion between convergence and parallelism in the literature (Gould, 2002; Diogo, 2005). Saether (1983) described "shared common internal constraint of homologous genes or developmental pathways" as underlying synapomophy; this is here considered parallelism. Today homoplasy and homology are used as antagonistic terms. However homoplasy was first defined as a sub-category of homology (Lankester, 1870) as it is characteristic of a single lineage; today this is referred to as parallelism.

Parallelism is likely to be more common than previously considered and in some groups of angiosperms it is a significant source of systematic strife as shown in the present study for *Myrcia s.l.* Patterns of homoplasy that can be attributed to parallelism are frequently found in other angiosperms groups (e.g. inflorescences in *Panicum*, Bess et al., 2005; stamens in *Miconia*, Goldenberg et al., 2008). These incidents are not always clearly cited as parallelism and are often considered to "result from a shared developmental program (...) that is flexibly turned on and off

during evolution" (Hearn, 2006, p. 355, for growth form in *Adenia*). In other words, even if expression of these different developmental pathways remains latent for long periods of evolutionary history, they can occasionally be re-expressed and fixed following a specific selective pressure or genetic drift.

Nevertheless, such latent developmental pathways may be silenced through genetic mutation over time that would represent the end of potential for parallelism (Wagner, 1998; Hawkins, 2002). This may explain why systematic problems related to phenotypic polyphyly appear more prevalent in recently diversified groups where latent molecular signals for expression of similar structures can still be triggered, with abundant examples throughout flowering plants (e.g. *Adenia* – 26mya, Hearn, 2006; *Disa* – c. 18mya, Bytebier et al., 2007, 2010; *Miconia* – c. 10mya, Goldenberg et al., 2008; Berger et al., 2015; *Panicum* c. 15mya, Bouchenak-Khelladi et al., 2010; Giussani et al., 2011; *Mimosa* – c. 15mya, Simon et al., 2009, 2011) including the case study presented here (*Myrcia s.l.,* 22mya; Thornhill et al., 2015); whereas older groups are more likely to have matching morphology and phylogeny (e.g. *Piper* and *Peperomia* – Late cretaceous, Jaramillo and Manos, 2001; Quijano-Abril et al., 2006; Smith et al., 2008; Jaramillo et al., 2008).

Time-scale is therefore important when dealing with parallelisms in a systematic context. Estimates of a time limit for the re-expression of silenced genetic mechanisms that could lead to parallelism are c. 6 million years (Marshall et al., 1994, using empirical data of genes with different degrees of mutational rate). This can however, be much longer for traits that affect distantly related clades of a large group such as flowering plants. In the example of *Myrcia s.l.* the period between the occurrence of a calyptra in *Calyptranthes multiflora* (clade *Aulomyrcia*) and species within clade *Calyptranthes* is estimated at approximately 20 million years (Santos, 2014). When considering a single character for the whole Myrtaceae family it is possible to observe that a calyptra reoccurs in more distant lineages along similar developmental pathways (i.e. *Calyptranthes* and *Eucalyptus*, Weberling 1989; see Chapter 4) even though their last common ancestor was c. 65 mya (Thornhill et al., 2015).

6.19 The impact of parallelism on flower evolution

This study also provides insight into the evolution of floral development. Although recent floral evolution studies have mainly focused on classic evo-devo approaches (such as the ABC model, Erbar, 2005), macro-evolutionary and systematic aspects of flower evolution have also become more common. In such studies, stable early floral development within a lineage and homoplastic late floral development are considered the norm. Tucker (1992, 1997, 2003) found this arrangement in Fabaceae, another mega-diverse group of eudicot angiosperms. Re-expression of early developing characters in independent lineages of *Myrcia s.l.*, perhaps as a result of parallel evolution, makes floral development proceed in the exact reverse. In this case, characters that differentiate in later stages have higher phylogenetic signal than in earlier stages (Fig. 6.7). In contrast to the studies of Tucker, this pattern was also recently found in the Fabaceae tribe Cassinae (Marazzi and Endress, 2008); it is possible that these contrasting findings may be linked to extremely variable Fabaceae floral morphology. Such early stage changes might be important components of late flower display and have consequences for pollination. In *Myrcia s.l.* for example, different floral development pathways might bring discreet changes in post anthetic display, where

205

the calyptra or undeveloped petals of some pathways might play a role in flower presentation to pollinators (see Chapter 4).

These labile structural changes in early floral development that lead to morphological variation in the mature flower and that are responsible for flawed systematic interpretations may also play an important role in angiosperm evolution. The labile nature of these changes adds weight to suggestion that major changes in floral morphology evolve fast (Vasconcelos and Proença, 2015) rather than gradually, resulting in evolutionary jumps (Eldredge and Gould, 1972) and thereby increasing short-term adaptability and fitness of a lineage. Such flexibility is likely to have contributed to angiosperm success.

CONCLUSION

This study shows in-depth ontogenetic and anatomical research of apparently similar structures to be important in the detection of parallelism. Parallel evolution, as well as convergence, misleads taxonomists and evolutionists when searching for characters to define natural lineages (= morphological synapomorphies). Different developmental pathways can be labile and repeat themselves in non-related lineages of recently diversified groups, probably due to underlying homology in the genetic expression of these characters. It is therefore clear that morphological synapomorphy is particularly difficult to define in the presence of parallel evolution. The question then is: how to interpret homology when structural variation remains latent for long periods of evolutionary history, appearing just occasionally. This question is challenging, especially in the phylogenomic era where systematists have the benefit of robust hypotheses of species relationships that are often incongruent with morphology. Modern plant systematists must be comfortable to define and classify complex groups using combinations of characters rather than searching for or relying on a single homology. Furthermore, a better understanding of the development may clarify homoplasies as potential parallelisms instead of only convergences, additionally sharpening the focus on trait evolution in plants. Future studies are required that will investigate how genetic mechanisms are silenced and then re-expressed over time and the role of hybridization and introgression, known to be integral drivers of plant diversification (e.g. Gargiullio et al., 2015), in the context of maintaining such parallelisms.

APPENDIX

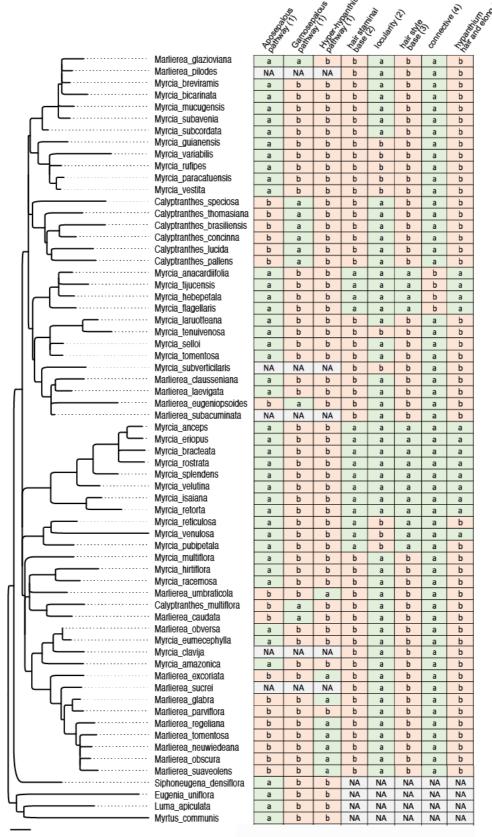
Appendix 6.1: List of analysed samples in the ontogenetic survey per clade of *Myrcia s.l.* Acronym of the herbarium in which the collection is deposited is shown between bracts after voucher details.

Clade	le Species		Voucher (Herbarium code)
Outgroup	Myrtus communis L.	RBG Kew (cultivated)	Lucas 211 (K)
(Tribe Myrteae)	Eugenia uniflora L.	RBG Kew (cultivated)	Chase 9077 (K)
	<i>Luma apiculata</i> (DC.) Burret	RBG Kew (cultivated)	Chase 17313 (K)
Clade Aulomyrcia	Calyptranthes multiflora Poepp. Ex O.Berg.	RR - Brazil	Vasconcelos 379 (K)
(Clade 9 sensu Lucas et al. 2011)	<i>Calyptranthes multiflora</i> Poepp. Ex O.Berg.	RR - Brazil	Giaretta 1429 (SPF)
	Marlierea excoriata Mart.	MG - Brazil	Faria 4270 (UB)
	Marlierea excoriata Mart.	MG - Brazil	Vasconcelos 493 (K)
	Marlierea glabra Cambess.	ES - Brazil	Faria. 4246 (UB)
	<i>Marlierea neuwiedeana</i> (O.Berg) Nied.	ES - Brazil	Vasconcelos 467 (K)
	Marlierea obscura O.Berg	MG - Brazil	Matsumoto 836 (UEC)
	Marlierea obversa D.Legrand	ES - Brazil	Matsumoto 820 (UEC)
	Marlierea obversa D.Legrand	BA – Brazil	Mori 14129 (K)
	Marlierea regeliana O.Berg	ES - Brazil	Matsumoto 814 (UEC)
	<i>Marlierea suaveolens</i> Cambess.	SP - Brazil	Lucas 85 (K)
	<i>Marlierea tomentosa</i> Cambess.	SP - Brazil	Matsumoto 798 (UEC)
	<i>Marlierea umbraticola</i> (Kunth) O.Berg	AM - Brazil	Vasconcelos 311 (K)
	Myrcia amazonica DC.	SP - Brazil	Lucas 59 (K)
	<i>Myrcia eumecephylla</i> (O.Berg) Nied.	ES - Brazil	Matsumoto 803 (UEC)
	Myrcia hirtiflora DC.	BA – Brazil	Vasconcelos 440 (K)
	Myrcia multiflora (Lam.) DC.	ES - Brazil	Faria 4235 (UB)
	<i>Myrcia racemosa</i> (O.Berg) Kiaersk.	SP - Brazil	Lucas 63 (K)
	Myrcia spathulifolia Proença	BA - Brazil	Faria 4214 (UB)
	Myrcia spathulifolia Proença	MG - Brazil	Vasconcelos 497 (K)
	<i>Myrcia thomasii</i> B.S.Amorim & A.R.Lourenço	BA - Brazil	Faria 4203 (UB)
Clade Calyptranthes	Calyptranthes blanchetiana O.Berg	BA - Brazil	Lucas 1208 (K)
(Clade 1 sensu Lucas et al. 2011	Calyptranthes brasiliensis Spreng.	ES - Brazil	Faria 4239 (UB)
	Calyptranthes brasiliensis Spreng.	ES - Brazil	Faria 4244 (UB)
	Calyptranthes brasiliensis Spreng.	BA - Brazil	Vasconcelos 449 (K)
	Ċalyptranthes chytraculia (L.) Sw.	Jamaica	Campbell 201548 (IJ)
	Calyptranthes chytraculia (L.) Sw.	Jamaica	Campbell 201554 (IJ)
	Calyptranthes chytraculia (L.) Sw.	Jamaica	Campbell 201559 (IJ)
	Calyptranthes chytraculia (L.) Sw.	Costa Rica	Vasconcelos 525 (K)

	Calyptranthes concinna DC.	SP - Brazil	Lucas 74 (K)
	<i>Calyptranthes lucida</i> Mart. ex DC.	DF - Brazil	Vasconcelos 259 (K)
	Calyptranthes pallens Griseb.	Costa Rica	Vasconcelos 534 (K)
	Calyptranthes pallens Griseb.	Dom. Republic	Vasconcelos 559 (K)
	Calyptranthes thomasiana O.Berg	British Virgin Islands	Polard 1195 (K)
Clade Eugeniopsis	Marlierea clausseniana (O.Berg) Kiaersk.	MG - Brazil	Matsumoto 752
(Clade 2 sensu Lucas et al. 2011)	<i>Marlierea clausseniana</i> (O.Berg) Kiaersk.	SP - Brazil	SPF 39728 (K)
	<i>Myrcia eugeniopsoides</i> (D.Legrand & Kausel) Mazine	SP – Brazil	Lucas 61 (K)
	<i>Myrcia eugeniopsoides</i> (D.Legrand & Kausel) Mazine	SP - Brazil	Lucas 81 (K)
	Myrcia multipunctata Mazine	ES - Brazil	Faria 4236 (UB)
	<i>Marlierea subacuminata</i> Kiaersk.	Brazil	Lucas 225 (K)
	Myrcia tenuivenosa Kiaersk.	SP - Brazil	Lucas 87 (K)
Clade Gomidesia	Myrcia anacardiifolia Gardner	RJ - Brazil	Natruz 999
(Clade 3 sensu Lucas et al. 2011)	Myrcia eriocalyx DC.	MG - Brazil	Vasconcelos 500 (K)
,	Myrcia fenzliana O.Berg	BA - Brazil	Nic-Lughadha H50637 (K)
	<i>Myrcia flagellari</i> s (D.Legrand) Sobral	SP - Brazil	Lucas 83 (K)
	Myrcia hebepetala DC.	SP - Brazil	Lucas 64 (K)
	Myrcia spectabilis DC.	BA - Brazil	Lucas 1210 (K)
	Myrcia spectabilis DC.	BA - Brazil	Lucas 1214 (K)
	Myrcia spectabilis DC.	ES - Brazil	Vasconcelos 463 (K)
	Myrcia tijucensis Kiaersk.	SP - Brazil	Zappi 305 (K)
	Myrcia vittoriana Kiaersk.	BA - Brazil	Vasconcelos 439 (K)
Clade Guianensis	Myrcia vestita DC.	SP - Brazil	Lucas 93 (K)
(Clade 4 sensu Lucas et al. 2011)	<i>Myrcia guianensis</i> (Aubl.) DC.	PE - Brazil	Amorim 1912 (UFP)
u.: 2011)	Myrcia guianensis (Aubl.) DC.	DF - Brazil	Vasconcelos 257 (K)
	Myrcia guianensis (Aubl.) DC.	DF - Brazil	Vasconcelos 258 (K)
	Myrcia guianensis (Aubl.) DC.	BA - Brazil	Vasconcelos 432 (K)
	Myrcia littoralis DC.	BA - Brazil	Vasconcelos 455 (K)
	Myrcia littoralis DC.	BA - Brazil	Vasconcelos 456 (K)
	Myrcia nivea Cambess.	GO - Brazil	Lima 492 (K)
	Myrcia paracatuensis Kiaersk.	MG - Brazil	Mello-Silva 1713 (K)
	Myrcia rufipes DC.	MG - Brazil	Vasconcelos 480 (K)
	<i>Myrcia subverticillaris</i> (O.Berg) Nied.	MG - Brazil	Lucas 251 (K)
	Myrcia variabilis DC.	MG - Brazil	Lucas 277 (K)
Clade Myrcia	<i>Myrcia anceps</i> (Spreng.) O.Berg	MG - Brazil	Lucas E. 236 (K)
(Clade 5 sensu Lucas et al. 2011)	Myrcia retorta Cambess.	PR - Brazil	Lucas 179 (K)
- /	Myrcia bracteata (Rich.) DC.	French Guiana	Prevost, 4212 (K)
	Myrcia eriopus DC.	MG - Brazil	Lucas 258 (K)
	<i>Myrcia isaiana</i> G.M.Barroso & Peixoto	SP - Brazil	Lucas 60 (K)
	Myrcia splendens (Sw.) DC.	DF - Brazil	Faria 4052 (UB)
1	300		

i			
	Myrcia splendens (Sw.) DC.	GO - Brazil	Rosa 1384 (UB)
	Myrcia splendens (Sw.) DC.	DF - Brazil	Vasconcelos 250 (K)
	Myrcia splendens (Sw.) DC.	BA - Brazil	Vasconcelos 407 (K)
	Myrcia splendens (Sw.) DC.	MG - Brazil	Vasconcelos 487 (K)
	Myrcia splendens (Sw.) DC.	Dom. Republic	Vasconcelos 587 (K)
	Myrcia sylvatica (G.Mey.) DC.	BA – Brazil	Lucas 1222 (K)
	Myrcia sylvatica (G.Mey.) DC.	BA – Brazil	Faria 4180 (UB)
	Myrcia sylvatica (G.Mey.) DC.	GO – Brazil	Vasconcelos 298 (K)
	Myrcia sylvatica (G.Mey.) DC.	AM – Brazil	Vasconcelos 336 (K)
	Myrcia thyrsoidea O.Berg	BA – Brazil	Vasconcelos 460 (K)
Clade Reticulosa	<i>Myrcia pubipetala</i> Miq.	RJ – Brazil	Lucas 477 (K)
(Clade 6 sensu Lucas et al. 2011)	<i>Myrcia reticulosa</i> Miq.	MG – Brazil	Savassi-Coutinho S.n. (K)
	Myrcia venulosa DC.	PR – Brazil	Cruz 195 (K)
Clade Sympodiomyrcia	Myrcia costeira M.F. Santos	Brazil	Lucas 71 (K)
(Clade 7 sensu Lucas et al. 2011)	<i>Myrcia pulchra</i> (O.Berg) Kiaersk.	MG – Brazil	Lucas 138 (K)
	<i>Myrcia mucugensis</i> Sobral	BA - Brazil	Vasconcelos 441 (K)
	<i>Myrcia subavenia</i> (O.Berg) N.Silveira	MG - Brazil	Vasconcelos 488 (K)
	Myrcia subcordata DC.	MG - Brazil	Faria 4257 (UB)
		MG - Brazil	Faria 4257 (UB)
Clade Tomentosa	Myrcia laruotteana Cambess.	DF - Brazil	Faria 4046 (UB)
(Clade 8 sensu Lucas et al. 2011)	<i>Myrcia selloi</i> (Spreng.) N.Silveira	RJ - Brazil	Lucas 110 (K)
	Myrcia tomentosa (Aubl.) DC.	GO - Brazil	Lima 491 (K)
	Myrcia tomentosa (Aubl.) DC.	GO - Brazil	Rosa 1379 (UB)
	Myrcia tomentosa (Aubl.) DC.	DF - Brazil	Vasconcelos 262 (K)

Appendix 6.2: List of analysed species and GenBank accession numbers in the phylogenetic reconstruction of *Myrcia s.l.* Acronym of the herbarium in which the collection is deposited is shown between bracts after voucher details.


Clade	Species	Collection Locality	Voucher (Herbarium)	ITS	psbA-trnH	trnL-trnF	rps16-trnQ	ndhF
Outgroup	Myrtus communis L.	RBG Kew (cultivated)	Lucas 211 (K)	AM234149	AM489872	KP722327	KP722221	KP722420
(Tribe Myrteae)	Siphoneugena densiflora O.Berg	MG - Brazil	Mazine. 1050 (K)	AM489412	AM489571	JN091389	KP722220	KP722444
	Eugenia uniflora L.	RBG Kew (cultivated)	Chase 9077 (K)	AM234088	AM489828	KP722326	KP722202	KP722418
	Luma apiculata (DC.) Burret	RBG Kew (cultivated)	Chase 17313 (K)	AM234101	AM489843	KP722331	KP722209	KP722433
Clade Aulomyrcia	<i>Calyptranthes multiflora</i> Poepp. Ex O.Berg.	RO - Brazil	Araujo 1885 (K)	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	-
(Clade 9 sensu Lucas et al. 2011)								
	Marlierea excoriata Mart.	ES - Brazil	Matsumoto 825 (UEC)	JN091203	JN091394	JN091328	KP722226	KP722449
	Marlierea glabra Cambess.	RJ - Brazil	Staggemeier 935 (K)	KP722391	KP722299	KP722349	KP722245	KP722469
	<i>Marlierea neuwiedeana</i> (O.Berg) Nied.	SE - Brazil	Staggemeier 793 (K)	KP722402	KP722310	KP722360	KP698774	KP722480
	Marlierea obscura O.Berg	MG - Brazil	Matsumoto 836 (UEC)	JN091205	JN091396	JN091330	KP722228	KP722452
	Marlierea obversa D.Legrand	ES - Brazil	Matsumoto 820 (UEC)	JN091206	JN091397	JN091331	KP722227	KP722450
	<i>Marlierea regeliana</i> O.Berg	ES - Brazil	Matsumoto 814 (UEC)	JN091208	JN091399	JN091333	KP722225	KP722448
	<i>Marlierea suaveolens</i> Cambess.	SP - Brazil	Lucas 85 (K)	AM234108	AM489846	KP722329	KP722207	KP722431
	<i>Marlierea sucrei</i> G.M.Barroso & Peixoto	ES - Brazil	Matsumoto 824 (UEC)	JN091209	JN091400	JN091335	KP722222	KP722445

	<i>Marlierea tomentosa</i> Cambess. <i>Marlierea umbraticola</i> (Kunth) O.Berg <i>Myrcia amazonica</i> DC.	SP - Brazil AM - Brazil SP - Brazil	Matsumoto 798 (UEC) Souza s.n. (INPA) Lucas 59 (K)	JN091210 KP722392 JN091213	JN091401 KP722300 JN091404	JN091336 KP722350 JN091338	KP722224 KP722246 KP722240	KP722447 KP722470 KP722422
	<i>Myrcia clavija</i> Sobral	Brazil	Lucas 244 (K)	JN091220	JN091411	KP722332	KP722217	KP722442
	<i>Myrcia eumecephylla</i> (O.Berg) Nied.	ES - Brazil	Matsumoto 803 (UEC)	JN091223	JN091414	JN091349	KP722223	KP722446
	<i>Myrcia racemosa</i> (O.Berg) Kiaersk.	SP - Brazil	Lucas 63 (K)	AM234120	AM489861	JN091366	KP722259	KP722424
Clade Calyptranthes	Calyptranthes brasiliensis Spreng.	ES - Brazil	Lucas 930 (K)	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	NA
(Clade 1 sensu Lucas et al. 2011	Calyptranthes concinna DC.	SP - Brazil	Lucas 74 (K)	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	-
	<i>Calyptranthes lucida</i> Mart. ex DC.	MT - Brazil	Sasaki 2448	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	-
	Calyptranthes pallens Griseb.	Dom. Republic	Araujo 1792	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	-
	Calyptranthes speciosa Sagot	French Guiana	Holst 9399 (K)	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	Wilson et al. 2016	-
	<i>Calyptranthes thomasiana</i> O.Berg	British Virgin Islands	Polard 1195 (K)	AM234106	AM489820	JN091325	Wilson et al. 2016	-
Clade Eugeniopsis	<i>Marlierea clau</i> sseniana (O.Berg) Kiaersk.	MG - Brazil	Matsumoto 752	JN091202	JN091393	JN091326	-	-
(Clade 2 sensu Lucas et al. 2011)	<i>Myrcia eugeniopsoides</i> (D.Legrand & Kausel) Mazine	SP – Brazil	Lucas 61 (K)	AM234107	AM489845	JN091327	KP722205	KP722429
· · · /	Myrcia multipunctata Mazine	Brazil	Santos 836	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016
	<i>Marlierea subacuminata</i> Kiaersk.	Brazil	Lucas 225 (K)	JN091207	JN091398	JN091332	KP722218	KP722443
 _	Myrcia tenuivenosa Kiaersk.	SP - Brazil	Lucas 87 (K)	JN091246	JN091437	JN091378	-	-

Clade Gomidesia	Myrcia anacardiifolia Gardner	RJ - Brazil	Natruz 999	JN091216	JN091407	JN091341	KP722210	KP722419
(Clade 3 sensu Lucas et al. 2011)	<i>Myrcia flagellaris</i> (D.Legrand) Sobral	SP - Brazil	Lucas 83 (K)	AM234113	AM489836	JN091350	KP722206	KP722430
Lucas et al. 2011)	Myrcia hebepetala DC.	SP - Brazil	Lucas 64 (K)	AM234111	AM489834	JN091353	-	-
	Myrcia spectabilis DC.	SP - Brazil	Lucas 75 (K)	JN091241	JN091432	JN091372	-	-
	Myrcia tijucensis Kiaersk.	SP - Brazil	Zappi 305 (K)	AM234110	AM489833	JN091379	-	-
Clade <i>Guianensis</i>	Myrcia vestita DC.	SP - Brazil	Lucas 93 (K)	JN091249	JN091440	JN091384	-	-
(Clade 4 sensu Lucas et al. 2011)	Myrcia guianensis (Aubl.) DC.	BA - Brazil	Harley 50307 (K)	JN091225	JN091416	JN091351	-	-
,	Myrcia paracatuensis Kiaersk.	MG - Brazil	Mello-Silva 1713 (K)	AM234118	AM489859	KP722328	KP722230	KP722421
	Myrcia rufipes DC.	MG - Brazil	Lucas 280 (K)	JN091239	JN091430	JN091369	-	-
	<i>Myrcia subverticillaris</i> (O.Berg) Nied.	MG - Brazil	Lucas 251 (K)	JN091244	JN091435	-	-	-
	Myrcia variabilis DC.	MG - Brazil	Lucas 277 (K)	JN091248	JN091439	JN091382	-	-
Clade <i>Myrcia</i>	<i>Myrcia anceps</i> (Spreng.) O.Berg	MG - Brazil	Lucas E. 236 (K)	JN091217	JN091408	JN091342	-	-
(Clade 5 sensu Lucas et al. 2011)	Myrcia retorta Cambess.	PR - Brazil	Lucas 179 (K)	JN091237	JN091428	-	-	-
	Myrcia bracteata (Rich.) DC.	French Guiana	Prevost, 4212 (K)	JN091218	JN091409	JN091344	-	-
	Myrcia eriopus DC.	MG - Brazil	Lucas 258 (K)	JN091222	JN091413	JN091348	-	-
	<i>Myrcia isaiana</i> G.M.Barroso & Peixoto	SP - Brazil	Lucas 60 (K)	JN091229	JN091420	JN091356	-	-
	Myrcia splendens (Sw.) DC.	SP - Brazil	Lucas 73 (K)	AM234122	AM489863	JN091374	-	-
Clade <i>Reticulosa</i>	<i>Myrcia pubipetala</i> Miq.	RJ – Brazil	Lucas 477 (K)	AM234114	AM489855	JN091364	KP722273	KP722426
(Clade 6 sensu Lucas et al. 2011)	<i>Myrcia reticulosa</i> Miq.	MG – Brazil	Savassi- Coutinho S.n. (K)	JN091236	JN091427	JN091367	-	-
	Myrcia venulosa DC.	PR – Brazil	Cruz 195 (K)	AM234125	AM489866	JN091383	-	-
Clade Sympodiomyrcia	Myrcia insigniflora M.F.Santos	Brazil	Matsumoto 799 (UEC)	JN091204	JN091395	JN091329	KP722275	KP722451

(Clade 7 sensu Lucas et al. 2011)	<i>Myrcia mutabili</i> s (O.Berg) N.Silveira	Brazil	Mazine 1058 (ESA)	JN091233	JN091424	JN091361	KP722241	KP722435
	Myrcia costeira M.F. Santos	Brazil	Lucas 71 (K)	AM234121	AM489862	JN091343	-	-
	<i>Myrcia pulchra</i> (O.Berg) Kiaersk.	MG – Brazil	Lucas 138 (K)	JN091235	JN091426	JN091365	-	-
	Myrcia mucugensis Sobral	Brazil	Santos 823 (SPF)	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016
	<i>Myrcia subavenia</i> (O.Berg) N.Silveira	Brazil	Santos 715 (SPF)	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016
	Myrcia subcordata DC.	Brazil	Santos 586 (SPF)	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016	Santos et al. 2016
Clade Tomentosa	Myrcia laruotteana Cambess.	SP - Brazil	Lucas 198 (K)	AM234115	AM489856	JN091357	KU171297	-
(Clade 8 sensu Lucas et al. 2011)	<i>Myrcia selloi</i> (Spreng.) N.Silveira	RJ - Brazil	Lucas 110 (K)	JN091240	JN091431	JN091371	KP722212	KP722436
	Myrcia tomentosa (Aubl.) DC.	PR - Brazil	Lucas 160 (K)	AM234116	AM489857	JN091380	-	-

Appendix 6.3: *Myrcia s.l.* morphological matrix against phylogeny used in phylogenetic signal estimation and character reconstruction. (a) character state present; (b) character state absent.

0.003 subt. per site

Chapter 7: Innovation is not always the key: how one of the most diverse and abundant Neotropical tree genera achieved success by staying the same

Manuscript - to be submitted to Evolution

• T.N.C.Vasconcelos contributions: development of hypotheses, design of experiments, collection of samples, morphometric data collection, morphological analyses, phylogenetic analyses, statistical analyses and writing of manuscript.

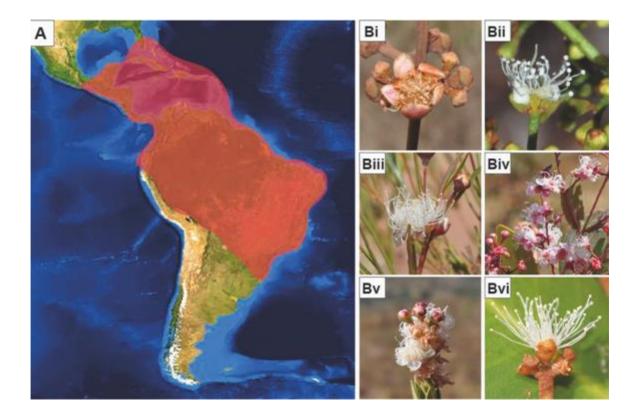
ABSTRACT

Due to their exceptional species richness, tropical forests provide environments particularly full of ecological opportunity for constant turnover of speciation, extinction and trait diversification. As a consequence, adaptive radiations are observed to arise repeatedly in these environments, usually associated with key phenotypic innovations. Here we test this premise by comparing trait diversification and macro-evolutionary dynamics in Myrcia s.l. (Myrtaceae), one of the most species rich and ecologically relevant tree genera in highly diverse rainforests of eastern South America. Correlation between 22 key phenotypic traits, the phylogenetic framework and environmental variables were tested using multi-trait analysis. Relationships between morphological disparity and clade age and correlation between phenotypic variation and shifts in diversification rates were also examined. Results show that macro-evolutionary dynamics and phenotypic diversification in Myrcia s.l. are amazingly conservative for a tropical group of its age and species richness. In spite of its exceptional morphological homogeneity, Myrcia s.l. species diversity does not result from explosive radiation but rather from gradual species accumulation over a long period of stable net diversification and homogenising phenotypic traits. Even though discreet floral specializations do occur, these present low phylogenetic signal and mostly no correlation with altitude, vegetation, inflorescence characters or plant size and do not significantly affect overall macro-evolutionary dynamics in the genus. Morphological disparity does increase with age but seems to stabilize, with older clades showing less disparity than younger ones, as long term centripetal selection tends to drive similarity over phenotypic extremes. These patterns of conservative net-diversification and phenotype are interpreted as consequences of a very stable adaptive peak related to the characteristic pollination system of Myrcia s.l. This highlights that particular eco-evolutionary systems can lead to arrangements that counter the expectations of environments full of opportunities for new ecological interactions such as tropical forests. Such systems produce little variation in macro-evolutionary regimes and low tendency to increase trait diversity, sometimes stable enough to last for tens of millions of years.

Key-words: rainforest, diversification, extinction, floral traits, *Myrcia* s.l., pollination.

INTRODUCTION

7.1 Evolutionary theory behind tropical rainforest species and trait richness


Biologists have long been astonished by the remarkable latitudinal biodiversity gradient that ultimately culminates in highly species rich tropical rainforests (Grubb, 1977; Carlucci et al., 2016). In environments full of ecological opportunity such as these, lineages are constantly under strong selective pressure, responsible for accelerated processes of speciation and extinction that lead to high levels of species turnover over time (Pennington et al., 2015). This cycle of constant availability and filling of ecological niches is one of the fundamental processes expected to drive higher species and trait diversity in tropical biomes (e.g. Fine et al., 2014).

In flowering plants, tropical lineages show greater diversity of floral systems (Willmer, 2011) as in general, competition for pollinators leads to increasingly specialized floral phenotypes (e.g. Junker et al., 2012). Even though at the species level pollinator mediated interactions constrain floral resources and lead to stabilizing selection (Cresswell, 1998), at a macro-evolutionary scale this process leads to constantly diverging phenotypes over time (Ackerly, 2009). Highly diverse clades with homogeneous phenotypes do exist, but are usually associated with recent booms in diversification (e.g. Richardson et al., 2001) where phenotypic diversification by extinction of intermediate forms (Stebbins, 1974) has not yet occurred.

7.2 Considering mega-diversity in the lack of clear phenotypic innovations

Under these assumptions and at a macro-evolutionary scale, homogeneous phenotypes should not persist in tropical lineages for very long periods of time. Nevertheless, evolutionary concepts are never without exception and rarely explored counter-intuitive systems to understand the big picture of species and trait diversity in tropical rainforests (e.g. Vamosi and Vamosi, 2010; Lamanna et al., 2014) must not be overlooked.

In this study, a case of remarkable phenotypic conservation through time in a lineage of tropical rainforests trees is examined. With c. 700 species and an estimate of 30 million years old (Lucas et al., 2011; Santos et al., 2017), *Myrcia* s.l. (Myrtaceae, hereafter referred to simply as *Myrcia*) is one of the largest exclusively Neotropical genera of flowering plants (Fig. 7.1, see also 6.3 and 7.3 *Study group*). It also represents the largest diversity of tree species and plays a central ecological role in threatened rainforest and savannah biodiversity hotspots of eastern South America, biomes more species rich than the Brazilian Amazon (Oliveira-Filho and Fontes, 2000; Murray-Smith et al., 2009; Lucas and Bunger, 2015; Staggemeier et al., 2017). *Myrcia* species are unevenly distributed throughout the phylogenetic reconstruction, with the largest clade (clade *Calyptranthes*) accommodating c. 300 species and the smallest one (clade *Tomentosa*) a diversity of only 8 species (see Fig.3.10, Chapter 3); for this reason it is surprising that morphological key-innovations cannot be easily identified. Floral evolution is here correlated with the phylogeny and with environmental variables in a multi-trait approach to infer the processes that shaped the macro-evolutionary regime of one of the most diverse tree lineages in the Neotropics.

Figure 7.1: *Myrcia s.l.* distribution (A) and flower display in different clades (B). (Bi) *Myrcia* aff. *virgata* (clade *Gomidesia*); (Bii) *M. subcordata* (clade *Sympodiomyrcia*); (Biii) *M. linearifolia* (clade *Myrcia*); (Biv) *M. rubella* (clade *Aulomyrcia*); (Bv) *M. nivea* (clade *Guianensis*); (Bvi) *Calyptranthes brasiliensis* (clade *Calyptranthes*)

MATERIAL AND METHODS 7.3 Study group

A strong pattern of phenotypic homogeneity is not exclusive to *Myrcia* in Neotropical rainforest, but is common in other large sympatric tree genera, such as *Miconia* and *Eugenia* (McVaugh 1968; Renner 1989). However, using *Myrcia* as a model group to understand this pattern is advantageous due to its ecological relevance and the availability of a series of recent systematic revisions that have significantly increased taxonomic stability (e.g. Lucas et al. 2011, 2016; Stagemeier et al., 2015; Wilson et al., 2016; Santos et al., 2016). *Myrcia* is divided into nine infrageneric clades that recur with high statistical support in independent phylogenetic analyses (Lucas et al. 2011; see Chapter 6). From here on these after referred to as the nine infra-generic evolutionary units of *Myrcia* and are used for comparative analysis of morphological disparity, species diversity and age. Relatively reliable estimates of species diversity are available for these nine units (Lucas et al., 2011) and this information is necessary for evaluation of diversification rates in incomplete phylogenetic datasets. These nine evolutionary units are spread throughout the Neotropics, but the peak of species diversity and most likely ancestral diversification points are in the Atlantic Rainforest (Staggemeier et al., 2015; Santos et al. 2017).

7.4 Choosing a representative sample for phenotypic data

The selected sample for phenotypic examination of *Myrcia* flowers corresponds to the c. 130 species included in phylogenetic analysis of Santos et al. (2017). The species sampled in this study were intentionally selected to represent a broad phenotypic variability, geographical distribution and phylogenetic diversity in *Myrcia*, based on previous systematic revisions (Lucas et al., 2011; Staggemeier et al., 2015). As clades *Calyptranthes* and *Myrcia* are slightly underrepresented in the phylogeny, 18 additional species were included. This ensures all clades are represented by a minimum sample of 10% of their biodiversity for morphological disparity analysis (as suggested by Chartier et al., 2017). Additional samples of some widespread species complexes (*Myrcia guianensis*, *M. tomentosa*, *M. splendens*) were also included in the phenotypic plasticity in these groups suggest that species delimitations are not clear in these complexes). The final list comprises 162 species, corresponding to 22% of *Myrcia* diversity (Table 7.1).

Section (Clade)	Estimated total diversity in number of species	Sample size (morphospace and phenotypic analysis)	Sample size – macro- evolutionary analysis and phylogenetic correlations
Aulomyrcia	147	37 (24%)	35 (24%)
Calyptranthes	292	32 (11%)	22 (7%)
Gomidesia	60	18 (18%)	11 (18%)
Guianensis	32	14 (37%)	12 (37%)
Myrcia	118	18 (15%)	10 (8%)
Eugeniopsis	22	14 (41%)	9 (41%)
Sympodiomyrcia	27	15 (52%)	14 (52%)
Reticulosa	21	6 (19%)	4 (19%)
Tomentosa	12	7 (3) (37%)	3 (37%)
Total	731	162 (22%)	120 (16%)

Table 7.1: Diversity per clade and sample size

7.5 Phenotypic data – Floral display and additional information

Floral and inflorescence traits were chosen over other phenotypic characters as their variation in format and arrangement is greater and they are under strong selective pressure for reproduction. In addition, floral features can be used to reinforce adaptive radiations into discrete niches (see Endress 1996; Harder and Barret 2006; Willmer 2011). A preliminary survey established floral and inflorescence characters appropriate to address the aims of this study. Flower and inflorescence measurements (continuous data) were chosen according to the following criteria: 1) there is clear variation between species; 2) it is possible to record the character in question for every species (homologous structures are always present); 3) the character can be measured with a dissecting microscope; and 4) has or may have relevance in reproductive strategy (based on reproductive biology surveys such as NicLughadha and Proença 1996; Gressler et al., 2006; and field observations). A total of 16 measurements of the flower were taken (Fig. 7.2.; Table 7.2). Presence/absence of oil glands on the anthers was also noted (Fig. 7.3). Additional label data (altitude, plant height, vegetation; Fig 7.4B) and inflorescence traits (estimated number of flowers and length of main axis Fig 7.4A; position on the plant, Fig. 7.5; flowers clustered or not Fig.7.6)

were also recorded. Proportions were calculated as one variable divided by the other to estimate differential investment in one structure over the other. Total investment in the androecium is estimated by multiplying stamen number by anther length.

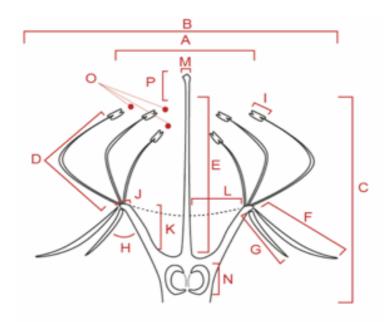


Figure 7.2. Schematic drawing of *Myrcia* flower in longitudinal section.

Table 7.2: Description of flower measurements for morphospace analysis in *Myrcia*. Letters refer to Figure 7.2.

Letter	Description of meassurement
А	Floral receptacle diameter (i.e. floral total diameter minus perianth)
В	Floral total diameter (i.e. floral receptacle diameter plus perianth)
С	Floral total length
D	Filament length
E	Style length
F	Petal length
G	Sepal length
Н	Angle of staminal ring deflection at anthesis
Ι	Anther length
J	Thickness of staminal ring
K	Height of hypanthium elongation above the ovary
L	Distance between style base and staminal ring
М	Diameter of stigma
Ν	Ovule size
0	Number of stamens
Р	Approximate height of stigma above anther line at anthesis (if negative, then stigma below anther line)

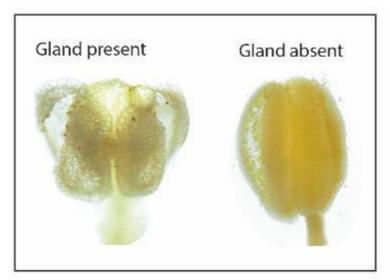
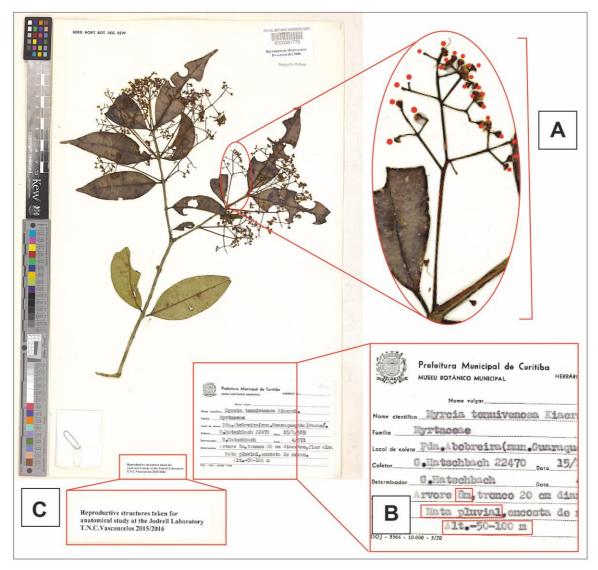



Figure 7.3: Presence and absence of anther oil gland.

Figure 7.4: Data collection using herbarium specimen. (A) Measurement of main inflorescence axis and estimation of number of flowers; (B) Data from label (plant height, vegetation, altitude); (C) Specimens included in the analyses were labelled for future consultation.

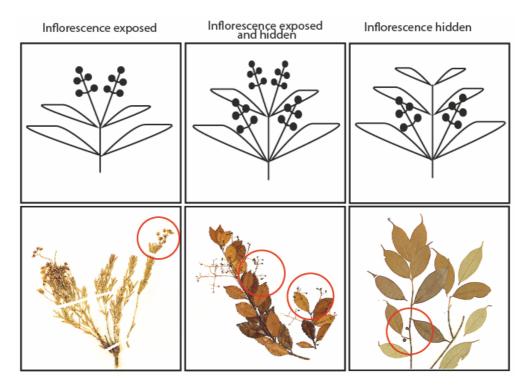
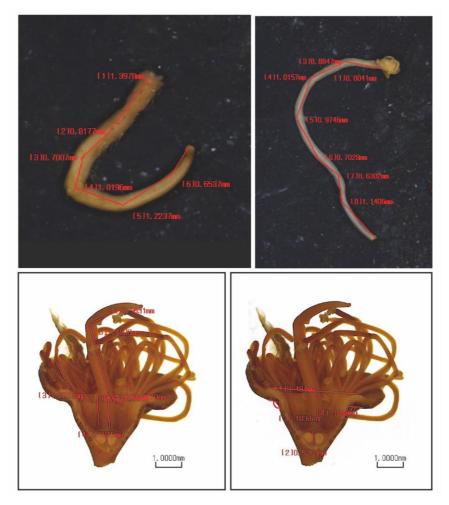


Figure 7.5: Inflorescence categories according to position in the plant.


Figure 7.6: Inflorescence categories according to degree of floral clustering. (A) Flowers scattered in the inflorescence; (B) Flowers in clusters.

7.6 Data Annotation

Most data was taken from specimens available in the Royal Botanic Gardens Kew herbarium (K) using, where possible, the vouchers used in the phylogenetic analysis to avoid problems with species circumscription. Vouchers used in the phylogeny without flowers were substituted for flowering collections from similar geographical locations and with identifications by specialists. An average of three buds and three recently opened flowers were measured from each specimen. Buds and flowers from herbarium specimens were boiled for 10 minutes, left to cool overnight and then fixed in 70% ethanol for longer preservation. Material was also collected in the field directly into ethanol. Measurements and pictures were taken using a Nikon ShuttlePix model P-400R (Fig.7.7). ImageJ v.2 (Schindelin et al., 2015) was used to take measurements from species protologue illustrations when no suitable flowering material was available. Additional label data and inflorescence traits were annotated directly from herbarium material (Fig. 7.4). For a full list of selected samples and vouchers see Appendix 7.1. Most vouchers are from Brazil and available online at the Flora do Brasil website (floradobrasil.jbrj.gov.br). Some details in data collection include:

- a) Number of flowers per inflorescence was estimated in five ordinate categories (1-5; 6-15; 16-50; 51-100 and more than 100 flowers) according to scars left in the inflorescence (Fig. 7.5A).
- b) Plant height was considered an approximation of plant habit. When the raw height in meters was not specified, height estimation was annotated as: shrub = 2m, small tree = 5m, tree = 10m (Fig. 7.4B). If no plant habit or height was described in the label, then value was scored as NA.
- c) Environmental variable (Vegetation and altitude): When not specified in the label, these values and categories were estimated by locality/coordinates plotted on Google Earth. Vegetation was scored in two categories: rainforest and savannah. All arboreous, humid vegetation was considered rainforest, including: "Restinga" coastal vegetation, Atlantic montane forests and Amazonian rainforests. All mostly shrubby seasonal vegetation was coded as savannah, including: "Cerrado" (in all variations) and "chaco" (dry vegetation from central South America) (see Fig. 7.4B).
- d) Length of filament (D) was measured by choosing the longest, outermost filaments.
- e) Anther gland present was considered when there was an obvious oil gland on the top of the connective and when the majority of anthers presented this gland.

In total, 3652 character states were recorded representing a significant amount of newly available trait data (see Appendix 7.1). 236 entries (c. 5%) were scored as "missing data" (NA), when no suitable material was available. Because most continuous trait analyses do not accept it, missing data was substituted by the mean of that measurement for the whole dataset. This was chosen over other imputation methods (e.g. means of closely related species; means based on similar morphotypes) because it was considered the most impartial.

Figure 7.7: Examples of flower measurements using a Nikon ShuttlePix.Top left rand side: style measurement. Top right hand side: filament measurement. Bottom: longitudinal sections of *Myrcia rubella* bud and general measurements of structures.

7.7 Phylogenetic reconstruction

The Phylogenetic reconstruction used here is based on one nuclear (ITS) and four chloroplast markers (*psbA-trn*H, *trn*Q-*rps*16, *trn*L-*trn*F, *ndh*F) from previously published phylogenies. The molecular matrix is very similar to that of Santos et al. (2017), but duplicate species entries (e.g. *Myrcia mutabilis*) were removed leaving the voucher truest to the type. A dated phylogeny was reconstructed in BEAST (Drummond and Rambaut, 2007), using the pollen-fossil approach and secondary calibration points provided by Chapter 1. The final topology is similar to those of Lucas et al., (2011), Staggemeier et al., (2015) and Santos et al. (2017). The resulting tree contains 146 tips, including 133 ingroups and 13 outgroups and is available in Appendix 7.2. This is the topology used for phylogenetic signal estimation and overall macro-evolutionary dynamics analysis in this study.

7.8 Trait correlations and phylogenetic signal tests

The phenotypic dataset was first used to look for correlations among traits and for phylogenetic signal analyses. All analyses were done in R (R Core Team, 2017). Most flower measurements do not meet parametric criteria (normality and homoscedasticity), so a correlation matrix was built using the Spearman's rank correlation coefficient with function *cor*. For

phylogenetic signal analysis, the final tree was pruned (function *drop.tip*, in package *ape*; Paradis et al., 2004) to exclude outgroups. We used the function *fitContinuous* in the package *geiger* (Harmon et al., 2008) to estimate values of *lambda* for each surrogate. Values of *lambda* closer to 1 indicate stronger phylogenetic signal (Pagel, 1999), i.e. a strong dependence between trait and phylogeny.

7.9 Morphospace and morphological disparity

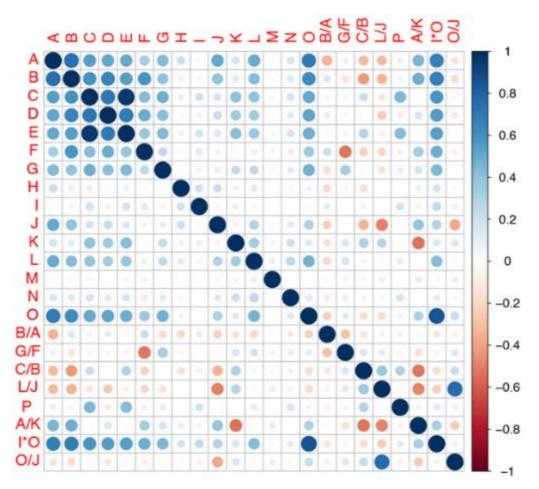
To understand evolution and disparity of the whole floral morphology of *Myrcia*, a morphospace analysis was conducted. This approach gives a visual interpretation of the morphological variability in the sample and also highlights specializations that can be visualized as clusters representing a similar combination of traits (e.g. Perret et al., 2007; Chartier et al., 2014, 2016). A first floral morphospace for *Myrcia* was built in form of a principal component analysis (PCA) using the function *PCA* in package *FactoMineR* (Lê et al. 2008) and included the 16 raw flower measurements (A – P; Table 7.2) for all 165 species in the phenotypic dataset. This analyses only supports continuous data and scores the effect of each measurement on the morphospace distribution. To visualize the distribution of the phylogeny over the PCA plot, the *phylomorphospace* function of the *phytools* package (Revell, 2012) was used.

A principal coordinate analysis (PCoA) was run to include all floral data (i.e. A – P plus presence of oil gland and inflorescence measurements) and provide a total picture of floral diversity in *Myrcia*. The PCoA produces a dissimilarity matrix (i.e. how distant are every pair of species in the morphospace) that can be used to interpret morphological disparity within discrete units. Clusters representing the nine *Myrcia* clades were tested for morphological disparity using a modified version of the function *adonis* from package *vegan* (see Chartier et al., 2017). Morphological disparity was further compared against age and total species diversity per clade. The hypothesis to be tested here is that morphological disparity increases with age and/or species diversity.

A Mantel test (function *mantel* in package *vegan*) was used to compare morphological and phylogenetic pairwise distance matrices between specimens to indicate phylogenetic signal in the total floral morphological evidence. The pairwise distance matrix from the morphological data was acquired using Euclidean distance and the phylogenetic dissimilarity matrix was estimated using the function *cophenetic.phylo* in package *ape* (Paradis et al., 2004).

7.10 Null hypothesis significance tests

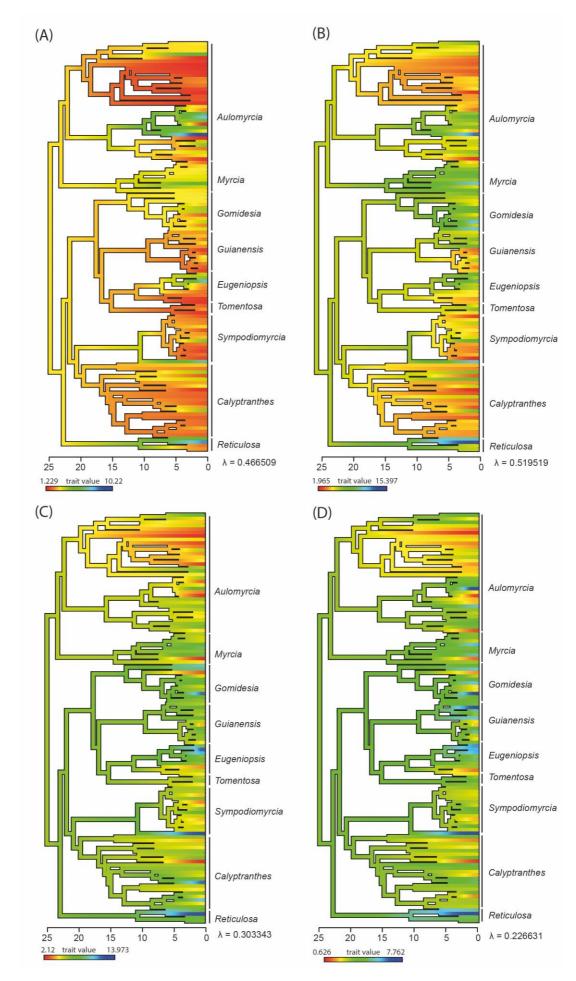
A series of null hypothesis significance tests (NHSTs) were performed to test the relationship between floral traits and environmental variables. The hypothesis to be tested here is that extrinsic selective pressures produce floral phenotypes specialized for distinct habitats. T-tests (function *t.test*) and Kruskal-Wallis rank sum tests (function *kruskal.test*, alternative from one way anova for non-parametric datasets) was used to test nominal data against selected measurements. Manova (function *adonis*, package *vegan*; Oksanen et al., 2007) was used to test the morphospace distributon against the nominal data: vegetation (binary character), altitude (five discrete ordinate categories), floral clustering (binary), floral position (three categories) and anther gland (binary). Pairs of nominal data sources (e.g. presence of oil gland vs. vegetation) were tested using a simple chi2 (function *chisq.test*).


7.11 Analytical methods for interpreting phylogenetic heterogeneity

When analysing the phylogeny of a group of organisms over millions of years, variation in branching pattern and heterogeneity between clade diversity is expected (Rabosky, 2006). Macroevolutionary dynamics fluctuate constantly over time as speciation accelerates (more speciation than extinction) or decelerates (more extinction than speciation). Therefore, analysis of phylogenetic branching patterns allows estimation of points in a phylogeny that have been subject to significant disparity of diversification or extinction rates. Increased availability of phylogenetic tree data has been accompanied by increased statistical power to analyze branch heterogeneity in ultra-metric trees (see summary in TESS vignette, Hohna et al. 2015), although not without controversy (e.g. Moore et al., 2016 to Rabosky's 2014 BAMM). Here three methods are contrasted; a BAMM analysis (v2.5, Rabosky, 2014, et al., 2017) was used to identify significant rate shifts in the tree that could be associated with cryptic key-innovative phenotypic characters highlighted by the multi-trait analysis. Empirical priors were generated based on the pruned Myrcia phylogeny and an estimated total diversity of 700 species (WCSP, 2017). Sampling estimates per clade are based on Lucas et al. (2011) and can be accessed in Table 7.2. TESS (Hohna et al., 2015) was used to estimate changes in diversification and extinction rates over time and to calculate possibility of rate shifts based on marginal likelihood and Bayes factors. For TESS, the original phylogeny had to be rescaled to minimize the effects of clade over representation; tips were randomly pruned from oversampled clades prior to analysis (8 from clade Sympodiomyrcia, 5 from clade Guianensis and 4 from clade Eugeniopsis). RPANDA was used to identify the presence of different macroevolutionary regimes (branching patterns) occurring across the phylogeny.

RESULTS

7.12 Descriptive statistics and phylogenetic signal


Descriptive data analysis shows correlation coefficients between flower measurements, based on a non-parametric Spearmen test (Fig. 7.8). All significant correlations between raw measurements (A - P) are positive, meaning that most structures have a positive relationship of dependence; i.e. an increase/decrease in size of a given flower structure leads to increase/decrease in the size of most other structures. Proportional analysis of structures against their equivalent raw-measurement (e.g. F against G/F) returned expected strong negative correlations. Unpredicted significant negative correlations include: (1) the proportion of receptacle diameter vs. hypanthium depth (A/K) is strongly anti-correlated with proportion of total length vs. total diameter (C/B) and (2) also strongly anti-correlated to relative investment in the staminal ring (L/J); and (3) the proportion between total length vs. total diameter (C/B) and the thickness of the staminal ring. This means that most species have two strategies: 1) long hypanthium tubes with thin staminal rings and stronger disparity between total flower length and total flower diameter or 2) short hypanthium tubes with thicker staminal rings and total flower length on average equal to total flower diameter (for confidence measurements see Appendix 7.3).

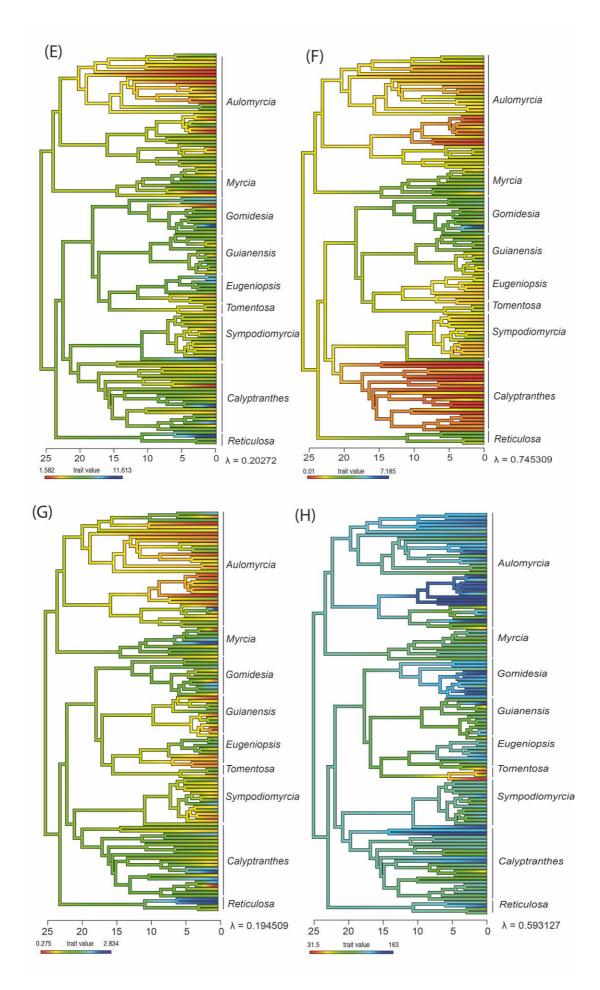
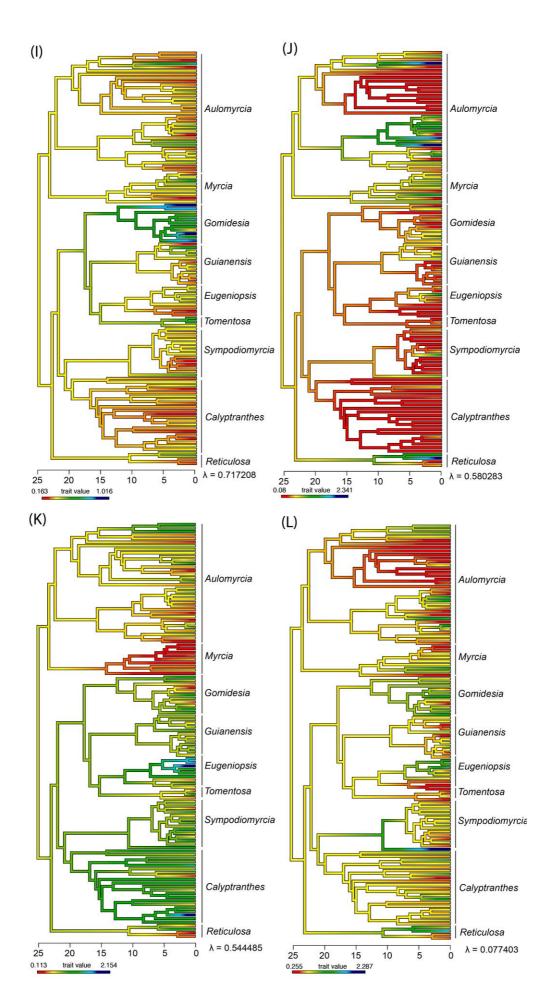
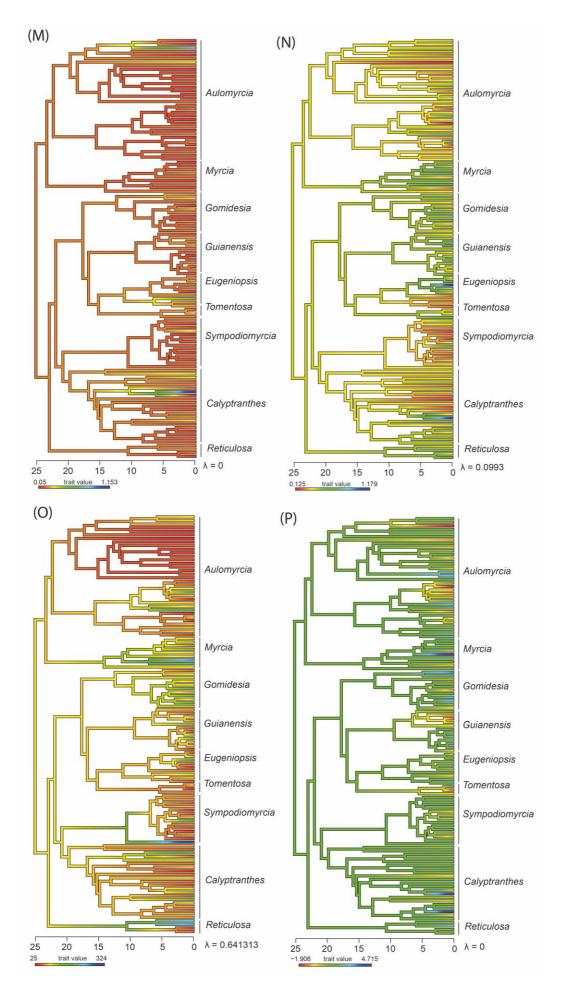
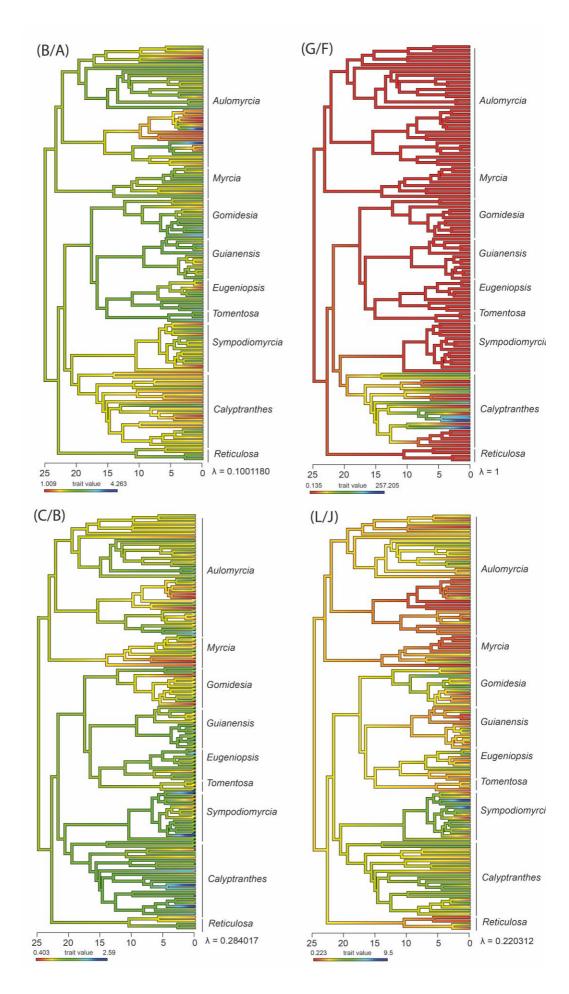
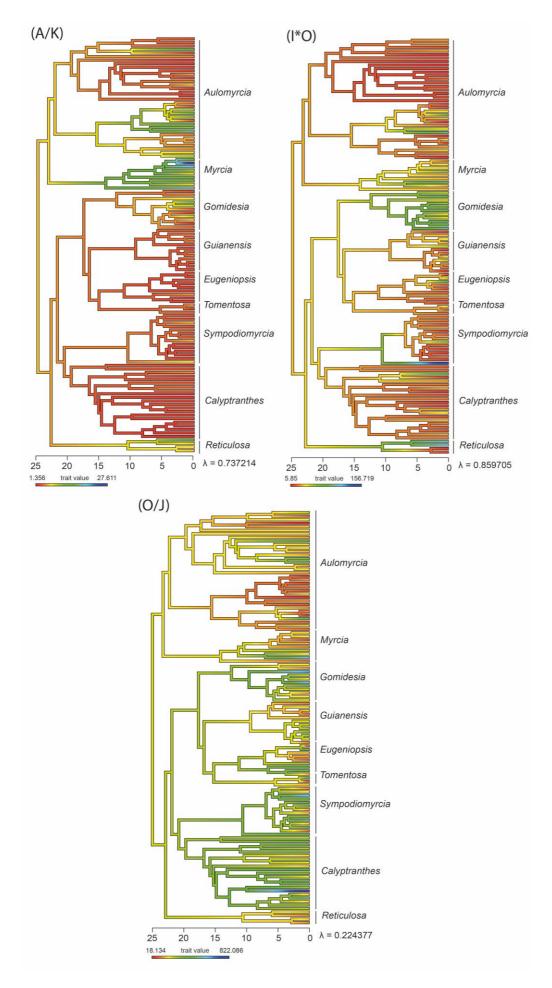


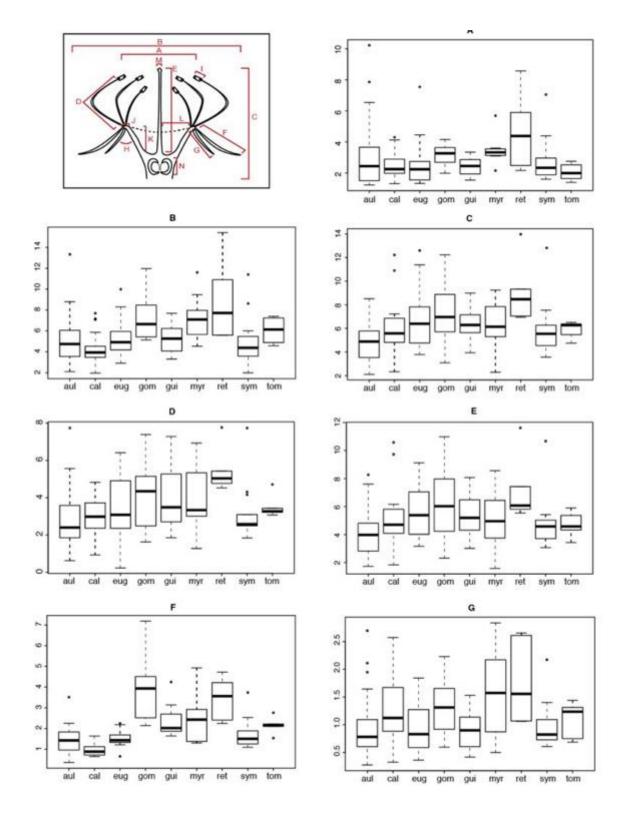
Figure 7.8: Correlations between floral measurements based on a non-parametric Spearmen correlation test. Larger and more colourful dots indicate stronger correlation. Blue: measurements are positively correlated, Red: measurements are anti-correlated. Clear dots or absent dots: measurements are not correlated.

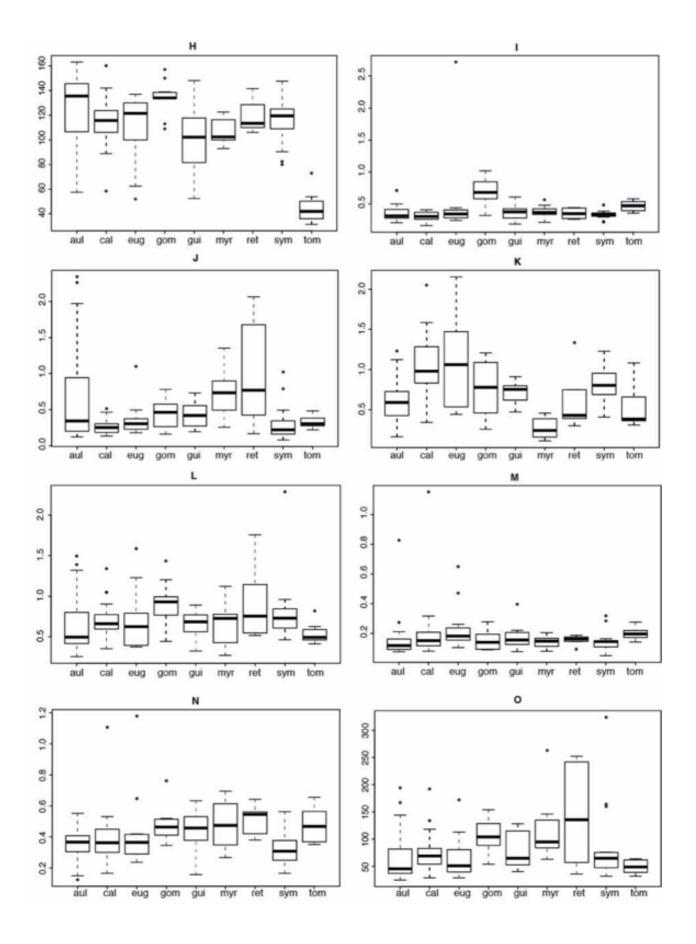

Exploratory analysis of morphometric data in light of the *Myrcia* phylogeny (Figure 7.9) and distribution of measurements per clade (Figure 7.10) show how investment in different floral parts are distributed over the phylogeny. Some tendencies are observed such as little petal investment in contrast with sepal size (G/F) in clade *Calyptranthes*, high investment in male reproductive structures (O*I) in clade *Gomidesia*, high floral total diameter in contrast to hypanthium depth (A/K) in clade *Myrcia* and highly reflexed staminal rings (H) in clade *Tomentosa*. These trends can be observed on boxplots (Figure 7.10) but phylogenetic signal is low for most measurements with the exceptions of F (λ = 0.74), I (λ = 0.71), G/F (λ = 1), I*O (λ = 0.74), A/K (λ = 0.86) (see λ values at the bottom right of each plot in Figure 7.8).


Figure 7.9 (next six pages): Map of continuous characters over *Myrcia* phylogeny (generated by function *contMap*() in package *phytools*). Phylogenetic signal (λ , generated by function *fitContinuous*() in package *geiger*) plotted on the bottom right of each plot. Letters refer to flower measurements and proportions (same as in Figs. 7.2 and 7.8).









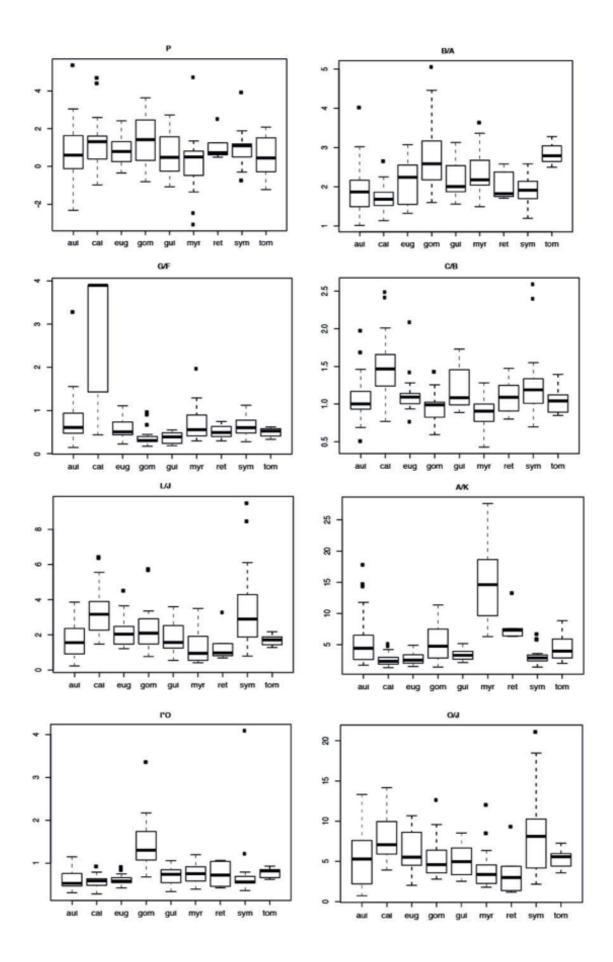
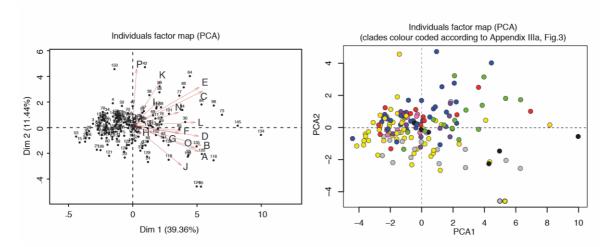


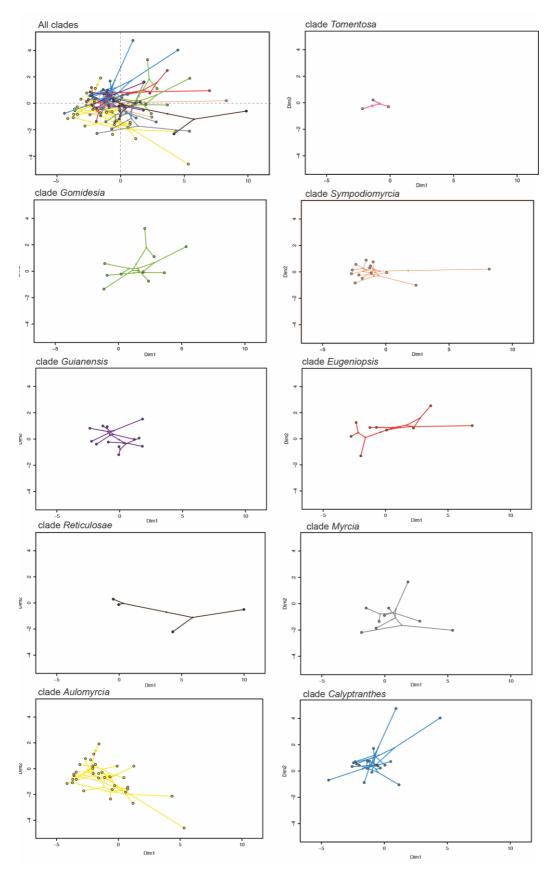
Figure 7.10 (below and next 2 pages): Profile of each floral measurement per clade of *Myrcia*. Letters refer to flower measurements according to flower diagram. aul, clade *Aulomyrcia*; cal, clade *Calyptranthes*; eug, clade *Eugeniopsis*; gom, clade *Gomidesia*; gui, clade *Guianensis*; myr, clade *Myrcia*; ret, clade *Reticulosae*; sym, clade *Sympodiomyrcia*; tom, clade *Tomentosa*.



7.13 Myrcia floral morphospace

Floral disparity as measured by all 16 raw floral measurements (A – P) is distributed in principal component analysis (PCA) morphospace as a cloud of 165 points, each representing a measured specimen (Fig. 7.11; for a large sized plot see Appendix 7.5). Measurements with highest scores and affecting morphospace distribution most, in the first axis are: total flower diameter (B), total flower length (C), and style length (E); in the second and third axes, these are: petal length (F), staminal ring thickness (J), hypanthium tube length (K), distance between style and staminal ring (L) and stigma height relative to level of anthers (a proxy for herkogamy, P). The first three PCA axes explain 59.3% of variance and produce a combined eigen value of 9.4832 (see summary in Table 7.3). 90% of points fall near the center of the morphospace with just a few specimens scattered at the extremities.

Figure 7.11: Myrcia floral morphospace inferred by a PCA analysis. Left hand side:165 specimens (numbers according to Appendix 7.1) and directionality of each flower measurement (red arrows). Right hand side: same PCA, but specimens color coded by clades. Yellow = Aulomyrcia, Blue = Calyptranthes; Gray = Myrcia; Pink = Black = Reticulosae; Pink = Tomentosa; Green = Gomidesia; Orange = Sympodiomyrcia; Purple = Aguava (=Guianensis); red = Eugeniopsis. See also Fig. 7.12.


The PCA, pruned for the 118 species with known phylogenetic position in *Myrcia*, with each clade represented by a different colour is shown in Figure 7.12 (clade by clade phylomorphospace). NPANOVA significance tests show that the area occupied by Section *Aulomyrcia* appears significantly different to that of Sections *Tomentosa*, *Gomidesia* and *Myrcia* and Section *Calyptranthes* is significantly different from Section *Gomidesia*. The remaining 32 clade cluster relationships return non-significant values of p and low F values (See Table 7.4 for values of significance between cluster overlap). These results highlight that floral morphological variance does not differ significantly for most *Myrcia*, a result empirically predicted by the tendency for specimen data points to fall intermixed, near to the centre of the floral morphospace (Figure 7.11).

Flower meassurement	Axis 1 (C1)	Axis 2 (C2)	Axis 3 (C3)
А	10.57883703	5.57009457	6.829751
В	11.33027896	3.27385322	2.805868
С	11.83040254	9.84677286	0.04966035
D	10.5365908	0.91266002	1.172219
E	10.70011584	12.17307578	0.06919969
F	5.65396034	0.23120645	28.39405
G	5.2197359	0.51128639	2.697771
Н	0.91886802	0.37989053	8.211003
I	1.50002122	4.66510365	10.75651
J	5.7769172	13.15372394	1.526045
К	1.87996698	16.73438388	22.44147
L	9.54877882	0.09027983	11.42822
М	0.04938711	0.07352676	0.000549438
N	5.10793243	1.47906462	2.026834
0	9.33018407	4.19040826	1.239258
Р	0.03802274	26.71466924	0.3515909
Eigen value	6.2983	1.830367	1.354694
Variance explained	39.36%	11.44%	8.4668%

Table 7.3: Scores of flower meassurements and eigen values per three first axes in the *Myrcia* morphospace PCA

	ret	cal	sym	myr	gom	tom	gui	eug	aul
ret	<na></na>	3.542	2.115	0.86	1.572	4.376	2.433	1.577	4.957
cal	ns	<na></na>	0.208	4.269	6.632	8.978	1.316	0.276	3.829
sym	ns	ns	<na></na>	3.029	3.986	5.597	0.987	-0.072	1.223
myr	ns	ns	ns	<na></na>	3.132	8.879	2.322	2.447	9.151
gom	ns	*	ns	ns	<na></na>	18.253	5.485	3.615	8.627
tom	ns	ns	ns	ns	ns	<na></na>	4.779	4.569	10.294
gui	ns	ns	ns	ns	ns	ns	<na></na>	0.306	5.101
eug	ns	<na></na>	1.767						
aul	ns	ns	ns	*	*	*	ns	ns	NA

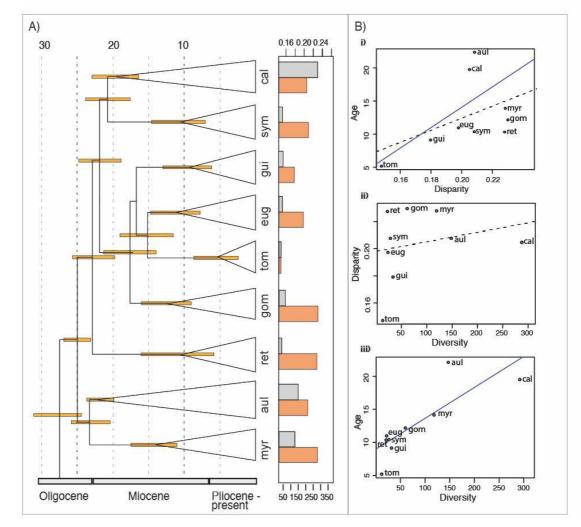
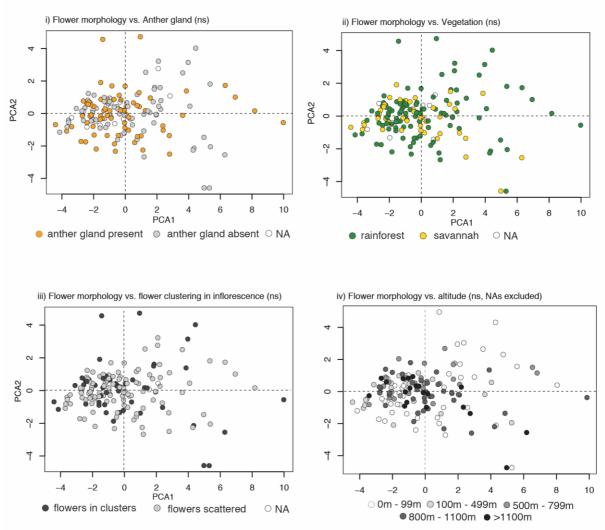

Table 7.4: Results from NPANOVA showing degree of dissimilarity between clades in the morphospace.Asterisks mark those with p<0.01 (significantly distinct clades).

Figure 7.12: *Myrcia* phylomorphospace showing 118 data points that correspond to the phylogeny terminals. Plots show how each individual clade is distributed in the morphospace. Colors indicate distinct clades: Yellow = Aulomyrcia; Blue = Calyptranthes; Gray = Myrcia; Purple = Guianensis; Red = Eugeniopsis; Orange = Sympodiomyrcia; Black = Reticulosae; Pink = Tomentosa.

7.14 Phenotypic disparity and species diversity

Disparity analysis estimates mean pairwise distances between specimen points in the morphospace of a given clade (Fig.7.13A, orange bar). These distances are plotted against total species diversity for that clade (Fig.7.13A, gray bar) and correlated with mean clade age. Results show that disparity is not significantly correlated with species diversity (Fig.7.13Bi) or age (Fig.7.13Bii). However, when the two oldest sectional clades (Sections *Aulomyrcia* and *Calyptranthes*) are excluded from the analysis, correlated with clade age, meaning that the older the clade, the more species-rich it is (Fig.7.13Bii) and finally, contrast between pairwise distance morphological and phylogenetic dissimilarity matrices shows no significant correlation (Mantel statistic r = 0.01496; Significance = 0.3249), implying that overall floral morphological disparity is not correlated with phylogenetic distance.

Figure 7.13: Relationships between clade diversity, age and morphological disparity in *Myrcia*. (A) *Myrcia* dated phylogeny plotted against estimates of disparity (orange bars) and species richness (gray bars). (B) Linear regressions contrasting (i) morphological disparity and species diversity (r2=-0.07906, p=0.541), (ii) Morphological disparity and age (p=0.207119, r2=0.1044 for all dataset (dashed line); p<0.001 when Sections *Calyptranthes* and *Aulomyrcia* are excluded (blue line)), and (iii) Clade age and species diversity (p<0.01, r2=0.63).


7.15 Floral specializations and environmental variables (NHSTs)

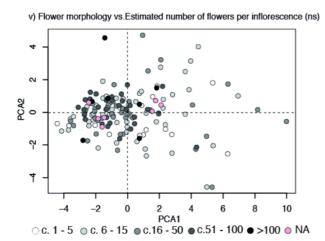

Results of NHSTs correlating overall floral traits, inflorescence measurements and environmental variables are almost all statistically unsupported (Table 7.5 and Fig. 7.14). The only significant correlations are those between flower size and inflorescence length (flower size increases with mean length of main inflorescence axis), flower size and proportion of inflorescence investment (flower size increases with mean inflorescence length divided by mean plant height) and proportion of inflorescence investment and vegetation type (three times greater investment in savanna biomes relative to rainforest). Summary is given in Table 7.5 below and Figure 7.14 (following pages).

Table 7.5 (below): Relationships between selected traits, selected trait proportions and/or environmental variables based on NHSTs (NPMANOVA, Kruskal-Wallis tests, t tests and chi2 tests). Significant relationships are in bold. Roman numerals refer to plots in Figure 7.14.

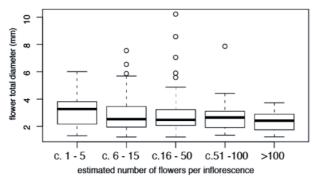
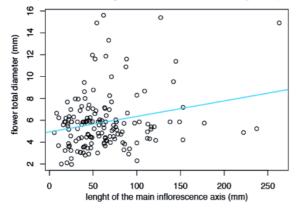
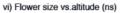
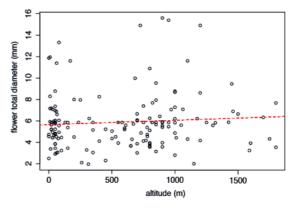
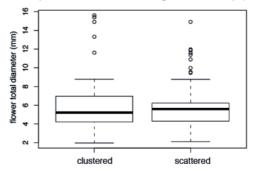

	Correlation	F	р	chi2	r2	
i	floral morphology vs. anther gland	0.121	0.9171			ns
ii	floral morphology vs. vegetation	1.008	0.36			ns
iii	floral morphology vs.					
	inflorescence clustering	0.577	0.5946			ns
iv	floral morphology vs. altitude	1.3874	0.31887			ns
v	floral morphology vs. flower no.	1.1938	0.44947			ns
vi	B vs. altitude		0.08219	8.2694		ns
vii	B vs. flower no.		0.1574	6.6189		ns
viii	B vs. inflo clustering		0.6156	0.25208		ns
ix	B vs. inflo length		0.00327		0.04773	*
х	B vs. vegetation		0.8889	0.019521		ns
xi	B vs. inflo invest		0.00592		0.0558	*
xii	I vs. anther gland		0.5118	0.43046		ns
xiii	O vs. anther gland		0.6053	0.26703		ns
xiv	anther gland vs. vegetation		0.4373	0.6034		ns
XV	anther gland vs. altitude		0.7406	0.10958		ns
xvi	flower no. vs. vegetation		0.1978	1.6586		ns
xvii	flower no. vs. altitude		0.659	-0.006987		ns
xviii	Inflorescence investment -					
	vegetation		0.000344	12.813		**
	mean savannah =					
	0.04475419					
	mean forest = 0.01422814					
xix	plant height/inflo length - altitude		0.8525	1.3521		ns

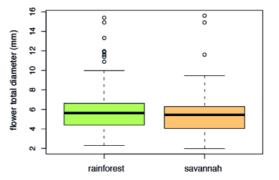
Figure 7.14 (below and next three pages): Null hypothesis significance test plots for correlations between *Myrcia* floral morphology and environmental variables. Numbers (i – xix) are according to Table 7.5. "ns" = correlation is non-significate.

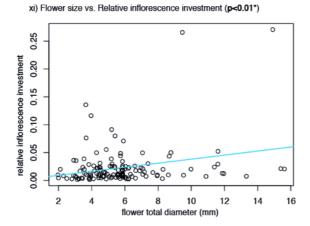




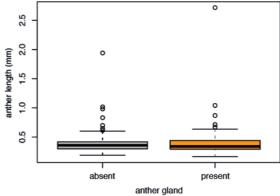



ix) Flower size vs. lenght of the main inflorescence axis (p<0.01*)

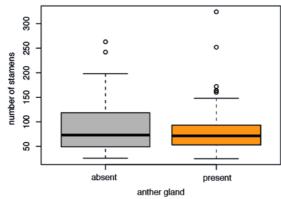


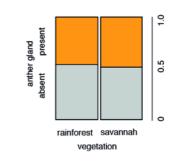


viii) Flower size vs. flower clustering in inflorescence (ns)

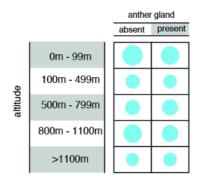


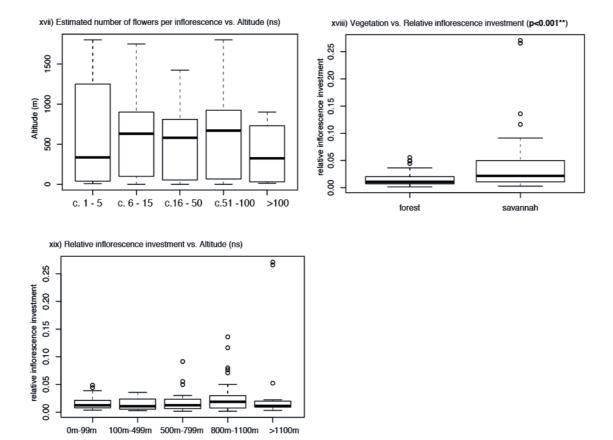
x) Flower size vs. vegetation (ns)





xiii) Number of stamens vs. prensence/absence of anther gland (ns)

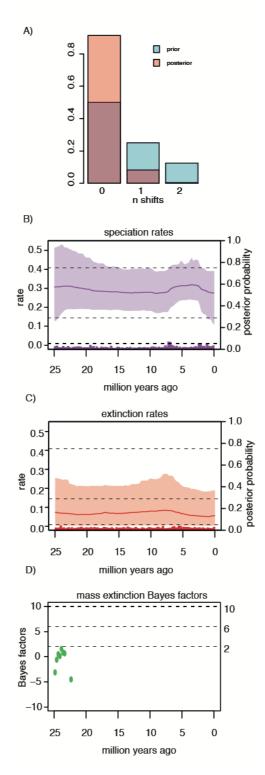

xiv) Anther gland vs. Vegetation (ns)



xvi) Estimated number of flowers per inflorescence vs. Vegetation (ns)

		vege	tation
		rainforest	savannah
vers	c. 1 - 5	•	•
estimated number of flowers per inflorescence	c. 6 - 15		•
	c.16 - 50		•
	c.51 - 100	•	•
estin	>100	•	•

xv) Altitude vs. prensence/absence of anther gland (chi2 plot, ns)



7.16 Macro-evolutionary dynamics

Despite apparent heterogeneity in diversity between infra-generic clades of *Myrcia*, all three macro-evolutionary dynamics analyses return similar results indicating no significant diversification rate shifts. BAMM estimates of diversification rate shifts in relation to priors report a strong probability that there are no shifts in the phylogeny (0 shifts, Fig.7.15A). This is corroborated by random shift configurations that show no consistent pattern of acceleration or deceleration of diversification rates (Appendix 7.4, Plot 1). A cohort plot comparing similarity of macro-evolutionary regimes between pairs of phylogeny tips, indicates the strongly homogeneous dynamics of the phylogeny (Appendix 7.4, Plot 2). Some heterogeneity is observed in extinction rate, however, these are not enough to change the general trend of net diversification (speciation minus extinction). RPANDA analysis reports no clear eigengap, providing no evidence of more than one macro-evolutionary regime in the dataset (Appendix 7.4, Plot 3). TESS results show no significant rate shifts (Fig. 7.15B-D); Episodic Birth-Death and Constant Birth-Death are the models that best fits the data, with very similar Bayes factors (49.41 and 44.67, respectively) (see more info in Appendix 7.4, Plot 4).

Results suggest constant and homogeneous accumulation of species diversity throughout the genus. Disparity in species diversity between sections/clades is likely due to the relative older age of some clades over others (based on crown node ages; Fig.7.13Biii). Older clades are therefore more diverse as they have had longer to accumulate species, not due to faster diversification rates. In this way, the highly conservative floral morphology of *Myrcia*, with overlapping clades in morphospace, no obvious environmental specialization and a remarkably

homogeneous phylogenetic framework, provide multiple sources of evidence of a stable and durable evolutionary process.

Figure 7.15 – Macroevolutionary homogeneity in *Myrcia*. (A) Posterior probabilities regarding number of shifts in diversification rates in relation to the analysis prior, showing high posterior probability for 0 shifts in BAMM. (B - D) TESS results showing constant (B) speciation and (C) extinction rates and (D) low probability of mass extinction, meaning low probability for species turnover.

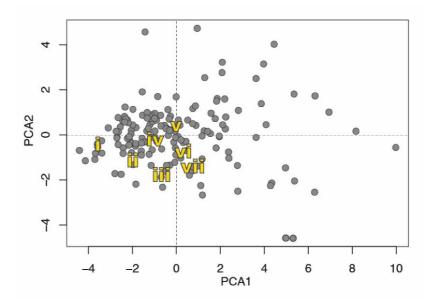
DISCUSSION

7.17 Innovation is not (always) the key: centripetal selection of floral phenotypes

Innovative phenotypes are regarded as essential drivers in altering the diversification rates of a lineage through time. Identification of novelties that accelerate speciation, so called "keyinnovations" has been central to evolutionary study in the last two decades (e.g. Hunter, 1998; Blount et al., 2008; Rabosky, 2014). In addition to recognition of key innovative traits, there is a tendency to assume that highly diverse groups with homogeneous phenotypes result from recent explosive speciation events but that there has not yet been time for clear phenotypic disparity (Stebbins, 1974). Both assumptions are particularly applied to tropical environments where excess ecological opportunity favours strong selective pressure for constant trait diversification and species turnover (Koleff et al., 2003).

The stable and durable evolutionary system described here in one of the most diverse and abundant tree genera in the Neotropics challenges both these assumptions. Phenotypic traits in *Myrcia* appear to have been homogeneous for almost 30 million years. The overall trend for less morphological disparity in younger clades is not respected by the two oldest clades suggesting eventual morphological stabilization. This pattern may be linked to the co-occurrence of the vast majority of species in the same area of the floral morphospace. Non-correlation of phylogenetic and morphological distances means that even distantly related species are selected towards a similar conservative, non-extreme phenotype with continuous morphological intermediates.

A lack of clustering in the morphospace, associated with floral specialization in other groups (e.g. Perret et al., 2007) combined with low levels of extreme scattering is interpreted as centripetal selection (Eldredge, 1984). Centripetal selection leads to extinction of very distinct floral morphologies favouring similarity over extremes under selective inertia (Stebbins, 1974). Further evidence that extreme phenotypes are selected against, is that some common and widespread *Myrcia* (e.g. *M. tomentosa, M. guianensis, M. splendens*; WCSP, 2017) emerge at the centre of the morphospace, whilst rarer or phylogenetically more isolated species (*Myrcia antonia, M. insigniflora*) are more frequently outliers. This may indicate that extreme phenotypes are more prone to extinction in the long term.

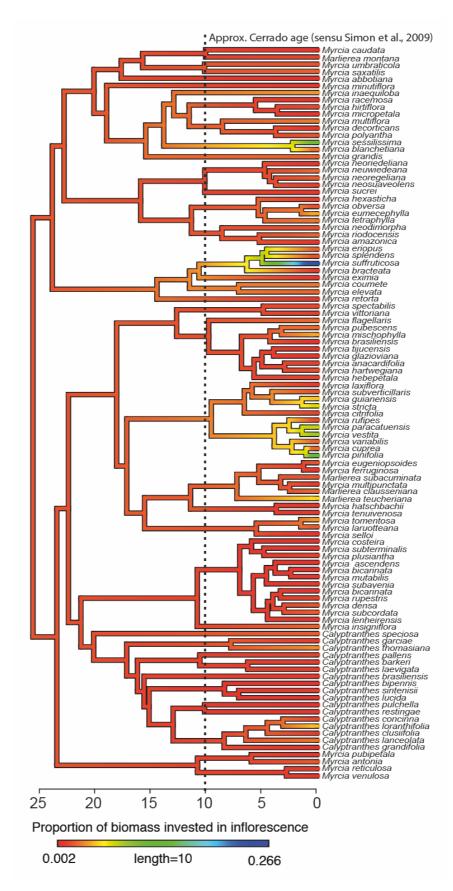

7.18 Walking in circles at the top of an advantageous adaptive peak

Such tendency to maintain highly stable floral phenotypes over long periods is observable in other large genera of Neotropical woody angiosperms (e.g. *Solanum*, Symon, 1979; Malpighiaceae, Anderson, 1979). It has been suggested that the overall homogeneous morphologies exhibited by these groups are examples of very established adaptive peaks (Renner, 1989; for *Miconia*). *Myrcia* flowers do not offer nectar but rely on bees as the sole functional pollinator (Willmer, 2011). In these cases, the link between homogenous flowers and pollen foraging bees is so advantageous that distinct strategies rarely appear (Renner, 1989). In fact, evidence from reproductive biology shows that the pollinators and pollination mode of *Myrcia* is similar throughout its geographic and phylogenetic range (see Fig.7.16 and Table 7.6). The bees responsible are mostly medium to large bodied and solitary with poliletic (generalist) female individuals that gather large quantities of pollen to feed their larvae at peak flowering time in *Myrcia* (Staggemeier et al., 2010).

This favourable bee-*Myrcia* relationship may have existed since the origin of both groups. *Myrcia* age and areas of early-diversification events on South American plateaus (Santos et al., 2017) correspond well to those of their most important bee pollinators (e.g. *Melipona*; Ramirez et al., 2009). This relationship may explain why, despite being a relatively old lineage, floral traits remain similar. Extreme phenotypes are selected against as they have lower fitness in a stable ecological system. Discreet specializations in floral morphology occur (See e.g. distribution of floral-organ size per clade in Figs. 7.9 and 7.10), but these do not destabilize the system or influence macro-evolutionary dynamics in *Myrcia*.

	Species	Clade	Pollinator group**	Biome
			Apidae: Bombinae (Bombus morio)	
			and Meliponinae (Melipona	Atlantic
i	Myrcia racemosa	Aulomyrcia	rufiventris, Melipona bicolor)	Rainforest
ii	Myrcia amazonica	Aulomyrcia	Apidae: Meliponinae	NA
			Apidae: Bombinae and	
			Meliponinae; Anthophoridae:	Atlantic
iii	Myrcia brasiliensis	Gomidesia	Xylocopinae	Rainforest
			Apidae: Meliponinae;	Amazon
iv	Myrcia paivae	Myrcia	Anthophoridae: Anthophorinae	Rainforest
			Apidae: Bombinae; Anthophoridae:	
			Xylocopinae	Cerrado,
			Apidae: Meliponinae; Megachilidae:	Atlantic
v	Myrcia tomentosa	Tomentosa	Megachilinae	Rainforest
			Apidae: Bombinae and	
			Meliponinae; Anthophoridae:	Atlantic
vi	Myrcia multiflora	Aulomyrcia	Xylocopinae; Halictidae: Halictinae	Rainforest
			Apidae: Meliponinae; Halictidae:	
vii	Myrcia splendens	Myrcia	Halictinae	Cerrado

Table 7.6: Effective pollinators of seven species of *Myrcia* and their biomes (according to review of Gressler et al., 2006). Roman numerals refer to the Figure 7.16.


Figure 7.16: *Myrcia* floral morphospace with roman numeral indicating species with reproductive biology information available (see Table 7.6).

7.19 The dry diagonal did not destabilize the system

Evidence that *Myrcia* floral evolution is circular around a very stable adaptive peak is further supported by its lack of environmental specializations. Similar approaches showing positive correlations between phenotypic traits and abiotic factors are common (e.g. Galen, 1989). In *Myrcia* however, floral traits, possibly advantageous in a given ecosystem (e.g. number of stamens, anther oil gland, and flower size) do not correlate with environmental factors (e.g. altitude and vegetation). The only positive correlation returned, between relative inflorescence investment and vegetation type, may be linked to the origin of the dry-diagonal in South America (Werneck, 2011). As a widespread Neotropical group with a rainforest origin (Santos et al. 2017), *Myrcia* evolution was punctuated by the arrival of cerrado vegetation c. 10mya (Simon et al. 2009). Clear evidence of this is provided by the proportional increase in investment in the inflorescence visible during this period (Fig.7.17). This corroborates once again how floral and inflorescence phenotypes are constrained in *Myrcia* with the appearance of an entirely new and significantly different biome modifying plant habit but not floral phenotype.

7.20 Implications for macroevolution dynamics of tropical lineages

Richardson et al. (2001) link Neotropical rainforest tree biodiversity to recent explosive speciation events (i.e. the cradle hypothesis). The counter-argument is that high tropical rainforest diversity can be better explained by a long process of low extinction rates (i.e. the museum hypothesis). Since then, the relative influence of these hypothetical processes and the extent to which they explain high diversity of tropical rainforests has been hotly debated (e.g. Eiserhardt et al., 2017). In this context, the durable, stable phenotype and conservative macroevolutionary dynamics of *Myrcia* better support the museum hypothesis. This contrasts with the premature speculation Lucas and Bunger (2015) who assumed significant diversification rate shifts would be found in *Myrcia*.

Figure 7.17: Proportional inflorescence investment in *Myrcia* phylogeny. Lineages with high proportional investment in inflorescence appear in the last 10 million years, matching the origin of the cerrado.

The tendency to polarise processes that have driven evolutionary biology in different biomes is problematic as these processes are affected by high levels of stochasticity (Lenormand et al., 2009). *Myrcia* co-occur and share a similar evolutionary history with lineages that are adhere variously with the cradle and museum hypotheses (Lucas and Bunger, 2015); results presented here emphasize this complex spectrum of eco-evolutionary systems present in tropical forests. Care must be taken before solely relating any given biome to cradle and museum patterns but should also take into account the eco-evolutionary systems of each lineage (Buckley and Jetz, 2008; for vertebrates). However, until the role of a lineage in its niche is completed known, analysing its ecological limits (phenotypic trends and functional traits) in conjunction with its evolutionary history (phylogenetic framework and branching pattern), assumptions regarding the evolutionary dynamics of a lineage are dangerous.

CONCLUSION

The origins of high species diversity in the absence of phenotypic change and maintenance of long lasting adaptive peaks are important elements in the evolution of tropical diversity. The conclusions of this study are 1) stable ecological-evolutionary systems may last for tens of millions of years even in environments full of ecological opportunities; 2) such stability keeps speciation rates constant and extinction rates low, leading to slow species accumulation over time; and 3) homogeneous morphology in largely diverse groups is not necessarily a result of explosive recent diversification events. In the case of *Myrcia*, the lack of phenotypic innovations may have been key to its success, building its remarkable species richness slowly but surely.

APPENDIX

Appendix 7.1: Voucher list and *Myrcia* floral morphological data. "phylo": species is included in the phylogenetic analysis (y = yes, n = no); "n^o": refers to same numbers used in Appendix 7.5. Names according to WCSP (2017) and Lucas et al. 2016 (for clade *Aulomyrcia*).

phylo	voucher	locallity	nº	species	clade
у	D.H. Daris 186	Guiana	1	Marlierea montana	Aulomyrcia
у	E.J. Lucas 1108	Dominican Republic	2	Myrcia abbotiana	Aulomyrcia
у	J.J. de Granville 14303	French Guiana	3	Myrcia amazonica	Aulomyrcia
у	E. Melo 1362	Brazil (BA)	4	Myrcia blanchetiana	Aulomyrcia
у	W. Thomas 3864	Brazil (MT)	5	Myrcia caudata	Aulomyrcia
у	M.L.C. Neves 4	Brazil (BA)	6	Myrcia decorticans	Aulomyrcia
у	D.A. Folli 6414	Brazil (ES)	7	Myrcia eumecephylla	Aulomyrcia
у	C.F.P. von Martius 59	Brazil	8	Myrcia excoriata	Aulomyrcia
у	P. Acevedo-Rodriguez 8251	Brazil (AM)	9	Myrcia grandis	Aulomyrcia
y	S.V.A. Pessoa 1217	Brazil (RJ)	10	Myrcia hexasticha	Aulomyrcia
y	R.M. Harley 17943	Brazil (BA)	11	Myrcia hirtiflora	Aulomyrcia
у	Forest Department of				
у	British Guiana 2813	Guiana	12	Myrcia inaequiloba	Aulomyrcia
у	A. Ducke 291	Brazil (AM)	13	Myrcia mcvaughii	Aulomyrcia
у	J.L. da Paixão 289	Brazil (BA)	14	Myrcia micropetala	Aulomyrcia
у	P.A.C.I. Assunção 759	Brazil (AM)	15	Myrcia minutiflora	Aulomyrcia
у	M.F. Simon 219	Brazil (CE)	16	Myrcia multiflora	Aulomyrcia
у	R.M. Harley 27748	Brazil (BA)	17	Myrcia neobscura	Aulomyrcia
у	D.A. Folli 5747	Brazil (ES)	18	Myrcia neodimorpha	Aulomyrcia
у	L. Riedel 197	Brazil (RJ)	19	Myrcia neograbla	Aulomyrcia
у	K. Matsumoto 814	Brazil (ES)	20	Myrcia neoregeliana	Aulomyrcia
у	K. Matsumoto 770	Brazil (SP)	21	Myrcia neoriedeliana	Aulomyrcia
у	M.F. Santos 791	Brazil (RJ)	22	Myrcia neosuaveolens	Aulomyrcia
у	J.E.Q. Faria 6303	Brazil (SP)	23	Myrcia neotomentosa	Aulomyrcia
у	K. Matsumoto 815	Brazil (ES)	24	Myrcia neuwiedeana	Aulomyrcia
у	S.A. Mori 14129	Brazil (BA)	25	Myrcia obversa	Aulomyrcia
у	E. Ule. 8672	Brazil (RR)	26	Myrcia platyclada	Aulomyrcia
у	E. Melo 4260	Brazil (BA)	27	Myrcia polyantha	Aulomyrcia
у	Glaziou 11996	Brazil (RJ)	28	Myrcia racemosa 1	Aulomyrcia
n	H.C. de Lima 5868	Brazil (RJ)	29	Myrcia racemosa 2	Aulomyrcia
у	D. Sucre 7378	Brazil (MG)	30	Myrcia racemosa 3	Aulomyrcia
у	D.A. Folli 3197	Brazil (ES)	31	Myrcia riodocensis	Aulomyrcia
n	D.F. Lima 495	Brazil (GO)	32	Myrcia rubella	Aulomyrcia
у	J. Molino 2161	French Guiana	33	Myrcia saxatilis	Aulomyrcia
у	M.F. Santos 641	Brazil (MG)	34	Myrcia sessilisima	Aulomyrcia
y	S.A. Mori 13030	Brazil (BA)	35	Myrcia sucrei	Aulomyrcia
y	V.G. Staggemeier 926	Brazil (BA)	36	Myrcia tetraphylla	Aulomyrcia
y	T.N.C. Vasconcelos 311	Brazil (AM)	37	Myrcia umbraticola	Aulomyrcia
n	E.J.Lucas 221	Brazil (RJ)	38	Calyptranthes aromatica	Calyptranthes

1		Demining			
у	T. Clase 7417	Dominican Republic	39	Calyptranthes barkeri	Calyptranthes
у	J.Y. Tamashiro 10537	Brazil (SP)	40	Calyptranthes bipennis	Calyptranthes
у	J.E.Q. Faria 4244	Brazil (ES)	41	Calyptranthes brasiliensis	Calyptranthes
у	S.A. Mori 9301	Brazil (BA)	42	Calyptranthes clusiifolia	Calyptranthes
у	O. Handro. sn	Brazil (SP)	43	Calyptranthes concinna	Calyptranthes
у	E.L. Ekman 13896	Dominican Republic	44	Calyptranthes eriocephala	Calyptranthes
	T.A.W. Davis 2237	Guiana	45	Calyptranthes fasciculata	Calyptranthes
у		Dominican			
у	A.C. Araujo 1802	Republic	46	Calyptranthes garciae Calyptranthes	Calyptranthes
n	G.G. Hatschbach 20899	Brazil (PR)	47	grandiflora 1	Calyptranthes
n	P.S.S. Ferreira 2	Brazil (SP)	48	Calyptranthes grandiflora 2	Calyptranthes
у	R.M. Harley 2655	Brazil (BA)	49	Calyptranthes grandiflora 3	Calyptranthes
				Calyptranthes grandifolia	
у	O. Handro s.n.	Brazil (SP)	50	4 Calyptranthes	Calyptranthes
n	Hatschbachii 13142	Brazil (PR)	51	hatchbachii	Calyptranthes
		BVI Gorda Peak National			
у	M. Hamilton 1	Park Dominican	52	Calyptranthes kiaerskovii	Calyptranthes
у	T. Clase 7475	Republic	53	Calyptranthes laevigata	Calyptranthes
у	L.A. Mattos-Silva 492	Brazil (BA)	54	Calyptranthes lanceolata	Calyptranthes
n	L. Kollman 1631	Brazil (ES)	55	Calyptranthes langsdrofii	Calyptranthes
у	A.C. Araujo 1827	Brazil (MG)	56	Calyptranthes Ioranthifolia	Calyptranthes
у	B. Maguire 24300	Suriname	57	Calyptranthes lucida	Calyptranthes
n	D.S.Farias 120	Brazil (RJ)	58	Calyptranthes martiusiana	Calyptranthes
у	T.N.C. Vasconcelos 534	Costa Rica	59	Calyptranthes pallens	Calyptranthes
у	L. Kollmann 1823	Brazil (ES)	60	Calyptranthes punchella	Calyptranthes
у	E.J. Lucas 1087	Brazil (BA)	61	Calyptranthes restigae	Calyptranthes
у	A.C. Araujo 1785	Dominican Republic	62	Calyptranthes sintenisii	Calyptranthes
у	M.J. Jansen-Jacobs 6568	Suriname	63	Calyptranthes speciosae	Calyptranthes
у	R. Spruce 1551	Brazil (AM)	64	Calyptranthes spruceana	Calyptranthes
n	G. Hatschbachii 20886	Brazil (PR)	65	Calyptranthes strigipes	Calyptranthes
у	M. Hamilton 2	British Virgin islands	66	Calyptranthes thomasiana	Calyptranthes
n	Sellow sn	Brazil (SP)	67	Calyptranthes variabilis	Calyptranthes
n	E Nic Lughada 226	Brazil (MG)	68	Calyptranthes wiedgreniana	Calyptranthes
n	P. Wilson 8401	Bahamas	69	Calyptranthes zusygium	Calyptranthes
y	J.R. Pirani CFCR13269	Brazil (MG)	70	Marlierea clausseniana 1	Eugeniopsis
y	S.A. Mori 11027	Brazil (BA)	71	Marlierea clausseniana 2	Eugeniopsis
у	T.B. Cavalcante SCFCR 8428	Brazil (MG)	72	Marlierea clausseniana 3	Eugeniopsis
y y	E.J. Lucas 225	Brazil (RJ)	73	Marlierea subacuminata	Eugeniopsis
y y	J.M.A. Braga 2916	Brazil (RJ)	74	Marlierea tenuivenosa	Eugeniopsis
	¥	· · · · ·			
y	E.J. Lucas 673	Brazil (MG)	75	Marlierea teuscheriana	Eugeniopsis

V	P.R. Reitz 1601	Brazil (SC)	77	Murcia ferruginosa	Fugenionsis
у		Brazil (SC)		Myrcia ferruginosa Myrcia hatschbachii	Eugeniopsis
у	G.G. Hatschbach 20475		78		Eugeniopsis
У	W. Ganev 1209	Brazil (BA)	79	Myrcia multipuncatata	Eugeniopsis
у	K. Fiebrig 6318	Paraguay	80	Myrcia oblongata	Eugeniopsis
у	V.G. Sttagemeier 907	Brazil (ES)	81	Myrcia sp.	Eugeniopsis
у	E.J. Lucas 149	Brazil (PR)	82	Myrcia tenuivenosa 1	Eugeniopsis
у	G.G. Hatschbach 22470	Brazil (PR)	83	Myrcia tenuivenosa 2	Eugeniopsis
у	P.R. Reitz 6270	Brazil (SC)	84	Myrcia anacardifolia	Gomidesia
у	G.G. Hatschbach 23438	Brazil (PR)	85	Myrcia brasiliensis	Gomidesia
n	P. Fiaschi 3458	Brazil (ES)	86	Myrcia cerqueira	Gomidesia
n	H.S. Irwin 20640	Brazil (MG)	87	Myrcia eriocalyx	Gomidesia
n	E.P. Heringer 14897	Brazil (DF)	88	Myrcia fenzliana	Gomidesia
у	I.R. Costa 515	Brazil (SP)	89	Myrcia flagellaris	Gomidesia
у	M. Nadruz 1007	Brazil (RJ)	90	Myrcia glazioviana	Gomidesia
у	C.B. Costa 195	Brazil (SP)	91	Myrcia hartwegiana 1	Gomidesia
у	J.C. Lindeman 1970	Brazil (PR)	92	Myrcia hartwegiana 2	Gomidesia
у	E.J. Lucas 64	Brazil (SP)	93	Myrcia hebepetala	Gomidesia
n	R.M. Harley 19236	Brazil (BA)	94	Myrcia ilheoensis	Gomidesia
у	W. Ganev 3097	Brazil (BA)	95	Myrcia mischophylla	Gomidesia
n	J.R. Pirani 540	Brazil (SP)	96	Myrcia palustris	Gomidesia
у	M.F. Santos 632	Brazil (MG)	97	Myrcia pubescens	Gomidesia
n	W. Boone 1315	Brazil (ES)	98	Myrcia ruschii	Gomidesia
у	H.F. Leitāo-Filho 34735	Brazil (SP)	99	Myrcia spectabilis	Gomidesia
у	J.C. Lindeman 13573	Brazil (PR)	100	Myrcia tijucensis	Gomidesia
у	D.A. Folli 1069	Brazil (ES)	101	Myrcia vittoriana	Gomidesia
у	Forest Department of British Guiana 2785	Guiana	102	Myrcia citrifolia	Guianensis
у	H.S. Irwin 5039	Brazil (PA)	103	Myrcia cuprea	Guianensis
у	B. Stannard CFCR6649	Brazil (MG)	104	Myrcia guianensis 1	Guianensis
y	E.J. Lucas 136	Brazil (PR)	105	Myrcia guianensis 2	Guianensis
у	A. Amorim 7130	Brazil (ES)	106	Myrcia laxiflora	Guianensis
у	L. Riedel 2493	Brazil (MG)	107	Myrcia paracatuensis	Guianensis
у	Glaziou 21129	Brazil (GO)	108	Myrcia pinifolia	Guianensis
y	Sandwith 1348	Guiana	109	Myrcia rotundata	Guianensis
y	G.G. Hatschbach 34709	Brazil (MT)	110	Myrcia rufipes	Guianensis
n	L.M.Borges 1060	GO Brazil	111	Myrcia sp.	Guianensis
y	E.P. Heringer 8459	Brazil (DF)	112	Myrcia stricta	Guianensis
y	E. NicLughada 225	Brazil (MG)	113	Myrcia subverticillaris	Guianensis
y	I.R. Costa 456	Brazil (MG)	114	Myrcia variabilis	Guianensis
y	S.A. Mori 16789	Brazil (MT)	115	Myrcia vestita	Guianensis
y	D.F. Lima 438	Brazil (BA)	116	Myrcia anceps	Myrcia
y	M.J. Jansen-Jocobs 1822	Guyana	117	Myrcia bracteata	Myrcia
n	E. P. Heringer 2539	Brazil (DF)	118	Myrcia capitata	Myrcia
n	T.N.C. Vasconcelos 274	Brazil (GO)	119	Myrcia cardiaca	Myrcia
	E.J. Lucas 107	French Guiana	120	Myrcia coumeta	Myrcia
у	L.J. LUGAS 107		252	พมาเมล เป็นเทยเล	iviyicia

у	G.T. Prance 3228	Brazil (AM)	121	Myrcia elevata	Myrcia
y	J. Ball s.n	Brazil (RJ)	122	Myrcia eriopus	Myrcia
y	L. P. Queiroz 4159	Brazil (BA)	123	Myrcia eximia	Myrcia
n	H.S.Irwin 8185	Brazil (DF)	124	Myrcia federalis	Myrcia
n	M.A.D.Souza 182	Brazil (AM)	125	Myrcia fenestrata	Myrcia
n	D Sucre 11361	Brazil (RJ)	126	Myrcia ovata	Myrcia
n	Prance 3668	Brazil (AM)	127	Myrcia paivae	Myrcia
у	J.M. Silva 3849	Brazil (PR)	128	Myrcia retorta 1	Myrcia
y	V. Nicolack 93	Brazil (PR)	129	Myrcia retorta 2	Myrcia
n	R Harler 10139	Brazil (MT)	130	Myrcia schottiana	Myrcia
у	T.N.C. Vasconcelos 591	Dominican Republic	131	Myrcia splendens	Myrcia
у	R. Mello-Silva 1690	Brazil (MG)	132	Myrcia suffruticosa	Myrcia
n	J.R.I. Wood. 15435	Bolivia	133	Myrcia velutina	Myrcia
у	G. Martinelli 9061	Brazil (RJ)	134	Myrcia antonia	Reticulosae
у	G.G. Hatchbachi 20955	Brazil (PR)	135	Myrcia pubipetala 1	Reticulosae
у	H.F. Leitāo-filho 34701	Brazil (SP)	136	Myrcia pubipetala 2	Reticulosae
у	R.M. Harley 50309	Brazil (BA)	137	Myrcia reticulosa	Reticulosae
у	J.M. Cruz 195	Brazil (PR)	138	Myrcia venulosa 1	Reticulosae
у	R.M. Harley 27168	Brazil (BA)	139	Myrcia venulosa 2	Reticulosae
у	Lewis CFCR 7074	Brazil (BA)	140	Myrcia ascendens	Sympodiomyrcia
у	G.G. Hatchsbachll 31837	Brazil (PR)	141	Myrcia bicarinata	Sympodiomyrcia
у	M.F. Santos 757	Brazil (BA)	142	Myrcia bicolor	Sympodiomyrcia
у	G.G. Hatschbach 31837	Brazil (PR)	143	Myrcia costeira	Sympodiomyrcia
у	N.P. Taylor 1590	Brazil (BA)	144	Myrcia densa	Sympodiomyrcia
у	M.F. Santos 682	Brazil (SP)	145	Myrcia insigniflora	Sympodiomyrcia
у	K. Matsumoto 793	Brazil (MG)	146	Myrcia lenheirensis	Sympodiomyrcia
у	F.F. Mazine 1052	Brazil (MG)	147	Myrcia mutabilis	Sympodiomyrcia
у	M. Peron 758	Brazil (RJ)	148	Myrcia plusiantha	Sympodiomyrcia
у	M.F. Santos 642	Brazil (MG)	149	Myrcia rupestris	Sympodiomyrcia
у	V.G. Sttagemeier 896	Brazil (ES)	150	Myrcia sp.	Sympodiomyrcia
у	T.N.C. Vasconcelos 488	Brazil (MG)	151	Myrcia subavenia	Sympodiomyrcia
у	G. Martinelli 13237	Brazil (RJ)	152	Myrcia subcordata	Sympodiomyrcia
у	H. Kollmann 4776	Brazil (ES)	153	Myrcia subterminalis	Sympodiomyrcia
у	J.S. Blanchet 2321	Brazil (BA)	154	Myrcia tenuifolia	Sympodiomyrcia
у	E.J. Lucas 196	Brazil (SP)	155	Myrcia laruotteana	Tomentosa
у	E.J. Lucas 110	Brazil (PR)	156	Myrcia selloi 1	Tomentosa
у	E.J. Lucas 204	Brazil (SP)	157	Myrcia selloi 2	Tomentosa
у	L.C. Giordano 2168	Brazil (RJ)	158	Myrcia selloi 3	Tomentosa
у	A.A. Arantes 476	Brazil (MG)	159	Myrcia tomentosa 1	Tomentosa
у	E.J. Lucas 160	Brazil (PR)	160	Myrcia tomentosa 2	Tomentosa
у	H.S. Irwin 48254	Brazil (AP)	161	Myrcia tomentosa 3	Tomentosa

no	species	А	В	С	D	E	F	G
1	Marlierea montana	3.162	4.813	4.235	4.239	3.458	1.756	1.643
2	Myrcia abbotiana	1.545	3.236	2.965	0.626	1.929	1.146	0.852
3	Myrcia amazonica	1.497	2.300	4.534	1.091	3.521	1.675	1.087
4	Myrcia blanchetiana	1.910	4.125	6.962	1.956	5.875	1.375	0.647
5	Myrcia caudata	3.103	5.160	4.916	2.078	3.973	NA	0.608
6	Myrcia decorticans	1.727	5.051	4.811	2.314	3.796	1.766	0.758
7	Myrcia eumecephylla	4.414	5.740	4.618	2.962	4.032	NA	0.650
8	Myrcia excoriata	6.014	6.979	NA	1.856	NA	NA	0.275
9	Myrcia grandis	1.478	4.459	4.854	2.331	4.238	1.865	1.002
10	Myrcia hexasticha	1.232	4.949	5.776	3.138	5.434	1.963	0.578
11	Myrcia hirtiflora	2.356	4.732	5.724	2.718	4.809	0.945	1.098
12	Myrcia inaequiloba	1.393	3.538	5.015	2.373	4.473	1.230	0.644
13	Myrcia mcvaughii	3.203	6.870	7.456	4.417	6.123	2.256	2.111
14	Myrcia micropetala	2.447	4.721	3.697	2.438	2.792	1.387	1.303
15	Myrcia minutiflora	1.230	3.072	2.120	1.822	1.727	1.001	0.447
16	Myrcia multiflora	2.215	4.500	4.469	2.890	3.895	2.215	0.492
17	Myrcia neobscura	2.953	4.174	6.065	3.249	4.492	0.666	0.461
18	Myrcia neodimorpha	3.606	6.658	6.454	3.992	5.274	1.803	0.852
19	Myrcia neograbla	3.290	4.211	5.176	1.880	4.254	0.357	1.173
20	Myrcia neoregeliana	4.690	6.969	3.531	2.231	2.844	1.115	0.455
21	Myrcia neoriedeliana	2.456	3.390	3.190	NA	2.641	0.404	0.514
22	Myrcia neosuaveolens	1.374	NA	2.359	0.932	1.881	0.644	0.941
23	Myrcia neotomentosa	7.862	8.779	8.509	7.736	7.603	1.689	0.692
24	Myrcia neuwiedeana	6.542	6.600	4.890	3.807	3.810	0.851	1.150
25	Myrcia obversa	3.725	NA	5.021	2.724	2.888	2.113	2.693
26	Myrcia platyclada	1.530	3.020	2.795	1.489	1.975	1.307	0.644
27	Myrcia polyantha	1.400	2.110	2.566	1.594	2.039	1.470	0.891
28	Myrcia racemosa 1	4.875	8.000	8.635	5.105	8.268	3.512	1.946
29	Myrcia racemosa 2	3.693	6.092	NA	2.536	NA	1.566	1.128
30	Myrcia racemosa 3	1.491	3.238	3.387	1.664	2.826	0.976	0.758
31	Myrcia riodocensis	3.116	6.040	6.762	3.687	6.126	2.221	1.284
32	Myrcia rubella	2.685	5.406	5.724	5.994	4.775	2.140	0.886
33	Myrcia saxatilis	1.229	3.463	3.231	1.467	2.522	1.596	0.836
34	Myrcia sessilisima	1.836	3.965	5.795	1.935	4.934	1.651	0.820
35	Myrcia sucrei	10.220	13.319	NA	5.569	NA	0.386	0.601
36	Myrcia tetraphylla	2.232	5.228	5.360	3.589	4.705	2.090	0.782
37	Myrcia umbraticola	5.870	5.974	5.427	2.496	4.425	0.392	0.287
38	Calyptranthes aromatica	3.014	5.388	9.042	3.903	7.992	NA	1.179
39	Calyptranthes barkeri	3.342	5.862	6.863	3.729	5.988	1.389	1.731
40	Calyptranthes bipennis	2.086	3.446	5.473	2.364	4.666	0.000	0.783
41	Calyptranthes brasiliensis	2.009	2.912	5.859	4.741	5.557	0.000	1.671
42	Calyptranthes clusiifolia	2.780	4.513	10.908	2.982	9.732	0.707	1.008
43	Calyptranthes concinna	2.100	4.727	6.681	3.750	5.572	0.991	2.298

		0.050	7 0 7 7		0.000		0.000	4.440
44	Calyptranthes eriocephala	3.650	7.677	NA	3.223	NA	0.000	1.119
45	Calyptranthes fasciculata	2.274	3.684	4.188	1.505	3.592	0.000	0.737
46	Calyptranthes garciae	4.132	7.077	5.447	2.751	4.282	1.633	2.142
47	Calyptranthes grandiflora 1	3.689	5.553	8.491	3.980	7.205	1.253	2.571
48	Calyptranthes grandiflora 2	4.103	5.600	7.929	6.054	6.856	0.000	1.700
49	Calyptranthes grandiflora 3	2.893	4.166	7.229	3.152	6.165	1.124	1.156
50	Calyptranthes grandifolia 4	1.984	3.842	6.847	2.732	5.917	0.782	1.427
51	Calyptranthes hatchbachii	2.739	5.834	7.110	3.163	5.662	NA	1.919
52	Calyptranthes kiaerskovii	1.964	NA	NA	NA	NA	NA	0.880
53	Calyptranthes laevigata	1.316	1.965	2.338	0.933	1.830	0.650	0.893
54	Calyptranthes lanceolata	2.240	3.827	4.820	3.007	3.808	1.109	1.668
55	Calyptranthes langsdrofii	1.956	3.143	4.391	1.742	3.487	NA	1.456
56	Calyptranthes loranthifolia	2.129	4.290	4.818	1.498	4.116	0.749	0.324
57	Calyptranthes lucida	2.485	2.807	6.989	4.789	5.697	0.000	NA
58	Calyptranthes martiusiana	3.398	5.739	9.389	3.786	8.424	0.717	1.895
59	Calyptranthes pallens	2.648	3.928	6.162	2.485	4.796	0.000	1.047
60	Calyptranthes punchella	2.255	3.873	5.579	3.241	4.699	NA	0.826
61	Calyptranthes restigae	1.961	3.011	4.662	2.841	3.355	0.000	2.318
62	Calyptranthes sintenisii	1.911	3.941	5.130	1.861	4.173	NA	0.743
63	Calyptranthes speciosae	2.945	4.356	NA	3.726	NA	0.000	1.202
64	Calyptranthes spruceana	4.302	7.161	12.222	4.835	10.574	0.000	2.572
65	Calyptranthes strigipes	2.214	3.870	6.298	2.768	5.532	NA	1.071
66	Calyptranthes thomasiana	1.930	3.055	4.793	2.132	4.048	0.722	1.032
67	Calyptranthes variabilis	2.376	6.298	8.255	5.148	7.319	1.726	1.481
68	Calyptranthes wiedgreniana	3.028	NA	NA	3.354	NA	NA	1.733
69	Calyptranthes zusygium	2.994	5.928	7.780	4.422	6.586	NA	2.405
70	Marlierea clausseniana 1	2.313	NA	6.840	4.920	6.248	1.425	1.273
71	Marlierea clausseniana 2	2.743	5.716	6.410	3.924	5.393	2.246	1.397
72	Marlierea clausseniana 3	2.282	NA	6.415	NA	5.718	1.390	1.019
73	Marlierea subacuminata	7.548	9.982	11.384	6.145	8.758	1.915	1.840
74	Marlierea tenuivenosa	1.354	3.660	4.695	3.110	3.872	1.364	0.450
75	Marlierea teuscheriana	2.166	4.878	NA	3.004	NA	1.214	0.587
76	Myrcia eugeniopsoides	3.726	8.297	8.823	6.406	7.854	2.185	1.148
77	Myrcia ferruginosa	4.458	6.048	12.599	6.192	9.129	1.610	1.785
78	Myrcia hatschbachii	1.551	3.954	5.625	1.391	4.731	1.269	0.589
79	Myrcia multipuncatata	2.552	5.823	6.396	3.082	5.368	1.322	0.919
80	Myrcia oblongata	2.190	4.945	3.785	3.059	3.155	1.691	0.741
81	Myrcia sp.	3.147	NA	NA	2.489	NA	1.882	0.661
82	Myrcia tenuivenosa 1	1.646	4.354	4.064	2.274	3.275	1.607	0.362
83	Myrcia tenuivenosa 2	1.443	4.427	4.829	2.358	4.158	1.445	0.641
84	Myrcia anacardifolia	3.810	11.960	12.231	7.382	10.981	7.185	2.229
85	Myrcia brasiliensis	4.125	8.258	8.321	5.926	6.221	4.289	1.278
86	Myrcia cerqueira	2.978	NA	9.318	5.472	7.782	6.038	1.425
87	Myrcia eriocalyx	3.289	NA	8.061	4.793	7.192	4.373	3.949

								
88	Myrcia fenzliana	2.418	NA	7.142	4.568	6.591	3.859	1.079
89	Myrcia flagellaris	3.270	5.230	3.103	1.630	2.317	2.751	1.840
90	Myrcia glazioviana	3.051	6.643	6.071	2.273	5.095	2.286	2.203
91	Myrcia hartwegiana 1	2.443	6.200	6.200	4.043	NA	4.793	1.412
92	Myrcia hartwegiana 2	2.338	5.600	6.962	4.349	5.872	4.168	1.344
93	Myrcia hebepetala	3.472	11.867	NA	4.651	NA	4.158	0.833
94	Myrcia ilheoensis	3.089	15.608	9.623	5.050	9.097	5.723	1.664
95	Myrcia mischophylla	4.154	8.670	7.725	4.492	6.184	3.708	1.094
96	Myrcia palustris	1.939	NA	6.759	4.310	5.600	3.252	0.547
97	Myrcia pubescens	2.936	5.117	5.013	2.693	4.231	2.139	0.856
98	Myrcia ruschii	4.709	14.911	11.588	4.768	8.420	4.364	1.931
99	Myrcia spectabilis	3.307	7.180	10.286	4.342	8.906	2.945	0.976
100	Myrcia tijucensis	1.991	5.223	5.363	2.202	4.163	2.197	0.596
101	Myrcia vittoriana	3.262	NA	9.442	5.656	7.973	4.739	1.467
102	Myrcia citrifolia	2.474	7.685	7.442	5.827	6.437	2.694	1.491
103	Myrcia cuprea	2.321	4.546	6.297	2.704	5.482	1.755	0.417
104	Myrcia guianensis 1	2.260	7.062	6.278	5.271	4.771	2.150	1.136
105	Myrcia guianensis 2	2.448	6.208	6.625	3.892	5.495	2.024	0.605
106	Myrcia laxiflora	2.514	5.312	5.806	3.490	4.904	2.002	0.443
107	Myrcia paracatuensis	1.938	3.663	3.929	1.854	3.012	1.933	0.911
108	Myrcia pinifolia	1.888	3.644	NA	2.247	NA	1.709	0.757
109	Myrcia rotundata	1.610	4.456	4.709	3.354	3.705	1.868	0.898
110	Myrcia rufipes	1.545	3.296	5.511	2.271	4.744	1.640	0.523
111	Myrcia sp.	3.501	NA	8.204	4.987	6.753	4.207	0.770
112	Myrcia stricta	3.166	5.913	5.757	2.936	3.875	3.139	1.298
113	Myrcia subverticillaris	2.864	NA	8.124	7.282	7.083	4.245	0.769
114	Myrcia variabilis	3.062	6.246	6.868	5.385	6.520	2.550	0.920
115	Myrcia vestita	3.341	5.200	8.996	4.548	8.075	2.770	1.530
116	Myrcia anceps	2.157	4.519	5.801	3.217	4.711	1.372	0.500
117	Myrcia bracteata	3.437	7.963	9.251	3.416	8.574	2.194	2.834
118	Myrcia capitata	4.944	11.609	10.404	11.008	9.314	4.270	4.763
119	Myrcia cardiaca	4.558	8.773	7.636	5.878	5.526	3.854	2.001
120	Myrcia coumeta	5.693	11.601	9.017	5.341	6.817	4.927	1.743
121	Myrcia elevata	3.614	5.378	2.301	1.282	1.582	1.302	1.048
122	Myrcia eriopus	3.131	5.658	5.340	3.267	4.082	2.540	1.560
123	Myrcia eximia	3.550	6.429	6.492	4.113	5.205	2.925	0.863
124	Myrcia federalis	4.888	14.909	NA	7.741	NA	4.946	4.982
125	Myrcia fenestrata	1.285	4.666	4.417	3.096	3.741	1.767	0.790
126	Myrcia ovata	2.126	4.423	2.955	2.075	2.008	2.157	1.153
127	Myrcia paivae	1.677	5.639	5.267	3.205	3.953	1.704	0.703
128	Myrcia retorta 1	3.264	7.275	6.644	6.927	5.779	1.381	2.724
129	Myrcia retorta 2	3.092	7.941	4.894	3.008	3.660	2.836	0.872
130	Myrcia schottiana	2.937	6.229	6.690	6.152	5.883	2.380	2.131
131	Myrcia splendens	3.290	6.888	5.305	2.531	3.742	2.314	1.584
		•					•	•

132								
132	Myrcia suffruticosa	3.363	9.462	7.853	6.102	6.443	3.764	2.171
133	Myrcia velutina	2.369	6.335	4.627	2.495	3.277	2.154	1.046
134	Myrcia antonia	8.570	15.397	13.973	7.762	11.613	4.217	2.651
135	Myrcia pubipetala 1	5.584	9.537	9.337	5.435	7.435	4.723	1.884
136	Myrcia pubipetala 2	5.903	10.889	8.714	5.275	6.210	3.509	2.608
137	Myrcia reticulosa	2.168	5.581	8.230	4.778	5.813	2.407	1.226
138	Myrcia venulosa 1	3.183	5.564	6.943	4.802	5.930	3.617	1.059
139	Myrcia venulosa 2	2.478	5.880	7.052	4.529	5.535	2.245	1.066
140	Myrcia ascendens	1.884	4.870	3.565	2.840	3.065	1.545	0.772
141	Myrcia bicarinata	2.488	4.418	4.539	2.525	3.653	1.613	0.722
142	Myrcia bicolor	2.252	4.111	5.555	2.571	4.829	1.258	0.822
143	Myrcia costeira	1.890	2.500	6.000	3.100	5.000	1.800	1.400
144	Myrcia densa	1.606	3.559	4.696	2.459	3.753	1.171	0.731
145	Myrcia insigniflora	7.052	11.392	13.458	7.733	10.663	3.738	1.036
146	Myrcia lenheirensis	1.678	2.000	5.180	2.595	4.514	1.337	0.689
147	Myrcia mutabilis	2.865	5.466	6.277	4.162	5.322	2.299	1.384
148	Myrcia plusiantha	3.067	4.305	6.667	2.646	5.028	1.438	0.795
149	Myrcia rupestris	1.870	3.580	4.260	1.840	3.700	1.130	1.150
150	Myrcia sp.	1.325	2.915	NA	0.239	NA	0.656	0.733
151	Myrcia subavenia	4.392	8.617	7.553	NA	5.427	2.532	2.171
152	Myrcia subcordata	2.151	4.328	5.529	4.312	4.640	1.463	0.608
153	Myrcia subterminalis	2.380	6.000	4.190	2.440	3.650	NA	0.950
154	Myrcia tenuifolia	2.332	4.835	5.800	2.495	4.400	1.094	0.850
155	Myrcia laruotteana	2.542	7.078	6.383	4.713	4.571	2.187	1.235
156	Myrcia selloi 1	1.392	NA	5.198	3.272	4.070	2.105	0.770
157	Myrcia selloi 2	1.830	NA	6.365	NA	5.268	NA	0.728
158	Myrcia selloi 3	1.458	4.562	4.751	3.221	3.430	1.537	0.686
159	Myrcia tomentosa 1	1.994	5.181	5.738	3.075	4.579	2.111	1.251
160	Myrcia tomentosa 2	2.751	NA	6.514	NA	5.467	2.760	1.439
161	Myrcia tomentosa 3	2.506	7.393	6.282	3.434	5.896	2.217	1.373

no	species	Н		J	К	L	М	N	0
1	Marlierea montana	140	0.236	0.341	1.125	0.969	0.827	0.416	68
2	Myrcia abbotiana	NA	0.382	0.196	0.333	0.398	0.164	0.392	36
3	Myrcia amazonica	58	0.262	0.377	0.164	0.476	0.112	0.366	37
4	Myrcia blanchetiana	107	0.295	0.228	0.876	0.499	0.086	0.372	48
5	Myrcia caudata	137	0.313	0.880	0.886	0.881	0.077	0.336	NA
6	Myrcia decorticans	140	0.407	0.120	0.282	0.464	0.100	0.464	40
7	Myrcia eumecephylla	139	0.339	1.337	0.891	0.715	0.125	0.210	36
8	Myrcia excoriata	161	0.278	1.971	0.420	0.439	NA	0.383	81
9	Myrcia grandis	104	0.317	0.313	0.448	0.495	0.161	0.389	45
10	Myrcia hexasticha	67	0.273	0.246	0.301	0.373	0.096	0.283	33
11	Myrcia hirtiflora	135	0.322	0.213	0.463	0.384	0.114	0.314	41

12	Myrcia inaequiloba	103	0.304	0.179	0.756	0.424	0.173	0.304	25
13	Myrcia mcvaughii	132	0.292	0.360	1.024	0.946	0.102	0.420	91
14	Myrcia micropetala	148	0.449	0.299	1.036	0.808	0.134	0.355	45
15	Myrcia minutiflora	139	0.290	0.151	0.708	0.355	0.274	0.125	26
16	Myrcia multiflora	107	0.312	0.295	0.472	0.443	0.141	0.408	44
17	Myrcia neobscura	157	0.283	1.008	0.665	0.483	0.124	0.394	45
18	Myrcia neodimorpha	161	0.443	0.837	0.728	0.742	0.165	0.349	78
19	Myrcia neograbla	161	0.493	0.642	0.309	0.255	0.078	0.323	86
20	Myrcia neoregeliana	163	0.396	1.129	0.429	0.745	0.094	0.380	82
21	Myrcia neoriedeliana	NA	0.275	0.399	NA	0.454	NA	0.210	53
22	Myrcia neosuaveolens	NA	0.209	0.181	0.414	0.547	0.078	0.150	31
23	Myrcia neotomentosa	143	0.435	1.308	0.667	1.195	0.086	0.531	144
24	Myrcia neuwiedeana	146	0.433	1.403	0.669	1.135	0.143	0.374	87
25	Myrcia obversa	NA	0.425	0.729	0.627	1.319	0.183	0.552	88
26	Myrcia platyclada	128	0.253	0.137	0.601	0.450	0.090	0.368	53
27	Myrcia polyantha	NA	0.316	0.148	0.581	0.385	0.091	0.267	49
28	Myrcia racemosa 1	95	0.469	1.008	1.232	1.390	0.212	0.476	167
29	Myrcia racemosa 2	111	0.475	0.507	1.404	1.082	NA	0.370	164
30	Myrcia racemosa 3	129	0.281	0.155	0.642	0.409	0.107	0.271	28
31	Myrcia riodocensis	92	0.269	0.491	0.478	0.631	0.127	0.334	83
32	Myrcia rubella	111	0.374	0.466	1.109	0.689	0.134	0.587	67
33	Myrcia saxatilis	128	0.225	0.161	0.464	0.360	0.081	0.251	26
34	Myrcia sessilisima	111	0.319	0.256	0.651	0.399	0.121	NA	37
35	Myrcia sucrei	156	0.500	2.341	0.573	1.496	NA	0.543	194
36	Myrcia tetraphylla	104	0.353	0.204	0.442	0.534	0.115	0.308	NA
37	Myrcia umbraticola	141	0.713	2.261	0.400	0.796	0.164	0.445	41
38	Calyptranthes aromatica	134	0.325	0.265	1.700	1.018	0.120	0.390	72
39	Calyptranthes barkeri	98	0.371	0.306	0.834	1.050	1.153	0.300	83
40	Calyptranthes bipennis	117	0.163	0.169	0.896	0.524	0.107	0.197	56
41	Calyptranthes brasiliensis	135	0.296	0.296	1.285	0.508	0.135	0.166	54
42	Calyptranthes clusiifolia	123	0.328	0.286	2.051	0.654	0.118	0.436	51
43	Calyptranthes concinna	122	0.293	0.465	0.946	0.684	0.192	0.531	80
44	Calyptranthes eriocephala	109	0.292	0.304	1.403	0.599	NA	0.255	103
45	Calyptranthes fasciculata	160	0.374	0.133	0.742	0.577	0.317	0.313	49
46	Calyptranthes garciae	NA	0.408	0.514	0.869	1.047	0.281	0.383	192
47	Calyptranthes grandiflora 1	130	0.377	0.443	1.760	0.895	0.169	0.617	126
48	Calyptranthes grandiflora 2	89	0.307	0.537	1.742	1.418	0.170	0.492	127
49	Calyptranthes grandiflora 3	119	0.394	0.305	1.586	0.774	0.225	0.428	77
50	Calyptranthes grandifolia 4	110	0.341	0.263	1.292	0.572	0.115	0.436	68
51	Calyptranthes hatchbachii	118	0.345	0.365	1.163	0.819	0.149	0.756	61
	1	140	0.267	0.195	1.035	0.735	NA	0.345	NA
52	Calyptranthes kiaerskovii	142	0.207	0.100					
	Calyptranthes kiaerskovii Calyptranthes laevigata	142	0.267	0.137	0.343	0.353	0.081	0.238	29
52							0.081 0.152	0.238 0.465	29 78

56	Calyptranthes loranthifolia	108	0.239	0.142	0.880	0.621	0.092	0.344	71
57	Calyptranthes lucida	59	0.321	0.238	1.017	0.661	0.189	0.337	86
58	Calyptranthes martiusiana	146	0.320	0.373	2.044	1.473	0.225	0.269	NA
59	Calyptranthes pallens	125	0.371	0.327	0.784	0.635	0.154	0.455	58
60	Calyptranthes punchella	89	0.304	0.184	1.211	0.596	0.273	0.527	50
61	Calyptranthes restigae	NA	0.241	0.163	0.672	0.667	0.103	0.313	134
62	Calyptranthes sintenisii	115	0.308	0.186	0.664	0.663	0.131	0.242	38
63	Calyptranthes speciosae	133	0.262	0.270	1.184	0.903	NA	0.380	69
64	Calyptranthes spruceana	106	0.351	0.241	1.337	1.339	0.190	1.107	118
65	Calyptranthes strigipes	126	0.239	0.241	0.934	0.599	0.108	0.237	NA
66	Calyptranthes thomasiana	123	0.233	0.226	0.874	0.666	0.138	0.449	59
67	Calyptranthes variabilis	129	0.323	0.132	1.188	0.841	0.153	0.391	74
68	Calyptranthes wiedgreniana	NA	0.323	0.132	0.589	0.822	NA	0.304	59
69		119					0.128		
70	Calyptranthes zusygium	137	0.288 0.441	0.213	1.571 1.072	<u>1.114</u> 0.790	0.120	0.414	109 31
70	Marlierea clausseniana 1	137	0.299	0.352	1.173	0.790	0.105	0.420	68
72	Marlierea clausseniana 2 Marlierea clausseniana 3	100	0.299		1.488		0.120	0.389	29
72		122	0.374	0.464	2.154	0.730	0.050	1.179	172
73	Marlierea subacuminata	63		1.099 0.269		0.394	0.161	0.380	40
74	Marlierea tenuivenosa	132	0.265 0.334		0.533	0.394	0.202 NA		56
75	Marlierea teuscheriana	114		0.199		1.228	0.174	0.246	42
70	Myrcia eugeniopsoides Myrcia ferruginosa	124	0.371	0.495	1.473		0.174	0.365	
78	Myrcia hatschbachii	92	0.412 0.243	0.227	1.729 0.918	1.021 0.376	0.214 NA	0.647 0.290	113 81
	-			0.179 0.372			0.182		
79	Myrcia multipuncatata	110	0.337		1.243	0.545		0.417	53
80	Myrcia oblongata	122 NA	0.283	0.232	0.444	0.483	0.472	0.275	100
81	Myrcia sp.	NA	NA	0.279	0.924	0.960	0.285	0.309	164
82	Myrcia tenuivenosa 1	NA	0.353	0.297	0.469	0.451	0.150	0.331	47
83	Myrcia tenuivenosa 2	52 120	0.263	0.313	0.537	0.379	0.212	0.237	49 NA
84	Myrcia anacardifolia	139	1.017	0.575	0.595	0.853	NA 0.105	0.346	
85	Myrcia brasiliensis Myrcia cerqueira	134	0.584	0.250	1.107	1.435	0.195	0.761	148
86 87	Myrcia eriocalyx	167	1.940	0.514	2.063	0.946	0.200	0.792 0.408	54
88	Myrcia fenzliana	175 134	0.646	0.397	0.485	0.540			69 92
			0.518	0.307			0.214	0.508	
89	Myrcia flagellaris Myrcia glazioviana	NA 113	0.436	0.160	0.435	0.909	0.142	0.371	104
90		113	0.322	0.580	0.363	0.445	0.103	0.511	133
91	Myrcia hartwegiana 1 Myrcia hartwegiana 2	109	0.832	0.458	1.072	0.966	0.093	0.518	124
92		157	0.602	0.780	1.207	1.012	0.138 NA	0.477	154
93	Myrcia hebepetala	135	0.869	0.524	0.951	1.205		0.407	114 NA
94	Myrcia ilheoensis	118	0.636	0.402	0.415	0.695	0.230	0.603	NA
95	Myrcia mischophylla	138	0.698	0.470	0.486	0.977	0.230	0.426	99
96	Myrcia palustris	134	0.435	0.195	0.388	0.581	0.139	0.471	74 84
97	Myrcia pubescens	150	0.670	0.337	0.258	0.599	0.092	0.416	122
98	Myrcia ruschii	152	1.041	0.643	1.029	1.695	0.211	0.861	122
99	Myrcia spectabilis	134	0.982	0.277	1.155	0.807	0.193	0.460	54

100	Myrcia tijucensis	134	0.580	0.216	0.835	0.725	0.090	0.467	72
101	Myrcia vittoriana	134	0.812	0.683	0.725	0.950	0.278	0.519	94
102	Myrcia citrifolia	108	0.376	0.731	0.912	0.890	0.170	0.475	128
103	Myrcia cuprea	127	0.323	0.271	0.709	0.684	0.145	0.415	74
104	Myrcia guianensis 1	59	0.382	0.606	0.571	0.328	0.162	0.539	106
105	Myrcia guianensis 2	53	0.498	0.454	0.474	0.648	0.397	0.157	56
106	Myrcia laxiflora	107	0.188	0.556	0.754	0.693	0.095	0.378	64
107	Myrcia paracatuensis	NA	0.425	0.195	0.620	0.702	0.078	0.413	46
108	Myrcia pinifolia	126	0.273	0.369	0.870	0.503	NA	0.371	NA
109	Myrcia rotundata	69	0.281	0.330	0.601	0.562	0.119	0.531	41
110	Myrcia rufipes	110	0.257	0.226	0.652	0.324	0.133	0.363	51
111	Myrcia sp.	111	0.413	0.336	1.336	0.941	0.171	0.447	120
112	Myrcia stricta	96	0.447	0.719	0.760	0.562	0.218	0.633	66
113	Myrcia subverticillaris	148	0.612	0.260	0.780	0.771	0.221	0.457	54
114	Myrcia variabilis	98	0.401	0.419	0.809	0.888	0.194	0.487	128
115	Myrcia vestita	95	0.300	0.471	0.799	0.811	0.150	0.600	124
116	Myrcia anceps	120	0.267	0.493	0.148	0.271	0.080	0.532	85
117	Myrcia bracteata	123	0.367	0.665	0.444	0.743	0.156	0.313	NA
118	Myrcia capitata	126	0.428	0.956	0.783	0.895	0.188	0.305	164
119	Myrcia cardiaca	126	0.501	1.206	0.241	0.559	0.202	0.503	163
120	Myrcia coumeta	116	0.359	1.353	0.388	1.122	0.153	0.694	263
121	Myrcia elevata	NA	0.214	0.254	0.460	0.891	0.113	0.267	146
122	Myrcia eriopus	117	0.367	0.557	0.113	0.505	0.116	0.415	112
123	Myrcia eximia	102	0.394	0.312	0.281	0.732	0.092	0.597	82
124	Myrcia federalis	129	0.528	1.125	0.357	0.563	NA	0.474	185
125	Myrcia fenestrata	136	0.315	0.139	0.073	0.410	1.099	0.236	47
126	Myrcia ovata	128	0.424	0.292	0.090	0.559	0.102	0.273	72
127	Myrcia paivae	135	0.238	0.363	0.244	0.366	0.106	0.288	46
128	Myrcia retorta 1	93	0.479	1.028	0.206	0.427	0.144	0.384	84
129	Myrcia retorta 2	100	0.339	0.870	0.166	0.383	0.167	0.348	95
130	Myrcia schottiana	129	0.386	0.496	0.206	0.991	0.121	0.289	89
131	Myrcia splendens	96	0.567	0.801	0.160	0.778	0.174	0.630	63
132	Myrcia suffruticosa	103	0.425	0.899	0.349	0.721	0.205	0.614	135
133	Myrcia velutina	134	0.339	0.380	0.150	0.484	0.088	0.660	54
134	Myrcia antonia	142	0.444	2.063	1.336	1.758	0.188	0.545	252
135	Myrcia pubipetala 1	110	0.325	1.678	0.750	1.145	0.156	0.561	198
136	Myrcia pubipetala 2	NA	0.437	1.070	0.444	0.875	0.177	NA	242
137	Myrcia reticulosa	106	0.273	0.167	0.301	0.547	0.169	0.380	36
138	Myrcia venulosa 1	129	0.373	0.425	0.419	0.635	0.147	0.421	73
139	Myrcia venulosa 2	114	0.262	0.467	0.391	0.517	0.094	0.642	57
140	Myrcia ascendens	138	0.354	0.085	0.522	0.719	0.050	0.253	32
140	Myrcia bicarinata	112	0.381	0.160	0.804	0.668	0.130	0.166	52
141	Myrcia bicolor	91	0.308	0.209	1.229	0.655	0.130	0.308	65
143	Myrcia costeira	NA	0.360	NA	0.680	0.560	NA	0.420	61

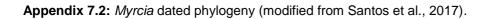
144	Myrcia densa	126	0.226	0.231	0.619	0.463	0.150	0.224	40
145	Myrcia insigniflora	148	0.484	0.788	1.046	2.287	0.151	0.383	324
146	Myrcia lenheirensis	120	0.318	0.345	0.751	0.492	0.147	0.325	37
147	Myrcia mutabilis	83	0.387	0.494	0.947	0.855	0.149	0.374	75
148	Myrcia plusiantha	109	0.352	0.192	0.965	0.845	0.319	0.178	76
149	Myrcia rupestris	123	0.220	0.090	0.700	0.550	0.100	0.250	46
150	Myrcia sp.	130	2.717	0.186	0.925	0.383	NA	NA	32
151	Myrcia subavenia	125	0.360	1.021	0.739	0.809	0.164	0.563	160
152	Myrcia subcordata	80	0.295	0.205	1.069	0.844	0.109	0.331	70
153	Myrcia subterminalis	115	0.320	0.080	0.410	0.760	0.110	0.250	49
154	Myrcia tenuifolia	120	0.311	0.341	0.807	0.731	0.097	0.381	66
155	Myrcia laruotteana	73	0.562	0.422	1.083	0.818	0.276	0.368	32
156	Myrcia selloi 1	35	0.369	0.304	0.350	0.553	0.196	0.565	62
157	Myrcia selloi 2	54	0.472	0.483	0.895	0.626	0.159	0.758	64
158	Myrcia selloi 3	32	0.356	0.345	0.426	0.442	0.186	0.559	58
159	Myrcia tomentosa 1	42	0.515	0.220	0.375	0.478	0.143	NA	NA
160	Myrcia tomentosa 2	47	0.584	0.287	0.311	0.494	0.245	0.655	40
161	Myrcia tomentosa 3	38	0.420	0.264	0.384	0.413	0.196	0.352	39

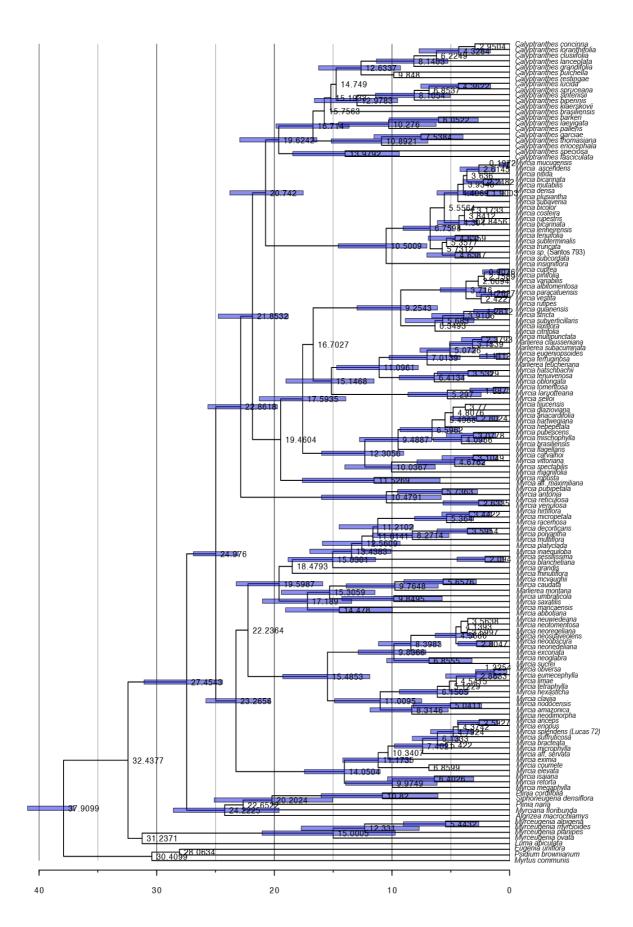
no	species	antGlad	infloLength	infloCat	infloDisplay	infloPosition
1	Marlierea montana	n	56	3	clustered	exposed
2	Myrcia abbotiana	n	17.97	2	spread	exposed
3	Myrcia amazonica	n	100.2	4	clustered	exposed
4	Myrcia blanchetiana	у	65.73	2	clustered	exposed
5	Myrcia caudata	NA	22.1	2	spread	exposedHidden
6	Myrcia decorticans	n	71.6	3	spread	exposed
7	Myrcia eumecephylla	n	177.2	4	spread	exposed
8	Myrcia excoriata	у	24.4	1	spread	hidden
9	Myrcia grandis	n	47.53	3	spread	exposed
10	Myrcia hexasticha	n	112.2	5	clustered	exposed
11	Myrcia hirtiflora	n	78.3	4	clustered	exposed
12	Myrcia inaequiloba	у	38.8	4	clustered	exposed
13	Myrcia mcvaughii	у	53.2	4	clustered	exposed
14	Myrcia micropetala	NA	81.7	4	clustered	hidden
15	Myrcia minutiflora	n	35.3	2	clustered	hidden
16	Myrcia multiflora	n	46.65	3	spread	hidden
17	Myrcia neobscura	n	64.86	4	spread	exposed
18	Myrcia neodimorpha	n	89.2	4	clustered	exposed
19	Myrcia neograbla	у	152.8	3	spread	hidden
20	Myrcia neoregeliana	у	68.5	3	spread	exposed
21	Myrcia neoriedeliana	у	91.6	5	spread	exposedHidden
22	Myrcia neosuaveolens	у	32	2	spread	hidden

24 M 25 M 26 M 27 M 28 M 29 M 30 M 31 M 32 M	<i>Ayrcia neotomentosa</i> <i>Ayrcia neuwiedeana</i> <i>Ayrcia obversa</i> <i>Ayrcia platyclada</i> <i>Ayrcia polyantha</i> <i>Ayrcia racemosa 1</i> <i>Ayrcia racemosa 2</i> <i>Ayrcia racemosa 3</i>	n n y n n	NA 52 138.1 38.73 20	4 2 5 3	clustered spread spread	exposed hidden exposed	
25 M 26 M 27 M 28 M 29 M 30 M 31 M 32 M	Ayrcia obversa Ayrcia platyclada Ayrcia polyantha Ayrcia racemosa 1 Ayrcia racemosa 2	n y n	138.1 38.73	5			
26 M 27 M 28 M 29 M 30 M 31 M 32 M	Ayrcia platyclada Ayrcia polyantha Ayrcia racemosa 1 Ayrcia racemosa 2	y n	38.73		spread	exposed	
27 M 28 M 29 M 30 M 31 M 32 M	Ayrcia polyantha Ayrcia racemosa 1 Ayrcia racemosa 2	n		3			
28 M 29 M 30 M 31 M 32 M	Ayrcia racemosa 1 Ayrcia racemosa 2		20	0	spread	exposed	
29 M 30 M 31 M 32 M	Ayrcia racemosa 2	n	20	1	spread	hidden	
30 M 31 M 32 M			40.8	3	spread	exposedHidden	
31 M 32 M	Aurcia racemosa 3	у	22.1	1	spread	exposed	
32 N	nyicia raceniosa 5	NA	24.6	2	spread	exposedHidden	
	Ayrcia riodocensis	у	75.9	3	clustered	exposed	
	Ayrcia rubella	у	120	4	spread	exposed	
33 N	Ayrcia saxatilis	n	47.3	3	spread	exposed	
34 N	Ayrcia sessilisima	n	69.76	4	spread	exposed	
35 N	Ayrcia sucrei	n	67.9	3	clustered	exposed	
36 N	Ayrcia tetraphylla	n	237.2	4	spread	exposed	
37 N	Ayrcia umbraticola	у	60	2	spread	exposed	
38 C	Calyptranthes aromatica	n	116.666667	3	spread	hidden	
39 C	Calyptranthes barkeri	у	55.9	2	clustered	exposed	
40 C	Calyptranthes bipennis	у	43.8	NA	clustered	exposed	
41 C	Calyptranthes brasiliensis	у	45	3	clustered	exposed	
42 C	Calyptranthes clusiifolia	у	73.4	3	clustered	exposed	
43 C	Calyptranthes concinna	у	43.9	2	clustered	exposedHidden	
44 C	Calyptranthes eriocephala	у	20.5	1	spread	exposed	
45 C	Calyptranthes fasciculata	n	10.4	2	clustered	hidden	
46 C	Calyptranthes garciae	n	44.2	1	spread	exposed	
47 C	Calyptranthes grandiflora 1	n	73.3	4	spread	exposed	
48 C	Calyptranthes grandiflora 2	n	62	2	spread	exposed	
49 C	Calyptranthes grandiflora 3	у	121.6	4	spread	exposed	
50 C	Calyptranthes grandifolia 4	у	62.6	3	spread	exposedHidden	
51 C	Calyptranthes hatchbachii	n	38.1666667	2	spread	exposed	
52 C	Calyptranthes kiaerskovii	у	17.13	1	clustered	hidden	
53 C	Calyptranthes laevigata	у	25.3	1	clustered	exposed	
54 C	Calyptranthes lanceolata	n	86.1	3	spread	exposed	
55 C	Calyptranthes langsdrofii	у	32.0333333	2	spread	exposed	
	Calyptranthes loranthifolia	y	74.7	3	spread	exposed	
	Calyptranthes lucida	n	41	3	spread	exposedHidden	
	Calyptranthes martiusiana	NA	97.4333333	2	spread	exposed	
	Calyptranthes pallens	n	100	4	clustered	exposedHidden	
	Calyptranthes punchella	Y	21.87	2	spread	exposedHidden	
	Calyptranthes restigae	n	55.1	NA	clustered	exposed	
	Calyptranthes sintenisii	у	62.6	3	spread	exposedHidden	
	Calyptranthes speciosae	n	112.03	4	clustered	exposed	
	Calyptranthes spruceana	n	63.2	2	clustered	exposed	
	Calyptranthes strigipes	n	48.0666667	3	clustered	exposed	
	Calyptranthes thomasiana	у	35.7	2	spread	hidden	

		1		1	L	
67	Calyptranthes variabilis	у	27.6666667	2	spread	hidden
68	Calyptranthes wiedgreniana	n	55.8666667	3	clustered	exposed
69	Calyptranthes zusygium	Y	41.9666667	1	spread	hidden
70	Marlierea clausseniana 1	n	38.8	3	spread	exposedHidden
71	Marlierea clausseniana 2	у	85.3	4	spread	exposed
72	Marlierea clausseniana 3	у	64.3	4	spread	exposedHidden
73	Marlierea subacuminata	у	71	2	spread	exposedHidden
74	Marlierea tenuivenosa	n	63.8	4	spread	exposedHidden
75	Marlierea teuscheriana	у	222.1	5	clustered	exposed
76	Myrcia eugeniopsoides	n	100*	2	spread	hidden
77	Myrcia ferruginosa	n	57.5	2	spread	exposedHidden
78	Myrcia hatschbachii	n	83.96	4	spread	exposed
79	Myrcia multipuncatata	у	41.3	2	spread	exposedHidden
80	Myrcia oblongata	у	83.25	3	spread	hidden
81	Myrcia sp.	n	76.5	4	spread	hidden
82	Myrcia tenuivenosa 1	n	63.87	4	spread	exposedHidden
83	Myrcia tenuivenosa 2	n	63.93	4	spread	exposedHidden
84	Myrcia anacardifolia	n	49.25	1	spread	hidden
85	Myrcia brasiliensis	у	68.8	2	spread	exposed
86	Myrcia cerqueira	n	18.4	2	clustered	hidden
87	Myrcia eriocalyx	n	46.5	NA	NA	exposed
88	Myrcia fenzliana	у	148.9	148.9 5		exposed
89	Myrcia flagellaris	у	51.2	1	clustered	exposedHidden
90	Myrcia glazioviana	у	8.2	1	spread	hidden
91	Myrcia hartwegiana 1	n	43.2	3	clustered	exposed
92	Myrcia hartwegiana 2	n	37.1	2	spread	exposed
93	Myrcia hebepetala	у	64.53	2	spread	exposedHidden
94	Myrcia ilheoensis	у	61.9	2	clustered	exposed
95	Myrcia mischophylla	n	108.9	4	clustered	exposed
96	Myrcia palustris	NA	39.5	3	clustered	exposedHidden
97	Myrcia pubescens	у	77.1	3	spread	exposed
98	Myrcia ruschii	у	263	3	spreas	exposedHidden
99	Myrcia spectabilis	n	153	3	spread	exposed
100	Myrcia tijucensis	n	32.2	2	spread	exposedHidden
101	Myrcia vittoriana	NA	76.55	2	spread	exposed
102	Myrcia citrifolia	n	71.1	2	spread	exposed
103	Myrcia cuprea	n	56.7	4	spread	exposed
104	Myrcia guianensis 1	n	49.7	2	clustered	hidden
105	Myrcia guianensis 2	у	18.9	2	spread	exposedHidden
106	Myrcia laxiflora	n	62.4	2	spread	exposed
107	Myrcia paracatuensis	у	22.9	2	spread	exposed
108	Myrcia pinifolia	n	40.76	2	spread	exposed
109	Myrcia rotundata	n	42.4	NA	spread	exposedHidden
110	Myrcia rufipes	n	85.26	4	spread	exposed

	•• •								
111	Myrcia sp.	n	NA	NA	spread	exposed			
112	Myrcia stricta	У	42.5	2	spread	exposed			
113	Myrcia subverticillaris	n	58.1	NA	NA	hidden			
114	Myrcia variabilis	n	46.6	2	spread	exposedHidden			
115	Myrcia vestita	n	<u>73.2</u> 69.2	5	clustered	exposed			
116	Myrcia anceps	clustered	hidden						
117	Myrcia bracteata	clustered	exposedHidden						
118	Myrcia capitata	clustered	exposed						
119	Myrcia cardiaca	spread	exposed						
120	Myrcia coumeta	n	88.2	2	spread	exposedHidden			
121	Myrcia elevata	у	75.8	2	spread	exposedHidden			
122	Myrcia eriopus	у	112.7	3	spread	exposed			
123	Myrcia eximia	n	65	3	spread	exposed			
124	Myrcia federalis	n	54.1666667	2	clustered	exposed			
125	Myrcia fenestrata	у	44.5666667	2	spread	exposedHidden			
126	Myrcia ovata	у	48.8	3	spread	exposed			
127	Myrcia paivae	у	20.6666667	1	spread	hidden			
128	Myrcia retorta 1	у	36.95	2	spread	exposed			
129	Myrcia retorta 2	у	32.95	2	clustered	exposed			
130	Myrcia schottiana								
131	Myrcia splendens	у	35	2	spread	exposed			
132	Myrcia suffruticosa	у	spread	exposed					
133	Myrcia velutina	n	22.5	4	clustered	exposed			
134	Myrcia antonia	у	127.4	3	clustered	exposed			
135	Myrcia pubipetala 1	n	141.95	3	spread	exposed			
136	Myrcia pubipetala 2	n	87.5	3	spread	exposed			
137	Myrcia reticulosa	n	15.8	1	clustered	hidden			
138	Myrcia venulosa 1	n	56.8	4	spread	exposed			
139	Myrcia venulosa 2	n	49.2	3	spread	exposed			
140	Myrcia ascendens	NA	5.55	2	clustered	exposedHidden			
141	Myrcia bicarinata	v	36.7	2	spread	exposed			
142	Myrcia bicolor	y	30.3	2	spread	exposed			
143	Myrcia costeira	NA	25	3	spread	exposed			
144	Myrcia densa	v	39.7	3	spread	exposed			
145	Myrcia insigniflora	y	144.6	3	spread	exposed			
146	Myrcia lenheirensis	v	13.6	2	clustered	exposed			
147	Myrcia mutabilis	v	21.1	3	spread	exposed			
148			spread	exposed					
149	Myrcia rupestris				exposedHidden				
150	Myrcia sp.				exposed				
151	Myrcia subavenia			clustered	exposed				
152	Myrcia subcordata	y	33.65	2	clustered	hidden			
152	Myrcia subterminalis	NA	45	3	spread	exposedHidden			
153	-			3					
154	Myrcia tenuifolia	у	60	3	spread	exposed			

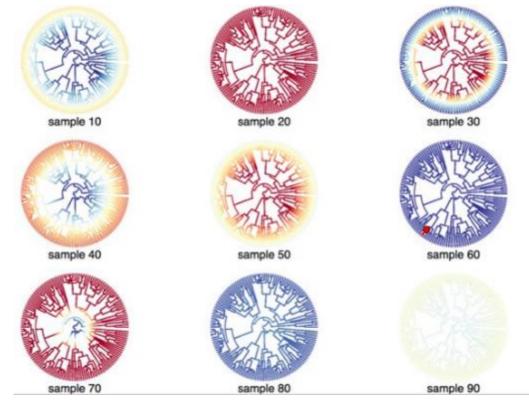

155	Myrcia laruotteana	NA	63.6	3	spread	hidden
156	Myrcia selloi 1	у	25.2	2	spread	exposedHidden
157	Myrcia selloi 2	у	25.4	2	spread	exposedHidden
158	Myrcia selloi 3	n	24.3	2	spread	exposedHidden
159	Myrcia tomentosa 1	NA	116.3	4	clustered	exposedHidden
160	Myrcia tomentosa 2	NA	102.75	4	spread	exposedHidden
161	Myrcia tomentosa 3	NA	45.3	3	clustered	hidden


no	species	plantHigh	vegetation	altitude
1	Marlierea montana	4	forest	50
2	Myrcia abbotiana	6	savannah	100
3	Myrcia amazonica	12	forest	450
4	Myrcia blanchetiana	2.5	savannah	750
5	Myrcia caudata	5	forest	350
6	Myrcia decorticans	10	forest	500
7	Myrcia eumecephylla	4	forest	50
8	Myrcia excoriata	NA	NA	NA
9	Myrcia grandis	2	forest	100
10	Myrcia hexasticha	10	forest	30
11	Myrcia hirtiflora	5	forest	0
12	Myrcia inaequiloba	1	NA	1800
13	Myrcia mcvaughii	NA	forest	60
14	Myrcia micropetala	12	forest	50
15	Myrcia minutiflora	6	forest	70
16	Myrcia multiflora	1.5	savannah	200
17	Myrcia neobscura	NA	forest	1200
18	Myrcia neodimorpha	5	forest	700
19	Myrcia neograbla	NA	forest	NA
20	Myrcia neoregeliana	3	forest	50
21	Myrcia neoriedeliana	20	forest	14
22	Myrcia neosuaveolens	3	forest	150
23	Myrcia neotomentosa	7	forest	50
24	Myrcia neuwiedeana	2	forest	65
25	Myrcia obversa	8	forest	50
26	Myrcia platyclada	NA	NA	700
27	Myrcia polyantha	1	savannah	260
28	Myrcia racemosa 1	NA	forest	200
29	Myrcia racemosa 2	8	forest	700
30	Myrcia racemosa 3	7	forest	1590
31	Myrcia riodocensis	3	forest	50
32	Myrcia rubella	1.5	savannah	900
33	Myrcia saxatilis	2	savannah	150
34	Myrcia sessilisima	0.6	savannah	900

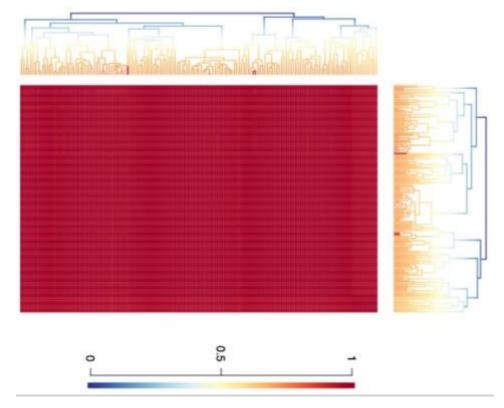
Muraia auarai	0	forest	80
·			80
· · · ·			20
*			40
			779
			235
· · · ·			50
	5	forest	50
Calyptranthes clusiifolia	7	forest	60
Calyptranthes concinna	3	forest	780
Calyptranthes eriocephala	NA	forest	1800
Calyptranthes fasciculata	NA	savannah	650
Calyptranthes garciae	4	savannah	30
Calyptranthes grandiflora 1	8	forest	80
Calyptranthes grandiflora 2	10	forest	610
Calyptranthes grandiflora 3	7	forest	770
Calyptranthes grandifolia 4	20	forest	800
Calyptranthes hatchbachii	2	forest	1000
Calyptranthes kiaerskovii	NA	forest	350
Calyptranthes laevigata	2.5	savannah	314
Calyptranthes lanceolata	3	forest	50
Calyptranthes langsdrofii	18	forest	850
Calyptranthes loranthifolia	1.5	savannah	659
Calyptranthes lucida	15	forest	1000
Calyptranthes martiusiana	2	forest	50
Calyptranthes pallens	8	forest	1600
Calyptranthes punchella	14	forest	700
Calyptranthes restigae	7	forest	60
Calyptranthes sintenisii	6.5	forest	550
Calyptranthes speciosae	5	savannah	500
Calyptranthes spruceana	NA	forest	10
Calyptranthes strigipes	10	forest	50
	1		350
	NA		NA
			820
			10
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			580
			670
			130
			683
			650
			730
			10
wyrcia eugeriiopsolues	5	101031	10
Myrcia ferruginosa	10	forest	80
	Calyptranthes eriocephalaCalyptranthes fasciculataCalyptranthes garciaeCalyptranthes grandiflora 1Calyptranthes grandiflora 2Calyptranthes grandiflora 3Calyptranthes grandiflora 3Calyptranthes grandiflora 3Calyptranthes grandiflora 3Calyptranthes grandiflora 4Calyptranthes hatchbachiiCalyptranthes hatchbachiiCalyptranthes hatchbachiiCalyptranthes laevigataCalyptranthes lanceolataCalyptranthes langsdrofiiCalyptranthes loranthifoliaCalyptranthes martiusianaCalyptranthes pallensCalyptranthes restigaeCalyptranthes sintenisiiCalyptranthes sintenisii	Myrcia tetraphylla8Myrcia umbraticola3Calyptranthes aromatica5Calyptranthes barkeri5Calyptranthes bipennis12Calyptranthes bipennis12Calyptranthes bipennis5Calyptranthes clusiifolia7Calyptranthes concinna3Calyptranthes eriocephalaNACalyptranthes garciae4Calyptranthes grandiflora 18Calyptranthes grandiflora 210Calyptranthes grandiflora 37Calyptranthes grandiflora 37Calyptranthes grandiflora 37Calyptranthes grandiflora 37Calyptranthes grandiflora 37Calyptranthes lanceolata33Calyptranthes lanceolata3Calyptranthes langsdrofii18Calyptranthes langsdrofii18Calyptranthes lucida15Calyptranthes lucida15Calyptranthes pallens8Calyptranthes pallens8Calyptranthes peciosae5Calyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceanaNACalyptranthes spruceana10Calyptranthes spruceanaNACalyptranthes spruceana10Calyptranthes spruceana10Calyptranthes spruceana3Calyptranthe	Myrcia tetraphylla8forestMyrcia umbraticola3forestCalyptranthes aromatica5forestCalyptranthes barkeri5NACalyptranthes barkeri5forestCalyptranthes basiliensis5forestCalyptranthes clusiifolia7forestCalyptranthes concinna3forestCalyptranthes concinna3forestCalyptranthes eriocephalaNAforestCalyptranthes garciae4savannahCalyptranthes grandiflora 18forestCalyptranthes grandiflora 210forestCalyptranthes grandiflora 37forestCalyptranthes grandiflora 420forestCalyptranthes hatchbachii2forestCalyptranthes kiaerskoviiNAforestCalyptranthes laevigata2.5savannahCalyptranthes laevigata2.5savannahCalyptranthes langsdrofii18forestCalyptranthes loranthifolia1.5savannahCalyptranthes loranthifolia1.5savannahCalyptranthes pallens8forestCalyptranthes pallens8forestCalyptranthes spruceanaNAforestCalyptranthes spruceanaNAforestCalyptranthes spruceanaNAforestCalyptranthes spruceanaNAforestCalyptranthes spruceanaNAforestCalyptranthes spruceanaNAforestCalyptranth

79	Myrcia multipuncatata	4	savannah	1320
80	Myrcia oblongata	NA	NA	80
81	Myrcia sp.	8	forest	950
82	Myrcia tenuivenosa 1	NA	forest	75
83	Myrcia tenuivenosa 2	8	forest	1010
84	Myrcia anacardifolia	4	forest	1010
85	Myrcia brasiliensis	20	forest	400
86	Myrcia cerqueira	3	forest	47
87	Myrcia eriocalyx	2	savannah	1250
88	Myrcia fenzliana	8	savannah	900
89	Myrcia flagellaris	2	forest	50
90	Myrcia glazioviana	2	NA	1500
91	Myrcia hartwegiana 1	2	forest	1000
92	Myrcia hartwegiana 2	2	forest	1050
93	Myrcia hebepetala	5	forest	0
94	Myrcia ilheoensis	3	savannah	900
95	Myrcia mischophylla	2.5	savannah	1000
96	Myrcia palustris	4	forest	20
97	Myrcia pubescens	3	savannah	800
98	Myrcia ruschii	NA	forest	725
99	Myrcia spectabilis	10	forest	20
100	Myrcia tijucensis	5	forest	450
101	Myrcia vittoriana	6	forest	50
102	Myrcia citrifolia	5	forest	822
103	Myrcia cuprea	3	savannah	0
104	Myrcia guianensis 1	1	forest	970
105	Myrcia guianensis 2	6	forest	1176
106	Myrcia laxiflora	6	forest	600
107	Myrcia paracatuensis	0.3	savannah	800
108	Myrcia pinifolia	0.3	savannah	800
109	Myrcia rotundata	NA	NA	NA
110	Myrcia rufipes	5	forest	300
111	Myrcia sp.	NA	savannah	750
112	Myrcia stricta	0.6	savannah	900
113	Myrcia subverticillaris	3	forest	820
114	Myrcia variabilis	2	savannah	800
115	Myrcia vestita	0.8	savannah	600
116	Myrcia anceps	3	forest	530
117	Myrcia bracteata	3	forest	250
118	Myrcia capitata	1	savannah	1100
119	Myrcia cardiaca	1	savannah	1000
120	Myrcia coumeta	3	forest	170
121	Myrcia elevata	3	forest	150
122	Myrcia eriopus	NA	forest	850

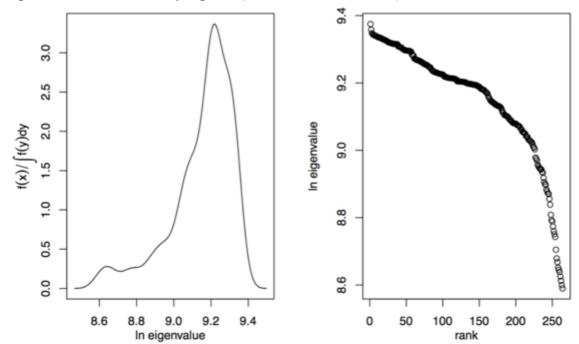
123	Myrcia eximia	9	savannah	880
123	Myrcia federalis	0.2	savannah	1200
124	Myrcia fenestrata	6	forest	40
120	Myrcia ovata	4.5	forest	30
120	Myrcia paivae		forest	20
128	Myrcia retorta 1	5	forest	1000
120	Myrcia retorta 2	4	forest	850
130	Myrcia schottiana	4	savannah	320
131	Myrcia splendens	2	savannah	1460
132	Myrcia suffruticosa	0.15	savannah	1450
133	Myrcia velutina	2	savannah	1700
134	Myrcia antonia	6	forest	950
135	Myrcia pubipetala 1	15	forest	850
136	Myrcia pubipetala 2	12	forest	800
137	Myrcia reticulosa	1.5	savannah	1300
138	Myrcia venulosa 1	5	forest	900
139	Myrcia venulosa 2	6	savannah	1425
140	Myrcia ascendens	2	savannah	1000
141	Myrcia bicarinata	8	forest	30
142	Myrcia bicolor	10	forest	400
143	Myrcia costeira	7	forest	0
144	Myrcia densa	2	savannah	800
145	Myrcia insigniflora	6	forest	62
146	Myrcia lenheirensis	3	savannah	1150
147	Myrcia mutabilis	4	savannah	950
148	Myrcia plusiantha	9	forest	1100
149	Myrcia rupestris	1.75	savannah	900
150	Myrcia sp.	2.5	forest	NA
151	Myrcia subavenia	4	savannah	1200
152	Myrcia subcordata	1.5	savannah	1750
153	Myrcia subterminalis	9	forest	700
154	Myrcia tenuifolia	NA	forest	50
155	Myrcia laruotteana	3	forest	1063
156	Myrcia selloi 1	3	forest	20
157	Myrcia selloi 2	3	forest	550
158	Myrcia selloi 3	5.5	forest	781
159	Myrcia tomentosa 1	3	savannah	20
160	Myrcia tomentosa 2	3	forest	850
161	Myrcia tomentosa 3	1.5	forest	750

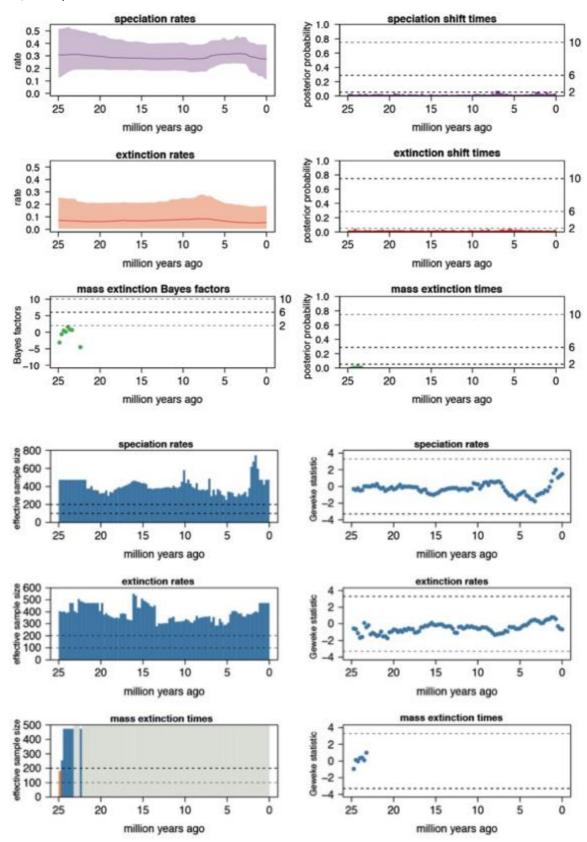

	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р	B.A	G.F	C.B	L.J	A.K	1.0	O.J
А		0.745	0.542	0.515	0.504	0.335	0.44	0.22	0.024	0.504	0.19	0.495	- 0.029	0.174	0.69	0.02	- 0.348	0.088	- 0.315	- 0.313	0.454	0.677	-0.15
в	0.745		0.598	0.657	0.549	0.582	0.398	0.094	0.069	0.394	0.124	0.424	- 0.031	0.149	0.616	- 0.072	0.157	- 0.149	- 0.428	- 0.343	0.489	0.683	- 0.191
с	0.542	0.598		0.716	0.956	0.428	0.483	0.1	0.203	0.185	0.407	0.392	- 0.043	0.186	0.503	0.288	0.054	0.049	0.222	- 0.134	0.018	0.583	- 0.038
D	0.515	0.657	0.716		0.696	0.493	0.414	0.033	0.08	0.239	0.351	0.344	0.01	0.132	0.524	- 0.264	0.114	- 0.044	0.004	- 0.257	0.17	0.558	- 0.123
Е	0.504	0.549	0.956	0.696		0.379	0.436	0.089	0.196	0.154	0.418	0.371	- 0.042	0.18	0.484	0.33	- 0.033	0.058	0.296	- 0.089	- 0.034	0.55	0.015
F	0.335	0.582	0.428	0.493	0.379		0.258	0.03	0.143	0.072	- 0.023	0.095	- 0.064	- 0.116	0.355	-0.05	0.21	- 0.526	- 0.222	- 0.213	0.33	0.482	- 0.083
G	0.44	0.398	0.483	0.414	0.436	0.258		0.037	0.068	0.106	0.245	0.251	- 0.025	0.123	0.476	0.022	- 0.181	0.34	- 0.028	- 0.159	0.187	0.443	- 0.009
н	0.22	0.094	0.1	0.033	0.089	0.03	0.037		0.202	0.217	0.079	0.13	- 0.006	- 0.041	0.078	0.046	- 0.193	0.049	- 0.166	0.01	0.107	0.182	- 0.032
I	0.024	0.069	0.203	0.08	0.196	0.143	0.068	0.202		- 0.056	0.1	0.044	- 0.018	- 0.018	- 0.028	0.174	0.122	0.004	0.077	-0.01	- 0.075	0.248	- 0.099
J	0.504	0.394	0.185	0.239	0.154	0.072	0.106	0.217	- 0.056		- 0.072	0.296	- 0.039	0.135	0.304	- 0.063	- 0.234	- 0.015	- 0.345	- 0.493	0.388	0.3	- 0.382
к	0.19	0.124	0.407	0.351	0.418	0.023	0.245	0.079	0.1	- 0.072		0.338	- 0.068	0.21	0.143	- 0.028	- 0.152	0.167	0.304	0.281	- 0.534	0.157	0.163
L	0.495	0.424	0.392	0.344	0.371	0.095	0.251	0.13	0.044	0.296	0.338		0.11	0.266	0.461	0.077	- 0.204	0.185	- 0.046	0.035	0.013	0.424	0.037
м	- 0.029	- 0.031	- 0.043	0.01	- 0.042	0.064	- 0.025	- 0.006	- 0.018	0.039	- 0.068	0.11		- 0.012	-0.02	0.001	0.038	0.063	- 0.037	0.094	0.115	- 0.035	0.103
N	0.174	0.149	0.186	0.132	0.18	0.116	0.123	0.041	0.018	0.135	0.21	0.266	- 0.012		0.147	0.061	0.111	0.103	0.071	0.057	0.004	0.117	0.049
0	0.69	0.616	0.503	0.524	0.484	0.355	0.476	0.078	0.028	0.304	0.143	0.461	-0.02	0.147	-	- 0.009	-0.23	0.128	- 0.176	0.184	0.3	0.852	0.233
Р	0.02	- 0.072	0.288	- 0.264	0.33	-0.05	0.022	0.046	0.174	- 0.063	0.028	0.077	0.001	0.061	- 0.009		0.115	0.011	0.313	0.077	0.032	0.048	0.08
B.A	0.348	0.157	- 0.054	0.114	0.033	0.21	0.181	0.193	0.122	0.234	0.152	0.204	0.038	0.111	-0.23	- 0.115		0.281	0.129	0.071	0.025	0.137	-0.09
G.F	0.088	0.149	0.049	0.044	0.058	0.526	0.34	0.049	0.004	0.015	0.167	0.185	0.063	0.103	0.128	0.011	- 0.281	5.201	0.168	0.125	0.166	0.052	0.146
C.B	0.315	0.428	0.222	0.004	0.296	0.222	0.028	0.166	0.077	0.345	0.304	0.046	0.003	0.071	0.120	0.313	0.129	0.168	0.100	0.369	0.527	-0.18	0.234
	0.313	0.343	0.134	0.257	0.089	0.213	0.159	0.01	-0.01	0.493	0.281	0.035	0.094	0.057	0.184	0.077	0.071	0.125	0.369	0.000	0.483	0.248	0.204

Appendix 7.3: Computed correlation used spearman-method with listwise-deletion.


A.K	0.454	0.489	0.018	0.17	- 0.034	0.33	0.187	0.107	- 0.075	0.388	- 0.534	0.013	0.115	- 0.004	0.3	- 0.032	0.025	- 0.166	- 0.527	- 0.483		0.321	- 0.256
1.0	0.677	0.683	0.583	0.558	0.55	0.482	0.443	0.182	0.248	0.3	0.157	0.424	- 0.035	0.117	0.852	0.048	- 0.137	0.052	-0.18	- 0.248	0.321		0.083
O.J	-0.15	- 0.191	- 0.038	- 0.123	0.015	- 0.083	- 0.009	- 0.032	- 0.099	- 0.382	0.163	0.037	0.103	0.049	0.233	0.08	-0.09	0.146	0.234	0.77	- 0.256	0.083	

Appendix 7.4: Plots from macro-evolutionary dynamics analysis in *Myrcia* using BAMM, TESS and RPANDA.


Plot 1: Nine random sampled shift configurations in BAMM, showing no clear pattern of phylogenetic heterogeneity or changes in diversification rate.


Plot 2: Cohot plot showing similar macroevolutionary regimes all pair of species in the *Myrcia* phylogeny (see Rabosky et al., 2014).

Plot 3: Spectral density plot and corresponding eigen values ranked in descending order for *Myrcia*, as generated by RPANDA. There is a lack of eigengaps which would indicate changes in macroevolutionary regimes (see Morlon et al., 2016)

Plot 4: Diversification rates estimated by TESS using empirical hyperpriors. No significant support for diversification rate shifts or mass extinction events was found. (see Hohna et al., 2016)

Dim 2 (11.44%) 2 -2 0 4 6 -4 ե 53 N 2 • 150 50 0 • 42 Individuals factor map (PCA) • 2ª 9 • 38 • 58• 99 Dim 1 (39.36%) **5**3 •132 • 119 • ਹੋ • 85 • 🗅 • 94 • 8 • 🛛 • 64 12485 • • 135 ъ • % • 120 • 118 • % • ដ • 145 • 134 10

Appendix 7.5: Morphospace distribution of 165 *Myrcia* specimens (large size) (numbers according to Appendix 7.1.)

Chapter 8 - General Discussion and Concluding Remarks

8.1 Key findings

It is here demonstrated how even morphologically homogeneous groups can have heterogeneous evolutionary histories. Macro-evolutionary hypotheses such as this can only be drawn and tested when a robust phylogenetic tree is analysed in conjunction with careful descriptions of phenotypic data, as presented here. In this sense, this study moves forward considerably in the understanding of one of the most ecologically important and taxonomically complex tropical plant groups. An up to date phylogenetic tree and evolutionary context (Chapter 1) is provided alongside with detailed descriptions of floral diversity (Chapter 2 and 3), that is abundant despite its apparent lack of variation. This phylogenetic and phenotypic data can now be used for more precise ecological and evolutionary modelling in the Neotropical region and to improve identification and classification of Myrteae lineages.

Flowers of Myrteae are reasonably homogeneous for a group that is estimated to be at least 40 million years old, but variation exists and can be combined with other data for accurate diagnosis. In this sense, the lack of attention to flower traits by Myrteae systematists in light of the most up to date phylogenetic hypothesis shows that focus on "wrong" morphological characters was responsible for producing long lists of para- and polyphyletic genera. The historical focus on perianth traits for example – with their demonstrated high levels of parallelism and convergence, must be dropped. Androecium and gynoecium are considerably more systematically relevant.

Nevertheless, analyses of the calyx and other homoplastic traits in the framework of phylogenetic trees is important in the discussion of systematic complexity and macro-scale evolutionary patterns. Parallelism, especially, is rarely taken in consideration as a factor of taxonomic confusion in Angiosperms even though it is so recurrent (Chapters 4 and 6). Morphological homogeneity also underpins important evolutionary processes in mega diverse lineages and should be investigated more often with extreme care. This lack of phenotypic variation is demonstrated to keep extinction rates low and promote accumulation of species over time (Chapter 7) and highlight the role of heterochronic patterns in promoting flexibility in reproductive strategies (Chapter 5).

8.2 Taking this study forward

Results presented here clarify the evolutionary picture and take forward systematic understanding of complex taxonomic groups such as Myrteae. However, it also raises a number of questions for future studies. These could be tackled in combined lines of macro and microevolutionary research approaches.

Concerning macro-evolutionary approaches, progressive understanding of trait-function and generation of increasingly robust morphological and molecular data will be key to answer the most intriguing questions in Myrteae evolution. A concise species level phylogeny, for example, is necessary to use specific trait-dependant diversification analyses to correctly evaluate how changes in the floral structure discussed here affect macro-evolutionary dynamics. Furthermore, the association between certain poorly understood evolutionary trends such as ovule-oversupply and andromonoecy and environmental variables could be tested when such data is available. The

277

importance of Antarctica in early Myrteae diversification and trait-adaptations required to survive at such high latitudes should also be further investigated. Detailed morphological descriptions for other plant organs such as wood, leaves and fruits would also be interesting to improve the assignment of old macro-fossils with unclear placement, indispensable to clarify early diversification events in Myrteae.

In the micro-evolutionary context, reproductive biology alongside population genetics studies are required to evaluate how the variation in floral traits discussed here affect gene-flow and speciation in distinct lineages and niches. Hypotheses drawn in Chapter 3, such as the role of the herkogamic effects of some stamen-style configurations in reproductive success, should be tested in the field so the assertion of how strongly under selection such traits are could be evaluated. On the matter of parallelisms, understanding how genetic mechanisms promote re-expression of long silenced genes are of utmost importance not only for systematics but also to truly understand plant evolution as a whole.

REFERENCES

Abe T. 2006. Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands. *Annals of Botany* 98: 317–334.

Abrahão A., Lambers H., Sawaya A.C.H.F., Mazzafera P., Oliveira, R. S. 2014. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. *Oecologia* 176(2), 345–355.

Achard F., Eva H.D., Stibig H.J., Mayaux P., Gallego J., Richards T., Malingreau J.P. 2002. Determination of deforestation rates of the world's humid tropical forests. *Science* 297: 999–1002.

Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. *Proceedings of the National Academy of Sciences* 106(2): 19699–19706.

Alcantara S., Lohmann L.G. 2010. Evolution of floral morphology and pollination system in Bignoniaceae). *American Journal of Botany 97*(5): 782–796.

Antiqueira P.A.P., Romero G.Q. 2016. Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness. *Oecologia* 181(2): 475–485.

Ashton D.H. 1958. The ecology of *Eucalyptus regnans* F. Muell.: the species and its frost resistance. *Australian journal of botany* 6 (2): 154–176.

Ashton P. 2011. Myrtaceae in *Tree Flora of Sabah and Sarawak. Vol.* 7 Soepadmo E.L., G. Saw, R. C.K.Chung, R. Kiew. (eds.)

APG 1998. An ordinal classification for the families of flowering plants. *Annals of the Missouri Botanical Gardens* 85:531–553.

Bacon C.D., Silvestro D., Jaramillo C., Smith B.T., Chakrabarty P., Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences 112(19): 6110–6115.

Baider C., Florens F.V. 2013. *Eugenia alletiana* (Myrtaceae), a new critically endangered species endemic to the island of Mauritius. *Phytotaxa* 94(1):1–12.

Baldwin B.G., Sanderson M.J., Porter J.M., Wojciechowski M.F., Campbell C.S., Donoghue M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on Angiosperm phylogeny. *Annals of the Missouri Botanical Gardens* 82: 247–277.

Barroso G.M. 1994. Myrtaceae do sudeste do Brasil: espécies novas do gênero *Plinia* Linnaeus. *Napaea* 10:1–5.

Batish D.R., Singh H.P., Kohli R.K., Kaur S. 2008. *Eucalyptus* essential oil as a natural pesticide. *Forest Ecology and Management* 256(12): 2166–2174.

Beech E., Rivers M., Oldfield S., Smith P.P. 2017. GlobalTreeSearch: the first complete global database of tree species and country distributions. *Journal of Sustainable Forestry* 36: 1–36.

Bess E.C., Doust A.N., Kellogg E.A. 2005. A Naked Grass in the "Bristle Clade": A phylogenetic and developmental study of *Panicum* Section *Bulbosa* (Paniceae: Poaceae). *International Journal of Plant Sciences* 166: 371–381.

Belsham S.R., Orlovich D.A. 2002. Development of the hypanthium and androecium in New Zealand Myrtoideae (Myrtaceae). *New Zealand Journal of Botany* 40: 687–695.

Belsham S.R, Orlovich D.A. 2003. Development of the hypanthium and androecium in South American Myrtoideae (Myrtaceae). *New Zealand Journal of Botany* 41: 161–169.

Berg O. 1855-1856. Revisio Myrtacearum Americae. Linnaea 27: 1-472.

Berg O. 1857-1859. Myrtaceae. In: von Martius CFP, ed. *Flora Brasiliensis* 14 part 1. Leipzig: Frid. Fleischer.

Berger B.A., Kriebel R., Spalink D., Sytsma K.J. 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. *Molecular Phylogenetics and Evolution* 95: 116–36.

Bernhard A. 1999. Flower structure, development, and systematics in Passifloraceae and in *Abatia* (Flacourtiaceae). *International Journal of Plant Sciences* 160: 135–150.

Bernhard A., Endress P.K. 1999. Androecial development and systematics in Flacourtiaceae s.1. *Plants Systematics and Evolution* 215: 141–155.

Berry P.E., Hipp A.L., Wurdack K.J., Van Ee B., Riina R. 2005. Molecular phylogenetics of the giant genus *Croton* and tribe Crotoneae (Euphorbiaceae *sensu stricto*) using ITS and trnL-trnF DNA sequence data. *American Journal of Botany* 92(9):1520–1534.

Biffin E., Craven L.A., Tuiwawa M., Crisp M.D., Gadek P.A. 2005. South Pacific *Cleistocalyx* transferred to *Syzygium* (Myrtaceae). *Blumea* 50(2): 383–388.

Biffin E., Craven L.A., Crisp M.D., Gadek P.A. 2006. Molecular Systematics of Syzygium and Allied Genera (Myrtaceae): Evidence from the Chloroplast Genome. *Taxon* 55: 79–94.

Biffin E., Lucas E.J., Craven L.A., Costa I.R., Harrington M.G., Crisp M.D. 2010. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. *Annals of Botany* 106: 79–93.

Birtchnell M.J., Gibson M. 2006. Long-term flowering patterns of melliferous *Eucalyptus* (Myrtaceae) species. *Australian Journal of Botany* 54(8): 745–754.

Blount Z.D., Borland C.Z., Lenski R.E. 2008. Historical contingency and the evolution of a key innovation in an experimental population of *Escherichia coli*. *Proceedings of the National Academy of Sciences* 105(23): 7899–7906.

Bohte A, Drinnan A. 2005. Floral development and systematic position of *Arillastrum*, *Allosyncarpia*, *Stockwellia* and *Eucalyptopsis* (Myrtaceae). *Plant Systematics and Evolution* 251: 53–70.

Bond H.W, Wynne L.B. 1979. The exploitation of floral nectar in *Eucalyptus incrassata* by honeyeaters and honeybees. *Oecologia* 44: 105–111.

Bottega S., Corsi G. 2000. Structure, secretion and possible functions of calyx glandular hairs of *Rosmarinus officinalis* L.(Labiatae). *Botanical Journal of the Linnean Society* 132(4): 325–335.

Bouchenak-Khelladi Y., Verboom G.A., Savolainen V., Hodkinson T.R. 2010. Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. *Botanical Journal of Linnean Society* 162: 543–557.

Breedlove D.E., Ehrlich P.R. 1972. Coevolution: patterns of legume predation by a lycaenid butterfly. *Oecologia*, *10*(2), 99-104.

Briggs B.G., Johnson L.A.S. 1979. Evolution in the Myrtaceae-evidence from inflorescence structure. *Proceedings of the Linnean Society of New South Wales* 102(4): 157–256.

Brooker M.I.H. 2000. A new classification of the genus *Eucalyptus* L'Her.(Myrtaceae). *Australian Systematic Botany* 13(1): 79–148.

Bruns T.D., White T.J., Taylor J.W. 1991. Fungal molecular systematics. *Annual Review of Ecology and Systematics* 22: 525–564.

Buckley L.B., Jetz W. 2008. Linking global turnover of species and environments. *Proceedings of the National Academy of Sciences* 105(46): 17836–17841.

Buchmann S.L., Cane J.H. 1989. Bees assess pollen returns while sonicating Solanum flowers. *Oecologia*, *81*(3) 289–294.

Buerki S., Forest F., Alvarez N., Nylander J.A.A., Arrigo N., Sanmartín I. 2011. An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae. *Journal of Biogeography* 38: 531–550.

Bünger M., Mazine F.F., Lucas E.J., Stehmann J.R. 2016. Circumscription and synopsis of *Eugenia* section *Speciosae* Bünger & Mazine (Myrtaceae). *PhytoKeys* 61: 73–80.

Bünger M.O., Mazine F.F., Forest F., Leandro M., Stehmann J., Lucas E.J. 2016. The evolutionary history of *Eugenia* sect. *Phyllocalyx* (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests. *Annals of botany* 118(7): 1209–1223.

Burki F., Shalchian-Tabrizi K., Minge M., Skjæveland Å., Nikolaev S.I., Jakobsen K.S., Pawlowski J. 2007. Phylogenomics reshuffles the Eukaryotic supergroups. *Plos One* 2: e790.

Buzgo M., Endress P.K. 2000. Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. *International Journal of Plant Sciences* 161: 23–41.

Bytebier B., Bellstedt D.U., Linder H.P. 2007. A molecular phylogeny for the large African orchid genus *Disa. Molecular Phylogenetics and Evolution* 43: 75–90.

Cameron S.A. 2004. Phylogeny and biology of neotropical orchid bees (Euglossini). *Annual Reviews in Entomology 49*(1): 377–404.

Carlson J.E., Harms, K.E. 2007. The benefits of bathing buds: water calyces protect flowers from a microlepidopteran herbivore. *Biology Letters* 3(4): 405–407.

Carr S.G., Carr D.J. 1962. Convergence and progression in *Eucalyptus* and *Symphyomyrtus*. Nature 196(4858): 969–972.

Carvalho M.T.N., Braga J.M.A. 2007. Estrutura e composição florística do estrato arbóreo de um remanescente de Mata Atlântica submontana no município de Rio Bonito, RJ, Brasil (Mata Rio Vermelho). *Revista Árvore* 31: 717–730.

Chapman G. P. 1964. Some aspects of dioecism in pimento (allspice). *Annals of Botany 28*(3): 451–458.

Charlesworth D. 2006. Evolution of plant breeding systems. Current Biology 16: R726–R735.

Chartier M., Jabbour F., Gerber S., Mitteroecker P., Sauquet H., Balthazar M., Schönenberger J. 2014. The floral morphospace – a modern comparative approach to study angiosperm evolution. *New Phytologist* 204(4): 841–853.

Chartier M., Dressler S., Schönenberger J., Mora A. R., Sarthou C., Wang W. Jabbour F. 2016. The evolution of afro-montane *Delphinium* (Ranunculaceae): Morphospecies, phylogenetics and biogeography. *Taxon* 65(6): 1313–1327.

Chartier M., Löfstrand S., von Balthazar M., Gerber S., Jabbour F., Sauquet H., Schönenberger J. 2017. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. *Proceedings of the Royal Society B* 284: 20170066.

Ciccarelli D., Garbari F., Pagni A.M. 2008. The flower of *Myrtus communis* (Myrtaceae): Secretory structures, unicellular papillae, and their ecological role. *Flora-Morphology, Distribution, Functional Ecology of Plants 203*(1): 85–93.

Coddington J.A. 1994. The roles of homology and convergence in studies of adaptation. *Phylogenetics and Ecology.* Academic Press, London: 53–78.

Conti E., Litt A., Wilson P.G., Graham S.A., Briggs B.G., Johnson L.A.S., Sytsma K.J. 1997. Interfamilial relationships in Myrtales: molecular phylogeny and patterns of morphological evolution. *Systematic Botany* 22: 629–647.

Corner E.J. 1958. Transference of function. *Botanical Journal of the Linnean Society* 56(365): 33–40.

Costa I.R. 2009. *Estudos evolutivos em Myrtaceae: aspectos citotaxonômicos e filogenéticos em Myrteae, enfatizando Psidium e gêneros relacionados.* PhD Thesis, Universidade de Campinas.

Craven L. 2006. Myrtaceae of Papua. The Ecology of Papua: 429–433.

Craven L.A., Sunarti S., Mudiana D., Yulistyarini T. 2016. Identification Key to the Indigeneous Indonesian Genera of Myrtaceae. *Floribunda*, *2*(1-8).

Cresswell J.E. 1998. Stabilizing selection and the structural variability of flowers within species. *Annals of Botany* 81(4): 463–473.

Crisp M.D., Trewick S.A., Cook L.G. 2011. Hypothesis testing in biogeography. *Trends in Ecology* and *Evolution* 26: 66–72.

Crisp M.D., Burrows G.E., Cook L.G., Thornhill A.H. Bowman D.M. 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. *Nature Communications* 2:193.

Crome F.H.J, Irvine A.K. 1986. "Two Bob Each Way": The pollination and breeding system of the Australian rain forest tree *Syzygium cormiflorum* (Myrtaceae). *Biotropica* 18: 115–125.

Cronk Q.C.B. 1990. The name of the pea: a quantitative history of legume classification. *New Phytologist* 116: 163–175.

Cronk Q.C.B. 2002. Perspectives and paradigms in plant evo-devo, in: *Developmental Genetics and Plant Evolution.* Cronk, Q.C.B, Bateman, R.M., Hawkins, J.A. (Eds.) The Systematic Association Special Volume Series, 65. CRC Press, Florida, 1–14.

Cruden R.W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. *Evolution* 31: 32–46.

Dahlgren R., Thorne R.F. 1984. The order Myrtales: circumscription, variation, and relationships. *Annals of the Missouri Botanical Gardens* 71: 633–699.

Darwin C. 1859. On the origin of the species by means of natural selection. 1st Edition.

De Candolle A.P. 1826. Note sur Myrtaceés. Dictionnaire Classique d'Histoire Naturelle. Vol. 11. Paris: Imprimerie J. Tastu.

De Candolle A.P. 1828. Myrtaceae. Prodromus Systematis Naturalis Regni Vegetabilis 3: 207–296. Paris: Treuttel and Würtz.

De-Carvalho P.S. 2013. *Ecologia e relações filogenéticas de Blepharocalyx salicifolius (Kunth) O.Berg (Myrtaceae).* PhD Thesis, Universidade de Brasilia.

de Jager M.L. Ellis A.G. 2014. Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects. *Annals of Botany* 113: 213–222.

Delsuc F., Brinkmann H., Philippe H. 2005. Phylogenomics and the reconstruction of the tree of life. *Nature Reviews Genetics* 6, 361–375.

De-Vos J.M., Hughes C.E., Schneeweiss G.M., Moore B.R., Conti E. 2014. Heterostyly accelerates diversification via reduced extinction in primroses. *Proceedings of the Royal Society B* 281: 20140075.

Diogo R. 2005. Evolutionary convergences and parallelisms: their theoretical differences and the difficulty of discriminating them in a practical phylogenetic context. *Biology and Philosophy* 20: 735–744.

Donoghue M.J. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. *Paleobiology* 31: 77–93.

Donoghue M.J., Sanderson M.J. 2015. Confluence, synnovation, and depauperons in plant diversification. *New Phytologist* 207: 260–274.

Donoghue M.J., Ree R.H., Baum D.A. 1998. Phylogeny and the evolution of flower symmetry in the Asteridae. *Trends in Plants Sciences* 3: 311–317.

Doyle J.J. 1994. Phylogeny of the legume family: an approach to understanding the origins of nodulation. *Annual Review in Ecology and Systematics* 25: 325–349.

Doyle J.J. 1998. Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. *Trends in Plant Sciences* 3: 473–478.

Drinnan A.N., Ladiges P.Y. 1988. Perianth development in *Angophora* and the bloodwood Eucalypts (Myrtaceae). *Plant Systematics and Evolution* 160(3): 219–239.

Drinnan A.N., Ladiges P.Y. 1989. Corolla and androecium development in some *Eudesmia* eucalypts (Myrtaceae). *Plant Systematics and Evolution* 165(3-4): 239–254.

Drinnan A.N., Ladiges P.Y. 1991. Floral development and systematic position of Eucalyptus curtisii (Myrtaceae). *Australian Systematic Botany* 4: 539–451.

Drinnan A, Carrucan A. 2005. The ontogenetic basis for floral diversity in *Agonis, Leptospermum* and *Kunzea* (Myrtaceae) *Plant Systematics and Evolution* 251: 71–88.

Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC evolutionary biology* 7(1): 214.

Duncan T., Stuessy T.F. 1984. *Cladistics: Perspectives on the Reconstruction of Evolutionary History*: Papers Presented at a Workshop on the Theory and Application of Cladistic Methodology, 1981, University of California, Berkeley. Columbia University Press.

Dutra T.L., Batten D.J. 2000. Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. *Cretaceous Research* 21: 181–209.

Eiserhardt W.L., Couvreur T.L., Baker W.J. 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. *New Phytologist* 214(4): 1408–1422.

Eldredge N., Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, in: Schopf T.J.M. (Ed.), *Models in Paleobiology*. Freeman Cooper, San Francisco: 82–115.

Eldredge N. 1984 Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. 1st Edition edition, Mcgraw-Hill.

Endress P.K. 1986. Floral structure, systematics, and phylogeny in Trochodendrales. *Annals of the Missouri Botanical Gardens* 73: 297–324.

Endress P.K. 1994a. Floral structure and evolution of primitive angiosperms: recent advances. *Plant Systematics and Evolution* 192: 79–97.

Endress P.K. 1994b. Diversity and evolutionary biology of tropical flowers. Cambridge University Press.

Endress P.K. 1996. Homoplasy in angiosperm flowers. In: *Homoplasy: the recurrence of similarity in evolution.* Sanderson, M. J., & Hufford, L. (Eds.). Academic Press, San Diego: 303–325.

Endress P.K. 1999. Symmetry in flowers: diversity and evolution. *International Journal of Plant Sciences* 160: S3–S23.

Endress P.K. 2002. Morphology and angiosperm systematics in the molecular era. *The Botanical Review* 68: 545–570.

Endress P.K. 2003. Early floral development and nature of the calyptra in Eupomatiaceae (Magnoliales). *International Journal of Plant Sciences* 164(4): 489–503.

Endress P.K. 2006. Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 44: 1–61.

Endress P.K. 2010. Flower structure and trends of evolution in eudicots and their major subclades. Annals of the Missouri Botanical Gardens 97: 5415–583.

Esser H.J. 1999. A partial revision of the Hippomaneae. *Blumea* 44(1): 149–215.

Evert R.F. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons.

Faria J.E.Q. 2014. *Revisão taxonômica e filogenia de Eugenia sect. Pilothecium (Kiaersk.) D. Legrand (Myrtaceae).* PhD thesis, Universidade de Brasilia, Brazil.

Felsenstein J. 2004. Inferring phylogenies (Vol. 2). Sunderland, MA: Sinauer associates.

Fenster C.B., Armbruster W.S., Wilson P., Dudash M.R., Thomson J.D. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics 35: 375–403.

Ferrer M.M., Good S.V. 2012. Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. *Annals of Botany* 110: 535–53.

Fidalgo A.O., Kleinert A.M.P. 2009. Reproductive biology of six Brazilian Myrtaceae: is there a syndrome associated with buzz-pollination? *New Zealand Journal of Botany* 47: 355–365.

Fine P.V., Zapata F., Daly D.C. 2014. Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution 68(7): 1988–2004.

Foster S.A. 1986. On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. *The Botanical Review 52*(3): 260–299.

Futuyma D. 2009. Evolution, 2ed. Sinauer Associates

Galen C. 1989. Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, *Polemonium viscosum. Evolution* 43(4): 882–890.

Gandolfo M.A., Hermsen E.J., Zamaloa M.C., Nixon K.C., González C.C., Wilf P, Johnson, K. R. 2011. Oldest known *Eucalyptus* macrofossils are from South America. *PLoS One* 6(6): e21084.

Geist H.J., Lambin E.F. 2002. Proximate causes and underlying driving forces of tropical deforestation. *BioScience* 52: 143–150.

Giaretta A., de Menezes L.F.T., Peixoto A.L. 2015. Diversity of Myrtaceae in the southeastern Atlantic forest of Brazil as a tool for conservation. *Brazilian Journal of Botany* 38(1): 175–185.

Giribet G. 2015. Morphology should not be forgotten in the era of genomics – a phylogenetic perspective. Zoologischer Anzeiger 256: 96–103.

Giussani L.M., Cota-Sanchez J.H., Zuloaga F.O., Kellogg E.A. 2011. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of c4 photosynthesis. *American Journal of Botany* 88: 1993–2012.

Goldenberg R., Penneys D.S., Almeda F., Judd W.S., Michelangeli F.A. 2008. Phylogeny of *Miconia* (Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. *International Journal of Plant Sciences* 169: 963–979.

Goodman M., Porter C.A., Czelusniak J., Page S.L., Schneider H., Shoshani J., Gunnell G., Groves C.P. 1998. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. *Molecular Phylogenetics and Evolution* 9: 585–598.

Gould S.J. 1982. Punctuated equilibrium - a different way of seeing. New Scientist 94: 137-141.

Govaerts R., Sobral M., Ashton P., Barrie F., Holst B., Landrum L., Matsumoto K., Mazine F., Nic Lughadha E., Proença C., Soares-Silva L., Wilson P., Lucas E. 2008. *World checklist of Myrtaceae.* London: Royal Botanic Gardens, Kew.

Graham A., Jarzen D.L. 1969. Studies in Neotropical paleobotany. I. The Oligocene communities of Puerto Rico. *Annals of the Missouri Botanical Garden* 56: 308–357.

Gressler E., Pizo M.A., Morellato L.P.C. 2006. Polinização e dispersão de sementes em Myrtaceae do Brasil. *Brazilian Journal of Botany:* 509–530.

Grubb P.J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. *Biological Reviews* 52(1): 107–145.

Hamilton M.B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. *Molecular Ecology* 8: 521–523.

Harder L.D., Cruzan M.B. 1990. An evaluation of the physiological and evolutionary influences of inflorescence size and flower depth on nectar production. *Functional Ecology* 4: 559–572.

Harder L.D., Barrett S.C. 1993. Pollen removal from tristylous *Pontederia cordata*: effects of anther position and pollinator specialization. *Ecology* 74: 1059–1072.

Harder L.D., Barrett S.C. 2006. Ecology and evolution of flowers. Oxford University Press.

Harmon L.J., Weir J.T., Brock C.D., Glor R.E., Challenger W. 2008. GEIGER: investigating evolutionary radiations. *Bioinformatics* 24 129–131.

Hawkins J.A. 2002. Evolutionary developmental biology: impact on systematic theory and practice, and the contribution of systematics in: Cronk Q.C.B, Bateman R.M., Hawkins J.A. (Eds.), *Developmental Genetics and Plant Evolution*. The Systematic Association. Special Volume Series, 65. CRC Press, Florida: 32–51.

Hennig W.1966. Phylogenetic systematics. Urbana, University of Illinois Press.

Hill R.S., Merrifield H.E. 1993. An Early Tertiary macroflora from West Dale, southwestern Australia. *Alcheringa* 17(4): 285–326.

Hillis D.M. 1987. Molecular versus morphological approaches to systematics. *Annual review of Ecology and Systematics* 18(1): 23–42.

Höhna S., May M. R., Moore B. R. 2015. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. *Bioinformatics* 32(5): 789-791.

Hughes C., Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. *Proceeding of the National Academy of Sciences* 103, 10334–10339.

Hunter J.P. 1998. Key innovations and the ecology of macroevolution. *Trends in Ecology and Evolution*, 13(1): 31–36.

IPNI. 2017. The International Plant Names Index. Available from: http://www.ipni.org

Jaramillo M.A., Manos P.S. 2001. Phylogeny and patterns of floral diversity in the genus *Piper* (Piperaceae). *American Journal of Botany* 88: 706–716.

Jaramillo M.A., Callejas R., Davidson C., Smith J.F., Stevens A.C., Tepe E.J. 2008. A phylogeny of the tropical genus *Piper* using ITS and the chloroplast intron psbJ–petA. *Systematic Botany* 33: 647–660.

Johnson L.A.S., Briggs B.G. 1984. Myrtales and Myrtaceae - a phylogenetic analysis. *Annals of the Missouri Botanical Garden* 71: 700–756.

Johnson L.A., Soltis D.E. 1994. matK DNA Sequences and Phylogenetic Reconstruction in Saxifragaceae s. str. *Systematic Botany* 19: 143–156.

Junker R.R., Blüthgen N., Brehm T., Binkenstein J., Paulus J., Martin Schaefer H., Stang, M. **2013.** Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. *Functional Ecology* 27(2): 329–341.

Jussieu A.L. de. 1789. Genera plantarum secundum ordines naturales disposita, juxta methodum in horto regio Parisiensi exaratam anno 1774. Herissant et Barrois, Paris.

Kausel E. 1956. Beitrag zur Systematik der Myrtaceen. Almqvist & Wiksell.

Kawasaki M.L. 1989. Flora da Serra do Cipó, Minas Gerais: Myrtaceae. *Boletim de Botânica da Universidade São Paulo* 11: 121–170.

Kay K.M., Reeves P.A., Olmstead R.G., Schemske D.W. 2005. Rapid speciation and the evolution of hummingbird pollination in Neotropical *Costus* subgenus *Costus* (Costaceae): evidence from nrDNA ITS and ETS sequences. *American Journal of Botany 92*(11): 1899–1910.

Kevan P.G., Lack A.J. 1985. Pollination in a cryptically dioecious plant *Decaspermum parviflorum* (Lam.) AJ Scott (Myrtaceae) by pollen-collecting bees in Sulawesi, Indonesia. *Biological Journal of the Linnean Society 25*(4): 319–330.

Kim S.C., Chunghee L., Mejias J.A. 2007. Phylogenetic analysis of chloroplast DNA matK gene and ITS of nrDNA sequences reveals polyphyly of the genus Sonchus and new relationships among the subtribe Sonchinae (Asteraceae: Cichorieae). *Molecular Phylogenetics and Evolution* 44: 578–597.

Kocyan A., Endress P.K. 2001. Floral structure and development and systematic aspects of some 'lower' Asparagales. Plant Systematics Evol. 229, 187–216.

Koleff P., Lennon J. J., Gaston K. J. 2003. Are there latitudinal gradients in species turnover? *Global Ecology and Biogeography* 12(6): 483–498.

Kriebel R., Zumbado M.A. 2014. New reports of generalist insect visitation to flowers of species of *Miconia* (Miconieae: Melastomataceae) and their evolutionary implications. *Brittonia*, *66*(4): 396–404.

Kriebel R., Michelangeli F.A., Kelly L.M. 2015. Discovery of unusual anatomical and continuous characters in the evolutionary history of *Conostegia* (Miconieae: Melastomataceae). *Molecular Phylogenetics and Evolution* 82: 289–313.

Lack A.J., Kevan P.G. 1984. On the reproductive biology of a canopy tree, *Syzygium syzygioides* (Myrtaceae), in a rain forest in Sulawesi, Indonesia *Biotropica* 16: 31–36.

Ladiges P.Y., Udovicic F., Nelson, G. 2003. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. *Journal of Biogeography* 30(7): 989–998.

Lamanna C., Blonder B., Violle C., Kraft N.J., Sandel B., Šímová, I., Buzzard, V. 2014. Functional trait space and the latitudinal diversity gradient. *Proceedings of the National Academy* of Sciences, 111(38): 13745–13750.

Landrum L.R. 1981. A monograph of the genus Myrceugenia (Myrtaceae). Flora Neotropica 29.

Landrum L.R. 1984. Taxonomic implications of the discovery of calyptrate species of *Myrceugenia* (Myrtaceae). Brittonia 36(2): 161–166.

Landrum L.R. 1986. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica 45.

Landrum L.R. 1988a. Systematics of Myrteola (Myrtaceae). Systematic botany 13(1): 120–132.

Landrum L.R. 1988b. The myrtle family (Myrtaceae) in Chile. *Proceedings of the California Academy of Sciences* 45(12): 277–317.

Landrum L.R. 1990. *Accara*: A new genus of Myrtaceae, Myrtinae from Brazil. *Systematic Botany* 15(2): 221–225.

Landrum L.R. 1991. *Chamguava*: a new genus of Myrtaceae (Myrtinae) from Mesoamerica. *Systematic Botany* 16(1): 21–29.

Landrum L.R., Bonilla J. 1996. Anther glandularity in the American Myrtinae (Myrtaceae). *Madroño*: 58–68.

Landrum L.R., Kawasaki M.K. 1997. The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. *Brittonia* 49 (4): 508–536.

Lê S., Josse J., Husson F. 2008. FactoMineR: an R package for multivariate analysis. *Journal of statistical software* 25(1): 1–18.

Lee M.S.Y., Palci A. 2015. Morphological phylogenetics in the genomic age. *Current Biology* 25: R922–R929.

Lenormand T., Roze D., Rousset, F. 2009. Stochasticity in evolution. *Trends in Ecology and Evolution*, 24(3): 157–165.

L'Héritier de Brutelle, C.L. 1788. Sertum Anglicum. Paris

Li P., Johnston M.O. 2000. Heterochrony in plant evolutionary studies through the twentieth century. *The Botanical Review* 66: 57–88.

Linnaeus C.V. 1753. Species plantarum, 2 vols. Laurentii Salvii, Holmiae.

Lord E.M. 1991. The concepts of heterochrony and homeosis in the study of floral morphogenesis. *Flowering Newsletter* 11: 4–13.

Lucas E.J., Belsham S.R., Nic Lughadha E.M., Orlovich D.A., Sakuragui C.M., Chase M.W., Wilson P.G. 2005. Phylogenetic patterns in the fleshy-fruited Myrtaceae: preliminary molecular evidence. *Plant Systematics and Evolution* 251:35–51.

Lucas E.J., Harris S.A., Mazine F.F., Belsham S.R., Nic Lughadha E.M., Telford A., Gasson P.E., Chase M.W. 2007. Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales) *Taxon* 56: 1105–1128.

Lucas E.J, Matsumoto K., Harris S.A., Nic Lughadha E.M., Bernardini B., Chase M.W. 2011. Phylogenetics, morphology, and evolution of the large genus *Myrcia* s.l. (Myrtaceae). *International Journal of Plant Science* 172: 915–934.

Lucas E.J., Bünger M.O. 2015. Myrtaceae in the Atlantic forest: their role as a 'model' group. Biodiversity and Conservation 24(9): 2165–2180.

Lucas E., Wilson C.E., Lima D.F., Sobral M., Matsumoto K. 2016. A conspectus of *Myrcia* sect. *Aulomyrcia* (Myrtaceae). *Annals of the Missouri Botanical Garden* 101(4): 648–698.

LPWG - The Legume Phylogeny Working Group. 2013. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. *Taxon* 62: 217–248.

MacGinitie H.D. 1941. A Middle Eocene Flora from the Central Sierra Nevada. Publ. Carnegie Inst. Washington 534: 1–178.

Malerbo D.T.S, Toledo V.A.A., Couto R.H.N. 1991. Polinização entomófila em jabuticabeira (*Myrciaria cauliflora* Berg.). *Ciência Zootécnica* - Jaboticabal 6: 3–5.

Marshall C.R., Raff E.C., Raff R.A. 1994. Dollo's law and the death and resurrection of genes. *Proceedings of the National Academy of Sciences* 91: 122283–12287.

Martos L., Galan A.T.O.F., Souza L.A.D., Mourão K.S.M. 2017. The flower anatomy of five species of Myrteae and its contribution to the taxonomy of Myrtaceae. *Acta Botanica Brasilica* 31: 42–50.

Mazine F., Santos M.F., Lucas E. 2014. New combinations and new names in *Myrcia* (Myrtaceae) for Flora of São Paulo state, Brazil. *Phytotaxa* 173: 97–100.

Mazine F.F., Souza V.C., Sobral M., Forest F., Lucas E. 2014. A preliminary phylogenetic analysis of *Eugenia* (Myrtaceae: Myrteae), with a focus on Neotropical species. *Kew Bulletin* 69: 94–97.

Mazine F.F., Bünger M.O., Faria J.E.Q., Lucas E., Souza V.C. 2016. Sections in *Eugenia* (Myrteae, Myrtaceae): nomenclatural notes and a key. *Phytotaxa* 289: 225–236.

McComarck J.E., Hird S.M., Zellmer A.J., Carstens B.C., Brumfield R.T. 2012. Applications of next-generation sequencing to phylogeography and phylogenetics. *Molecular Phylogenetics and Evolution* 66, 526–538.

McDonald M.W., Brooker M.I.H., Butcher P.A. 2009. A taxonomic revision of *Eucalyptus camaldulensis* (Myrtaceae). *Australian Systematic Botany* 22: 257–285.

McVaugh R. 1956. Nomenclatural notes on Myrtaceae and related families. Taxon: 162–167.

Mc Vaugh R. 1968. The genera of american Myrtaceae: An Interim Report. Taxon 17: 354–418.

Michelangeli F.A., Penneys D.S., Giza J., Soltis D., Hils M.H., Skean J.D. 2004. A preliminary phylogeny of the tribe Miconieae (Melastomataceae) based on nrITS sequence data and its implications on inflorescence position. *Taxon* 53(2): 279–279.

Miller G.A. 1986. Pubescence, floral temperature and fecundity in species of *Puya* (Bromeliaceae) in the Ecuadorian Andes. *Oecologia 70*(1): 155–160.

Mooi R.D., Gill A.C. 2010. Phylogenies without synapomorphies—a crisis in fish systematics: time to show some character. *Zootaxa* 2450(1): 26–40.

Moore B.R., Höhna S., May M.R., Rannala B., Huelsenbeck J.P. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proceedings of the National Academy of Sciences* 113(34): 9569–9574.

Mori S.A., Boom B.M., de Carvalino A.M. 1983. Ecological importance of Myrtaceae in an eastern Brazilian wet forest. *Biotropica* 15(1): 68–70.

Moro M.F., NicLughadha E.M., Filer D.L., Araújo F.S., Martins F.R. 2014. Catalogue of the vascular plants of the Caatinga phytogeographical domain: a synthesis of floristic and phytosociological surveys. *Phytotaxa* 160: 001–118.

Mulcahy D.L., Mulcahy G.B. 1987. The effects of pollen competition. *American Scientist* 75(1): 44–50.

Mulas M., Fadda A. 2004. First observations on biology and organ morphology of myrtle (*Myrtus communis* L.) flower. *Agricoltura mediterranea* 134(3-4): 223–235.

Murillo-A J., Ruiz E. 2011. Revalidación de *Nothomyrcia* (Myrtaceae), un género endémico del Archipiélago de Juan Fernández. *Gayana. Botánica 68*(2): 129–134.

Murillo-A J., Ruiz-P E., Landrum L.R., Stuessy T.F., Barfuss M.H.J. 2012. Phylogenetic relationships in *Myrceugenia* (Myrtaceae) based on plastid and nuclear DNA sequences. *Molecular Phylogenetics and Evolution* 62: 764–776.

Murillo-A J.C., Stuessy T.F., Ruiz E. 2016. Explaining disjunct distributions in the flora of southern South America: evolutionary history and biogeography of *Myrceugenia* (Myrtaceae). Journal of *Biogeography* 43(5): 979–990.

Murray-Smith C., Brummitt N.A., Oliveira-Filho A. T., Bachman S., Moat J., NicLughadha E.M., Lucas, E.J. 2009. Plant diversity hotspots in the Atlantic coastal forests of Brazil. *Conservation Biology* 23(1): 151–163.

Myrcia s.l. scratchpad, 2016. http://myrcia.myspecies.info/

Nater A., Burri R., Kawakami T., Smeds L., Ellegren H. 2015. Resolving evolutionary relationships in closely related species with whole-genome sequencing data. *Systematic Biology* 64: 1000–1017.

NicLughadha E. 1998. Preferential outcrossing in *Gomidesia* (Myrtaceae) is maintained by a postzygotic mechanism. *Reproductive biology in systematics, conservation and economic botany*: 363– 379.

NicLughadha E., Proença C. 1996. A survey of the reproductive biology of the Myrtoideae (Myrtaceae). *Annals of the Missouri Botanical Garden*: 480–503.

Nishida M. 1984. The anatomy and affinities of the petrified plants from the Tertiary of Chile III. Petrified woods from Mocha Island, Central Chile. 96–110 in: Nishida, M. (ed.), Contributions to the botany of the Andes, vol. 1. Tokyo: Academia Scientific Books.

Nishida M., Nishida H., Nasa T. 1988. Anatomy and affinities of the petrified plants from the tertiary of Chile V. *Journal of Plant Research* 101(3): 293–309.

O'Brien S.P., Loveys B.R., Grant W.J.R. 1996. Ultrastructure and function of floral nectaries of *Chamelaucium uncinatum* (Myrtaceae). *Annals of Botany* 78(2): 189–196.

Oksanen J., Kindt R., Legendre P., O'Hara B., Stevens M.H.H., Oksanen M.J., Suggests M.A.S.S. 2007. The vegan package. *Community ecology package* 10: 631–637.

Oliveira-Filho A.T., Fontes M.A.L. 2000. Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of Climate. *Biotropica* 32: 793–810.

Orlovich D.A., Drinnan A.N., Ladiges P.Y. 1999. Floral development in *Melaleuca* and *Callistemon* (Myrtaceae). *Australian Systematic Botany* 11: 689–710.

Oskolski A.A., Feng X.X., Jin J.H. 2013. *Myrtineoxylon* gen. nov.: The first fossil wood record of the tribe Myrteae (Myrtaceae) in eastern Asia. *Taxon* 62: 771–778.

Owen R. 1843. On the structure and homologies of the cephalic tentacles in the pearly nautilus. *Annals and Magazine of Natural History* 12: 305–311.

Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. *Proceedings of the Royal Society of London* B. 255: 37–45.

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401(6756): 877.

Palmer J.D. 1992. Mitochondrial DNA in plant systematics: applications and limitations. In *Molecular systematics of plants*: 36-49. Springer US.

Panti C. 2014. Myrtaceae fossil leaves from the Río Turbio Formation (Middle Eocene), Santa Cruz Province, Argentina. *Historical Biology: An International Journal of Paleobiology:* 459–469.

Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. *Bioinformatics* 20: 289–290.

Parra C. 2012. A new species of *Myrcianthes* (Myrtaceae) from Colombia. *Caldasia 34*(2): 277–282.

Paulino J.V., Prenner G., Mansano V.F., Teixeira S.P. 2014. Comparative development of rare cases of a polycarpellate gynoecium in an otherwise monocarpellate family, Leguminosae. *American Journal of Botany* 101: 572–586.

Pennington R.T., Hughes M., Moonlight P.W. 2015. The origins of tropical rainforest hyperdiversity. *Trends in plant science* 20(11): 693–695.

Perret M., Chautems A., Spichiger R., Barraclough T.G., Savolainen V. 2007. The geographical pattern of speciation and floral diversification in the neotropics: the tribe Sinningieae (Gesneriaceae) as a case study. *Evolution* 61(7): 1641–1660.

Pigg K.B., Stockey R.A., Maxwell S.L. 1993. *Paleomyrtinaea*, a new genus of permineralized myrtaceous fruits and seeds from the Eocene of British Columbia and Paleocene of North Dakota. *Canadian Journal of Botany* 71: 1–9.

Pimentel R.R., Natália A.D., Barreira P., Spala D.P., Cardim N.B., Souza M.C., Sá-Haiad B., Machado S.R., Rocha J.F., Santiago-Fernandes L.D.R. 2014. Development and evolution of the gynoecium in Myrteae (Myrtaceae) *Australian Journal of Botany* 62: 335–346.

Pirani J.R., Cortopassi-Laurino M. 1993. Flores e abelhas em São Paulo. São Paulo: Edusp/Fapesp,

Plunkett G.M., Lowry P.P., Frodin D.G., Wen J. 2005. Phylogeny and geography of *Schefflera*: pervasive polyphyly in the largest genus of Araliaceae. *Annals of the Missouri Botanical.* Gardens 92: 202–224.

Poole I., Mennegaa A.M.W., Cantrill D.J. 2003. Valdivian ecosystems in the Late Cretaceous and Early Tertiary of Antarctica: further evidence from myrtaceous and eucryphiaceous fossil wood. *Review of Palaeobotany and Palynology* 124 (1-2): 9–27.

Prenner G. 2004. New aspects in floral development of Papilionoideae: initiated but suppressed bracteoles and variable initiation of sepals. *Annals of Botany* 93: 537–545.

Prenner G. 2011. Floral ontogeny of Acacia celastrifolia: an enigmatic mimosoid legume with pronounced polyandry and multiple carpels. In: Wanntorp L, Ronse De Craene LP, eds. Flowers on the tree of life. Cambridge University Press, Cambridge: 256–278.

Prenner G., Rudall P.J. 2007. Comparative ontogeny of the cyathium in *Euphorbia* (Euphorbiaceae) and its allies: exploring the organ–flower–inflorescence boundary. *American Journal of Botany* 94: 1612–1629.

Prenner G., Box M.S., Cunniff J., Rudall P.J. 2008. The branching stamens of Ricinus and the homologies of the angiosperm stamen fascicle. *International Journal of Plant Sciences* 169: 735–744.

Prenner G., Bateman R.M., Rudall P.J. 2010. Floral formulae updated for routine inclusion in formal taxonomic descriptions. *Taxon* 59: 241–250.

Primack R.B. 1985. Longevity of individual flowers. *Annual Review of Ecology and Systematics* 16: 15–37.

Primack R.B. 1987. Relationships among flowers, fruits, and seeds. *Annual Review of Ecology and Systematics* 18: 409–430.

Proença C.E.B. 1992. Buzz-pollination - older and more wide-spread than we think? Journal of *Tropical Ecology* 8: 115–120.

Proença C.E.B, Gibbs P.E. 1994. Reproductive biology of eight sympatric Myrtaceae from central Brazil. *New Phytologist* 126: 343–354.

Purer E.A. 1942. Anatomy and ecology of Ammophila arenaria Link. Madrono 6(5): 167–171.

Quijano-Abril M.A., Callejas-Posada R., Miranda-Esquivel D.R. 2006. Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). *Journal of Biogeography* 33: 1266–1278.

R Core Team. 2017. A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria.

Rabosky D.L. 2006. Likelihood methods for detecting temporal shifts in diversification rates. *Evolution* 60(6): 1152–1164.

Rabosky D.L. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. *PloS one* 9(2): e89543.

Ragan M.A., Bird C.J., Rice E.L., Gutell R.R., Murphy C.A., Singh R.A. 1994. A molecular phylogeny of the marine red algae (*Rhodophyta*) based on the nuclear small-subunit rRNA gene. *Proceedings of the National Academy of Sciences* 91: 7276–7280.

Ramírez S.R., Nieh J.C., Quental T.B., Roubik D.W., Imperatriz-Fonseca V.L., Pierce N.E.
2010. A molecular phylogeny of the stingless bee genus *Melipona* (Hymenoptera: Apidae). *Molecular Phylogenetics and Evolution* 56(2): 519–525.

Raff R.A., Wray G.A. 1989. Heterochrony: developmental mechanisms and evolutionary results. *Journal of Evolutionary Biology* 2: 409–434.

Ragonese A.M. 1980. Leños fosiles de dicotiledoneas del Paleoceno de Patagonia, Argentina. I. *Myrceugenia chubutense* n. sp. (Myrtaceae). *Ameghiniana* 17: 297–311.

Reichenbach H.G.L. 1828. Conspectus regni vegetabilis per gradus naturales evoluti. Corolum cnobloch, Lipsiae.

Renner S.S. 1989. A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. *Annals of the Missouri Botanical Garden*: 496–518.

Renner S.S., Schaefer H. 2010. The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 365(1539): 423–435.

Revell L.J., Harmon L.J., Collar D.C. 2008. Phylogenetic signal, evolutionary process, and rate. *Systematic Biology* 57(4): 591–601.

Revell L.J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution* 3(2): 217–223.

Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. 2001. Rapid diversification of a species-rich genus of Neotropical rain forest trees. *Science*, 293(5538): 2242–2245.

Rocca M.A., Sazima M. 2010. Beyond hummingbird-flowers: the other side of ornithophily in the Neotropics. *Oecologia Australis 14*(1): 67–99.

Rodman J.E., Soltis P.S., Soltis D.E., Sytsma K.J., Karol K.J. 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. *American Journal of Botany* 85: 997–1006.

Roitman G., Montaldo N.H., Medan D. 1997. Pollination biology of *Myrrhinium atropurpureum* (Myrtaceae): sweet, fleshy petals attract frugivorous birds. *Biotropica*, 29(2): 162–168.

Ronse De Craene, L. P. 2007. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. *Annals of Botany* 100(3): 621–630.

Ronse De Craene LP. 2010. Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press.

Ronse De Craene L.P., Smets E.F. 1991. The impact of receptacular growth on polyandry in the Myrtales. *Botanical Journal of the Linnean Society* 105: 257–269.

Ronse De Craene L.P, Smets E.F. 1992. Complex polyandry in the Magnoliatae: definition, distribution and systematic value. *Nordic Journal of Botany* 12: 621–649.

Ronse De Craene L.P., Smets E.F. 1995. The distribution and systematic relevance of the androecial character oligomery. *Botanical Journal of the Linnean Society* 118:193–247.

Ronse De Craene L.P., Smets E.F. 1998. Notes on the evolution of androecial organisation in the Magnoliophytina (Angiosperms). *Plant Biology* 111: 77–86.

Rosenheim J.A., Schreiber, S.J., Williams N.M. 2016. Does an 'oversupply' of ovules cause pollen limitation? *New Phytologist, 210*(1): 324–332.

Rudall P.J., Bateman R.M. 2004. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. *New Phytologist* 162: 25–44.

Salywon A.M., Landrum L.R. 2007. Curitiba (Myrtaceae): A new genus from the Planalto of southern Brazil. *Brittonia*, 59(4): 301–307.

Sanderson M.J., Hufford L. 1996. *Homoplasy: the recurrence of similarity in evolution*. Academic Press.

Santos M.F. 2014. *Biogeografia de Myrcia s.I., taxonomia e filogenia do clado Sympodiomyrcia (Myrtaceae).* PhD Thesis, Universidade de Sao Paulo, Brazil.

Santos M.F., Lucas E., Sobral M., Sano P.T. 2015. New species of *Myrcia* s.l. (Myrtaceae) from Campo Rupestre, Atlantic Forest and Amazon Forest. *Phytotaxa* 222: 100–110.

Santos M.F., Sano P.T., Forest F., Lucas E. 2016. Phylogeny, morphology and circumscription of *Myrcia* sect. *Sympodiomyrcia* (*Myrcia* sl, Myrtaceae). *Taxon* 65(4): 759–774.

Santos M.F., Lucas E., Sano P.T., Buerki S., Staggemeier V.G., Forest F. 2017. Biogeographical patterns of *Myrcia* s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. *Molecular Phylogenetics and Evolution* 108: 34–48.

Saraswati P.K., Srinivasan M. S. 2015. Micropaleontology: Principles and Applications. Springer.

Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. *Molecular reproduction and development* 82(7-8): 518–529.

Schönenberger J., Endress P.K. 1998. Structure and Development of the Flowers in *Mendoncia*, *Pseudocalyx*, and *Thunbergia* (Acanthaceae) and their systematic implications. International Journal of Plant Sciences 159: 446–465.

Scotland R.W., Olmstead R.G., Bennett, J.R. 2003. Phylogeny reconstruction: the role of morphology. *Systematic Biology* 52(4): 539–548.

Scotland R.W. 2011. What is parallelism? Evolution and Development 13: 214–227.

Scott A.J. 1978a. A new species of *Myrtella* (Myrtaceae) from Australia and a synopsis of the genus. *Kew Bulletin*: 299–302.

Scott A.J. 1978b. A revision of Octamyrtus (Myrtaceae). Kew Bulletin: 303–309.

Scott A.J. 1978c. A revision of Rhodomyrtus (Myrtaceae). Kew Bulletin: 311–329.

Scott A.J. 1979a. A revision of Rhodamnia (Myrtaceae). Kew Bulletin: 429–459.

Scott A.J. 1979b. The austral-pacific species of Decaspermum (Myrtaceae). Kew Bulletin: 59-67.

Scott A.J. 1980. A synopsis of *Decaspermum* (Myrtaceae) in Southeast Asia and China. *Kew Bulletin:* 403-411.

Scott A.J. 1985. Decaspermum (Myrtaceae) in New Guinea. Kew Bulletin: 149–165.

Schupp E. W. 1993. Quantity, quality and the effectiveness of seed dispersal by animals. In *Frugivory and seed dispersal: ecological and evolutionary aspects*: 15-29. Springer Netherlands.

Shaffer H.B., Meylan P., McKnight M.L. 1997. Tests of turtle phylogeny: molecular, morphological, and paleontological approaches. *Systematic Biology* 46: 235–268.

Shaw J., Lickey E.B., Schilling E.E., Small R.L. 2007. Comparison of whole chloroplast genome sequences to choose non-coding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. *American Journal of Botany* 94: 275–288.

Silva A.L.G, Pinheiro M.C.B. 2007. Biologia floral e da polinização de quatro espécies de *Eugenia* L. (Myrtaceae). *Acta Botanica Brasilica* 21: 235–247.

Simon M.F., Grether R., de Queiroz L.P., Skema C., Pennington R.T., Hughes C.E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. *Proceedings of the National Academy of Sciences* 106(48): 20359–20364.

Simon M.F., Grether R., de Queiroz L.P., Särkinen T.E., Dutra V.F., Hughes C.E. 2011. The evolutionary history of *Mimosa* (Leguminosae): toward a phylogeny of the sensitive plants. *American Journal of Botany* 98(7): 1201–1221.

Smith J.F., Stevens A.C., Tepe E.J., Davidson C. 2008. Placing the origin of two species-rich genera in the late cretaceous with later species divergence in the tertiary: a phylogenetic, biogeographic and molecular dating analysis of *Piper* and *Peperomia* (Piperaceae). *Plant Systematics and Evolution* 275: 9–30.

Snow N. 2000. Systematic conspectus of Australasian Myrtinae (Myrtaceae). *Kew Bulletin* 55(3): 647–654.

Snow N. 2004. Systematics of Pilidiostigma (Myrtaceae). Systematic botany 29(2): 393-406.

Snow N. 2005. Five new combinations in Gossia (Myrtaceae) from Melanesia. Novon 15: 477–478.

Snow N. 2006. New species of *Gossia* N. Snow & Guymer and *Rhodomyrtus* (DC.) Hassk.(Myrtaceae) from Papua New Guinea *Austrobaileya*: 325–340.

Snow N. 2007. Systematics of the Australian species of *Rhodamnia* (Myrtaceae). *Systematic Botany Monographs v.82.*

Snow N. 2009. *Kanakomyrtus* (Myrtaceae): a new endemic genus from New Caledonia with linear stigma lobes and baccate fruits. *Systematic Botany* 34(2): 330–344.

Snow N., Guymer G.P. 2001. Revision of Australian species of Uromyrtus (Myrtaceae) and two new combinations for New Caledonia. *Systematic Botany* 26(4): 733–742.

Snow N., Cantley J. 2010. New Species of *Uromyrtus* and *Rhodomyrtus* (Myrtaceae: Myrteae) from Kamiali Wildlife Management Area, Papua New Guinea, with an Updated Key to *Rhodomyrtus. Harvard papers in botany 15*(1): 63–70.

Snow N., Wilson P.G. 2010. New species of *Eugenia* and *Gossia* (Myrtaceae: Myrteae) from Papua New Guinea. *Telopea 12*(3): 453–461.

Snow N., Guymer G.P., Sawvel G. 2003. Systematics of *Austromyrtus*, *Lenwebbia*, and the Australian species of *Gossia* (Myrtaceae). *Systematic Botany Monographs v.65.*

Snow N., McFadden J., Evans T.M., Salywon A.M., Wojciechowski M.F., Wilson, P.G. 2011. Morphological and molecular evidence of polyphyly in *Rhodomyrtus* (Myrtaceae: Myrteae). *Systematic Botany* 36(2): 390–404.

Sobral M., Faria J.E.Q., Proença C.E.B. 2010. A new species of *Algrizea* (Myrteae, Myrtaceae) from Bahia, Brazil. *Neodiversity* 5: 1–6.

Sobral M., Proença C.E.B., Souza M., Mazine F.F., Lucas E.J. 2016. Myrtaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. www.floradobrasil.jbrj.gov.br/jabot/floradobrasil.

Soejima A., Wen J. 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. *American Journal of Botany* 93(2): 278–287.

Soltis D.E., Kuzoff R.K., Conti E., Gornall R., Ferguson K. 1996. matK and rbcL gene sequence data indicate that *Saxifraga* (Saxifragaceae) is polyphyletic. *American Journal of Botany* 83: 371–382.

Staggemeier V.G., Diniz-Filho J.A.F., Morellato L.P.C. 2010. The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). *Journal of Ecology* 98(6): 1409–1421.

Staggemeier V.G., Diniz-Filho J.A.F., Forest F., Lucas, E. 2015. Phylogenetic analysis in *Myrcia* section *Aulomyrcia* and inferences on plant diversity in the Atlantic rainforest. *Annals of botany* 115(5): 747–61.

Staggemeier V.G., Cazetta E., Morellato L.P.C. 2017. Hyperdominance in fruit production in the Brazilian Atlantic rain forest: the functional role of plants in sustaining frugivores. *Biotropica* 49(1) 71–82.

Stebbins G. L. 1974. Flowering plants: evolution above the species level.

Stevens P.F. 2001 onwards. *Angiosperm Phylogeny Website*. Version 12, July 2012 (http://www.mobot.org/MOBOT/research/APweb/).

Sweeney P.W., Price R.A. 2000. Polyphyly of the genus *Dentaria* (Brassicaceae): evidence from trnL intron and ndhF sequence data. *Systematic Botany* 25: 468–478.

Sun Y., Skinner D., Liang G., Hulbert S. 1994. Phylogenetic analysis of *Sorghum* and related taxa using internal transcribed spacers of nuclear ribosomal DNA. *Theoretical and Applied Genetics* 89: 26–32.

297

Swenson U., Richardson J.E., Bartish I.V. 2008. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. *Cladistics* 24, 1006–1031.

Sytsma K.J., Litt A., Zjhra J., Pires C., Nepokroeff M., Conti E., Walker J., Wilson P.G. 2004. Clades, Clocks, and Continents: Historical and Biogeographical Analysis of Myrtaceae, Vochysiaceae, and Relatives in the Southern Hemisphere. *International Journal of Plant Sciences* 165 (S4): S85–S105

Soltis D.E., Soltis P.S., Nickrent D.L., Johnson L.A., Hahn W.J., Hoot S.B., Sweere J.A., Kuzoff R.K., Kron K.A., Chase M.K., Swensen S.M., Zimmer E.A., Chaw S.M., Gillespie L.J., Kress W.J., Sytsma K.J. 1997. Angiosperm phylogeny inferred from 18S Ribosomal DNA sequences. *Annals of the Missouri Botanical Gardens* 84: 149.

Taberlet P., Gielly L., Pautou G., Bouvet J. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. *Plant molecular biology* 17: 1105–1109.

Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* 10: 512–526.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30: 2725–2729.

Thornhill A.H., Hope G.S., Craven L.A., Crisp M.D. 2012. Pollen morphology of the Myrtaceae. Part 4: tribes Kanieae, Myrteae and Tristanieae. *Australian Journal of Botany* 60(3): 260–289.

Thornhill A.H., Macphail M. 2012. Fossil Myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: A review of fossil *Myrtaceidites* species. *Review of Palaeobotany and Palynology* 176–177: 1–23.

Thornhill A.H., Popple L.W., Carter R.J., Ho S.Y., Crisp M.D. 2012. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. *Molecular Phylogenetics and Evolution* 63(1): 15–27.

Thornhill A.H., Ho S.Y.W., Külheim C., Crisp M.D. 2015. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. *Molecular Phylogenetics and Evolution* 93: 29–43.

Tiffney B.H. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. *Annals of the Missouri Botanical Gardens* 71: 551–576.

Troncoso A., Suarez, M., de la Cruz, R., Palma-Heldt, S. 2002. Paleoflora de la Formación Ligorio Márquez (XI Región, Chile) en su localidad tipo: sistemática, edad e implicancias paleoclimáticas. *Revista Geológica de Chile* 29: 113–135.

Tucker S.C. 1992. The role of floral development in studies of legume evolution. *Canadian Journal of Botany* 70: 692–700.

Tucker S.C. 1997. Floral evolution, development, and convergence: the hierarchical-significance hypothesis. International Journal of Plants Sciences 158(6): S143–S161.

Tucker S.C. 2003. Floral development in legumes. Plant Physiology 131: 911–926.

Vamosi J.C., Vamosi, S.M. 2010. Key innovations within a geographical context in flowering plants: towards resolving Darwin's abominable mystery. *Ecology Letters* 13(10): 1270–1279.

Vasconcelos T.N.C, Proença C.E.B. 2015. Floral cost vs. floral display: Insights from the megadiverse Myrtales suggest that energetically expensive floral parts are less phylogenetically constrained. *American Journal of Botany* 102: 900–909.

Wagner A. 1998. The fate of duplicated genes: loss or new function? *Bioessays* 20: 785–788.

Wanninger A. 2015. Morphology is dead - long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. *Frontiers in Ecology and Evolution* 3: 54.

WCSP. 2017. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on <u>http://apps.kew.org/wcsp/</u>.<apps.kew.org/wcsp/>.

Webb C.J., Lloyd D.G. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. *New Zealand Journal of Botany* 24: 135–162.

Weberling F. 1989. Morphology of flowers and inflorescences. Cambridge University Press.

Webster M.A., Gilmartin P.M. 2003. A comparison of early floral ontogeny in wild-type and floral homeotic mutant phenotypes of *Primula*. *Planta* 216: 903–917.

Werneck F.P. 2011. The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. *Quaternary Science Reviews* 30(13): 1630–1648.

White C.T. 1951. Some noteworthy Myrtaceae from the Moluccas, New Guinea, and the Solomon Islands. *Journal of the Arnold Arboretum 32*(2): 139–149.

Wilf P., Johnson K.R., Cúneo N.R., Smith M.E., Singer B.S., Gandolfo M.A. 2005. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. *American Naturalist* 165: 634–650.

Willmer P. 2011. Pollination and floral ecology. Princeton University Press.

Wilson C.E., Forest F., Devey D.S., Lucas E.J. 2016. Phylogenetic relationships in *Calyptranthes* (Myrtaceae) with particular emphasis on its monophyly relative to *Myrcia s.I. Systematic Botany* 41: 378–386.

Wilson E.O. 1999. The diversity of life. WW Norton & Company.

Wilson P.G., O'Brien M.M., Gadek P.A., Quinn C.J. 2001. Myrtaceae revisited: a reassessment of infrafamilial groups. *American Journal of Botany* 88(11): 2013–2025.

Wilson P.G., O'brien M.M., Heslewood M.M., Quinn C.J. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. *Plant Systematics and Evolution* 251(1): 3–19.

Wilson P.G. 2011. Myrtaceae. In *The families and genera of vascular plants. Vol. X. Flowering plants Eudicots: Sapindales, Cucurbitales, Myrtaceae.* Kubitzki K. (Ed). Heidelberg: Springer-Verlag, 212–271.

Xue B., Su Y.C.F., Mols J.B., Keßler P.J.A., Saunders R.M.K. 2011. Further fragmentation of the polyphyletic genus *Polyalthia* (Annonaceae): molecular phylogenetic support for a broader delimitation of *Marsypopetalum*. *Systematic and Biodiversity* 9: 17–26.

Acknowledgements

There is no way I will be able to remember and mention every single person and institution involved in the development of my PhD, but I will give a try:

First, I thank the funding agencies and projects that supported this work in many ways: Capes (SwB grant 7512-13-9) for the bursary and for dealing with the university fees; CNPq, Reflora, the Emily Holmes Memorial Scholarship (2015, 2016) and the Bentham-Moxon trust (2017) are thanked for funding assistance that was crutial to develop laboratorial work and field collections.

Also thanks to the institutions that issued the collection permits: IBAMA, SISBIO (Brazil), NEPA (Jamaica), Sinac, Conagebio (Costa Rica), BJSD herbarium (Dominican Republic), Assemblee de la Priovince Nord, Assemblee de la Priovince Sud (New Caledonia), NParks (Singapore) and Sabah Biodiversity Centre (Sabah – Malaysia).

Now the most difficult part, the people involved in this process (I'm sure I will forget someone)...

First and above all I must say a huge thanks to my family who has been super supportive during this last four years of distance.

A todos os brasileiros que vieram ao Kew e me fizeram me sentir mais pertinho de casa apesar da distância, principalmente: Jair Faria, Matheus Santos, Fiorella Mazine (e familia), Tania Moura, Leonardo Borges, Ana Raquel Lourenço, Juliana Lovo, Marcelo Kubo (Illustrator mudou minha vida!), Duane Lima, Thaise Emilio (e familia), Leidiana Santos, Bruno Amorim, Eddley Pessoa, Vanessa Staggemeier, Augusto Giaretta, Marcelo Moro, Eduardo Fernandez, Sarah Leite e Karina Gagliardi.

Thanks to Hossein for the Thai lunch of every Friday and to Joe Hisaishi for the "25th Studio Chibli Anniversary Concert in Budokan" (two big sources of motivation)

To my dearest friends at Kew without whose support this thesis would have been much more difficult (and boring!) to finish: Maria Conejero, Roberta Gargiulo, Pepijn Kooij, Andrea Baquero, Mags Jones, Laszlo Csiba, Gwil Lewis, Petra Broddle, Tim Fulcher, Tania Durt, Shawn O'Donnell, Eimear NicLughadha, Marcelo Sellaro, Daniela Zappi, Bea Zappi-Taylor, Yee Wen Low and Bob Alkin.

For helping with collection permits and immense assistance in the field I thank: Priscila O. Rosa, Jenifer Lopes, Luiz Fonseca (Brazil), Brigido Peguero (Dominican Republic), Reinaldo Aguilar, Diego Bogarin (Costa Rica), Julia Soewarto, Laure Barrabe (New Caledonia), Judeen Mickel, Keron Campbell, (Jamaica), Nigel Taylor, Elango Velautham (Singapore), Berhaman Ahmad, Jamili Nais (Sabah - Malaysia).

A special thanks to the myrtologists: Jair for sharing immense field knowledge; Duane, Bruno and Matheus for all the useful discussion and shared insights into the *Myrcia* world and to Vanessinha Staggemeier for very useful comments on Chapter 6 and for being a true inspiration in improving my methods presentation. Also thanks to Andrew Thornhill for reviewing and helping to improve a lot Chapter 1; to Peter Endress for multiple comments on Chapter 3 and to Marion Chartier for assisting with all the statistics in Chapter 7.

Last, thanks to my awesome team of supervisors:

To Astrid Wingler for useful comments in all manuscripts and for the disposition to always keep the link with UCL working.

To Gerhard Prenner for guiding me through the extensive and complex terminology of floral ontogeny and morphology.

To Eve Lucas: Thanks for supporting all my "trippy" ideas, for helping me improving my academic writing so much along these years, for sharing enthusiasm in Myrtaceae systematics and, most obviously, thanks for teaching me how to open a bottle of beer with a fork (very useful indeed)! Above all, thank you so much for your patience and kindness - you got a friend for life! Beijo, querida, e desculpa alguma coisa

To all of those mentioned above, thanks for being part of this story! See you around e até a próxima!