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Abstract 

The Lophotrochozoa is an evolutionary interesting clade comprising many and mostly 

marine phyla. Despite their diverse morphology, these animals often have a biphasic life-

cycle in form of a free-swimming, ciliated larval stage, the trochophore, and seemingly 

retained a highly conserved developmental pattern called spiral cleavage. This opens the 

door for comparative studies to better understand the shared mechanisms of the spiralian 

developmental program, its deviations and the evolution of lophotrochozoan body plans. 

Here I studied the early development and larva formation in the polyclad flatworm 

Maritigrella crozieri and compared it with other members of this evolutionarily diverse 

group of animals. 

In order to conduct this research, I first built a light-sheet microscope (OpenSPIM) that 

would allow me to follow the development of the polyclad embryo from the zygote into 

the larval stage and to acquire sophisticated 3d-reconstructions of fixed embryonic stages. 

I then used this and other techniques to characterise in detail the early development of M. 

crozieri and its conserved spiral cleavage pattern. Precise volume measurements of 3d-

reconstructed early blastomeres and the investigations of associated cleavage patterns 

indicate that this polyclad worm may not follow a strictly equal spiral cleavage type, as was 

previously thought. I investigated the cleavage pattern and fate of micromere 4d, which in 

M. crozieri gives rise to mesoderm and generates bilaterally symmetric embryos at a 

cellular level.  A first cell lineage analysis of this organism involved long-term live imaging 

recordings and point to a conserved fate of blastomeres that, like in other spiral cleavers, 
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give rise to ectodermally derived structures, specifically the larva’s locomotion system 

(ciliary band) and a sensory organ at the apical point (apical organ). These findings 

strengthen the idea that these structures may be homologous to those found in other 

trochophore larvae. 

This work increased the current knowledge of the early development of the polyclad 

flatworm M. crozieri, which facilitates evolutionary comparisons of the development of 

different flatworms and lophotrochozoans more broadly and can contribute to addressing 

the homology of marine larvae. 
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Statement of impact 

With so many marine animal phyla that undergo the highly conserved developmental 

pattern called spiral cleavage, it is of great interest for evolutionary biologists to study the 

spiralian developmental program in as many representatives as possible. This allows to 

understand the fundamentals of the evolutionary mechanism that generated an 

astonishingly diversity of marine invertebrate species in the largest clade of bilaterally 

symmetric animals: the Lophotrochozoa. 

The polyclad flatworms are a member of the Lophotrochozoa and represent an 

evolutionary particularly important group, as they are the only platyhelminths that have 

retained the conserved spiral cleavage mode, while embryogenesis in most other 

flatworms is highly derived. Additionally, many polyclads have a larval stage. Studying the 

early spiral cleavage mechanism, embryogenesis and polyclad larvae, contributes not only 

to a better understanding of the evolution of the Platyhelminthes but is interesting for the 

relationships of the Lophotrochozoa as a whole. 
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CHAPTER 1 Introduction 

1.1 History of the phylogeny of the Lophotrochozoa 

Since the publication of Darwin’s ‘On the Origin of Species’ in 1859, zoologists have tried to 

devise an evolutionary classification of the animals in order to systematise the animals and 

as a framework to understand their evolution.  Until the adoption of molecular data in 

recent years, this tree of the animal phyla was based on an understanding and 

interpretation of their shared morphology.  One source of particularly important 

information came from comparative studies of the embryology of different phyla, which 

often revealed striking similarities between groups with otherwise unreconcilably different 

adult body plans.  The impact of embryological studies can perhaps be best illustrated by 

Kowalevski’s discovery of the tadpole larva of sea squirts which revealed their link to the 

chordates rather than to the molluscs as has been suggested by their adult body plans (Raff 

and Love, 2004). The chordate affinity of the urochordates has, of course, been confirmed 

by more recent molecular studies which have revolutionised our understanding of the 

relationships between animal phyla.   

In this thesis I focus on comparisons of embryological events between members of one 

major clade of animals that was similarly ultimately confirmed by molecular studies - the 

Lophotrochozoa (Aguinaldo et al., 1997; Dunn et al., 2008; Halanych et al., 1995; Hejnol et 

al., 2009; Pick et al., 2010) (Figure 1.1).  This clade contains approximately a dozen very 

diverse phyla, which, on considering their adult body plans, are not obviously related. It has 

long been recognised, however, that different members of the Lophotrochozoa share 
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striking similarities in the earliest events of their embryology, most notably sharing a mode 

of early blastomere cleavages called spiral cleavage. Development in members of several 

lophotrochozaon phyla leads to the elaboration of a larval type named a trochophore after 

the ring of long locomotory cilia (prototroch) typically observed (troch = wheel). 

My specific study concerns the early development of one group of lophotrochozoans - the 

Platyhelminthes or flatworms.  Several orders of flatworms have clear signs of spiral 

cleavage but in only one order - the polyclads - does development result in a ciliated larva.  

This polyclad Müller’s larva is similar to but by no means identical to the trochophore larvae 

of other lophotrochozoans. It is one aim of my work to study the embryonic development 

in the polyclad Maritigrella crozieri and see if it is possible to discern specific similarities in 

the way in which Müller’s larvae and trochophore larvae are built to see if there is evidence 

for them being homologous. 

 

Figure 1.1 - A phylogenetic tree based on 18S rRNA. A consensus of 18S rRNA phylogenies 
(from Adoutte, Balavoine, Lartillot, & De Rosa (1999) 
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1.2 Phylogeny of the Platyhelminthes 

As is true for many phyla, the exact place of the Platyhelminthes within the Lophotrochozoa 

is still a matter of debate (Laumer et al., 2015a; Struck et al., 2014). But an attempt to 

resolve the relationships within the phylum Platyhelminthes has recently been advanced 

by two phylogenetic studies with mostly overlapping consensus using molecular 

sequencing data (Egger et al., 2015; Laumer et al., 2015b). Previous studies based on 

morphological characters by Ehlers (1985) and Smith et al. (1986) already suggested a split 

into the two monophyletic groups within the flatworms:  the Catenulida and the 

Rhabditophora. The latter show various kinds of autapomorphies, for example gland cells 

called rhabdites which give the group its name (Smith et al., 1982) and two changes to their 

mitochondrial genetic code (Telford et al., 2000). Also from a classical disposition, it was 

assumed that the early diverging flatworms Catenulida, Macrostomorpha and Polycladida, 

all show the plesiomorphic and likely primitive characteristic of endolecithal egg production 

(yolk incorporated into the embryonic blastomeres) and have at least partially retained 

spiral cleavage (Martín-Durán and Egger, 2012; Westheide and Rieger, 2013) (although the 

Catenulida have not been adequately studied yet). The recently published phylogenetic 

tree of flatworms by Egger et al. (2015) (Figure 1.2) as well as by Laumer et al. (2015) 

confirmed the relatively early emergence of polyclad flatworms, although the 

Macrostomorpha emerge before the polyclads. The Lecithoepitheliata are the closest 

relatives of polyclads suggesting convergent evolution of ectolecithal eggs in the 

Lecithoepitheliata and Euneoophora (Figure 1.2). While triclads and other euneoophorans 

show a highly irregular and disperse form of cleavage referred to as blastomere anarchy, 
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the polyclads have retained a highly conserved form of spiral cleavage pattern during 

development and are the only flatworms that exhibit a planktotrophic larval stage (Figure 

1.2). It is important to point out that if polyclad larvae are homologous to trochophore 

larvae, then a larval stage must have been lost in some of the other flatworm groups, such 

as the earlier branching Catenulida (where development needs to be reassessed), 

Lecithoepitheliata and Macrostomorpha. This point will be discussed in more detail later 

on. 

 

Figure 1.2 - A recently published phylogenetic tree of the flatworms (after Egger et al. 2015) 
based on transcriptomic and phylogenomic analysis showing the basal position of the 
Polycladida (with endolecithal eggs) with the Lecithoepitheliata (with ectolecithal eggs) as 
its sister taxon. A planktotrophic larval stage similar to trochophore larvae found in 
annelids, molluscs, sipunculids and bryozoans is only present in the Polycladida. 
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1.3 Platyhelminthes: body simplicity with complex life-cycles 

The Platyhelminthes, or flatworms, are a highly successful lophotrochozoan phylum with 

more than 22,500 species found in both marine and freshwater habitats and occasionally 

on land (Westheide and Rieger, 2013). They are renowned for their remarkable 

regenerative capabilities. Roughly three-quarters of species described belong to the 

Neodermata and live a parasitic lifestyle with complex life-cycles that involve highly derived 

larval types, while the free-living members known as the “Turbellaria” represent a 

paraphyletic taxon. Platyhelminthes are soft-bodied, non-segmented and acoelomate, 

meaning that they have no body cavity other than the gut and nearly all flatworms 

additionally lack a separate mouth and anus. Furthermore, absence of any respiratory or 

circulatory system is thought to constrain the body size of the free-living flatworms so that 

most members are ~ 1 mm in size and larger species are dorso-ventrally flattened giving 

them their name. In many of the free-living flatworms both male and female reproductive 

organs are present (hermaphrodite) (Figure 1.3). The free-living flatworms can be easily 

recognised by their characteristic mode of locomotion (gliding along the surface), driven by 

the coordinated, simultaneous beating of thousands of epidermal cilia (Westheide and 

Rieger, 2013). 
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Figure 1.3 - Schematic representation of the cotylean polyclad flatworm Pseudoceros from 
dorsal (left) and ventral (right). Inset: Reproductive anatomy; cg = cement glands, fp = 
female pore, ov = oviducts, p = prostate, ph = pharynx, st = stylet, sv = seminal vesicle, vd =  
vas deferens, (after Newman & Cannon, 1998). Adult polyclad flatworms are characterised 
by their leaf-like form and their highly branched intestine (poly = many, clades = branches) 
and consist of two suborders, the Acotylea and Cotylea, defined by the presence (Cotylea) 
or absence (Acotylea) of a glando-muscular adhesive organ called a sucker or cotyl. 

1.4 Summary of spiral cleavage in the Lophotrochozoa 

1.4.1 Cleavage pattern 

Animals typically start their life as a fertilised egg, the zygote, and develop through one of 

two recognisable cleavage patterns: radial or spiral cleavage. Polyclad flatworms, like many 

other lophotrochozoans including annelids, nemerteans, molluscs, undergo spiral cleavage. 

It begins with two meridional divisions and results in four cells arranged like an equator 
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around the central animal-vegetal axis and these define four quadrants, A, B, C, D (Figure 

1.4). 

After the 4-cell stage, a characteristic unequal cleavage takes place that transitions the 

embryo into an eight-cell stage, consisting of four larger macromeres, positioned vegetally 

(the first quartet (1Q = 1A, 1B, 1C, 1D)), with four smaller animal micromeres (1q = 1a, 1b, 

1c, 1d) sitting above (Figure 1.4). During this division round, the typical spiral deformations 

(SD) of macromeres are clearly visible in their helical twist towards one side with respect 

to the animal-vegetal axis. This is best seen if the embryo is viewed from the animal pole 

(see Figure 1.4, 8-cell stages). The spiral shape taken by all four macromeres can be either 

clockwise when viewed from the animal pole (dexiotropic) or counterclockwise 

(laeotropic). 

The larger macromeres subsequently undergo further division rounds that sequentially 

form the second and then the third quartets (tiers) of micromeres. In the course of these 

divisions the spiral deformations appear in alternating dexiotropic/laeotropic directions up 

to the fifth cleavage (the rule of alternation). At the same time, the existing micromeres 

also divide and the embryo, which has so far followed the stereotypic spiral cleavage 

pattern reaches a 32-cell stage consisting of 8 cells per quadrant (A-D). In each case these 

are arranged in three distinct quartets (see Figure 1.4). 

A fourth and sometimes even a fifth quartet of blastomeres may then be generated by 

divisions of the macromeres; after this point cleavages become more variable and the 

divisions less synchronous. 
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Thanks to the regularity and reproducibility of these early divisions, each cell can be 

individually recognised across different embryos and indeed across embryos from different 

phyla. A scheme of blastomere nomenclature, as indicated in Figure 1.4, introduced by 

(Wilson, 1892) and today mainly based on Conklin’s original study on the slipper snail 

Crepidula fornicata (Conklin, 1897) can therefore be reliably used to label each individual 

blastomere across the spirally cleaving phyla. 

1.4.2 The presence of animal and vegetal cross-furrow cells 

Intriguingly, in spiral cleaving lophotrochozoans, at the four-cell stage each of the 

blastomeres represents a quadrant, which typically contribute to the lateral left (A), lateral 

right (C), anterior ventral (B) and the posterior dorsal (D) body tissues respectively (Henry 

and Martindale, 1999). A peculiarity often observed at this stage and in emerging 

macromeres of subsequent embryonic stages is their slight displacement dorsally or 

vegetally in such a manner that a vegetal and an animal cross-furrow emerges (Figure 1.4, 

4-cell stage, vegetal cross-furrow indicated by dashed lines). Cross-furrows yield already 

the advantage for the observer to readily distinguish A and C blastomeres from B and D 

blastomeres. The D quadrant is typically observed to be one of the vegetal cross-furrow 

cells and is of particular interest for three reasons: i) during early development the D 

quadrant is associated with the future dorsal-ventral axis; ii) it has been shown to function 

in some species as an embryonic organizer, most notably demonstrated in molluscan 

embryos (see review by Lambert, 2010) and iii) the D macromere lineage is the sole source 

of the so-called endomesoderm (giving rise to both endoderm and mesoderm). 
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Figure 1.4 - Schematics of the spiral quartet cleavage from zygote to the 32-cell stage. The 
4-cell stage consists of two blastomeres, which are positioned more vegetally. These touch 
each other on the ventral side forming the vegetal cross-furrow (vcfc: B and D). Likewise, 
there are two animal cross-furrow blastomeres (A and C). The third cleavage is shown as a 
dexiotropic (clockwise) division as indicated by arrows at the 8-cell stage. The subsequent 
division of macromeres at the 16-cell stage is shown as laeotropic (counterclockwise) and 
the 32-cell stage as another dexiotropic division. Q = A, B, C, D; q = a, b, c, d; vcfc = vegetal 
cross-furrow cell. Four- and eight-cell stages after Kühn (1971) and Robert (1902) 
respectively. 
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1.4.3 Constancy of blastomere identification and fate 

Because the placement of blastomeres is so similar in the spirally cleaving embryos, 

individual quartets and their blastomeres can be identified across species. This is of great 

importance for the comparative study of developmental patterns across Lophotrochozoa. 

The first detailed comparisons of cell fates of individual blastomeres in lophotrochozoans 

date back to the late 19th century, in which a striking degree of conservation was revealed 

(Guralnick, 2002).  

The first three quartets of micromeres (1q, 2q, 3q) characteristically give rise to ectodermal 

structures comprising head (1q), mouth (2q) and most of the trunk (2q), but also form 

mesoderm, which therefore is referred to as ectomesoderm (2q/3q) (see Figure 1.5). Most 

endodermal structures derive from the fourth quartet of micromeres and macromeres (4q 

and 4Q). However, one of the blastomeres of the fourth quartet of micromeres (4q) once 

again gives rise to endodermal and mesodermal structures (endomesoderm) and is 

specifically found among the D-quadrant lineage, exemplary in form of a single blastomere 

4d (see Lambert (2010) for a minireview and chapter IV for more details). The 4d 

blastomere, also called mesentoblast, was first described by Wilson in 1892 and became 

eventually the classic example for a conserved cell fate shared across spirally cleaving 

lophotrochozoan members. 
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Figure 1.5 - The four quartets of micromeres and the diversity of their cell fates in different 
members of the Lophotrochozoa from Lyons & Henry (2014) after Henry & Martindale 
(1999) 
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1.4.4 Equal or unequal spiral cleavage: a way of specifying the D-quadrant 

While the highly conserved spiral early cleavage pattern is widely found in lophotrochozoan 

embryos, variations exist (Hejnol, 2010). One of the most common ways in which spiral 

embryos may differ is evident after the first two divisions resulting in a four-cell embryo. 

At this point spiral cleavage has been categorised into two distinct types, which are thought 

to represent two ways of specifying the D-quadrant. The first class comprises equal 

cleavers, whereby 4-cell stage embryos with four indistinguishable blastomeres (A, B, C and 

D) form. The second class includes all unequal cleavers, in which blastomeres at the 4-cell 

stage have distinct sizes. In unequal cleavers, the D blastomere, which is usually one of the 

vegetal cross-furrow cells (vcfc) (Figure 1.1, 4-cell stage) typically is the largest of the four 

blastomeres (Freeman and Lundelius, 1992; Lambert and Nagy, 2003). The general 

explanation is that, during their first two cleavages, unequal cleavers differentiate the 

quadrants by differentially distributing an unknown set of key factors into specific cells. 

Such a mechanism has been shown for example in the mud snail Ilyanassa obsoleta 

(Render, 1989). The D quadrant is thus specified very early on. In equal spiral cleavers, on 

the contrary, D-quadrant specification is thought to take place by an inductive interaction, 

usually between one of the large macromeres and the first quartet of micromeres (for a 

review see Lyons & Henry (2014)) and therefore the specification of the D quadrant occurs 

later in development and requires at least five division cycles (Freeman and Lundelius, 

1992). The earliest signs of such an inductive specification process have been observed in 

gastropods around the 24-cell stage (van den Biggelaar and Haszprunar, 1996). 
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1.4.5 The link of a dorsal “organizer” and MAPK activation in the D quadrant of spiral 

cleavers 

Initially, the spiralian developmental program was seen as a mosaic of determined, self-

differentiating cells (Costello, 1945; Wilson, 1904). While this might be partly true, 

experimental studies on annelids and molluscs have shown that the D quadrant gives rise 

to a dorsal “organizer”, which can determine the fate of adjacent micromeres and is 

involved in the establishment of the dorsoventral axis (Clement, 1962; Dorresteijn et al., 

1987; Henry, 2002; Henry and Martindale, 1987; Render, 1989; Verdonk and Van den 

Biggelaar, 1983). More recent studies have shown that this organizer activity may be a 

result of the activation of the MAPK cascade signalling pathway in macromere 3D and might 

be conserved within the spiralian developmental program (Lambert and Nagy, 2001). This 

has been investigated so far in ten spiral cleaving animals (six mollusc species (Henry and 

Perry, 2008; Koop et al., 2007; Lambert and Nagy, 2001; Lambert and Nagy, 2003), 3 annelid 

species (Amiel et al., 2013; Lambert and Nagy, 2003; Pfeifer et al., 2014)) and one bryozoan 

species, (Vellutini et al., 2016). In molluscs activation of MAPK in 3D seems to represent the 

ancestral state. However, in the mud snail Ilyanassa obsolete, where a role of the MAPK 

pathway was first described, the activity was shown to additionally spread to some of the 

overlying micromeres, which has later been interpreted to be a more derived feature 

(Lambert, 2009). In the annelid Hydroides hexagonus MAPK activity was restricted to 

micromere 4d and in the bryozoan Membranipora membranacea to 3D only. These 

similarities suggested that a dorsal organiser linked to MAPK activation may be indeed 

conserved across spiral cleaving animals. More recently however, investigations of the 
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MAPK cascade in two other annelids (Capitella sp. and Platynereis dumerilii) showed that 

the signal is absent during early cleavage and that MAPK might have a different role as 

shown by its activity in cells around the blastopore during gastrulation (Amiel et al., 2013; 

Pfeifer et al., 2014). The annelids therefore indicate a high level of variability regarding the 

link between MAPK activity and a dorsal organizer. More investigations of other spiral 

cleaving lophotrochozoans will clarify whether this link is conserved or not. 

1.4.6 The spiral cleavage pattern in Platyhelminthes 

The polyclads are the only flatworms that have retained a highly conserved form of spiral 

cleavage during early development but a significant deviation that has been observed is the 

formation of the fourth quartet of micromeres, and the fate of its daughter cells, the yolk-

rich and untypically large micromeres 3a-3c, which together with macromeres 4A-4D 

apparently have a degenerative fate and do not contribute to any embryonic structure 

(Boyer et al., 1998; Surface, 1907). In the basally branching Macrostomorpha, spirality can 

be observed only up to the third cleavage (Morris et al., 2004) and in the Lecithoepitheliata 

to the 20-cell stage (Reisinger and Cichocki, 1974; Westheide and Rieger, 2013). Also in the 

Proseriata spiral cleavage was described with a typical 8-cell stage of four macromeres and 

four micromeres that continues at least up to the 12-cell stage and possibly even further 

(Giesa, 1966). All other Platyhelminthes including the most commonly studied triclads 

(often called planarians), have a highly modified embryogenesis that cannot be recognised 

as spiral cleavage. Cell lineage studies in flatworms only exist so far for one polyclad species, 

Hoploplana inquilina (Boyer et al., 1998; Surface, 1907). Preliminarily the fate of spiral 

quartets during the earliest cleavages have been described in one representative of the 
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Lecitopeitheliata, Xenoprorhynchus steinbocki (Reisinger and Cichocki, 1974). Additionally, 

in the macrostomorphan flatworm Macrostomum lignano the embryonic origins of 

specialised hull cells have been investigated via a cell lineage study based on 4D microscopy 

(Willems et al., 2009). These hull cells, which are rich in yolk and start to coat other 

embryonic blastomeres, do not exist in strictly endolecithal polyclad embryos and 

represent a significant deviations of the canonical spiral cleavage pattern (Willems et al., 

2009), which is highlighted by the fact that they originate from the second quartet of 

macromeres (2Q), which rules out the possibility of a 3D macromere and then a 4d 

micromere that classically gives rise to endomesoderm in all other spiral cleaving embryos. 

However, the fact that the quartet spiral cleavage is found in the earlier branching 

flatworms, makes it most likely the plesiomorphic cleavage pattern in platyhelminths. 

Notably, many polyclads have additionally to their spiral cleavage pattern a biphasic life 

cycle with planktonic larvae that can be compared to the typical lophotrochozoan larva, 

the trochophore. 

1.5 The spiralian trochophore larva 

The trochophore is the characteristic larval type of lophotrochozoan protostomes and is 

found in annelids, including sipunculids, molluscs and bryozoans. The larva is equipped with 

a preoral ciliated band (the prototroch), which separates the anterior region of the larva 

(the episphere) from the posterior region and is mainly used for locomotion and filter-

feeding in the water column (Figure 1.6). 
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1.5.1 Trochophore structures and their origins 

In a typical trochophore the episphere consists of well conserved larval structures derived 

from the first quartet of micromeres (1q), including apical “sensory” organs and 

prototrochal cells. The main components of the prototroch originates from specialised 

founder cells 1q2, called trochoblasts (Henry et al., 2007; Nielsen, 2005). While the majority 

of the primary prototroch is derived from these cells, accessory trochoblasts in form of 

blastomeres 1q12 are also often present and contribute to the final prototroch structure. 

There are other types of ciliated bands which are found in a trochophore larvae from some 

but not all species. Examples are the metatroch, which is usually associated with the 

capturing of food particles or a perianal ring, and the terminal telotroch that can provide 

additional locomotory functions (compare Figure 1.6). Ciliated structures such as the 

metatroch and telotroch vary significantly among lophotrochozoan larvae and their 

homology has been questioned (Hejnol et al., 2007; Henry et al., 2007). 

1.5.2 Apical organs 

The most obvious neural structure of the trochophore is the apical organ (or apical 

ganglion) which is canonically equipped with long sensory cilia that form an apical tuft. Such 

apical organs are part of the nervous system and derive from apical rosette cells 1q111 while 

other central nervous structures such as the cerebral ganglia in a generalised annelid derive 

from their sister cells micromeres 1c112 (right cerebral ganglia) and 1d112 (Figure 1.6) 

(Nielsen, 2012a). 
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Figure 1.6 - A generalised annelid trochophore larva and contributions of the first and 
second quartet blastomeres to certain structures (after Nielsen, 2012b) 

In most Lophotrochozoa a cell type, commonly found in the apical organ is the large flask-

shaped receptor cell with serotonin-like and/or FMRFamide-like immunoreactivity. There 

are typically four of these flask cells found but sometimes 8-10 cells are present. Other cell 

types bear long cilia and supplement the apical tuft (Richter et al., 2010) (Figure 1.7). 

Additionally, peripheral, non-flask shaped cells can be present that surround the flask cells 

and connect them to the underlying neuropil (Schmidt-Rhaesa et al., 2016) (Figure 1.7). 

While it is clear that the apical organ serves as a sensory organ, its specific function has 
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never been fully revealed. Recently it was suggested that apical organs can control larval 

settlement in molluscs (Hadfield et al., 2000) and annelids (Conzelmann et al., 2013), and 

could be involved in the coordination of effector organs, such as ciliary fields and 

musculature. However, it is also known that some larvae without an apical organ can settle 

and more experimental studies will be needed before an appropriate answer to this 

interesting question will be found (Schmidt-Rhaesa et al., 2016). 

As in polyclad flatworms, ciliated larvae with apical sensory organs are also present in spiral 

cleaving nemertines (Nielsen, 2012b) and it has been suggested that these nemertean 

pilidium larvae are homologous to trochophore larvae (see Nielsen (2005) and citations 

therein). 

 

 

Figure 1.7 - An apical organ from the entoproct Loxosomella murmanica with flask-shaped 
receptor cells (fc) and surrounding peripheral cells (pec) that connect to the neuropil (np). 
After Richter et al. (2010) 
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1.6 Polyclad flatworms and their larval types 

1.6.1 Polyclad flatworms 

Adult polyclad flatworms are characterised by their leaf-like form and their highly branched 

intestine (poly = many, clades = branches) and consist of two suborders, the Acotylea and 

Cotylea, defined by the presence (Cotylea) or absence (Acotylea) of a glando-muscular 

adhesive organ called a sucker or cotyl (Figure 1.3). Only 1 mm thick, polyclads can reach 

relatively large body sizes, typically between 10 to 50 mm in length, and are among the 

largest of the free-living flatworms. Due to their soft appearance and sometimes beautiful 

colour patterns the animals are often confused with nudibranch molluscs (Cannon, 2003).  

1.6.2 Larval types of polyclad flatworms 

In 1850 the first description of several polyclad flatworm larvae characterised by varying 

numbers of projecting lobes and eyes and their association with an adult animal was 

published (Müller, 1850). The two most characteristic polyclad larvae are the Müller’s larva 

(Figure 1.9) with (usually) eight projecting lobes and three simple eyes (two cerebral eyes 

and one epithelial eye) (Figure 1.9, B) and the similar looking four-lobed Goette’s larvae 

(Figure 1.8). A so-called Kato’s larva is found in Pseudoceros reticulata (Teshirogi et al., 

1981; Wang and YU, 2008) with highly reduced lobes and can be interpreted as a 

transitional stage between larva and juvenile. While the Müller’s larva is abundant in both 

suborders of polyclads (Cotylea and Acotylea) other larval types including Goette’s and 

Kato’s larvae together with direct developers are constrained to the Acotylea (Martín-

Durán and Egger, 2012). The lobes of the polyclad larvae comprise several rows of ciliary 
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band cells, which can have distinct numbers depending on the species (Lacalli, 1982) (Figure 

1.9, B, C). These cells carry the long cilia and together function as a well-developed 

locomotory organ, which is also probably used for feeding (Ruppert, 1978). Aside from the 

number of lobes body shapes can also differ between polyclad larvae. However, all are 

equipped with an apical sensory organ (previously described as a frontal organ), which 

bears single long cilia (Figure 1.8) and resembles the apical organs found in other 

trochophore larvae due to its similar overall structure, and the presence of similar cell-types 

(Ruppert, 1978). 
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Figure 1.8 - Lateral view of the anatomy of a four-lobed Goette’s larva (pelagic stage). The 
reconstruction is based on serial transverse sections. (at) apical tuft, (agc) apical organ 
gland cells, (ce) cerebral eyes, (csc) ciliated sensory cell, (ecl) expanded and clubshaped 
cilia, (ent) entodermal cell, (lpd) lipid droplets, (prn) protonephridium, (pt) posterior tuft, 
(rbd) rhabdites. After Ruppert 1978. 
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1.7 Larval evolution in polyclad flatworms 

The majority of animals are marine organisms and most of them have complex life cycles 

in the form of at least one larval stage with often completely different body morphologies 

than their adult stages. This was first discovered during the 19th century, a time when 

naturalists like Johannes Müller, who also described for the first time the larva of a polyclad 

flatworm (Müller, 1850), sampled and identified many types of larvae from the plankton. 

This activity went hand in hand with raising major questions about animal diversity, 

relationships and origins (Hall and Wake, 1999). For the Lophotrochozoa one fundamental 

question is still of interest for evolutionary biologists: Whether morphologically similar 

structures, found in different phyla are homologous or whether they evolved 

independently. 

From the descriptions of the polyclad larvae and the trochophore in the previous sections 

it becomes clear that both larval types share similar structures such as the apical organ or 

ciliary bands, which is why the polyclad larva has been previously interpreted as a derived 

trochophore (Nielsen, 2005). To explore a possible homology of polyclad larvae and the 

trochophore larva of other lophotrochozoans implies that a primary larva was ancestral in 

the platyhelminths. The phylogenetic position of Catenulida and Macrostomorpha as 

earlier branches than the Polycladida mean that a larval stage must have been lost in both 

these flatworm groups. This is also the case in the sister group of the Polycladida, the 

Lecithoepitheliata, as well as the Euneoophora and some acotylean Polycladida with direct 

development. The loss of a biphasic life-cycle in so many flatworm orders has raised some 

doubts for the existence of a primary larva in the polyclad flatworms (Laumer et al., 2015b) 
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that can be compared to other trochophore larvae. On the other hand, the complete loss 

of spiral cleavage in many orders of the Neoophora and its reduced form in the earlier 

branches of flatworms (see Martin-Duran and Egger, 2012) indicates that flatworms 

underwent vast evolutionary developmental deviations, while adapting to new 

environments. It is likely that these evolutionary developmental changes also severely 

affect the life-cycle or in other words it is perhaps less surprising that the one group of 

flatworms, in which the spiral cleavage mode has been retained to the highest degree, also 

retained a biphasic life-cycle with characteristics of other trochophore larvae. The question, 

however, remains how readily a larval stage can get lost among different orders of 

flatworms. Intriguingly the Polycladida, which have a  Müller’s larva in both subgroups, the 

Cotylea and Acotylea (Ruppert, 1978), demonstrate exactly this case. In some acotylean 

genera, several types of development can occur. For example, Hoploplana inquilina hatches 

as a Müller’s larva, whereas Hoploplana villosa is a direct developer (see Martin-Duran and 

Egger, 2012 and citations therein). Such examples of a complete loss of the larval stage 

make it, first of all more plausible that a larval stage similar to a Müller’s larva is primitive 

for the Polycladida as a whole (Jägersten, 1972), and secondly demonstrate that a loss of a 

larva can occur even without reducing or modifying the early spiral cleavage mode, which 

is also conserved in acotyleans that exhibit direct developing juveniles. 

Direct support for putative homology between polyclad Müller’s larva and other 

trochophore-like larvae can be taken from cell-lineage studies, which, in case of the 

acotylean H. inquilina, suggest a close similarity between polyclads and spiral cleaving 

Lophotrochozoans (Boyer et al., 1998; Surface, 1907). Therefore cell-lineage studies of 
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larval structures, which are shared across lophotrochozoans, can help to make a strong 

case for or against a putative homology between polyclad and trochophore-like larvae and 

is one of the goals we want to achieve in M. crozieri. 

1.8 Maritigrella crozieri: a new organism for evo-devo studies 

In addition to the acotylean polyclad flatworm H. inquilina, in which a Müller’s larva is 

present and which has so far been used for comparative evolutionary studies (Boyer, 1986; 

Boyer, 1987; Boyer, 1989; Boyer et al., 1996; Boyer et al., 1998; Surface, 1907), the cotylean 

polyclad flatworm Maritigrella crozieri has been recently introduced as a new organism 

useful for comparisons of development with other lophotrochozoans (Lapraz et al., 2013; 

Rawlinson, 2010) (Figure 1.9). With its tubular pharynx, marginal tentacles and two cerebral 

eyespots this polyclad flatworm was placed as a typical euryleptid (Newman et al., 2000). 

The major advantages of this species are that it can be easily collected in great numbers, 

due to its specific preference for eating the zooids of the ascidian Ecteinascidia turbinate 

(Herdman), which themselves grow on mangrove roots in plainly visible orange colonies. 

Maritigrella’s stereotypic spiral cleavage pattern can even occur outside the egg-shell in so-

called naked embryos making micromanipulations in oocytes and early embryonic stages 

possible. Its biphasic life cycle results in eight-lobed Müller’s larva (Figure 1.9, B and C) and 

the large mature animals can bear hundreds of eggs. Throughout this work we solely used 

the polyclad flatworm Maritigrella crozieri (Figure 1.9).  
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Figure 1.9 - The cotylean polyclad flatworm Maritigrella crozieri and its larval stage the 
Müller’s larva. (A) Gravid specimen found in the mangroves of the Florida Keys, shown at 
roughly twice its original size (picture by Fraser Simpson). (B) The eight-lobed and three-
eyed Müller’s larva. (C) Schematic drawings of a 1-day-old Müller’s larva (from left to right: 
ventral view, lateral view and posterior view, respectively indicating ciliary band structures 
in the larva of Maritigrella crozieri featuring the ciliary band cells in grey. A broader oral 
hood that extends over the mouth is opposed by a smaller dorsal lobe (dl). The three paired 
lateral lobes are referred to as ventro-lateral lobes (vll), lateral lobes (ll) and dorsal lateral 
lobes (dll). Numbers are related to rows of ciliary band cells. Scale bar of B is 25 µm. Scale 
bar of C is 100 µm. 
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1.8.1 The Müller’s larva of M. crozieri 

The structure of the musculature, nervous system and ciliary band of the Müller’s larva 

from M. crozieri (see Figure 1.10) was already previously described in detail (Lapraz et al., 

2013; Rawlinson, 2010). In short, the nervous system of M. crozieri larvae consists of an 

apical organ, a brain and several nerve cords beneath the basement membrane (Figure 

1.10, A, B). The peripheral nervous system is intra-epithelial and innervates the ciliary band 

outside of the basement membrane. A lattice of circular and longitudinal muscle fibres 

cover the overall body wall (Figure 1.10, B) and projections of phalloidin-labelled epidermal 

cells reveals the ciliary band cells (cbs) (Figure 1.10, inset), which carry the long cilia and 

are easily recognisable by a slightly elongated shape that narrows significantly between 

intervals of the projecting lobes. 
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Figure 1.10 - Confocal projection images obtained during this study showing the nervous 
system (in-house produced neuropeptides in red in combination with the nucleic stain 
SytoxGreen), epidermis and musculature of the Müller’s larva of the polyclad flatworm 
Maritigrella crozieri. (A) Frontal view showing the nervous system with arrow indicating 
area of the cerebral commissure of the neuropile. (B) Lateral view of the nervous system 
with an arrow indicating a dense network of nerves underlying the apical plate. (C) Same 
specimen with phalloidin staining showing the epidermal structures (left) and the 
underlying musculature (right). Inset shows the specific shape of ciliary band cells 
highlighted in red. Note the two flask-shaped gland cell and their exit in the top left corner 
of the inset. (ap) apical plate, (cbc) ciliary band cells, (cbnr) ciliary band ring, (dl) dorsal lobe, 
(dlc) dorso-lateral connective, (dll) dorsal lateral lobes (ee) epithelial eye, (ll) lateral lobes, 
(mn) medial nerve, (NS) nervous system, (phnr) pharyngeal nerve ring, (rc) ring connectives, 
(vll) ventro-lateral lobes. Scale bars are 50 µm   
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1.9 Innovative ways of performing cell lineage studies in polyclad flatworms 

Polyclad animals are difficult to maintain in culture and eggs are typically opaque and 

endolecithal, meaning that they contain yolk, which makes live observations more difficult. 

The first classical studies of polyclad development have been mostly based on live 

observations (Girard, 1854; Hallez, 1879; Keferstein, 1868; Lang, 1884; Selenka, 1881; 

Wilson, 1897), which led to several inconsistencies. Only in 1907 Surface reinvestigated in 

detail the early embryonic development of H. inquilina via careful optical sections (Surface, 

1907) which resulted not only into the most comprehensive early developmental study of 

polyclad flatworms, but also represents the only work, where the cell lineage of a polyclad 

is followed in detail from the oocyte up to a 100-cell stage. Reconstructing hundreds of 

embryonic developmental stages is a good deal of work and perhaps explains why nobody 

after Surface performed a similar cell-lineage study on any other polyclad flatworm. 

Modern cell lineage studies are usually based on injecting fluorescent dyes into cells at 

different stages of the early cleaving embryos. This technique has been used in the last 

decades on several spiral cleaving lophotrochozoan species to reinvestigate the classical 

observations in much more detail (see Lyons and Henry, 2014). One example is the cell-

lineage study performed on the polyclad flatworm H. inquilina (Boyer et al., 1998). One 

disadvantage of this technique is that the identity of early blastomeres have to be known 

prior to injections. This can be, however, difficult in spiral developers with equal or equal-

like cleavage, where the D quadrant is not immediately obvious due to similar sizes of 

blastomeres. This is for instance the case in M. crozieri and many other polyclad species. 

Therefore, a high number of embryos need to be microinjected in order to draw satisfying 
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conclusions, for instance, about the correct origin of initially injected quadrant (A, B, C, D) 

and so on. For our cell-lineage study in M. crozieri we therefore decided to try an original 

approach. We wanted to develop a microinjections setup, which would allow us to 

fluorescently tag all the nuclei and combine it with home-built light-sheet microscopy so 

that nuclei of a single living embryo could be traced over time. This gives us the possibility 

to follow the fate of early blastomeres simultaneously, while the individual quadrants 

would reveal themselves by reaching more advanced embryonic stages. The D quadrant, 

for example, is characterised during spiralian development by asymmetric division timings 

and for initiating a series of bilaterally symmetric cleavages (Henry, 2014). Therefore light-

sheet microscopy represents a major part of this work.  
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1.10 Light-sheet microscopy 

Light-sheet illumination for microscopy is an old technology enjoying a dramatic recent 

renaissance due to introduction of selective plane illumination microscopy (SPIM) (Huisken 

et al., 2004). The principle of SPIM is to use optics to form a thin sheet of light that passes 

through the specimen. Unlike a standard microscope in SPIM the objective lens is placed 

perpendicular to the direction of the light such that the sheet of light illuminates the 

specimen only at the focal plane of the lens (Figure 1.11).  

 

 

Figure 1.11 - The principle of single plane illumination microscopy (SPIM). A thin laser beam 
called “light sheet” is formed for instance using a cylindrical lens (not shown) and then gets 
projected onto a sample perpendicular to the optical axis of the detection lens. While this 
setup allows the illumination of the entire focal plane the specimen is exposed to a 
relatively low dose of light (Selchow and Huisken, 2013).  
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This has two important benefits; it eliminates scattered light from out of focus areas of the 

specimen providing a natural means of optical sectioning and, because only the imaged 

area is illuminated, the total amount of light hitting the specimen is orders of magnitude 

less than in conventional fluorescence microscopy, meaning that 

photodamage/phototoxicity is enormously reduced and imaging over long periods is 

possible (Huisken et al., 2004). This latter benefit is of great significance for live imaging.  

OpenSPIM is an open access light-sheet microscopy design (Pitrone et al., 2013); 

http://openSPIM.org; see also (Gualda et al., 2013) and Figure 1.12. The OpenSPIM 

resource gives users step-by-step guidance for building a basic configuration of a SPIM 

microscope and includes appropriate open source software for image acquisition and 

processing such as Fiji (http://fiji.sc/Fiji), micromanager (https://www.micro-

manager.org/), multiview reconstruction plugins (Preibisch et al., 2010; Schmied et al., 

2014) deconvolution (Preibisch et al., 2014) and big data viewer 

(http://fiji.sc/BigDataViewer).  The design can be adapted and upgraded according to the 

user’s specific requirements and budget. We have designed an OpenSPIM microscope 

capable of dual-sided illumination (a variant of the so-called T-configuration proposed on 

the OpenSPIM wiki). This technology can be useful for research on organisms such as the 

polyclad flatworm M. crozieri in terms of live-imaging of developing embryos and 3d-

reconstructions of both embryos and larva.  
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Figure 1.12 - The flexibility of light sheet microscopes such as OpenSPIM allows for different 
configurations. Here is an example of an OpenSPIM with a double-sided illumination 
configuration also referred to as a “T-SPIM” (Source: http://openspim.org). 
  

http://openspim.org/
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1.11 Hypothesis and aims addressed in this thesis 

Many members of the Lophotrochozoa have a biphasic life cycle that includes a planktonic 

larval stage. Despite the morphological diversity, these larvae are usually characterised by 

at least one band of beating cilia used for locomotion and can therefore be called a 

trochophore. Additionally, an apical “sensory” organ comprising a tuft of long cilia on the 

top is often observed among these larvae. One fundamental question is whether these 

morphologically similar structures, found in larvae of different lophotrochozoan phyla, are 

homologous or whether they evolved independently. One possible explanation is that a 

biphasic life cycle including a trochophore-like larva was already present in the last 

common ancestor of lophotrochozoans. This would imply that the basic body plan of 

trochophore-like larval stage was fundamentally similar and the shared structures are 

homologous. During hundreds of millions of years of evolution, the larvae were modified 

or lost in many lineages.  

On the other hand, a very different evolutionary scenario would be that a biphasic life cycle 

evolved several times in more than one lophotrochozoan lineage by convergent evolution 

and in such a case complex structures as the ciliary band or apical organ, despite 

morphological similarities, are not homologous. To better distinguish between these two 

evolutionary scenarios of homologous versus non-homologous trochophore(-type) larvae, 

one can study the development of different lophotrochozoans from zygote to their larval 

stage. 

I want to ask specifically whether there is evidence that the ciliated larva of the polyclad 

flatworms is homologous to the trochophore larvae of molluscs and annelids. While spiral 
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cleavage clearly points to a developmentally highly conserved beginning in M. crozieri, the 

intriguing question, in terms of homologous larval structures, is how conserved the 

developmental program has remained throughout the development until the point where 

a ciliated larva hatches. 

The interest in this question is mainly driven by the facts that polyclads represent the only 

flatworms that i) have a biphasic life cycle with a planktotrophic larval stage, which can be 

interpreted as a derived trochophore, and ii) show a greatly conserved spiral cleavage 

mode. Although this has been known for a long time, developmental studies in polyclads 

are surprisingly scarce and most molecular tools to study the development have not yet 

been established.  I chose the polyclad flatworm Maritigrella crozieri, found in the Florida 

Keys, for a comparative evolutionary study in order to see if it is possible to discern specific 

similarities in the way in which Müller’s larvae and trochophore larvae are built to see if 

there is evidence for their being homologous. 

In order to conduct this research, I first needed to build a microscope that would allow me 

to follow the development of the polyclad embryo into the larval stage for the longest 

possible amount of time and to acquire sophisticated 3d-reconstructions of fixed 

embryonic stages. The building, use and advantages of this microscope are detailed in 

Chapter III. 

The second aim is to take advantage of these newly developed imaging tools together with 

other established microscopy methods such as scanning electron microscopy and confocal 

laser imaging, to study in detail the early embryogenesis of M. crozieri from zygote up to 

the point where the bilateral symmetry of the embryo is established (Chapter IV). It will be 
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interesting to compare the early developmental data of the M. crozieri to other polyclad 

flatworms. 

The third major aim is to produce a detailed early cell lineage based on nuclei tracing used 

to extract information that can be compared to the available data of other polyclad 

flatworms and also to other lophotrochozoan species.  Furthermore, I aim to identify and 

follow blastomeres, which are known from other spiralian embryos to give rise to apical 

structures, such as the apical organ, and ciliary bands to determine if their lineage gives rise 

to similar structures/areas in the developing Maritigrella crozieri embryo (Chapter V). 

The final aim of this thesis is to treat developing embryos during their third cleavage with 

agents that specifically inhibit cytoskeletal microtubule and actin polymerization to find out 

if the spiral cleavage pattern, which is heavily driven on these cytoskeletal components, 

shows effects similar to those previously described in snails. This can have implications for 

our basic understanding of the mechanisms of spiral cleavage (Chapter VI). 
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CHAPTER 2 Methods 

2.1 Building a single plane illuminated light-sheet microscope (OpenSPIM) 

2.1.1 OpenSPIM - Overview 

An OpenSPIM microscope capable of dual-sided illumination (T-configuration) was built on 

a 600 x 900 x 12.7 mm aluminium breadboard following instructions from the website 

http://openspim.org/. The principal components of our microscope comprise a multiple 

wavelength laser system (Stradus VersaLase™ from Laser2000 

http://www.laser2000.co.uk/versalase.php) producing two individual wavelengths (λ = 488 

and 561 nm); a Zyla 5.5 3 Tap sCMOS camera from Andor (http://www.andor.com/); and a 

USB 4D-stage from Picard Industries (http://www.picard-industries.com/). The acquisition 

chamber (designed by Peter Gabriel Pitrone and manufactured by Pieter Fourie Design and 

Engineering CC; http://www.pfde.co.uk) includes openings for two 10x illumination 

objectives (Olympus UMPLFLN10xW left and right, N.A. 0.30) and one aperture for a 40x 

acquisition objective (Olympus; LUMPLFLN40xW, N.A. 0.80). The optical breadboard, rails 

and rail carriers, optical elements and mirrors were purchased from Thorlabs 

(http://www.thorlabs.com/), fluorescence clean up and emission filters from AHF 

(http://www.ahf.de/). The appendix includes a complete list of all purchased parts (see 

appendix).  

http://www.pfde.co.uk/
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Figure 2.1 – OpenSPIM built for the Telford lab with dual-sided illumination, hardware-
controlled laser triggering and all hardware components 

2.1.2 OpenSPIM - assembly 

Mirror components, optical elements and the acquisition chamber of the OpenSPIM were 

assembled and mounted on rail carriers as described in the video guide on the OpenSPIM 

website and is summarized in the following 14 simplified steps schematically represented 

in Figure 2.2. Step 1: Installation of breadboard feet onto the optical breadboard and 

placing it in its final position; Step 2: Installation of laser heatsink on the optical breadboard 

and fixing the laser system (VersaLase) on top of the heatsink; Step 3: Cutting of optical 

rails for corner mirrors and two reflecting mirrors and installation of the rail system onto 
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the optical breadboard; Step 4: Installation of the pre-assembled acquisition chamber onto 

the corresponding rail; Step 5: Installation of the beam splitter (BS004, Thorlabs), which 

was placed into a cube adaptor (BS127CAM, Thorlabs), then fixed in place by a cage holder 

(CM1-4ER/M, Thorlabs) and finally mounted on a rail carrier; Step 6: Installation of all 

corner and laser reflecting mirrors; Step 7: Installation of the detection axis holder, infinity 

space tube, camera and its corresponding connection adapter units to the infinity space 

tube (U-CMAD3, U-TV1x-2 and U-TLU); Step 8: Installation of optical elements (beam 

expanders, telescope); Step 9: Installation of clean-up and emission filters; Step 10: 

Installation of Picard 4D stage in its correct position; Step 11: Connecting the controller 

boxes (Esio TTL controller box & VersaLase control box), VersaLase, Camera, USB 4D-stage 

and connecting them to the acquisition computer. The Versalase laser system was 

connected with the help of a controller box and a conventional RS-232 cable to the 

acquisition computer. ESio’s TTL controller box was connected directly to the VersaLase 

(not to the controller box) via individual SMB connector cables; Step 12: Setting up 

acquisition computer (installation of MicroManager and necessary plugins as well as drivers 

for VersaLase, Andor camera, Esio TTL controller box and pixel size calibration). The 5 

second default security delay of the VersaLase laser system was disabled in the terminal of 

the Stradus VersaLase GUI software as described on the MicoManager website 

(https://micro-manager.org/wiki/Versalase); Step 13: Hardware configuration with 

Micromanager and testing for hardware recognition; Step 14: Final alignment of light-

sheets by illuminating agarose containing fluorescent beads and/or stained specimens. 
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Figure 2.2 - Schematic assembly of the OpenSPIM following step 1-14 (see above).  



 60 

2.1.3 OpenSPIM - alignment of illumination paths along the rails 

The two illumination paths (left and right) were aligned along the optical rails using 

alignment disks (DG05-1500-H1-MD, Thorlabs) and ring-activated iris apertures (SM1D12D, 

Thorlabs). Fine-tuning of the light paths was achieved by adjusting the Kinematic Mounts 

(KM05/M, Thorlabs) of the laser reflecting mirrors. Appropriate laser safety measures were 

taken during laser adjustments. For example, we use special laser safety eyewear (from 

laservision) and avoid wearing reflective objects. 

2.1.4 OpenSPIM - configuration of the acquisition computer 

All necessary hardware component drivers were installed on a HPZ820 workstation 

computer (see Table A. 2 in the appendix for computer specifications) and the OpenSPIM 

hardware configured with the open source microscopy software MicroManager (version 

1.4.19; November 7, 2014 release; https://www.micro-manager.org/).  

2.1.5 OpenSPIM - processing of acquired data 

Post-processing of acquired data was performed with the latest version of the freely 

available imaging software Fiji (Schindelin et al., 2012). For the 3D reconstructions, we took 

advantage of the bead based registration algorithm and the multi-view deconvolution 

plugin (Preibisch et al., 2010; Preibisch et al., 2014; Schmied et al., 2014). 

2.2 Animal culture and embryo collection 

Adult specimens of M. crozieri were collected in coastal mangrove areas in the Lower 

Florida Keys, USA in January 2014, November 2014 September 2015 and January 2016 near 
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Mote Marine Laboratory (24.661621, -81.454496). Animals were found on the ascidian 

Ecteinascidia turbinata as previously described (Lapraz et al., 2013). Eggs without egg-shells 

(to produce ‘naked’ embryos) were obtained from adults by poking with a needle (BD 

Microlance 3) and raised in Petri dishes coated with 2% agarose (in filtered artificial 

seawater) or gelatin coated Petri dishes at room temperature in penicillin-streptomycin 

treated Millipore filtered artificial seawater (100 μg/ml penicillin; 200 μg/ml streptomycin; 

35-36 ‰). We have successfully maintained adult M. crozieri animals for up to six months 

and longer (Lapraz et al., 2013). However, the best conditions for raising embryos devoid 

of their egg shell is restricted to a shorter time period (about 2 months) while animals are 

still large (> 2 cm). While embryos raised in Florida under more natural conditions (natural 

seawater used and freshly available, extracted from well fed gravid animals) start cleaving 

approximately 8 hpo (Rawlinson, 2010), embryos poked from gravid worms brought to 

London and kept in captivity have a similar timing only when they are absolutely fresh. It 

appears that the longer gravid animals are kept, the more delayed is the first cleavage of 

extracted embryos, probably due to factors such as the ongoing starvation process, which 

might influence egg production of adults and may also affect the fertilization of oocytes. 

Additionally, ciliates parasitizing the adults can multiply over time and also infest naked 

embryos, which are exposed shortly after the poking. The best developmental conditions 

for the development of most eggs is therefore shortly after the collection trip. During this 

time 84% of a normally extracted batch of eggs (n = 106) showed normal spiral cleavage. 

By poking gravid adults for naked embryos immature and much smaller oocytes are also 

obtained. Sometimes eggs need to be freed by several washes with artificial sea water on 
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a mesh from mucus arising from the adult, which can potentially damage some eggs. While 

we take care to remove those which are too small, slightly damaged or parasitized by 

ciliates prior to live-imaging it is unavoidable that a few eggs remain in a suboptimal 

condition, especially those which are not yet mature enough to go through normal 

development. The two embryos used for the early cell lineage study were compared 

approximately at 68-cell to the development of fixed embryos from Florida (Figure 2.3). 

Only embryos, in which nucleic positions looked indistinguishable to embryonic stages fixed 

in Florida under normal conditions were used for lineage tracing. Additionally, we ensured 

that the development went through gastrulation (as seen in Figure A. 3) resulting in a 

ciliated spherical embryo that showed beating ciliary and rotational movements after 

imaging is completed (see also Figure 5.1). 

 

Figure 2.3 - (A) Snapshot of a living M. crozieri embryo during OpenSPIM image acquisition 
obtained from lab cultures in London. (B) Same cell stage of an embryo fixed freshly in 
Florida and used for confocal imaging (from Rawlinson (2010)). Scale bars are 100 μm.  
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2.3 Plasmid preparations 

2.3.1 Transformation and plating 

2 µl of ligation reaction were added to 20 µl of IBA Stargate Top 10 competent cells and 

then incubated on ice for 30 mins, heat shocked at 42°C in a water bath for 45 secs and 

immediately transferred back to ice for 2 mins. Then 200 µl of room-temperature S.O.C. 

medium was added and the tubes incubated on a shaker at 225 rpm at 37°C for 60 mins. 

Volumes of 20 µl, 50 µl and 120 µl volumes were then spread on pre-warmed LB agar plates 

(Ampicillin + X-Gal + IPTG) and the plates incubated overnight at 37°C for up to 24 hr. 

2.3.2 Colony PCR and culture 

The following mastermix was prepared on ice: 17.6 µl water (sterile/nuclease-free); 2.5 µl 

10x REDTaq Buffer; 1.575 µl M13 – forward primer (10 pmol/ µl); 1.575 µl M13 – reverse 

primer (10 pmol/ µl) 0.5 µl dNTPs; 1.25 µl REDTaq Polymerase. Then 10 white colonies 

from the plates were picked and each briefly dipped into a separate PCR mastermix 

solution. The reactions were then placed in a in GeneAmp 9700 thermal cycler and run with 

the following program: 

• 94°C - 3:00 mins 

• 94°C - 0:45 mins 

• 55°C - 0:45 mins     x 35 cycles 

• 72°C - 1:30 mins 

• 72°C - 7:00 mins 

• 4°C - ∞ 
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Pipette tips with picked colonies were placed into culture tubes containing 25 ml of LB 

Broth (+Amp) and save for later. Finally, 5 µl of each colony PCR product were run on a 1% 

TAE gel at 90 V for 50 mins. Those culture tubes containing an insert were kept overnight 

on a shaker at 225 rpm at 37°C. 

2.3.3 Preparation of Glycerol stocks and purifications of plasmids 

A glycerol stock of each overnight culture was prepared by adding 300 µl to 300 µl of 80% 

Glycerol and plasmids subsequently purified following the Qiagen Plasmid Midi Kit 

protocol. For this procedure, bacterial cells were first harvested by centrifugation (6000 x 

g for 15 min at 4°C) and pellets resuspended in 4ml of Puffer P1. Then the exact procedure 

was performed as written in the protocol and purified pellets resuspended in 100 µl TE 

buffer (Ambion pH 8.0) and midi preps send for sequencing. 

2.3.4 Precipitation and concentration of Midipreps 

20 µl of 3M Sodium Acetate were added to 100 µl of midiprep solution and another 100 µl 

of Isopropanol. This was incubated overnight at -20°C and then centrifuge at maximum 

speed for 30 mins at 4°C. The supernatant was then carefully removed and pellets washed 

with 200 µl of 70% EtOH and centrifuged at maximum speed for 30 mins at 4°C. The washing 

of the pellet was repeated and the pellet allowed to air dry for 15 mins (and then on heating 

block at 37°C is necessary). Finally, the pellet was resuspended in 50 µl nuclease-free H2O 

and the DNA concentration was measured using NanoDrop.  
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2.3.5 In vitro synthesis of mRNA for fluorescently tagged protein expression  

We synthesised mRNAs for microinjections with Ambion’s SP6 mMESSAGE mMACHINE kit. 

The capped mRNA produced were diluted in nuclease-free water and used for 

microinjections in order to detect fluorescence signal in early M. crozieri embryos. Nuclei 

were marked and followed using histone H2A-mCherry (H2A-mCh) and GFP-Histone (H2B-

GFP). The plasmids carrying the nuclear marker pCS2-H2B-GFP (GFP-Histone) and 

pDestTol2pA2-H2A-mCherry (Kwan et al., 2007) were transformed, purified and 

concentrated as described before and then linearized with the restriction enzymes NotI 

and BglII respectively. To follow live F-actin we used a GFP fusion of the actin-binding 

domain of utrophin (UTPH-GFP) and for live microtubules a GFP fusion of the microtubule 

binding domain of ensconsin (EMTB-3XGFP). These clones were the gift of the Bement Lab 

(University of Wisconsin) (Burkel et al., 2007; Miller and Bement, 2009) or were 

commercially ordered from http://addgene.org (GFP-UtrCH: 

https://www.addgene.org/26737/; EMTB-3XGFP: https://www.addgene.org/26741/).  

 

2.4 Microinjections 

Microinjections of synthetic capped mRNAs (~400-500 ng/μl per mRNA in nuclease-free 

water) into 100-200 M. crozieri oocytes per session were carried out under a Leica DMI3000 

B inverted scope with a Leica micromanipulator and a Picospritzer® III at room temperature 

prior to first cleavage. The fine-tipped microinjection needles were pulled on a Sutter P-97 

micropipette puller (parameters: P=300; H=560; Pu=140; V=80; T=200.). Fluorescent signal 

http://addgene.org/
https://www.addgene.org/26737/
https://www.addgene.org/26741/
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was detected 3-4 hours later at the earliest in two- to four-cell stage embryos. Embryos 

increased their fluorescent signal significantly during their transition into an 8-cell and 16-

cell stage and fluorescence was detectable in larval stages more than 10 days later (see 

Video 1). 

 

Figure 2.4 - Schematic drawing of the microinjection setup for the polyclad flatworm M. 
crozieri. The stage is 2% agarose poured into a mold, which is then transferred into a 60 
mm Petri dish lid. This is filled up with artificial seawater prior to injections. The cleaned 
eggs are devoid of an eggshell and are arranged in a single row. 

2.5 Standard fixation and immunohistochemistry procedure 

Embryos were fixed for 1 hour in 4% formaldehyde (diluted from 16 % paraformaldehyde: 

43368 EM Grade, AlfaAesar) in 0.1 M phosphate buffered saline (PBS) at room temperature 

or at 4°C overnight, followed by a 5-times washing steps of min 5 min each in PBS. 1-day 

old larvae were relaxed for 10 to 15 min in 7.14% MgCl2 * 6H2O prior to fixation. The larvae 

were subsequently stepwise transferred into 100% methanol (25%, 50%, 75%, 2x 100%) 

and stored at -20°C. Embryos were fixed in the same way but without the MgCl2 relaxation 

step. 
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Larvae and embryos were rehydrated from methanol to 0.1% Triton X-100 in 0.1 M 

phosphate-buffered saline (PBST) by four PBST washing steps, each reducing the 

concentration of methanol in PBST by 25%. Larvae (not embryos) were subsequently 

treated with proteinase K (0.1 mg/ml in PBST) for 5-8 minutes and quickly rinsed several 

times in PBST. Two drops of Image-iT™FX Signal Enhancer (Molecular Probes) were added 

to specimens, followed by four PBST washes (5 min each) and a 2-hour blocking step in 1% 

bovine serum albumin diluted in PBST (BSA solution). Primary antibody (1:250 monoclonal 

Mouse anti-Acetylated Tubulin antibody from Sigma, which labels stabilised microtubules 

and ciliated cells) and a secondary antibody (1:500 Alexa Fluor® 568 Goat anti-Mouse from 

Invitrogen™) were diluted in BSA solution. Primary antibody incubation took place at 4°C 

overnight in the dark, followed by several washes of PBST. Then secondary antibody 

incubation took place at 4°C overnight in the dark, followed by several washes of PBST. 

Additionally, 0.1 uM of the nuclear stain SytoxGreen (Invitrogen) was added during the final 

wash to specimens for 30 min and rinsed with PBST for 1 hour. 

2.6 Chromogenic whole mount in situ hybridization 

Fixed larvae (fixed using our standard fixation protocol) were first re-hydrated with graded 

methanol washes (70% MeOH/40% PBST, 30% MeOH/70% PBST and 30%). Specimens were 

then washed four times in PBST and digested with 0.05 mg/ml Proteinase K in PBST for 3 

min at room temperature. Digestions was stopped with two quick washes of 2x Glycine (2 

mg/ml in PBST), followed by two more 5 min washes with 1x Glycine solution. Larvae were 

then rinsed with a 1% triethanolamine (TEA) solution in PBST followed by two washes of 
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acetic anhydride in TEA (1.5 µl per ml TEA). This was followed by two washes of PBST prior 

to a refixation step in 3.7% formaldehyde (from 16 % paraformaldehyde: 43368 EM Grade, 

AlfaAesar) in PBST for one-hour rocking. After fixation, larvae were washed five times in 

PBST (fourth wash in a heating block at 80°C for ten min), then washed twice for 10 min 

each in hybridization buffer (50% Formamide, 5x SSC (pH4.5), 2 mg/ml heparin, 0.1% 

Tween-20, 1% SDS, 100 mg/ml salmon sperm DNA, diluted in DEPC treated water) at room 

temperature. Pre-hybridization took place in a humidified chamber at 65°C for 72 hours. 

Probes were added with a concentration of 1 ng/µl and larvae hybridised for one week at 

65°C. This step was followed by two washes in hybridisation buffer at 65°C (10 in and 40 

min respectively) and half hour washes of graded hybridization buffer solution in 2x SSC 

(pH 7) (75% hybridization buffer/25% 2x SSC, 50% hybridization buffer/50% 2x SSC, 25% 

hybridization buffer/75% 2x SSC, 100% 2x SSC). Next larvae were washed three times for 

20 min in 0.05x SSC still at 65°C followed by several washes of a SSC/PBST gradient at room 

temperature, on a rocker (75% SSC/25% PBST, 50% SSC/50% PBST, 25% SSC/75% PBST, 

100% 2x SSC). Then after five additional washes of PBST at room temperature the larvae 

were blocked for 1 hour at room temperature (1:10 of 1x Boehringer-Mannheim Blocking 

buffer solution in 1x maleic acid buffer) and subsequently incubated with an anti-DIG AP 

antibody solution overnight at 4°C. Next larvae were incubated into the chromogenic 

staining reaction (100 mM NaCl, 50 mM MgCl2, 100 mM Tris (pH 9.5), 0.5% Tween-20, 

diluted in DEPC treated water) solution containing 5 µl of NBT/BCIP solution in PBST. The 

staining reaction was stopped with several washes of PBST and specimens cover slipped 

and  
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2.7 OpenSPIM 4D microscopy of live embryos 

Embryos showing fluorescent signal were selected under an Axioimager M1 

Epifluorescence and Brightfield Microscope (Zeiss). Live embryos were briefly incubated in 

40 °C preheated and liquid low melting agarose (0.1%) and immediately sucked into 

fluorinated ethylene propylene (FEP) tubes (Bola S1815-04), which were mounted in the 

OpenSPIM acquisition chamber which was filled with filtered artificial seawater and 

antibiotics via a 1 ml BD Plastikpak (REF 300013) syringe. The use of FEP tubes has been 

previously described (Kaufmann et al., 2012) and allows the specimen to remain inside the 

tube during image acquisition without causing any blurring to the acquired images, as 

would be the case with other mounting materials such as glass capillaries. Using FEP tubes 

enables us to mount specimens in lower percentage agarose (0.1%), thus lessening the 

perturbation of embryo growth and development. The interval between images depends 

on the user’s intention. For long-term imaging single timepoints, which can consist of 40-

70 optical slices and were captured every 1-3 mins and the interval was increased during 

later developmental stages sometimes up to 7 min per time point. 

Finding the samples with high magnification objectives (40x and higher) can be a time-

consuming process. We therefore adjust the color-coded markings of our glass capillaries 

to the same calibration number of the mounting syringe and use FEP tubes of similar 

lengths to standardize the mounting procedure. Additionally, we bring the USB 4D stage to 

its home position before mounting. When a conventional LED lamp beam is directed 

against the chamber, FEP tubes and glass capillaries, as well as specimens become clearly 

visible as soon as the agarose is in focus. In our experience, the easiest way of finding the 
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sample is by going initially to the tip of the FEP tube or capillary, then by focusing on the 

agarose and screening for the specimen from bottom upwards. 

2.8 4D microscopy of live embryos under an AxioZoom (Zeiss) 

Several embryos in which fluorescent signal could be detected were centered within a 90 

mm petri dish containing penicillin-streptomycin (100 μg/ml penicillin; 200 μg/ml 

streptomycin) treated Millipore filtered artificial seawater (35-36 ‰) for simultaneous live 

imaging. To avoid evaporation and make fluorescent imaging possible a tiny hole was made 

in the middle of the lid and artificial seawater containing fresh antibiotics carefully 

exchanged from the side when evaporation became apparent. Brightfield, green and red 

fluorescence was acquired every 7 min. 

2.9 3D reconstruction of embryos imaged with the OpenSPIM 

2.9.1 Imaging of embryos for 3D-reconstructions 

For 3D reconstructions of fixed embryos, glass capillaries were mounted into the OpenSPIM 

chamber via a 1 ml BD Plastikpak (REF 300013) syringe and embryos embedded in 1% 

agarose containing 0.5 μm sized fluosphere beads (F-Y 050 Fluorescent Microspheres from 

Estapor with a 1:1500 concentration) to enable registration of images taken from different 

angles. For imaging, agarose was pushed out of the glass capillary once mounted onto the 

OpenSPIM chamber filled with water, to a point that the embryos were visible outside the 

capillary. 
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2.9.2 Fixation and staining of embryos for 3D reconstructions 

Embryos were either directly extracted from gravid adults at the Keys Marine Laboratory 

(Florida) by poking and allowed to cleave until the desired stage was reached or in the same 

way from animals kept in culture in London. Embryos were then fixed as described 

previously for immunostaining but without transferring to methanol (which is not 

compatible with phalloidin staining). 

In order to image specimens from 5 angles to perform volume measurements of early 

blastomeres, embryos were washed to remove sodium azide with 0.1 M phosphate-

buffered saline containing 0.1% Triton X-100 in (PBSTx) by four washing steps and stained 

with 1:300 Rhodamine Phalloidin (ThermoFisher Scientific R415) for 2-3 h at room 

temperature or overnight at 4°C. Following several washes of PBST or PBSTx 0.1 µM of the 

nuclear stain SytoxGreen (Invitrogen) was added for 30 min and the embryos then rinsed 

with PBST for another hour. 

2.10 Fixation and imaging of embryos used for scanning electron microscopy (SEM) 

Batches of embryos were raised until development reached the desired stage (1-cell, 2-cell, 

4-cell, 8-cell, 16-cell, 32-cell, 64-cell, 128-cell and intermediate phases). Fixation was done 

at 4°C for 1 hour in 2.5% glutaraldehyde, buffered with phosphate buffered saline (PBS; 

0.05 M PB/0.3 M NaCl, pH 7.2) and post-fixed at 4°C for 20 min in 1% osmium tetroxide 

buffered with PBS. Fixed specimens were dehydrated in an ethanol series, dried via critical 

point drying, and subsequently sputtered coated with carbon or gold/palladium in a Gatan 
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681 High Resolution Ion Beam Coater and examined with a Jeol 7401 high resolution Field 

Emission Scanning Electron Microscope (SEM). 

2.11 Confocal imaging of fluorescently labelled samples 

Confocal images of fluorescently labelled samples were imaged either on a Leica SPE2 or a 

Leica TCS SP8 MP confocal laser scanning microscope. The LAS-AF software implemented 

to capture the image stacks was used. 

2.12 EdU pulse staining 

Labelling of EdU positive cells was carried out using the Click-iT® EdU HCS Assay 

(Invitrogen). Pulse experiments reveal a snapshot of all cells going through S-phase during 

which EdU gets incorporated into the DNA of cells. Larvae were incubated in 10 μM EdU 

dissolved in filtered artificial seawater for 1 h (first test on larvae) or 2 h (4d-injection 

experiment) followed by 10 min relaxation step in 7% MgCl2. Relaxed larvae were then fixed 

following the standard fixation method. Larvae were then washed 6x with PBST and 

permeabilized for 1h in PBSTx (1x PBS with 0.1% Triton X-100).  After two more PBST washes 

100μl of the reaction cocktail was added to the samples for 30 min (made according to 

manufacturer’s instructions and using kit reagents). The solution was then removed and 

the samples were washed for 30 min in Click-IT reaction rinse buffer. The buffer was then 

also removed followed by two PBST washes and finally DAPI was added to counterstain all 

nuclei. 
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2.13 Drug treatments, fixation and visualization of spindles and actin cytoskeleton 

To inhibit microtubule assembly Cholchicine (Sigma) was diluted from a previously 

prepared 1% stock solution (diluted in EtOH) to the desired concentrations in 50 ml filtered 

artificial seawater containing antibiotics (100 μg/ml penicillin; 200 μg/ml streptomycin). 

For the inhibition of actin polymerization, the same procedure was followed and desired 

final concentrations were prepared from a 1mM stock solution of Latrunculin A (Sigma).   

All drug treatments were performed on embryos obtained by poking several gravid M. 

crozieri adults and were therefore devoid of any egg-shell. Subsequently embryos were 

allowed to develop into 4-cell stages and about one hundred embryos quickly transferred 

into petri-dishes coated with a thin layer of 2% agarose (to avoid adhesion of embryos) 

containing 20 ml of drug solution buffer. Control embryos were similarly transferred into 

petri dishes containing control solution buffer (artificial seawater containing antibiotics and 

the same percentage of EtOH as used in inhibitor experiments). Every hour about 30 

embryos of every experimental condition, including controls, were fixed for 1 hour with 4% 

formaldehyde (diluted from 16 % paraformaldehyde: 43368 EM Grade, AlfaAesar) diluted 

in one quarter filtered artificial seawater and two quarters nuclease free H2O, followed by 

several washes of PBST every 5 min. The fixed embryos exposed to the same drug 

concentrations but fixed at different time points were eventually pooled together and 

stored in PBS at 4 °C containing Na-Azide for several weeks. 

Embryos were stained with anti-alpha-Tubulin antibody (Sigma), 568-Rhodamine Phalloidin 

(Life Technologies Limited) and DAPI, following our standard immunostaining protocol and 
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eventually observed under an Axioimager M1 Epifluorescence and Brightfield Microscope 

(Zeiss) or selected for confocal laser imaging (Leica TCS SPE system).  
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CHAPTER 3 OpenSPIM microscopy 

Introduction 

In the previous chapter, I described in detail how we built and test a light-sheet microscope 

(OpenSPIM) to study the embryonic development of the polyclad flatworm M. crozieri.  In 

this chapter, I show how the microscope performs in terms of 3d-reconstructions and live-

imaging. Eggs of polyclad flatworms are opaque and contain copious amounts of yolk. For 

this reason, imaging is much more difficult than in other, more transparent specimens (e.g. 

sea urchin pluteus larvae).  The results presented here focus on both embryonic stages 

(fixed and in vivo) and larval stages (fixed) and demonstrate what can be achieved to 

overcome these difficulties, why we chose a certain configuration (e.g. dual-sided 

illumination) and their advantages and how the microscope performs in comparison to the 

more commonly used confocal microscopy. Due to the fact, that we learned a lot during 

this process, we decided to publish the experience and would like to point out that the 

following chapter can be read also in published form: 

Girstmair et al., 2016. Light-sheet microscopy for everyone? Experience of building an 
OpenSPIM to study flatworm development. BMC Developmental Biology, 1–16. 
https://doi.org/10.1186/s12861-016-0122-0 
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Results 

3.1 Necessary steps for achieving an optimal alignment for both excitation light-

sheets 

The light-sheets emerging from each illumination path (left and right) were initially aligned 

using the 25 mm and 50 mm telescope lenses and the adjuster knobs of the two gimbal 

mounts of each corner mirror (Horizontal & Vertical). The light-sheets were visualized in a 

column of agarose within the water filled acquisition chamber and using the lowest laser 

power (1mW) (Figure 3.1, A-B). Additionally, during the alignment emission filters and 

cylindrical lenses were removed. By adjusting the distance between the 25 and 50 mm 

telescope lenses and their distance to the illumination objective, the light-sheet first 

appears as an indistinct broad fuzzy beam crossing the field of view horizontally from left 

to right (Figure 3.1, A and C, orange arrows). The telescope lenses can then be further 

adjusted to increase the sharpness of the beam (step 1 in Figure 3.1, A) and to centre its 

focal point (step 2 in Figure 3.1, A). Next the horizontal gimbal mount adjuster knob is 

adjusted to bring the light-sheet in focus with the detection objective up to the point where 

it then is seen as a very thin stripe instead of a coarse beam. Finally the vertical gimbal 

mount adjuster knob is adjusted to center the light-sheet (step 3 in Figure 3.1, B). In this 

way both illumination paths are aligned and carefully centered until they overlap each 

other (Figure 3.1). By putting the cylindrical lenses and the emission filter back, the 

alignment of both excitation light-sheets can now be tested on fluorescent beads, which 

ideally homogenously cover the field of view and/or on a specimen embedded in agarose 
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(Figure 3.1). Usually additional fine-tuning by adjusting the horizontal gimbal mount knob 

is necessary to achieve best imaging results. 

 

Figure 3.1 – (A - B) Schematic drawing of laser beam visualised on agarose hanging from 
above into the water filled acquisition chamber, Also seen in A and B are three alignment 
steps of the laser beam (1-3); (C - D) Actual misaligned and aligned laser beams visualised 
on agarose by removing emission filters and cylindrical lenses; (E – F) SPIM images 
(maximum projections) acquired with misaligned and aligned laser beams. The initially 
visible fuzzy beam is indicated by a bright blue horizontal stripe in between orange arrows. 
This coarse beam is then brought into focus with the detection objective (step1) and 
therefore appears as a much thinner laser beam indicated by a blue horizontal stripe in an 
hourglass-like shape. Note that in this example the focal point of the beam is at this point 
still shifted to the left (vertical grey line) and needs further adjustments (step2). B The laser 
beam is shifted from the top to a central position within the field of view (step3).  
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3.2 Our OpenSPIM produces high quality images which we compare to scanning 

electron micrographs (SEM) 

To test whether the OpenSPIM microscope can produce high quality images, 1 day old 

Müller’s larvae were stained with a monoclonal Mouse anti-Acetylated Tubulin antibody 

(Sigma) and used a secondary antibody conjugated to Alexa Fluor® 568 Goat anti-Mouse 

(Invitrogen™). Our OpenSPIM images (shown as maximum projections) show cilia covering 

the whole epidermis of the polyclad larva (Figure 3.2, A-E). This dense film of short cilia can 

easily be distinguished from longer cilia comprising the ciliary band along the eight lobes 

(Figure 3.2, E).  Our OpenSPIM images show a clear resemblance to scanning electron 

microscopy images (Lapraz et al., 2013) of similar stage larvae (Figure 3.2 D, E and F) 

confirming reliable image acquisition with OpenSPIM at the level of embryo morphology.  
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Figure 3.2 - Maximum projections of fixed Müller’s larvae stained with Acetylated tubulin and imaged 

with OpenSPIM (A-E) (A) Anterior view (B) Lateral view (C) Ventral view (D) Posterior view (E) magnified 
view of area boxed in D. (F) Posterior view of a M. crozieri larval stage obtained with scanning electron 
microscopy for comparison with imaging acquired by our OpenSPIM. Ap, apical plate; oh, oral hood; vll, 
ventro-lateral lobe; ll, lateral lobe; dll, dorso-lateral lobe; sop, sub-oral plate; cb, ciliary bands (long cilia). 
All scalebars are 50 μm 

3.3 The advantage of OpenSPIM multi-view reconstructions over confocal 

microscopy and single image in M. crozieri 

Standard confocal microscopes lack the possibility of multi-view imaging and 

reconstruction. This is important for the study of M. crozieri larvae and embryos due to the 

attenuation of light intensity caused by the opaque yolk meaning than only one side of the 

embryo can be visualized. It was found that the opacity causes significant signal loss, which 

becomes especially obvious in Maritigrella when the confocal z-stack of an imaged 
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specimen is rotated. This is demonstrated here in a fixed larva labeled with the nucleic-

stain SytoxGreen (Figure 3.3, right).  

The second drawback of a confocal is the necessity of using a slide with coverslip, which 

tends to cause deformation of our topologically complex larvae.  The rotation of a confocal 

imaged larva reveals the slightly squeezed body shape of the larva. Such confocal z-stacks 

are not always suitable for further image processing (e.g. image pattern registration as 

described by Asadulina et al. (2012) and Tomer et al. (2010), for which consistent 

anatomical structures of whole-body scans are required).  

In contrast to confocal imaging, OpenSPIM offers a multi-view reconstruction method, 

whereby different angles of the same specimen can be fused into a single z-stack as shown 

in Figure 3.3 (left side). The reconstructed larva not only keeps its natural shape, but also 

includes the information obtained from each individual angle, resulting in a whole-mount 

containing high-resolution signal from all sides. For Maritigrella larvae and embryos multi-

view reconstructions achieved with OpenSPIM create a crucial advantage over confocal 

microscopy. 
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Figure 3.3 - A comparison of a multi-view reconstructed larva (multi-view deconvolution of 
several angles) stained with the nucleic marker SytoxGreen (left side) with a larva with the 
same staining captured with a Leica TCS SP8 confocal laser microscopy (right side)  
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3.3.1 Multi-view deconvolution 

When emitted light of a single point source is collected and then focused by an objective 

lens, light waves converge and interfere due to an optical effect called spherical aberration. 

As a result, a three-dimensional diffraction pattern of concentric rings of light emerges from 

the point source, with a central bright disk in the middle.  This diffraction pattern can be 

described as a point spread function (PSF) in which the disk’s size strongly depends on the 

numerical aperture of the objective. In 3D microscopy, the PSF is typically measured by 

acquiring a z-stack of a fluorescent bead, which can then be used to determine the 

resolution performance of the objective or for reducing out of focus light (blur) by a 

mathematical transformation of the image data called “deconvolution”. Thereby an 

algorithm based on the PSF can significantly improve the effect of spherical aberration 

(typically seen as blur) in acquired images produced e.g. by light-sheet or confocal 

microscopy. More detailed information on this topic is available e.g. on the Zeiss website 

(http://www.zeiss.com). 

It is interesting to find out to what extent average fusion and deconvolution (Preibisch et 

al., 2014) can improve results over a single view in an M. crozieri embryo when imaged with 

our OpenSPIM. This is relevant e.g. for early cleavage observations, when nuclei of the 

macromeres shift from the animal pole towards the vegetal pole of the embryo and are 

thus difficult to see.  

In terms of imaging the entire embryo, it is not surprising that again a clear benefit gained 

by applying multi-view imaging (average fusion or multi-view deconvolution of 5 angles) 

over a single one angle view was found. The differences are shown in Figure 3.4 (A-C); in 
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the single angle view the small macromeres (cells A-D) at the vegetal extreme of the 

embryo are not visible (Figure 3.4, A). The acquisition of several angles (Figure 3.4 4, B and 

C) reveals the missing cells and makes clear that embryonic 3D reconstructions, which 

should include all nuclei information, depends on multi-view imaging. A slight improvement 

of multi-view deconvolution with 12 iterations over average fusion could be achieved 

(Figure 3.4, B and C), but appears to be less critical for nuclei staining in early staged M. 

crozieri embryos.  

 

 

Figure 3.4 - The benefit gained by applying the multi-view deconvolution method (5-angles 
used) vs. simple maximum projections of an acquired stack (1-angle) on an early staged M. 
crozieri embryo. (A) Depth color coding (Fire) of all nuclei after maximum projection of a 
raw z-stack (1-angle) (B) Depth color coding (Fire) of all nuclei after a maximum projection 
of a raw z-stack (1-angle) (C) Maximum projection of all nuclei after multi-view 
deconvolution. Additionally, all nuclei missing in the single angle maximum projection 
(from b) have been coloured in red.  
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3.4 Dual-sided illumination efficiently compensates axial intensity attenuation in 

semi-transparent specimens 

Dual-sided illumination for OpenSPIM microscopy can be achieved by building a so-called 

T-configuration, whereby the laser beam gets split into two beams and a second optical 

path is installed on the optical breadboard. This allows the illumination of specimens from 

two sides, instead of one, as demonstrated originally by (Huisken and Stainier, 2007), and 

was also suggested as a potential extension in the original OpenSPIM publication (Pitrone 

et al., 2013). The benefit of having dual-sided illumination in our OpenSPIM was tested on 

fixed M. crozieri embryos stained with the nucleic acid marker SytoxGreen. In single-sided 

illumination images (where one of the two illumination paths has been completely 

obscured - left or right respectively), a significant loss of signal during acquisition on the 

side of the missing illumination path becomes obvious due to axial intensity attenuation 

caused by our opaque and yolky specimens (Figure 3.5, A and C). The light attenuation is 

especially apparent when single nuclei from opposed illumination sites (left and right) are 

directly compared to each other (Figure 3.5, A and C, insets). In contrast, a more complete 

picture of the stained nuclei is achieved by using both illumination paths simultaneously 

(Figure 3.5, C, insets). This simple test clearly demonstrates the benefit of using dual-sided 

illumination for our slightly opaque endolecithal polyclad embryos.   
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Figure 3.5 - A single and dual-sided illumination, imaging test showing maximum 
projections of nuclei stained with the nucleic acid marker SytoxGreen. (A) Maximum 
projections of embryonic nuclei using left illumination path of the OpenSPIM microscope, 
(B) Both illumination paths and (C) Right illumination paths respectively. Image stacks were 
acquired in the following order: left illumination, right illumination, dual-sided illumination 
(A following C following B). All stacks and related insets have been processed identically 

3.5 Two laser lines allow the visualization of two detection channels 

The OpenSPIM is equipped with two individual lasers (λ = 488 nm and 561 nm). The twin 

laser system was tested on fixed 1-day old M. crozieri larvae stained with the nucleic marker 

SytoxGreen (488). The 561 laser was used in the same specimens to visualize auto-

fluorescence of gland cells (rhabdites). The larvae have gland cell scattered mostly around 

the apical plate and on the ventral side of the animals, which is shown in Figure 3.6 in a 

single specimen, in which both channels (green and red) have been combined. Here I simply 

demonstrate the use and precise alignment of the twin laser beams (488 nm and 561 nm). 

Precise alignment is required during multi-color imaging to obtain good quality images from 
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both channels. The initial laser beam alignments in a multiple laser system (in our case 

VersaLase) is done by the manufacturer and an OpenSPIM user can later only align one 

wavelength, e.g. 488 nm, while the other wavelength(s) (in our case the 561 nm) is 

presumed to coincide. It is worth noting that I have transported the OpenSPIM by train and 

car and that the default alignment of our laser system alignment has proven robust during 

travelling. 

 

Figure 3.6 - Several angles of a 3D-rendered Müller’s larva showing nuclei in green 
(captured with the 488 laser detection channel) and gland cells in red (captured with the 
561 laser detection channel).  
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3.6 OpenSPIM image acquisition with hardware controlled laser triggering is more 

than twice as fast 

With the aim of reducing image acquisition time, we incorporated ESio’s TTL controller box 

(http://www.esimagingsolutions.com/) into our OpenSPIM microscope; this enables 

hardware-controlled synchronization of the timing of camera exposure and laser triggering. 

To test our ESio TTL controller, a 100 μm thick single-color stack was imaged (1280x1080 

resolution in 16-bit and an exposure time of 32 ms) with a constant step size of 1.5 μm. In 

this test, the software-controlled image acquisition (by MicroManager without the TTL 

controller box) completed the acquisition in 43.5 sec. In comparison, when hardware-

controlled imaging is used, where lasers are triggered with the TTL controller box from ESio, 

image acquisition took 17.5 sec demonstrating a significant reduction of image acquisition 

time without compromising image quality. 
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3.7 Fiji’s bead based registration algorithm and multi-view deconvolution is 

essential to visualize all nuclei in M. crozieri embryos along the animal-vegetal 

axis  

Having the possibility to 3D rotate the specimen and using a faster image acquisition 

method opens up the possibility of carrying out whole-embryo time-lapse videos of the 

development of an embryo. Fiji’s bead based registration algorithm and multi-view 

deconvolution plugins (Preibisch et al., 2010; Preibisch et al., 2014) make it possible to fuse 

and deconvolve z-stacks imaged at multiple angles, acquired sequentially at any given time-

point. As a first test, this was done for the early development of M. crozieri covering the 

spiral cleavage and the formation of the four quadrants (Figure 3.7 A-J’). To compare our 

live-imaging videos during early development, I fixed specimens from series of cleavage 

stages, for which both 3D reconstructions of immunostained OpenSPIM imaged embryos 

and SEM imaged embryos were performed (Figure 3.7 A-J & A-J’’). The 3D-reconstructed 

series of fixed embryos of several stages are also available as 3D models (Video 2). 
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Figure 3.7 - Summary figure of the early embryonic development of the polyclad flatworm 
M. crozieri (1–128-cell stages) (A-J); SEM pictures (A-J) have been captured for comparison, 
stills from time-lapse sequences (A-J’), multi-view 3D reconstructions (A-J”); all embryos 
are shown from animal side. Note that time-lapse images (A-J’) are presented as captured 
by the OpenSPIM (mirror images) and therefore cleavage direction is opposite to 3D and 
SEM images. All scale bars are 50 μm  
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3.8 Rapid in vivo time-lapse sequences captured with OpenSPIM show the dynamic 

early embryonic development of M. crozieri  

With the OpenSPIM equipped with two illumination paths and capable of rapidly 

producing, high-quality image stacks, the aim became to visualize the embryonic 

development in M. crozieri up to the 128-cell stage to further test the potential of 

OpenSPIM for live-imaging and, ultimately, for lineage tracing. We created a time-lapse 

sequence of a developing embryo injected at the one cell stage with a nuclear marker 

(H2B:GFP) and a membrane marker (CAAX:GFP).  Our time lapse covers 18 hours and shows 

the stereotypical spiral cleavage and formation of four quartets and further development 

in M. crozieri. The sequence visualizes the embryo from the animal pole (Figure 3.7 A-J’ and 

Video 3) and consists of 273 individual time-points. During early cleavage, the live 

specimens had similar morphology at specific time points when compared with fixed 

specimens (SEM and 3D reconstructions) at the same developmental stages.  

 

3.9 Discussion of OpenSPIM 

3.9.1 New modifications tested for OpenSPIM 

When designing microscopes for in vivo imaging with the purpose of tracing cells, one of 

the goals is to have a high imaging speed in order to have the best time resolution. One of 

our own modifications included hardware-controlled imaging that appears to be an elegant 

way of removing unwanted delays during image acquisition. Another relatively new 

implementation, at least in the context of OpenSPIM, is the use of dual-sided illumination, 
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which we tested on our specimens. We demonstrated that bringing the light-sheet 

simultaneously from two sides to our opaque and yolky samples results in a significant 

increase in signal across the sample as shown for the nucleic markers of stained embryos 

(Figure 3.5). 

3.9.2 Limitations of our self-built OpenSPIM 

It is worth mentioning that simultaneous dual-sided illumination can lead to the light-sheet 

widening and a reduction in image quality due to additional light scattering effects and 

shadowing (Huisken and Stainier, 2007). In our sample, these issues do not outweigh the 

benefits gained by dual-sided illumination in comparison to the otherwise much more 

severe attenuation effect observed, but it is assumed to have an impact on the final image 

quality. 

Another limitation of conventional light-sheet microscopy concerns the thickness of the 

light-sheet. Thinner light-sheets are governed by the illumination objective and the 

thickness depends in particular on their numerical aperture. Ideally the thickness of the 

light-sheet is uniform across the field of view. In reality, it widens on each side of view and 

its narrowest point resides in the middle. Fortunately, that is where the sample is normally 

located. When a static light-sheet is created by passing a pencil beam through a cylindrical 

lens, the ratio of the light-sheet thickness between the center and the side of the field of 

view depends on the numerical aperture of the illumination objective and the size of the 

field of view, i.e. the magnification of the detection objective. OpenSPIM as described 

presents a good compromise, however the sample should be positioned as centrally as 

possible for optimal sectioning. 
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To address these problems in light-sheet microscopy, and of particular importance for 

specimens larger than our embryos, more advanced light-sheet microscopes illuminate the 

sample from left and right sides sequentially (rather than simultaneously as presented here 

(see Figure 3.5) and also take advantage of pivoting (scanning) the light-sheet as described 

for the mSPIM (Huisken and Stainier, 2007). This significantly reduces scattering and 

attenuation across the field of view. Alternatively, a light-sheet can be generated by 

scanning a Gaussian beam up and down across the field of view (Keller et al., 2008). Thus, 

the light-sheet that is created can be further modified in various ways (Fahrbach and 

Rohrbach, 2010; Huisken, 2012). However, such a light-sheet formation paradigm goes 

beyond the original OpenSPIM design. Nevertheless, it can be implemented on the 

OpenSPIM platform and it is expected that the community of users forming around 

OpenSPIM will do so. 

3.9.3 Points for consideration before purchasing and building an OpenSPIM 

There is little doubt that a self-built light-sheet microscope is significantly more affordable 

than existing commercially available alternatives.  The question that a laboratory 

considering whether to embark on building one ought to consider rather depends on two 

factors.  First is the question of whether the finished microscope will be an adequate 

alternative in terms of image quality and ease of use for the specific task. Second, it is 

essential when considering an OpenSPIM to factor in the hidden costs involved, most 

obviously, the costs implied by the time spent building the microscope, learning to use it 

and learning to use the open source software required to run the microscope and to 

process the data acquired. 
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For our purposes, the quality and speed of acquisition that we were able to achieve with 

our home-built OpenSPIM device provides valuable, high quality data that suit our 

requirements. However, despite the fact that the assembly of an OpenSPIM is indeed quite 

straightforward, this step remains only one of the many challenges to overcome. Here we 

summarize various steps we feel are worth considering before building an OpenSPIM in 

order to avoid assembling an expensive toy that will be forgotten shortly after (Figure 3.8). 

 

Figure 3.8 - Flow chart illustrating steps necessary for establishing a home-built OpenSPIM 

3.9.4 Before you begin. 

Before beginning we would recommend prospective OpenSPIM users to image your own 

specimens on an established OpenSPIM system. This will provide valuable information on 

whether the system will be suitable for your purposes as well as show what is required in 

terms of hardware for capturing high-quality images of your particular specimens. This is 

also an opportunity to gain skills such as correctly aligning the light-sheets, getting familiar 

with the acquisition software, finding the optimal mounting strategy for the specimens and 

will inform decisions for the OpenSPIM design selected, as discussed in the next section. 

There are many OpenSPIM systems around the world; the current estimate is 70. The 

system from Tomancak lab also regularly travels to practical courses and was extensively 

used during the EMBO course on Light-sheet Microscopy in Dresden (2014 
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http://openspim.org/EMBO_practical_course_Light_sheet_microscopy and upcoming 

August 2016). 

3.9.5 Designing an OpenSPIM  

The basic design of an OpenSPIM can be taken from the open access platform 

(http://openspim.org). However, modifications, which might meet more specific needs of 

individual users, require well thought-through decisions especially considering that most 

divergences from the basic plan will involve higher costs and, very likely, additional trouble 

shooting.  

We have discussed the most significant amendments we have made in building our own 

OpenSPIM. Dual sided illumination allows us to image our relatively opaque, yolky embryos 

optimally and we have shown the benefits of this. Twin lasers allow us to observe more 

than one labelled molecule per sample. As the most expensive component, the laser 

system is of particular importance, especially when it comes to multi-channel acquisition. 

Our OpenSPIM can be easily upgraded up to as many as 4 different laser wavelengths 

whose beams are aligned within the laser system itself. This alignment of two lasers has 

proven robust even when travelling, meaning the microscope is fairly portable. 

As our embryos are extracted from animals living in tropical waters they can be left at room 

temperature (23 degrees) during development. Therefore, our OpenSPIM chamber 

temperature is currently not temperature regulated, but depending on the experiment or 

the specimens used for imaging a more sophisticated control of the chamber temperature 

might often be advantageous or even a requirement. While we have no experience of 

controlling variables in the acquisition chamber, we think that temperature control could 
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be achieved easily by simply placing the chamber on top of a heating/cooling plate. 

Additional regulations such as pH or CO2 controls, although feasible, would require more 

elaborate chamber modifications to avoid, for example, bubbling or flow disturbance of the 

chamber water created by the connected gas supply and reliable measuring systems. 

3.9.6 Time taken for Purchasing  

While this might sound trivial, we found that purchasing elements occupied a significant 

time.  There were three reasons for this, first that there is a multitude of suppliers to be 

negotiated with. Second, as some of the parts are expensive we (like many institutions) 

were required to obtain multiple quotes for each item. Third, the choices made regarding 

some parts had knock-on effects regarding the choice or specification of other parts. 

Finally, it should not be forgotten that some of the parts of the OpenSPIM are bespoke and 

require a workshop or manufacturer for their production.  

3.9.7 Assembly 

The assembly of all parts can be considered fairly easy, also thanks to the information 

provided from the http://openspim.org website. Usually this should be the least time 

consuming (and the most fun) task. 

3.9.8 Software and hardware integration 

The MicroManager software and information provided on the OpenSPIM website makes 

correct hardware configuration relatively easy. However - at least in our experience - 

establishing the correct links between hardware components and the acquisition computer 
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causes time consuming problems. Additional time for hardware testing and configuration 

should be allowed. As an example, we experienced a major issue installing a simple FTDI 

chip driver, which is necessary for the ESio’s TTL controller box to communicate with the 

acquisition computer. Solving this problem required additional testing of the hardware and 

interaction with the original suppliers. Moreover, we strongly recommend interacting with 

the growing OpenSPIM online community via the mailing list, since many users are 

experiencing the same problems and it is the power of this community that will help you 

overcome them. Besides, hardware software integration is not something that a typical 

biologist can master with ease. Involving computer scientists or engineers on the 

undergraduate level, which should be relatively easy at any large University, is likely to 

smooth many integration problems. It will also give the students valuable experience with 

open access hardware and electronics and connect them with the active online 

communities in these areas.  

3.9.9 A fast way to correctly align the OpenSPIM 

Learning how to correctly align the light-sheet is a skill that might require some help, but it 

is not particularly difficult to learn. Within the materials and methods, we describe what 

we learned and how we currently align our two excitation light-sheets by simply adjusting 

the 25 mm and 50 mm telescope lenses and the two adjuster knobs (Horizontal & Vertical) 

of the Gimbal mounts of each corner mirror. It is a relatively fast approach (and certainly 

not the only one), but in our experience the results achieved in terms of image quality are 

more than satisfying. 
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3.9.10 Time needed to complete building the OpenSPIM 

Altogether it took us about 7 months from ordering the OpenSPIM parts to acquiring a first 

image. This time span is surely highly variable and some delays we experienced and 

mentioned above (see time taken for purchasing) can probably be improved or avoided at 

all. 

3.9.11 Image processing 

Imaging and processing and the challenge of multi-view 4D microscopy of acquired data 

can be straightforward or become a major issue depending on the operator’s ambitions. 

Acquisition of z-stacks of fixed specimens and subsequent processing with Fiji can be easily 

learned and more sophisticated processing such as multi-view deconvolution can be 

learned, using online Fiji tutorials on how to use the necessary plugins. 

Considerably more challenging, in our experience, is long-term multi-view 4D microscopy 

of live embryos. This live-imaging setup (keeping the embryo alive and developing normally 

during acquisition for example) is clearly important.  It is also essential to consider the 

challenge of post-processing the huge amount of data that are generated. Home-built 

OpenSPIMs are in principle capable of creating elaborate multi-view 4D microscopy videos 

on difficult specimens (e.g. opaque embryos with scattered emission-light). This was 

successfully demonstrated on Drosophila embryos, where data from six angles per time 

point have been acquired and the OpenSPIM data generated were subsequently 

successfully reconstructed using Fiji’s bead based registrations algorithm and fused via 

multi-view deconvolution (Preibisch et al., 2010; Preibisch et al., 2014). However, multi-
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view 4D microscopy requires an efficient work flow saving the produced data onto hard 

drives.  The second major requirement is a precise 4D motor system to keep the positional 

information of the specimen over time as exact as possible in concert with acquisition 

software that allows the correction of minor drifting of the specimen. Finally major 

computational resources are needed for processing the data generated, especially if multi-

view deconvolution of hundreds of time-points is intended. In our opinion, multi-view 4D 

microscopy is one of the most demanding and challenging experiments one can undertake 

with a home-built OpenSPIM and will thus be discussed further in the following section. 

3.9.12 Inefficient data saving can prolong time-point intervals during imaging 

Multi-view 4D microscopy requires software that reliably saves large amounts of data on 

hard-drives without running into the problem of a data bottleneck. In single-view time-

lapse videos, we observed that the creation of closely spaced time-points (intervals from 

about 90 sec / time-point) with the MicroManager SPIMacquisition plugin (available at 

OpenSPIM.org) can cause delays after a certain amount of time has passed. The interest 

here is, perhaps, less in the specifics of this issue and more in the observation that running 

an OpenSPIM (as opposed to a commercial system) will require the operator to get involved 

in many such technical challenges. Alternatively, as this is clearly a solvable issue, one could 

invest in collaboration with software engineers to identify the problem and adjust the open 

source software accordingly. Expert help from microManager, Fiji and OpenSPIM 

communities is expected and required. To ensure the problem is solved one has to invest 

in the solution. These communities are not compensated for developing the resources and 

their ability to fix specific problems is limited. 
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3.9.13 Combining multi view acquisition with long term in vivo experiments 

In our experience, long term in vivo multi view experiments with the aim of acquiring many 

time-points with several angles is not an easy task. Our living embryos occasionally undergo 

dynamic developmental processes, which can cause minor drifts during imaging. 

Additionally, the automated correct positioning for each angle relies on the smooth and 

precise running of the USB-4D stage motors system (x, y, z, and twister motors) and on 

advanced acquisition software. Recently anti-drift plugins have been developed and 

implemented into MicroManager (see http://openspim.org/Anti-Drift) and are currently 

being further improved. We anticipate that these developments will bring major benefits 

for multi-view multi time point acquisition with an OpenSPIM. 

3.9.14 Processing of acquired multi-view data is challenging 

The creation of multi-view 4D videos with an OpenSPIM has many interesting challenges. 

One important question that remains is how to deal with the huge amount of data 

generated. The processing of single time-points is feasible on a decent desktop computer 

(our system information can be found in the supplementary files), keeping in mind that 

SPIM registration processes such as multi-view deconvolution can require up to 128 GB of 

memory to successfully deconvolve a single time-point without compromising image 

quality and depending on parameters such as z-stack size, resolution, bit-rate, etc. To 

handle hundreds of time-points, even when imaging quality standards are lowered, a 

cluster computer with a sophisticated pipeline to organise the processing becomes a 

necessity. Cluster processing will certainly get more accessible in the future and an 
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automated workflow for multiview SPIM recordings, see (Schmied et al., 2015), but the 

need to set up such a pipeline and to have access to a cluster computer should also be 

borne in mind if OpenSPIM multi-view 4D microscopy is required. Different laboratories 

have currently already developed a range of increasingly user-friendly tools to visualize, 

handle and automatically extract information from large-scale light-sheet data (Amat et al., 

2015; Peng et al., 2014; Pietzsch et al., 2015; Stegmaier et al., 2016). 
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CHAPTER 4 Early development of M. crozieri 

Introduction 

Despite fundamental similarities between spiralian developmental programs, some major 

distinctions have also been pointed out. Variations include whether the formation of  polar 

lobes takes place or not, differences in sizes of micromeres and macromeres during early 

cleavage, blastomere arrangements and cell fates (Hejnol, 2010). 

Another distinction, relevant for this chapter, is whether the embryo represents an equal 

or an unequal cleaver. Which of the two classes of early cleavage an embryo follows is 

evident by looking at blastomeres sizes at the 4-cell stage. In equal cleavers, the first two 

divisions give rise to four blastomeres of equal size. Each blastomere is considered 

equipotent and can give rise to the future D quadrant. In contrast to this, unequal cleavers 

form four blastomeres of which one can be identified as the largest cell that contains (still 

unknown) key factors that cause this blastomere to give rise to the future D-lineage. Thus, 

the D quadrant in unequal cleavers is specified early on, while the mechanism for D 

quadrant specification in equal cleavers is likely based on an inductive signal, whereby one 

of the macromeres (3D) contacts the first quartet of micromeres (see detailed discussion 

in Chapter I). Other examples of differences between spiralians concern the timing of 

cleavages (in particular, the relative division timing of the 4d blastomere), the arrest or 

degeneration of certain blastomeres (the latter is known to be the case in polyclad 

flatworms), the sizes of blastomeres (e.g. the untypically large first quartet in nemerteans) 

and so on. Such differences in the highly conserved spiral cleavage patterns in different 
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lophotrochozoan phyla may be explained by a combination of history (phylogenetic 

relatedness) and adaptation and so studying these can aid our understanding of the 

evolutionary patterns. It is thus important to gather detailed, in-depth information about 

the mode of development of these diverse animals. 

Previously M. crozieri has been described as an equal cleaver (Lapraz et al., 2013; 

Rawlinson, 2010). Macromeres at the 4-cell stage are therefore expected to be 

indistinguishable by their size and the specification of the D quadrant lineage is thought 

likely to follow an inductive mechanism. An observation, which on the other hand would 

be characteristic for unequal cleavers and point towards this specific cleavage type, is an 

enlarged D-macromere at the 4-cell stage. 

To differentiate whether the blastomeres are of equal size at the 4-cell stage, precise 

volume measurements are necessary to find potential subtle differences between their 

sizes. To observe such developmental patterns, we take advantage of our live-imaging/3d-

reconstruction set-up and microinjection techniques, which allow us to identify specific 

blastomeres early on and to observe their cellular behaviour during embryogenesis. These 

techniques were established specifically for the polyclad flatworm M. crozieri (see Chapters 

2 & 3).  

Detailed descriptions of the early development of polyclad flatworms are generally scarce 

and it will be interesting to compare embryogenesis of M. crozieri not only to stereotypic 

developmental patterns known in other spiralian phyla but also to the existing 

developmental literature of polyclad flatworms. For example, it has been described that, 

during polyclad development, the cytoplasm of blastomeres can show peculiar activities 
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during early development (see Gammoudi, Noreña, Tekaya, Prantl, & Egger, 2012), which 

we here refer to as cytoplasmic perturbations. Although there is little knowledge of this 

peculiar phenomenon and the role of cytoplasmic perturbations during early 

embryogenesis, our live imaging setup is able to capture these dynamic processes in M. 

crozieri and allows us to compare them to previous descriptions of other polyclad 

flatworms. 

Another open question concerning early polyclad flatworm development is the exact 

cleavage pattern of micromere 4d. This blastomere is famous for producing 

endomesoderm (endoderm and mesoderm) in all spiralian embryos and as well as being 

especially notable for breaking the embryo’s radial symmetry by initiating a series of 

bilateral symmetric cleavages (see Lyons & Henry, 2014). Our live imaging recordings of this 

particular cell and its progeny in living embryos of M. crozieri will contribute to a better 

understanding of the behaviour of this particularly important blastomere. Finally, the 

mesodermal fate of blastomere 4d will be investigated by injections of micromere 4d and 

their descendants followed for 11 days into mature Müller’s larvae. Some of these 4d-

injected larvae were subsequently stained for an EdU (5-ethynyl-2'-deoxyuridine) pulse 

experiments, whereby EdU positive cells were used as an indicator for an area comprising 

mesodermal cells in order to ask the question if descendants of micromere 4d will be 

located in an overlapping territory. 
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It is the goal of this chapter to describe the embryonic development of M. crozieri, starting 

from zygote up to the ~100-cell stage and to discern the developmental patterns in this 

species, in particular equal versus unequal cleavage, and to carry out a comparison of the 

observed cleavage patterns within the Lophotrochozoa as a whole. 
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Results 

4.1 Oocytes and first cleavage 

When eggs are obtained from gravid adults by poking, they first show an elongated, slightly 

bent shape before turning into a spherical egg, which is covered by a layer of mucus (Figure 

4.3, A-B). Some have been observed to be infested by parasitic ciliates (Figure 4.3, B-C) that 

are usually attached to the adult worms. 

 

Figure 4.1 - SEM pictures of the 1-cell stage in M. crozieri. (A-B) Oocyte extracted from a 
gravid animal. The egg in A is still covered by a layer of mucus. (C-D) Same eggs infested by 
a parasitic ciliate. All scale bars are 10 µm.  
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During egg maturation, we observe prominent cytoplasmic perturbations in oocytes (Figure 

4.2, A-D). This event is known as cell blebbing, which in M. crozieri closely resembles 

observations of other polyclad species (Hallez 1879; Selenka 1881; Goette, 1882; Wheeler 

1894; Surface 1907; Kato 1940; Teshirogi et al. 1981; Anderson, 1977; Trubitsina, 1997; 

Malakhov and Trubitsina 1998; Younossi-Hartenstein and Hartenstein, 2000; Rawlinson et 

al. 2008; Gammoudi et al. 2012; see also Duran and Egger 2012). Similar to these 

descriptions, in M. crozieri, egg maturation involves firstly a depression of the oocyte at the 

animal pole (Figure 4.2, A) and secondly the emergence of amoeboid/pseudopodia-like 

irregularities all over the cell membrane (Figure 4.2, C and insets). Older literature provides 

detailed descriptions, including drawings of blebbing polyclad oocytes, see for example 

Surface (1907) and Kato (1940).  

Kato's detailed drawings of egg maturation and oocyte blebbing based on different 

Japanese polyclad species, fit very well with our observations made in M. crozieri. 

 

Figure 4.2 - (A-D) Cell blebbing during egg maturation in M. crozieri oocytes. (A) Extrusion 
of first polar body (white arrow) and depression of oocyte at the animal pole (black 
arrowhead). (B) Egg cell with one polar body and darkish pigment accumulated at the 
animal pole (C) Cell blebbing recognisable by the formation of amoeboid/pseudopodia-like 
irregularities all over the cell membrane. (D) Egg cell with two polar bodies and darkish 
pigment accumulated at the animal pole. Scale bar is 100 µm.  
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During the transition into a 2-cell stage (Figure 4.3, A-B) the formation of a cleavage furrow 

is occasionally more pronounced towards one side of the egg (the animal pole). Sometimes 

one of the two blastomeres is distinctly larger (Figure 4.3, C-D). In the 2-cell stage, both 

nuclei are located at the animal pole and pigmented cytoplasm accumulates around the 

nuclei (n=15/15) ( Figure 4.3, inset of D). These signs indicate the animal hemisphere of the 

embryo at an early stage. 

 

 

Figure 4.3 - (A-B) SEM of two eggs during first cleavage. (C-D) 2-cell stages. In C the left 
blastomere is clearly slightly larger than the right. Note that in B the cleavage furrow 
appears more pronounced on one side, presumably the animal pole. D shows a different 
embryo where both blastomeres look very similar in size. Inset shows a microinjected 2-
cell stage with fluorescently labelled histone H2A-mCherry surrounded by darker pigments. 
All scale bars are 10 µm.  
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Pigmented cytoplasm in micromeres surrounding the nuclei is also visible in embryonic 

stages during early cleavage (n=73/73). Similar observations of pigmented cytoplasm have 

been made e.g. for the acotylean polyclads Thysanozoon brocchii (Lang 1884, Gammoudi 

2011) and Pseudoceros japonicus (Malakhov & Trubitsina, 1998). 

4.2 Second cleavage 

4.2.1 The formation of 3-cell stages and putative polar lobe structures in M. crozieri 

The second cleavages can be slightly asynchronous, which explains the occasional 

observation of embryos in a 3-cell stage before the formation of four similar blastomeres 

takes place. This is the most common explanation for the 3-cell stages occasionally 

observed. In at least two other descriptions of polyclad early development, however, 

noticeable lobe-like structures have been observed at the vegetal pole of each blastomere 

(Teshirogi et al., 1981; Malakhov & Trubitsina, 1998). Interestingly we once captured a 

polar lobe-like structure at the 2-cell stage in M. crozieri (Figure 4.4).  
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Figure 4.4 – (A-H) A series of images of a M. crozieri embryo between 2-cell stage and 8-
cell stage (A-B) A polarlobe-like structure appears during the transition from 2- to 4-cell 
stage in this embryo. (G) Spiral arrangements of blastomeres (H) 8-cell stage has formed. 
Hours post ovipositione (hpo) are shown in the top right corner. 

From snapshots of a total of 435 embryos, all of them passing from a 2-cell stage into a 4-

cell stage, 20 embryos showed a transient stage of 3-cell cells (see Figure 4.5). As we only 

looked at snapshots, it is possible that more or perhaps even most embryos pass through 

a brief 3-cell stage. In these pictures, a 2-cell stage with a potential lobe-like structure 

cannot be distinguished from a true 3-cell stage, which contains three nuclei, therefore we 

can only infer that either lobe-like structures or transient 3-cell stages or both show up 

frequently during the early development of M. crozieri.  
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Figure 4.5 – (A) A snapshot of developing embryos between 2-cells and 4-cells. Red arrows 
indicate 3-cell-like stages. (A’) Inset of A. In such snapshots 3-cell-like stages (as depicted 
by red arrow) are readily found, but it is not clear whether they represent embryos 
consisting of 3-blastomeres or of two blastomeres and an additional lobe-like structure.   

4.2.2 Blastomeres A-B and C-D are related sister cells  

OpenSPIM live imaging as early as the 2-cell stage can be difficult due to the slow 

development of the fluorescent signal, which only starts intensifying during the third 

division. However, in one embryo, live-imaging observations captured from the 2-cell stage 

were possible and allowed us to follow the relationships between cells into the 4-cell stage 

(Figure 4.6). At the 4-cell stage, two opposing blastomeres are positioned more towards 

the vegetal side of the embryo and the other two more towards the animal side. The 

original identities of these blastomeres were then determined in this embryo by recording 

development up until the time when the bilaterally symmetric embryo is evident and the 
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D-quadrant is unambiguously identifiable and then reverse tracing the cells back into the 

4-cell stage. Tracing the 4d cell back further into the 2-cell stage showed that the sister cell 

of vegetal blastomere D is the animal blastomere C and the sister cell of vegetal blastomere 

B is animal blastomere A (Figure 4.6, A-I). This observation is in accordance with Surface’s 

description of the second cleavage in H. inquilina (Surface, 1907). At the 4-cell stage the 

typical vegetal and animal cross-furrows (where the two cells touch each other) are clearly 

visible, with blastomeres B and D in touch with each other on at the vegetal pole and 

blastomeres A and C touching towards the animal pole (Figure 4.6, I).  
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Figure 4.6 - The transition from 2-cell to 4-cell stage in M. crozieri. Embryo viewed from 
animal pole. Oocytes were microinjected with nuclear marker H2A-mCherry (red) and 
microtubule marker EMTB-3xGFP (cyan). Individual blastomeres could be identified by 
reverse tracing the D quadrant back into the 4-cell stages. The rotational symbols indicate 
slight adjustments made during the live-imaging to correct for a better animal view. (A) 2-
cell stage showing blastomere AB and CD. Note that nuclei have a slightly oblique position 
relative to each other. (B). Asynchronous division with blastomere CD being slightly more 
advanced. At this point for a short time a 3-cell stage can often be observed. (C-E) Nuclei 
of blastomere AB have now also separated, revealing the oblique spindle orientations that 
can be called a spiral arrangement. (F) At this stage, the vegetal position of blastomere B 
and D and animal position of blastomere A and C becomes more obvious. (G-I) Once more 
nucleic condensations become visible and each blastomeres cell border can be 
distinguished it becomes easy to see the animal cross-furrow border between blastomeres 
A and C at the animal pole. Scalebar is 100 µm.  
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Therefore, it can be said that blastomeres B and D carry the more animally positioned 

vegetal cross-furrow cells A and C, which is also reflected by a height difference of nuclei 

as can be seen in a 3d reconstruction from a lateral view (Figure 4.7 and Video4). 

 
Figure 4.7 - (A-D) Animal view of an embryo going from the 2- to the 4-cell stage. (D’) 
Schematic four-angle (A, B, C, D) 3d reconstruction of same embryo as shown in D but 
instead of an animal view depicted here always from a lateral. The correct spatial nucleic 
positions relative to each other were extracted from the embryos z-stack. The nuclei of 
blastomere B/D are clearly more vegetally positioned than nuclei of blastomeres A/C. 

4.3 Formation of first, second and third blastomere quartets 

The third cleavage (4- to 8-cell stage) is clearly asymmetric giving rise to the smaller first 

micromere quartet (1a, 1b, 1c, 1d = 1q) at the animal pole and the larger first macromere 

quartet (1A, 1B, 1C, 1D = 1Q) vegetally (Figure 4.8, A). When viewed from the animal pole, 

the uppermost micromeres bud off on the clockwise side of the vegetal macromeres, and 

the cleavage is designated as dextral (or dexiotropic). A sinistral cleavage type during the 

third cleavage was not observed in any live imaging recording, in which this could be tested 
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(n = 22). The quartet of larger macromeres subsequently gives rise to the second and third 

quartets of micromeres (2q and 3q respectively). These cleavages alternate from counter-

clockwise (sinistral for 2q) back to clockwise (dexiotropic for 3q) (Figure 4.8, A, B and E). 

The cleavage pattern of blastomeres up to the third quartet is shown in our SEM images, 

with sister blastomeres joined by a white line (Figure 4.8, A-E). Note that an intermediate 

12-cell stage forms (Figure 4.8, B), because the division of the first micromere blastomeres 

(1a-1d) is slightly delayed relative to the division of their sister macromeres (1A-1D) (Figure 

4.8, C and D). Until the formation of the fourth quartet, M. crozieri illustrates a classic 

example for the highly stereotypic lophotrochozoan spiral cleavage pattern. During the 

formation of the fourth quartet (Figure 4.8, F), however, which occurs shortly after the 32-

cell stage has been reached, macromeres (3A-3D) begin to deviate from canonical spiral 

cleavage in their division pattern. 
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Figure 4.8 Formation of the four quartets in M. crozieri. (A-D) SEM pictures coloured according to micromere quartets. (A) First quartet 
(1Q and 1q indicated in blue). (B-D) Second quartet (2Q and 2q) indicated in green. (E) Third quartet (3Q and 3q) indicated in orange. 
(F) Large fourth micromere quartet (4q) indicated in yellow. Scalebar in A-F = 50 µm.
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Figure 4.8 -  

4.4 Formation of the fourth quartet 

The fourth quartet formation is different from the typical spiral cleavage pattern. For the 

previous three divisions, the macromere nuclei are towards the animal pole. In the divisions 

that gives rise to the fourth quartet the mitotic spindles formed by the third quartet, 

macromeres move the nuclei from an animal position (Figure 4.9, B-D) to a vegetal one 

(Figure 4.9, E, blue arrows). As a consequence of this, the nuclei of 3A-3D are seen close 

together at the vegetal pole of the embryo, where each cell divides along the a-v axis 

(Figure 4.9, F-H). Rather than producing four small animal micromeres and four large 

vegetal macromeres, the reverse is true; the smaller cells are the most vegetal products of 

this division (compare previous Figure 4.8) but, due to their vegetal position, the four very 

small blastomeres are nevertheless designated as the fourth quartet ‘macromeres’ (4A, 4B, 

4C, 4D = 4Q). The four larger animal cells, which still contain most of the yolk, are 

designated as the fourth quartet ‘micromeres’ (4a, 4b, 4c, 4d = 4q) (Figure 4.9, F). 
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Figure 4.9 – Formation of the fourth quartet in M. crozieri. (A-B) Same embryo first at 8-
cell stage (A) and then at 16-cell stage (B). The 16-cell stage shows macromeres 3B-D and 
their nuclei at an animal position within the large blastomeres. (C) 24-cell stage of a 3d-
reconstructed embryo with nuclei 3A-3D also clearly at a more animal position (Their depth 
in the embryo is coded by colours as seen in top right part of the panel. They are coloured 
orange and their position is indicated by white arrows). (D) Lateral view of a 3d-
reconstructed embryo. Macromeres 3A-3D are positioned in the centre of the embryo. (E) 
Same embryo as in A-B at the 32-cell stage. Nuclei of 3B and 3D are now positioned at the 
vegetal pole of the macromeres. (F) Division of one of the macromeres, believed to be 3D 
(into 4D and 4d), has taken place. (G) Same embryo as in F but from an animal view 
indicating that the division was dexiotropic. The white arrow indicates the newly formed 
small macromere of the fourth quartet coloured purple indicating it is close to the vegetal 
pole. (H) 3d-reconstructions showing that all four macromeres of the fourth quartet are 
now positioned at the most vegetal pole of the embryo (coloured purple and indicated by 
arrows).  
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4.4.1 The precocious division of 3D is followed by an asynchronous division pattern during 

fourth quartet formation 

In most cases (n=4/5), the third generation of macromeres (3Q) shows the following 

asynchronous division pattern: Macromere 3D cleaves first and is immediately followed by 

the division of macromere 3B (Figure 4.9, E-G; Figure 4.10, F). The cleavage of both 

macromeres 3A and 3C is then slightly delayed by several minutes but both then happen 

almost simultaneously. This division pattern is interesting, as similar observations have 

been noted in also in molluscs (Van den Biggelar 1996). Surface (1907) also states that 

macromeres 4B and 4D in the polyclad flatworm H. inquilina form first, followed by 4A and 

4C. Furthermore, in the acotylean Discocelis tigrina (Lang 1884) macromere 3D – very much 

as in M. crozieri - divides first, followed shortly by 3B and subsequently by macromeres 3A 

and 3C. In general, such division timing patterns with macromere 3D dividing earlier than 

macromeres 3A, 3B, and 3C is a common pattern in spiral cleaving lophotrochozoan 

embryos. In gastropods, however, macromere 3D has been shown to divide either first or 

later (Van den Biggelar 1996). 

 

4.5 Cytoplasmic perturbations found on macromeres 

Prior to the highly asymmetric cleavage of the third generation of macromeres (3A-3D) the 

formation of protuberances have been observed on the surface of all four macromeres. 

These protuberances appear during the divisions of macromeres 2A-2D in form of vesicle-

like protrusions (Figure 4.10, A-D) (n = 17/18). Their function is unclear but mitotic 
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cytoskeletal activity during anaphase seems to correlate with the observed protrusions 

(Figure 4.11). During the formation of the fourth quartet (3A- 3D), we also observed 

cytoplasmic perturbations in form of waves of contractile activity in all four macromeres 

(n=18/18). In this case the macromeres attain an elongated shape (Figure 4.10, F-H) at the 

onset of the formation of micromeres 4a-4d. More detailed time-lapse sequences of these 

peculiar cytoplasmic perturbations are shown in Figure 4.12). 

 

Figure 4.10 - Protuberances and cytoplasmic perturbations during third and fourth quartet 
formation (A-D) Cytoplasmic perturbations and the formation of extracellular vesicle-like 
structures appear prior to third quartet formation (16-32 cell stage) among all four 
macromeres. (D-H) Embryos microinjected at one cell stage with microtubule marker 
(EMTB-3xGFP) and histone nuclear marker (H2A-mCh). (E-F) Vegetal (E) and lateral view (F) 
of the division of macromere 3D into tiny macromere 4D (white arrowhead) and 
mesentoblast precursor 4d, which is the starting point for cytoplasmic perturbations during 
fourth quartet formation in all macromeres. (F-H) Cytoplasmic perturbations in form of 
clear deformations of (large) micromeres 4b and 4d. Live imaging was performed under a 
Zeiss Axio Zoom Stereo Microscope. All eggs were extracted from adults prior to shell 
formation. Scalebar is 100 µm in A and 50 µm in H-L.  
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Figure 4.11 – Cytoplasmic perturbations imaged with the OpenSPIM in one of the second 
quartet macromeres shown during mitosis. The whole embryo is shown over-exposed to 
better visualize the membranous outlines of the macromeres. Right of each embryo its 
nuclei are depicted with normal exposure. Red arrows point to the same nuclei of the 
embryo. A red line highlights the outline of the corresponding macromere. The shape 
deformations caused by the cytoplasmic perturbations of the macromere correlate 
precisely with the mitotic anaphase and reach a maximum in panel D. Scalebar = 50 µm.  



 121 

 

Figure 4.12 – (A-P) Time-lapse recording showing the formation of the small macromeres 
(4Q) and large micromeres (4q) of a single M. crozieri embryo in 5 min intervals showing 
striking cytoplasmic perturbation activity at the vegetal pole of the embryo (indicated by 
black arrows). (F-K) 25 min of cytoplasmic perturbations are clearly visible in macromeres 
3A-3D. Live imaging was performed under a Zeiss Axio Zoom Stereo Microscope. Scale bar 
is 100 µm.  
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4.6 Micromere 4d is responsible for the symmetry breaking at a cellular level 

In most spiral cleavers the direct progeny of macromere 3D (i.e. micromere 4d) typically 

divides into left and right daughters thus breaking the embryo’s radial symmetry producing 

a bilaterally symmetrical embryo with a left and right side. 

From our light-sheet live-imaging data it becomes clear that the M. crozieri 4d blastomere 

does not immediately divide laterally but first divides along the anima-vegetal (a-v) axis 

into a smaller and animally positioned cell, which we designate as 4d1 and a large, vegetally 

positioned cell, namely 4d2 (Figure 4.13, A-B). This happens on average 196 min (n = 8; 

±34.8 S.D.)  after the apical rosette cells (1q111) have formed. Following this additional 

division of micromere 4d the symmetry is broken by the horizontal (left-right) division of 

both sister cells, 4d1 and 4d2. Interestingly, the metaphase of dividing micromere 4d 

initiates a brief period of obvious cytoplasmic movement, during which a number of 

amoeboid irregularities of the membrane becomes visible (n = 16/16) (Figure 4.13, B). The 

horizontal divisions of 4d1 and 4d2 appear equal and this is particularly obvious in 4d2 due 

to its large size and exposed external position (Figure 4.13, C).  
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Figure 4.13 - Animal view of the cleavages of the endomesoderm precursor 4d in M. 
crozieri. Oocytes were microinjected with nuclear marker H2A-mCherry (red) and 
microtubule marker EMTB-3xGFP (cyan) and the embryo used for 4d microscopy with 
OpenSPIM. (A-I) Partial maximum projections of different time points of the same embryo 
breaking its radial symmetry by divisions of micromere 4d. Only a part of the z-stack has 
been used for the projections to better visualise the cleavage pattern of 4d indicated as the 
darker rectangle in J (lateral view). (A) Chromosome condensations only visible in 4d, not 
in 3a, 3b and 3c. (A’) maximum projection of the embryo seen in A. (B) Division of 4d along 
the animal-vegetal (a-v) axis of the embryo. At this point the radial symmetry of the embryo 
is broken. (C) Cytoplasmic perturbations (white arrowheads), observed during the cleavage 
of 4d. (D-H) The horizontal division of 4d2 give the embryo a bilateral morphology. (I) The 
next horizontal division of the daughter cells of 4d2 is depicted; The 4d cell and its progenies 
have been depicted separately below each figures’ whole embryo but with increased levels 
to better visualize membrane dynamics. (I’) maximum projection of the embryo seen in I. 
Scalebar = 50 µm.  
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Both descendants of 4d1 and 4d2 (4d21 and 4d22 and 4d11 and 4d12) then undergo another 

round of horizontal cleavages, similar to Surface’s descriptions on H. inquilina (1907). 

Of all embryos that follow the stereotypical spiral cleavage pattern with quartet formations 

the described first division of 4d along the animal-vegetal (a-v) axis and the subsequent 

horizontal divisions of both daughter cells has so far been only found in the Polycladida. 

4.6.1 Injections of the 4d blastomere in M. crozieri indicate a mesodermal fate  

To investigate if the 4d cell in M. crozieri can form mesoderm as has been described and 

demonstrated for the polyclad flatworm H. inquilina (Boyer et al., 1998; Surface, 1907) we 

microinjected macromere 3D or its large descendant micromere 4d. During injections of 

embryos (32- to 36-cell stage) the vegetal cross furrows were still present and helped to 

discern D and B quadrants from A and C quadrant. If macromere 3D was successfully 

injected, GFP signal should also be present in small macromere 4D, which will be always 

located at the most vegetal pole of the embryo and which does not undergo any further 

divisions and so represents a good landmark. Injections of any of the cells 3A-C can be easily 

distinguished since their daughter cells 4A-C and 4a-c do not undergo any further divisions 

(Boyer et al., 1998; Surface, 1907). In 3D-4d injected embryos observed during 

development, after one or two days we can see a mostly bilateral symmetric pattern of 

fluorescence (see Figure 4.14, A-F).  
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Figure 4.14 - GFP expression showing the descendants of 4d, which was initially 
microinjected with the nuclear marker H2B-GFP. Embryos are seen from a lateral view. 
Animal pole is up. (A-B) 2 days after the egg was injected the bilateral symmetry of the 
embryos is established. The horizontal division of the large cell 4d2 has taken place (left and 
right daughter cells depicted by their green nuclei). 4d1 and descendants are not visible. (C-
D) 4d descendants continue to divide. Most vegetally seen is the small macromere 4D 
(white arrowhead) indicating that macromere 3D was initially injected. This cell (4D) can be 
used as a landmark for the vegetal side. (E-F) Bilateral symmetry of the bands of mesoderm 
is visible (left and right side of white dashed band). Scale bars are 100 µm. Dpo = days post 
oviposition. 

One of these embryos was fixed at a much more advanced stage (7 dpo) and used for 3 

dimensional reconstructions and deconvolution. The GFP signal present in descendants of 

4d was also counterstained with Rhodamine-Phalloidin to visualise F-actin of newly forming 

musculature (Figure 4.15) (see Video 5). From this it was seen that in this embryo, none of 

the cells deriving from 4d was present in the epidermis in line with the expectation that 4d 

is forming mesoderm.  
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Figure 4.15 – Slices through a 3d-reconstructed z-stack of a 7-day old M. crozieri embryo 
post gastrulation, which was initially injected 25 hpo into the 4d blastomere (A-P). The 
nuclei of its descendants can be seen marked green (GFP) and are also indicated by white 
arrows. None of the nuclei acquired an epidermal fate. Labelled F-Actin is shown in red. 
Scale bars are 50 µm.  
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Notably a few nuclei of this embryo were specifically found in close proximity to cells of the 

dorsoventrally-forming musculature, suggesting that some descendants of 4d gave rise to 

mesoderm by differentiating into mature muscle cells (Figure 4.16). This also suggests that 

micromere 4d fulfils its expected fate as a mesoderm precursor cell. All other embryos 

developed by day 11 into swimming 8-lobed Müller’s larvae, where they were subjected to 

a 1-2 hour EdU pulse before fixation. 

 

Figure 4.16 - Same embryo as in Figure 4.15 with focus on a few derivatives of the injected 
4d blastomeres in form of GFP positive nuclei, which are nested within muscle fibres 
stained with phalloidin for F-Actin (red). Scale bar is 50 µm. 

4.6.2 EdU pulse experiments in combination with 4d injections 

In adult flatworms, EdU staining reveals a continuously proliferative pool of so called 

neoblasts, which are distributed throughout the mesenchymal tissue. Neoblasts are the 

only proliferating cells in flatworms, and therefore can incorporate EdU into the DNA during 

their S-phase. Neoblasts have the remarkable capability to differentiate into any cell type 
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including the germ line. This unique stem cell system of neoblasts is thought to be the key 

for the remarkable regenerative capabilities found in so many different flatworms. 

Rhabditophoran flatworms renew their epidermal tissue exclusively from the previously 

described mesodermal neoblasts (Egger et al., 2009 and citations therein). The epidermis 

itself is, however, always free of neoblasts. Therefore, any EdU pulse experiments, which 

stain neoblasts during their S-phase, should not show any positive signal within the 

epidermis of the flatworm but rather should indicate the mesenchymal tissue located 

between the epidermis and the gastrodermis. For this reason, we expect EdU positive cells 

also in polyclad larvae to indicate mostly mesodermally derived tissue. Therefore, if GFP-

positive signal of 4d-injected derivatives are not visible within the epidermis of the larvae, 

but are rather distributed in areas where EdU-positive cells frequently show up, this 

observation would indicate also a likely mesodermal fate of the 4d blastomere. 

 

We first tested EdU staining on a series of Müller’s larvae to determine if the pattern is 

similar to the distribution of neoblast stem cells found in juvenile or adult flatworms (Figure 

4.17). Similar to a preliminary test on Müller’s larvae performed with BrdU instead of EdU 

(Lapraz et al., 2013), epidermal cells were devoid of any positive EdU labeled nuclei (n=20), 

which can be particularly well seen in lobes and the oral hood (Figure 4.17). When looking 

at Müller’s larvae from the ventral or anterior view, we noticed that EdU positive cells 

appear to be distributed in two main lateral stripes, an observation which is similar to 

descriptions of adult flatworms, e.g. the basal branching flatworm Macrostomum lignano 

(Ladurner et al., 2000; Rieger, 1994).  
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Figure 4.17 - Fixed and stained 8-lobed Müller’s larvae, which were previously labeled for 
S-phase cells with a 1 hour pulse of 10 µM EdU. (A) Brightfield image showing the lateral 
view of a Müller’s larvae. (A’) Same larvae visualised for DAPI staining and EdU positive cells 
(A’’) merge of all three channels. It is obvious that cell proliferation does not take place in 
ectodermal tissue thus lobes and epidermis completely lack any EdU positive signal. (B) 
Further examples of an EdU stained Müller’s larva showing the same result. (C-D) apical 
view of a Müller’s larvae showing the bilateral distribution of EdU positive cells. D is the 
only picture acquired by confocal imaging. Next to the asterisk is a EdU labelled cell, which 
is detached from the rest of larval body, perhaps due to the squeeze preparation. (oh) oral 
hood, (dl) dorsal lobe, (vll) ventro-lateral lobe, (ll) lateral lobe, (dll) dorso-lateral lobe. 
Images captured with an Axioimager M1 Epifluorescence and Brightfield Microscope 
(Zeiss).  Scale bar = 100 µm. 
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4d-injected 11 day old Müller’s larvae neither EdU positive cells nor 4d descendants were 

present within the epidermal layers of the larvae, however an overlap between the EdU 

positive cells and GFP positive nuclei could never be determined, even when looking at z-

stacks of confocal imaging Figure 4.18, A-C). Notably, this is also true for control larvae, 

where the one-cell stage was injected instead of micromere 4d. In these control injections, 

the GFP signal only partially overlaps with the nuclei stained with DAPI (Figure 4.18, D) and 

no overlap between EdU positive cells and cells containing GFP positive nuclei is visible. 

This suggests that the high proliferation rate of non-ectodermal larval tissue (presumably 

mostly mesoderm) has diluted the GFP signal initially present in nuclei of cells to an extent 

where an overlap of initially GFP positive cells with later stained EdU positive cells is not 

detectable anymore. 
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Figure 4.18 - 

4.7 Embryonic vegetal cross-furrow cells give rise to the D quadrant 

Embryos with typical spiral quartet cleavage will at some point during early development 

specify the so-called D-quadrant. In unequal cleavers at the 4-cell stage the D-quadrant 

would be the largest of the four cells and also one of the vegetal cross-furrow cells (i.e. one 

of the pair of opposing cells which make contact at the vegetal poles), which acquires a D 

quadrant specific fate. We wanted to find out if one of the vegetal cross-furrow 

blastomeres seen in the 4-cell stage of M. crozieri is consistently destined to become the 

D-quadrant. This can be achieved using our live-imaging data by ascertaining which of these 

cells becomes the definitive D quadrant in bilaterally symmetric M. crozieri embryos. In 

those embryos where radial symmetry breaking divisions of micromere 4d have already 

occurred, we can follow the quadrant back to its ancestral cell at four/eight cell stage. 

Micromere 4d2 is easily identified due to its horizontal division plane and large size 

(indicated in Figure 4.19 A by the pair of white arrowheads in embryo i-iv). We manually 

traced 4d2 back to its vegetal macromeres at the 8-cell stage (n=7; indicated by a white 

asterisk in Figure 4.19, B). At this stage the correct identification of vegetal and animal cross 

furrow cells can be identified (Figure 4.19, indicated by dashed lines). Our reverse tracking 

approach reveals that without exception (n=7/7) 4d2 originates from one of these vegetal 

cross-furrow cells. (Figure 4.19, B marked by white asterisk). Since cleavage furrows of 4- 

and 8-cell stages are identical at this early stage it becomes clear that one of the vegetal 

cross-furrow cells is already determined to become the D quadrant at the 4-cell stage.   
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Figure 4.19 - Identification of the D quadrant in 8-cell stages of M. crozieri via reverse 
tracking of the bilateral dividing 4d2. (A) Embryos after they have acquired a bilaterally 
symmetric shape following the division of 4d. Both daughter cells of 4d2 are highlighted by 
white arrowheads in embryos i-iv and clearly indicate the D quadrant of the embryo. This 
information has been used to identify the origin of the D quadrant in 8-cell staged embryos 
of A by reverse tracking of these cells. (B) 8-cell stages of the same M. crozieri embryos as 
seen in A. Embryos labelled i-iv are seen from the vegetal side and cross-furrows have been 
highlighted with a white, dashed line. All other embryos are seen from the animal side with 
one embryo in which its dexiotropic cleavage pattern has been indicated by white arrows. 
The white asterisk in each embryo seen from the vegetal pole indicates the end of the 
reversed tracking and thereby identifying macromere 1D, which is connected via the 
vegetal cross-furrow to the B blastomere (positioned opposite). Blastomeres A and C are in 
touch with blastomere D and B but not with each other. Scalebar = 100 µm. 

4.8 All blastomeres are equal, but some blastomeres are more equal than others 

M. crozieri has previously been described as an equal cleaver (Rawlinson 2010; Lapraz 

2013) been. Rawlinson already pointed out that the similar sizes of blastomeres at the 4-

cell stage makes D quadrant identification difficult. What most clearly separates an unequal 

cleaver from an equal cleaver is the presence of an enlarged D blastomere. To clarify 

whether M. crozieri is indeed an equal cleaving embryo or might have inconspicuously 



 134 

different blastomere sizes we performed a series of precise blastomere volume 

measurements during the first and second cleavages. These allowed us to explore the 

possibility of an early D quadrant specification, similar to unequal cleavers, in M. crozieri 4-

cell stages using SPIM microscopy. 

For this purpose, we 3D reconstructed 25 fixed embryos between the 2- and 4-cell stages. 

Interestingly, a significant difference of 6% in volume size could on average be discerned 

even at the 2-cell stage (n=13/13) (Figure 4.20, C and Figure 4.21). In two embryos, which 

went through a 3-cell stage, the volumes of the two smaller cells also differ slightly (Figure 

4.20, D and Figure 4.21). The volume of the remaining larger blastomere, which is still in a 

state before its second cleavage, is smaller than the combined volume of the two smaller 

cells. 

Individual blastomeres of 4-cell stage embryos showed that one cell was always 

significantly larger than all other three blastomeres (Figure 4.20, E and Figure 4.21). 

Interestingly, whenever the cross-furrow of 4-cell stage embryos was clearly recognisable 

(in 8/10 cases) the largest cell is invariably one of the vegetal cross-furrow cells consistent 

with this being the D quadrant (see above). 

This finding clearly resembles the type of unequal cleavers as seen in other spiralian 

embryos and one could conclude that precise volume measurements are a necessity to 

reveal the unequal size of blastomeres as we have demonstrated here via multi view 3d 

reconstructions.  
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Figure 4.20 - Averaged volume measurements in M. crozieri blastomeres of embryos going 
through the first and second cleavages. (A-E) Volumes are given as a percentage of the 
volume of the total embryo, which is 100%. (C) At the 2-cell stage the larger cell is assumed 
to represent blastomere CD and the smaller cell blastomere AB. (D) At the 3-cell stage 
blastomere CD most likely precedes the division of blastomere AB. (E) At the 4-cell stage 
the largest blastomere is always one of the vegetal cross-furrow cells and is interpreted as 
the D blastomere. (A’-E’) All volume measurements come from 5-angle 3D-multiview 
reconstructions and have been orientated with a view from their vegetal side. Only a single 
plane of the 3D reconstructed stack is shown. Scalebar = 100 µm. 
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Figure 4.21 - An average of the volume measurements of 3D-reconstructed blastomeres in 
M. crozieri embryos of the 2-cell, 3-cell and 4-cell stages. The data are based on 
measurements of individual blastomeres. To provide the data as percentages makes sense 
as each individual embryo can vary in size. The 2-cell stages are indicated as blue columns 
(n=13), 3-cell stages as orange (n=2) and 4-cell stages as green columns (n=13). Volumes 
are given as a percentage of the total volume of the embryo which is 100%. Standard 
deviations are indicated for smaller blastomeres only. In two cell stages a 6% difference 
was noted between the two cells on average. In 3-cell stages the two sister blastomeres (C 
and D) show on average a 2% difference. In 4-cell stages the largest blastomere (indicated 
as D) is almost 5.8% larger compared to its sister cells (indicated as C). Of the two remaining 
sister blastomeres, the size difference is only 3.3% (with the larger one indicated as 
blastomere B). 
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Discussion 

4.9 Cytoplasmic perturbations are common during the early development of M. 

crozieri 

During egg maturation and after fertilisation, animal oocytes typically undergo obvious 

changes. Examples are the fusion of sperm and egg pronuclei, the addition of centrioles to 

the ooplasm, the activation of metabolic pathways and the localisation of important 

materials in specific parts of the oocyte. An increased activity of the cytoskeleton resulting 

in deformations of the egg’s cytoplasm and increased egg contractility is often observed 

during this period. This is usually thought to be a sign of the oocyte segregating cell content 

(Wall, 1990). In polyclad flatworms, M. crozieri included, similar changes have been 

observed several times during egg maturation, where this process is best known as cell 

blebbing and is linked to the extrusion of the polar bodies. Our current knowledge of such 

cytoplasmic perturbations in polyclads was recently summarised by Gammoudi (2012).  

In several animal phyla, including other lophotrochozoans such as gastropods and annelids, 

oocytes also undergo cytoplasmic changes (usually after fertilization and during meiosis) 

(Dettlaff and Vassetzky, 1991; Henry et al., 2006; Lehmann and Hadorn, 1946). In 

Platynereis dumerilii cytoplasmic movements have been described to induce a flow of clear 

cytoplasm starting from the centre of the egg towards the animal pole, while at the same 

time granules and lipid droplets accumulate at the vegetal pole of the zygote (Costello, 

1945; Dorresteijn, 1990; Dorresteijn and Fischer, 1988). Outside the Lophotrochozoa, 

amoeboid movements have been found for instance in the eggs of nematodes (Spek, 1918). 
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In amphibians so called surface contraction waves (SCW) have been described first in 

axolotl eggs (Hara, 1971) and later also in Xenopus laevis ((Yoneda et al., 1982). Several 

other animal models have eggs that undergo a process called cytoplasmic streaming, 

described in Caenorhabditis elegans, Drosophila melanogaster, ascidians, zebrafish and 

also mice. Cytoplasmic streaming happens either during late oogenesis or at meiosis (Li and 

Albertini, 2013). It appears that cytoplasmic perturbations are common in many animal 

oocytes, especially after fertilization or egg maturation, and often noticeable by 

cytoplasmic changes based on an in increased cytoskeletal activity. 

In M. crozieri and a few other cases it has been demonstrated that such cytoplasmic 

perturbations are not restricted to egg maturation alone but sometimes can return 

frequently during early cleavage (Gammoudi et al., 2012; Malakhov & Trubitsina, 1998; 

Teshirogi et al., 1981; this study). In M. crozieri we noted that the cleavage of macromeres 

that bud off the micromere quartets as depicted in Figure 4.8 are dynamic divisions 

(deforming the cell shape), possibly due to the large size of macromeres and the large 

amount of yolk contained within them. The formation of vesicle-like protuberances in all 

four macromeres are noticeable during the more or less synchronous 5th cleavage divisions 

of 2A-2D (at the transition from the 16- to 32-cell stage). Additionally, the appearance of 

cytoplasmic perturbations becomes especially clear during the formation of the fourth 

quartet (Figure 4.10). Conspicuously, when we mounted embryos in high concentrations of 

agarose (>0.6%), we observed severely abnormal development beyond the point where the 

fourth quartet formed (n=5). We speculate that cytoplasmic movements are severely 

restricted by the solidity of higher concentrations of agarose and the defects observed 
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suggest these movements are essential for normal development. In general, their 

appearance can be difficult to observe without live-imaging due to their short persistence 

and this might be one reason why such descriptions are scarce. However, very similar 

perturbations as observed in M. crozieri during divisions of macromeres 2A-2D have also 

been depicted in a second polyclad species, Pseudostylochus intermedius (Teshirogi et al., 

1981), but one division round earlier (8- to 16-cell stage). In the common pond snail 

Lymnaea stagnalis, so called RNA-containing ectosomes have been described. In this case, 

ectosomes are extracellular vesicles, which appear likewise on the third-generation 

macromeres in the snail, where they interact with micromeres of the animal pole via gap 

junctions. The vesicles in the snail behave differently in macromere 3D when compared to 

its counterpart macromeres 3A-3C - ectosomes of the latter three macromeres become 

much more compact, while the ectosomes of macromere 3D are ultimately dispersed 

(Dohmen and Van de Mast, 1978; van den Biggelaar, 1976). A similar function of the vesicle-

like protuberances observed in M. crozieri macromeres 2A-2D is possible but their presence 

during macromere divisions make a cytoskeletal rather than ectosomal cause more likely 

(Figure 4.11). The same might be true for the even more pronounced cytoplasmic 

perturbations during the divisions of macromeres 3A-3D. We have also shown some 

preliminary evidence that polar lobes might occur during the early cleavages in M. crozieri 

(2-cell to 4-cell stages), however this finding needs to be further investigated. In general, 

only few observations of cytoplasmic protuberances accompanying the early cleavage 

pattern of polyclad flatworms are available. 
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A model to better understand the mechanism of cytoplasmic perturbations in cells such as 

blebbing, and other cellular forces like cell migration or cell division, is based on the idea of 

local breakage of the cortical actomyosin meshwork (Paluch 2005). Rapid cell shape 

changes, cell movements, the resistance to external mechanical stress, the capability to 

oppose intracellular osmotic pressure and other dynamic cellular forces all depend on the 

actomyosin cortex of animal cells. This thin layer is located underneath the plasma 

membrane and can be seen as a highly dynamic cross-linked gel comprised of actin, the 

main component that gives stiffness to the cell, myosin motors, which add contractile 

forces to the meshwork and keep the actin under tension, as well as a variety of actin-

binding proteins (see Paluch 2005 & Guillaume 2012). In short, the mechanism leading e.g. 

to blebbing can be triggered by spontaneous raptures within the actomyosin gel driven by 

increased localized activity of myosin II. Cytoplasm is then extruded through the resulting 

cortical hole and a protrusion grows, which is reversed during the process of the formation 

of a new actin network within the bulge that subsequently serves as a substrate for the 

myosin motors to attach. This phenomenon is described as cortical oscillations and 

underlines an intrinsic instability of the cortical actomyosin system. Such a mechanism 

might be involved also in the observed cytoplasmic perturbations of polyclad flatworms, 

which in Figure 4.22 are summarised as described previously in polyclad flatworms, 

together with our own observations of the early development of M. crozieri. 
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Figure 4.22 - Summary of cytoplasmic perturbations found in different polyclad flatworm 
species. (A) Depression of the animal pole during the formation of the first polar body 
described by Kato (1940) for some Japanese polyclad species and for Maritigrella crozieri 
(this study). (B) Cell blebbing in oocytes as described for most polyclads during the first and 
second meiotic divisions (see Gammoudi et al. 2012). (C) Vegetal lobe like structures found 
in Pseudostylochus intermedius (Teshirogi & Sachiko, 1981) and Pseudoceros japonicus 
(Malakhov and Trubitsina, 1998). Drawing taken from P. intermedius (D) Cytoplasmic 
perturbations seen in Pseudostylochus intermedius (8- to 16-cell stage) (Teshirogi & 
Sachiko, 1981) and Maritigrella crozieri (16- to 32-cell stage, this study). (E) Waves of 
contractile activity in all four macromeres of Maritigrella crozieri (this study) whereby 
macromeres attain an elongated shape. (F) Similar cytoplasmic perturbations seen during 
the highly asymmetric cleavage of micromere 4d found in Maritigrella crozieri (this study). 
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4.10 Volume measurements of macromeres A, B, C and D suggest an unequal cleavage 

mechanism for M. crozieri embryos 

As discussed in the introduction of this Chapter and also in Chapter I, unequal cleavers are 

characterised by an enlarged cell volume in one of the four macromeres, which is already 

specified to give rise to the D quadrant lineage and is therefore referred to as the D 

macromere. In such a case, an inductive mechanism (cell-cell contacts), in order to specify 

the D-quadrant, is usually not observed, as (still unknown) determining factors have already 

been shunted into the D macromere at the 4-cell stage. 

Slight size differences at 4-cell stages have been reported several times in polyclad 

flatworms (Anderson, 1977; Kato, 1940; Lang, 1884; Surface, 1907; Teshirogi et al., 1981). 

Despite these descriptions, polyclad flatworms are often considered more or less equal 

cleavers (Martín-Durán and Egger, 2012). This implies conditional specification of the D 

quadrant via an inductive cell-cell interaction, known from other equal cleavers. 

This uncertainty of being an equal or unequal cleaver is also true for the polyclad H. 

inquilina, where Surface (1907) already mentions a slightly enlarged D blastomeres in 2 and 

4-cell stages and later Boyer stated – despite having difficulties identifying a definitive D 

blastomere – that at least the two vegetal cross-furrow cells are larger compared to their 

two counterpart animal blastomeres. Our 2- and in particular our 4-cell stage volume 

measurements suggest that in M. crozieri embryos a mechanism exists that actively 

produces vegetal cross-furrow blastomeres, namely B and D, which have a larger volume 

on average (Figure 4.20; Figure 4.21).  Therefore, it appears that one macromere, most 

likely macromere D, receives the largest amount of cytoplasm, as has been suggested for 
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H. inquilina by Surface (1907). This suggests that M. crozieri tends to follow an unequal D 

quadrant specification mechanism. 

This being said, the precise mechanism for the D blastomere specification in unequal 

cleavers is still only poorly understood and based on the idea of obvious, asymmetric 

distribution of inheriting key determinants, which are eventually shifted into the D 

macromere at the 4-cell stage. Unfortunately, these determinants are not known yet and 

there is also the possibility many of them might get segregated during the first two 

cleavages without concomitants in terms of unequal cell sizes (or e.g. the production of 

obvious structures such as polar lobes). At least in polyclad flatworms it seems that 

asymmetric cleavages do play a role during the first two cleavages as shown by our volume 

measurements. These differences are, however, very subtle and cannot be detected by 

traditional microscopy. This might explain why it comes so often to conflicting statements 

regarding the true size of blastomeres in polyclad flatworms. 

 

4.11 Unequal cleavage in M. crozieri does not rule out the possibility of an inductive 

mechanism to specify the D quadrant 

In M. crozieri, our reverse tracking approach revealed that 4d1 and 4d2 originate from one 

of the vegetal cross-furrow cells already in the 4-cell stage (Figure 4.19). This finding 

matches Boyer’s observations in embryos of the polyclad H. inquilina where deletion 

experiments in 8-cell stages showed the importance of vegetal cross-furrow blastomeres 

for establishing bilateral symmetry during development (Boyer, 1989). In the polyclad H. 
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inquilina Boyer noted that a loss of two micromeres at the 8-cell stage results in problems 

for a correct establishment of bilateral symmetry and as an explanation pointed out that 

an early cell-cell interaction mechanism between at least one of the first quartet 

macromeres (1Q) and the first micromere quartet (1q) (Boyer, 1989) might exist. Such an 

inductive D quadrant specification has never been shown in any other spiralian embryo at 

such an early stage. The possibility of an inductive scenario should nonetheless be taken 

seriously as we know from experiments on equal and dextral cleaving L. stagnalis snail 

embryos, where an inductive mechanism specifies the D-quadrant (Freeman and Lundelius, 

1992), their left-right asymmetry is also dictated by a macromere-micromere contacting 

geometry at the 8-cell stage (Kuroda et al., 2009). If the left-right asymmetry can be 

established via cell-cell interactions already during the third cleavage, similarly an early 

specification of the D quadrant lineage is conceivable. 

However, the fact that one of the two vegetal cross-furrow macromeres at the 4-cell stage 

is already determined to give rise to the D quadrant lineage, does not necessarily suggest 

that M. crozieri embryos behave strictly as unequal cleavers, where the D quadrant lineage 

is already specified at the 4-cell stage. 

One example, why we cannot jump to such a conclusion, can be taken from equal cleaving 

gastropods. In the pond snail L. stagnalis, blastomeres of the 4-cell stage are of equal size 

and similarly to M. crozieri, both sister cells, A/C and B/D, can be distinguished from their 

cross-furrow position. It could be shown in L. stagnalis that one of the vegetal cross-furrow 

macromeres at the 4-cell stage will give rise to the D quadrant lineage. The embryo, 

however, clearly uses an inductive mechanism for specifying its D quadrant later on 
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(Freeman and Lundelius, 1992). This example makes clear that early determination of one 

macromere is not equal to true specification as seen in unequal cleavers. 

4.12 4d cleavage: another example of the onset of bilateral symmetry in polyclad 

flatworms 

In spiral cleavers, the direct progeny of macromere 3D (i.e. micromere 4d), which typically 

divides into left and right daughters thus breaking the embryo’s radial symmetry, often 

gives rise to the mesoderm and often also to parts of the endoderm (see Lyons & Henry, 

2014). In such cases 4d is referred to as the mesentoblast. In the polyclad H. inquilina 4d 

also gives rise to mesodermal structures such as longitudinal, diagonal, and oral hood 

muscles as well as mesenchyme and some endoderm (Boyer et al., 1998). This agrees with 

Surface’s observations of 4d1 giving rise to the mesoderm and entoblast (Surface, 1907). 

Additionally, Surface and later van den Biggelaar (1996) noted that in polyclads the 

cleavage pattern of 4d differs from its canonical fate of an immediate horizontal, equal 

division into a left and right descendant, 4d1 and 4d2. According to van den Biggelaar – 

taking also the descriptions of Surface into account – this division is delayed in the polyclad 

Hoploplana inquilina and in Prostheceraeus by one cell cycle. In such cases 4d first 

undergoes an approximately animal-vegetal (a-v) division into 4d1 and 4d2 which is then 

followed by horizontal cleavages of both 4d1 and 4d2. Van den Biggelaar suggested that the 

animal positioned cell 4d1 corresponds to the molluscan and annelid mesentoblast (also 

reviewed by Martin-Duran & Egger, 2012). However, in more recent descriptions of 

polyclad flatworms (Malakhov and Trubitsina, 1998; Rawlinson, 2010; Teshirogi et al., 1981; 
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Younossi-Hartenstein and Hartenstein, 2000) it appears that this additional division of 4d1 

remains un-noted, suggesting that either some polyclad flatworms lack the a/v division of 

4d1 or, as seems more likely, careful serial sectioning or the use of live imaging, with optical 

sections, is necessary to reveal it. Maritigrella and Prostheceraeus are members of the large 

order of polyclads, the Cotylea; together with the observations made by Surface (1907) in 

an acotylean polyclad flatworm, the common conservation of the a/v cleavage of 4d 

suggests this it is the primitive state of the Polycladida. 

4.13 The 4d blastomere in M. crozieri shows signs of mesodermal formation 

In the last few decades studies in annelids, molluscs, nemertines and polyclad flatworms 

(Ackermann et al., 2005; Anderson, 1973; Chan and Lambert, 2014; Damen, 1994; Damen 

and Dictus, 1994; Fischer and Arendt, 2013; Hejnol et al., 2007; Henry and Martindale, 

1994; Henry and Martindale, 1998; Meyer and Seaver, 2010) were performed using cell 

lineage tracers and the derivatives of individual quartets were followed more precisely and 

in higher resolution than was possible in classical studies of the late 19th century. The 

consensus of these reinvestigations is that the first three quartets of micromeres form 

ectodermal structures of which the second and/or third quartet usually provides a second 

source of mesoderm called the ectomesoderm. Endoderm is restricted to fourth quartet 

micromeres and macromeres and essentially in all species the 4d blastomere gives rise to 

mesoderm (and some endoderm) and is therefore often referred to as the mesentoblast. 

This specific endomesodermal fate of 4d also appears to be the case for polyclad flatworms, 

although the cleavage behaviour of cell 4d deviates slightly from the canonical division 
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pattern. In polyclads, the mesentoblast is not 4d as such but one or both of its daughter 

cells, and therefore delayed by one generation of cell divisions (see Martin-Duran & Egger, 

2012; van den Biggelaar, Dictus, & van Loon, 1997). In the polyclad flatworm H. inquilina, 

Surface (1907) has shown that the descendants of 4d form mesodermal bands resembling 

those found in annelids and molluscs and Boyer et al. (1998) showed that mesoderm is 

derived from ectodermal blastomere 2b and the 4d blastomere. H. inquilina is the only 

flatworm species where the origin of mesoderm has been described. 

 

4.13.1 4d blastomere injections give rise to bilaterally symmetric bands and 4d descendants 

show a mesodermal, neoblast-like distribution pattern 

Regeneration in flatworms is based on pluripotent stem cells (Wagner et al., 2011) called 

neoblasts, which are the only proliferative cells, distributed throughout parenchyma, which 

typically indicates the mesodermal tissue between epidermis and gut in Platyhelminthes. 

In general neoblast stem cells are also not present in the anterior most head region above 

the eyes and are absent from the pharynx (Baguñà, 1976). 

So far it is unknown whether Müller’s larvae of polyclad flatworms can regenerate or not. 

If so, one assumption would be that the regenerative process will be based on a stem cell 

population called neoblasts that are well known to drive the remarkable regenerative 

capabilities in adult flatworms. In Müller’s larvae BrdU staining (Lapraz et al. 2013) as well 

as EdU staining consistently showed an absence of EdU positive pulsed cells from ectoderm 

derived epidermal tissue. The same is true for EdU positive neoblast stem cells of other 

rhabditophoran flatworms, where the epidermis is known to be exclusively renewed by 
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mesodermally located neoblasts (Drobysheva, 1988; Gustafsson, 1976; Ladurner et al., 

2000; MacKinnon et al., 1981; Newmark and Sánchez Alvarado, 2000). 

Notably we also observed lateral distribution of EdU-positive nuclei along the anterior-

posterior axis of the larvae with EdU positive cells absent from the primitive mouth and 

midline (Figure 4.17, B). It is interesting that similar observations for distributions of 

neoblast stem cells have also been made in another early branching flatworm, 

Macrostomum lignano (Ladurner et al., 2000; Rieger et al., 1994). 

Additionally, a single study on embryos and larvae of the polyclad flatworm Cycloporus 

japonicus has shown that in embryos at the stage of organogenesis and in later larval 

stages, no mitosis was detected in the intestine, but occurred in mesodermal 

(mesenchymal) cells (Drobysheva and Yurij, 2001). Together with our observation that 

proliferating cells are absent within the epidermis of M. crozieri larvae this would constrain 

mitosis exclusively to mesodermal tissue. Therefore, it seems that the use of BrdU/EdU 

staining performed in several day old polyclad larvae seems to be a suitable marker for 

mesodermal tissue and that a potential overlap of the area where GFP-positive nuclei 

derived from the 4d blastomere are detected would be another indicator for the 4d 

blastomere giving rise to mesodermal tissue. 

Our observations on the distribution of the early descendants of the 4d blastomeres show 

they are first formed in bilaterally symmetric bands, which can vary slightly in shape (Figure 

4.14). Similar observations were also made by Surface (1907) on H. inquilina. 

Embryos, in which histone-GFP had been injected into 4d and which were raised for 11 days 

into free swimming, 8-lobed Müller’s larvae show that GFP-positive nuclei are distributed 
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throughout the inner tissues, similarly to EdU positive cells. At this stage no GFP or EdU 

signal could be observed within ectodermal structures such as lobes or epidermis (Figure 

4.18) and further supports the assumption that many of the 4d derived cells have acquired 

a mesodermal fate. 

But the strongest evidence in M. crozieri of a mesodermal fate for at least a subpopulation 

of 4d injected cells comes from an embryo, which was 3d-reconstructed with muscle cells 

counterstained for F-Actin. The fact that some muscle cells showed a clear GFP-positive 

signal (Figure 4.16) clearly indicates their origin from micromere 4d and thereby points to 

its mesodermal fate.  
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CHAPTER 5 Cell lineage study of M. crozieri 

Introduction 

In the Lophotrochozoa the conserved spiral cleavage developmental program allows us to 

identify individual homologous blastomeres across phyla. The specific cell lineages of a 

given spiral cleaving embryo can therefore be studied and the question asked if the fates 

of those homologous blastomeres are conserved during embryonic development. It is 

striking that classical as well as recent cell lineage studies have revealed a strong 

conservation of several of these lineages and their fates, while deviations from these 

stereotypical patterns allow us to identify evolutionary changes between spiralian embryos 

and perhaps to speculate as to the adaptive as to the adaptive explanation for the changes. 

In this chapter, I focus on the lineage of the first quartet of micromeres (1q), which, in 

almost all spiral cleavers gives rise to ectodermal structures of the head including eyes, 

nervous system and apical organ (typically derived from apical rosette cells 1q1 (Nielsen, 

2004; Nielsen, 2005) as well as anteriorly located parts of the ciliary band. In annelids, 

molluscs and nemerteans these morphological features originate from similar blastomeres 

(Damen and Dictus, 1994; Henry et al., 2007; Maslakova et al., 2004a; Maslakova et al., 

2004b). Conserved cell-lineages and fate maps of these structures, if present, would be 

perhaps the strongest indication for homology of polyclad Müllers larvae with 

trochophore(-like) larvae of other lophotrochozoan phyla. 

A major part of this chapter is dedicated specifically to study specifically this question in 

embryos of the polyclad flatworm M. crozieri. We aim to identify homologous blastomeres 
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giving rise to the apical organ (putatively the apical rosette cells 1q111) and ciliary band cells 

(putatively the primary trochoblast 1q2) in order to find conserved developmental patterns 

during early embryogenesis. It will be interesting to see if a conservation of other patterns 

emerges, such as order of spindle orientations (laeotropic versus dexiotropic), relative 

blastomere sizes and timing of cell divisions, and if so whether they resemble observations 

among other spiral cleavers. It has been shown that such data sets can be used to for 

comparative analysis and even to create phylogenies (Guralnick and Lindberg, 2001). We 

will mainly use it for a comparison with the polyclad flatworm H. inquilina, the only 

flatworm species where a comparable data-set of relative division timings exist.  

Ultimately, we aim to follow lineages of different blastomeres for the longest possible time 

span to determine if they could give rise to similar complex structures in M. crozieri as in 

other lophotrochozoans. To achieve these aims, we use long-term, live-imaging OpenSPIM 

recordings where blastomeres can be identified early on and lineages of interest 

adequately traced for a long time. A single particle tracking algorithm is used to automate 

the tracing of nuclei during most of the first day of development. 
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Results 

Cell-lineages based on two OpenSPIM 4D live-imaging videos (Video 6 and Video 7) were 

created and analysed. Due to their size both detailed lineages are accessible as a digital 

‘.svg’ file (see CD-ROM). Lineage information obtained by automatic nuclei tracking with 

the Fiji plugin TrackMate (Tinevez et al., 2016) was extracted up to the 100-cell stage, which 

allowed us to identify each cell during this period, follow its fate over time and determine 

its precise timing of division and the spatial orientation of its spindle during mitosis. We 

decided to only use embryos for our cell-lineage study, that successfully completed epiboly 

during gastrulation, formed a mouth and showed epidermal cilia activity as well as signs of 

ciliary band activity (see Figure 5.1 and Video 8). Although an automatic way to detect and 

even trace nuclei could be used, the position of each individual nuclei at each time-point 

was manually confirmed and in some cases the nuclei position had to be corrected. Both, 

the recording of these very long time-lapse recordings at a quality that would allow us to 

take advantage of Fiji’s TrackMate plugin, as well as the manual verification of all time-

points, limited our cell-lineage study to only two embryos. Further challenges using this 

technique on live-embryos in M. crozieri are given in Chapter VII.  
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Figure 5.1 - Embryo microinjected with the nuclei marker H2B-GFP and used for cell-lineage 
tracing. (A) Advanced 4-cell stage with signal coming up in all four nuclei about 17 hpo. (B) 
Same embryo as depicted in A, 25 hours later. (C) Same embryo as depicted in A and B 
shown 185 hpo from the posterior view. At this stage larval features, such as lobes (white 
arrowheads) an oral hood and a mouth (white asterisk), can be seen. (C’) Brightfield image 
of the same embryo with arrowheads pointing at ciliary band cells identified by their long 
cilia. The beating of this cilia and embryonic movements can be seen in Video 8. (ap) apical 
plate, (oh) oral hood, (hpo) hours post oviposition. Scale bar is 100 µm. 
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Figure 5.2 - Creating a cell lineage for the polyclad flatworm M. crozieri. (A-E) Shown are 5 days of OpenSPIM live-imaging of a single 
embryo. In this data, each nucleus can be detected (F-H) Detections and tracing of the individual nuclei with TrackMate (I). After all 
nuclei have been detected, their trajectories can be visualized and further analysed as depicted in this panel. (J). Embryo of which all 
nuclei have been traced and identified during development. The four quadrants are coloured as follows: A is blue, B is yellow, C is 
green and D is red.  (F-I). All scalebars are 100 μm. 
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A summary of the cell lineage can be seen in Figure 5.3. Due to image acquisition from an 

animal view, in both videos, the most vegetally-positioned macromeres of the fourth 

quartet remain undetected. However, these divisions are well known in polyclad flatworms 

and have been previously described in detail for M. crozieri (in this thesis, chapter IV and 

see Rawlinson (2010) and also in other polyclad flatworms (e.g. Malakhov and Trubitsina, 

1998; Martin-Duran and Egger, 2012; Surface, 1907; Younossi-Hartenstein and Hartenstein, 

2000). Small macromeres A-D can therefore be included as dashed lines in the lineage 

(Figure 5.3). For the same reason of fixed observation angle, the first two divisions of 

micromere 4d and its descendants could be detected in only one of the two embryos. These 

divisions have also already been described by us in detail for a different specimen of M. 

crozieri (see chapter IV). 

We exported the tracking data into Fiji’s 3D viewer. This allowed us to create a virtual 4-

dimensional embryo that can be observed from any orientation during any recorded time-

point, and to analyse specific cellular dynamics and spindle positions of interest in later 

embryonic stages where, for example, their laeotropic or dexiotropic nature is less 

pronounced.  
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Figure 5.3 – Summary of the cell lineage of Maritigrella crozieri showing one of the 
quadrants starting at the 4-cell stage. The lineage is highly similar between the four 
quadrants with the exception of the D quadrant, where micromere 4d deviates from 
micromeres 3a-c (4d lineage shown as red lines). The timeline represents the hours of 
accurate time-lapse imaging starting at a 16-cell stage.  
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The data obtained were first used for a comparison with the cell lineage of Hoploplana 

inquilina, which is the only polyclad flatworm providing a comparable dataset of the early 

development based on detailed sagittal sections from fixed embryos (Surface 1907). We 

additionally describe in detail the apical cell mosaic in M. crozieri and performed long-term 

tracing of the apical rosette cell nuclei 1q111 for one of the presumed primary trochoblast 

cells 1c2. 

5.1 Polyclad flatworms share a similar division timing pattern 

A comparison of several different cell lineages can be challenging due to differences in data 

acquisition and its subsequent translation into a comparative and informative matrix. In 

any case the data must be summarised to facilitate the comparison. Since we are not 

investigating the phylogenetic relationship of lophotrochozoans on a large scale but are 

rather interested in how the relative timing of divisions varies between two polyclad 

species, we chose an approach that allowed us to graphically compare the summarised cell 

lineage data, which considerably facilitates the analysis. We first extracted the relative 

division timing information from M. crozieri based on the total number of cells and 

rearranged it into a temporal sequence according to each quadrant. The beginning of our 

sequence of quadrant A “2A, 2a, 1a2 etc.” indicates that macromere 2A divides first (into 

daughter cells 3A and micromere 3a) followed by the division of micromere 2a (into 2a1 

and 2a2), which is again followed by the division of micromere 1a2 (into 1a21 and 1a22) and 

so forth (see Figure 5.4) for the full A quadrant sequence of the two embryos).  
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Figure 5.4 - An example of the relative division time sequence of the A quadrant of two M. 
crozieri embryos (E1 and E2). Both first quartet micromeres 1a2 (one from each embryo 
indicated in orange) are the only cells of the A quadrant separated by more than one cell 
division. Note that the division of macromere 3A was not detected in E2. 

 

The first three cleavages do not show up in our cell lineage data as live imaging recordings 

of one embryo started between the 8- and 16-cell stage and therefore previous cleavage 

information is not included. The relative division timing sequences were visualised and 

compared by aligning corresponding quadrants and then by connecting the dividing 

blastomeres respectively by a simple line (Figure 5.4). In the example given below, both 

first quartet micromeres 1a2 (one from each embryo indicated in orange) are the only cells 

of the A quadrant separated by more than one cell division (see Figure 5.4). A line 

connecting both cells would need to cross macromere 2A and micromere 2a. The more 

similar two sequences are to each other, the less line crossing occurs. If a line crossed more 

than two other lines (>2) it indicates a deviation of the corresponding cell strong enough 

for us to highlight the line in red. 

We compared the relative division timings between two M. crozieri embryos and then 

compared both embryos to the acotylean polyclad flatworm H. inquilina, the annelid 

Hydroides elegans (Arenas-Mena, 2007), and the gastropod mollusc Crepidula fornicata 

(Conklin, 1897), for which cell lineage data including relative division timing data was 
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readily accessible up to the 100-cell stage. A summary of the comparisons is given in Figure 

5.5. A more detailed comparison of the data including all quadrants can be found within 

the supplementary files.  

Unsurprisingly, yet supporting our chosen method of comparison, the closest resemblance 

regarding their relative division timing was determined between the two M. crozieri 

embryos (Figure 5.5, A). In general, this is also true for the relative division timings 

compared between the two M. crozieri embryos and H. inquilina (Figure 5.5, B). A significant 

difference is the preceding division of the first micromere descendants 1q21 in M. crozieri, 

while in H. inquilina 1q21 divide synchronously with micromeres 1q112. In the M. crozieri 

embryo where the 4d cleavage was recorded this division is clearly delayed until about the 

64-cell stage (Figure 5.5). In H. inquilina Surface (1907) reported that these divisions already 

take place at the 45-cell stage. 

When the relative division timings of the annelid H. elegans and the gastropod C. fornicata 

were compared to M. crozieri, a much denser crisscrossing pattern in terms of the relative 

division timing was noticed, indicating a much higher variation in division timing (Figure 

5.5, C and D). This suggest that polyclad flatworms, even coming from different suborders 

(H. inquilina belongs to the Acotylea while M. crozieri belongs to the Cotylea), share a much 

more similar division timing pattern than members of other phyla. Some cells, however, 

seem to be more exposed to evolutionary change, with 1q21 (advanced in M. crozieri 

compared to H. inquilina) (Figure 5.5, B, highlighted in red) and micromere 4d (delayed in 

M. crozieri compared to H. inquilina) (Figure 5.6) being the most obvious examples. In 

Figure 5.6 A the accelerated divisions (compared to H. inquilina) of micromeres of the first 
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quartet (1q) are shown. These cells divide prior to the cleavage of 4d in M. crozieri (Figure 

5.6, A, indicated by dashed red line and B, bottom) in contrast to H. inquilina, where – 

according to Surface (1907) – the same cells of the first quartet of micromeres divide after 

the cleavage of micromere 4d. Interestingly, the lineages of both 1q2 (which is strongly 

conserved in spiral cleaving embryos and gives rise to the prototroch cells) and the 4d cell 

are known to vary in their timing of appearance among other spiralian embryos; this 

variability has been shown in particular in molluscs (Guralnick and Lindberg, 2001; van den 

Biggelaar and Haszprunar, 1996).   
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Figure 5.5 - A comparison of relative division timings (C quadrant lineage) between (A) two 
cotylean polyclad flatworm embryos of the species Maritigrella crozieri (B) the acotylean 
polyclad flatworm Hoploplana inquilina and Maritigrella crozieri (C) the annelid Hydroides 
elegans and Maritigrella crozieri and (D) the slipper snail Crepidula fornicata and 
Maritigrella crozieri. Cell divisions, which significantly deviate in their sequential cleavage 
pattern are highlighted in red.  A much more synchronous division pattern is observed 
between polyclad flatworms compared to the annelid worm and the molluscan gastropod.  
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Figure 5.6 – Comparison of relative divisions timing between M. crozieri and H. inquilina (A) 
Cell lineage of M. crozieri. Compared to H. inquilina the daughter cells of micromeres with 
accelerated divisions are highlighted as follows: 1a21 (green), 1a12 (pink) and 1a112 (orange). 
These cells (and their counterparts of corresponding quadrants B, C, D; not shown) are 
present prior to the cleavage of micromere 4d (indicated by red dashed line). The coloured 
numbers refer to the formation of additional cells, which will be present in M. crozieri but 
not in H. inquilina. E.g. micromere 1a21 (green) will divide twice prior to the cleavage of 4d. 
Therefore, micromere 4d will cleave at a cell stage, that is postponed due to micromere 
1a21 by +3 cells or, if all quadrant (1q21) are considered, by +12 cells. (B) Comparison of the 
D quadrant between H. inquilina (top) and M. crozieri (bottom). The 4d cells are highlighted 
in red. In H. inquilina divisions of micromeres 1d12 (pink), 1d21 (green) and 1d112 divide after 
the cleavage of 4d. In. M. crozieri the opposite in corresponding micromeres is the case 
with 1d21 dividing twice before micromere 4d cleaves.   



 163 

5.2 Spindle positions during the early development appear similar in polyclad 

flatworms 

Mitotic spindle positions of individual cells were analysed by linking the cell lineage 

TrackMate data with Fijis 3D viewer (a plugin implemented in TrackMate). In this way, the 

laeotropic or dexiotropic nature of each division could be elucidated. The spindle 

orientation of most vegetally positioned macromeres 3A-D was determined to be slightly 

dexiotropic by looking at several embryos microinjected with a nuclear marker and 

captured in-vivo from a vegetal view (n = 4) during or shortly after the formation of the 

fourth quartet.  

Afterwards, each spindle orientation was investigated for its spatial division pattern and 

then compared to its counterpart cells of the remaining quadrants (e.g. 1a1 to 1b1 to 1c1 to 

1d1). The divisions of each dividing cell were captured from an animal view. The 

corresponding cells of all four quadrants were then merged into a single image, which 

allows us to recognise distinct laeotropic or dexiotropic quadrant divisions, if present, at a 

glance. Figure 5.7 shows spindle orientations of the early development obtained by this 

method for M. crozieri.  
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 Figure 5.7 – see Figure legend on next page 



 165 

Figure 5.7 - Spindle positions during the early cleavages of M. crozieri determined by 
OpenSPIM 4D microscopy recordings. The animal view is shown with the same cells of each 
quadrant (A in blue, B in yellow, C in green and D in red). In panel A an explanation is given 
how the laeotropic or dexiotropic divisions pattern can be determined. In this embryo panel 
C, E, J and K show obvious examples of dexiotropic divisions while B, F and H divide clearly 
laeotropically. Other divisions need closer examination from a lateral view of each 
individual cell and cell mates of the same tier can have a distinct division pattern or the 
division may take place in a vertical manner so that the pattern becomes ambiguous. Such 
an example can be seen in B, where during the division of the second quartet of 
macromeres (2Q) a false laeotropic impression is received when looking at the embryo 
from an animal view. The cleavage, however, is actually dexiotropic. 

For the polyclad flatworm H. inquilina, Surface describes 19 early divisions (each consisting 

of four corresponding quadrant cells - 76 cells in total), as at least slightly laeotropic or 

slightly dexiotropic but mostly distinguishes a clear laeotropic or dexiotropic cleavage 

pattern (summarised in Table 5.1). For M. crozieri most laeotropic or dexiotropic divisions 

correspond to those found by Surface, however there are some differences. 

In M. crozieri the second quartet micromere descendants 2a2-2d2, which Surface describes 

as almost vertical but slightly dexiotropic in H. inquilina, also show a vertical division plane 

but spindle orientations are positioned in a slightly laeotropic pattern in M. crozieri in 

contrast to H. inquilina (see Table 5.1). The laeotropic or dexiotropic nature of 1a21-1d21, 

1a22-1d22 is not clearly defined in M. crozieri and in some cases the spindle position of at 

least one of the two cells was reversed, like spindle position observations made in the 

slipper shell C. fornicata (Conklin 1807). 
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Cells H. inquilina M. crozieri 

A-D dexiotropic dexiotropic 

1a-1d laeotropic laeotropic 

1A-1D laeotropic laeotropic 

1a1-1d1 dexiotropic dexiotropic 

1a2-1d2 dexiotropic dexiotropic 

2a-2d meridional/dexiotropic meridional/dexiotropic 

2A-2D dexiotropic dexiotropic 

1a11-1d11 laeotropic laeotropic 

1a12-1d12 dexiotropic dexiotropic* 

1a21-1d21 laeotropic vertical/laeotropic 

1a22-1d22 dexiotropic irregular 

2a1-2d1 laeotropic laeotropic* 

2a2-2d2 vertical/dexiotropic vertical L 

3a-3d radial/sl. Dexiotropic vertical 

3A-3D sl. dexiotropic sl. dexiotropic 

1a112-1d112 dexiotropic dexiotropic* 

1a121-1d121 laeotropic laeotropic 

2a21-2d21 dexiotropic irregular 

1a1122-1d1122 dexiotropic dexiotropic 

 
Table 5.1 - A comparison of the laeotropic/dexiotropic spindle positions during cell divisions 
between H. inquilina (Surface, 1907) and M. crozieri. An asterisk was added whenever at 
least one of the four cells’ spindle position in one embryo was found to be reversed but a clear 
laeotropic/dexiotropic trend for the overall four quadrants was still recognisable. The cells in green 

mark a strongly conserved spindle orientation pattern that all spiral cleavers follow. 
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5.3 The lineage of apical cells 1q11 gives rise to a typical spiralian apical cell mosaic 

and could be involved in the formation of the central nervous system 

 

Figure 5.8 – The position of apical micromeres 1q1 and 1q11 and apical rosette cells 1q111 
are indicated in three schematic Maritigrella crozieri embryos. Additionally, the position of 
micromeres 1q111 are also indicated in two other spiral cleavers: Calliostoma ligatum, 
Mollusca; Amphitrite ornata, Annelida). Calliostoma and Amphitrite are drawings after 
(Maslakova et al., 2004b). 

In the following section, we will describe several cleavage patterns that arise from the 1q11 

lineage at the apical pole of M. crozieri embryos and later attempt to trace the apical 

rosette cells 1q111, into an advanced gastrulating stage. This is of interest, as it could give 

rise to the apical organ in M. crozieri, as well as eyes. 

Apical rosette cells from micromeres 1q11 in M. crozieri divide in an obviously laeotropic 

fashion, as can be seen, for instance, from our previously described spindle position 

analysis (see Figure 5.7, H). This specific division builds the basis for a common pattern, 

which is often found in spiral cleaving lophotrochozoans: the so-called “annelid cross” 

(Figure 5.9 and Figure A. 1). Together with a few other cells, which form the so-called 

“molluscan cross”, an apical cell mosaic appears. Its shape is derived from the centralised 

apical rosette cells 1a111-1d111, surrounded by the “annelid cross” cells (1a112-d112) and 
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“molluscan cross” cells (1a12-1d12 and their descendants respectively). The latter are edged 

by the so-called “tips of the “molluscan cross””-cells (2a11-2d11).  Because the division of 

first quartet micromeres 1a11-1d11 in M. crozieri is highly asymmetric (i.e. the decendants 

are different sizes), the apical rosette cells (Figure 5.9, depicted in red) are much smaller 

than the “annelid cross” cells 1a112-d112 (Figure 5.9, depicted in blue). The size of the 

“annelid cross” cells also slightly surpasses the size of the “molluscan cross” cells (Figure 

5.9, depicted in yellow), which are connected by the tips of the “molluscan cross” cells 2a11-

2d11 (Figure 5.9, depicted in green). 

 

Figure 5.9 – Top: Apical cell mosaic which emerges after the formation of the apical rosette cells 
(1q111) in two representative spiral cleavers (top, after Maslakova, (2004)) and bottom: M. crozieri. 
Individual cells in M. crozieri have been identified by cell lineage tracing. Scale bar = 50 µm.  
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5.3.1 The correct spatial arrangement of apical rosette cells 1q111 in polyclad flatworms 

The division of cells 1a11-1d11 in M. crozieri closely follows the description of H. inquilina by 

Surface (1907) in detail (Figure 5.10, A-D). However, once the apical rosette cells 1q111 and 

their sister cells 1q112 are present in the embryo, Surface (1907) states that that apical 

rosette cells in H. inquilina lose connection to their sister cells during their formation (see 

Figure 5.10, G, H) because “the laeotropic direction of the spindle is so marked that the cell 

1a1.1.1 comes to lie in front of 1d1.1.2 and 1b1.1.1 in front of 1a1.1.2 and so on, so that there is 

a rotation of 45 degrees”. In this case, which becomes also clear from his figures, apical 

rosette cell 1a111 comes to lie in between of 1c112 and 1d112 and 1b111 in between 1a112 and 

1d112 and so on (Figure 5.10, G, H). In M. crozieri, however (see Figure 5.10, A-F) this 

rotation of 45 degrees does not actually happen as all apical rosette cells clearly remain 

positioned in close contact to their sister cells (Figure 5.10, E, F). Thereby 1a111 keeps 

contact with 1a112 while lying next to 1d112 and 1b111 keeps contact with 1b112 while lying 

next to 1a112 and so on. A possible reason why Surface was convinced that a rotational 

event during the divisions of apical cells 1q11 lead to a new, rotated arrangement of apical 

rosette cells 1q111 can be seen in Video 9, which shows how 1q111 are first displaced far off 

from their sister cells, but then retract to a closer position of their sister cells 1q112.  
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Figure 5.10 - Formation of the apical rosette cell 1q111, in M. crozieri and H. inquilina, from 
an animal view. In a typical trochophore larvae these cells give rise to head structures such 
as eyes and apical “sensory” organs. (A-D) Laeotropic divisions of apical cells 1q11 in a 
slightly asynchronous manner (1 hour in total). (E) Same embryo after all apical rosette cells 
1q111 have formed and showing that they remain in contact with their sister cells 1q112. (F) 
Nuclei of same embryo with their depth coded as seen in top left part of the panel. (G) 
Embryo of H. inquilina during formation of the apical rosette cell 1q111 also showing clearly 
a laeotropic division. (H) An embryo of H. inquilina at a later stage, where the sister cells 
(1q112) of the apical rosette cells have already divided. Unlike in M. crozieri, the small apical 
rosette cells in the centre of the embryo (coloured accordingly) have clearly lost contact to 
their former sister cells. Drawing of G and H after Surface (1907). All scale bars are 50 µm.  
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5.3.2 Descendants of peripheral rosette cells 1q112 could be interpreted as cerebral ganglia 

cells 

 

Figure 5.11 – The position of micromeres 1q112 are indicated in three different spiral 
cleaving embryos (Maritigrella crozieri, Polycladida; Calliostoma ligatum, Mollusca; 
Amphitrite ornata, Annelida). Calliostoma and Amphitrite are drawings after (Maslakova et 
al., 2004b). 

Another deviation from H. inquilina concerns the division of micromeres 1q112, which derive 

from first quartet cells 1q1. The latter are known to make – along with eyes and apical 

“sensory” structures - significant contributions to the central nervous system in spiralian 

embryos (e.g. cerebral ganglia, “brain”; see Chapter I). In a classical study of the annelid 

Arenicola the origin of the cerebral ganglion was claimed to derive exactly from 

blastomeres 1c112112 and 1d112112, and these cells were therefore designated as the 

“cephalic neuroblasts” (Child, 1900).  According to Surface, the lineage of first quartet 

micromeres 1q112 (or peripheral rosette cells/”“annelid cross”” cells) also gives rise to the 

primitive ganglion in the polyclad H. inquilina (Surface, 1907). He first describes these cells 
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to divide in a very unequal manner with the smaller, upper cells (1q1121) (see also Figure 

5.10, F) lying on the surface of the embryo. Notably, the fate of micromeres 1q1121, which 

are not shown by Surface to divide again in H. inquilina, is not followed any further. Both 

daughter cells of 1q1122, however, are shown here in M. crozieri to divide again, first 1q11222 

– in an unequal and slightly dexiotropic manner – followed a bit later by micromeres 1q11221. 

It is important to mention that, for Surface, micromeres 1q11221 are large and vegetally 

positioned cells compared to micromeres 1q11222, which are much smaller and animally 

positioned. This labelling of cells is slightly confusing as according to the nomenclature as 

most embryologists now use it, one would expect these cells to be named vice-versa, 

according to their animal/vegetal positioning, (which is what we do in M. crozieri) but in 

case of H. inquilina we decided to keep the original labelling by Surface. 

Eventually Surface describes how the large and more vegetally positioned micromeres 

1q11221 (corresponding to 1q11222 in M. crozieri) bud four comparatively large cells into the 

interior of the embryo, which he labels to be the “primitive ganglion cells”. 

In M. crozieri, we noticed in our OpenSPIM live imaging recordings used for this cell lineage 

study, some differences in comparison to H. inquilina during divisions of the corresponding 

peripheral rosette cells 1q112. First, the divisions of 1q112 appear as equal and almost 

horizontal divisions, and not as unequal divisions with animal/vegetal dispositions of both 

daughter cells. The daughter cells 1q1121 and 1q1122 then divide vertically and unequally in 

M. crozieri, with 1q1122 earlier than 1q1121, so that one of their more vegetally positioned 

daughter cells contribute to the deeper layer of cells, while the other, smaller cell remains 

on the surface. For 1q1122, these divisions are the same as described in H. inquilina, while 
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the division of 1q1121 is not mentioned.  Cells 1q11211 and 1q11221 stay on the surface of the 

embryo for as long as we could trace these cells and show no further division during this 

time. The sub-epidermally positioned cells 1q11212 and 1q11222, which are now located below 

the most apical pole of the embryo, however, keep proliferating and it seems likely that 

some of their descendants will be involved in forming parts of the central nervous system 

such as cerebral ganglia as suggested also by Surface. 

5.4 Tracing the apical rosette cells 1q111 suggest their possible role as apical organ 

founder cells. 

 

Figure 5.12 – The position of apical rosette cells 1q111 are indicated in a schematic 
Maritigrella crozieri embryo. Additionally, the position of micromeres 1q111 are also 
indicated in two other spiral cleavers: Calliostoma ligatum, Mollusca; Amphitrite ornata, 
Annelida). Calliostoma and Amphitrite are drawings after (Maslakova et al., 2004b). 

We traced the apical lineage of M. crozieri for as long as possible during its embryonic 

development to locate their final position (Figure 5.14). While the peripheral rosette cells 

1q112 proliferate, as we have just seen in the previous section, this is initially not the case 

for their sister cells, the apical rosette cells 1q111.  Once these cells have formed (Figure 
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5.14, B), their division is arrested for about 20 hours before another round of divisions 

begins (Figure 5.13, Figure 5.14, B-E). The more vegetally positioned daughter cells of each 

individual quadrant 1q1112 stay initially in close contact with the animally positioned sister 

cells but they cannot be traced anymore with the necessary accuracy, and are therefore 

not shown in Figure 5.14. Descendants of the apical rosette cells, 1q1111, can still be located 

at the most apical pole of the embryo at > 50% epiboly (gastrulation) (Figure 5.14, H) and 

their final position is the most apical point of the embryo (Figure 5.14, I). This is the location 

where we expect the apical organ to form and we therefore suggest a likley involvement in 

the development of this structure or at least some of the traced descendants of apical 

rosette cells 1q111, similar to other lophotrochozoan spiral developers.  
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Figure 5.13 - Divisions of apical rosette cell 1q111 in a M. crozieri from the animal view (A) Embryo 
after the formation of apical rosette cells 1q111. (B) Same embryo more than six hours later. Apical 
rosette cells do not divide for almost a day. (C-F) The asynchronous divisions of each of the apical 
rosette cells 1q111 is shown. The first division can be observed more than 25 hours after their initial 
formation and it takes approximately 6-7 hours until all apical rosette cells have divided. Scale bar 
is 100 µm.  
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Figure 5.14 - Long term tracing (>75 hours) of nuclei in M. crozieri embryo with focus on the apical 
lineage. Traced cells are depicted as dots and coloured as follows: A quadrant cells in blue, B 
quadrant cells in yellow, C quadrant cells in green and D quadrant cells in white (A) Apical cells 1q11 

are shown (B-D) Apical rosette cells 1q111 have formed and are shown at different time points (E) 
Apical rosette cells have divided at this timepoint and only 1q1111 are further traced. (F) Descendants 
of apical rosette cells 1q1111 are shown. Embryo is at the onset of epiboly (G) Epiboly has started 
and embryo becomes elongated and the animal tip slightly shifts to the left. (H) Embryo has reached 
more than 50% epiboly. At this timepoint tracking of cell becomes more difficult due to decreasing 
signal of fluorescently tagged nuclei. Another division of 1d1111 has been observed and the same is 
also likley for its counterpart cells 1a1111-1c1111. Therefore, 1q1111 are now labelled as 1q1111+. (I). The 
position of the traced nuclei marks most likely the place where the apical organ will form. Arrow 
marks the animal tip of the embryo. Scale bar = 50 µm  
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5.5 The lineage of micromeres 1q2: cleavage patterns and evidence for these cells 

being considered primary trochoblasts in M. crozieri 

 

Figure 5.15 – The position of micromeres 1q2 and some of its descendants in two later 
embryonic stages. In most spiral cleaving lophotrochozoans micromeres of 1q2 are called 
the primary trochoblasts as they give rise major parts of the prototroch. 

In essentially all investigations of spiral cleaving embryos that exhibit a ciliated trochophore 

larva, the so-called prototroch (the main ring of cilia used by the larva for locomotion and 

feeding) emerges, for the most part, from specific founder cells called primary trochoblasts 

(1a-1d) or more specifically from their descendants (1a2-1d2) (Henry et al. 2007, Nielsen 

2004). This suggests a strong case for homology of these cells among lophotrochozoan 

phyla. 

In M. crozieri, and polyclads in general, the fate of the cells that are homologous to the 

primary trochoblasts is entirely unknown and, due to early ciliation of epidermal cells 

causing rotational movements, we were unable to follow the fate of presumed primary 

trochoblasts up to a stage where the formation of the ciliary band has occured. We could, 

however, analyse the early cleavage pattern of micromeres 1a2-1d2 and follow one of its 
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descendants from a 4-cell stage for almost 70 hours into a gastrulating embryo consisting 

of hundreds of cells to detect the number of divisions and where their progeny end up in 

order to see whether these observations support their ultimate fate as ciliary band cells. 

During the sixth division round, almost simultaneously with the formation of the fourth 

quartet at the vegetal pole of the embryo (32- to 36-cell stage), micromere divisions 

commence with the advanced cleavage of 1a21-1d21, which at this point have the largest 

cell nuclei of all micromeres. Conspicuously, their descendants 1a211-1d211 also show the 

embryo’s most rapid division rounds during these early cleavages (see Figure 5.3) and 

increase their cell volume until they obtain the largest size of all micromeres, most 

prominently seen at the stage where the annelid/”molluscan cross” is present. During these 

divisions, the enlarged cell nuclei of 1q21, 1q211, 1q2112, 1q21121 can be easily observed (Figure 

5.16, Video 6 and Video 7). The rhythm of these divisions is very synchronous among all 

four quadrants and cleavage is highly asymmetrical with 1a212-1d212 and 1a2111-1d2111 being 

comparatively miniaturised. Furthermore, spindles become noticeably aligned along the 

a/v axis (see Figure 5.16) causing micromeres 1a2112-1d2112 to become positioned slightly 

deeper in the embryo where they contribute significantly to the formation of an irregular 

double layer, described by Rawlinson (2010), forming at the animal pole of the embryo. In 

contrast to micromeres 1a211-1d211 we noticed that the cleavage of 1a212-1d212 is 

comparatively decelerated.  
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Figure 5.16 - Descendants of the putative primary trochoblast (1q2) shown in green at the 
time where the annelid/”molluscan cross” forms. The cells 1q2112 and their nuclei are large 
and several highly asymmetric divisions can be observed around this stage and later. Scale 
bar is 50 µm. 

Long-term cell-tracing shown in  Figure 5.17 of blastomere 1c2 undertaken in one M. crozieri 

embryo from the 4-cell stage to gastrulation revealed that many of its descendants, 

including the descendants of 1c212, which show a decelerated division rate, line up at the 

embryo’s surface in a well-ordered ring-like shape (Figure 5.16). Furthermore, descendants 

of 1d12 also contribute to this pattern (Figure 5.17, D). This specific spatial positioning is 

similar to embryonic SEM pictures of M. crozieri (see Figure 5.18) and to other spiral 

cleaving embryos (Nielsen, 2004; Henry et al. 2007) and suggests that a similar fate of 1q2 

in the form of ciliary band precursors cells is a reasonable prediction. The most apical part 

of the embryo is marked by descendants of 1q111 (Figure 5.17, C and D).  
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Figure 5.17 - Tracing of micromere 1c2, micromere 1d12 and of the apical rosette cells 1q111 
for more than 70 h. (A) Identified nucleus of blastomere 1c2, which in other trochophore 
embryos becomes a major part of the prototroch (B) Identified nucleus of blastomere 1d12, 
which in other trochophore embryos sometimes becomes a minor part of the prototroch 
(accessory trochoblasts) (C) The four nuclei of the apical rosette cells are marked as red 
dots and indicate the most animal pole of the embryo. (D) Fate of the six nuclei almost 70 
h later. White arrowhead indicates a traced nucleus descending from 1c2, which is located 
at the back site of the embryo. This figure is based on the original OpenSPIM files and 
therefore represents a mirror image. Arrowhead indicates the apical pole. Scale bar = 100 
µm.  
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Figure 5.18 – Two examples (A and B) of SEM pictures of advanced embryos showing first 
signs of ciliary band cells. 

5.6 FoxQ2 expression patterns in the apical pole of M. crozieri embryos and larvae 

makes a conserved cell-lineage of the apical organ more plausible 

While a similar morphology of complex structures in marine larvae such as the apical organ 

could be interpreted as a product of convergent evolutionary forces (Strathmann, 2000), 

comparisons of cell lineages in the spiralian developmental program has been used to infer 

homology of larval organs such apical organs or ciliary bands (Henry et al., 2007; Nielsen, 

2005). Further evidence for or against homology of these structures, useful to complement 

cell lineage data, can come by looking at conserved transcription profiles, e.g. in areas of 

larval organ formation during embryonic development and also in newly hatched larvae. 

Unfortunately, gene expression studies are still a difficult undertaking in polyclad flatworms 
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including M. crozieri (Lapraz et al., 2013). We were, however, able to investigate at least 

one expression pattern in more detail, namely of the apical marker gene FoxQ2, an 

important protagonist in the transcriptional patterning profile of the apical plate of many 

marine larvae (Santagata et al., 2012). 

Both whole mount in situ hybridization (WISH) and immunocytochemistry methods 

revealed in embryos and larvae of M. crozieri that the apical marker FoxQ2 is expressed in 

hatched larvae within the apical plate region (Figure 5.19 A-B, white arrows and D) and also 

in the most apical region of earlier embryonic stages post gastrulation (Figure 5.19C). This 

expression pattern can be interpreted as a first sign of a molecularly conserved apical 

region in the head region of a Müller’s larva but will remain uncertain until further gene 

expression patterns of the apical plate region can be revealed. For our cell lineage study 

regarding the fate of apical rosette cells 1q111 it is interesting that the expression of FoxQ2 

in M. crozieri embryos is located at the tip of the apical pole (Figure 5.19, C), exactly at the 

same place where our cell lineage recordings of earlier gastrulating embryos end (Figure 

5.14, I and Figure 5.17, D). Together with transcripts of FoxQ2 being expressed in hatched 

larvae in an area where an apical organ is to be expected (Figure 5.19, A-B, D) these 

expression patterns of FoxQ2 in embryo and larvae serve as a bridge, which connects 

descendants of apical rosette cells to the apical organ of Müller’s larva in M. crozieri. This 

suggest a conservation of the cell lineage of the apical organ in M. crozieri with those of 

other spiral cleaving lophotrochozoa. 
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Figure 5.19 - WISH and immunocytochemistry of the apical plate marker FoxQ2 in M. crozieri. (A-
B) indicates mRNA expression just underneath the epidermis (white arrowheads). (C) A squash 
preparation acquired using confocal scanning microscopy of a Mc-FoxQ2. immunohistochemistry 
staining in an advanced embryonic stage (151 hours post oviposition). (D) A rendering of a 3d 
reconstruction of a Mc-FoxQ2 immunohistochemistry staining in a 1-day old Müller’s larva captured 
with a Zeiss Z.1 light-sheet microscope from 5 different angles. All scale bars are 100 µm. 
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Discussion 

5.7 Comparison of relative division timings and spindle positions found in M. 

crozieri 

In general, during early spiral cleavage micromere quartets of embryos divide with similar 

geometry and timing. With increasing complexity of the developing embryo, the synchrony 

in the relative division timing decreases, often concomitant with a decrease in divisions 

that exhibit a spiral pattern. Variations of these patterns occur even among the same class 

of animals as is exemplified by the wide variety of relative division timings found among 

the gastropods (van den Biggelaar and Haszprunar, 1996). In theory, this information can 

be used in a comparative approach to infer phylogenetic relationships. One example of 

such an undertaking is given by Guralnick and Lindberg (2001), where cell timing 

information has been used to find a phylogenetic signal among spiral cleaving embryos. It 

is interesting that in this study Guralnick and Lindberg could highlight certain cleavage 

patterns such as the advanced formation of second quartet micromeres 2q1 already at the 

24-cell stage in gastropods, while other spiral cleavers, including polyclads like M. crozieri 

(see Figure 5.3) and H. inquilina (Surface 1907), form 2q1 consistently at the 32-cell stage. 

Another example in the gastropods, where division timing has been used to infer 

evolutionary relationships among the major taxa, is the accelerated or decelerated 

formation of the 4d cell (the mesentoblast). In ancestral-like gastropod species micromere 

4d forms last, while in more derived clades an acceleration to the 24-cell stage has taken 

place (van den Biggelaar and Haszprunar, 1996). 
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5.7.1 Similar relative division timings in the early cell lineage of cotylean and acotylean 

polyclad flatworms suggest that this pattern is conserved 

Using our cell-lineage data, we could investigate lineage specific cleavage patterns by 

graphically comparing the relative timing of specific divisions between two polyclad species 

and with two other members of the Lophotrochozoa up to the 100-cell stage. In M. crozieri, 

quartets form and cleave relatively synchronously up to the 64-cell stage and later, and 

lead to a specific relative division timing pattern (see Figure 4.8), which is very similar to 

the one described by Surface (1907) for the  polyclad H. inquilina (Figure 5.5, B). This 

pattern can furthermore be easily distinguished from the two other lophotrochozoan phyla 

representatives, as we have shown for the annelid Hydroides elegans (Arenas-Mena, 2007) 

and the gastropod Crepidula fornicata (Conklin, 1897) (see Figure 5.5, B-D). Overall, we 

think that the similarity between the timing of blastomere cleavages of cotylean and 

acotylean polyclad flatworms shown in this work is significant enough to interpret as an 

overall conserved cleavage pattern. 

5.7.2 The postponed cleavage of micromere 4d in M. crozieri can be explained by an 

accelerated cleavage pattern of the putative primary trochoblast 1q2 

The deviations between the two polyclad species are most pronounced in the significantly 

advanced cleavage of first quartet micromeres 1q21 and a concomitant “delay” of the 

division of micromere 4d to a stage of about 64 cells (see Figure 5.5). This could be 

interpreted as a cotylean - acotylean specific deviation, but this remains to be seen until 

more cell lineage data of other polyclad flatworms become available. Interestingly, both 
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the lineage of 1q2, which is strongly conserved in spiral cleaving embryos and gives rise to 

the prototroch cells, as well as the 4d blastomere, are known to vary in their timing of 

appearance among spiralian embryos, which has been shown in particular in molluscs 

(Guralnick and Lindberg, 2001; van den Biggelaar and Haszprunar, 1996). 

Here we should mention that we have shown in chapter IV that the precise timing of the 

appearance of micromere 4d can vary slightly and it is possible that in some embryos of M. 

crozieri 4d already forms earlier than the 64-cell stage. On the other hand, divisions of 2q1 

take place close to the cleavage of 4d as can be seen in our cell-lineage (Figure 5.6) and 

slight variations in division timing of these cells can therefore alter the cell-stage during 

which micromere 4d cleaves. The suggested 64 cells can therefore not be considered the 

definite cell-stage when 4d divides. That its division is postponed in M. crozieri embryos 

compared to H. inquilina is nonetheless clear. 

In the two polyclad flatworms the “postponed” cleavage of micromere 4d and the putative 

primary trochoblast lineage 1q2 are linked. As we have shown, in M. crozieri micromeres 

1q21 and even their daughter cells 1q211 divide before micromere 4d cleaves (at about the 

64-cell stage) (Figure 5.6). This alone leads to an additional 12 cells, emerging entirely from 

1q2 lineage, which cannot be present in H. inquilina, where 1q21 divides after micromere 4d 

cleaves (at the 45-cell stage) (Figure 5.6, B). These accelerated divisions of 1q21 in M. crozieri 

thus have knock-on effects on the precise cell stage when micromere 4d forms, which has 

to be consequently “delayed” (in case of 1q21 by 12 cells), postponing the 4d cleavage from 

cell-stage 45, as is the case in H. inquilina, to 57; but together with divisions of micromeres 

1q112 and 1q12, results in a division at the 64-cell stage. Therefore, we suggest, that 



 187 

micromere 4d is not necessarily “delayed” in M. crozieri, despite the significant difference 

of approximately 20-cells compared to H. inquilina. We would rather say that the first 

quartet of micromeres is significantly accelerated in M. crozieri, which is why 4d gets 

inevitably postponed to a later cell stage (from a 45-cell to about a 65-cell stage). 

A more proliferative first quartet of micromeres, which most likely gives rise to the 

ectodermally derived tissue in the episphere of the Müller’s larva could already reflect the 

formation of prominent ciliary band structures in M. crozieri.  For instance, the highly 

prominent 8 lobes present in M. crozieri larvae comprise a great number of ciliary band 

cells (Lapraz et al., 2013; Rawlinson, 2010; Rawlinson, 2014) (we counted about 450 cells; 

student data) but is reduced in larvae of H. inquilina, where one pair of lateral lobes is 

entirely absent. Given that in most spiral developers the primary trochoblast 1q2 gives rise 

to ciliary band cells (Damen and Dictus, 1994; Henry et al., 2007; Maslakova et al., 2004a; 

Maslakova et al., 2004b), this supports a slightly accelerated and more proliferative 1q2 

lineage in M. crozieri. This of course follows the idea that larval structures such as lobes and 

ciliary bands, in particular their presence/absence or reduction, are reflected in the early 

cell lineage of the developing embryo (discussed in more detail in chapter VI). This idea 

could be further tested by comparing relative division timings of direct developing polyclad 

flatworms to indirect developers. Could, for instance, the absence of ciliary bands in direct 

developing polyclads make a noticeable difference during early cleavage in comparison to 

M. crozieri? If so, we would expect a significant difference in the relative division timing 

and proliferation rate of the putative primary trochoblast lineage, 1q2. 
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5.7.3 Spindle positions during spiral cleavage in the polyclad flatworms H. inquilina and 

M. crozieri are conserved 

The comparison between dexiotropic/laeotropic cleavages summarized in Table 5.1 shows 

that spindle positions of individual cells are very similar between the two polyclad species. 

We marked in green the cleavages, which are basically the same in all dexiotropic spiral 

cleaving embryos.  This indicates that up to the 100-cell stage early development is 

conserved between M. crozieri and H. inquilina. However, there were a few inconsistencies 

we noticed: In M. crozieri the division of 1a22-1d22 did not show a clear dexiotropic division 

pattern as described by Surface for H. inquilina. Furthermore, whenever pronounced 

vertical divisions occur, the comparison is more difficult and more often leads to different 

observations e.g. the divisions of the second quartet micromeres 2a2-2d2 are indicated by 

Surface as vertical but dexiotropic while we find these divisions to be more of laeotropic 

nature (see Table 5.1). We also recognised that occasionally one or even two spindles were 

reversed in M. crozieri, meaning that the spindle was oriented in the opposite direction in 

comparison to its counterpart cells of the other quadrants (see cells in see Table 5.1 

indicated by an asterisk). Reversed spindle orientations are not easily spotted from an 

animal view and became clearer when spindle positions were individually observed from a 

lateral view, which is straight forward with the 4d virtual embryo. These reversed spindle 

positions are not mentioned by Surface but they occur for example quite commonly in the 

description of the slipper snail Crepidula fornicata (Conklin, 1897). We think that this is a 

general feature of spiralian embryos especially in later divisions (> 36-cell stages) after the 

formation of the four quartets. 
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5.7.4 Spiralian cross patterns as seen in the polyclad flatworm M. crozieri are most likely 

a by-product of the conserved spiral cleavage pattern 

The stereotypical spiral quartet cleavage leads to a conserved cleavage geometry of early 

blastomeres. This subsequently also affects the apical pole by forming two stereotypical 

cross-patterns, which both symmetrically surround the centrally positioned apical rosette 

cells (1q111). The first pattern that can be distinguished is called the “annelid cross” which 

is formed by peripheral rosette cells 1q112 and 1q2 and their derivatives. The second pattern 

is the so-called the “molluscan cross” and is composed of blastomeres 1q12 (“molluscan 

cross” cells) and 2q11 (tip cells of the “molluscan cross”) and their derivatives (Raven, 1966; 

Siewing, 1969; Verdonk and Van den Biggelaar, 1983). Regarding the sizes and relative 

division rates between molluscs, nemerteans, annelids and sipunculids the following can 

be summarised: molluscs tend to have smaller peripheral rosette cells (1q112), nemerteans 

tend to have large apical rosette cells (1q111) with an accelerated relative division rate and 

annelids have relatively large peripheral rosette cells (1q112) with an accelerated relative 

division rate (Maslakova et al., 2004b). Such a comparison among spiral cleaving taxa is 

possible due the highly stereotypic geometry of the apical cell mosaic. The apical rosette 

cell formation appears to be a key event for the formation of the apical cell mosaic and we 

want to point out one more time the deviation found between H. inquilina (Surface, 1907) 

and M. crozieri regarding the formation of the apical rosette cells. As shown in the results 

section of this chapter and in contrast to our observations in M. crozieri, Surface describes 

a very unusual final positioning of the apical rosette cells (1q111), whereby 1a111 becomes 

to lie in between of 1c112 and 1d112 but loses contact to its sister cell 1a112 (and respectively 
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for all other rosette cells). One possibility is that this observation was mistakenly made, as 

apical rosette formation is arguably one of the most conserved patterns of spiralian taxa 

displaying spiral quartet cleavage. The division of apical cell 1q11 in particular always 

proceeds in a very marked laeotropic division and represents the starting point of the apical 

cell mosaic comprising the annelid/”molluscan cross” pattern. This event is shared by 

polyclad flatworms as shown by us in detail for M. crozieri (see Figure 5.7, H and Figure 

5.10). To our knowledge there is not a single case of any spiral cleaving embryo in which 

the laeotropical division of 1q11 results in two daughter cells (apical rosette cells + “annelid 

cross” cells) separated from each other. The only “deviation” of the highly conserved 

laeotropic division of apical cells 1q11 is found in its reversed form (dexiotropic division) if 

the embryos’ spiral cleavage pattern is already hard-wired from the beginning to the 

sinistral (counter clockwise) cleavage mode instead to the more commonly found 

dexiotropic (clockwise) mode. In this case, embryos such as the bladder snail Physa 

fontinalis (Wierzejski, 1905) or the annelid Hydroides elegans (Arenas-Mena, 2007), display 

a laeotropic helical twist during the third cleavage (4-8 cell stage) and show a dexiotropic 

division pattern of 1q11. 

In short, the clockwise and counterclockwise orientation of the first micromere quartet (1q) 

is fundamentally conserved as much as is the quartet formation by alternating spindle 

positions in macromeres. 

Interestingly, it appears that spindle positions of 1q11 are not the only highly conserved 

feature in the apical plate. In most spiralian taxa the relative division timing of the resulting 

apical rosette cells 1q111 is, in comparison to its more vegetally positioned sister cells 1q112, 
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either significantly delayed for several rounds of cleavages, or these cells do not divide any 

further. An example for a complete arrest is given in the common pond snail Lymnaea 

stagnalis (Dettlaff and Vassetzky, 1991) for which the relative division timing of the first 

quartet of micromeres could be followed in detail for a prolonged period of time (Verdonk, 

1965).  The nemerteans provide an exception to this rule, as their apical rosette cells divide 

early on during the development (see Maslakova et al., 2004) and this might be linked to 

the uniquely large size of nemertean animal micromeres, which already at the 8-cell stage 

are either of equal size or exceed the size of the macromeres. 

These typical cleavage patterns of the apical cell lineage 1q11, shared by many spiral 

cleaving taxa, allow to predict how the apical rosette cells and other cells organised around 

it form. This suggests two things: firstly, some apical cell mosaic patterns, in particular 

apical rosette cells and the “annelid cross”, are intrinsically part of the spiral quartet 

cleavage mode; and secondly, the “annelid cross” must be a highly conserved geometric 

structure and always forms as the inevitable by-product of the highly spiral division apical 

cells 1q11. 

It would be very much surprising if “annelid/molluscan cross” patterns would not be 

present in an embryo that follows the conserved spiral quartet cleavage, as its cleavage 

mode itself dictates the formation of cross-like patterns. As has been pointed out by Jenner 

(2003), this implies that cross-patterns can be found ubiquitously in spiral cleaving 

embryos. But, and this should be kept in mind, these patterns do not necessarily represent 

synapomorphies with phylogenetically relevant information, as they have been used in the 

past (see also Nielsen (2004) and citation therein; Jenner (2003) and citations therein). 



 192 

However, we think it makes sense to predict that cross-like patterns are as old as the last 

common ancestor of the Lophotrochozoa (Merkel et al., 2012) assuming that the 

stereotypic spiral cleavage as we see it today was present. 

5.7.5 A highly conserved cleavage pattern of the apical cell lineage 1q11 indicates a strong 

conservation in the cell fate of apical rosette cells 1q111, which in spiral cleavers give 

rise to the apical organ 

Spiral cleavers usually form the apical organ from descendants of the apical-most 1q1 

micromeres (Nielsen, 2004; Nielsen, 2005). In M. crozieri, even though our cell lineage is 

limited to the time point of cilia formation during gastrulation, our preliminary tracing 

experiments suggest that descendants of apical rosette cells 1q111 end up exactly at the 

place where the apical organ is expected to be formed (Figure 5.14, Figure 5.17, D). This is 

further supported by our gene expression patterns of the apical marker FoxQ2, which 

spatially link the embryo’s most apical tip post-gastrulation to the apical plate of hatched 

larvae (Figure 5.19). 

At the same time, we find it intriguing that the asymmetric, strictly spiral divisions of apical 

cells 1q11 (laeotropic in dexiotropic species and vice versa) and the cleavage timing of their 

derivatives cells altogether appear to represent a shared trait that is highly conserved 

among different spiralian taxa, including the polyclad flatworms as shown in this chapter. 

Due to this high similarity of the cleavage pattern in the lineage of the apical cell 1q11, we 

suggest that there are also likely few evolutionary changes in the final fate of these cells, 

including apical rosette cells 1q111 could be more restricted. This also supports the idea of 
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a common history of the apical organ (derived from apical rosette cells 1q111), which is 

found in many planktonic trochophore-like larval stages, as a plausible scenario.  

Recently however, a cell lineage study on the bryozoan species Membranipora 

membranacea, brought forward some evidence, which supports an alternative view. This 

lophotrochozoan member also has a planktonic larval stage, the cyphonautes larva, which 

comprises ciliated bands and an apical organ, but displays a unique developmental mode, 

very different from the typical spiral quartet cleavage, exhibiting a biradial cleavage 

symmetry. The cell lineage, including the apical organ, however, shows similarities to the 

fate map of other spiral cleaving embryos, despite the lack of the conserved spiral cleavage 

pattern. This fact prompts the authors to argue against a correlation of the stereotypic 

geometry of blastomeres with a specific cell fate (Vellutini et al., 2016) and would therefore 

diminish the idea that highly conserved cleavage patterns as seen in the lineage of apical 

cells 1q11 could indicate a more conserved cell fate across spiral cleaving lophotrochozoans. 

Instead these authors argue that the “underlying molecular pattering” is the main factor 

that drives cell fates and therefore explains much better its evolutionary conservation. In 

this regard, more cell lineage and gene expression studies in non-spiral cleaving 

lophotrochozoans are necessary to further clarify these seemingly opposing views.  
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5.8 The cell lineage of the putative primary trochoblast 1q2 

5.8.1 Conservation of primary trochoblasts cell lineage in the spiralian developmental 

program 

Trochophores are primary marine larvae named after a highly characteristic feature they 

share: the prototroch. This structure is a belt of specialised, often elongated epidermal cells 

(called prototrochal cells) with long compound cilia, that usually encircles the whole body 

of the larva and acts as its primary locomotion system and is also used for feeding (Henry 

et al., 2007). Besides other types of ciliary structures that may be present in the 

trochophore the prototroch initially emerges in the developing embryo. Noticeably, in 

spiralian embryos with stereotypical blastomere arrangement during early cleavage it 

derives without exception from the first micromere quartet (1q). The larger portion of 

prototrochal cells is usually generated by primary trochoblast cells 1q2 and so-called 

accessory trochoblasts from apical micromeres 1q1222 may also contribute to the structure 

(Henry et al., 2007). Interestingly the timing of prototroch formation can vary during 

embryogenesis depending on the organism’s developmental mode.  

In polyclad flatworm larvae, hundreds of prototroch-like specialised epidermal cells are 

present, which follow the lobes of polyclad larvae and form multilayered bands of varying 

numbers (Figure 1.9 and Figure 1.10) (Lacalli, 1982; Ruppert, 1978) (see also chapter I). The 

resulting structure is called the ciliary band and, just like prototrochs of other marine 

larvae, it functions as a locomotory structure and is most likely additionally used for 

feeding. Ciliary bands can vary among different polyclad larvae (Rawlinson, 2014) and it 

was not shown yet if they consist of compound cilia (Nielsen, 2012b) as is usually the case 
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in prototrochs of other marine larvae (Jenner, 2003). The origin of ciliary bands amongst 

the early blastomeres has not been studied in detail but from a cell-lineage study 

performed on the acotylean polyclad H. inquilina it appears that the greater part of the 

ciliary band is derived from the first quartet and second quartet of micromeres, the latter 

more specifically from micromeres 2a and 2c. Surprisingly, fluorescent positive cells with 

long cilia and traced from the third quartet micromeres were also previously noted in H. 

inquilina (Boyer et al., 1998). Interestingly, the fact that the prototroch derives from first, 

second and third quartets of micromeres in H. inquilina resembles a study performed on 

the nemertean Cerebratulus lacteus (Henry and Martindale, 1998). Much earlier, Surface 

(1907) who looked in detail at the early embryogenesis of the polyclad H. inquilina also 

pointed out that blastomeres 1q2 correspond in mode and time of origin to cells found in 

annelids (the trochoblasts) and their molluscan equivalent (the turret cells). Given the 

strong conservation of primary trochoblasts among spiralian embryos (Henry et al., 2007) 

Surface’s assumption does not sound unreasonable. 

5.8.2 Lineage tracing in the polyclad flatworm M. crozieri supports the presence of a true 

primary trochoblast in M. crozieri 

The ubiquitous presence of primary trochoblasts 1q2 in spiral cleaving embryos, its 

unambiguous fate determined to give rise to major parts of the prototroch and its first 

acknowledgment in the polyclad flatworm H. inquilina (Boyer et al., 1998; Surface, 1907)  

prompted us to study if the homologous blastomere 1q2 would also give rise to ciliary band 

structures in the polyclad flatworm M. crozieri. Tracing one of the putative primary 

trochoblasts, 1c2, in M. crozieri showed that its descendants become arranged in a ring-like 
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pattern in gastrulating embryos located in an area where ciliary band cells would be 

expected to appear (Figure 5.17, Figure 5.18, see also Rawlinson 2010). Additionally, 

descendants of blastomere 1d12 fit into the pattern of this structure suggesting a putative 

fate as accessory trochoblasts (Figure 5.17, D). Both blastomeres, 1q2 and 1q12, could 

therefore be interpreted as precursor cells of the future ciliary band, fulfilling a cell-lineage 

fate as primary and accessory trochoblasts, which are typical for the spiralian 

developmental program. 

5.9 Further evidence for the presence of a true primary trochoblast 1q2 in M. 

crozieri 

5.9.1 Distinct developmental modes can be reflected in specific early cell lineages in 

primary marine larvae: A few examples 

There are several examples of marine larval adaptations being reflected in changes in the 

early development mode and thus early cell lineage. For example, in gastropods, free-

spawners form the prototroch early on while in intracapsular developers the formation of 

a prototroch can be significantly postponed or may not form at all (Guralnick and Lindberg, 

2001). In the latter case, trochal cells are sometimes delayed, presumably conditioned by 

this mode of development. Furthermore, the original prototroch in intracapsular 

developing larvae can be modified into another more efficient locomotory organ, the velum 

(Garstang, 1928), whose evolution was also recently argued to lead initially during early 

cleavage to a slower cleavage rhythm in trochal cell lines (van den Biggelaar and 

Haszprunar, 1996). A good example for such a scenario is the well-studied pond snail 
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Lymnaea stagnalis, which can be arguably considered almost a direct developer, in which 

the trochophore-stage has been greatly obscured by an advanced development into a 

veliger larva. In L. stagnalis the four primary trochoblasts 1q2, after their division at stage 

10, do not divide anymore for a long time (Dettlaff and Vassetzky, 1991). This restraint 

reflects the minor role given to prototrochal cells up to the point of an early veliger at stage 

22,. The initially reduced development of prototrochal cells follows in principle an old idea, 

namely that larval adaptation may be reflected in the early embryonic stages (see Guralnick 

(2013). 

Interestingly, a similar scenario has been suggested for echinoderm larvae. Usually, their 

planktotrophic larvae form prominent skeletal elements called spicules, which 

unmistakably define the shape of the pluteus stage. The larvae of echinoids can, however, 

be modified from a planktotrophic into lecithotrophic larvae, which completely gave up a 

planktotrophic life style. In this case, the skeletogenic cell lineage is affected, which leads 

to a reduced or absent skeleton in the larva. This loss of larval skeletal elements is reflected 

within the embryo’s early cell lineage, where a characteristic unequal fourth cleavage, that 

gives rise to micromeres, from which skeletogenic cells arise in other lineages, is missing. 

This deviation in the cell lineage can be interpreted as an adaptation to a new life history 

as non-feeding larvae (Wray, 1994). 

Another example from the late 19th century comes from Lillie, who suggested that 

discrepancies in the cell lineage of the freshwater clam Unio were adaptations to its 

modified larval stage, the glochidium larva (Lillie, 1898). Mead, in 1897, also argued that 

the cause of the delayed divisions of the first quartet of micromeres in the slipper snail 
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Crepidula compared to annelids is its relatively long protecting intracapsular stage (Mead, 

1897). 

If larval adaptation can alter the early cell lineage, as it seems to be the case for the 

seemingly more versatile primary trochoblasts, then more examples should be present in 

other taxa, such as polyclad flatworms. Therefore, if different developmental modes, as 

shown in the various examples of this section (we should also bear in mind direct versus 

indirect development), are reflected within different aspects of the early cell lineage (e.g. 

high proliferation rate, relative division timing), this information could be helpful to identify 

homologous founder blastomeres, which will give rise to specialised larval organs. 

5.9.2 High proliferative rate and large size supports putative fate of primary trochoblasts 

in M. crozieri 

We investigated the cleavage pattern of descendants of the putative primary trochoblast 

to understand if the adaptation of M. crozieri to a planktotrophic lifestyle with eight lobes 

comprising a prominent ciliary and could be linked to the cleavage mode of cell 1q2 and 

perhaps even to the size of its direct descendants. The ciliary band in M. crozieri is made 

up of hundreds of cells in hatchlings, and should manifest itself in a higher proliferation rate 

in early blastomeres. Those are suspected to be part of the ciliary band lineage. 

This fits well with our observations of rapid division rounds observed in descendants of cells 

1q211 (Figure 5.3). We have shown in M. crozieri that these founder cells become very large 

around the formation of the apical cell mosaic, carrying enlarged prominent nuclei and 

undergoing highly asymmetric cell divisions (Figure 5.16). In this regard, we think that the 



 199 

increased proliferation rate of putative trochoblast cells and their prominent size further 

supports the idea that in M. crozieri micromeres 1q2 represent true primary trochoblasts.  

 

 

Figure 5.20 – A comparison between the acotylean polyclad flatworm Planocera reticulata 
and the cotylean polyclad flatworm Maritigrella crozieri. (A is drawn and C modified after 
(Tang et al., 2011).  
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5.9.3 Comparison of M. crozieri and direct developing polyclad flatworms could provide 

further evidence for the lineage of the primary trochoblast reflecting an indirect life 

style 

Consistently, the volume increase of rapidly dividing cells 1q211 as seen clearly in M. crozieri 

also appears to be a pronounced feature in other indirect developing polyclad species. For 

example, in the drawings of the indirect developing polyclad flatworm Eurylepta cristata 

(Selenka, 1881) after the formation of the apical rosette cells, large descendants of 1q2 

(most likely 1q211), connected with the “annelid cross” cells, are recognisable. By contrast, 

descendants of the primary trochoblast in two direct developers (with no prototroch), 

Leptoplana tremellaris and Leptoplana alcinoi, remain small (Selenka, 1881). Additionally, 

a recent study on another direct developer, Planocera reticulata, shows the early 

development via SEM pictures and a transitional state before a juvenile, which the authors 

describe as a ciliated free-swimming planktonic larva, which then gradually reduces its cilia 

before turning into a juvenile with a pharyngeal mouth opening (Tang et al., 2011). In fact 

this peculiar larva, that resembles more a pre-juvenile stage with sometimes thin lobes, has 

been initially described by Kato (1940) and then in more detail by Teshirogi et al. (1981). 

Ciliary band cells, if present at all, are likely to be highly reduced. In this context, we find it 

notable that the 32-cell stage already shows obvious differences compared to M. crozieri. 

Micromeres of the second quartet in particular 2q2 are already significantly enlarged in P. 

reticulata, similar to the description by Selenka for direct developers, while first quartet 

micromeres are comparatively small (Selenka, 1881). However, P. reticulata forms an apical 

cell mosaic, with the typical peripheral rosette cells (1q112) and much smaller apical rosette 
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cells (1q111) similarly to M. crozieri. This allows one to identify ““molluscan cross”” cells 

(1q121), nested between the “annelid cross” cells. In M. crozieri 1q2111 and 1q2112, the 

derivatives of putative primary trochoblasts 1q2, are directly connected to the annelid ross 

cells and the latter can be easily recognised by their large size. Interestingly, cells positioned 

around the “annelid cross” where 1q2 descendants are expected to lie in P. reticulata during 

this stage do not show any dramatically increased cell size (Figure 5.20). 

It would be a plausible scenario for polyclad flatworms that cells of comparatively large size 

may reflect their provisions for a relatively increased proliferation rate. If correct, then in 

direct developers, or developers without a proper larval stage featuring a prominent ciliary 

band such as P. reticulata, the size of putative trochoblasts (1q) and micromeres forming 

lobes can be expected to be reduced because producing highly proliferative trochoblasts 

during early development would make little sense if they do not form proper ciliary band 

structures. Furthermore, In the polyclad H. inquilina, cells of the second quartet (2q) have 

been shown to give rise to the somatoblast (2b), which forms circular muscles and major 

parts of the stomodeum (Boyer et al., 1998). Stomodeum precursor cells might play a more 

crucial role for direct developers such as L. tremellaris, L. alcinoi and P. reticulata, which 

will much earlier on start feeding with a well formed pharyngeal structure, while indirect 

developers featuring a more primitive mouth, such as M. crozieri and H. inquilina are 

primarily planktotrophic and feeding depends on the ciliary bands until metamorphosis 

takes place. Based on these observations, we suggest that the different feeding 

mechanisms between juveniles and planktotrophic larvae may be reflected in cell size 

differences between 1q and its derivatives (larger and more proliferative if ciliary bands are 
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present) and perhaps even in micromere 2q2 (larger in direct developers where pharyngeal 

structures replace ciliary bands and a primitive mouth). Future comparisons of division time 

rhythms between direct and indirect developers could further strengthen this idea. If more 

evidence for a correlation between an advanced cell division timing of descendants 1q2 and 

formations of ciliary bands becomes obvious, this would further suggest that primary 

trochoblasts found in polyclad flatworms originate from the same blastomeres as found in 

other spiralians, which we think is likely to be the case.   
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CHAPTER 6 Functional analysis of spiral cleavage mechanisms 

Introduction 

In this short chapter, we investigate spiral cleavage by carrying out drug treatments similar 

to previous work in molluscs (Shibazaki et al., 2004). Shibazaki showed that the principle 

mechanism for spiral deformation of blastomeres depends on actin filaments rather than 

on spindle-forming microtubules. Spiral deformations could be driven in lophotrochozoan 

species as a product of the same cytoskeletal mechanism.  We will test this hypothesis by 

the effect of two drugs on the spiral cleavage pattern in M. crozieri, in particular during the 

third division round (4- to 8-cell stage). We will interfere with the actomyosin cortex using 

the actin polymerisation inhibiting agent Latrunculin A, and with spindles using the 

microtubule polymerisation inhibiting agent Colchicine. This will test if the mechanism that 

drives the spiral cleavage pattern in snails is also present in polyclad flatworms. 
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Results 

6.1 Spindle inclination remains flexible and can be adjusted prior to anaphase in 4-

cell stage embryos 

In most spiral cleaving embryos, the third cleavage is highly characteristic for its unequal 

division into four larger macromeres (1Q) and four smaller micromeres (1q) accompanied 

by the iconic helical deformation of blastomeres (spiral deformation) (Figure 6.1, A-C). We 

observed that during metaphase, several minutes before anaphase starts, spindles still 

undergo dynamic movements and can change their inclination angle, yet formation of 

blastomeres appear to be unaffected (Figure 6.1, A-B). This observation is a clue suggesting 

that spindle inclination may have little effect on the helical deformations of the 

blastomeres.  
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Figure 6.1 – Dynamic changes of spindle inclinations during the third cleavage in M. crozieri 
with a focus on the C blastomere (A-C) Transition from 4-cell stage into an 8-cell stage (3rd 
cleavage) with focus on the spindle inclinations. (A) 4-cell stage with sister chromatids of 
each blastomere during metaphase. The position of spindles is indicated with a white line. 
Arrows indicate their future inclination (B) Same embryo shown 13 min later with 
blastomeres still in metaphase just before separation of sister chromatids. The white line 
marks the previous position of the spindle. Blue line indicates the new inclination angle. (C) 
Blastomeres are now in late anaphase. (D-F) Embryo continues development into a 12-cell 
stage (D), 16-cell stage (E). (F) Spindle positions of the C-blastomere between third and fifth 
cleavages showing the alternating spindle positions from dexiotropic to laeotropic, to 
dexiotropic. 1q = first quartet, 2q = second quartet, 3q = third quartet. Scale bar = 50 µm.  
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6.2 F-Actin and spindle (alpha Tubulin) visualization during early cleavage 

Prior to the drug treatment experiments we performed a series of antibody stainings to 

visualise the cell cortex of early blastomeres and the formation of the spindle apparatus 

during early cleavage (Figure 6.2). In one oocyte, F-Actin staining was already observed in 

form of two small rings closely associated with each of the microtubule organizing centers 

(MTOC) of the forming spindle apparatus (Figure 6.2, A). Otherwise F-Actin staining was 

observed as expected in the cell cortex of early blastomeres (Figure 6.2, B-F). Alpha Tubulin 

was detected either as a filamentous microtubule network, which can cover the whole 

blastomere (Figure 6.2, D and E) or as a distinct staining of the spindle apparatus (Figure 

6.2, A and F). A transition of a filamentous network into a spindle apparatus can be seen in 

a 4/8-cell stage embryo showing prominent spiral deformations (Figure 6.2, C). 

Conspicuously, we occasionally observed embryos where an increased F-Actin staining was 

obvious in only one of the four quadrants. In one embryo, this was accompanied by a 

significant decrease in alpha Tubulin staining (Figure 6.2, E).   
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Figure 6.2 - Confocal laser scanning images of control embryos between the 1-cell and 8-
cell stage stained with anti-alpha Tubulin antibodies (green), Alexa Fluor 568 Phalloidin 
(red) and DAPI (blue). Scale bars are 100 µm. 

6.3 Effects of Colchicine and Latrunculin A treatments in embryos (4/8-cell stage) 

of M. crozieri 

For the pharmacological treatment experiments, about 100 embryos at the 4-cell stage 

were collected, except for 0.05% Colchicine treated embryos (n = 22) and their controls (n 

= 6). Each drug condition consists of controls (incubated in the highest EtOH concentration 

used as drug solvent), low drug concentrations and high drug concentrations. 
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Colchicine is well known for its inhibitory effects during mitosis by disrupting microtubule 

polymerization and thereby severely affecting correct spindle formation (Dustin, 1984). The 

strongest concentration of 0.05% Colchicine led to embryos completely devoid of any 

spindle apparatus (n = 22). Only one embryo developed into a severely deformed 8-cell 

stage. Interestingly, drug treated embryos were found to arrest at the onset of metaphase 

where they showed clearly spiral deformations of blastomeres (14/22). All control embryos 

(n=6) made it into an 8-cell stage. 

A similar result was obtained in embryos which were treated with Colchicine 

concentrations of 0.005%. In this case 48% of all embryos (41/85) displayed spiral 

deformations and no spindles were detected in any of the embryos selected for confocal 

imaging (n=8) (Figure 6.3, C; Figure 6.4). However, alpha Tubulin staining observed via 

confocal imaging was often present in the form of small spots close to the nuclei (7/8). By 

contrast, confocal imaging revealed that 13/15 control embryos did show normal spindle 

formations as seen in Figure 6.3,A . The lowest Colchicine concentrations (0.0005%) led to 

embryos of which 39% (n=27/70) showed spiral deformations (Figure 6.3, D; Figure 6.4) and 

from which all embryos used for confocal imaging (n=3) showed intact spindles indicating 

that this Colchicine treatment was not sufficient to inhibit spindle formation. 

Latrunculin A is a drug commonly used to study cell functions due to its disrupting effect 

on F-Actin assembly (Spector et al., 1983). For this experiment two different concentrations 

were chosen. Both, 0.325 µM and 0.75 µM resulted in embryos completely devoid of any 

spiral deformations and none of the embryos (n=48) showed any sign of F-Actin around the 

cell periphery (Figure 6.3, F-G; Figure 6.4). Of all embryos treated with 0.325 µM Latrunculin 
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A, five had blastomeres carrying two nuclei and one embryo showed two blastomeres also 

carrying two nuclei. Most embryos treated with 0.75 µM Latrunculin A simply fell apart into 

four individual blastomeres (see Figure 6.3, H as an example). A similar although slightly 

less severe effect was observed in embryos treated with 0.325 µM Latrunculin A solution 

(Figure 6.3, F) and 5 embryos were found exhibiting an 8-cell stage.  

 
 

 

Figure 6.3 - Confocal laser scanning images of Colchicine (A-D) and Latrunculin A (E-H) 
treated embryos during the third cleavage. (A) Embryo used as a control for the Cholchicine 
treatment experiment. (B-C) Embryos exposed to 0.05% and 0.005% concentrations of 
Colchicine showing spiral arrangement of blastomeres but no spindle formations. (D) 
Embryo exposed to 0.0005% Colchicine showing spiral arrangement of blastomeres and 
spindle formation in each cell. (E) Embryo used as a control for the Latrunculin A treatment 
experiment. (F) Embryo exposed to 0.325 µM Latrunculin A showing no sign of spiral 
arrangement of blastomeres and no F-Actin cell cortex staining but the formation of 
spindles in each cell. (G) Embryo exposed to 0.75 µM Latrunculin A looking similar to G. (H) 
Single blastomere of an embryo, which lost attachment to other blastomeres after being 
exposed to 0.75 µM Latrunculin A. Scale bars = 100 µm.  
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Figure 6.4 - Summary of Colchicine and Latrunculin A treatments during the transition from 
4-cell stage into a 8-cell stage showing their effect on the helical deformation of 
blastomeres (spiral deformation). While the treatment of Colchicine has no obvious effect 
on spiral deformation the treatment (top) 0.325 µM and 0.75 µM Latrunculin A leads to its 
complete loss (bottom). The lower number of 0.325 µM and 0.75 µM Latrunculin A treated 
embryos is caused by their disintegration into single blastomeres during treatment or 
subsequent fixation.  
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Discussion 

6.4 A conserved mechanism of the spiral cleavage pattern can be demonstrated in 

M. crozieri embryos 

Shibazaki et al. (2004) demonstrated that dextral cleaving metaphase/anaphase 4-cell 

stage embryos of the pond snail L. stagnalis, which were devoid of spindles due to 

treatments with the microtubule depolymerization agent Nocodazole, nonetheless showed 

the typical spiral deformation of blastomeres. In some embryos, spiral deformations were 

observed to be even slightly more prominent. This observation suggested the presence of 

a cross-talk between the spindle forming microtubules and actin. It also made clear that 

the iconic spiral twist depends not on spindle inclination, but rather on actin 

polymerization, which affects spiral deformation to which the spindle position prior to 

anaphase can adjust. We show a very similar finding in M. crozieri embryos treated with 

the microtubule depolarization agent Colchicine (which has the same effect as 

Nocodazole). Embryos with high Colchicine concentrations (0.05%, 0.005% and 0.0005%) 

were, as expected, devoid of spindles (Figure 6.3, B-C) but showed clear signs of spiral 

deformations similar to control embryos (Figure 6.2; Figure 6.3, A). On the other hand, in 

Latrunculin A treated embryos (which are expected to have reduced actin cytoskeleton), 

spiral deformations were absent (Figure 6.3, F-H), reflecting once more the result of 

similarly treated L. stagnalis embryos (Kuroda, 2015; Shibazaki Y, Shimizu M, 2004). 

Polyclad flatworms recapitulate the observation made in the snail L. stagnalis, that spiral 
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deformations depend on actin polymerization, which in turn influences spindle orientations 

and not vice versa. 

This result is also in accordance with our observation that spindle positions remain 

relatively dynamic during the third cleavage and their inclination angle can be still adjusted 

in blastomeres to the point at which anaphase is initiated (Figure 6.1). We can also 

corroborate the suggested presence of a cross-talk between microtubules and actin during 

metaphase as we found in M. crozieri, like L. stagnalis, occasionally exceedingly prominent 

spiral deformations in Colchicine treated M. crozieri embryos (Figure 6.2, B), which are not 

seen in control embryos or pharmacologically untreated spiral cleaving embryos. Our drug 

treatment experiments on the polyclad flatworm M. crozieri suggest that the principle 

mechanism for spiral deformation of blastomeres in different lophotrochozoan phyla such 

as snails and polyclad flatworms depends on actin filaments and is independent of spindle 

forming microtubules. Microtubules interact with the actin filaments and must be present 

to accordingly initiate anaphase and subsequently blastomere cleavage in M. crozieri. 
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CHAPTER 7 CONCLUSIONS 

7.1 Summary of the findings 

In the first part of this thesis I have described the design and assembly of a T-configuration 

OpenSPIM with twin lasers (Chapter III). I have shown that a home-built SPIM microscope 

can be used as a scientific instrument to study the embryonic development of the polyclad 

flatworm M. crozieri on fixed specimens and in vivo. With our microscope, we produced 

high-quality 3D images of fixed larvae and have captured in detail the early embryonic 

development up to the 128-cell stage in a series of 3D reconstructed time-points. 

In the second part of this thesis I increased the current knowledge of the early development 

of the polyclad flatworm M. crozieri, which facilitates evolutionary comparisons of the 

development of different flatworms and lophotrochozoans more broadly (Chapter IV). I 

showed that the early cleavages in M. crozieri are accompanied by cytoplasmic 

perturbations, which are most pronounced in macromeres during the formation of the 

third and fourth quartets and during cleavage in the mesentoblast precursor 4d. Based on 

our live-imaging data we suggest that these perturbations are probably the product of 

dynamic cytoskeletal activity that may play an important role in normal development. Our 

description of the early embryonic development of the cotylean polyclad flatworm M. 

crozieri closely resembles what is known of the acotylean polyclad H. inquilina. Both 

species, M. crozieri and H. inquilina, share the same symmetry breaking mechanism 

resulting in animally and vegetally positioned pairs of daughter cells of 4d and both show a 

slight tendency to an increased size of the D-blastomere (determined to be one of the 
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vegetal cross-furrow cells) at the 4-cell stage, which we confirmed in M. crozieri by precise 

volume measurements. This finding is consistent with an unequal cleavage mechanism, 

that specifies the D-quadrant early on. This is surprising, as M. crozieri has previously been 

suggested to represent an equal cleaver, where animal/vegetal (micormere/macromere) 

interactions are thought to be crucial for the establishment of the D quadrant and thus for 

normal development. Despite of the fact that the first two cleavages result in a slightly 

unequal 4-cell stage, it should not be excluded that cell-cell interactions, which are thought 

to be the driving mechanism for specifying the D quadrant in equal cleavers, may still play 

a crucial role for the early development in polyclad flatworms. 

The third part of this work our comparison of the relative division timing pattern, based on 

our cell-lineage study, revealed a high degree of conservation between the two polyclad 

species and a lower degree in two other lophotrochozoan animals (annelid and mollusc; 

Chapter V). Also spindle positions, which define an either laeotropic or dexiotropic cleavage 

pattern during early development, appear to be conserved, particularly in the micromere 

lineage of the first quartet (1q) that gives rise to head structures in polyclad larvae. We 

think that cross patterns of the apical cell mosaic in M. crozieri, that reliably appear in many 

spiral cleavers after the apical rosette cells (1q111) have formed, reflect a particularly 

conserved cleavage pattern characteristic for the apical cell lineage of many spiral cleavers 

and could also mean that a more conserved cell fate of these blastomeres is possible.  

Long term tracing of blastomeres with focus on apical rosette cells 1q111, and the putative 

primary trochoblasts 1q2, corroborates a conserved fate of, respectively, the apical organ 
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and also ciliary band cells in polyclad flatworms, which they seem to share with other 

lophotrochozoans (Chapter V). 

Finally, drug treatment experiments on polyclad embryos suggest that the principle 

mechanisms for spiral deformation of blastomeres depends on the polymerization of actin 

filaments but takes place independently of spindle forming microtubules, which 

corroborates previous findings on snails (Chapter VI). Ultimately, although much remains 

to be done, this work adds new knowledge to our current understanding of spiral cleavage 

in the Lophotrochozoa by shedding light on the development of a poorly studied clade - the 

polyclad flatworms. 

7.2 Long-term live imaging experiments: Current limitations and trials to overcome 

them 

Here I will discuss the limitations and challenges of working on the polyclad M. crozieri, and 

the newly-established live-imaging setup that I used throughout this work. Addressing 

these challenges will facilitate future work on this exciting novel model for evo-devo, and 

is thus important to point out possible strategies to tackle these issues. One of my aims was 

to obtain live recordings of the embryonic development in M. crozieri for a duration that is 

long enough to determine the fate of functional larval organs such as the apical organ and 

the ciliary band among the early blastomeres of spiral cleaving embryos. In this section, I 

will summarise the main challenges of such an undertaking, which partly prevented me 

from achieving more robust results and how I envisage they could be addressed in future 

work.  
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7.2.1 A protocol for cryopreservation of M. crozieri embryos needs further elaboration 

In the case of M. crozieri, gravid adults are found in the Florida Keys, where animals are 

handpicked from Ecteinascidia turbinata colonies, but cannot be adequately fed once they 

are in laboratory culture. This limits the availability of oocytes and living embryonic material 

suitable for live recordings to a couple of weeks weeks, depending, for instance, on the size 

of specimens collected. Therefore, it is easy to understand that each individual animal, 

which arrives safely in London and contains enough eggs for poking and microinjections, is 

of considerable value for our research. For our live-imaging recordings at least two gravid 

adults poked simultaneously as this might help with normal fertilization of all eggs and 

allows to readily microinject up to 200 embryos, of which at least half will show fluorescent 

signal and are therefore available for each live-recording session. Our OpenSPIM set-up, 

however, currently allows us to acquire time-lapse recordings of only one individual 

embryo at a time. Only then accurate sample positioning by the 4D stage is guaranteed, 

that has to be precise enough to, for instance, allow tracing of fluorescently marked nuclei 

during embryonic development. While there is certainly still the possibility to further 

advance the OpenSPIM setup by implementing more sophisticated 4D-stages and 

mounting strategies, which allow for instance imaging of several embryos at a time, 

another idea was to use some of these embryos for cryopreservation either before or after 

microinjections, in a comparable manner as performed on human and mouse embryos. 

This would allow long-term storage and provide a convenient way to perform live-imaging 

studies even when adult animals are not in culture. While in human and mouse embryos 
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recent cryopreservation kits guarantee a very high success rate (Joyce Harper, UCL, 

personal communication), their solutions are unfortunately not optimised for oocytes kept 

in sea water, and embryos of M. crozieri are unable to withstand a normal procedure and 

solutions, which are clearly optimised for mouse and human eggs. We noticed this during 

a preliminary test on M. crozieri oocytes during a vitrification workshop at University 

College London (data not shown). Therefore, a more adapted protocol is certainly 

necessary, which would use more elaborated solutions, that can take salt water conditions 

needed for marine invertebrate oocytes (e.g. from M. crozieri), into account. Such a 

protocol would be of value, not only for research in living embryos in M. crozieri but also 

for many other marine lophotrochozoan non-model organisms, which are currently difficult 

to collect and cannot be cultured readily in the lab. 

7.2.2 Using the CRISPR Cas9-knock out system to prevent rotational embryonic 

movements caused by ciliary beating 

Although the fluorescent signal starts to weaken over the days of M. crozieri embryonic 

development, as nuclei divide and shrink while cell density simultaneously increases, it is 

striking that the signal is sufficient to trace individual nuclei until gastrulation. However, 

there inevitably comes the time-point when the embryos start to form epidermal cilia at 

around 5 days post poking embryo when epidermal cells start covering the embryo during 

epiboly, which leads to its rotational movements (see video 9). This event marks a definitive 

break of any lineage tracing, that can be only achieved up to this point. 

One approach to reduce rotational movements of gastrulating embryos was using the 

CRSIPR-Cas9 system to knock out a gene of the intraflagellar transport (IFT) machinery, IFT-
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88, which is required for the correct assembly of eukaryotic cilia (Pazour et al., 2000). 

Therefore, we produced two sgRNAs targeting this gene, which were co-injected together 

with the Cas9 proteins into M. crozieri oocytes during a single microinjection session. 

Embryos were subsequently allowed to develop for several days. While OpenSPIM live-

imaging and observations of these embryos gave the impression that the rotational 

movements of a few embryos were slightly delayed (data not shown), we also realised that 

all embryos were still eventually able to develop cilia and begin rotational movements or 

gave rise to larvae that clearly showed swimming behaviour indicating presence of cilia. 

Sequencing of individual microinjected embryos also did not show that the targeted area 

of IFT-88 was affected by the CRISPR-Cas9 system. Despite our unsuccessful first trial, more 

time and work clearly needs to be invested to make the CRISPR-Cas9 system readily usable 

in M. crozieri. This could be perhaps more efficiently tested on location in Florida, where 

M. crozieri animals can be collected almost all year long and a continuous supply of fresh 

material is available. 
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7.3 Future outlooks 

Here, I want to summarise several interesting directions that this project could take on in 

future work. 

7.3.1 Complete cell lineage until larva 

Further investigations of the apical rosette cell lineage (1q111) and the primary trochoblast 

cell lineage (1q2) into the larval stage of M. crozieri would strengthen my current findings, 

presented in this thesis, that these two lineages, which respectively give rise to the apical 

organ and the ciliary band cells, are homologous to the lineages found in other 

lophotrochozoan phyla. 

One strategy could be to combine the live-imaging recordings of fluorescently tagged 

nuclei, as performed in this study, with fluorescent vital dyes that label the membrane of 

cells and are more commonly used for cell-lineage tracing (e.g. DiI) by a second round of 

microinjections specifically into blastomeres 1q11 or 1q2.  Live imaging could then be 

interrupted at the point where the embryo starts rotating and the DiI fluorescently labelled 

cells investigated after the development into a larva is complete.  

7.3.2 4d fate and mesentoblast 

According to Boyer (1998), Surface (1907) and this study, the 4d blastomere gives rise to 

mesodermal structures such as longitudinal, diagonal, and oral hood muscles as well as 

mesenchyme and some endoderm in polyclad larvae. 

Surface described the more animally positioned daughter micromere 4d1 as the true 

mesentoblast (giving rise to mesoderm and some endoderm) and the larger daughter 

micromere 4d2 as the entoblast, giving solely rise to endoderm. This has to be 
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reinvestigated in more detail.  A conclusive proof for 4d1 being the mesentoblast would be 

to directly inject 4d1 to follow its fate, which due to its central position and small size, as 

show in this work, is very difficult. Alternatively, indirect evidence could arise by injecting 

the large 4d2-blastomere to see if developed larvae contain labeled endoderm and/or 

mesoderm. 

In the first case this would prove that blastomere 4d1 (or one of its daughter cells) is indeed 

the mesentoblast and that spiral cleavage in polyclad flatworms is in fact delayed by at least 

one cell cycle. The second scenario is that also 4d2 gives rise to some mesoderm. This 

second scenario is important, because it directly points to the 4d blastomeres to give rise 

to endomesoderm, which is more in accordance with the canonical spiral developmental 

program as seen in other lophotrochozoans. Additionally, a cell lineage, similar to our early 

cell-lineage created for M. crozieri, but with focus on the cleavage pattern of the 4d 

blastomere, could shed more light on the fate and behavior of this evolutionary important 

cell. 

7.3.3 Investigating the MAPK pathway during early cleavage in M. crozieri 

As discussed in Chapter I, the MAPK signalling pathway may have an important role for the 

establishment of a dorsal “organizer” during early spiral cleavage. This might be also true 

for polyclad flatworms, where the temporal and spatial expression pattern of MAPK is 

completely unknown. Our preliminary immunohistochemistry stainings of MAPK showed a 

weak, but specific, expression pattern in one of the four quadrants of the first quartet of 

micromeres (1q) during early cleavage (8- to 16-cells) and then slightly stronger in one 

quadrant of the micromeres of 1q1 (Figure A. 2). A specific expression pattern in one of the 

four macromeres was not observed during these stages. This finding need of be thoroughly 

reinvestigated, as the role of this pathway in polyclads may provide new insights into 

evolutionary changes in the spiralian developmental program. 
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7.3.4 Investigating direct developers for a comparison study 

In this work, we have created an early cell lineage for M. crozieri that includes information 

of the relative division timing. As discussed in Chapter VI, we think that such information is 

likely to reflect adaptations to new developmental modes. A test case, to further 

strengthen this hypothesis, would be to compare the early cell lineage of the primary 

trochoblast 1q2, which typically gives rise to the future prototroch/ciliary bands between 

M. crozieri and any direct developing polyclad flatworm, which does not develop any lobes 

or ciliary band-like structures. The comparative study between direct versus indirect 

developing polyclad flatworms can of course uncover further evolutionary changes 

between these two different developmental modes.  
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APPENDIX 

ADDITIONAL FIGURES 

 

Figure A. 1 Apical cell mosaic in 3d reconstructed M. crozieri embryo based on nuclei 
information. Shown are apical rosette cells (1q111), peripheral rosette cells (1q112), 
““molluscan cross”” cells (1q121/122) and tips of the ““molluscan cross”” cells (2q11). 
Individual cells in M. crozieri have been identified by cell lineage tracing and different colors 
indicate quadrant affiliation (blue is for A quadrant, yellow is for B quadrant, green is for C 
quadrant and red is for D quadrant). The dotes lines indicate cell forming the apical cell 
mosaic: Red dotted cells represent the apical cell mosaic (1q111), yellow dotted cells the 
“molluscan cross” cells (1q121/1q122), blue dotted cells the “annelid cross” cells (1q112) and 
the green cells the tips of the “molluscan cross” cells (2q11). 
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Figure A. 2 – Immunohistochemistry against MAPK diphosphorylated ERK-1/2 (Sigma) in two 
M. crozieri embryos. (A) Very weak, asymmetric MAPK signal was observed in one of the 
micromeres at the 8-cell stage (B) Slightly stronger signal of MAPK activity in one of the 
vegetal cross furrow micromeres (1q1) at the 16-cell stage. These observations are 
preliminary and therefore need to be reinvestigated in more detail in M. crozieri embryos. 
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Figure A. 3 – Vegetal view of a gastrulating M. crozieri embryo, where putative descendants 
of 4d2 have been identified and marked (depicted here with three different symbols; see A 
and its inset H) and then traced for thirteen hours (B-G).The cell marked with an asterisk (and 
potentially also the cell indicated with “>”) contacts macromeres 4Q (depicted in C), then 
seemingly loses contact again (D-F). In I, the final position of two of the three cells is shown 
at a location where first signs of invagination seemingly occur. Scale bar is 50 µm.   
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ADDITIONAL TABLES 

 

Table A. 1 - List of OpenSPIM parts 

OpenSPIM parts  

LASER2000   

ref part qty 

Stradus VersaLase™ VersaLase 488/561 1 

n.a. Heat sink (special modification) 1 

Pieter Fourie Design and Engineering CC  

ref part qty 

2 RC1 vertical slit stilt 2 

3 RC1 Ø1/2" lens stilt 11 

8 Metal objective holder ring 3 

9 Detection axis holder, base 1 

10 Detection axis holder, top 1 

11 Infinity space tube 1 

12 Ø1"/Ø25.4 mm microscopy fluorescence emission filter holder, base 2 

13 Ø1"/Ø25.4 mm microscopy fluorescence emission filter holder, top 2 

18 RAIL CARRIER 15.4 mm, MOD ONLY 8 

23 Acrylic sample chamber T, OLYMPUS 1 

24 Metal chamber holder T, OLYMPUS 1 

25 INSERT FOR RAIL CARRIER 15.4 mm (RC1 MODIFIED) 8 

27 RC1 MOD, Ø1/2" lens stilt 2 

37 RC1 Iris stilt 2 

38 RC1 Ø1/2" mirror stilt 5 

AHF Fluorescent filters  

ref part qty 

F72-866 446/523/600/677 HC Quadband Filter (Emission Filter) 1 

F59-486 Dual Line Laser Clean-up ZET 488/561 1 

Picard Industries  

ref part qty 

USB-4D-STAGE 4D stage 1 

Thorlabs   

ref part qty 
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DG05-1500-H1-MD Ø1/2" SM05-Mounted Frosted Glass Alignment Disk w/Ø1 mm Hole 2 

NE20A-A 
Ø25 mm AR-Coated Absorptive Neutral Density Filter, SM1-Threaded 
Mount, 350-700 nm, OD: 2.0 2 

TRF90/M 90° Flip Mount for Ø1" Filters and Optics, Metric 5 

VA100/M Adjustable Mechanical Slit, Metric 2 

LMR05/M Lens Mount for Ø1/2" Optics, One Retaining Ring Included, M4 Tap 10 

KM05/M Kinematic Mount for Ø12.7 mm Optics, Metric 5 

GM100/M Ø25.4 mm Gimbal Mirror Mount, Metric, One Retaining Ring Included 2 

RSP1X15/M Metric Rotation Mount, 360° Continuous or 15° Indexed Rotation 2 

BB1-E02 Ø1" Broadband Dielectric Mirror, 400-750 nm 2 

BB05-E02 Ø1/2" Broadband Dielectric Mirror, 400-750 nm 5 

AC127-050-A-ML 
f=50 mm, Ø1/2" Achromatic Doublet, SM05-Threaded Mount, ARC: 400-
700 nm 2 

AC127-025-A-ML 
f=25 mm, Ø1/2" Achromatic Doublet, SM05-Threaded Mount, ARC: 400-
700 nm 2 

AC127-019-A-ML 
f=19 mm, Ø1/2" Achromatic Doublet, SM05-Threaded Mount, ARC: 400-
700 nm 2 

AC127-075-A-ML 
f=75 mm, Ø1/2" Achromatic Doublet, SM05-Threaded Mount, ARC: 400-
700 nm 2 

ACY254-050-A f = 50 mm, Ø1" Cylindrical Achromat, AR Coating: 350 - 700 nm 2 

RC1 Rail Carrier, 1" x 1", 1/4" (M6) Counterbored Mounting Hole 24 

LMR1/M Lens Mount for Ø1" Optics, One Retaining Ring Included, M4 Tap 2 

SM1D12D Ring-Activated SM1 Iris Diaphragm 2 

MB6090/M Aluminum Breadboard, 600 mm x 900 mm x 12.7 mm, M6 Taps 1 

AV2/M Sorbothane Feet, M6 Thread, 20 - 32 kg (44 - 70.4 lb) Load, 4 Pieces 3 

RLA300/M Dovetail Optical Rail, 300 mm, Metric 3 

RLA150/M Dovetail Optical Rail, 150 mm, Metric 5 

HW-KIT1/M M4 Cap Screw and Hardware Kit 2 

HW-KIT2/M M6 Cap Screw and Hardware Kit 1 

SPW602 SM1 Spanner Wrench, Graduated, Length = 3.88" 1 

BS004 50:50 Non-Polarizing Beamsplitter Cube, 400 - 700 nm, 1/2" 1 

BS127CAM 
12.7 mm (0.50") Beamsplitter Cube Adapter for Compact 30 mm Cage 
Cube 1 

CM1-4ER/M Compact Clamping 4-Port Prism/Mirror 30 mm Cage Cube, M4 Tap 1 

CL3/M Compact Variable Height Clamp, M6 Tapped 3 

PH30/M Post Holder with Spring-Loaded Hex-Locking Thumbscrew, L = 30 mm 1 

TR40/M 
Ø12.7 mm x 40 mm Stainless Steel Optical Post, M4 Stud, M6-Tapped 
Hole 1 

Olympus   

objectives   

ref part qty 

N2667500 UMPLFLN10XW 2 
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N2667700 LUMPLFLN40XW 1 

video camera mounts & adapters  

U-TLU single port tube with lens 1 

U-TV1x video camera adapter (projection lens) 1 

U-CMAD3 video camera mount adapter 1 

www.esimagingsolutions.com  

Controller Box ESio TTL Controller  

Andor   

Camera Zyla 5.5 3 Tap ex-demo model  

HP   

ref  qty 

HP Z230 Workstation Acquisition computer 1 

HP Z820 Workstation Processing computer 1 

Misco.co.uk   

ref part qty 

LN47340 Drobo 5D 5 Bays DAS Thunderbold x2 (10Gbs x2) 1 

LN46168 Red WD30EFRX 3TB HDD 5 

 

Table A. 2 - Acquisition and processing computer information 

Product: HP Z820 Workstation 

Processor: 2x Xeon E5-2630 v2 2.60Ghz 

Drives: 1x 256GB SSD; 3x 3 TB Hard drives 

Graphics: 2x Nvidia Quadro K4000 graphic cards 

Memory: 128GB RAM 

 

 


