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Abstract	

A two-dimensional boundary element method (BEM) based on potential flow theory 

is adopted to study the wave interactions with multiple structures at resonance. Here 

resonance refers to the wave resonance which appears in the gaps between structures. The 

wave-structure interactions problems are simulated using a mixed Euler-Lagrangian scheme, 

with fully nonlinear boundary conditions applied on the instantaneous free surface and 

wetted body surface. The numerical scheme is verified through the simulations of wave 

interactions with a single body. Results show that both the free surface elevation and the 

hydrodynamic forces can be calculated accurately enough.  

The first primary study proposes a numerical approach to calculate the dominant 

natural frequencies in the gap based on the understanding of free liquid sloshing in a tank. 

The effectiveness of this approach is verified through the ‘response amplitude operator’ 

(RAO) analysis in terms of the gap free surface elevation. The natural frequencies are found 

for twin barges, with various gap widths and draughts. The effects of resonance on wave 

forces and elevations are also analysed. 

The second primary study considers the resonance induced by forced heave, sway and 

roll of body motion at various amplitudes. Particularly, second-order resonance, which is 

due to the sum or difference frequency, is found especially significant when the gap width 

over draught ratio is large. Second-order resonance can sometimes be as pronounced as, or 

even stronger than, classical first-order resonance.  

The third primary study concerns the wave resonance induced by nonlinear 

regular incident waves. For hydrodynamic interactions when the two bodies are both 

fixed, the free surface elevations are captured, particularly the standing wave trains 

formed in front of the upwave structure and sheltering effect behind the leeside structure. 

The nonlinearity associated with incident wave steepness is taken into consideration. 

Then second-order resonance in the gap caused by incident waves is studied. Finally, 

the wave resonance behaviour in the gap when the two bodies are freely floating under 

incident waves is analysed. 
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Symbols	and	nomenclature	

 Abbreviations  

2D Two Dimensional 

3D Three Dimensional 

BEM Boundary Element Method 

BIE Boundary Integral Equation 

BVP Boundary Value Problem 

CFD Computational Fluid Dynamics 

DOF Degree of Freedom 

FDM Finite Difference Method 

FEM Finite Element Method 

FLNG Floating Liquified Natural Gas unit 

FPSO Floating Production, Storage and Offloading unit 

FVM Finite Volume Method 

IBVP Initial Boundary Value Problem 

LNG Liquified Natural Gas 

MEL Mixed Eulerian-Lagrangian approach 

RAO Response Amplitude Operator 

TLP Tension Leg Platform 

VOF Volume of Fluid 

 Roman letters 

A Amplitude of the body motion or incident wave 
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B   Breadth of the floating bodies  

D   Initial draught of the floating bodies 

,x zF F  Horizontal and vertical force on the body 

g Acceleration due to gravity 

h Water depth (from still water level to the seabed) 

k Wave number 

L Distance between the inner sides of two floating bodies 

iL   Length of element i   

yM   Moment about y -axis  

P   The total pressure 

0 1,S S  Instantaneous wetted body surface 

bS  Sea bottom 

cS  Truncated control boundary 

fS  Instantaneous free surface 

NS  Whole fluid domain boundary excluding free surface 

,x zs s   Horizontal and vertical displacement of the body 

t Time variable 

T The period of body oscillation or wave motion 

,x z   Cartesian coordinates  

,X Z   Body-fixed coordinates relative to the rotational centre 

,g gx z   Gravitational centre of the body 
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 Greek symbols 

,    Damping strength and length controlling parameter 

   Element size increasing rate 

   Incident wave steepness 

   Wavelength 

     Total free surface elevation  

I , D  Free surface elevation due to incident wave or disturbance 

   Rotational displacement of the body 

   The density of the fluid (water) 

   Velocity potential  

I , D  Velocity potential due to incident wave or disturbance 

n   Normal derivative of velocity potential 

t   Time derivative of velocity potential 

   Forced body motion frequency 

I   Incident wave frequency 

n   Natural frequency 

   Fluid domain or rotational velocity of body motion 

 Miscellanies 

( )A p  Solid angle at point p   

d  Characteristic element size on body surface and free surface 

t  Time step 
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( , )G m i   Coefficient corresponding to normal derivative of velocity 

potential of node i  from collocation nodes m   

( , )H m i   Coefficient corresponding to velocity potential of node i  from 

collocation nodes m  

( , )x zn n n


 Unit normal vector out of the fluid domain 

( , )x z  


 Tangential direction unit vector 

,U U
 

 Velocity and acceleration vector of body motion 

( )x  Damping term in the damping zone 

̂   Auxiliary function related to t    

   Disturbance frequency  
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amount of human effort and material and labour costs. Their results are in general more 

reliable and can be used to validate the mathematical models and numerical methods. 

Numerical simulations offer a good and efficient way to tackle the wave and multiple 

body interaction problems at resonance such as predicting natural frequencies, mode 

shapes, motion responses, high order resonances and hydrodynamic pressures and loads 

associated with various geometric configurations and environmental conditions. Thus, 

numerical methods are employed to study the wave interactions with multiple structures 

at resonance.  

A large number of numerical methods have been developed, such as, finite 

element method (FEM), finite volume method (FVM), finite difference method (FDM), 

and boundary element method (BEM). The first three methods can be classified as 

domain methods. The BEM distinguishes itself as boundary method, which indicates 

that the discretisation is only carried out at the fluid domain boundaries. The reduction 

in one dimension of the modelling of a problem represents an enormous advantage in 

terms of the mesh generation and corresponding numerical treatments. This particular 

advantage, along with its efficiency in mesh generation, accuracy, and flexibility (Liu et 

al 2001, Sun 2007, Sun et al 2015b), defines the popularity of BEM in its use. Thus, in 

this study, within the context of velocity potential flow theory, the mixed Eulerian-

Lagrangian (MEL) (Longuet-Higgens and Cokelet 1976) approach together with BEM 

is used for the study of wave-body interaction problems. Furthermore, since nonlinear 

effects are important for wave interactions with multiple structures at resonance, fully 

nonlinear potential flow theory has to be adopted to capture all levels of nonlinearity 

associated with the hydrodynamic interactions.  

In most of the cases, the length scale of the structure (e.g. ship, FPSO, FLNG, 

shuttle tanker) is much larger than its width scale. Thus, slender-body approximation is 

valid, except near the ends of the structure. We further assume that the incident waves 

propagate in a direction perpendicular to the middle line plane of the body (beam sea 

condition), the three dimensional (3D) problem can be simplified to a two dimensional 

(2D) problem. It implies that the two structures such as two ships or FPSO/FLNG and 

shuttle tanker/LNG carrier are represented by their cross-sections. Commonly used, 

simplified cross-sections include: wedge, circular cylinder, and rectangular cylinder. A 

rectangular shape is used in the present study because it resembles the typical mid-ship 

section. Overall, in this thesis we will study the hydrodynamic interactions of two 

structures at wave resonance in the gap, using numerical simulations based on fully 
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nonlinear potential flow theory. The numerical calculations are done through boundary 

element method together with a time stepping scheme. In order to study the 

hydrodynamic interactions at resonance, natural frequencies in the gap should be 

located precisely beforehand. Then the wave elevations in the gap, wave forces on the 

structures and motion responses of the structures at resonance are investigated.  

1.2 	Literature	review	

The study on wave-body interaction problems starts from wave interactions with a 

single body, and then extends to wave interactions with multiple bodies. There are 

generally two categories of methods available to treat the wave and body interaction 

problems. One group is the frequency domain solution which is mainly based on the 

Stokes wave theory for periodic motion, without considering the initial transient effect; 

the other is the time domain solution to the resulting wave field and hydrodynamic 

performance of the body. During the last three decades, the time domain method has 

gained its popularity gradually in parallel with the development of high-performance 

computers. The most widely used time domain method is based on the mixed Eulerian-

Lagrangian time stepping approach introduced by Longuet-Higgens and Cokelet (1976), 

when studying 2D steep waves and plunging wave breakers. By this method, the flow 

field equations in the Eulerian description are solved at every time step, and the exact 

free surface position and the velocity potential of the next time step can be updated in 

the Lagrangian framework.  

Wave-body interaction problems can be roughly classified into three categories: 1) 

diffraction for a fixed body, 2) radiation for a body in forced motion, and 3) a combined 

problem for a freely floating body by convention. Occasionally, some of the six degrees 

of freedom may be restrained, by adding mooring devices. The review of the study on 

wave interaction with a single body will be presented according to the three categories. 

There are two general assumptions of nonlinear wave and body interaction problems. 

One is that the body is considered to be rigid, which means the deformation of the body 

itself is neglected during analysis. This approximation greatly simplifies the problem 

since the structure dynamics is not considered. The other is the fluid to be regarded as 

incompressible and inviscid. 
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1.2.1 	Wave	interactions	with	a	single	body	

 Diffraction	

Wave diffraction by a single body has long been recognised and studied. For a 

fixed vertical cylinder extending down to an infinite water depth subjected to plane 

waves, it was first solved analytically by Havelock (1940). MacCamy and Fuchs (1954) 

extended the solution to finite water depth and gave the formulas for calculating total 

horizontal force and moment for the first time. Both papers used linearized free surface 

boundary conditions and only linear hydrodynamic force was calculated. With the 

development of offshore floating platforms, some phenomenon associated with mean 

drift forces, sum or difference frequency forces become important, which cannot be 

explained by linear diffraction theory. Second-order diffraction theory was then 

established, in which the free surface was taken as its mean position as in the linear 

theory, but all the terms in free surface boundary conditions as well as the expansion for 

the instantaneous position, fluid pressure and wave loads were kept to the order of 

square of the wave amplitude or wave steepness. In many applications, it was the 

second-order forces that were of concern, rather than the second order potential. 

Therefore, various methods had been proposed to obtain the forces without explicitly 

calculating the second-order potential. Molin (1979) pioneered the formulation of 

deriving second-order diffraction forces in terms of wave steepness. Lighthill (1986) 

gave the second-order forces for low wave number and deep water cases. Eatock Taylor 

and Hung (1987) adopted Molin’s formulation and overcame the troublesome free 

surface integral involved in the force calculation and derived the second-order forces for 

any wave number. Later, Kim and Yue (1989) obtained the direct explicit expression of 

second-order potential. The complete second-order local quantities such as pressures, 

fluid velocities and free surface elevations were readily available in addition to 

integrated forces and moments. Wu and Eatock Taylor (1990) gave the second order 

diffraction force on a completely submerged two dimensional cylinder in finite water 

depth, in which the correct treatment of the radiation condition was found important.                

For many offshore structures like tension leg platforms which are in general 

designed to have high natural frequencies, ringing and spring are commonly observed. 

Studies show that they are most likely to be excited by force at high frequencies and 

typically third-order forces at triple wave frequency (Liu et al 2001). Hence, higher-

order diffraction theory is required. A third-order diffraction theory was presented by 
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Faltinsen et al (1995) based on long incident wave assumption. The integrated force 

components were provided. Malenica and Molin (1995) later solved the same problem 

for arbitrary incident wavelength. The third-order potential was also given. It should be 

pointed out that third-order diffraction theory involved lengthy equations and it was 

seldom used in practical problems for a real platform.  

The most common approach instead of extending the diffraction theory to higher-

order was developing fully nonlinear theory. Numerical simulations rather than 

analytical solution were adopted in the fully nonlinear theory in the time domain based 

on mixed Eulerian-Lagrangian approach because the latter was virtually impossible. All 

high-order components of wave forces can be attained through Fourier analysis of the 

force history. Ma et al (2001 a, b) studied three-dimensional bottom-mounted circular 

cylinder under monochromatic and irregular waves numerically using fully nonlinear 

potential flow theory. Bai and Eatock Taylor (2007) did fully nonlinear numerical 

simulation of vertical cylinder under regular and focused wave. Domain decomposition 

technique was implemented to increase the efficiency of the calculation. One of the 

advantages of numerical simulation over analytical solution is that there are virtually no 

restrictions on the body geometry provided the velocity potential theory is valid. Wang 

et al (2007) simulated a spar platform with three different flare angles, in a numerical 

tank under regular and irregular incident waves. The hydrodynamic forces and moments, 

wave runups and free surface profiles for truncated flared cylinder were also considered 

and compared with the bottom-mounted cylinder results. Wave diffraction by an 

axisymmetric flared body formed from a parabolic generating curve was studied by Bai 

and Eatock Taylor (2009). 

 Radiation	

Wave radiation problem is related to a rigid body in forced motions in otherwise 

calm water, which can generate outgoing waves. The oscillating fluid pressure resulting 

from the fluid motions and radiated waves is the source of hydrodynamic forces. The 

study of wave radiation problem dated at least back to Ursell (1949). He studied the 

harmonic heave motion of a horizontal circular cylinder in infinite water depth. The 

very long cylinder assumption made the problem be reduced to two-dimensional. 

Havelock (1955) examined a half-immersed sphere in heave motions. Later, Kim (1965) 

proposed a solution of the potential problem associated with the harmonic oscillation of 

an ellipse (2D) or ellipsoid (3D). Green’s function was introduced to represent the 



 
7

potential as the solution of an integral equation, which was obtained numerically. The 

hydrodynamic coefficients of all six motion modes were provided. Black et al (1971) 

calculated the radiation problem including heave, sway and roll of a rectangular section 

(2D) and a vertical circular cylinder (3D) by employing Schwinger’s variational 

formulation. An analytical solution to the heave radiation of a rectangular body was 

presented by Lee (1995), who divided the whole fluid region into three sub-regions and 

solved the non-homogeneous boundary value problem.  

All the above mentioned studies were based on the linear theory. In order to 

consider nonlinear effects, second-order frequency domain theory was developed. 

Typical works include: Lee (1968) for semi-circular and U-shaped cylinders in heave 

motion, Potash (1971) for semi-circular body and Papanikolaou and Nowacki (1980) for 

arbitrary cylinders in heave, sway and roll motion. Isaacson and Ng (1993) presented a 

2D second-order solution in the time domain. The method was applicable to arbitrary 

body shapes under all three motion modes. As for completely submerged body, Wu 

(1993a) did the second-order study on a horizontal circular cylinder undergoing heave, 

surge and circular motion.                        

Fully nonlinear potential flow theory in the time domain dominates the study of 

radiation problem. Wu and Eatock Taylor (1995) considered a 2D submerged circular 

cylinder subjected to forced periodic sway or heave motion. Domain decomposition 

technique was also used in this paper to satisfy the radiation condition on the truncated 

boundary. Maiti and Sen (2001) presented and discussed the heave radiation forces for 

both rectangular and triangular hull. A 3D vertical cylinder subjected to periodic 

oscillation in the open sea and in a channel were studied by Hu et al (2002) using the 

finite element method. Wang et al (2007) considered a flared spar subjected to forced 

periodic sway or heave motions, with three different amplitudes, in an open sea. Yan 

(2010) studied an initially semi-submerged sphere undergoing forced periodic heave 

motion in an otherwise still water. Three different levels of nonlinearity, including 

linear, body nonlinear and fully nonlinear, are considered using pre-corrected fast 

Fourier transform-quadratic boundary element method (PFFT-QBEM).    

 Freely	floating	

For a freely floating body under incoming waves, the study is to predict wave 

loads and motion responses of the body. Strip theory and slender body theory are both 

classic linear theories in early days for the study of wave loads on the body as well as 
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body motions, depending on the characteristics of incident waves and the feature of 

body geometries. For practical problems involving large amplitude body motions, 

and/or incident waves, the significance of the nonlinear effects has long been 

recognized for the hydrodynamic loads and body motions (Liu et al 2001, Koo and Kim 

2004). Second-order hydrodynamic forces and mean drift forces are first examined. 

Second-order forces associated with difference frequency terms can give rise to large 

resonant responses at a much lower natural frequency, which may be many times larger 

than the first-order wave frequency response, since compliant offshore structures and 

moored vessels usually have small restoring in sway, surge and yaw modes. Mean drift 

forces result in the structure being drifted away gradually. Thus, second-order theory 

needs to be developed and used. The main difficulty in second-order theory was to 

obtain second-order velocity potential, even computationally. A review of second-order 

theory was given by Ogilvie (1983). For the solution of general second-order interaction 

problems, numerical methods are widely used (Choi et al 2000, Hong and Nam 2010, 

Shao and Faltinsen 2014).  

There are other studies for freely floating body taking into account of nonlinearity 

partially, such as body boundary condition-exact method. This approach is implemented 

with body boundary conditions satisfied on the exact instantaneous wetted body surface, 

while the free surface condition is linearized at the mean water surface (Lin and Yue 

1990, Wu 1993b and Wu 1994). This method is also adopted in the commercial code 

LAMP (Lin et al 2007) for computations of large-amplitude motions of ships. 

Furthermore, a weak-scatter theory relaxes the restriction of the body boundary 

condition-exact method on the incident wave steepness by linearizing the free surface 

boundary condition on the incident wave profile while keeping the body boundary 

conditions the same. Thus, the weak-scatter theory allows large amplitude body motions 

and incident waves, but it still has limitations on the nonlinearity of the disturbed flow. 

Numerical methods based on this theory have been used for the study of large ship 

responses in head or following seas (Pawlowski 1992). 

Fully nonlinear wave theory is required when all levels of nonlinearity need to be 

captured. That is when the incident waves and the resulting body motions are large or 

even violent. The fully nonlinear wave interactions with free floating body require 

special treatment of the nonlinear coupling between hydrodynamic force and the body 

motion. This means that the body acceleration is unknown before the fluid flow is found, 

which in turn depends on the body acceleration; therefore, a highly accurate calculation 
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of the wave forces is demanded. There are several ways to tackle the unknown term t , 

the time derivative of the velocity potential  , in the force calculation. One 

straightforward idea is using the backward finite difference scheme to determine the 

total material derivative of the velocity potential, and thereby obtain t . Another 

method uses the acceleration potential method, as shown in Tanizawa (1996). Those 

two approaches, however, may suffer from the saw-tooth instability. Wu and Eatock 

Taylor (1996, 2003) proposed an alternative method to decouple the fluid flow and the 

body motion, by introducing some auxiliary functions.  

Many researches have been carried out for the simplified 2D problem. Cao et al 

(1994) studied a free floating rectangular box in incident waves generated by a 

pneumatic wave maker. Sway, heave and roll modes were all considered. Kashiwagi 

(2000) investigated incident wave-induced motions of a wall-sided body (resembling 

mid-ship section) and a flared floating body (resembling ship bow section) by numerical 

simulation and model tests. Koo and Kim (2004) simulated a free floating barge-type 

body in a numerical tank. The 2D BEM were used in all of the researches. Yan and Ma 

(2007) used a finite element method to study a free-response barge-type floating body 

moored to the walls of a numerical tank. For a fully submerged body, Guerber et al 

(2012) simulated the wave-induced motion of a neutrally buoyant circular cylinder. 

For 3D wave-body interaction problem, a floating cylinder and simplified FPSO 

placed in a numerical tank were studied by Wu and Hu (2004). The wave was generated 

by a wave maker, and the body was only allowed to have surge motion, responding to 

the wave excitation, while all other modes were restrained in this paper. Bai and Eatock 

Taylor (2009) simulated a truncated vertical cylinder moving freely in regular incident 

plane waves. So the body only had three degrees of freedom, namely surge, heave and 

pitch. A freely floating truncated flared cylinder under regular waves was also 

considered. Zhou and Wu (2015) studied the third order resonance of the tension leg 

platform excited by regular nonlinear waves. Bai et al (2014) conducted a numerical 

study of a completely submerged vertical cylinder under a regular wave, which was 

attached to a rigid cable and was restrained to have pendulum motion only.  
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1.2.2 	Wave	interactions	with	multiple	bodies	

 General	hydrodynamic	interactions	

The hydrodynamic interactions between multiple bodies are much more complex 

than that with a single body, especially when the structures are moored side-by-side 

closely. The relative motions between structures may pose a great threat to the 

connection system and the stability of the structure itself. The hydrodynamic study of 

this kind of problem consists of various aspects including motion responses of the 

structures, hydrodynamic loads and pressure, free surface deformation, wave run-ups, 

and liquid motions in the gaps. The study of fluid resonance in the gaps, which is the 

most remarkable feature of fluid motions in the gaps, will be singled out and provided 

separately. 

The hydrodynamic interactions between multiple bodies have been investigated 

by many researchers. Potash (1967) considered two rigidly connected circular cylinders 

in forced heave motion in a free surface. Ohkusu (1970) obtained the added mass and 

damping coefficients associated with heave, sway and roll motion of two circular 

cylinders first by theoretical analysis and experimental tests, and good agreement 

between them was achieved. He then studied the case of four circular cylinders in heave 

motion, two and three Lewis form cylinders in heave and roll motion. The study was 

extended to the motions of a catamaran in beam seas. Lee et al (1971) dealt with twin 

cylinders of arbitrary cross sections in forced heave oscillation analytically. The model 

tests of four different geometries of twin semi-circular, rectangular, isosceles triangular 

and right triangular cylinders were also carried out.   

Simon (1982) developed a technique to model the surface waves scattering 

problems of an array of axisymmetric wave-power devices based on plane-wave and 

large spacing approximation. McIver and Evans (1984) extended Simon’s approach to 

study horizontal wave diffraction forces on an arbitrary array of fixed bottom-mounted 

vertical cylinders. A group of up to five cylinders, positioned at the vertices of a regular 

pentagon, were considered. Kagemoto and Yue (1986) presented the results for several 

different configurations of two and four bottom-seated and truncated vertical cylinders. 

Further, a 3 by 11 array of vertical cylinders with footings were studied. Maniar and 

Newman (1997) studied linear diffraction by a long array of bottom-mounted circular 

cylinders. Both cases of 100 and 101 cylinders were considered. They pointed out that a 

very large hydrodynamic load, up to 35 times the force on a single isolated cylinder, 
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could arise on the cylinders in the middle when the incident wave frequency is close to 

the trapped mode (Ursell 1951).  

The works mentioned above are based on the linear frequency domain method, 

which is unable to deal with nonlinear effects. Nonlinear frequency domain theory is 

capable of capturing nonlinear effects as in Sun et al (2010), who did first and second 

order analysis of resonant waves between adjacent rectangular barges. As a matter of 

fact, time domain analysis is more common in dealing with nonlinearity. Pawlovski 

(1992) used time domain method to analyse the second- order wave diffraction by a 

group or an array of cylinders. Maiti and Sen (2001) presented and discussed the 

radiation forces for rectangular and triangular twin-hull forms in the time domain. The 

influence of the amplitudes of oscillation, hull spacing and water depth on the extent of 

nonlinear components of forces was also analysed through a Fourier transform. Wang 

(2006) simulated second order diffraction by two, three, four, and an array of ten 

vertical cylinders. Wang and Wu (2007) presented the numerical results of an array of 

ten cylinders in a line and eight cylinders in two lines up to second order. Wang and Wu 

(2010) further investigated fully nonlinear wave diffraction by an array of ten cylinders 

in a line and eighteen cylinders in two parallel lines. All the cylinders considered are 

identical, and equally distributed.  

One may notice that the above researchers mainly focus on wave interaction 

problems of multiple bodies with simplified shapes, such as rectangular cylinders, 

circular cylinders or wedges. Choi and Hong (2002) did research on the radiation and 

diffraction problems for two FPSO and shuttle tanker in beam and head sea. The motion 

responses and wave drift forces were calculated. Hong et al (2005) presented further 

comparisons between first order responses and mean second order forces computed by a 

HOBEM with experimental data for side-by-side moored shuttle tanker, FPSO and LNG 

carrier. Their comparison showed very good agreements for both first and second order 

quantities except that larger discrepancies occurred for a narrow frequency band where 

resonant motions of the trapped water between the hulls existed. Koo and Kim (2005) 

investigated a FPSO and shuttle tanker in side-by-side offloading operation with two 

different environmental conditions including wind, wave and current. Zhao et al (2014) 

considered the interaction of a floating LNG and LNG carrier under an extreme sea state. 

Both the mechanical and hydrodynamic coupling effects were analysed. Arslan et al 

(2014) investigated the problem of two ships in close proximity in a cross current. It is 
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worth mentioning that this kind of research relies much on the computational power and 

the model tests.  

 Fluid	resonance	in	the	gap	

As already mentioned above, the most striking feature of the fluid motion in the 

gap is the occurrence of liquid motion resonance. Wave resonance in the gap is often 

accompanied by large wave elevation, which can lead to enormous wave runups and 

high hydrodynamic loads on the surrounding structures. In order to present the wave 

elevation results in the gap better, the term ‘response amplitude operator (RAO)’ is 

employed to express the amplitude ratio of the response to excitation. Here, if the wave 

elevation in the gap is triggered by forced body motions, the body motions are regarded 

as the ‘excitation’. If it is induced by incident waves, the incident wave is then 

considered as the ‘excitation’. The wave elevation is therefore regarded as the ‘response’ 

in both cases. Based on this definition, resonance can be characterised as when the RAO 

value with regard to the excitation frequency is a local maximum. 

Considerable studies have been carried out focusing on the resonance 

phenomenon via different methods within potential flow theory. For researches in the 

frequency domain, Molin (2001) studied the resonant behaviour of piston and sloshing 

modes in moonpools for 2D and 3D cases. Moonpool is a vertical opening in the floor 

or base of a platform hull or chamber, which gives access to the water below and allows 

crews to lower instruments into the sea. It resembles the wave interaction with multiple 

bodies in parallel. The results were given for both the natural frequencies and the 

associated free surface shapes or mode shapes for a range of moonpool draught to width 

ratios. Newman (2003a) analysed the low-frequency pumping modes for moonpools 

with slowly varying cross-sections. Three different configurations were examined, 

namely a simple torus with one moonpool, a structure with two separated moonpools, 

and a structure with two concentric annular moonpools. Yeung and Seah (2007) 

considered the piston and other higher-order symmetric modes in a gap between two 

heaving rectangular cylinders. The natural frequencies and free surface modal shapes in 

the gap were presented together with the hydrodynamic coefficients around resonance. 

They pointed out that higher-order mode occurred at fairly regular intervals of square of 

frequency. Faltinsen et al (2007) studied similar problem as in Yeung and Seah (2007) 

by linear potential flow theory and model tests. They focused on the piston mode. Local 

peaks of wave elevation in and outside moonpool and added mass and damping 
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coefficients were observed. They found that the piston-like wave amplitudes inside the 

moonpool (taking averaged amplitudes over the moonpool width) evaluated through 

linear theory were in general larger than that of model tests, especially for the 

experimental series with larger heaving amplitude. Sun et al (2010) and (2015a) 

investigated the first-order and second-order resonance behaviour between twin 

adjacent barges and a FLNG and LNG carrier, respectively. Zhang and Bandyk (2014) 

studied the two-dimensional moonpool resonances for interface and surface-piercing 

twin rectangular bodies in a two-layer fluid. 

For studies in the time domain, Wang and Wu (2008) gave detailed analysis of 

first-order and second-order resonance of the liquid trapped in a gap formed by twin 

rectangular cylinders. They considered the two cylinders in forced vertical motion and 

horizontal motion in both opposite and the same directions. When first-order and 

second-order resonance occurred, the wave runups in the gap grew quickly with time 

and the free surface elevations in the gap were amplified up to 15 times the heave 

amplitude. Wang et al (2011) conducted further resonance analysis of twin wedged 

cylinders and semi-elliptic cylinders in forced heave motions. The hydrodynamic forces 

and wave runups on the body and free surface elevation in the gap at first-order and 

second-order resonance were both given. They pointed out that when the body had flare 

or curvature at the water line, the resonant effect became less significant, principally 

due to the variation of configuration of the confined fluid domain with the motion of the 

body. Wang et al (2013) investigated the first- and second-order gap resonance between 

an array of equally spaced wedge-shaped cylinders and rectangular cylinders in vertical 

motions. The numerical results of a nine-cylinder case and a three-cylinder case were 

presented and compared. It was shown that the wave runups and hydrodynamic forces 

on the middle cylinder were both much larger in the nine-cylinder case. Feng and Bai 

(2015) considered the wave resonances in the gap between side-by-side barges in beam 

seas. The incident waves were prescribed as fifth-order Stokes waves with a range of 

wave steepness to examine the nonlinear effects on gap resonances. The gap free-

surface RAOs and the resonant mode shapes were presented. The RAOs were calculated 

through the responses in their final steady states. 

Many researchers (Faltinsen et al 2007, Lu et al 2010) pointed out that potential 

flow model in general over-predicted the motion responses in the gap. Thus, much work 

has been done to modify the potential flow model. One approach is to combine potential 

flow theory with a vortex tracking technique. Vorticies can be created from the sharp 
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corners of the structures that form the gap. Kristiansen and Faltinsen (2008) studied the 

piston mode fluid response in a moonpool through potential flow theory combined with 

a vortex tracking method. The numerical simulations of the motion responses inside the 

moonpool were compared well with the experimental tests. Another approach is to add 

an artificial damping term on the free surface in the gap to suppress the unrealistic 

response empirically. The purpose is to make the potential flow model work as well as 

the viscous fluid model in predicting the resonant wave height in narrow gaps but with 

little computational effort. This treatment evolved from rigid lid (Huijsmans et al 2001), 

damping lid (Newman 2003b) and damping force term (Chen 2005). Pauw et al (2007), 

however, demonstrated that there was no a priori method of determining the coefficient 

of the damping term unless calibrated by experimental tests or viscous flow model 

results.   

 Natural	frequency	estimation	

One significant aspect of studying fluid resonance phenomenon is to accurately 

locate the natural frequencies. Only when the natural frequencies are known at the 

design and operational stage, can they be avoided through changing parameters, like gap 

width and draught. The theoretical prediction of natural frequency is usually done 

through simplified models within the linear potential flow framework. Molin (2001) 

studied the natural frequencies associated with piston and other sloshing modes in a 

moonpool. The natural frequency of piston mode was denoted as 0  and the natural 

frequencies of sloshing modes were denoted , 1,2,...n n  . Based on the assumptions 

that the water depth and length and beam of the surrounding barges were all infinite, the 

natural frequencies, which were derived under single mode assumption, were obtained 

against draught D  to moonpool width L  ratio /D L  as                

 0 ,
( / )(1.5 ln( / 2 ))s

g

D L H L





 
  (1.1) 

  2 coth coth , 1, 2,....n n n n n

n D
g D g n n

L L

           
 

  (1.2) 

In Eq.(1.1), sH  means the distance of an artificial sink away from the barge, which is 

placed at each side to model the non-zero mass flux through the moonpool base; g  is 

the gravitational acceleration. Molin (2001) pointed out that only for the even modes 

that the choice of sH  mattered and suggested / 4.5sH L   for optimised agreement 



 

with exper

Eq.(1.1) w

in general

and nJ  

Fig. 1

Saito

a very nar

divided th

and lower

decompos

with diffe

The length

conservati

the natura

equation: 

 

, , ,B L h D

Saitoh et a

compared 

riments. In 

was used to 

l acceptable

2 0 0

2
co

L Ln

L
  

1.3. Sketch of t

oh et al (20

rrow gap be

he fluid regi

r region of

sition was m

rent dimens

h and sectio

ion of energ

al frequency

 are the bod

al (2006) di

the natura

Faltinsen e

compare w

e. In Eq.(1

os( )cos(nx

the twin rectan

006) theoret

etween twin

on into thre

f floating b

made in ord

sions becau

onal area of

gy in the th

y of the flui

dy breadth, 

id the exper

l frequency

   

et al (2007),

with their th

.2), n n 

( ) lnn y x 

ngular barges a

tically and e

n rectangula

ee sub-regio

body (see 

der to use t

use the secti

f each sub-r

hree connec

id motion in

0

h

 

gap width, 

riments of a

y of fluid in

15

, sH  is sim

heoretical pr

/ L ; n  w

.y dxdy   

as used in Saito

experimenta

ar boxes in 

ons, namely

Fig. 1.4 s

the solution

ional area o

region are in

ted sub-reg

n the gap ca

.
g

BL
D

h D



 

water dept

a range of ga

n the gap w

 

   

ply set as th

redictions. T

was calculat

oh et al (2006) 

ally studied 

2D, as sket

y incident w

haded zone

n of fluid o

of each sub-

ndicated in 

gions and na

an be calcu

h and body

ap widths w

with experim

he barge br

The compar

ted via nJ

and Moradi e

d the fluid re

tched in Fig

wave region,

e). The flu

oscillation i

-region was

Fig. 1.4. B

arrow gap a

ulated by the

y draught, re

with three dr

mental resu

   

   

eadth when

risons were

 tanh n

et al (2015). 

esonance in

g. 1.3. They

 gap region

uid domain

in a U-tube

s not equal.

ased on the

assumption,

e following

(1.3)

espectively.

raughts and

ult for each

n 

e 

 

 

n 

y 

n 

n 

e 

. 

e 

, 

g 

) 

. 

d 

h 



 

case. The 

mode natu

than deter

The natura

Fig. 1

Falti

moonpool

theoretical

decompos

value prob

equations 

were then 

finding th

numerical

with three

water dep

frequencie

amplitude

Ano

boxes was

 

comparison

ural frequen

rmined via E

al frequenci

1.4. The decom

insen et al 

l, which wa

l analysis a

sition schem

blem of eac

on the Dir

solved by t

e non-trivia

ly. The mo

e different 

pth. The c

es was in 

s. However

other way to

s provided b

n showed t

ncy 0  calc

Eq.(1.1). Th

ies  n n 

mposed sub-reg

(2007) inve

as formed by

nd model te

me within t

ch subdoma

richlet trans

the Galerkin

al solution o

del tests fo

geometric 

comparison

reasonabl

r, the discrep

o estimate 

by Wang an

that they ag

culated thro

he paramete

1  were no

gions and defin

estigated th

y two recta

ests. The th

the linear v

ain was def

smission in

n method. T

of the matri

or a wide ra

configurati

n showed t

e agreeme

pancy incre

natural freq

nd Wu (2008

   
(III

   r

16

greed with e

ough Eq.(1.

er sH  was a

ot provided i

nitions of lengt

he piston-lik

ngular barg

heoretical st

velocity pot

fined and s

nterfaces we

The resonan

ix equation 

ange of heav

ions concer

that the th

ent with e

eased for lar

quencies in

8), which w

(II) Lower regi

      floating bo

I) Gap 

region

     

   

each other 

3) was in g

also taken a

in their stud

hs in Saitoh et 

ke resonant 

ges, for finit

udy was do

tential fram

solved first.

ere formula

t frequency

formed by 

ving freque

rning body 

heoretical p

xperiment 

rger exciting

n a gap betw

was inspired 

 

ion of

dy 

quite well. 

general slig

as the body 

dy.  

t al (2006). 

t phenomen

te water dep

one based o

mework. The

. A system 

ated as a re

y could be ev

y the integra

encies were 

draught, b

prediction 

for smalle

g amplitude

ween twin 

d by the rese

 

(I) Incident wa

   

The piston

ghtly larger

breadth B .

non inside a

pth through

on a domain

e boundary

of integral

esult, which

valuated by

al equations

carried out

breadth and

of natural

er heaving

es.  

rectangular

emblance of

ave region

  

n 

r 

. 

 

a 

h 

n 

y 

l 

h 

y 

s 

t 

d 

l 

g 

r 

f 



 
17

the fluid motion in the gap to that in a sloshing tank (Wu 2007). Assuming large body 

draught, the natural frequencies were approximated as 

 2 , 1,2,...n

n g
n

L

     (1.4) 

 Comparing Eqs.(1.2) and (1.4) and taking into account the property of hyperbolic 

cotangent function, for large body draught D  and narrow gap L  the two formulas gave 

the same estimation. Equation (1.4) can be interpreted mathematically as  

 
2 tanh(2 / )

n
L

h


 

   (1.5) 

based on dispersion relation that  2 2 tanh 2 / /n g h     , where   is the 

wavelength of either the incident wave or generated wave by body motion. For deep 

water case, Eq.(1.5) can be simplified as   

 ,
2

n
L


   (1.6) 

which means that resonance can occur when the gap width equals an integer multiples 

of half a wavelength. Faltinsen (2003) gave the same estimation of natural frequency as 

that in Eq.(1.4) for twin half-submerged circular cylinders in infinite water depth under 

forced sway motion. Eq.(1.6) can be used to decide which mode the current case 

belongs to.  

The above frequency estimation formulae were all about fluid in the gap formed 

by twin rectangular bodies. Moradi et al (2015) considered the effect of inlet 

configuration, round corners in the gap opening as illustrated in Fig. 1.3, on the natural 

frequency. They found that the natural frequency increased as the corner radius enlarged. 

In order to explain this phenomenon quantitatively, they derived the modified formula 

to calculate natural frequency by considering the roundness factor of the body section 

using a U-tube fluid oscillation analogy similar to that of Saitoh et al (2006). It was 

given as follows:  

  
   

0 ,
0.05

0.45
0.45

g
L R B

D R
h D R

 


 
 

  (1.7) 
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where R  in Eq.(1.7) is the radius of the round corner as shown in Fig. 1.3. As stated for 

Eq.(1.3), a narrow gap was assumed. Eq.(1.7) reveals that an increase of corner radius 

will decrease the effective draught.  

The theoretical prediction of natural frequencies is usually confined to linear 

theory in the frequency domain. The advantage of this approach is that the natural 

frequencies can be given explicitly for some simple configurations with certain 

assumptions. The higher-order resonance, however, can occur, which is beyond the 

scope of linear theory. In addition, some theories are only able to provide the piston 

mode natural frequency (Saitoh et al 2006, Faltinsen et al 2007), while others are 

restricted to higher-order sloshing modes (Wang and Wu 2008). The numerical study 

based on nonlinear wave theory should be employed to investigate the higher-order 

resonance or complex configuration problems. In nonlinear time-domain studies, natural 

frequencies of the liquid motion in gaps are obtained through the ‘enumeration’ method. 

In the enumeration method, a great number of cases ought to be simulated at different 

excitation frequencies of body motions for radiation problems, or of incident waves for 

diffraction problems. Then, natural frequencies can be observed from the local peaks of 

response amplitude operator diagram of the free surface elevation. Although this is 

time-consuming work, since every data point in the RAO diagram is essentially defined 

from a long time history after steady periodic state is reached, it is used intensively.  

Typical time-domain studies in recent years are as follows. Wang and Wu (2008) 

undertook detailed analysis of second-order resonance in liquid confined between twin 

rectangular cylinders through second-order potential flow theory. They first estimated 

the resonant frequency using Eq.(1.4), and then performed series of tests around this 

estimated frequency to determine the actual resonant frequency. The second-order 

resonance was clearly observed at frequencies equalling half of the natural frequencies. 

Wang et al (2011) further calculated the natural frequencies and second-order resonant 

frequencies of liquid confined between twin wedge-shaped cylinders and semi elliptic 

cylinders based on fully nonlinear potential flow theory. The results showed that the 

resonant frequency was affected by the body shape at the water line. Lu et al (2010) 

studied the fluid resonance in narrow gaps of three identical barges fixed in incident 

waves. The numerical wave tank with viscous fluid flow theory was employed. Ning et 

al (2015) investigated the effect of the number of barges on the resonant frequency in 

narrow gaps. The fluid flow problem was solved based on the 2D fully-nonlinear 

potential flow theory. Moradi et al (2015) adopted OpenFOAM to investigate the effect 
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of corner configurations of two rectangular-type barges on fluid flow resonance in 

between. The resonance frequencies in the last three literatures were read from gap free-

surface RAO diagram. 

It is noteworthy that there are various contributing factors to resonance 

frequencies in the gap, i.e. gap width, draught of surrounding bodies, number and shape 

of bodies. These aspects have been studied intensively. Some other factors, however, 

have not attracted much attention. Only a few works have been published on them. Feng 

and Bai (2015) developed a fully-nonlinear potential flow wave tank to highlight the 

effects of free-surface nonlinearity on the piston mode resonance frequency in a gap. 

They found that the resonance frequency was slightly shifted to higher values as the 

incident wave steepness increases. Fredriksen et al (2015) studied the effects of wave-

induced rigid body motions on the piston mode resonance frequency in a moonpool 

numerically and experimentally. They pointed out that the rigid motion of the floating 

body would affect the resonance frequency and behaviour greatly. The wave elevations 

in the moonpool had clear influence on the rigid body motions in turn.  

1.3 	Research	aims	and	objectives		

In this thesis, we will study the hydrodynamic interactions between waves and 

two floating structures, aiming to reveal the mechanism of wave resonance in a gap. An 

important aspect of studying wave resonance in a gap is to locate the natural frequencies 

accurately and efficiently. The major objectives of the present study are listed as follows: 

 to propose an alternative numerical procedure to calculate ‘dominant’ natural 

frequencies of liquid motions in the gap. Dominant here means the lowest 

several modes, which are most easily triggered by external excitation.  

 

 to calculate the dominant natural frequencies for various combinations of gap 

width and body draught. 

 

 to investigate second-order resonance in the gap, excited by forced body 

motions (heave, sway, and roll mode) and by incident waves, respectively. 

 

 to derive the formulations to decouple the motions and forces for two freely 

floating bodies under incident waves, based on a coupled auxiliary function 

approach. 
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 to study the effect of incident wave steepness on wave resonance (piston 

mode and other higher sloshing modes) in the gap. 

 

 to examine the effects of body motions (under incident waves) on wave 

resonance in the gap. 

1.4 	Outline	of	the	thesis	

The present thesis focuses on the wave interactions with two structures at 

resonance. The background information and review of previous work about this kind of 

hydrodynamic problems have been presented in this chapter.  

The mathematical model and formulations of the governing equations and free 

surface and wetted body boundary conditions are derived in Chapter 2, based on the 

velocity potential flow theory. A complete initial boundary value problem (IBVP) for 

the velocity potential is established. In order to follow the development of the flow field 

in time, mixed Eulerian-Lagrangian description is adopted. The hydrodynamic forces 

are calculated by direct integration of the pressure over the wetted body surfaces. The 

pressure is determined from Bernoulli’s equation. When the incident wave is present, 

the IBVP for the velocity potential can be decomposed into IBVP for incident wave 

potential and disturbance wave potential. Particularly, the formulations of a coupled 

auxiliary function approach (Wu and Eatock Taylor 2003) are derived for the first time 

to decouple the motions and forces in the case of two bodies floating freely under 

incident waves.   

A two-dimensional boundary element method is adopted to solve numerically the 

IBVP for velocity potential. Chapter 3 provides the introduction of this method and its 

numerical implementation, including some special numerical treatments, i.e. split 

scheme for intersection points, jet and thin spray cutting, smoothing, and remeshing. 

Besides, to follow the free surface evolution and corresponding velocity potential 

development, a time stepping approach is employed together with the BEM. Main 

numerical simulation steps of the BEM and time stepping approach are summarised at 

the end of Chapter 3. 

Fully nonlinear numerical simulations of wave interactions with a single body are 

first conducted in Chapter 4. Both wave radiation and diffraction problems are studied 

through time domain simulations. For the radiation problems, we focus on large heave, 

sway and roll motions to look at the higher-order harmonics, respectively. Then the 
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body under heave motion with two frequencies is simulated to study the interaction of 

different frequencies. For the diffraction problems, the body is subjected to a fifth-order 

Stokes wave and this is considered to identify the higher harmonic hydrodynamic loads. 

The study not only provides a convergence study for single body simulations and 

validates the present numerical scheme, but also gives some new physical features for 

wave interactions with a single body.  

Chapter 5 first proposes a numerical approach, inspired by the free sloshing model, 

to estimate the natural frequencies in the gap formed by two bodies. In this approach, 

the natural frequencies are observed on the power spectrum diagram of wave elevations 

in the gap after an initial disturbance. Then, the first several natural frequencies of 

various gap width and body draught are calculated. Meanwhile, their response 

amplitude operators in terms of gap free surface elevation are calculated corresponding 

to the resonant modes. The effects of resonance on hydrodynamic forces are analysed as 

well. After that, second-order resonance behaviour in the gap liquid motion is studied 

for heave, sway and roll mode, respectively. The forces on the surrounding bodies are 

calculated. 

Chapter 6 involves incident wave induced resonance in the gap between two 

bodies. The gap resonance behaviour of cases with both fixed and freely floating bodies 

is analysed. The focus is on piston mode in narrow gaps and other higher sloshing 

modes in wider gaps. For fixed bodies, the standing wave trains formed in front of the 

upwave body, and phase shifts caused by the bodies, are studied first. Then the gap free 

surface nonlinearity effects due to the increase of incident wave steepness are 

considered for a range of wave frequencies, especially at resonance. Finally, second-

order resonance in the gap motion is investigated. Such resonance does always occur 

when the double frequency is equal to one of the natural frequencies. For freely floating 

bodies, the resonance frequencies in the gap are calculated, which have been changed 

significantly by the body motions when compared to that of fixed bodies. The body 

motions at resonance are presented as well. 

Concluding remarks are given in Chapter 7, which highlights the main 

conclusions and contributions of the present study. Recommendations for future work 

are also provided in this final chapter. 
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Chapter	2 	Mathematical	 model	 for	 wave	 body	 interaction	

problems	

The studies in this thesis are mainly concerned with hydrodynamic interactions 

between two bodies at wave resonance in the gap. The water motions that take place in 

the gap, or moonpool in some cases, are either excited by surrounding body motions or 

induced by incident waves. For the sake of convenience, we refer to the wave motion 

excited by forced body motions as the first category problem and that induced by 

incoming waves as the second category problem. They are both covered in this study. 

The wave-bodies interaction problem is studied through the fully nonlinear velocity 

potential theory. This implies that the fluid itself is inviscid, incompressible and the 

fluid velocity field is irrotational. With regard to the structures considered, they are 

assumed to be rigid. Thus no deformation of the structure is taken into consideration. In 

addition, the wave structure interaction problem considered in this thesis is restricted to 

two dimensions. 

2.1 	Governing	equations	and	boundary	conditions	

The physical problem of wave interactions with two floating bodies is shown in 

Fig. 2.1. The bodies on the left- and right-hand sides are defined as ‘Body-0’ and 

‘Body-1’, respectively. As shown in the figure, the wetted surface of Body-0 is 

designated as 0S  and that of Body-1 as 1S . The whole free surface is denoted as fS . An 

earth-fixed Cartesian coordinate system O xz  is defined. The origin O  is set at the 

midpoint of the gap on the undisturbed free surface, the z -axis points upwards and the 

x -axis points to the right. The water has depth h  and the flat seabed is denoted as bS . 

Obviously, the spatial domain of the physical problem is unbounded. Thus, artificial 

truncation boundaries cS  are shown in Fig. 2.1, as these are required on both ends to 

make the computational domain finite. The governing equation and the boundary 

conditions of the wave interaction problem are presented below. 
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where ,g P  represent the gravitational acceleration and fluid pressure, respectively. 

Considering u  


, the first term in Eq. (2.4), which is called local acceleration, can 

be readily transformed to   / t   . The second term, convective acceleration 

( )u u
 

, is changed through Lamb’s vector identity (Lamb 1932)    

 
2 2 2

2 2

1
( ) ( ) .

2
u uu u u u           

 

   
  (2.5) 

Finally combining all the terms in equation (2.4), we obtain Bernoulli’s equation   
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( ).
2

P
gz C t

t

 



    


  (2.6) 

( )C t  is an arbitrary function of time. The time dependence of C  can be incorporated 

into the velocity potential   and C  can be taken as zero.    

2.1.2 	Boundary	conditions	

Besides the governing equations provided above, certain boundary conditions 

should be imposed for the wave-body interaction problems, as depicted in Fig. 2.1, 

which is to make the problem mathematically complete and closed. On the free surface 

fS , there exists both kinematic and dynamic conditions.  Physically, the kinematic 

condition means that a fluid particle on the free surface will always stay on the free 

surface. If we define free surface by the equation  

  ,z x t   (2.7) 

where   is the free surface elevation, then mathematically the kinematic boundary 

condition on the free surface can be expressed as 

 0 on    .fS
t x x z

      
  

   
  (2.8) 

The dynamic boundary condition on the free surface requires that the water 

pressure on fS  is equal to the constant atmospheric pressure 0P . Substituting the 

pressure 0P  into Eq. (2.6) and incorporating the constant into the potential, the dynamic 

condition on the free surface becomes  
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0 on .
2 fg S

t

  
   


  (2.9) 

On the wetted body surfaces 0S  and 1S , the impermeability condition should be 

satisfied because no fluid particle can penetrate or leave the rigid structure’s surface. It 

implies that the normal velocity component of the fluid particle on the wetted body 

surface equals the normal velocity component of the body surface. Mathematically it 

can be expressed as 

      00 0 0 0 0 0 0 0 0on ,x zU X n U Z n V X n S
n


       



   
 (2.10) 

      1 1 1 1 1 1 1 1 1 1on ,x zU X n U Z n V X n S
n


       



   
 (2.11) 

where / n   is the partial derivative along the normal direction n


  to the body surface, 

pointing out of the fluid domain,  ,x zn n n


 is the unit normal vector,  0 0 0,U U V


 

and  1 1 1,U U V


 represent the translational velocities of the centre of each body motion 

in the x  and z  direction, respectively and 0 , 1  is the rotational velocity about the 

rotational centre of each body, which is positive in the anticlockwise direction. It needs 

to be mentioned that the rotational centre can be at the centre of gravity the 

corresponding body when the two bodies are not rigidly connected, or both at the same 

point when they are connected such as in the case of a catamaran. Also  0 0 0,ZX X


 

and  1 1 1,X X Z


 are the position vectors in the body-fixed system relative to each 

rotational centre. The impermeability condition is applied also on the sea bottom bS . 

Since the sea bottom is stationary, the condition has the form  

 0 on .bS
n





  (2.12) 

Two artificial ‘walls’ are placed at some distance away from the structures to 

make the fluid domain finite in the computation. There are many approaches to place 

the ‘walls’. In this thesis, the truncated boundaries are fixed rigid walls at distance far 

away from the bodies. To minimize the reflection by the artificial truncated boundaries 

cS , a damping layer located in front of each truncated boundary is applied on the free 

surface. Now, the fidelity of the results depends on the effectivity of the damping zone. 
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Ideally, the outgoing waves can be damped out completely by the artificial damping 

sponge. Thus, ‘non-reflecting boundary conditions’ (NRBC) can be adopted in the 

numerical solutions of wave problems (Givoli 1991). So we have  

 0, on cS
n





  (2.13) 

when no incoming waves are present, or  

 , onI
cS

n n

 


 
  (2.14) 

when there exist incoming waves denoted by I . How the damping zone is applied and 

numerically implemented will be presented in the later sections.  

2.1.3 	Initial	conditions	

Since the wave interaction with multiple structures problem is investigated in the 

time domain, the initial conditions at 0t   should be provided to start the calculation. 

For the first category of the wave interaction problem, which means the water motion in 

the gap is excited by forced motions of the surrounding bodies, the water is assumed to 

be undisturbed initially. Thus, 0   when 0t  . Without loss of generality, we choose 

0   when 0t  . In summary, the initial conditions on the free surface have the form   

 0, 0 at 0.t      (2.15) 

For the second category of problem, which means that the water motion is 

induced by specified incident waves, initially the incident wave is assumed not to have 

been disturbed by the presence of the structures. Thus the free surface elevation should 

coincide with the incident wave elevation and the velocity potential being the same as 

incident wave potential. The initial conditions on the free surface can be expressed 

mathematically as 

 , at 0,I I t        (2.16) 

where I  and I  denote the incident wave elevation and velocity potential on the free 

surface, respectively. Eq.(2.16) is equivalent to that a body is put into incoming wave 

suddenly and it has no time to disturb the free surface. In the present study, the incident 

wave is taken as nonlinear regular Stokes waves.  
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The above equations completely define the initial-boundary value problem for 

velocity potential  . The whole flow field information including velocity and pressure 

field can be obtained after solving the IBVP. 

2.2 	IBVP	involving	incident	waves		

The above section defines the initial-boundary value problem for velocity 

potential  . We may discuss in more detail the cases with incoming waves. As a matter 

of fact, there are some different features associated with problems with incoming waves. 

The total velocity potential   can be decomposed into two parts: 

 ,I D      (2.17) 

where I  describes the specified incident wave potential and D  denotes the disturbed 

velocity potential. In general, D  includes both the influence of body presence on the 

incident wave and the effect of the resulting body motions.  

Similarly, the total free surface elevation   can be decomposed into two parts as 

well: 

 ,I D      (2.18) 

where I  and D  represent the free surface elevation due to incident wave and disturbed 

wave, respectively. Like the connotation of disturbed wave potential D , the disturbed 

free surface elevation D  comprises free surface elevations resulting from both 

components of disturbance wave. This split of the velocity potential and free surface 

elevation results in a new scheme of solving the IBVP involving incident waves, which 

is to solve the disturbed velocity potential D  instead of the total velocity potential  . 

The following subsection presents the initial boundary value problem for disturbed 

waves.   

2.2.1 	IBVP	for	disturbed	waves	

Firstly, the disturbed velocity potential, D , satisfies Laplace’s equation in the 

fluid domain  
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 2 0D    (2.19) 

because D I     and both   and I  satisfy Laplace’s equation. On the free surface 

fS , the dynamic boundary condition for D  can be derived from Eqs.(2.9) and (2.17): 
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on .
2

D I I
I D fg S

t t t t

       
       

   
  (2.20) 

It should be mentioned that the incident wave potential I  is defined in the region 

below the pure incident wave elevation and above the bed, which is Iz  . The total 

free surface elevation   is different from I  as a result of the disturbance of the body. 

Thus in Eq.(2.20), it might be difficult to understand the physical meaning of /I t   

and I  at positions beyond the region Iz  . But mathematically, /I t   and I  

can be readily evaluated at any position based on the expressions of Stokes wave 

velocity potential and free surface elevation.  

From Eqs. (2.10), (2.11) and (2.17), the boundary condition of D  on the wetted 

body surfaces 0 1,S S  must satisfy  

    on , 0,1.D I I
i i i i i i I iU X n U X n S i

n n n n

     
            

   

      
  (2.21) 

Similarly on the truncation boundaries and sea bottom, the impermeability condition 

leads to   

                              on , .D I
I b cn S S

n n n

   
    

  


  (2.22) 

For the initial condition on the free surface fS  we have 

                                     0, 0 at 0.D D t      (2.23) 

Equations (2.19)~(2.23) completely define the disturbed flow involving incident 

waves. When dealing with this kind of wave interaction problems, there are generally 

two options. One can choose either to solve the IBVP for the total velocity potential   

directly based on equations (2.3)~(2.13) and (2.16), or to solve the IBVP for the 

disturbed wave D  defined by equations  (2.19)~(2.23) since the incident wave is given. 
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Both schemes are widely used in the previous researches (Sun et al 2014, Sun et al 

2015b, Zhou and Wu 2015, and Zhou et al 2015). Lalli et al (1995) first split the total 

velocity potential into the sum of an incident wave part and a disturbance part when 

studying the pure wave diffraction problem. Ferrant (1996) further extended the split 

scheme to study the responses of a free floating body to incident waves. Zhou and Wu 

(2015) used the same decomposition scheme to investigate the resonance response of a 

tension leg platform excited by third-harmonic force resulting from nonlinear regular 

waves. 

In the present study, the latter scheme is adopted because there are several 

advantages in solving the IBVP for disturbance velocity potential D  over total velocity 

potential  . The advantages are mainly reflected in the numerical treatments during the 

numerical simulation. The main advantage of solving the IBVP for disturbance velocity 

potential D  is because the incident wave is treated separately and explicitly as known 

condition. So it will not be affected by the numerical smoothing and remeshing schemes. 

During the time domain numerical simulation, smoothing and remeshing of the nodes 

should be applied regularly to suppress the numerical instability. Since any treatment 

would affect the numerical accuracy to certain extent, smoothing and remeshing on the 

disturbance velocity potential D  and disturbance free surface D  result in less 

influence on the final results. Moreover, without accounting for the incident wave 

contribution, the truncated boundary can be placed not too far from the body to achieve 

same accuracy. This results in the reduction of the computational domain.  

Although there are several advantages of solving the IBVP for disturbance flow, 

the scheme is not universal. As mentioned by Ferrant (1996), the decomposition of the 

total velocity potential depends on the availability of an explicit model for the incident 

wave. 

2.3 	Mixed	Eulerian‐Lagrangian	method	

In fluid dynamics, there are two distinct alternative ways of description of flow 

field: Eulerian description and Lagrangian description. Eulerian description defines the 

flow quantities as functions of position in space and time, like in an electromagnetic 

field. It provides us a general picture of the spatial distribution of fluid velocity and 

pressure at each time instant during the motion. The equations, including governing 
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equations and initial boundary conditions, presented above are within the framework of 

Eulerian description. In the Lagrangian description, however, the flow field is regarded 

to be composed of identifiable fluid particles, like in particle mechanics. The flow 

quantities connected with a given fluid particle are defined as functions of time. It is a 

way of looking at fluid motion where the observer follows an individual fluid particle as 

it moves through space and time. In the time domain study, solving the initial boundary 

value problem in the Eulerian framework gives us the velocity potential at a given time. 

Then, Lagrangian specification is employed to track the flow quantities from time to 

time. The whole process is called mixed Eulerian-Lagrangian method (Longuet-Higgins 

and Cokelet 1976). 

The kinematic and dynamic boundary conditions on the free surface can be 

expressed in their Lagrangian form as:  

 , on    ,f

Dx Dz
S

Dt x Dt z

  
 
 

  (2.24) 

and  
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g on ,
2 f

D
S

Dt

       (2.25) 

where / /D Dt t       is the material derivative following a given fluid particle. 

As pointed out by Longuet-Higgins and Cokelet (1976), we are able to follow the free 

surface elevation and velocity potential from one position on the free surface to the 

succeeding position using Eqs. (2.24) and (2.25).  Numerically, the updating of the free 

surface and velocity potential can be realized by integration of the total differentials 

with small time steps.  

Since we solve the disturbed wave potential D  instead of total velocity potential 

  when there are incident waves, the updating of the velocity potential should also be 

about D .  From Eq.(2.25) and (2.17), we have (Zhou and Wu 2015) 

 

 

2 2

2 2
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g
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  (2.26) 
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The updating of the free surface position is the same as in Eq.(2.24).  Bernoulli’s 

equation is used when deriving Eqs. (2.25) and (2.26). 

It has been mentioned above that to satisfy the radiation condition, an artificial 

damping zone is added to minimize the reflection of the truncated boundary cS . This is 

achieved by adding a damping term in Eqs.(2.24) and (2.25) artificially. So they become 

  

  ,      on ,f

Dx Dz
x z S

Dt x Dt z

   
  
 

 (2.27) 

and 
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( )    on ,
2 f

D
g x S

Dt

          (2.28) 

in which ( )x is the damping coefficient (Cointe et al 1990)  
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0 1 0
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( )        when ,
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0                        when ;

x x
x x x x
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 (2.29) 

  and   in ( )x  are angular wave frequency and linear wavelength, respectively. The 

two nondimensional parameter   and   control the strength and the length of the 

damping zone, respectively. When there are incoming waves, the damping term should 

be reflected on the updating of the disturbed velocity potential D  and disturbed free 

surface elevation D   as  
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  (2.30) 

The performance of the damping zone depends on the combination of   and  . 

Quantitative study of the wave absorption efficiency is needed for each case study. For 

the first category of wave interaction problem, the criterion for appropriate   and   is 

to make sure that the radiated outgoing waves are damped out gradually inside the 

damping zone and ideally completely vanish at the truncated boundary. For the second 
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category of wave interaction problem, the criterion is to enable the disturbed waves to 

be absorbed gradually with only incident wave left at the truncated boundary. A detailed 

example of the selection of   and   for a single floating body in incident waves is 

given by Tanizawa’s (1996) study.  

2.4 	Hydrodynamic	forces	and	moments	

The hydrodynamic forces on the structures can be obtained by direct integration 

of the pressure over the instantaneous wetted body surfaces 0S  and 1S . The pressure in 

the fluid can be determined through Bernoulli’s equation  
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.
2

P gz
t

        
  (2.31) 

The hydrodynamic forces F


 and moments M


 acting on the structures are then obtained 

through  

  ,            . 0,1
i i

i i iS S
F Pndl M P X n dl i    
   

  (2.32) 

In Eq.(2.31), the time derivative of velocity potential, / t  , is not explicitly 

given even when   has been found. The most straightforward way to calculate / t   

is using a backward finite difference method. This scheme, however, may cause saw-

tooth behaviour in the force history curve (Sen 1993). An alternative approach is to find 

/ t   by solving a boundary value problem similar to   as defined in Eq.(2.3) and 

Eqs.(2.8)~(2.13). This method was proposed by Wu and Eatock Taylor (1996) and has 

been widely used since then (Kashiwagi 2000, Wu and Eatock Taylor 2003). The 

governing equation for / t   is 

 2 0t   (2.33) 

in the fluid domain since 2 0  . On the free surface fS  , Eq.(2.9) gives 
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.
2

g
t

  
   


  (2.34) 

On the body surface 0S  and 1S  , we have (Wu and Eatock Taylor 2003) 
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   on , 0,1,t
ii i i i i i iU X n U X U S i

n n n

  
    

              

      
  (2.35) 

where 
iU

  and , 0,1i i


 


 represent the translational and rotational acceleration of the 

body motion, respectively, and the dot over the velocity indicates the derivative with 

respect to time by convention. Now transforming Eq.(2.35) into scalar terms, we have 

 
     

    on , 0,1,

t
i i i x i i i z i i z i x

i i i x i i i z i

U Z n V X n U n V n
n

U Z V X S i
n



 


     




      

   

  (2.36) 

  On the fixed sea bottom bS , from Eq.(2.12), t  satisfies 

 0.t

n





 (2.37) 

On the truncation boundaries cS , from Eqs.(2.13) and (2.14), we have  

 0 on ,t
cS

n





  (2.38) 

when no incoming waves are present, or  

 on ,t I
cS

n n t

         
  (2.39) 

when there exist incoming waves. After solving the BVP for t  in a way similar to 

solving  , we can obtain the hydrodynamic forces and moments through Eq.(2.32). 

When solving the BVP for t , another difficulty remains in the last term of Eq.(2.36) 

due to the second order derivatives. The calculations of the second order derivatives are 

more likely to cause numerical inaccuracy during time domain simulations. An auxiliary 

function approach is proposed by Wu and Eatock Taylor (2003) to circumvent the need 

of calculating t  so that the hydrodynamic forces can be obtained directly. There are in 

general two variants of this approach, related to pure radiation problems and free 

floating bodies under incident waves, with different purposes. They are presented in the 

following two subsections in detail.  
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2.4.1 	Auxiliary	function	approach	for	radiation	problem	of	bodies	with	same	

motion	

For the forced radiation problems, the translational and rotational velocities and 

accelerations are all known in equations (2.36). If the two bodies are prescribed with the 

same motion, that is  

 0 1 0 1 0 1, , ,U U U V V V          (2.40) 

and also the two bodies are rotating about the same centre, then a simple approach can 

be used to avoid dealing with the second order derivatives. This configuration actually 

means the two bodies are rigidly connected like in a catamaran. We introduce an 

auxiliary function ̂  (Wu and Hu 2004), defined by 

    ˆ .t x zU Z V X          (2.41) 

Thus in the fluid domain, it can be confirmed that 

 2 ˆ 0.    (2.42) 

On the body surface 0S  and 1S : 

      ˆ
.x z z xU Z n V X n Un Vn

n


     


     (2.43) 

And on the free surface 

    21
ˆ .

2 x zg U Z V X              (2.44) 

On the truncated boundaries cS  and sea bottom bS ,  

    ˆ
x zU Z V X

n n

   
      

 (2.45) 

The introduction of auxiliary function ̂  transfers the second derivative in the boundary 

condition of the wetted body surface to those on the truncated boundary and sea bottom. 
The second derivatives on bS  and cS  can be calculated more easily. For deep water 

case, where the water depth is sufficiently large compared to the wavelength and 
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characteristic body dimension, the fluid close to the sea bottom is approximately at rest. 

This means 0  , which leads to  

 
ˆ

0 on  .bS
n





  (2.46) 

 On the truncation boundaries cS ,  

    ˆ
,x zU Z V X

n x

   
       

  (2.47) 

where the plus sign   corresponds to the truncated boundary on the right side, while the 

minus sign   corresponds to the left truncated boundary. Taking the impermeability 

condition 0x   into consideration, we have 0zx xz   . Eq.(2.47) is reduced to  

    ˆ
.x zzU Z U Z

n x

   
       

   (2.48) 

zz  in Eq.(2.48) can be easily determined through a finite difference method since the 

truncation boundaries are fixed and placed upright. Another advantage of transferring 

the second derivative from wetted body surface to bS  and cS  is due to the fact that the 

flow field near bS  and cS  is much less complex than flow near the body. Therefore, 

even if the second derivatives on the truncation boundaries and the sea bottom are less 

accurate, the influence on the interested flow region is smaller. 

Now after solving the newly defined boundary value problem for ̂ , the pressure 

can be calculated by  

      21
ˆ .

2x zP U Z V X gz              
 

  (2.49) 

The hydrodynamic forces and moments can then be calculated through integration of 

the pressure in (2.32). 

2.4.2 	Auxiliary	 function	 approach	 for	 radiation	 problem	 of	 bodies	 with	

different	motions	

When the two bodies have different motions, the above approach cannot be used 

directly because it is unable to introduce a single auxiliary function to cancel out the 
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second derivatives on both body surfaces at the same time. If we look into the t  terms 

in Eq.(2.32), we can see that the products of t  and normal vector components are 

always put together as the integrands. The auxiliary functions are introduced now using 

this feature to obtain the integrations directly without calculating t  itself. 

We introduce auxiliary functions , ( 1, 2,..., 6)j j  , of which , 1, 2,3j j   

represents the three degrees of freedom of ‘Body-0’ and , 4,5,6j j   represents that of 

‘Body-1’, respectively. We require these functions to satisfy Laplace’s equation in the 

fluid domain and  

 0j    (2.50) 

on the free surface. On the body surfaces 0S  and 1S , we require  

 j
jn

n





  (2.51) 

corresponding to the terms in Eq.(2.32). Specifically,  

31 2
1 2 3 0 0 4 5 6 0, , , 0 on ,x z x zn n n n n Z n X n n n n S

n n n

   
         

  
  (2.52) 

5 64
1 2 3 4 5 6 1 1 10, , , on .x z x zn n n n n n n n Z n X n S

n n n

   
         

  
  (2.53) 

On all other boundaries, we specify  

 0.j

n





  (2.54) 

Now, the boundary value problem (BVP) for each auxiliary function j , as defined by 

Eqs. (2.50)~(2.54), can be solved in a way similar to solving the velocity potential  .  

Green’s second identity leads to       

 
1 0

2 2( ) 0.
f c b

j t
t j t j j tS S S S S fluid

dl ds
n n

      
   

 
        

    (2.55) 
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Using the boundary conditions for t , as shown in Eqs. (2.34)~(2.38), and j , as 

expressed in Eqs. (2.50)~(2.54), into Eq.(2.55), we can obtain 
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  (2.56) 
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n


 


    


   

  
   

  (2.57) 

Substituting Eqs. (2.56) and (2.57) into Eq.(2.32), the hydrodynamic forces and 

moments can be obtained readily. One of the drawbacks of this approach is that the 

hydrodynamic pressure cannot be calculated because t  itself is still not known. 

2.4.3 	Auxiliary	function	approach	for	free	floating	body	problems	

Unlike the auxiliary function ̂  in the radiation problems with the same body 

motion, which is to avoid the second derivatives on the body surface conditions, the 

purpose of the auxiliary functions in free floating bodies under incoming wave problems 

is to decouple the body motion and the hydrodynamic forces and moments. In pure 

radiation problems, the body motion is prescribed. For free floating bodies under 

incoming waves, the translational and rotational accelerations in Eqs. (2.56) and (2.57) 

are not known before the hydrodynamic forces and moments are known. Therefore, the 
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body motion equations should be applied to obtain the accelerations first. From 

Newton’s second law of motion, we have 

             ,b h eM A F F                                          (2.58) 

where  
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0 1,m m  in the above equation are the masses of ‘Body-0’ and ‘Body-1’, respectively; 

0 1,I I  correspond to the rotational inertias about the gravity centre of each body;  A  is a 

column vector, which contains the cpmponents of the translational and rotational 

acceleration of the body;  hF  denotes the hydrodynamic forces and moments on each 

body, whose components are expressed in Eq.(2.32);  eF  is a column vector containing 

the external forces and moments on the two bodies. 

Since  A  is unknown and needs to be determined through the body motion 

equation, we rearrange Eqs. (2.56) and (2.57) to separate  A  from the expressions. We 

have  
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0 0 0 0 0 0 0 0 0 0
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  (2.60) 

Substituting Eqs.(2.59) and (2.60) into the body motion Eq. (2.58) and moving all the 

unknown terms to the left hand side, we can obtain  

          b eM C A Q F     (2.61) 

where  C  represents the generalized added mass coefficients matrix, calculated by  

 
0 0

, 1,2; , 3; 1,2,...,6ij i j ij i jS S
C n dl j C n dl j i            (2.62) 

 
1 1

, 4,5; , 6; 1,2,...,6ij i j ij i jS S
C n dl j C n dl j i            (2.63) 

and  Q  is a column with  

       

       

0

0

1

2 2

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1

2 2

,

f c

j

j I
j jS S S

x z
j z x x zS

x z
j z x x zS

Q

gz n dl g dl dl
n n t

n U n V U Z V X dl
n n

n U n V U Z V X dl
n n

     

    

    



                          
             

             

  




1,2,3j 

  (2.64) 
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2 2

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1

2 2
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f c

j

j I
j jS S S

x z
j z x x zS

x z
j z x x zS

Q

gz n dl g dl dl
n n t

n U n V U Z V X dl
n n

n U n V U Z V X dl
n n

     

    

    



                          
             
             

  




4,5,6j 

  (2.65) 

After solving the body motion Eq.(2.61), the acceleration of the body motion can 

be determined before the hydrodynamic forces and moments are obtained. Then the 

hydrodynamic forces and moments can be easily calculated through Eq. (2.58). 

One may notice that after the introduction of the auxiliary functions, the second 

order normal derivatives in the body surface conditions still exist in Eqs. (2.56), (2.57), 

(2.64) and (2.65). To avoid the second order derivatives, Stokes theorem is applied on 

the body surface 0S  and 1S . That gives (Wu and Eatock Taylor 2003) 

 
   

0 1 0 1, ,
.

j j

k iS S S S
i k

f f
n dl n dl

x x

  


     (2.66) 

f  in Eq.(2.66) can stand for any function, and ix  and kn  are components of ( , )x x z


 

and n


, respectively. Eq.(2.66) is valid on the unclosed body surface 0S  and 1S  because 

we require 0j   on the free surface. Now take xf   or z , we have (Wu and Eatock 

Taylor 2003) 

               
0 0

0 0

,       1, 2,...,6

,       1, 2,...,6

jx
j j xS S

jz
j j zS S

dl n dl j
n x n

dl n dl j
n z n

   

   

  
        

  
        

 

 
  (2.67) 

              
1 1

1 1

,       1, 2,...,6

.       1, 2,...,6

jx
j j xS S

jz
j j zS S

dl n dl j
n x n

dl n dl j
n z n

   

   

  
        

  
        

 

 
  (2.68) 
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Substituting Eqs. (2.67) and (2.68) into Eqs. (2.56), (2.57), (2.64) and (2.65), we can 

obtain 
0

, , 1, 2,3t j jS
n dl Q j   and 

1

, , 4,5,6t j jS
n dl Q j   directly without second 

order derivatives. 

Additionally, other than using the Stokes theorem to derive Eqs. (2.67) and (2.68) 

to get rid of the second order normal derivatives, there exists an alternative treatment. 

That is to transform the calculations of the second order normal derivatives on the body 

surfaces to tangential derivatives which can be obtained from the potential on the 

boundary.  Specifically, we have (Xu and Wu 2013)  

 ,xz
zx x zz z zx x xx z xx x xz zn n n n

n

        



      

 
  (2.69) 

 .x z
xx x xz z zz x xz z zz z zx xn n n n

n

        


 
         

 
  (2.70) 

It needs to be mentioned that this transformation does not avoid calculations of second 

order derivatives, while the equations derived previously do.  
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Chapter	3 	Boundary	element	method	and	numerical	procedures	

The mathematical model of the wave-body interaction problem has been 

presented in the last chapter based on the fully nonlinear potential flow theory. An 

initial boundary value problem for the velocity potential has been completely defined 

mathematically. The question remains how to solve this IBVP. Analytical solution of 

this IBVP is hardly possible except for some very special cases, due to the nonlinearity 

of the boundary conditions on the free surface and the wetted body surface. Numerical 

simulations are then widely employed to solve this problem due to the rapid 

development of computers. In this thesis, the IBVP for velocity potential is solved 

numerically. 

There exist many numerical methods to solve the IBVP, like finite difference 

method, finite element method, finite volume method and boundary element method. 

The first three methods all require a discretisation to be performed in the whole fluid 

domain, while BEM only needs to discretise the closed boundary of the fluid domain. 

Hence the problem is reduced by one dimension, which may result in much 

simplification of the computation. Besides, the numerical treatments, like smoothing 

and remeshing, can be implemented more easily. Therefore, a two-dimensional 

boundary element method is adopted to solve the IBVP for the velocity potential in a 

wave-body interaction problem. The mathematical formulation and numerical 

implementation of this method will be introduced in this chapter. 

3.1 	2D	boundary	element	method	

In Chapter 2, we have already showed that the velocity potential   satisfies 

Laplace’s equation in the whole fluid domain. Also the fundamental solution of the 2D 

Laplace’s equation, which is the potential at field point p  due to a source point q , can 

be expressed as ln / 2pqr  , which implies  2 p q     , where pqr  is the 

distance between points p  and q . Now substituting   and   into Green’s second 

identity (Sneddon 2006), which gives   

  2 2 ,dv ds
n n

      
 

             (3.1) 

and using singular integral in the fluid domain, we have  
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ln( )

( ) ( ) ln ( ) ,pq
pq

q q

rq
A p p r q ds

n n

 


 
  

   
  (3.2) 

where ( )A p  is the solid angle at point p .  In the above equations   is the boundary 

of the fluid domain described anticlockwise. Eq.(3.2) is the foundation of BEM, which 

provides the relationship between velocity potential ( )p  of a field point p  and ( )q  

and its normal derivative ( ) / qq n   on the boundary  . This integral representation 

suggests that the unknown function   at any point can be calculated, if all the values of 

  and / n   on the boundary   are known. Eq.(3.2) is usually referred to as the 

boundary integral equation (BIE) in fluid mechanics when p  has been moved to the 

boundary. 

The solid angle ( )A p  in Eq.(3.2) depends on the relative position of point p  and 

the fluid boundary. For any point p  inside the fluid domain, ( )A p  means the angle 

composed of the full circle centred at p  with infinitesimal radius  , as shown in Fig. 

3.1(a). When p  is on the boundary of the fluid domain, as indicated in Fig. 3.1(b) and 

(c), only part of the circle is needed to exclude p  from the integration. ( )A p  is thus the 

angle formed by the remaining part of the circle. The radius   in Fig. 3.1 is enlarged 

considerably to visualize the angle and 0   as a matter of fact.  

 

Fig. 3.1. Schematic diagram of solid angle for different position of field point p . (a) inside the fluid 
domain; (b) on the smooth fluid boundary; (c) on the corner of fluid boundary.   

Considering the three positions of p , ( )A p  has the following value 

 

2 ,  inside the fluid domain

( ) ,  on the smooth fluid boundary 

( ).  on the corner of fluid boundary

p

A p p

p p






 



 (3.3) 

   

 Fluid domain Fluid domain 

  

(a) (b) (c)



 
44

( )p  is the angle composed of the sharp corner at point p  on the fluid side, which will 

be    if the point is smooth.  

In BEM, we first confine p  to the fluid boundary and solve the boundary integral 

equation Eq.(3.2) numerically to get all the flow quantities, i.e. velocity potential ( )p  

and its normal derivative ( ) /p n   on the boundary. Then the velocity potential of any 

internal point (point inside the fluid domain) can be obtained readily through Eq.(3.2), 

since the integrand is now known. The main focus of BEM is the first step, whose 

numerical implementation will be provided in the following section.  

3.2 	Numerical	implementation	of	the	BEM	

3.2.1 	Discretisation	of	the	boundaries	and	BIE	

The very first step of BEM is to discretise the whole fluid boundary    into a 

large number of straight-line elements because linear elements are adopted in this thesis. 

Each element has two nodes and neighbouring elements share one common node. The 

nodes are counted from 1 anticlockwise. If M  denotes the total number of elements 

along the boundary, the nodes 1 and 1M   are actually the same one since the fluid 

boundary is closed. Along each element, a linear interpolation function is adopted to 

approximate the velocity potential   and its normal derivative n  between two nodes, as 

illustrated in Fig. 3.2. 

                                

Fig. 3.2. Configuration of a linear element. 

Introducing a local coordinate   along element i , denoted as i , 1, 2,..., ,i M  

taking values 1  at nodes i  and 1i   of the element, respectively. Also i  and ,n i are 

the velocity potential and its normal derivative at node i , respectively. Let ( , )i   

 

 

1 -1
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denote the potential on i , and ( , )n i   the normal derivative on i . They can be 

expressed as  

 
   
   

1 2 1

1 , 2 , 1

( , ) ,

( , ) .

i i

n n i n i

i N N

i N N

     

     




 

 
  (3.4) 

   1 2,N N   are usually called shape functions. In the case of linear approximation,  

    1 2

1 1
;     .

2 2
N N

   
    

The velocity potential   and its normal derivative n  on the whole discretised boundary 

can be written in the form 

 

1

1

1

,
1

( , ) ,

( , ) ,

M

i i
i

M

n i n i
i

f x

f x

  

  




















  (3.5) 

where  

 

 
 

1

2 1

1

,            

( , ) ,         

0.          ,

i

i i

i i

N x

f x N x

x



  






 
  



 


  

and ( , )x x z


 is a vector in the global Cartesian coordinate system, representing the 

position of point  . 

The boundary integral equation (3.2) should also be discretised according to the 

newly discretised boundary, which has the form 

 
1

ln
( ) ln .

i

M

m n
i

r
A m r ds

n
  




    
   (3.6) 

( )A m  stands for the solid angle at node m. Finally, substituting Eq.(3.5) into the 

discretised integral equation (3.6) and rearranging the expression according to velocity 

potential and its normal derivative, we obtain 

  ,
1

( , ) ( , ) 0, 1, 2,...,
M

n i i
i

G m i H m i m M 


     (3.7) 

in which 
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1 1 2 2
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1 1 2 2

( , ) ( , ) ln ( ) , 1 , ;

ln
( , ) ( , ) ( ) ( , 1) ( , );
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i i

i

m i i

r r
n n

G m i f x rds x G m i G m i

r
H m i f x ds x H m i H m i

n

G m i N rds G m i N rds

H m i N ds H m i N ds





 

 







 

 

 
  

   


   



  

  





 

 

 

 

  (3.8) 

Special attention has to be paid when 1i  , where 1i  should be taken as M . The 

calculation of coefficients  ,G m i  and  ,H m i  requires further consideration. If the 

collocation point m  does not belong to the element i  along which the integrations 

are being performed,  ,G m i  and  ,H m i can be analytically calculated using the 

following formulas. According to the notation introduced in Fig. 3.3, we have (Lu et al 

2000) 

 

2 2
1 1

1 1 1 1

( ) ( ) ;

, ;      , ,

i i i i i

i i i i i i i i

i i i i

L x x z z

x x z z z z x x
n

L L L L


 

   

   

      
     
   

    (3.9)  

where  ,i ix z  and  1 1,i ix z   are coordinates of node i  and 1i   in the global 

coordinate system, respectively. The other variables in Fig. 3.3 are defined by: 

 

   1 2 1 1

1 1 2 2

1

1 1 2 2

, ;       , ;

;     ;     

;

arctan( / );     arctan( / ).

i m i m m mi ir x x z z r x x z z

l r l r

D r n

l D l D

 

 

      

   
 
 

 

   

    (3.10) 

The variables 1 2 1 2 1 2, , , , , , ,iL l l D r r   
 are all known quantities when node m  and element 

i  are picked. 
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Fig. 3.3. General geometric configuration when m  does not belong to the element 

i . 

The integrations in Eq.(3.8) can be performed analytically over i . They are 

provided explicitly as follows: 

     

     

2 2 2 2 2 2

1 2 2 2 1 1 3 2 2 1 1

2 2 2 2 2 2

2 1 2 2 1 1 3 2 2 1 1
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 (3.11) 
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2
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  (3.12) 

In both equations (3.11) and (3.12), 3 2 1.     Note that these two formulas are 

essentially, though with different symbols and expressions, consistent with those in Lu 

et al (2000).  

When the point m  is one of the nodes of the element being integrated along, as 

illustrated in Fig. 3.4, an alternative analytical integration is usually employed. The 

calculation of ( , ), 1, 2H m m    can be expressed as  
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 ln 1( , ) ( ) ( ) .
m m

r r
n r nH m m N ds N ds    
  

     (3.13) 

Since r  is perpendicular to n along the interval of integration m , / 0r n   . Thus,  

 ( , ) 0,   1,2.H m m     (3.14) 

Similarly,  

 ( , 1) 0,   1,2.H m m      (3.15)  

                      

Fig. 3.4. The point belongs to the element being integrated along. 

The coefficients G  are calculated based on the geometric configuration shown in 

Fig. 3.5. The integration finally gives  

11 1 1

1 2 2 2
1

1
1 1 1

2 2 2 2
1

( , ) ln lim ln( ) ( 0.75 0.5 ln );
2

( , ) ln lim ln( ) ( 0.25 0.5 ln )
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.

m
m m m

m
m m m

m

m

L
G m m rds L d L L

L
G m m rds L d L L

  



  







  

 

  

 

    

    

 

 
  (3.16)  

The integrations along the element 1m  can be performed using the same expression 

obtained for element m : 

1
1 1 11

1 1 1 12 2 2
1

1
1 1 11

2 1 1 12 2 2
1

1

1

( , 1) ln lim ln( ) ( 0.25 0.5 ln );
2

( , 1) ln lim ln( ) ( 0.75 0.5 ln ).
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m
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m
m m m

m
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L
G m m rds L d L L

L
G m m rds L d L L

  



  







  
   

  
   





     

     

 

 
  (3.17) 

Eqs.(3.14) to (3.17) are derived using a similar approach to that in París and Cañas 

(1997). 
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Fig. 3.5. Geometric configuration of m i .  

From the formula of calculating H , we can see when m i , that means the node 

belongs to the element to be integrated along,    , .H m m A m   As mentioned before, 

for smooth boundary 

    , .H m m A m       (3.18) 

If the boundary has a corner,  ,H m m  is determined by calculating the angle included 

in the fluid ( )A m  through Eq.(3.3). Beskos (1987) proposed an alternative method to 

determine ( , )H m m , valid for all kinds of boundary: smooth or possessing a finite 

number of corners. He stated the following formula for: 

    
1

, , .
M

i
i m

H m m H m i



    (3.19) 

This formula is quite obvious when one sets 1   on all the boundary in Eq.(3.7).  

It is worth mentioning here that the matrices Gand H  generated in this method 

are non-symmetrical and fully populated, which is generally considered a drawback of 

the boundary element method compared to the symmetrical and banded matrices created 

in the finite element method. The number of the unknowns, however, is always smaller 

than that in the FEM because only the boundary is being discretised.  

The general concept of the boundary element method is quite straightforward. The 

difficulty lies in implementing it numerically, especially for some extreme cases like 

wave-body interactions under large incoming waves. The starting point of using BEM is 

to generate the mesh of the whole closed boundary. The quality of the mesh is crucial to 

the accuracy of the calculation. The size and type of the element adopted are completely 

problem sensitive. Fortunately, there are two basic principles to guide the discretisation. 

The first rule is to use finer mesh on regions where large motion happens or zones close 
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to the body. The other one is to make sure that any two adjacent elements have similar 

size.  

3.2.2 	Construction	of	the	matrix	equation	and	solution	

In Chapter 2, we have derived the boundary conditions of velocity potential on the 

closed boundary  . The closed boundary is composed of the free surface fS , wetted 

body surfaces 0S , 1S , sea bottom bS  and truncation boundaries cS . For convenience, 

the whole boundary, excluding the free surface, is denoted NS . There are usually three 

types of boundary conditions for wave/body interaction problems: Dirichlet condition, 

Neumann condition and mixed conditions. The present IBVP for   has mixed boundary 

conditions because on fS  the velocity potential is known and on NS  its normal 

derivative is known. The subscript N  of NS  means that Neumann condition is applied 

on the corresponding boundaries. The normal derivative of   on fS  and   itself on NS  

are unknowns and to be determined through solving Eq.(3.7). Applying the boundary 

conditions to Eq.(3.7) and moving all the known terms to the right hand side and the 

unknown terms to the left,  Eq.(3.7) can be transformed explicitly into the matrix form 

as (Sun et al 2014) 

 
 
 

 
 

, , , ,

, , , ,

,
N N N f N N N fN N

f N f f f N f ff f

nS S S S S S S SS S

S S S S S S S Sn S S

H G G H

H G G H

 

 

                             
  (3.20) 

where      , ,
f N f

nS S S
    and  

N
n S
  denote the column vectors of discrete values of   

and n  on the corresponding boundaries, respectively. In Eq.(3.20), ,N NS SH  is a partition 

matrix of the coefficient matrix, whose elements are composed of  ,H m i  and nodes 

,m i   both belong to NS . The other seven partition matrices of the coefficient matrices in 

Eq.(3.20) are constructed similarly.  

The accuracy of the solution of the above matrix equation determines the accuracy 

of the numerical results for a certain mesh. In this thesis, the linear equation (3.20) is 

solved through an iterative refinement procedure, which maintains a high accuracy 

solution. In detail, firstly LU factorisation of the coefficient matrix is computed and the 

condition number of the LHS matrix is estimated. The condition number with respect to 

the unknown variables measures how much they can change for small input errors in the 
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known variables. It reflects the property of the problem. Specifically, if the condition 

number is very high, which means that small errors in the known terms can lead to large 

changes in the unknown terms, the solution may not be reliable. A problem with a very 

high condition number is usually referred to as an ill-conditioned system, where the 

determinant of the coefficient matrix should be close to zero on the premise that the 

coefficient matrix is square. Secondly, the solution of the linear Eq.(3.20) can be found 

using an iterative refinement. The iterative refinement can sometimes find the solution 

of an ill-conditioned linear system. After solving the equation (3.20), we can  all the 

unknown variables (  and/or / n  ) on the boundary. 

In order to calculate the hydrodynamic force on the bodies, a similar boundary 

value problem (BVP) for the auxiliary function   has been defined in Chapter 2. 

Following the discretisation of the BIE for   and applying the mixed boundary 

conditions of    to it, we can obtain another matrix equation for   with the same 

coefficient matrices as in Eq.(3.20). The only difference is the known and unknown 

vectors. Solving the matrix equation for  , the hydrodynamic force on the bodies can 

be computed readily. 

3.2.3 	Some	specific	numerical	treatments		

Split scheme for intersection points 

One aspect which we should pay attention to is the treatment of intersection points, 

which, for example, are points belonging to both fluid surface and body surface, or free 

surface and truncation surface at the far field. What is special here is that there are two 

different normal directions associated with the same point. Therefore, there are two 

normal derivatives at each intersection point. A common treatment is to split the normal 

derivative into two parts in accordance with the element which it belongs to (Xu 2011). 

In detail, considering this factor in Eq.(3.20), ( , )G m i , where i  denotes any intersection 

point on the boundary, is split into two parts: ( , )fG m i  from the integration along the 

free surface element fS , and 0 ( , )G m i  from the integration over the body surface 

segment 0S . The corresponding term in Eq.(3.20) becomes 

      
0

, 0, , , ,
f

i i
n i f

S S

G m i G m i G m i
n n

              
 (3.21) 
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body surface. Point B  lies on the free surface, whose perpendicular distance to the body 

surface is smaller than a threshold value 0d . Meanwhile the normal distance to the body 

surface from node C , which is next to B , is not smaller than the threshold. A new 

element CD  is then introduced to be the new free surface. D  is the normal projection of 

B  on the body surface. The threshold 0d  determines how much of the jet to be kept 

during the simulation. Since the jet is along the body surface, the cutting will definitely 

affect the wave runup on the body. Fig. 3.7 (a) shows the wave runups on the body 

surface with and without jet cutting. The threshold 0 / 3d d   when cutting the jet ( d  

is the element size on the body surface). The effect of the jet cutting on the horizontal 

force is presented in Fig. 3.7 (b), which shows that the hydrodynamic force is hardly 

affected by jet cutting. This may be because the pressure within the thin jet is nearly 

atmospheric. However, it needs to be pointed out that when jet impact is important, jet 

cutting can be a problem. In this thesis, since the focus is not on jet impact, jet cutting is 

applied.   

 

(a)      (b) 

Fig. 3.7. Free surface profiles and horizontal forces with and without jet cut. (a) free surface profiles; (b) 
horizontal forces. 

Plunging wave cutting 

For certain wave body interaction problems, plunging wave can occur on the free 

surface. One of the distinctive features of a plunging wave is that it evolves with time 

and overturns until hitting the free surface underneath. The plunging wave here is 

slightly different form the so-called plunging jet in Sun et al ’s (2015b) paper in terms 

of where the plunging happens. In their paper, the plunging jet occurs close to the body 

surface, while in this study the plunging wave appears relatively far from the body, 

usually beyond one wavelength.  

The simulation will break down once the plunging wave tip touches the free 

surface underneath. Sun et al (2015b) proposed a domain decomposition method to deal 
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with the plunging jet, which split the whole domain into a main domain and a plunging 

jet domain. The two domains were connected through the continuity conditions of 

velocity and pressure on the interface. Obviously, this approach is a bit complex. A 

simple treatment is to cut the plunging wave before it hits the main free surface. There 

are two main questions to answer: first, when to cut; second, how to cut. About when to 

cut, our criterion is the distance between the lowest point of the plunging wave (point A 

in Fig. 3.8) and the free surface underneath. When the distance jet fD d d   ( fd  is a 

factor to control what proportion of the jet to be kept during the simulation, and d  is 

the reference element size on the free surface), part of the plunging wave should be cut. 

Now the problem is how much to cut and how to cut. First locate the turning point of 

the plunging wave (point B in Fig. 3.8) and then find the point C, which is the first node 

with x  value less than that of the turning point B . Connect the two points B and C as 

the new free surface. Obviously, new nodes need to be inserted between B and C. 

 

Fig. 3.8. Scheme of the plunging wave cut treatment. 

 

(a)      (b) 

Fig. 3.9. Free surface profiles and horizontal forces with and without plunging wave cut. (a) free 
surface profiles; (b) horizontal forces. 
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Fig. 3.9 shows an example of the free surface profiles and horizontal forces on the 

body with and without plunging wave cut. From the hydrodynamic forces comparison 

we can see that the plunging wave cut treatment does not affect the force calculation. 

Also this simple scheme makes the simulation continue. 

Thin spray cutting 

Other than the plunging wave, there also exists thin spray on the free surface. 

They are different from plunging waves because they develop either horizontally or 

upwards. This can happen physically over a short time. Nevertheless, the occurrence of 

a thin spray can cause large numerical error, or even make the calculation break down. 

The criterion for plunging wave jetD  is not applicable in this case and should be 

changed as the thickness of the spray. The thickness of a spray is defined as the average 

distance of the upper part and lower part of the spray. When the thickness of the spray is 

less than a threshold value, the thin spray is cut using the same method as in plunging 

wave cutting. Fig. 3.10 shows the thin spray cut model works well and hardly affects the 

hydrodynamic force calculation.  

It should be noted that both plunging wave and thin spray usually appear on the 

free surface and not close to the body surface. The term free jet is used when the thin 

spray is resulting from the detachment of a jet from the body surface (Bao et al 2016). 

Furthermore, there may be several plunging waves or thin sprays on both sides of the 

free surface at the same time. Therefore, the treatments of the plunging wave and thin 

spray should accommodate these various situations. It is worth mentioning that Euler 

equations can be applied to the thin spray to find the fluid velocity directly due to the 

fact that the thin spray has low pressure fluid and is in free fall motion. One can refer to 

Bao et al (2016) for more details about this treatment.  

  

(a)      (b) 

Fig. 3.10. Free surface profiles and horizontal forces with and without thin spray cut. (a) free surface 
profile; blue line: 2.40t  s, red line: 2.46t  s, black line: 2.52t  s. 1.11T  s;  (b) horizontal forces. 
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Smoothing 

Once time stepping is involved in the calculation, numerical error will be 

accumulated step after step. Over a period of time, saw-tooth instability of the free 

surface profile may appear, due to the nature of the numerical method. To suppress this, 

a smoothing technique is used. There are many different ways to smooth the free 

surface deformation. In this thesis, two schemes, namely five-point-third-order 

smoothing algorithm and energy smoothing scheme, are adopted for different initial 

meshes. Specifically, the former is only applicable to initially equally spaced nodes and 

used for the radiation problem because only the near body part of the free surface is 

smoothed. The latter is used when the incident wave is present and the whole free 

surface is smoothed.  

Sun (2007) used a five-point-third-order smoothing scheme to eliminate the saw-

tooth behaviour, which is applied in the present study  
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  (3.22) 

where  , z ,i i i iX x  , 1, 2,...,i N  are original node values to be smoothed, and 

 , ,i i i iX x z   are values after smoothing. The first and last two formulas are used for 

the first and last two nodes on the free surface, respectively. The third equation is used 

for any node at 3,..., 2i N  . Note that smoothing cannot be applied at intersection 

points, because these points belong to the body surface too. The same rule applies to the 

intersection points on the control surfaces. 

The energy smoothing scheme for non-equally distributed nodes of the free 

surface is the same as that used in Wang and Wu (2006) and Song (2015). The first step 

of this approach is to define an energy function for the differences between the original 

nodes and the smoothed nodes. Let the original node set iX   1,...,i N  become iX  
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 1,...,i N  after smoothing. The energy of a curve with nodes iX  is then defined as
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The new curve composed of X  should meet two basic requirements. Firstly, the new 

curve ought to be smooth, which is the purpose of smoothing. Secondly, X  should be 

as close as possible to the original nodes X  because the differences between them 

would affect the true solution. Then, based on the two requirements a new objective 

function is defined related to both the energy and the differences as 
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     (3.24)  

The first part of cF  reflects the smoothness of the new curve, which is controlled by 

parameter  . The second summation in cF  determines the differences between the new 

and original nodes. Finally, the new smoothed values iX  should make sure cF  to be 

minimal. Mathematically, we have  
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which leads to a matrix equation    A X X     with coefficient  
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  (3.26) 

In the coefficient matrix:  
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The coefficients in Eq.(3.26) are the same as in Song (2015) but with different notations. 

As suggested in Wang and Wu (2006), in the present study 1j   and the 

smoothing parameter 3
minps L  . minL  denotes the minimum value of jL  

 1,..., 1j N   and ps  is chosen between 5 to 10 to achieve desirable smoothness. 

Additionally, the boundary nodes 1X  and NX  are constrained and should not be 

smoothed during the whole process. This is realized by setting 1 1Nc c  , 

1 1 0N Nd e a b    .   

Remeshing 

After some periods of time, the nodes on the boundary may cluster or over stretch, 

which is a source of numerical inaccuracy and possible instability. To avoid over 

distorted elements, nodes on the boundary should be rearranged every several steps. The 

most straightforward idea is to check the distance between two adjacent nodes. If they 

are too close, then delete one of the nodes. Otherwise, add a node between the two 

existing nodes. Normally 1.5 l   to 2 l  is regarded as too large, and around 0.5 l  is 

regarded as too small, where l  is the original length of the element. For re-

discretisation of the boundary, there are also many different methods. Wang and Wu 

(2006) used the uniform cubic B-spline to remesh the boundary. 
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For the present 2D problem, since the fluid boundary is a plane curve, the 

regridding can be done in a simpler way. The original nodes on the free surface follow 

the rule that a fine and equally-spaced mesh is adopted in the close body region with 

element size d  and the size increases gradually with ratio   until the far-field. The 

value of   needs to ensure that the largest element on the free surface should not 

exceed / 20 . The remeshing aims to maintain this node distribution pattern. 

Considering an original node set iX   1,...,i N  on the free surface, the node set after 

remeshing is denoted as kX    1,..., 'k N  with known element size kL  ( 1,..., ' 1)k N   

and the number of new nodes 'N  is unknown. The remeshing is performed by the 

following three steps. The first step is to calculate the whole arc length of the boundary 

to be re-discretized. Since we know all the original nodes on the free surface and the 

length of each element iL , the total length of the first j  elements  jS  is calculated 

through 

 1 10, .j j jS S S L     (3.27)  

Accordingly, the whole length of the original node set is N
S . 

The second step is to determine the number of new nodes 'N  because the 

expected nodes distribution on the original curve is known. If we introduce another 

symbol 'S  to record the sum of the first j  elements of the remeshed curve, we have  

 1 10, .j j jS S S L        (3.28) 

And the total length of the remeshed node set is 'NS  . Now 'N  can be determined by the 

two inequalities 

 ' 1 'and .N N N NS S S S     (3.29) 
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Fig. 3.11. Schematic sketch of the three possibilities. 

The final step is to distribute the new nodes kX   on the free surface. The first and 

last nodes are unchanged during remeshing. So we have  

 1 1 ', .N NX X X X    (3.30) 

The following formulas demonstrate how to place the node kX   in between. There are 

three possible situations, as illustrated in Fig. 3.11. The first one means that only one 

new node can be located on the original element 1j  .  Mathematically, we have 

 1 1 1and ,k j k j k jS S S S S S          (3.31) 

then 
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1 1

1

.j j
k j k j
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X X
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      (3.32) 

The second possibility occurs when the adjacent original nodes are too close, so 

no new node can be placed on the elements 

 1 1 1and and ,  k j k j nd k j ndS S S S S S           (3.33) 

then  

  1
1 1

1

,j nd j nd
k j nd k j nd

j nd

X X
X X S S

L
  

   
 


      (3.34) 

where nd  is the number of original nodes to be skipped.  

The third possibility occurs when the adjacent nodes are two far away from each 

other and so more than one, let us say a number na , because remeshing is not 

performed every step, new nodes can be placed on the element. That is  

(Case I)

   

   
   

(Case II) (Case III)

 



 
61

 1 1and ,k j k na j k na jS S S S S S           (3.35) 

then 
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         (3.36) 

Special attention should be paid to the second last node ' 1NX   because the very 

final node 'NX   is not calculated through the remeshing formula but remains the same as 

NX . Thus, the distance between these two nodes may be too long or short. To correct 

the possible problem with the distance, node ' 1NX   is adjusted to the mid-point of ' 2NX   

and 'NX  . That is  

  ' 1 ' 2 '

1
.

2N N NX X X       (3.37) 

An advantage of this scheme is that it guarantees the quality of the mesh and is quite 

simple to implement in the programme since no additional equation needs to be solved. 

This, however, is not straightforward to extend to 3D problems.  

3.3 	Time	stepping	approach	

For numerical simulation in the time domain, the BEM should be used together 

with time stepping method. The BEM deals with the IBVP for velocity potential at a 

given time t  and the time stepping method updates the free surface position and the 

corresponding velocity potential from time t  to the next time t t . In order to 

perform the updating, the fluid velocity   on the free surface must be calculated as 

well, after   and n  are obtained. Then the updating is done through time-integration of 

the kinematic and dynamic free surface boundary conditions in the Lagrangian 

framework. Here t  is the time step, which should be set properly to maintain the 

accuracy of the numerical results.  

3.3.1 	Velocity	calculation	at	nodes	

The fluid velocity at the boundary nodes can be determined from   and n . Take 

node i  for example, it is shared by two adjacent elements 1i  and i . Since   and 
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they decide the accuracy of the wave run-up on the body and affect the evaluation of the 

hydrodynamic loads on structures. Thus, a four-point Lagrangian interpolation, which 

gives higher accuracy, is used to calculate the velocities at intersection points instead of 

linear interpolation. Let assume that node i  is one of the intersection points and node 

1i   belongs to the wetted body surface. Now node i  is treated as free surface node 

only. The velocity of the four adjacent nodes 1, 2, 3i i i    and 4i   on free surface 

are known previously via Eq.(3.40). The positions of the five nodes 4i   to i , which 

are counted from right to left starting from 1, are denoted as complex expressions 

5 5j j i j iZ x z      , 1, 2,...,5j  . The velocity of node i  is now calculated through the 

four-point Lagrangian interpolation 
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  (3.41) 

where the notation ( )j  means the j th term in the product is to be left out. The 

velocities at the intersection points should be further refined according to the 

impermeabilityconditions since these nodes belong to the wetted body surface as well. 

This treatment not just ensures the higher order accuracy of the velocities because the 

four-point Lagrangian interpolation is a fourth-order scheme, but also maintains smooth 

deformation of the free surface because the velocities at the intersection points are 

interpolated through that of the free surface nodes only. 

3.3.2 	Free	surface	and	velocity	potential	update	

The free surface position and corresponding velocity potential can be updated 

through kinematic and dynamic free surface boundary conditions in the Lagrangian 

framework presented in Eqs.(2.24) and (2.25):  

                                                    ; on ,    f

Dx Dz
S

Dt x Dt z

  
 
 

                        (2.24)       

                                                  
21

on .
2 f

D
g S

Dt

                                      (2.25) 

Having obtained the fluid velocity at free-surface nodes, a second-order Runge-Kutta 

time integration method is adopted to update the free-surface position and the velocity 

potential on it. This method needs to calculate one extra mid-step within each time step 
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t . Let  , ,X x z   be expressed by a function  / , ,DX Dt f x z  , then second 

order Runge-Kutta scheme gives 
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  (3.42)                 

where  , ,i i i iX x z   are known vectors corresponding to time t  at the i th step and 

1iX   are unknown terms at time t t  with step 1i  .   

There exist a number of other numerical algorithms to do the time integration of 

Eqs.(2.24) and (2.25). Each scheme has its advantages and disadvantages. The most 

straightforward approach is the explicit Euler method: 

 1 .
i

i i DX
X X t

Dt
     

 
  (3.43) 

In this scheme, no extra boundary value problem needs to be solved at each time step. 

However, since the truncation error made in a single step is proportional to 2t , and the 

global truncation error at a given time t  is proportional to the step size t  (Butcher 

2003), t  needs to be sufficiently small to meet the accuracy requirement.  

Other common high order algorithms, such as fourth-order Runge-Kutta method 

and Adams-Bashforth-Moulton scheme, can maintain higher numerical stability and 

accuracy with relatively larger time step. However, several extra boundary value 

problems have to be solved at each time step in Runge-Kutta methods. Thus, it will 

increase the CPU time, although a larger time step than for the explicit Euler scheme 

can be used. Adams-Bashforth-Moulton scheme needs boundary information from three 

previous time steps, which is difficult to implement numerically when the number of 

nodes changes with step. In a word, both the numerical performance and the time and 

memory requirement should be considered when deciding which time integration 

algorithm to choose. The second-order Runge-Kutta method is a good compromise for 

the current problem. 

However, even if the velocities at the free surface and body surface intersection 

points are specially treated, after the updating of the intersection points on the free 
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surface, these points may still not fall exactly on the updated body surface. They may 

fall inside or away from the body surface, which is not allowed by the impermeability 

condition. Additionally, a closed and non-overlapping boundary is always required in 

BEM. Hence after the updating, the positions of the intersection points are corrected to 

the boundary and the velocity potential accordingly. In this thesis, we first project the 

updated intersection point normally to the closest body surface. Then the new 

intersection point of the normal line and the body surface is the corrected body-free 

surface intersection position. This correction has minimal intervention since the 

projection is the closest distance between a point and a line.   

3.4 	Main	steps	of	the	BEM	and	time	stepping	approach	

The previous sections have presented the BEM and time stepping approaches 

separately. But in fact during the time domain simulation, they are used closely and 

interdependently. The main steps of the time domain simulations are summarised as 

follows: 

1) Discretise the whole fluid boundary and assign initial condition on the 

nodes; 

2) Calculate coefficient matrix in Eq.(3.20) and known columns of  , n  and 

 , / n  . Solve the matrix equation respectively for n  and / n   on 

the free surface nodes and   and   on the other boundary nodes; 

3) Compute   on the free surface and wetted body surface nodes; 

4) Calculate the hydrodynamic forces and moments on the bodies by direct 

pressure integration over wetted body surfaces. If the forces and body 

motions are coupled, decouple them first through the auxiliary function 

approach; 

5) Update the free surface position and corresponding velocity potential via 

time integration of Eqs.(2.24) and (2.25) based on Eq.(3.42) to find fS  

and   at time t t ; 

6) Determine if spray cutting and plunging wave cutting are needed on the 

free surface. If so, apply spray cutting and plunging wave cutting. 

7) Remesh and smooth the free surface nodes and the corresponding   every 

few steps. Ensure contact points lie on the body surface. 

8) Go to step 2 and repeat the steps. 
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The first step is done once only to start the simulation. The quality of the mesh 

affects the reliability and accuracy of the numerical results considerably. The remaining 

steps are repeated in order to do the time domain simulation. The second step is the core 

of the BEM, which dominates the computation time. The fifth step updates the flow 

information on the free surface, which serves as the boundary conditions at the next 

time step.  Spray and plunging wave cutting are usually needed for large sway or roll 

motion problems. The seventh step is essential and is needed every few time-steps 

because the quality of the free surface nodes may decline over time. The time 

integration scheme relates to the numerical stability issue. A proper selection of time 

step t  is needed to ensure the accuracy of the numerical results. In general, 

convergence study over mesh size and time step is required to make sure that the 

numerical results are convergent.  
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Chapter	4 	Wave	interactions	with	a	single	body		

In this chapter, fully nonlinear numerical simulations of wave interactions with a 

single body are conducted. The two main purposes of the present chapter are as follows. 

Firstly, it provides the convergence study for single body simulations and validates the 

present numerical scheme. Secondly, it gives some new physical features for wave 

interactions with a single body. Both wave radiation and diffraction problems will be 

investigated through time domain simulations. For the radiation problems, we focus on 

large-amplitude heave, sway and roll motions (at a single frequency first) to look at the 

higher order harmonics due to the increase of the body oscillation amplitude of each 

degree of freedom (DOF). Then the body heave motion with more than one frequency is 

simulated to study the interaction of results corresponding to different frequencies. For 

the diffraction problems, our aims are to identify the higher harmonic hydrodynamic 

loads caused by nonlinear regular incident wave. This is because both the transient 

response ringing and steady periodic response springing in the stochastic sense are 

principally attributed to the higher harmonic components of the nonlinear wave forces. 

4.1 	Introduction		

The study of radiation problem by floating bodies can provide important features 

of hydrodynamic properties of loads acting on the ocean structures and deformations of 

the free surface profile. In this chapter, the hydrodynamic forces and the generated 

waves of a 2D barge-shaped free surface piercing body in forced periodic motion will 

be calculated numerically in the time domain, using the method presented in Chapter 3. 

Obviously, the spatial domain of the physical problem extends to infinity. Thus, an 

artificial truncated boundary cS   is required to make the computational domain finite. 

Now, the fidelity of the numerical results depends on the boundary conditions imposed 

on cS . ‘Non-reflecting’ boundary conditions (NRBC) are commonly adopted in the 

numerical solutions of wave problems (Givoli 1991). Strictly speaking, no boundary 

condition can be completely ‘non-reflecting’. It can only reduce reflection to a 

satisfactory extent. In this study, a numerical damping zone is applied in front of the 

artificial boundary cS  to damp out the waves generated by the oscillating body, and 

reduce the reflection, as a result.  
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Firstly, convergence tests will be done to provide reference values for choosing 

simulation parameters such as time step, element size and damping zone variables. 

Comparisons of generated wave amplitudes and hydrodynamic coefficients with 

analytical solution are followed to make sure that the converged results obtained are 

sufficiently accurate. Secondly, the physical features of the single body radiation 

problem are discussed. The hydrodynamic properties, including added mass and 

damping coefficients, of a free surface piercing body in forced harmonic motion depend 

strongly on the body motion. Regarding the body motion, a series of oscillation 

frequencies, ranging from low to high, are simulated. Here the terms added mass and 

damping coefficients are used in a general sense and not restricted to linear theory.  

It is well known that the increase of the amplitude of body motion can enhance the 

nonlinear effects of the radiation problem. In terms of the hydrodynamic loads, 

nonlinearity is manifested in the occurrence of the higher order harmonic forces. They 

are examined for single mode motion: heave, sway and roll separately. In particular, the 

heave motion with two frequencies is also simulated to study the interactions between 

results at different frequencies. It is interesting to see the sum- and difference-frequency 

components and the envelopes in time histories as a result. 

The study of wave diffraction by a single structure is also of practical concern.  

Structures like bridge piers and oil platforms are exposed to the free surface waves, and 

maybe internal waves if the components of the structure are deep into the sea. Examples 

of the problems confronted by the structure in water waves are ringing and closely 

related springing. They refer to the transient and steady (only in stochastic sense) 

response of the structure at frequencies much higher than the dominant frequency of the 

incident wave.  Researches have shown that such behaviour is mainly attributed to the 

transient or higher harmonic force components of nonlinear wave forces. In this chapter 

the nonlinear wave forces resulting from the fifth-order Stokes incoming wave are 

investigated. Although the fifth-order incident wave does not satisfy the fully nonlinear 

free surface condition exactly, it is expected to be a good approximation for the fully 

nonlinear numerical analysis within a certain range of wave amplitude to length ratio, as 

pointed out and demonstrated by Zhou and Wu (2015). Once the fully nonlinear total 

wave force is obtained, Fourier analysis can be applied to the force history to obtain the 

force component of any frequency.   
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4.2 	Wave	radiation	by	a	single	body	in	forced	motion	

In this section, we study a body in forced periodic motion, as depicted in Fig. 4.1. 

The body of rectangular shape has width B  and initial draught D , which is measured 

from the still water level. The right-handed Cartesian coordinate system is employed 

with z -axis directing vertically upwards and x -axis lying in the still water surface 

from left to right. The origin is selected at the centre line of the body. The water depth is 

denoted as h . The centre of gravity lies in the centre line and is gz  below the still water 

level. ‘Non-reflecting’ boundary conditions are applied on the truncation boundaries cS . 

Therefore, damping zones are added to the both ends of the computational domain to 

minimize the reflection by truncated boundaries. The damping term  x  can be 

expressed as (Cointe et al 1990)  
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where   and   are parameters to control the damping strength and length, respectively. 

Also   is the oscillation frequency of the body motion. When the body motion has 

more than one frequency,   refers to the one which is highest;   is the wavelength 

obtained from the linear dispersion relation.   

 

Fig. 4.1. Sketch of the radiation problem of a single body.  
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4.2.1 	Convergence	study	and	validation	

The convergence study and validation are done through the results of heave 

motion in which the body is subjected to periodic motion with displacement expressed 

as  

  sin .z A t   (4.2) 

Obviously, the velocity and acceleration of the body motion can be calculated readily 

from Eq.(4.2). However, the initial velocity of the body motion is not zero, which 

means an abrupt start and probably longer transient period. To avoid this and allow a 

gradual development of the flow field, the velocity of the body motion is revised by 

multiplying it by a modification factor  M t  as used by Isaacson and Cheung (1991)  

     1
1 cos / , ,

2
1, .

m m

m

t T t T
M t

t T

   
 

  (4.3) 

mT  is the modification time and is related to the period of the body motion 2 /T   . 

In this thesis, 2mT T  is adopted to ensure a steady state to be reached soon after the 

ramp time. The displacement and acceleration of the body motion should be revised 

accordingly.  

The vertical hydrodynamic force zF  acting on the rigid body can be obtained by 

integrating the pressure over the instantaneous wetted body surface bS . The pressure on 

the body surface is determined directly from Bernoulli’s equation:  
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  (4.4) 

The last term gz  represents the hydrostatic restoring pressure, which is excluded 

from the integration of vertical hydrodynamic force of heave motion. The remaining 

terms are referred to as hydrodynamic pressure, which is denoted as dP . That gives  
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To validate the numerical results achieved, simulations of wave radiations are 

carried out under the same parameters as in Lee (1995) and the results are compared 

with its linear analytical solutions. The case parameters in Lee (1995) are / 3h D   and 

/ 1B D   with 1B  . Since the analytical solutions are obtained through linear theory, 

the amplitude A  should be small to allow the linearity assumption. Here A  equals 

0.01D  in the following simulations. The frequency of the body motion is a function of 

kh , which is to compare the results in Lee (1995) directly, where k  is the wave number 

of the generated periodic wave and is linked with the frequency   through the linear 

dispersion relation of finite water depth  

  2 tanh .gk kh    (4.6) 

All simulations are carried out in a fluid domain with the body located at the 

centre and with the truncated boundaries placed at 1 5 / 2x B   including 2  

damping zone in front of each truncated boundary. In all the calculations, the nodes are 

initially equally distributed on the wetted surface of the structure with element size d . 

The free surface part near the body is discretized equally as well with d . Away from 

the local zone on the free surface, the element size increases gradually with rate    until 

the far end. Obviously, the increasing ratio 1  . The biggest element on the free 

surface should not be larger than / 20 . This is to ensure that there are at least 40 

elements in each side of the damping zone. Larger elements of equal size / 5  are 

employed on the truncated boundaries and not changed during mesh convergence study, 

because they are far away from the structure. The nodes on the seabed right below the 

structure are placed equally with size 2 d  and nodes on the rest of the seabed with size 

/10  throughout all the simulations. During the simulation, the wetted body surface is 

remeshed every time step, keeping the segment size as d . The whole free surface is 

remeshed and smoothed every 5 steps using the schemes presented in Chapter 3. The 

damping zone length is set as 2  with damping strength 0.2   for all the cases. The 

damping applied is quite effective in absorbing the outgoing radiated waves as shown 

by the comparison of the nondimensional vertical hydrodynamic force histories on the 

barge when 2.75kh   with and without damping, which is given in Fig. 4.2. It is clearly 

observed that without damping the reflection by the truncated boundaries appears to 

take effect after roughly 10 periods when the front of the generated outgoing waves 

reach the truncated boundary. At the beginning, the reflection effects are shown by the 

fluctuation of vertical force and then they become more and more evident. This is 
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because the truncated boundaries are like two rigid walls. Waves will be reflected back 

completely when hitting them. The superposition of the radiated and reflected waves 

will make the free surface deformation more complicated, see Fig. 4.3. It illustrates the 

free surface profiles on the right side of the body with and without damping at 24t T . 

When damping is employed, the radiated waves are absorbed gradually and hardly any 

radiated waves are present when reaching the truncated boundaries. The applied 

damping minimizes the reflection and makes the radiated waves periodic in time and 

space.   
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Fig. 4.2. The comparison of hydrodynamic forces on the body with and without damping zone. 
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Fig. 4.3. The comparison of wave profiles on right side of the body at 24t T  with and without 

damping zone. 

The convergence tests with respect to element size and time step are conducted 

first based on the case of 2.75kh  , because its frequency lies in the middle of the 

frequency range. The purpose of this test is to ensure that the results are convergent and 

to provide reference parameters for other simulations. The mesh size only refers to the 

element on the wetted body surface and the local region of the free surface. Three 

different meshes are tested with /105t T  . The wave profiles at 38t T are 

illustrated in Fig. 4.4. Since the problem is symmetric about the z -axis, only the 

profiles on the right side are given. The coarser mesh / 68d    shows a visible 

difference at some distance away from the body from the other two meshes. The similar 

observation can be made on the hydrodynamic force on the barge, shown in Fig. 4.5(b). 

The wave runup histories on the right side of the barge for the three meshes, which are 

given in Fig. 4.5(a), show that they are not sensitive to these element sizes. Considering 

the wave profiles and the hydrodynamic forces, the mesh size /137d    is small 

enough to give convergent results and is chosen to test the temporal convergence. We 

then rerun the simulations with / 52t T   and /150t T  , and compare the 

corresponding wave runups and hydrodynamic forces on the barge in Fig. 4.6. We can 

see that these curves are virtually coincident with each other, which means that larger 

time step is sufficient to guarantee the temporal convergence.   
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Fig. 4.4. Wave profiles of the right side of the barge at 38t T for different mesh.  
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(a)                                                       (b) 

Fig. 4.5. Convergence study with element size. (a) wave runup on the right side of the body; (b) vertical 
force on the body. 
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Fig. 4.6. Convergence study with time step. (a) wave runup on the right side of the body; (b) vertical 
force on the body. 
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To ensure that the present numerical results are not only convergent but also 

reliable and accurate, they are compared with the linear analytical solutions presented in 

Lee (1995). All the calculations are run up to 100 periods, although the periodic state is 

reached after a short transient period. This is to enable the full development of the free 

surface profile and to guarantee the accuracy of the added mass and damping 

coefficients, because they are calculated from the periodic part of the hydrodynamic 

force history ( )zF t . Given that the hydrodynamic force history becomes periodic at time 

0t , the dimensionless added mass coefficient   and damping coefficient   are 

determined through the following equations: 
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   (4.8) 

where TN  is an integer and M  is the mass of the barge and equals the initial displaced 

mass of the water BD . The comparison of dimensionless added mass and damping 

coefficients is made with analytical solutions and is given in Fig. 4.7. As can be seen in 

the figure, they agree very well with the analytical solution.  

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

  

 

kh

 Lee 1995
 Present result

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

 

 



kh

 Lee 1995
 Present result

 

(a)                                                                 (b) 

Fig. 4.7. Comparison of dimensionless added mass and damping coefficients with analytical solution in 
Lee (1995). 

Free surface elevation is another feature to be considered in radiation problems. It 

is represented by the amplitude of generated outgoing waves. The generated wave 

amplitude wA  is computed through the free surface wave profiles within zone 

/ 2 3 / 2B x B     , which excludes the local wave close to the body. At each time 
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instant, wA  is determined as half of the vertical distance from the crest to trough. wA  is 

finally taken as the average amplitude of three time instants, namely 99.5 ,99.75t T T  

and 100T , as illustrated in Fig. 4.8, which shows the generated outgoing waves for 

2.75kh  . The local waves close to the body are not so evident as observed in Fig. 4.8, 

because the linear wavelength 6.85   is large compared to the body width. When kh  

increases further the generated wavelength becomes shorter compared with the barge 

width. The wave motion in the local zone will become a bit stronger and irregular as 

observed in Fig. 4.9 for 6.0kh  .  
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Fig. 4.8. Illustration of generated wave amplitude extracted in time and space at 2.75kh  . 
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Fig. 4.9. Wave profiles at different time instants at 6.0kh  .  
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Fig. 4.10. Comparison of dimensionless generated wave amplitudes with analytical solution in Lee 
(1995). 

Fig. 4.10 compares the dimensionless wave amplitudes with the analytical 

solution in Lee (1995). The figure shows an excellent agreement, which indicates that 

the present numerical model and the code are quite capable of capturing the free surface 

elevation accurately. Generally speaking, the accuracy of the present numerical results 

is excellent since the variation tendency and values against kh  for all the three physical 

variables wA ,   and   are very well captured comparing with the analytical solutions. 

Thus the current numerical method is adopted to examine the hydrodynamics due to 

waves and the body motion.  

4.2.2 	Wave	radiation	by	a	single	motion	mode	

The hydrodynamic properties of a floating structure depend on its body width and 

draught, the motion mode and the surrounding fluid domain. For a fixed physical fluid 

domain and given frequency, the nondimensional added mass and damping coefficients 

will depend on only the draught-beam ratio and the motion mode. This subsection will 

therefore investigate the draught-beam ratio effects on the hydrodynamics in heave 

mode first. Then the nonlinear effects on the hydrodynamic loads are analysed against 

each motion mode separately.  

The mesh used in all the following simulations follows the same pattern as in the 

convergemce study. The element size and time step for the following simulations are 

chosen based on the reference values in the convergence tests. Although the 

dimensionless parameter kh , as used in the comparison with results in Lee (1995), is 
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related to the body motion frequency   through dispersion relation, it is more direct 

and clear to use the frequency itself as the independent variable. The length variables in 

the following sections are nondimensionalised by the barge width B . Therefore the 

above mentioned draught-beam ratio can be fully represented and replaced by draught 

in this section. Moreover, the water depth h  in the following cases is assumed to be 

large compared to the generated wavelength and the body draught, the effect of water 

depth is ignored and should not be included in the results.  

The hydrodynamic forces and moments presented in this chapter are calculated by 

integrating the pressure over the instantaneous wetted body surface bS , or 
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 ,X Z  is the position vector relative to the rotational centre. When analysing the 

vertical forces, the contribution of static buoyancy is excluded. 

Forced heave motion  

A series of three body draughts, namely 0.4,0.6D   and 1, are simulated over a 

range of oscillation frequencies. The body motion amplitude A  is firstly taken as 0.01D . 

The total hydrodynamic force can be expressed as the Fourier series as: 

  (0) ( ) ( )

1

sin .n n
z z z

n

F F F n t 


     (4.11) 

(0)
zF  is the mean wave force; ( )n

zF  and ( )n  denote the amplitude and corresponding 

phase angle of the thn  harmonic force component. Clearly the added mass and 

radiation damping coefficients in the linear problem are related to the first harmonic 

forces, which can be seen from the computation formula in equations (4.7) and (4.8). 

The amplitudes of the first harmonic forces, which represent the magnitude of total 

hydrodynamic force since the cases simulated are linear, are illustrated in Fig. 4.11. 

' / gB   in the figure is the nondimensional oscillation frequency. The smaller the 
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draught and the higher the oscillation frequency, the larger the vertical forces exerted on 

the body. Furthermore, the increase of the frequency will make the effect of draught on 

forces more pronounced.              
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Fig. 4.11. Normalized first harmonic force on the barge for different draughts. 

Fig. 4.12 demonstrates the dependency of dimensionless added mass and radiation 

damping coefficients on the barge draught and oscillation frequency when 0.01A D .  

Generally speaking, the smaller the body draught, the larger the added mass and 

damping coefficients. For damping, the coefficient decreases monotonically and quickly 

as the frequency increases. It tends to zero at high frequency, as there is no wave 

propagating outwards. For added mass coefficient, there exists a frequency at which the 

nondimensional added mass coefficient achieves a minimum. This particular frequency 

is shifted to slightly larger value with a decrease of the draught.    
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(a)                                                                 (b) 

Fig. 4.12. Effects of barge draught on the dimensionless added mass and damping coefficients. (a) heave 
added mass; (b) heave damping coefficient. 

The preceding analysis is almost linear since the amplitude is small. The result is 

well known in the well-established linear theory. The following results will focus on the 

nonlinear effects on the hydrodynamic forces, due to the increase of the amplitude of 

the body motion. It is well known that the nonlinearity can lead to the existence of 

higher harmonic force components. The superposition of these harmonic components 

makes the total force history irregular, or rather less sinusoidal, as illustrated in Fig. 

4.13(a), which is for 0.4D   and 0 1.8   at different oscillation amplitudes. 

0 0 / gB    denotes the nondimensional frequency for a specific case in the 

following study. Fig. 4.13(b) gives their corresponding Fast Fourier Transform (FFT) 

and shows the amplitudes of the components. It is observed clearly from the figure that 

the higher harmonic force becomes more pronounced as the oscillation amplitude 

increases. The first harmonic force, however, still makes up a dominant proportion of 

the total force. In addition, the phase angle of the total force is not affected by the 

amplitude A  as observed in Fig. 4.13(a). 
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(a)                                                                    (b) 

Fig. 4.13. Hydrodynamic vertical forces and their corresponding FFT analyses of 0.4D  , 

0 1.8  .  

Our main focus is on the magnitudes of the high order harmonic forces ( )n
zF , and 

their corresponding phase angles (n)  are therefore not given. Fig. 4.14 gives the 

amplitudes of second harmonic forces on the barge when the oscillation amplitude is 

large. From it we can see that a decrease in draught makes the nonlinearity stronger, 

which is demonstrated by larger second harmonic forces. In terms of the harmonic body 

motion, the higher the oscillation frequency, the larger the second harmonic forces, as 

expected.  The third harmonic force on the barge is given in Fig. 4.15. It shows that the 

second and third harmonic forces are significant especially when the draught is small 

and frequency is high. For 0.2A D  and 0.5A D , the comparison of their amplitudes 

of second and third harmonic forces reveals that the amplitude of heave motion only 

affect the magnitude of the higher harmonic forces. 
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(a)                                                                (b) 

Fig. 4.14. Amplitudes of the second harmonic vertical force on the barges of different draughts. (a) 

0.2A D ; (b) 0.5A D .   
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Fig. 4.15. Amplitudes of the third harmonic vertical force on the barges of different draughts. (a) 

0.2A D ; (b) 0.5A D .   

For heave motion with 1D  , the cases of amplitude 0.75A D  are also 

simulated. Since the amplitude is very large compared to the draught, the bottom of the 

body will emerge from water occasionally during simulation if the frequency is also 

high. This will result in the breakdown of the calculation. Simulations show that the 

frequency should be lower than 0 0.8   to keep the body bottom staying in the water. 

The comparison of vertical forces with different amplitudes when 0 0.8   is shown in 

Fig. 4.16(a). It can be seen that the larger the amplitude, the bigger the peak value of the 

force. The analysis of their high harmonic components can be done through FFT and the 

result is presented in Fig. 4.16(b). The second and third harmonic forces grow as the 

amplitude increases. However, they are still very small compared to first harmonic force 

even if the amplitude is as large as three quarters of the draught. This is because the 

draught is large and the force is dominated by the inertia term, which is principally first 

order. 
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Fig. 4.16. Vertical forces of different motion amplitudes and their corresponding FFT analyses when 

0 0.8  .   

The hydrodynamic properties during heave motion with a single frequency have 

shown some nonlinear features, as presented above. They will be more complicated and 

interesting if the heave motion has multiple frequencies since there will be interactions 

between components at different frequencies. Let us consider the case with two 

frequencies, the displacement of the body is expressed as 

    1 1 2 2sin sin .z A t A t     (4.12) 

The amplitudes at both frequencies are set as the same with 1 2 0.2A A A D    and 

1D  . The above calculations have shown that the amplitude of body motion cannot be 

larger in order to keep the simulations running. One of the frequencies, denoted as 1 , 

is set as 1 1.0  . The second frequency 2  is taken as 0.8, 1.05 and 1.2, respectively. 

The vertical force histories, given in Fig. 4.17, show clearly the envelope pattern. The 

period T  in the graph corresponds to the higher one of the two frequencies. The 

apparent difference of the force histories lies in the period of the envelope eT . For 

2 0.8   and 1.2, eT  is nearly the same because in both cases 2 1 0.2     and eT  

depends on their difference.  So when 2 1.05   is close to 1 ,  the period of envelope 

becomes very long.  
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Fig. 4.17. Vertical forces of heave motion with two frequencies.  
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Fig. 4.18. Amplitude spectral analysis of vertical forces of heave motion with two frequencies.  

In order to obtain the frequency spectrum of the vertical force, FFT is performed 

and the result is given in Fig. 4.18. The primary frequency components are marked in 

the figure. As we can see there exist both sum and difference frequency in addition to 

the two excitation frequencies 1  and 2 . Due to the existence of difference frequency 

2 1   , the envelope of vertical force shows period longer than that of heave motion. 

These sum and difference frequencies reflect the nonlinear interaction between motions. 

The spectral analysis of wave runups on the body is also given in Fig. 4.19. The same 

feature as vertical forces is shown.   
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Fig. 4.19. Amplitude spectral analysis of wave runups of heave motion with two frequencies. 

Forced sway motion 

The body in forced sway motion is simulated next. The displacement is prescribed 

as 

  sin .x A t   (4.13) 

As in heave motion, ramp function Mt  in Eq.(4.3) is also applied to the sway motion. 

Cases of three different draughts, namely 0.4,0.6,1.0D   are considered. During 

simulations, the phenomenon of water spray will occur on the free surface when the 

amplitude of sway motion is large or the frequency of motion is high. Thus spray 

cutting is needed, which is done through method detailed in Chapter 3.  

The simulations are firstly conducted with 0.5A   and 0 0.4  , which 

corresponds to relatively slow motion because of the low frequency. The horizontal and 

vertical force histories at different draughts are given in Fig. 4.20(a) and (c), 

respectively. It should be mentioned that the horizontal and vertical forces are already 

nondimensionalised by BDg . Thus, any differences in these cases are due to the body 

draughts. It can be seen that the horizontal forces are significantly affected by the 

draughts. This is because horizontal forces are mainly attributed to the pressure on the 

side walls, whose magnitudes are directly related to the body draught. However, the 

vertical forces are due to the hydrodynamic pressure  2
/ / 2dP t         on the 
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bottom. The FFT analysis of these horizontal and vertical forces is provided in Fig. 4.20 

(b) and (d), respectively. It is interesting to notice that the leading component of vertical 

force is the second harmonic force and there are no even order components of horizontal 

forces. Furthermore, there are large negative mean vertical forces caused by sway 

motion at this low frequency. 
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Fig. 4.20. Normalized hydrodynamic forces of different draughts and their FFT analysis when 

0.5A  , 0 0.4  . (a) and (b) horizontal forces; (c) and (d) vertical forces. 

We then consider the cases when the body oscillates very fast horizontally with 

large frequency 0 1.4   and 0.5A  . Their horizontal and vertical force histories are 

illustrated in Fig. 4.21(a) and (c), respectively. Clear differences can be seen on the 

peaks and troughs of horizontal forces for different draughts because of the increase of 

frequency when comparing Fig. 4.20(a) with Fig. 4.21(a). Double peaks appear for deep 

draught with high frequency. In terms of vertical forces, the high frequency makes them 

of shallower draught considerably larger than that of deeper draught, while the low 

frequency leads the draught to have little effect on them. This may be because the 
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hydrodynamic pressure on the bottom is larger closer to the free surface and the high 

frequency magnifies this difference greatly. The FFT analysis of these forces, which is 

provided in Fig. 4.21(b), gives the frequency components of them. In particular, it is 

observed in the four spectral graphs, including the above two graphs for 0 0.4  , that 

there are only even order of harmonic forces for vertical forces and only odd order of 

harmonic forces for horizontal forces. In fact, this phenomenon is discovered and shown 

mathematically by Wu (2000).  
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Fig. 4.21. Normalized hydrodynamic forces of different draughts and their FFT analysis when 

0.5A  , 0 1.4  . (a) and (b) horizontal forces; (c) and (d) vertical forces. 

Finally, we will examine the effect of sway motion amplitude with 1D   and

0 1.4  . The FFT analysis of their horizontal and vertical forces is given in Fig. 4.22(a) 

and (b), respectively.  The amplitude of each order of harmonic force of both horizontal 

and vertical forces grows with the increase of amplitude as expected. In particular, the 

fifth harmonic horizontal force and sixth harmonic vertical force become noticeable 

when the amplitude equals three quarters of the body breadth.  
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(a)                                                                  (b) 

Fig. 4.22. FFT analysis of normalized forces of different amplitudes when 1.0D  , 0 1.4  . (a)  

horizontal forces; (b) vertical forces. 

Forced roll motion  

The preceding studies are all about translational motion of the body. The 

rotational motion is now simulated. The forced roll motion is about y -axis along the 

longitudinal direction of the body pointing out of the paper and through the gravitational 

centre.  In these cases, the centre is located at half of the draught below the still water, 

which means / 2gz D  . In fact, unless free body motion is considered, the mass 

centre does not affect anything. The draught of the body is 1D  . The angular 

displacement of the body, which is positive in the anticlockwise direction, can be 

expressed as 

  0 sin .t     (4.14) 

0  is the amplitude of roll motion. Again, ramp function Mt  in Eq.(4.3) is applied. 

Three amplitudes 0 /15  , / 9  and / 6  are considered. For a practical ship, 

rolling angle of / 6  is regarded as very large (Rawson and Tupper 1968). However 

such scenario still needs to be considered as it poses great danger to ship safety. 

During the simulations, thin jet can be formed along the body surface because of 

the impact on the free surface. It is cut in this study based on the approach presented in 

Chapter 3. The time histories of horizontal and vertical forces and moments are plotted 

in Fig. 4.23 (a), (c) and (e) for 0 0.4  , respectively. The forces and moments are 

already normalized by 0 . Therefore, any differences in these cases are due to nonlinear 

effects, which affect vertical forces the greatest. Additionally, the increase of amplitude 
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will not cause phase shifts of forces. The FFT analysis of forces and moments is 

provided in Fig. 4.23(b), (d) and (f), respectively. According to the conclusions made in 

Wu (2000), there should be only odd order harmonic components existing in horizontal 

forces and moments, while only even order harmonic components occurring in vertical 

forces as observed in sway motion cases. The spectral analysis of these forces shows 

that the present numerical results are consistent with the above statement, especially the 

horizontal forces. The same observation is made when the frequency is as high as 

0 1.2  . Their frequency components are analysed and shown in Fig. 4.24. One may 

notice that there are small first order harmonic vertical force and even order harmonic 

moments when the amplitude of the roll motion is large. This may be because the jet 

cutting treatment performed has destroyed the mirror images formed about the wetted 

body surface to some extent.  
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Fig. 4.23. Normalized forces and moments of different amplitudes and their FFT analysis when 1D  , 

0 0.4  .  (a) and (b) horizontal forces; (c) and (d) vertical forces; (e) and (f) moments. 
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Fig. 4.24. FFT analysis of normalized forces and moments when 1D  , 0 1.2  .  (a) horizontal 

forces; (b) vertical forces; (c)  moments. 
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4.3 	Wave	diffraction	by	a	single	body		

The present section will examine the hydrodynamic properties attributed to the 

diffraction. Specifically, we are to investigate the hydrodynamic interactions between 

nonlinear regular incident waves and a single surface-piercing rectangular barge. It 

should be borne in mind that the wave absorption through the damping zone is applied 

only to the variables related to the disturbed velocity potential D , and not to the total 

velocity potential   as in the radiation cases. Details of the treatment have been 

provided in Chapter 2.  

A fifth-order Stokes wave (Fenton 1985) propagating from the left hand side to 

the right is employed as the nonlinear regular incident wave. The reasons are that firstly 

it is very difficult to obtain even numerically the fully nonlinear wave due to the 

nonlinear nature of the boundary conditions on the free surface. Secondly, although the 

fifth-order incident wave does not satisfy the fully nonlinear free surface condition 

exactly, it is expected to be a good approximation for the fully nonlinear theory over a 

wide range of wave steepness, and it has been shown that it can provide accurate results 

for the resonant behaviour driven principally by the high order force. As demonstrated 

by Zhou and Wu (2015), the first four harmonic forces obtained from using the fifth-

order and twentieth-order (Rienecker and Fenton 1981) Stokes incident wave have 

hardly any visible difference in the cases which they calculated. When the water depth 

is infinite, the incident wave velocity potential I  and wave elevation I  are given as 

follows (Fenton 1985): 

3 5 4 2 5 3
3

1 37 1 1
sin sin 2 sin 3 ,

2 24 2 12
kz kz kz

I

g
e e e

k
                  

  (4.15) 

2 4 3 2 4

3 4

3 211 1 1 3 99
1 cos cos 2 cos3

8 192 2 3 8 128

1 125
cos 4 cos5 ,

3 384

I A         

   

                     
  


  (4.16) 

where  

 ,Ikx t     (4.17) 

 2 41 1
1

2 8I gk      
 

  (4.18) 
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and I  is the nondimensional incident wave frequency, 2 /k    is its corresponding 

wave number. k  in Eq.(4.18) is no longer from the linear dispersion relationship. 

/ 2A H , and H  is the peak to trough incident wave height. / 2kH kA    is often 

known as the wave steepness.   

First of all, wave-body interactions are simulated as an initial boundary value 

problem and  ,I I   on the free surface fS  and I  on bS  have to be provided at 

0t    to start the simulation. When 0t  ,  

 0, 0, .D D I        (4.19) 

The well-posed initial boundary value problem for disturbance velocity potential is then 

solved through boundary element method. The details about this method are provided in 

the previous chapters.  

After the disturbed velocity potential D  is solved, the total velocity potential can 

be calculated readily from I D    . The hydrodynamic force  ,x zF F F


 on the 

rigid body can be obtained by integrating the pressure over the instantaneous wetted 

body surface bS . The initial buoyancy is best excluded from the vertical force 

calculation, since our focus is on the forces caused by incident waves. So in the 

following simulations, unless otherwise specified, the vertical force is computed via 

 .
b

z zS
F Pn ds gBD    (4.20) 

In order to test the accuracy of the numerical model and the implementation code 

involving incident waves, the calculated results are compared with published analytical, 

experimental and numerical results. Unfortunately the author is not able to find 

published results of exactly the same parameters as specified previously. The closest 

case is found in Koo and Kim (2007). In their study, the incident wave is prescribed as 

second-order Stokes wave. Another minor difference is that the barge shaped structure 

has round corners at the bottom with radius cR  . The water depth of the numerical wave 

tank is approximately the same order as the incident wave length. Adjustments are made 

to the previous case setup temporarily so as to compare the results provided in Koo and 

Kim (2007). 
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The velocity potential I  and free surface elevation I  of the second-order Stokes 

wave can be expressed as 

 
 
     

   2
4

cosh cosh 23
sin sin 2

cosh 8 sinhI

k z h k z hgA
kx t A kx t

kh kh
   


 

     (4.221) 

and 

       
    

2

3

cosh 2 cosh 2
cos cos 2 .

4 sinhI

kh khA k
A kx t kx t

kh
  


      (4.222) 

As described in Koo and Kim (2007), the whole width of the barge is 0.5B m  with 

draught 0.25D m . The round corners at the bottom of the barge have radius 

0.064cR m . For simplicity, we introduce a dimensionless frequency number  , which 

is defined as  

  2 / 2
.

B

g


 

  

A series of incident waves with different frequencies and wave lengths are to be studied. 

The input parameters are the same as in Koo and Kim (2007). 
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Fig. 4.25. Comparisons of mean drift force on the barge.  

To verify the accuracy of the present numerical results, they are compared with 

published experimental (Nojiri and Murayama 1975), analytical (Maruo 1960) and other 
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numerical results (Tanizawa and Minami 1998, Koo and Kim 2007). The hydrodynamic 

forces in their papers are calculated based on acceleration potential scheme, which is 

first proposed by Tanizawa (1995). As presented in Koo and Kim (2007) paper, the 

hydrodynamic forces are normalized with mean drift force normalized by 20.5 gA , 

horizontal force by gDA  and vertical force by gBA  in the following figures. The 

force components are determined through performing Fourier analysis on the steady 

state part of the force histories. Fig. 4.25 compares the calculated mean drift force on 

the barge with other published results. Good agreements are shown in general, 

especially at the low frequency range. The present results are generally larger than the 

results of Koo and Kim. Comparisons of the first harmonic forces on the barge are also 

made in Fig. 4.269 for both horizontal and vertical forces. The calculated first harmonic 

forces compare very well with experimental, analytical and numerical results. The 

purpose of using fully nonlinear potential flow model is to identify the higher order 

motions and forces. Thus up to third harmonic force components are obtained and 

compared with the results of Koo and Kim in Fig. 4.270. Only small discrepancies are 

observed for the second harmonic forces associated with high frequency, large steepness 

incident waves, while other components agree very well. The comparisons indicate that 

the present numerical code is quite capable of capturing the higher harmonic forces and 

motions. 
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Fig. 4.26. Comparisons of first harmonic forces on the barge. (a) horizontal force; (b) vertical force. 
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Fig. 4.27. Comparisons of hydrodynamic force components on the barge. (a) horizontal force 
components; (b) vertical force components. 

The primary interest of this section is to investigate high-harmonic nonlinear wave 

forces which are relevant to the ringing and springing. A fifth-order Stokes wave is 

better than the second-order Stokes wave in terms of studying the nonlinear force 

components. Unless otherwise stated, the results presented later in this chapter are all 

nondimensionalised, which are based on the length scale B , gravitational acceleration 

g  and the density of the fluid  . Accordingly, the time and frequency are scaled by 

/B g  and /g B , respectively. The nondimensionalised frequency I  is therefore 

expressed as / gI B . The forces are by nondimensionalised by gBD .   

The draught of the body is taken as 1D  . Two sets of simulations associated 

with incident wave steepness 0.0283   and 0.226  are conducted for a range of 

frequencies from 0.75I   to 1.8I  . The hydrodynamic forces on the barge will 

become periodic after a short transient period for all the simulated cases. Examples of 

the force histories on the structure for lower frequency 0.75I   and higher frequency 

1.8I   are shown in Fig. 4.28 and Fig. 4.29, respectively. The double peaks in the 

vertical components especially for high frequency indicate large higher harmonic forces. 
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(a)                                                                 (b) 

Fig. 4.28. Hydrodynamic forces on the body when 0.75I  . (a) 0.0283  ; (b) 0.226  . 
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(a)                                                                 (b) 

Fig. 4.29. Hydrodynamic forces on the body when 1.8I  . (a) 0.0283  ; (b) 0.226  . 

In order to distinguish the hydrodynamic force components, Fourier analysis is 

performed on the steady-state part of the force history. Fig. 4.30 presents the horizontal 

and vertical force components for 0.0283  , which indicates very low incident wave 

steepness. The results are expected to be linear as a result. This can be confirmed by the 

fact that the second harmonic forces in both vertical and horizontal directions are very 

small as shown in Fig. 4.30. The increase of the wave frequency leads to the dramatic 

fall of the hydrodynamic forces. 
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(a)                                                                 (b) 

Fig. 4.30. Hydrodynamic force components when 0.0283  .  
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(a)                                                                (b) 

Fig. 4.31. Hydrodynamic force components when 0.226  .  

Regarding the hydrodynamic loads resulting from steep waves, the high order 

harmonic forces cannot be neglected as they play an important role as shown in Fig. 

4.31. The second harmonic vertical force in particular is actually larger than the first 

harmonic force after a certain frequency. The higher frequency means shorter waves. 

This phenomenon is also mentioned and explained in Koo and Kim (2007). They 

pointed out that this phenomenon is related to a special nonlinear feature of second-

order pressure field under standing waves. A standing wave is established in front of the 

upwave side of the body by superposing the incident wave and the reflected wave. Fig. 

4.32 illustrates the standing wave trains formed for incident wave frequency 1.4I   

from 224.4 (50 )t T  to 228(50.8 )t T  with time interval 0.4. The slowly-decaying 

second-harmonic pressure field with depth due to reflected waves on the upwave side 

was theoretically and numerically explained and illustrated in Eatock Taylor and Hung 
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(1987), Kim and Yue (1989), and Newman (1990).The mean force and other higher 

order harmonic forces remain very small. 
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Fig. 4.32. Standing wave trains in front of the upwave body when 1.4I  , 0.226  .  
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(e)                                                                (f) 

Fig. 4.33. The comparisons of horizontal and vertical force components with different incident wave 
steepness 0.0283   and 0.226  .  

In order to compare more clearly the nonlinear effects due to the wave steepness, 

the force components are reorganized against wave steepness and represented in Fig. 

4.33. Firstly, the wave steepness has only a small effect on the pattern of force 

components dependence on wave frequency, which can be shown by the feature that the 

two curves in each sub-figure have similar trend. However, it affects the magnitude of 

the force components significantly. Secondly, the wave steepness has different influence 

on horizontal force and vertical force. The increase of wave steepness makes the mean 

horizontal force smaller, while it makes the mean vertical force larger. Thirdly, it has 

minor effect on the first harmonic force. Fourthly, the wave steepness affects the second 

harmonic vertical forces most, especially at high frequencies as shown in Fig. 4.33 (f).
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Chapter	5 	Resonance	 analysis	 of	 wave	 interactions	 with	 two	

floating	structures	

The study of hydrodynamic problems for two floating bodies in close proximity at 

sea is an important subject in naval architecture and ocean engineering. In these cases, 

two large volume floating bodies are positioned closely to each other side-by-side. 

Therefore, the effects of hydrodynamic interactions between them have to be carefully 

taken into consideration for the design of the transfer system and also for the safety of 

operation. To achieve that, accurate prediction of hydrodynamic forces acting on them 

and their motion responses is crucial. Furthermore, the relative motions of closely 

spaced bodies, and the behaviour of the free surface confined between bodies, are also 

of practical interest. The configuration of two side-by-side bodies is closely related to 

the situation of a tank with an opening in terms of hydrodynamics calculation. 

There are generally three categories of hydrodynamic problems associated with 

two bodies placed side-by-side on the free surface: liquid motion caused by forced body 

motions and the corresponding hydrodynamic forces on them, liquid motion induced by 

incident waves on stationary bodies and their wave forces, and the hydrodynamic 

interactions between responses of free floating bodies under incident waves and liquid 

motions. Unless otherwise stated, the liquid motions refer to the water oscillation that 

takes place in the gap and the technical term ‘resonance’ refers to the wave resonance 

that occurs in the gap. Resonance is defined to be the phenomenon when the wave 

oscillation amplitude, as a function of the excitation frequency, has a local maximum. 

For the first two catagories, resonance is expected to happen when the excitation 

frequency is equal to a natural frequency in the gap. A natural frequency is described in 

such a way that when the disturbance disappears the flow in the gap will oscillate at this 

frequency on its own. The liquid motion commonly occurs at the natural modes of the 

gap like in a tank after an initial disturbance. A natural mode is a resonant state of 

oscillation corresponding to a natural frequency. The lowest frequency mode is called 

the piston mode, where the nearly flat water surface heaves up and down in the gap 

more or less like a piston. This mode takes place very often in a narrow gap. Other 

higher-order modes, like sloshing in a closed container where the liquid moves back and 

forth or up and down with wavy profile in the gap, also exist and they can be 

determined by the corresponding mode shape in the gap. The mode shapes are 

characterised by the presence of standing waves in the gap. However, it ought to be 
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pointed out that either in piston mode or other higher-order modes, the mode shapes are 

not strictly flat or exactly standing waves. In other words, they are not able to be 

expressed mathematically due to the nonlinear effects in the gap. They are used in a 

general sense.  

This chapter will focus on the first category. The objectives of this chapter are 

threefold. Firstly, a numerical procedure from the free sloshing model is proposed to 

predict the dominant natural frequencies of liquid motion in the gap between two bodies. 

Secondly, the dominant natural frequencies for various combinations of gap width and 

body draught are calculated. Meanwhile, their response amplitude operators (RAOs) in 

terms of gap free surface elevation are calculated corresponding to each resonant mode. 

The effects of resonance on forces are also analysed. Thirdly, second-order resonance 

behaviour in the gap liquid motion is studied for heave, sway and roll mode, respectively. 

The forces on the surrounding body are calculated. 

5.1 	Mathematical	model		

We consider the hydrodynamic problem of motion of the liquid confined between 

two floating bodies, as shown in Fig. 5.1. For convenience, we call the body on the right 

hand side ‘Body-1’, and the one on the left ‘Body-0’. The breadth of Body-0 is denoted 

as 0B , and that of Body-1 as 1B . The water depth h  is large compared to both the body 

dimension and wavelength and thus its effect on this problem can be neglected. A 

Cartesian coordinate system fixed in space is chosen such that the x -axis is along the 

undisturbed free surface and z -axis is directed vertically upwards. The distance 

between the inner sides of the two bodies is L  and its middle point is taken as the origin. 

The initial draughts of Body-0 and Body-1 are set as 0D  and 1D , respectively. A 

truncation boundary cS  used in the numerical simulation is placed at a distance 1x  away 

from the structure. A numerical damping zone is added in front of the truncated 

boundary to absorb the outgoing waves generated by the motion of the structure. The 

physical parameters are nondimensionalised using the density of the fluid  , the body 

dimension  0B  and the acceleration due to gravity g .  
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Fig. 5.1. Schematic sketch of wave radiation problem by two floating bodies. 

5.2 	Natural	frequencies	calculation	by	an	initial	disturbance	

This section presents a new procedure to predict the ‘domaint’ natural frequencies 

of the liquid motion in the gap. The word “dominant’ is used to describe the lowest 

frequency among several natural frequencies from the infinite set denoted n , 0,n  1,

2, …, which control the free liquid oscillation in the gap after an initial disburbance. In 

order to describe the liquid motion results in the gap better, the term ‘RAO’ is employed 

to express the amplitude ratio of the response and excitation. Here in this chapter, the 

forced body motions are regarded as the ‘excitation’ and the wave runup between 

bodies as the ‘response’. Based on this definition, resonance can be characterised as 

when the RAO value is a local maximum. The corresponding excitation frequency at 

resonance is usually equal to one of the natural frequencies in the gap. Although there 

should be an infinite set of natural frequencies existing in the gap, only the lowest few 

natural frequencies are to be determined.  

There are many other methods to estimate the set of natural frequencies. For 

example, in the frequency domain, solutions as functions of frequency are generated, 

from which the natural frequencies could be observed. Specifically, the added mass and 

damping coefficients have rapid changes near a resonant frequency for the wave 

radiation problem, while the RAO diagram in terms of wave elevation in the gap has 

sharp peaks near resonance for the wave diffraction problem. Molin (2001) considers 

the liquid confined by twin barges of infinite beam width. Single mode approximations 

are applied, and the natural frequencies and corresponding modes for the free-surface 

oscillation in the gap are derived. Both piston mode and sloshing modes are observed. 

Zhu et al (2006) focus on the gap effects on the added masses and damping coefficients 

of 3D multiple floating structures. The boundary element method is useful for the 

  
 

Body-0 Body-1
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solution. Natural frequencies of the liquid motion in the gap are inferred from the 

diagram of added mass and damping coefficients. Faltinsen et al (2007) study the two-

dimensional piston mode motion of a fluid in a moonpool formed by two barges. They 

focus on the radiation problem (without incident waves) and vertical excitations of the 

rectangular structures. An analytical solution of the resonance frequencies is given, 

which compares well with their experimental results. Sun et al (2010) investigate the 

incident wave induced resonance in the gap of twin parallel closely spaced rectangular 

barges using 3D BEM. The barges could be fully fixed or freely floating. The influence 

of gap width and body draught are considered. The natural frequencies are obtained 

through a simple modification to the theory developed in Molin (2001).  

The time-domain Computational Fluid Dynamics (CFD) method is an alternative 

option to investigate gap resonance problems. In this scheme, natural frequencies of the 

liquid motion in gaps are obtained through an ‘enumeration method’. Using the 

enumeration method, a great number of cases should be simulated at different excitation 

frequencies of the incident waves for diffraction problems or body motions for radiation 

problems. Then, the natural frequencies are observed from the RAO diagram as in the 

frequency-domain method. For example, Lu et al (2010) study the fluid resonance in 

two narrow gaps between three identical rectangular barges fixed in incident waves. A 

numerical wave tank with viscous fluid flows is employed. Ning et al (2015) investigate 

the effects of the number of barges on the resonant frequency with narrow gaps. The 

fluid problem is solved within the 2D fully-nonlinear potential flow theory. Moradi et al 

(2015, 2016) adopt OpenFOAM to investigate the effects of inlet configurations of two 

rectangular-type barges and the effects of water depth on fluid resonance in between, 

respectively. Feng and Bai (2015) develop the 3D fully-nonlinear potential flow wave 

tank to simulate wave resonances in the gap between side-by-side barges. In all these 

works, the natural frequencies are observed from the RAO diagram. 

It should be noted that the frequency-domain solutions are based on linear or 

second-order weakly-nonlinear potential-flow theory. The wave amplitudes are assumed 

to be small, which do not match the wave resonance situation well. Furthermore, it is 

usually restricted to some simple configurations. The ‘enumeration method’ in the time-

domain is time-consuming, since every data point in the RAO diagram is essentially 

defined by a time history. In the present study, a new procedure to predict the dominant 

natural frequencies of liquid motion in the gap is proposed, based on our understanding 

of liquid sloshing.  
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It is well known that the natural frequencies of liquid motion in gaps are intrinsic 

properties of the confined liquid itself, regardless of excitation conditions. Thus, the 

natural frequencies could be reflected by the free sloshing between two bodies. To 

obtain the free sloshing, we first give the liquid in the gap an initial disturbance and then 

let it oscillate freely. The liquid motion is now only driven by gravity, which suggests 

that no extra energy is imported into the liquid system. Then, we perform a spectral 

analysis on the wave runup history of free sloshing waves in the gap to extract the 

dominant frequencies. Finally, we run a simulation at each dominant frequency to 

obtain the corresponding natural mode shape. It ought to be pointed out that although 

the liquid motion in the gap after disturbance resembles sloshing in a closed container, 

there is still much difference between them. Specifically, in the latter case water will 

continue to oscillate forever, while in the former case, although water will oscillate over 

a considerably long time, it will stop eventually. Therefore, the spectral analysis should 

be performed over these periods to obtain the natural frequencies.   

Cases of twin rigid bodies with three different gap widths are investigated to test 

the feasibility and effectiveness of this new procedure. The initial disturbance is given 

by forced harmonic motions of the two bodies. This treatment is one of the many ways 

to provide an initial disturbance to the liquid motion in the gap. One can just assume an 

initial wave elevation in the gap. Since the two bodies are identical, the subscripts of 

their breadths and draughts are omitted for convenience. Twin barges under forced 

heave motion are simulated first. The parameters are set as 

 1, 1, 1B D L     (5.1) 

in the first case. The vertical motion is prescribed as  

  sinzs A t   (5.2) 

with 0.05A  . The time t  and frequency   are nondimensionalised by 0 /B g  and 

0/g B , respectively. The frequency is randomly chosen as 1.2533  , where   

denotes the disturbance frequency of a specific case. The bodies are forced to oscillate 

for the first 5 periods. Then, both barges are fixed without motion. Fig. 5.2(a) shows the 

wave history in the gap along the surface of Body-1 when 1.2533  . The power 

spectral analysis should be performed on part of the time history, which is before the 

liquid oscillation in the gap dies out and after the transient time of initial disturbance. 

Moreover, the accuracy of the spectral analysis depends on the number of periods on 
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which it is carried out. To ensure the dominant frequencies extracted are accurate 

enough, at least 20 periods are needed. The diagram of the power spectrum analysis is 

given in Fig. 5.2(b). The part in use is marked by shaded area in the time history figure. 

Unless specific statements are made, in this section the power spectral analysis is 

performed on periods indicated by a shaded area in the corresponding wave history.  

To test if the dominant frequency is associated with the motion of the barges, the 

twin barges are simulated subjected to sway motion, as prescribed in Eq.(5.3).  

    1 0sin , sinx xs A t s A t     (5.3) 

1 0,x xs s  denote the horizontal displacement of Body-1 and Body-0, respectively. The 

process of the disturbance is the same as that in heave motion. The power spectrum 

analysis performed on the wave history shows the dominant frequency in the gap is the 

same as in heave motion, comparing Fig. 5.2(b) and Fig. 5.3(b). In a word, the dominant 

frequency in the gap is irrelevant to the type of disturbance. It reflects the intrinsic 

property of the liquid motion in the gap. It should be pointed out that since the above 

motion is symmetric, only symmetric modes have been excited and antisymmetric 

modes are not present.  
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(a)                                                                  (b) 

Fig. 5.2. Time history and power spectrum of wave runup along Body-1 in the gap for 1L  ,

1.2533  .  
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(a)                                                               (b) 

Fig. 5.3. Time history and power spectrum of wave runup along Body-1 in the gap for 1L  , 

1.2533   for two barges under sway motion in opposite directions. 

Then, we excite the barges at 0.7517   throughout the whole simulation, and 

obtain the wave elevation in the gap along Body-1 as shown in Fig. 5.4. It can be seen 

that the wave elevation in the gap increases its amplitude rapidly until the maxima after 

20 periods of oscillation. After that the liquid motion of the confined water becomes 

periodic. The free surface profiles in the gap for a typical period are shown in Fig. 5.5. 

The piston-type free-surface oscillation between two barges is observed. Thus, the 

frequency 0.7517   is indicated by 0 0.7517   for piston mode. 
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Fig. 5.4. Wave runup history in the gap along Body-1 during resonance for 1L  . 
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Fig. 5.5. Free surface profiles between two bodies for 1, 0.7517L   .  

In order to test whether 0  is also the resonance frequency, we excite the barges at 

five other frequencies near 0  with difference 0.05   . It is found that after a 

sufficiently long time of simulation, all cases lead to the periodic states of wave 

oscillation in the gap due to radiation damping. Thus, the gap free-surface RAO is 

calculated by the amplitude of the component corresponding to the excitation frequency 

of the steady state wave runup along Body-1 over the excitation amplitude A .  In Fig. 

5.6, we show the diagram of RAOs near 0 . It is clear that, as   moves away from 0 , 

the value of RAO drops dramatically. This means that 0  must be the piston mode 

resonance frequency. The motion at resonance, shown in Fig. 5.4, does not go to infinity 

because of radiation damping. Thus, our idea derived from the free oscillation could be 

used to determine the dominant natural frequencies of liquid motion between barges. 
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Fig. 5.6. RAOs for different excitation frequencies for 1L  . 
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In the second case, we consider two barges with a much larger separation gap. 

Take 4L   for example. For the first five periods, the barges are excited at frequency 

1.2533  . The histories of wave runup along Body-1 in the gap are shown                   

in Fig. 5.7(a). We then perform the power spectrum analysis on part of the wave history 

as shown in Fig. 5.7(b). The dominant frequency 1.2531   is observed. Exciting the 

barges at this dominant frequency, we could obtain the wave runup along Body-1 and 

free surface shapes in the gap, as shown in Fig. 5.8. It is found that, in this situation, the 

liquid in the gap is undergoing a symmetric sloshing motion. Near standing waves are 

formed in the gap with two nodes. The term ‘node’ (Coulson and Jeffrey 1977) refers to 

a point in the gap where the wave elevation has minimum amplitude. Accordingly, 

‘anti-node’ (Coulson and Jeffrey 1977) means a point where the amplitude of wave 

elevation is a maximum. Anti-nodes should occur at the gap walls at resonance because 

the end conditions are prescribed by free boundaries (Feynman et al 1964). This is a 

distinctive feature of large gap resonance, compared with the piston-type resonance in a 

narrow gap. For the sake of distinction, we denote the natural frequency of the piston- 

and second sloshing-type by 0  and 2 , respectively. The numerical subscript 

following   indicates which mode a specific natural frequency belongs to. The order of 

the mode depends on the number of nodes in the gap free surface profiles. We then run 

simulations near 2 1.2531   with difference 0.05   . From Fig. 5.8(a), we can see 

that the steady state has not been reached within the first 100 periods. Hereafter, the 

RAO is calculated based on the amplitude of the first 100 periods unless steady state is 

reached before that. The RAO is determined from the component corresponding to the 

excitation frequency itself instead of the total wave in this thesis. Fig. 5.9 gives the gap 

free-surface RAO. The comparison of the RAOs around 2 1.2531   confirms that 

resonance does occur at the dominant natural frequency extracted from the disturbance 

wave history. No piston mode is recognised in this case. 

One may notice that only a single symmetric mode is captured in the previous 

cases, specifically the piston mode of 1L   and the second natural sloshing mode of 

4L  . One plausible explanation is that when the gap is relatively narrow, the wave 

elevations at piston mode are much more significant than at other modes. Thus, when 

power spectrum analysis is performed on the wave elevation history, frequencies 

associated with higher-order modes are filtered out. For the case of large gap 4L  , 

piston mode might not exist because the liquid surface may be not able to maintain flat 

due to gravity, while wave elevations due to other higher-order symmetric modes are 
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negligible compared to that of the second natural sloshing mode. Although theoretically 

there should be infinite numbers of natural modes in the gap, only a certain modes are 

dominant. These dominant modes are distinguished through the numerical simulations.      
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(a)                                                               (b) 

Fig. 5.7. Time history and power spectrum of wave runup along Body-1 in the gap for 4L  , 

1.2533  . 
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(a)                                                               (b) 

Fig. 5.8. Wave runup history in the gap along Body-1 and gap free surface profiles for 4L  , 

1.2531  .  
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Fig. 5.9. RAOs at different excitation frequencies for 4L  . 

From the above analysis, it is expected that both piston and sloshing mode would 

be identified for an intermediate gap width. The power spectrum for 2L  , 1.2533  , 

shown in Fig. 5.10(b), confirms that the piston mode and the second sloshing mode are 

recognised. Let the twin barges undergo forced heave motion at frequencies 0  and 2  

respectively, we can obtain the free surface shapes in the gap, which are illustrated in 

Fig. 5.11(a) and (b). The free surface profiles give us direct images of the mode shapes.  
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(a)                                                              (b) 

Fig. 5.10. Time history and power spectrum of wave runup along Body-1 in the gap for 2L  ,

1.2533  . 
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  (a)                                                                 (b) 

Fig. 5.11. Free surface profiles in the gap for 2L   with different excitation frequencies. (a) 0  ; 

(b) 2  . 
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(a)                                                                (b) 

Fig. 5.12. Time history and power spectrum of wave runup along Body-1 in the gap for 1L   in sway 
motion in same direction. 

The three cases studied above prove that it is indeed a good method to calculate the 

domiant natural frequencies in the gap through disturbance of the structures. It needs to 

be mentioned that the barges are subjected to forced heave motions or sway motion in 

opposite direction during all the simulations. Therefore, the problem is symmetric about

0x  , which results in only even modes occur in the gap physically. If the structures 

are subjected to sway motion in the same direction as described in Eq.(5.4), odd modes 

in the gap can be identified and studied.  

    1 0sin , sin .x xs A t s A t     (5.4) 

Take 1L   as an example, through disturbance at 1.2533   and 0.05A  , a dominant 

frequency 1 1.7703   is observed in Fig. 5.12(b). The free surface shapes at different 

times at this dominant frequency are shown in Fig. 5.13. The forcing amplitude A  
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equals 0.01for the forced sway motion. Comparing Fig. 5.13 and Fig. 5.5, the lowest 

two normal modes in the gap are found.  
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Fig. 5.13. Free surface profiles in the gap for 1L  , 1 1.7703    in sway motion in same direction. 

5.3 	Gap	resonance	analysis	for	two	bodies	in	heave	motion	

We consider two barges arranged in a catamaran configuration, which means they 

are connected rigidly above the waterline and subjected to the same heave motion. This 

section aims to analyse the effects of changes in the gap width and the draught on the 

natural frequencies and the relative motions of the liquid confined between the bodies 

firstly. The resonance frequencies are calculated through the method proposed above. 

The effects of resonance on forces are studied secondly. 

5.3.1 	Influence	of	gap	width	on	the	natural	frequency	and	wave	forces		

We perform a systematic study on the effect of gap width on the natural frequency. 

The draught of the twin barges is taken as constant 1.0D  . The frequency and 

amplitude of the initial oscillation are set as 1.2533   and 0.05A  . The gap width 

varies from 0.1 to 5. From Fig. 5.14(a), it is clearly to see that the natural frequency 

decreases as the gap becomes wider. Piston mode only survives in a narrow gap, while 

sloshing mode occurs in a wide gap. There is also a region of the parameter space where 

both modes are recognised. Fig. 5.14(b) shows us the RAOs of the free surface 

elevation in the gap for natural frequencies for different gaps. The forced amplitude for 

both barges is 0.01A   for 0.4L  , while 0.05A   for all other cases. This is because 
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the resonant liquid motion in the gap is more extreme in a narrower gap. Meanwhile the 

bottom of the bodies should remain in water during the whole simulation. Therefore, the 

excitation amplitude is set to a smaller value for narrow gap cases. The RAOs for piston 

mode decrease dramatically as the gap increases. However, the RAOs for the sloshing-

type resonance increase as the gap becomes wider. For 2.5L  , the RAO of the 

sloshing-type resonance begins to overtake that of piston-type resonance. In general, the 

piston-type resonance could engender extremely large wave runups in the narrow gap, 

which is more dangerous for practical applications.     
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(a)                                                              (b) 

Fig. 5.14. The natural frequencies and gap free-surface RAOs versus the gap width when the draught

1.0D  .  

The cases of twin barges with a smaller draught, i.e. 0.5D  , are also considered.  

The disturbance frequency  1.2533   and amplitude 0.01A   is adopted for all the 

cases when 0.5D  . Fig. 5.15(a) shows the variation of dominant natural frequencies 

with respect to changes in the gap width. They are in general larger than that of larger 

draught, comparing Fig. 5.14(a) and Fig. 5.15(a). The RAOs for resonance frequencies 

at 0.5D   are given in Fig. 5.15(b). At 1.5L  , the RAO at the sloshing-type 

resonance has already overtake that at the piston-type resonance. Also, it is found that 

the RAO of the sloshing-type resonance starts to decrease as gap enlarges to 4L  . 
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(a)                                                             (b) 

Fig. 5.15. The natural frequencies and gap free-surface RAOs versus the gap width when the draught 

0.5D  . 

Since the problem is symmetric about 0x  , only the hydrodynamic forces on 

Body-1 are given. The non-dimensional mass M of Body-1 equals the initial mass 

displacement of the body. The hydrodynamic forces on Body-1 when 1L   are given in 

Fig. 5.16. In the figure z denotes the excitation body motion frequency, and the 

subscript z  indicates that the excitation is in the vertical direction. In order to see the 

effect of resonance on forces clearly, the forces associated with frequencies lower and 

higher than the resonance frequency are also presented. Both vertical and horizontal 

forces increase quickly when approaching the resonance frequency. The horizontal 

forces, however, are in general larger than the corresponding vertical forces. The steady 

states are reached for all the cases. The same conclusions can be drawn for forces at 

frequencies near 0   when 2L  , see Fig. 5.17. The forces at 0  for 1L   are much 

larger than that for 2L  . It is consistent with the wave elevations in the gap. The 

previous study shows that there exists the second sloshing mode for 2L  . The forces 

at frequencies near 2  are given in Fig. 5.18. The horizontal forces in these cases are 

actually much smaller than the corresponding vertical forces. Additionally, the 

frequency does not affect the vertical forces much. It is odd that the vertical force at 2  

is in fact a little smaller than that at higher frequencies. The comparison of Fig. 5.17 and 

Fig. 5.18 shows that on the one hand horizontal forces on the body are significantly 

affected by the motion mode in the gap; on the other hand vertical forces depend more 

on the excitation frequency. These differences can be explained by the source of these 

forces. Specifically, horizontal force is mainly due to the pressure difference of the two 

side walls of the body and is therefore considerably affected by the liquid motion in the 
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gap, whereas the vertical force arises from the pressure distribution on the bottom of the 

body and may be dominated by the inertia terms. 
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    (a)                                                                 (b) 

Fig. 5.16. The hydrodynamic forces on Body-1 near 0  when 1L  . (a) horizontal forces; (b) vertical 

forces. 
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(a)                                                               (b) 

Fig. 5.17. The hydrodynamic forces on Body-1 near 0  when 2L  . (a) horizontal forces; (b) 

vertical forces. 
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(a)                                                              (b) 

Fig. 5.18. The hydrodynamic forces on Body-1 near 2  when 2L  . (a) horizontal forces; (b) 

vertical forces. 
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(a)                                                                (b) 

Fig. 5.19. The hydrodynamic forces on Body-1 near 2  when 4L  . (a) horizontal forces; (b) 

vertical forces. 

The hydrodynamic forces on body-1 for frequencies near 2  when 4L   are 

given in Fig. 5.19. The horizontal forces patterns are totally different from that of 

narrower gaps due to the existence of envelopes. The case of 2z   is further 

simulated for a much longer time. The wave elevation at the left side of body-1 is 

shown in Fig. 5.20(a). It is observed that the amplitude reaches a peak at about 40t T . 

Then the amplitude drops rapidly and beating behaviour occurs. This is due to the 

nonlinear effects during the sloshing in the gap. Specifically, the actual natural 

frequency has altered due to the significant change of body draught and free-surface 

nonlinearity. As the natural frequency grows to move away from the excitation 

frequency, the condition that maintains the resonance has been damaged. Thus the wave 

elevation in the gap starts to drop until the resonance condition is met again. Recurrence 
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continues until the steady state is reached because of the damping in the gap, which is 

different from sloshing in a tank. One may argue that this envelope is due to an 

inaccurate calculation of 2  based on the understanding that if the motion in the gap is 

excited at a frequency close to, but not exactly at, 2 , the liquid oscillations will be 

dominated by two frequencies, resulting in the beating pattern as illustrated in Fig. 

5.20(b). Comparing Fig. 5.20(a) with Fig. 5.20(b) carefully, we can see that for the 

envelope produced by the beating of the difference of two frequencies, its period stays 

the same as time goes on. However, the envelope period shortens as time goes on when 

2z  . Thus, the envelope in this case is not caused by an inaccurate prediction of 2 , 

but instead by nonlinearities.   
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(a)                                                                (b) 

Fig. 5.20. Wave history in the gap along Body-1 for 4L   at different frequencies. (a) 2z  ; (b) 

2 0.05z   . 

5.3.2 	Influence	of	draught	on	the	natural	frequency	

From the comparison between Fig. 5.14 and Fig. 5.15, it is known that the draught 

of the barges has evident influence on the natural frequencies and resonance behaviour. 

This subsection will therefore study the effect of body draught. We focus on the 

resonance pattern of small gap with twin barges fixed at distance 0.4L  . The body 

motion frequency 1.2533   and amplitude 0.01A   are adopted for all the cases. The 

variation of piston mode natural frequency for different barge draught is shown in Fig. 

5.21. As the draught grows gradually from 0.1 to 3.4, it is found that: (1) only 0  for 

piston-type resonances exists; (2) the natural frequency 0  decreases dramatically; and 

(3) the decreasing rate slows down as the draught exceeds 1. When the gap width is less 

than the draught, the waves move in to an effectively deep water limit where analytical 
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predictions are available. We now compare the piston mode natural frequency with 

theoretical predictions in Eq.(1.1) (with / 4.5sH L   as suggested by Molin (2001)) and 

in Eq.(1.3) (with 30h   as used in the numerical simulations), the agreements are 

acceptable especially when the draught is deeper, as shown in Fig. 5.21. Note that the 

natural frequencies calculated by Eq.(1.1) and Eq.(1.3) are nondimensionalised in order 

to compare with the present dimensionless results. The discrepancy between the present 

numerical results and Molin’s predictions may be related to the choice of the artificial 

parameter sH . Also the breadth of the barge in Molin’s paper is assumed to be infinite. 

The Eq.(1.3), derived by Saitoh et al (2006), applies to a very narrow gap, i.e. / 3D L  . 

We can see that the difference between the present results and Saitoh et al’s estimations 

is decreases as /D L  increases.  
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Fig. 5.21. Comparison of the natural frequency 0  with theoretical resuts when 0.4L  . 

The RAO at 0  as a function of D , the body draught, are shown in Fig. 5.22. We 

can see that the RAO increases with the draught and reaches its peak at about 1D  . 

For 1D  , the RAOs during the resonance have similar value. In other words, for 

barges with deep draught ( 1D  ), the resonance liquid motions due to the same 

amplitude of excitations would have similar maximum wave runups.  
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Fig. 5.22. The gap free-surface RAOs at 0 versus the draught  when 0.4L  .  

5.3.3 	Gap	resonance	analysis	for	two	different	bodies	

The above subsections consider the gap and draught effect on the piston and 

sloshing mode natural frequency of two identical barges. In practical configurations, the 

two side-by-side moored bodies usually have different sizes and draughts, i.e. FPSO and 

shuttle tanker, and FLNG and LNG carrier. The proposed numerical approach is capable 

of calculating the dominant natural frequencies of these general situations. The analysis 

of relative breadth and draught on the natural frequency is conducted in this subsection. 

All the disturbance frequency is set as 1.2533   and 0.01A  .  

The draught of Body-0 0D  is set to be 1 and kept the same during the whole 

simulation. Three sizes of Body-1, namely 1 0.5, 1, 1.5B   with gap width 0.4L   are 

considered. The draught of barge one increases from 0.1 to 3.4. The piston mode 

resonance occurs in all the simulated cases because the gap is narrow. Fig. 5.23(a) 

shows the piston mode natural frequency change due to the increase of draught of 

Barge-1. It demonstrates that the natural frequency strongly depends on the relative 

draught of the structures when the draught is not too deep. For 1 0/ 1D D  , the increase 

of the submergence makes little difference. Another point we can make from Fig. 5.23(a) 

is that the relative breadth of the two bodies has only a minor influence on the natural 

frequency. And generally speaking, a smaller sized body makes the natural frequency 

higher. There are also coupling effects between the size and draught. As we can see, the 
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dependence on size diminishes as the draught becomes deeper. For 1 2D  , the size 

does not matter at all.  
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(a)                                                              (b) 

Fig. 5.23.  The natural frequency 0  and gap free-surface RAOs versus the draught of Body-1 1D  

when 0.4L  .  

The free surface elevations along the left side of Body-1 scaled by the amplitude 

A  are shown in Fig. 5.23(b). The amplitude A equals 0.002 for 1 0.1, 0.2D   and 0.4, 

while 0.01A   for all other cases. The RAO is obtained at its natural frequency for each 

case. This figure shows the general tendency that a larger barge breadth leads to a larger 

RAO in the confined water when the draught is less than 1. The RAO reaches its peak 

near 1 0D D .   
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(a)                                                           (b) 

Fig. 5.24. The natural frequency 0  and gap free-surface RAOs for bodies with different draughts 

when 0.4L  .  
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Fig. 5.24 compares the piston-mode natural frequency for two bodies with same 

and different draughts and their corresponding RAOs. The two bodies have the same 

size 1 1B B  . When barges have the same draught this results in higher piston mode 

natural frequency and larger free surface RAO in the confined water than occurs when 

the barges have different draught when 1 1D  . For 1 1D  , the natural frequencies of 

barges with different draughts changes slightly, and are higher than those for barges 

with the same draught. 

5.4 	Second‐order	resonance	in	the	gap	liquid	

Previous studies have shown that a classic resonance or first-order resonance can 

occur when the surrounding bodies are forced to oscillate at one of the natural 

frequencies of the liquid confined in the gap. One would speculate that even if the 

bodies are not forced to oscillate at a natural frequency in the gap, second-order 

resonance may occur if the double frequency of the forced oscillation equals one of 

them. This speculation has been proved mathematically by Wu (2007) for the sloshing 

in a 2D rectangular tank. Second-order resonance is related to second-order effects, in 

which the amplitudes of the second-order terms (instead of the first-order terms) grow 

with time. Wang and Wu (2008) numerically confirmed that this distinct type of 

resonance exists in the liquid confined in the gap. This thesis will further study the 

second-order resonance in wave interactions with twin floating bodies. The draught of 

the bodies is set at 1D   for all the following cases in this section. 

5.4.1 	Second‐order	resonance	induced	by	heave	motion	

This subsection will focus on the second-order resonance in heave motion mode. 

The twin bodies are excited harmonically as  sinz zs A t . As suggested by Wang 

and Wu (2008), the typical condition of the second-order resonance is 20.5z m  , 

0,1, 2,...m  . The situation of 00.5z   for 1L   is considered first. The wave 

elevation history along the left side of body-1 for 0.05A   is shown in Fig. 5.25(a). The 

FFT analysis is performed for two time intervals of the elevation history, as presented in 

Fig. 5.25 (b). The amplitude of the frequency component 0  in this case reflects the 

level of second-order effect. The increase of its amplitude with time will suggest the 

occurrence of second-order resonance, according to its definition. The wave elevation 

history shows the second-order effect is minor. Meanwhile, the increase of the 



 
122

amplitude of 0  is hardly observable. We now amplify the amplitude A  to 0.2 to see 

the second-order effect more clearly, because the second-order terms are proportional to 

2A . The wave elevation for 0.2A   is provided in Fig. 5.26(a), which shows the 

second-order effect is evident. However, the FFT analysis performed for three time 

intervals still demonstrates very little increase of it, see Fig. 5.26(b). This may suggest 

the second-order resonance will not be triggered easily in the case of 1L  .  
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(a)                                                              (b) 

Fig. 5.25. Wave elevation history in the gap along Body-1 for 1L  , 00.5z  , 0.05A   and its 

corresponding FFT analysis. 
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(a)                                                              (b) 

Fig. 5.26. Wave elevation history in the gap along Body-1 for 1L  , 00.5z  , 0.2A   and its 

corresponding FFT analysis.  
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Fig. 5.27. FFT analysis of wave elevations along the left side of Body-1 for 2L  . (a) 00.5z  ; 

(b) 20.5z  .   

The cases of 2L   are considered next. The FFT analysis of wave elevations 

along the left side of body-1 for both 00.5z   and 20.5z   is presented in Fig. 

5.27(a) and (b), respectively. The component of 0  is small and its amplitude is almost 

unchanged with time. The increase of the amplitude of 2  is subtle, although the 

second-order effect is pronounced at 20.5z  . Now we consider the case of larger 

gap width 4L  . Its wave elevation history along the left side of body-1 is given in Fig. 

5.28(a). The nonlinear effects are obvious with complex components, as detailed in Fig. 

5.28(b). The amplitude of the double frequency component is larger than that of the 

excitation frequency, and it clearly increases with time. Second-order resonance is 

evident in this case. 

The above analysis suggests that the second-order resonance phenomenon is 

largely dependent on the gap width over depth ratio. The gap depth is equivalent of the 

initial body draught, regardless of the wave elevations in the gap during oscillations. 

Specifically, the bigger the value of the ratio is, the more evident the second-order 

resonance becomes. To test if this speculation is correct, an even wider gap, 8L   is 

further simulated. The wave elevation along the left side of body-1 is presented in Fig. 

5.29(a). Its shape reveals stronger second-order effect. The corresponding FFT analysis 

performed on three time intervals, which is given in Fig. 5.29(b), shows clearly the 

occurrence of second-order resonance. The amplitude of 2  is even several times larger 

than that of 20.5 . Therefore, it is correct to say that the second-order resonance is 

more pronounced when the gap is wider.     
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Fig. 5.28. Wave elevation history in the gap along Body-1 for 4,L  20.5z  , 0.2A   and its 

corresponding FFT analysis. 
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Fig. 5.29. Wave elevation history in the gap along Body-1 for 8L  , 20.5z  , 0.2A   and its 

corresponding FFT analysis. 

5.4.2 	Second‐order	resonance	induced	by	sway	motion	

The second-order resonance in sway motion mode is studied in this subsection. 

The twin bodies are undergoing the same horizontal motion, which we prescribe as 

 sinx xs A t . The first three natural frequencies for 4L   have been calculated 

through the disturbance approach, namely 1 0.9188  , 2 1.2531  , 3 1.5038  . 

Before investigating the second-order resonance, the first-order resonance is studied for 

comparison. The simulations are run at each of the three natural frequencies. The wave 

elevation results are provided in Fig. 5.30, Fig. 5.31 and Fig. 5.32, respectively. For the 

case of 1x  , the wave profiles in the gap show that it is indeed the first sloshing-

type mode. Standing waves are formed with a node at the middle of the gap and two 

anti-nodes at the gap walls. The free surface elevation along the left side of body-1 
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demonstrates a clearly increasing trend for the first 50 periods. It then stops growing 

due to radiation damping in the gap. The corresponding power spectrum analysis on the 

wave elevation also shows that there is only one frequency dominating the liquid 

motion in the gap, which coincides with the excitation frequency. This confirms that 

first-order resonance has taken place when 1x  . For the case of 2x  , the free 

surface profiles in the gap demonstrate that the anti-nodes moves / 4  towards the 

centre of the gap, which suggests no resonance has occurred. Additionally, the first-

order resonance cannot be observed from the wave elevation history in Fig. 5.31(b). 

This particular irregular shape of the wave elevation implies multiple dominant 

frequencies. The corresponding power spectrum analysis verifies this. The first natural 

frequency 1  is triggered and the power spectral density of it overtakes that of the 

excitation frequency 2 . As a matter of fact, 2  is associated with a symmetric mode, 

while the sway motion of the two bodies in the same direction results in an anti-

symmetric motion of the liquid. The first-order resonance has also occurred in the case 

of 3x  . The wave elevation history and power spectral distribution are similar to 

that of 1x  . The wave profiles show it is the third sloshing-type mode based on the 

observation that there are standing waves formed in the gap with three nodes and two 

anti-nodes at the gap walls.       
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Fig. 5.30. Wave elevation results for 4L  , 1x  . (a) wave profiles in the gap; (b) wave elevation 

history in the gap along Body-1 and its corresponding power spectrum analysis.    
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Fig. 5.31. Wave elevation results for 4L  , 2x  . (a) wave profiles in the gap; (b) wave elevation 

history in the gap along Body-1 and its corresponding power spectrum analysis.    
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Fig. 5.32. Wave elevation results for 4L  , 3x  . (a) wave profiles in the gap; (b) wave elevation 

history in the gap along Body-1 and its corresponding power spectrum analysis.    

It is interesting to notice that first-order resonance does not occur at 2x  . This 

is because the flow induced by the same horizontal motion of twin bodies is anti-

symmetric. Thus, the first-order resonance is expected at an odd mode, or rather 

2 1x m   , 1, 2,...m  . Furthermore, Wu (2007) has proved this mathematically based 

on liquid sloshing in a tank. In terms of the second-order resonance, he has pointed out 

that it will not be excited when the double frequency is equal to one of the natural 

frequencies of an odd mode. When the double frequency equals one of the even modes, 

such resonance does occur.  
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Fig. 5.33. Wave elevation history in the gap along Body-1 for 2L  , 10.5x   and its 

corresponding FFT analysis. 
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Fig. 5.34. Wave elevation history at the left side of Body-1 for 2L  , 20.5x   and its 

corresponding FFT analysis. 

Fig. 5.33 gives the wave elevation history in the gap along body-1 and its FFT 

analysis for three time intervals for 2L  , 10.5x  . The amplitude of double 

frequency 1  is large. However, it decreases with time, which means no second-order 

resonance in the gap liquid motion. The FFT analysis of wave elevation history along 

the same point for 2L  , 20.5x  , which is given in Fig. 5.34(b), has shown a 

different pattern. It is found that the amplitude of its double frequency 2  is in general 

small but does not drop with time. It is hard to tell if the second-order resonance occurs. 

Considering that the second-order resonance associated with heave motion is more 

easily triggered in wide gaps, we consequently consider the case of 4L  , 20.5x  . 

The wave elevation along the left side of body-1 is given in Fig. 5.35(a). Its FFT 

analysis is provided in Fig. 5.35(b). Three dominant frequencies are observed in the gap 
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motion, namely the excitation frequency 20.5 , first natural frequency 1  and double 

frequency 2 . The amplitude of 1  clearly decreases with time, while the amplitude of 

2  slightly increases with time. It suggests the occurrence of second-order resonance. 

The hydrodynamic forces on body-1 and their corresponding FFT analysis are presented 

in Fig. 5.36. The second-order resonance has been reflected in the forces.  
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Fig. 5.35. Wave elevation histories at the left side of Body-1 for 4L  , 20.5x   and its 

corresponding FFT analysis.  
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Fig. 5.36. The hydrodynamic forces on Body-1 and their corresponding FFT analysis when 4L  , 

20.5x  , 0.25A  .  

In order to observe the second-order resonance more clearly, we consider the case 

of even larger gap width 8L  . The FFT analysis of wave elevation along the left side 

of body-1 is provided in Fig. 5.37(b). Evidently, the amplitude of the double frequency 

grows with time in this case. It exceeds the amplitude of excitation frequency after a 

certain period. The hydrodynamic forces on body-1 are given in Fig. 5.38. The same 

trend as wave elevation is shown. In a word, the second-order resonance is more easily 

provoked in a wider gap in sway motion mode. This is consistent with the observations 

in horizontal liquid sloshing in a tank (Ning et al 2012, Zhang et al 2015). 
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Fig. 5.37. Wave elevation histories at the left side of Body-1 for 8L  , 20.5x   and its 

corresponding FFT analysis.  
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Fig. 5.38. The hydrodynamic forces on Body-1 and their corresponding FFT analysis when 8L  , 

20.5x  , 0.25A  . 

Regarding twin barges undergoing horizontal motion in opposite direction 

prescribed as  0 sinx xs A t ,  1 sinx xs A t  , the flow will be symmetric as in the 

vertical motion. As pointed out by Wang and Wu (2008), the resonant behaviour is 

expected to be similar to that in the vertical motion. Specifically, the first-order 

resonance will take place at natural frequency of an even mode and the second-order 

resonance at half of the natural frequency of an even mode. 

5.4.3 	Second‐order	resonance	induced	by	roll	motion	

The second-order resonance in the gap liquid related to roll motion is studied in 

this subsection. The angular displacements of the twin barges are both expressed as 

 0 sin rt   . The positive direction is anticlockwise. Each body is rotating about its 

own mass centre, which is located at half of the draught below the still water.  
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First, the case of 2L   is simulated. The wave runup on the left side of body-1 

for 2r   is plotted in Fig. 5.39(a). Its irregular form implies multiple frequencies 

existing in the system, and the general decreasing trend indicates that no first-order 

resonance takes place. The corresponding FFT analysis of wave elevation confirms 

there are three dominant frequencies. The amplitude of excitation frequency 2  does 

not increase with time. The case of 20.5r   is then tested to see if there exists 

second-order resonance. It is observed in Fig. 5.40(a) that the wave elevation is nearly 

linear. Its FFT analysis shows directly that the second order effect is too small in this 

case. 
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Fig. 5.39. Wave elevation histories at the left side of Body-1 for 2L  , 2r   and its 

corresponding FFT analysis. 
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Fig. 5.40. Wave elevation histories at the left side of Body-1 for 2L  , 20.5r   and its 

corresponding FFT analysis. 



 
132

The cases of 4L   are simulated next. For 20.5r  , the wave elevation in the 

gap along body-1 is presented in Fig. 5.41. It can be seen clearly that the second order 

effect is strong. Moreover, the amplitude of double frequency grows obviously with 

time, which proves the occurrence of second-order resonance. For 30.5r  , the 

amplitude of wave elevation at double frequency can be neglected as shown in Fig. 

5.42(b). The dominant frequencies in the system are excitation frequency 30.5  and the 

first natural frequency 1 . No second-order resonance can be observed in this case.   
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Fig. 5.41. Wave elevation histories at the left side of Body-1 for 4L  , 20.5r   and its 

corresponding FFT analysis. 
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Fig. 5.42. Wave elevation histories at the left side of Body-1 for 4L  , 30.5r   and its 

corresponding FFT analysis. 
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Fig. 5.43. Wave elevation histories at the left side of Body-1 for 8L  , 20.5r   and its 

corresponding FFT analysis. 

The case of larger gap width 8L   is simulated. Clearer second-order resonance 

can be observed in Fig. 5.43, which gives the wave elevation results for 20.5r  . 

The wave elevation history in the gap demonstrates an increasing trend because of the 

resonance. The amplitude of double frequency is several times larger than that of 

excitation frequency. 

If we compare the above cases of roll motion carefully, the following conclusions 

can be drawn. Firstly, the first-order resonance cannot occur at the natural frequency of 

an even mode. Secondly, the second-order resonance can take place at half of the 

natural frequency of an even mode. Thirdly, for the same excitation amplitude, second-

order resonance is more pronounced in a wider gap. Therefore, the flow produced by 

roll motion resembles that of sway motion in terms of the feature of first- and second-

order resonance.  
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Chapter	6 	Wave	resonance	analysis	 in	a	gap	 induced	by	 incident	

waves		

In the previous chapter, we calculate the dominant natural frequencies of the 

liquid motion in the gap formed by two upright structures. Then, the first- and second-

order resonances of liquid motion weree analysed. The liquid motion in the gap was 

excited by the forced harmonic motions of the upright structures. This chapter, however, 

will focus on the wave resonance in the gap induced by incoming waves. The incoming 

waves are therefore regarded as the ‘excitation’ and the wave oscillation in the gap as 

the ‘response’. The resonance behaviour of cases with fixed and free floating bodies is 

analysed. The focus is on the piston mode in a narrow gap and higher sloshing modes in 

a wide gap. For fixed bodies, the standing wave trains formed in front of the upwave 

body and phase shifts caused by the bodies are studied. Then we consider the free 

surface nonlinearity effects arising from the increase of incident wave steepness. We 

investigate the second-order resonance in the gap motion. Finally, we analyse free 

floating bodies, how the motions of the bodies affect the resonance in the gap and, in 

turn, how the resonance affects the body motions.  

6.1 	Introduction	and	mathematical	model	

The study of multiple structures attacked by waves is of practical importance. 

Wave elevations induced by incoming waves may have serious consequences on the 

surrounding structures, especially at resonance. A great deal of work has been done to 

study the gap resonances among multiple structures in waves (Sun et al 2010, Lu et al 

2010, Moradi et al 2015, Ning et al 2015). Not much work, however, has been 

published closely investigating the nonlinear effects of free surface on the gap 

resonance. Vinje (1991) detected that the piston mode water oscillation in a narrow 

moonpool showed a Duffing-like behaviour, where the nonlinearity will affect the 

solution of the system. Faltinsen et al (2007) pointed out that the free-surface 

nonlinearity was important, based on their extensive studies on sloshing and closely 

related moonpool problems. Also, the wave elevation histories clearly showed the 

contribution of higher harmonics in the steady-state regimes. Their model tests data 

confirmed the Duffing-like behaviour. Feng and Bai (2015) examined the free surface 

nonlinearity effect on wave resonance in a gap formed by two barges. These above 

mentioned works are restricted to the piston mode oscillation in the gap, to the best of 
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the author’s knowledge. The study of how the nonlinear effects influence the gap 

motion, other than the piston mode, is even rarer. Therefore, one of the aims of this 

chapter is to investigate the nonlinear effects on the wave motion in a gap between two 

barges. The focus is on both the piston mode and other higher sloshing modes. 

Furthermore, very few studies have been reported on the second-order wave resonance 

in the gap induced by incident waves. This will be analysed in this chapter.  

For free floating bodies under incident waves, the resonance behaviour including 

the resonance frequency in the gap will be affected due to the motions of the bodies. 

Fredriksen et al (2015) studied regular wave-induced behaviour of a floating body with 

a moonpool. They focused on resonant piston-mode motion in the moonpool and rigid-

body motions (of the floating body) through experiments and numerical simulations. An 

important observation was that the maximum piston-mode response in the moonpool 

did not happen when the excitation frequency is equal to the piston-mode natural 

frequency but happened in the vicinity of that. This could be then called the shift of 

natural frequency in the sense that large wave oscillation takes place at it. There is 

hardly any work published on body motion effects on other higher sloshing modes in 

the gap. This chapter will, therefore, study how the body motions affect the resonance in 

the gap on both the piston mode and other higher sloshing modes. 

We take the fifth-order Stokes wave as the incoming wave, as explained and 

adopted in Chapter 4. To better present and understand the numerical results against 

wave steepness, the corresponding incident velocity potential and the wave elevation are 

provided again as: 

 3 5 4 2 5 3
3

1 1 37 1 1
sin sin 2 sin 3 ,

2 24 2 12
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where /A k  and 2 /k    is its corresponding wave number; I  is the incident 

wave frequency; / 2A H , where H  is the peak to trough incident wave height and 

/ 2kH kA   . The parameter   is known as the wave steepness. The incident wave 

speed /I Ic k  increases as   increases because of the nonlinear wave relation. Note 

that in this chapter the results are all nondimensionalised as in Chapter 5. 

6.2 	Numerical	results	in	a	gap	between	fixed	bodies	

We next consider gap resonances with different modes. The piston mode occurs 

when the gap is narrow and the first two sloshing modes occur in a wide gap. Guided by 

the results in the previous chapter, a gap width 1L   is used to study the piston mode 

problems and 4L   is adopted to study the sloshing mode related problems. Narrow in 

this chapter refers to the gap width when the piston mode is dominant. Thus it may not 

be actually narrow in the physical geometric sense. The draught is set at 1D   for all 

the following simulations, although it is very important to realise that the draught of the 

structures has a profound influence on the motions in the gap (Frandsen 2004, Feng and 

Bai 2015). 

6.2.1 	Standing	waves	trains		

First, simulations of stationary twin barges subjected to incident waves of small 

steepness ( 0.0283  ) are run to study the wave elevations in and outside the gap. In 

this subsection, the phenomena of standing wave trains formed in front of the upwave 

barge are observed and examined quantitatively, together with the phase shifts. The 

phase shift is defined as the phase angle difference between the wave motion after 

disturbance and the initial incident wave. 

It is well known that standing waves can be established in front of an upright 

structure due to the superposition of the incident waves and reflected waves. In linear 

wave theory, the maximum amplitude of a standing wave should be twice as the 

incident wave amplitude. Moreover, unlike the incident wave, the amplitude at each 

point of a standing wave is different. Thus, there are nodes and anti-nodes, which refer 

to the points where the amplitude is minimum and maximum, respectively. When a 

standing wave is formed, it indicates the full reflection of the incident wave by the 

upwave barge. There are also cases when the incident wave is not reflected completely, 

which can be represented by the amplitude of the combined incident wave and reflected 
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wave in front of the upwave barge. To present the numerical results more clearly, the 

terms amplitude reflection coefficient /RA A   and transmission coefficient 

/TA A   from single body diffraction problem are adopted. RA  and TA  denote the 

amplitude of reflected and transmitted wave, respectively. For structures subjected to an 

incident wave, it is obvious from the energy conservation equation  

 2 2 1     (6.5) 

that both  and   should range from 0 to 1. Here 0   means that the incident wave 

is fully transmitted, as if there were no structure present. This happens when the 

incident wavelength is much larger than the body breadth. At the other extreme, 1  

stands for full reflection, in which standing waves in front of the body can be created. 

The magnitude of   can be represented by the amplitude response operator of the 

combination of the incident wave and reflected wave. 

Fig. 6.1 gives the RAOs in terms of the wave elevation in the gap and in front of 

the upwave barge and behind the leeside barge for 1L  . The RAOs are from the 

components corresponding to the incident wave frequency I . Since time-periodic 

states are reached rather quickly in all the simulated cases, the RAOs in the gap, (in 

front of the upwave barge and behind the leeside barge) are calculated from the 

amplitudes of wave runups on the corresponding side of the steady state parts 

normalized by the incident wave amplitude A , respectively. It shows that the reflection 

of the incident wave is affected greatly by the liquid motion in the gap. When resonance 

occurs in the gap, the reflection of the incident wave by the upwave barge achieves a 

minimum. The transmitted wave behind the leeside barge, however, reaches its 

maximum. Most of the energy is trapped inside the gap. Theoretically, when 1 , we 

expect there to be no liquid motion in the gap or behind the leeside barge. Full reflection, 

however, is not possible numerically. Only ‘nearly full reflection’ is shown, which can 

be seen in Fig. 6.1. There is almost no wave motion behind the leeside barge. This is 

because the resulting quasi-standing wave takes nearly all the energy in the front of the 

upwave barge. Only a little energy can be transmitted. Mathematically, at higher 

frequency, the wavelength becomes short relative to the draught. The body will behave 

more and more like a vertical wall from the bottom. It is therefore not surprising that as 

I  increases the result tends to a state of full reflection.  
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Fig. 6.1. The wave elevation RAOs in and outside the gap for 1L  .   

 

Fig. 6.2. Standing wave trains in front of the upwave barge when 1L  , 0.85I  .  
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Fig. 6.3. Wave profiles from 718(97.33 )t T  to 726(98.41 )t T  with time-interval 0.2 when 

1L  , 0.85I  . Notice the small-amplitude piston-mode wave in the gap. 

Fig. 6.2 illustrates the standing wave trains in front of the upwave barge for 

incident wave frequency 0.85I   from 718(97.33 )t T  to 721.2 (97.76 )t T  with 

time-interval 0.4. The incident wavelength 8.67  , which can be determined by 

equation (6.4). The period T  is based on the incoming wave frequency. The distance 

between two consecutive nodes or anti-nodes of this standing wave train is 

approximately 4.35. It is equal to half of the incident wavelength. This is consistent with 

the standing wave in the linear wave theory in that nodes or anti-nodes should occur at 

regular intervals of / 2 . The development of the wave profiles for the whole liquid 

domain over about one period is shown in Fig. 6.3. It is clear from the figure that the 

wave motion in front of the upwave barge has much larger amplitude than that in the 

gap. The water is nearly at rest behind the leeside barge.  

Another case is for incident wave frequency 1.2531I   and wavelength 4  . 

The standing waves established are shown in Fig. 6.4 from 497.2 (99.16 )t T  to 

499.4(99.6 )t T  with time-interval 0.2. The development of the wave profiles of this 

case is given in Fig. 6.5. The same conclusion can be drawn as that from the former case, 

except that there is hardly any motion in the gap as well. The wave profiles in Fig. 6.2 

and Fig. 6.4 are presented at such large time instants (near 100 periods) because fully 

developed time-periodic is desired.  
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Fig. 6.4. Standing wave trains in front of the upwave barge when 1L  , 1.2531I  . 

-16 -12 -8 -4 0 4 8 12 16
-0.8

-0.6

-0.4

-0.2

0.0

0.2

 x

 z
/A

tim
e

 

Fig. 6.5. Wave profiles from 496.2 (98.96 )t T  to  502 100.12t T  with time-interval 0.2 

when 1L  , 1.2531I  . 

Considering the physics behind Fig. 6.1, we may speculate that ‘full’ reflection 

starts to occur at frequencies slightly higher than the piston mode frequency 0  in the 

gap. In the case of 1L  , the piston mode frequency 0 0.7517  . The ‘full’ reflection 

or standing wave train appears at 0.85I  . Moreover, the higher incident wave 

frequency corresponds to purer ‘full’ reflection, since the RAO of liquid motion in the 

gap tends to zero as the frequency grows.    

The existence of disturbance from the structures causes phase shifts of the wave 

motions in and out of the gap. The phase shift changes with the excitation frequency. 
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They are calculated through the FFT performed on the wave elevation histories. Since 

the maximum wave elevation happens on the vertical walls of the barges in most cases, 

only the phase shifts with respect to wave histories of those intersection points are 

obtained. We mainly focus on the motion in the gap and in front of the upwave body. 
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Fig. 6.6. Phase angles of the motion in the gap when 1L  .  

Fig. 6.6 shows that the phase angles of the liquid motion in the gap change rapidly 

with the incident wave frequency, especially around the piston-mode resonance 

frequency 0 0.7517  . The phase angles in Fig. 6.6 are determined through the 

average of the phase of left and right side of the gap. This is valid because piston motion 

is primary. In the near resonance band, the phase changes dramatically from 0 to / 2 . 

At resonance, the motion in the gap is nearly in phase with the incident wave. The phase 

angles of the wave runups on the front of the upwave barge are provided in Fig. 6.7. It 

confirms the wave motion in the gap can affect the outside region through the opening. 

The wave runup on the upwave barge related to the gap resonance is in anti-phase of the 

incident wave. This explains the trough of the upwave barge runup RAO in Fig. 6.1.  
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Fig. 6.7. Phase angles of the wave runup on the upwave barge when 1L  . 

6.2.2 	Influence	of	a	gap	on	wave	motion	

It is well acknowledged that the fluid motion due to incident waves will be much 

more complicated when there are gaps between structures. Thus, this subsection aims to 

examine how a gap can affect the liquid motion in the gap and the outside region. Two 

typical gap widths 1L   and 4  are considered. Fig. 6.8 plots the RAOs of wave runups 

on the barges against the incident wave frequency. The cases of twin barges with gap 

widths 1 and 4 are compared with the case of a single barge. A single barge is regarded 

as structures with no gap. When there is only one barge present, the amplitude reflection 

coefficient   grows monotonically with the incident wave frequency until ‘full’ 

refection is established at roughly 0.85I  . When there are multiple bodies, the 

reflection coefficient is much influenced by the liquid oscillation in the gap, especially 

at resonance. The two troughs in Fig. 6.8(a) or the two peaks in Fig. 6.8(b) correspond 

to the resonance in the gap with width of 1 and 4. According to the simulation, the 

trough of gap width 1 relates to the piston mode, while the trough of 4L   represents 

the first sloshing mode. The comparison between Fig. 6.8(a) and (b) shows that the 

wave runups on the front of the upwave barge have the opposite trend compared to the 

runups on the back of the leeside barge. This may be because the whole fluid domain, 

including the gap and outside regions, is connected and the total energy is conserved.  



 
143

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.8

1.2

1.6

2.0

2.4

 Single barge
 L = 1
 L = 4

R
A

O
s 

o
f w

a
ve

 r
un

up
 o

n 
up

w
av

e 
ba

rg
e




1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
A

O
s 

of
 w

av
e 

ru
nu

p 
on

 le
es

id
e 

b
ar

g
e




 Single barge
 L = 1
 L = 4

 

(a)                                                                (b) 

Fig. 6.8. The RAOs of wave runups on the barges against the incident wave frequency. (a) on the front 
of the upwave barge; (b) on  the back of the leeside barge. 

Fig. 6.9(a) and (b) show the RAOs of wave runups on the front of the upwave 

barge and the back of the leeside barge against the wavelength, respectively. For single 

barge, the longer incident wave leads to smaller amplitude reflection coefficient  and 

larger transmission coefficient  . For twin barges, the relation is complicated due to the 

motion in the gap. Also the narrow gap affects the motion outside the gap more than a 

large gap. The presence of the neighbouring body affects the motion in general, not just 

when resonance occurs in the gap. For incident wavelength shorter than 6, there is very 

little motion behind the leeside barge due to the sheltering effect. The presence of 

another body makes this effect more profound. The peaks in Fig. 6.9(b) and the troughs 

in Fig. 6.9(a) correspond to the incident wavelength when resonance occurs in the gap. 

The gap resonance appears at relatively shorter incident wave for wider gap. 

One may notice that the RAOs of wave runups on the upwave barge are always 

larger than 1, as shown in Fig. 6.8 and Fig. 6.9. This is because the RAOs measure the 

combined wave of incident wave and reflected wave. Within the current range of 

incident wave frequencies, even though no wave is reflected back by the upwave barge, 

the RAO of the combined wave remains 1 because of the existence of the incident wave. 

For 4L  , the RAO is around 1 at 0.55I  . It is expected from the tendency of the 

RAO that for smaller I  the RAO may fall below 1 due to the partial cancellation of 

the incoming wave and reflected waves. The amplitude reflection coefficient tends to 1 

as the incident wavelength shortens and the influence of the gap diminishes.  
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(a)                                                                  (b) 

Fig. 6.9. The RAOs of wave runups on the barges against the incident wavelength. (a) on the front of 
the upwave barge; (b) on  the back of the leeside barge. 

The previous parts in this subsection concentrate on the influence of the gap on 

the front of the upwave barge and behind the leeside barge. Now we will focus on the 

motion inside the gap. With a narrower gap 1L  , the confined liquid motion reaches a 

periodic state after tens of periods (see Fig. 6.10). The excitation frequency is dominant 

in the motion inside the gap and the water heaves up and down like a piston. There are 

transient motions in the gap before the final periodic state can be reached. The patterns 

of transient motion change with the incident wave frequency. Examples of four typical 

patterns are given in Fig. 6.10. They are charactersied by the difference between 

incident wave frequency and piston mode resonance frequency in the gap. When the 

difference is big, the transient motion in the gap decays very quickly and then it nearly 

disappears completely (Fig. 6.10 (d)). Since the periodic state is reached for each case, 

we can determine the free surface response amplitude operator through performing FFT 

on the steady part of the wave history, as shown in Fig. 6.11. Only the natural frequency 

related to the piston mode is identified. This figure confirms that the resonance 

frequency in the gap is 0 0.7517   when 1L  . This is consistent with the results 

obtained in Chapter 5 through radiation. It may suggest that even though other natural 

frequencies of the motion exist in the gap, they are not important from the response 

point of view. For engineering configurations, like two ships transferring cargo at sea, 

only the lowest natural modes in the gap should be avoided for the sake of safe 

operation because of the configuration and the nature of the excitation. Inside a tank, 

excitation at any one of the natural frequencies will lead to the wave elevation tending 

to infinity, based on the linear theory. 
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(c)                                                                 (d) 

Fig. 6.10. Wave runups on the right side of the gap when 1L   with different incident wave 

frequencies. (a) 0.55I  ; (b) 0.7517I  ; (c) 0.8017I  ; (d) 1.2I  .  The previous study in 

Chapter 5 gives 0 0.7517  . 
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Fig. 6.11. The RAOs of the wave runups on the right side of the gap when 1L  .  
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For a large gap 4L  , Fig. 6.12 illustrates the four different patterns of motion in 

the gap. The comparison with Fig. 6.10 shows that the liquid motion in the wider gap 

can be much more complicated than that in the narrow gap. This may be due to the 

wave motions generated in the gap, which are more difficult to diminish than piston-like 

motion. Thus the final periodic state with only the incident wave frequency cannot be 

reached as quickly as in a narrow gap. Fig. 6.12 shows the peridoc state in each case has 

not yet been reached after the first 100 periods. In order to investigate the complex time 

history, the FFT analysis is performed over three time intervals of the wave elevation 

history. That of 0.75I   is shown in Fig. 6.13 as an example of the cases when 

resonance does not occur and also the frequency is far from the natural frequency. It is 

found that three distinct frequencies are dominant in the gap motion: the excitation 

frequency and the first two natural frequencies 1  and 2 . The 1  and 2 components 

diminish gradually as time evolves. This shows that the incoming wave could at first 

excite the confined water in the gap to move at its natural frequencies. However, we 

expect to see only the excitation frequency after a sufficiently long time. Another thing 

observed in Fig. 6.13 is that the amplitude related to the excitation frequency remains 

almost unchanged during the time, provided I  is not equal to one of the natural 

frequencies.   
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(c)                                                                   (d) 

Fig. 6.12. Wave runups on the right side of the gap when 4L   with different incident wave 

frequencies. (a) 0.55I  ; (b) 0.75I  ; (c) 0.9188I  ; (d) 1.2531I  . The previous study in 

Chapter 5 gives 1 0.9188   and 2 1.2531  . 
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Fig. 6.13. FFT analysis of free surface elevation on the right side of the gap for 4L  , 0.75I  .  
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(c)                                                                 (d) 

Fig. 6.14. Wave runups on the right side of the gap and its corresponding FFT analysis for 4L  . (a) 

and (b) 0.8588I  ; (c) and (d) 0.9788I  . 

Fig. 6.14 shows two examples of wave runup histories when the excitation 

frequency is close to the natural frequency. The most obvious feature is that there are 

envelopes in the runup histories. In both examples, there are three primary components, 

namely the first two sloshing modes and the excitation itself. The difference between 

the two examples is that when the excitation frequency is lower than the first natural 

mode, the motion generated in the gap is smaller. When the excitation frequency is 

higher than the first sloshing frequency 1 , at first the excited motion related to 1  can 

be much larger than the excitation. However, the motions related to the natural 

frequencies later die out gradually, due to energy dissipation. The overall wave 

elevation in the gap will decrease accordingly. This can be seen from the wave runup 

histories in Fig. 6.14 (a) and (c). Eventually, the motions in the gap will have only the 

components of incident wave frequency.  
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(a)                                                                  (b) 

Fig. 6.15. FFT analysis of free surface elevation on the right side of the gap for 4L  .  (a) 1I  ; 

(b) 2I  . 

When resonance does occur in the gap, i.e. 1I   or 2I  , the wave  

amplitude of the excitation frequency will grow with time for a long time as observed in 

Fig. 6.15(a) and (b), which show the FFT analysis of wave elevation on the right side of 

the gap when 1I   and 2I  , respectively. At the first sloshing mode, there 

exists a single frequency in the gap. The resonance behaviour in the elevation history as 

in Fig. 6.12(c) is obvious. At the second sloshing mode, the first three natural modes 

coexist. Thus, the resonance phenomenon is not that evident in the elevation history as 

shown in Fig. 6.12(d). 

The response amplitude operators associated with the excitation frequency can be 

obtained, even though the final periodic state is not reached in those cases without 

resonance. This is attributed to the fact that its amplitude remains nearly unchanged 

with time. For the two cases with resonance, the RAOs are calculated based on the first 

100 periods. The RAOs of the wave runups on the right side of the gap when 4L  , are 

calculated and given in Fig. 6.16. The two local peaks reveal the first two sloshing 

modes. Mathematically, all the natural modes should disappear as time tends to infinity. 

Physically, the natural modes can be excited and last for a long time. This enables the 

analysis of natural frequencies in the time domain of the numerical simulation. The 

response magnitude of the second sloshing mode is actually smaller than some other 

non-resonance responses. It is not as significant as the first sloshing mode, which 

amplifies the incident wave greatly. 
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Fig. 6.16. The RAOs of the wave runups on the right side of the gap when 4L  . 

6.2.3 	Effects	of	wave	steepness	on	wave	resonances		

The analysis in the above two subsections was based on the incident wave 

steepness 0.0283  . As pointed out in Schwartz (1974), the maximum wave steepness 

for periodic and propagating deep water surface waves is / 0.1412H   , which is 

equivalent to max 0.4436  . Thus the incident wave in the previous study is regarded as 

with very low steepness. The nonlinear effects of the fluid resonance in and outside the 

gap cannot be identified and analysed, as they are weak. Therefore, this subsection will 

investigate how the incident wave with increasing wave steepness affects the motion in 

the gap and outside it. The nonlinearity lies in the incoming wave itself.  

Following the analysis in Chapter 5, we know that when the gap is narrow piston 

mode dominates the liquid motion in the gap. While other higher modes may also exist 

in a narrow gap, wave amplifications are more significant in the piston mode than in 

other modes. Here we take 1L   as the case to study free surface nonlinearity related to 

piston mode. Three values of wave steepness 0.0283  , 0.0565, 0.133 are considered. 

Fig. 6.17 illustrates the wave motion in the gap when the incident wave frequency is 

0.6517. These figures show that the liquid in the gap heaves up and down like a piston, 

especially when the wave steepness is lower. In other words, the free surface stays 

horizontal during the interaction. Minor deformation from the flat surface starts to show 

at higher wave steepness. This slight alteration can be neglected compared to the 

magnitude of the piston motion.   
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Fig. 6.17. Wave elevation in the gap when 0.6517I  . (a)  0.0283  ; (b)  0.0565  ; (c) 

0.1130  . 
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(a)                                                                (b) 

Fig. 6.18. Wave runup histories on the right side of the gap when 1L  . (a) 0.7417I  ; (b) 

0.7717I  .  
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Fig. 6.19. Free surface RAOs in the gap with different wave steepness for 1L  .   

Fig. 6.18 shows the wave runups as a function of frequency on the right side of 

the gap for three different incident wave steepnesses. The incident wave frequency is 

around the piston mode natural frequency. The difference between the runup histories 

associated with the two lower steepness waves is hardly visible. If the incident wave is 

steeper, the magnitude of the wave runup in the gap will be altered to some extent. The 

motion in the gap for all of the cases simulated can reach the periodic state rather 

quickly. Thus the response amplitude operators can be obtained easily for each case. 

The overall response in the gap to the incoming wave steepness, over a range of 

frequencies, is shown in Fig. 6.19. In each case, the RAOs in Fig. 6.19 are determined 

as the average runup in the gap. The RAOs show that the motion response is nearly 

linear for low wave steepness. One may notice that there are two points missing close to 

the resonance frequency when 0.113  . This is because the amplitudes of the 

incoming waves are large in these two cases. Therefore, the bottom of the structures will 

emerge from water near resonance where the amplification of wave motion is larger. It 

will lead to the breakdown of the simulation. The RAO near resonance frequency 

cannot be determined as a result. As the incident wave becomes steeper and steeper, 

higher harmonic responses in the gap become more and more evident. 

Here is an explanation of why the free surface nonlinearity only slightly affects 

the motion response in the gap when piston mode dominates. For a pure piston motion, 

the free surface keeps flat and only heaves up and down over time. So the horizontal 

velocity of the fluid should be zero. That is  
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2 2

L L
u x
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  (6.6) 

which suggests   1 2Re i te C C z    from the Laplace’s equation, where 1C  and 2C  

are both constants. This actually brings some interesting facts. We know that the 

kinematic boundary condition on the free surface has the form  

 0.
t x x z

      
  

   
  

Now since / 0x   , it simplifies to   

 0.
t z

  
 

 
  (6.7) 

It is now nearly a linear equation. The nonlinear terms have disappeared, which means 

as long as the piston mode is dominant; the nonlinearity has only a slight effect on the 

response of the water motion. Since the piston mode dominates the free surface 

elevation in the gap, the wave runups on both sides of the gap should have the same 

profiles.  
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(a)                                                                (b) 

Fig. 6.20. RAOs of the wave runups on the front of the upwave barge and back of the leeside barge. 

The gap motion is not weakly influenced by the incoming wave steepness. The 

same statement holds for the water motion outside the gap, see Fig. 6.20.  Special 

attention should be paid to the vertical scale of figures Fig. 6.19 and Fig. 6.20 (a) and 

(b). The wave motion behind the leeside barge is generally small due to the sheltering 

effect, except when resonance occurs in the gap.  
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The piston-like motion is the primary mode in the gap when 1L  . As pointed out 

in Chapter 5, when the gap becomes wider, higher modes will start to appear in the gap 

motion. Here we take 4L   as the case to study the nonlinear behaviour in the gap 

motion of non-piston mode motion. The previous study already identified the first two 

sloshing modes of 4L  , which are 1 0.9188   and 2 1.2531  . The developments 

of the free surface profiles over one period (for both sloshing modes) are shown in Fig. 

6.21 and Fig. 6.22, respectively. The water flows back and forth in the gap, at the first 

sloshing mode, while it heaves up and down at the second sloshing mode, with a wavy 

motion of the free surface. The amplitude of the first sloshing mode is in general larger 

than that of the second sloshing mode. Unlike the piston mode in a narrow gap, in a 

wider gap the wave steepness of the incoming wave greatly affects the liquid motion for 

sloshing modes, especially for the first sloshing mode.  
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(c)                                                               (d) 

Fig. 6.21. Wave profiles from  1291.8 190t T  to  1298.6 191t T  with time-interval 0.2 

when 0.9188I  . (a) 0.0283  ; (b) 0.0565  ; (c) 0.113  ; (d) 0.226  .   
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(c)                                                           (d) 

Fig. 6.22. Wave profiles from  496.2 98.96t T  to  502 100.12t T  with time-interval 0.2 

when 1.2531I  . (a) 0.0283  ; (b) 0.0565  ; (c) 0.113  ; (d) 0.226  .   

The water motion in the gap is more complicated in a wide gap as mentioned 

before. This can be seen in Fig. 6.23, which shows the wave runup on the right side of 

the gap. The envelopes in the history indicate that there is an interaction between the 

incident waves and the waves generated in the gap. The amplitudes of the envelopes 

decrease over time. We expect the time-periodic state will be finally reached after a 

sufficiently long time. This wave history is for cases where the incident wave frequency 

is close to the natural frequency. At resonance the runup histories will be totally 

different. Fig. 6.24 shows us the wave runup histories on the right side of the gap at 

resonance for a range of incident wave steepness. The runup is large in general. The 

nonlinear effects however make the wave elevation small in the end except for a short 

transient period. This large transient motion may cause problems to the surrounding 

structures in real scenarios. Here in theory we only focus on the final steady state. A 

growing phase shift is also developed due to the increasing wave steepness. 
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Fig. 6.23. Wave runup histories on right side of the gap when 4L  , 0.8588I  . 
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Fig. 6.24. Wave runup histories on the right side of the gap when 4L  , 1I  .  

We can see from the wave profiles in Fig. 6.21 and Fig. 6.22 that the maximum 

elevation in the gap happens on the vertical walls of the structures. Therefore the motion 

in the gap can be represented by the wave runups on the vertical walls, which form the 

gap. The RAOs of the wave runups on both sides of the gap are provided in Fig. 6.25. 

The RAO for 0.9041I   and 0.226   cannot be determined because the incoming 

wave amplitude is large in this case and the strong amplification in the gap during the 

transient period will cause the bottom of the structures to emerge from the water. The 

RAOs for all other cases are calculated by performing FFTs on the first 100 periods 
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excluding the transient stage. The nonlinear effects have a minor influence on the RAOs 

at low excitation frequency. However, they make the RAO in the gap drop dramatically 

at resonance. 
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(a)                                                                (b) 

Fig. 6.25. RAOs of the wave runups on both sides of the gap when 4L  . (a) RAO of runup on the 
right side of the gap; (b) RAO of runup on the left side of the gap. 

6.3 Second‐order	resonance	in	a	gap	between	fixed	bodies	

As stated in the previous chapter, the second-order resonance refers to the wave 

resonance that occurs in the gap. To the best of the author’s knowledge, wave induced 

second-order gap resonance has not been studied before. The liquid motion in the gap at 

such resonance will result in a large wave load on the surrounding structures. Thus, the 

focus is not just on the wave elevations in the gap, but also the hydrodynamic loads on 

the bodies at second-order resonance. Additionally, the confined liquid may hit the 

bottom of the superstructure provided that the two bodies are members of a structure, 

like in a catamaran. Furthermore, in terms of the resonance effects on the surrounding 

bodies, there should be some differences between radiation problems and diffraction 

problems. In the previous radiation problems, the flow is either symmetric or anti-

symmetric, while in the diffraction problems, the flow is asymmetric. Moreover, the two 

bodies are distinguished by upwave body and leeside body depending on the 

propagating direction of the incident wave. Thus, this section will study the wave 

induced second-order resonance in the gap formed by two fixed bodies.  

Two gap widths 1L   and 4L   are considered. The draught of the bodies is kept 

as 1D  . The incident wave is the fifth-order Stokes wave. The natural frequencies in 

the gap have been found through the previous study. Second-order resonance condition 
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is the same as in the radiation problems, which gives that double frequency of the 

incident wave is equal to one of the natural frequencies. The wave elevation results 

provided in this section are along the right side of the gap.  
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(a)                                                               (b) 

Fig. 6.26. Wave elevation on the right side of the gap and corresponding FFT analysis for 1L  , 

00.5I  .   

For narrower gap 1L  , the case of incident wave with 00.5I   is considered. 

The wave steepness is set as 0.0566   to reveal the second-order effect clearer. Fig. 

6.26 gives the wave elevation results. The elevation becomes periodic after about 15 

periods. The FFT analysis on the elevation history over three time intervals shows that 

the amplitude of double frequency increases with time before the periodic state is 

reached. The wave elevation in the gap is much smaller than that of the first-order 

resonance when 0I  , where the gap elevation RAO is nearly 6.  
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(c)                                                                 (d) 

Fig. 6.27. Horizontal forces on both bodies and their corresponding FFT analysis for 1L  ,

00.5I  . (a) and (b) upwave body Body-0; (c) and (d) leeside body Body-1. 

We focus more on the horizontal forces on the bodies at such resonance when 

attacked by incident waves. They are given in Fig. 6.27. The force histories exhibit a 

strong second-order effect, especially on the leeside body. The amplitude of double 

frequency is in fact larger than that at excitation frequency. Moreover, there is a large 

drift force on the upwave body along the incident wave propagation direction, while the 

drift force on the leeside body is small. 
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(a)                                                               (b) 

Fig. 6.28. Wave elevation on the right side of the gap and corresponding FFT analysis for 4L  , 

10.5I  .  

For a wide gap 4L  , the cases of 10.5I   and 20.5I   are simulated. The 

incident wave steepness is 0.0283   in both cases. The wave runup on body-1 in the 

gap and the corresponding FFT analysis for three different time intervals are presented 

in Fig. 6.28 for 10.5I  . The increasing trend with time is obvious due to the rapid 

growth of the amplitude of double frequency. The amplitude of the excitation frequency 
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I  remains unchanged. It is expected that the second-order effect of wave elevation in 

the gap would eventually exceed the first-order effect. 
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(c)                                                           (d) 

Fig. 6.29. Horizontal forces on both bodies and their corresponding FFT analysis for 4L  ,

10.5I  . (a) and (b) upwave body Body-0; (c) and (d) leeside body Body-1. 

Fig. 6.29 gives the horizontal forces on both bodies and their corresponding FFT 

analysis at resonance for 10.5I  . The horizontal forces become larger and larger as 

time grows due to the increasing wave elevations in the gap. The drift force on the 

upwave body makes up a considerable portion of the total force. 
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(a)                                                          (b) 

Fig. 6.30. Wave elevation on the right side of the gap and corresponding FFT analysis for 4L  , 

20.5I  .   
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(c)                                                             (d) 

Fig. 6.31. Horizontal forces on both bodies and their corresponding FFT analysis for 4L  ,

20.5I  . (a) and (b) upwave body Body-0; (c) and (d) leeside body Body-1. 

The wave elevation and horizontal force results of 20.5I   are presented in Fig. 

6.30 and Fig. 6.31, respectively. The wave elevation history is complicated because the 
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first three natural modes have all been excited in the gap motion. As time goes on, the 

amplitude of the second mode increases, while the amplitudes of the first and third 

modes decrease. The horizontal force on the upwave body is in general larger than that 

on the leeside body. The second-order effects on the horizontal forces are not that 

pronounced even though the second-order resonance takes place in the gap motion.   

6.4 	Resonance	analysis	in	a	gap	between	freely	floating	bodies	

This section will simulate the cases when each of the two bodies can respond 

freely to the incident waves. The purpose of these simulations is to investigate how the 

body motions affect the wave resonance in the gap and how the resonance affects the 

body motions in return. For stationary twin bodies, first-order resonance can always 

occur when the incident wave frequency is equal to one of the natural frequencies in the 

gap. For free floating bodies under incident waves, the situation can be more complex 

because the natural frequency is obtained for the gap configuration at rest, and it no 

longer applies when the configuration changes subsequently due to body motions. The 

effects of body motions on wave oscillation in the gap cannot be excluded. Furthermore, 

resonance may not occur when the excitation frequency is equal to a natural frequency 

but happens in the vicinity of that (Fredriksen et al 2015). This could then be called a 

shift of natural frequency, in the sense that the large wave oscillations take place. The 

frequency at which first-order resonance occurs is now denoted as , 0,1,2,...n n  in 

order to distinguish these from the resonance frequencies in the previous situations. 

The centre of gravity (CG) of each body lies in its symmetry line and is gz  below 

the still water level. The rotation of each body is about its own gravitational centre with 

0.1gz   . There are also respective mooring lines applied to each individual body to 

provide a horizontal restoring force to prevent the bodies from drifting away. They are 

simplified to a linear spring because it is out of the current thesis’s scope to investigate 

the feature of mooring lines themselves. The stiffness constant is set as 0 1 2.0   . 

The corresponding moment of inertia 0 1 20I I  . Note that these parameters, i.e. 

stiffness constants and moments of inertia, directly affect the response of the floating 

bodies under incident waves and influence the shifts of natural frequencies as a result. 

How these parameters affect the resonance in the gap can be investigated in future study. 

The draught of the bodies is kept as 1D  . Two initial gap widths with 1L   and 4L   

are considered.  
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6.4.1 	Narrower	gap	L=1	with	a	piston	mode			

The cases of gap width 1L   are simulated in this subsection to study the piston 

mode resonance in a gap formed by twin free floating bodies. The previous study has 

found that the piston mode natural frequency of 1L   equals 0 0.7517   in a gap of 

twin fixed bodies. Therefore to start with, an incident wave with frequency 0.7517I   

is tested. The wave steepness 0.0283  . The wave elevation histories on both sides of 

the gap are given in Fig. 6.32(a). Here, right  and left  are the wave elevation at the right 

and left side of the gap, respectively. The power spectral analysis is performed on the 

wave elevation histories to identify the frequency components of the liquid motion in 

the gap, which is shown in Fig. 6.32(b). We notice a distinct frequency 0.5486  , in 

the gap motion and its magnitude is even larger than that of the excitation wave 

frequency. It might be that 0.5486   is the piston-mode resonance frequency when 

the bodies are free floating. 
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(a)                                                          (b) 

Fig. 6.32. Wave elevations on both sides of the gap and their corresponding power spectrum for 1L  , 

0.7517I  .  

To check if 0.5486   is the piston-mode resonance frequency, an incident wave 

with 0.5486I   is run. The wave steepness is set as 0.005   to enable the 

simulations to run for a sufficiently long time. This is to make sure the wave elevations 

trend can be clearly observed during this time length. The wave elevations on both sides 

of the gap are presented in Fig. 6.33. As can be seen in Fig. 6.33(a) and (c), the wave 

runups in the gap on both bodies grow very quickly with time. To extract the frequency 

components of the gap motion and show their developments with time, a power spectral 

analysis is performed on the elevation histories over three time intervals. There is a 
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single frequency 0.5486   in the gap and its power spectral density increases with 

time, which is a clear sign of resonance. The wave profiles in the gap, which are plotted 

in Fig. 6.34, exhibit piston like pattern. The results show that 0.5486   is indeed the 

new piston mode resonance frequency of 1L   when the bodies are free floating. That 

is to say the piston mode natural frequency is lowered by 27% of 0  due to the free 

motions of the bodies. In a piston mode, the water inside the gap between fixed bodies 

can be regarded as a solid body with a constant stiffness  . Once the bodies are allowed 

to respond freely under incident waves, its effect is equivalent to the stiffness   being 

softened. Consequently, the natural frequency should be reduced.   

0 5 10 15 20 25 30 35 40
-8

-4

0

4

8 L = 1, 

 = 0.5486, A = 0.017

 r
ig

h
t/A

t/T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

8

16
0

8

16
0

8

16

L = 1, 

 = 0.5486, A = 0.017

 

  



 

 

P
o

w
er

 s
pe

ct
ra

l d
en

si
ty

 

 

 

 
 

(a)                                                             (b) 

0 5 10 15 20 25 30 35 40
-8

-4

0

4

8 L = 1, 

 = 0.5486, A = 0.017

 l
e

ft
/A

t/T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

8

16
0

8

16
0

8

16

L = 1, 

 = 0.5486, A = 0.017

  

  



 
 

P
o

w
er

 s
pe

ct
ra

l d
en

si
ty

 

 

 

 

 

(c)                                                              (d) 

Fig. 6.33. Wave elevations on both sides of the gap and corresponding power spectrum for 1L  , 

0.5486I  , 0.005  . (a) and (b) right side of the gap; (c) and (d) left side of the gap. 
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Fig. 6.34. Wave profiles in the gap for 1L  , 0.5486I  , 0.005  . 

The body motions at wave resonance are provided in Fig. 6.35, in which xs , zs  

and   denote the horizontal, vertical and rotational motion, respectively. The subscripts 

0 and 1 indicate which body it is referring to. The horizontal motion amplitudes of the 

two bodies increase gradually with time and their motions are always in opposite 

directions. This is because the body motions strongly depend on the wave elevation 

pattern in the gap, as demonstrated in Fig. 6.36. The average wave elevation in the gap, 

denoted gap  is defined by right left( ) / 2  . The liquid is periodically pumped in and out 

of the gap with growing amplitude. As a result, the free surface in the gap will be above 

and below the still water level periodically with increasing magnitude. When the free 

surface is above the still water level, the resultant horizontal force on body-0 is in 

negative direction, while that on body-1 is in positive direction. Therefore, the two 

bodies will be pushed away. By contrast, when the liquid surface is below the still water 

level, the resultant horizontal force on body-0 is in positive direction, while that on 

body-1 is in negative direction. Thus, the two bodies will be attracted towards each 

other. The opposite horizontal motions of the two bodies will lead to a periodic 

expansion and reduction of the gap width.  
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(a)                                                            (b) 

Fig. 6.35. Body motions of the two bodies for 1L  , 0.5486I  . (a) upwave body Body-0 ; (b) 

leeside body Body-1. 
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Fig. 6.36. Averaged wave elevation in the gap and horizontal forces and motions of the two bodies. 

Like the horizontal motions, the roll motions of the two bodies are always in the 

opposite direction. The negative roll angles mean that the bodies are tilted to the right 

because the rotational motion is positive in the anticlockwise direction. The roll motions 

are in general small because the moment of inertia is large. There are also clear drift roll 

motions of body-1 in the positive direction, which signals a small drift moment. 

6.4.2 	Wider	gap	L=4	with	sloshing	modes	

For cases of initial gap width 4L  , the focus is on the first few resonant modes. 

As above, the incident waves of 0.9188I  , 0.01   and 1.2531I  , 0.0283   

are tested. Their wave elevations along both sides of the gap and their corresponding 
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power spectrum are provided in Fig. 6.37. A distinct frequency 0.7241   is observed 

in both spectrum figures Fig. 6.37(b) and (d), other than the excitation frequency I . 

Another frequency 1.6118  , which is marked in Fig. 6.37 (d), can be inspected with 

small magnitude. It shows that certain frequencies of liquid motion in the gap are 

independent of the excitation frequencies and the resulting body motions. 0.7241   is 

expected to be the new first sloshing resonance frequency because of its large 

magnitude. 1.6118   might be another higher order sloshing resonance  frequency. 
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(c)                                                           (d) 

Fig. 6.37. Wave elevations on both sides of the gap and their corresponding power spectrum for 4L  . 

(a) and (b) 0.9188I  ; (c) and (d) 1.2531I  . 

To test if 0.7241   is indeed the new first sloshing resonance frequency, an 

incident wave with 0.7241I   is run. The wave steepness 0.01   is adopted to make 

sure that the simulation can run for a sufficiently long time. The wave elevation 

histories along the right and left side of the gap are shown in Fig. 6.38(a) and Fig. 

6.39(a), respectively. Firstly, the increasing trend with time can be clearly seen in both 

figures. Secondly, the wave elevation on the two sides has just the opposite tendency, 
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which suggests the water moves back and forth in between the two bodies. The power 

spectral analysis on the wave elevations for three time intervals confirms that resonance 

has occurred, which is given in Fig. 6.38(b) and Fig. 6.39(b), respectively. Wave 

profiles in the gap for a typical period are illustrated in Fig. 6.40. It shows the 

appearance of first sloshing mode. In a word, the first natural sloshing frequency has 

been shifted from 1 0.9188   to 1 0.7241   due to the motions of the two freely 

floating bodies. 
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(a)                                                             (b) 

Fig. 6.38. Wave elevation on the right side of the gap and corresponding power spectrum for 4L  , 

0.7241I  . 
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(a)                                                            (b) 

Fig. 6.39. Wave elevation on the left side of the gap and corresponding power spectrum for 4L  , 

0.7241I  . 
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Fig. 6.40. Wave profiles in the gap for 4L  , 0.7241I  . 

The body motions at resonance are provided in Fig. 6.41. The horizontal and 

vertical motions of both bodies are growing gradually with time due to the increasing 

wave elevations in the gap. At first, the two bodies are moving horizontally in opposite 

directions, which means their horizontal motions are in antiphase with phase difference 

of 180. The phase difference between them is decreasing as time evolves until they are 

finally in phase after about 25 periods, as demonstrated in Fig. 6.42(a). The phase shifts 

of these motions are attributed to the resultant horizontal force on each body, which is 

resulting from the hydrodynamic pressure difference between two sides of the body and 

therefore depends strongly on the wave elevation patterns in the gap. Specifically, since 

the confined water moves back and forth in between the two bodies, the wave runups on 

them in the gap have just the opposite tendency. Thus, the resultant horizontal forces on 

the two bodies are in the same direction, whereas the resultant vertical forces are in the 

opposite directions and consequently so are the vertical motions, see Fig. 6.42(b).  

There is also a slight drift roll motion of the upwave body, even though the roll motions 

are in general small.  
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(a)                                                           (b) 

Fig. 6.41. Body motions of the two bodies for 4L  , 0.7241I  . (a) upwave body Body-0 ; (b) 

leeside body Body-1. 
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(a)                                                             (b) 

Fig. 6.42. Hydrodynamic forces on the two bodies and their corresponding motions for 4L  , 

0.7241I  . (a) horizontal direction; (b) vertical direction.     

The case of incident wave with 1.6118I   is run next. The wave elevations on 

both sides of the gap are shown in Fig. 6.43. They exhibit a general increasing trend 

with envelopes. Two observations can be made. Firstly, resonance has taken place in the 

gap. Secondly, the flow in the gap is dominated by multiple frequencies, which are 

close to one another. Their power spectrum diagrams show that there are mainly two 

frequencies governing the flow. The magnitude of component 1.6118I   grows with 

time, while that of another frequency 1.8078   decreases. It is expected that after a 

sufficiently long time, there will be only the incident wave frequency present. 

Simulation of 1.8078I   is also conducted. Their wave elevation histories in the gap 

are provided in Fig. 6.44. After the transient periods, the amplitude of envelope 
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increases with time. The wave profiles in the gap for a time of wave periods 49 of 

incident wave frequency 1.6118I   and 1.8078I   are illustrated in Fig. 6.45 (a) 

and (b), respectively. In both cases, after about 40 periods the liquid oscillation in the 

gap is mainly dominated by I . The free surface profiles indicate that they are the third 

and fourth resonant mode, respectively. That is to say 3 1.6118   and 4 1.8078   in 

the gap of free floating bodies for 4L  . 
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(c)                                                            (d) 

Fig. 6.43. Wave elevations on both sides of the gap and corresponding power spectrum for 4L  , 

1.6118I  . (a) and (b) right side of the gap; (c) and (d) left side of the gap. 
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(a)                                                               (b) 

Fig. 6.44. Wave elevations on both sides of the gap for 4L  , 1.8078I  . (a) right side of the gap; 

(b) left side of the gap. 
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(a)                                                             (b) 

Fig. 6.45. Wave profiles in the gap for 4L   with different incident frequencies. (a) 1.6118I  ; 

(b) 1.8078I  .  

The body motions at the third sloshing resonance in the gap are presented in Fig. 

6.46. In general, they are much smaller than the body motions at the first sloshing 

resonance. However, like at the first sloshing resonance, the horizontal motions of the 

two bodies tend to oscillate in the same direction and vertical motions tend to move in 

opposite directions. This may be because they are both odd modes. The roll angles are 

so small that the rotations can be neglected. 
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(a)                                                               (b) 

Fig. 6.46. Body motions of the two bodies for 4L  , 1.6118I  . (a) upwave body Body-0 ; (b) 

leeside body Body-1. 

As in the gap between fixed bodies, second-order resonance may also occur when 

the two bodies are free floating. The cases of incident wave frequency 3 1I     and  

4 1I     are simulated, respectively. Each of them is a difference frequency of two 

resonance frequencies. Based on the previous study, it satisfies the condition of second-

order resonance. The obtained results of 3 1I     are provided first. The wave 

elevation results along the gap sides are given in Fig. 6.47. Their elevation histories 

exhibit envelopes with increasing amplitudes. The corresponding power spectrum 

demonstrates that the liquid motions are dominated by the first resonance frequency 1  

and the incident wave frequency I . The magnitude associated with 1  increases 

rapidly with time, which is a feature of second-order resonance. Second-order resonance 

can become even more significant than first-order resonance. The body motions at this 

type of resonance are also provided in Fig. 6.48. The amplitudes of the translational 

body motions grow gradually with time.  
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(c)                                                           (d) 

Fig. 6.47. Wave elevations on both sides of the gap and corresponding power spectrum for 4L  , 

0.8877I  . (a) and (b) right side of the gap; (c) and (d) left side of the gap. 
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(a)                                                           (b) 

Fig. 6.48. Body motions of the two bodies for 4L  , 0.8877I  . (a) upwave body Body-0 ; (b) 

leeside body Body-1. 

The wave elevations in the gap for the case 4 1I     are provided in Fig. 6.49. 

The liquid oscillations are dominated by 1  and I . The appearance of the elevation 

histories is because these two frequencies are not close to each other. The increase in 

amplitude is due to the second-order resonance. The body motions at resonance are also 

provided in Fig. 6.50. As can be seen, the wave resonance in the gap has clear effects on 

the body motions. The amplitudes of the translational motions of both bodies are 

growing. 
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(c)                                                            (d) 

Fig. 6.49. Wave elevations on both sides of the gap and corresponding power spectrum for 4L  , 

1.0837I  . (a) and (b) right side of the gap; (c) and (d) left side of the gap. 
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(a)                                                           (b) 

Fig. 6.50. Body motions of the two bodies for 4L  , 1.0837I  . (a) upwave body Body-0 ; (b) 

leeside body Body-1. 

Generally speaking, the resonance behaviour especially the resonance frequencies 

in the gap will be changed due to the body motions under incident waves. For the above 
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particular cases, piston mode resonance at 1L   now takes place at a frequency 27% 

smaller than 0  and the first sloshing mode resonance at 4L   occurs at a frequency 

21%  smaller than 1 . The third and fourth sloshing resonance modes at 4L   are 

recognised. The wave resonance in the gap has clear effects on the body motions. 

Second-order resonance can also occur in the gap. It ought to be pointed out that in all 

the simulated cases, since the incident wave steepness is small; the actual body motions 

of both bodies are small even though at resonance mode. When large incident waves are 

present, the corresponding body motions may become considerable and the new 

resonance frequencies in the gap might be different as a result.  

  



 
177

Chapter	7 	Concluding	remarks	

This thesis mainly studies the hydrodynamic interactions of two structures at 

wave resonance in the gap through fully nonlinear numerical simulations in the time 

domain. The associated initial boundary value problem for the velocity potential is 

solved using boundary element method together with a time stepping scheme. In order 

to keep the simulations running for a sufficiently long time, some special numerical 

treatments are also applied to the free surface, such as remeshing, smoothing, jet and 

thin spray cutting. The main body of the research consists of four parts: (i) studying 

wave radiation and diffraction with a single body; (ii) proposing a numerical procedure 

to calculate the dominant natural frequencies in the gap; (iii) investigating the first- and 

second-order wave resonance in the gap excited by forced body motions and incident 

waves, respectively; (iv) analysing incident wave induced resonance in the gap formed 

by two freely floating bodies. The main conclusions drawn from this numerical study 

are summarised as follows.  

7.1 	Conclusions	

 Dominant	natural	frequencies	calculation	in	the	gap	

In order to study the hydrodynamic interactions at resonance, natural frequencies 

in the gap should be located precisely beforehand, as resonance is quite likely to happen 

when excitation frequency is equal to one of the natural frequencies. Dominant natural 

frequencies, which are among the lowest of the infinite set of natural frequencies, are 

defined in such a way that when the disturbance disappears the fluid in the gap will 

oscillate at these frequencies on their own. In the present study, a new procedure to 

determine the dominant natural frequencies is proposed and adopted, based on our 

understanding of liquid sloshing. There are three steps: firstly, give the liquid in the gap 

an initial disturbance and let it oscillate freely; secondly, perform a spectral analysis on 

the wave runup histories to extract the dominant natural frequencies of gap liquid 

oscillation; thirdly, run a simulation at each dominant frequency to obtain the 

corresponding natural mode. A natural mode is the state of free oscillation 

corresponding to a natural frequency. The second step is crucial and the spectral 

analysis should be performed over an appropriate number of periods. It should be done 

before the effect of wave radiation damping reduces significantly the liquid oscillation 
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in the gap, and after the transient time of initial disturbance. The period should also be 

long enough to ensure the accuracy of the spectral analysis. This procedure is applicable 

not only to two rectangular bodies considered in this thesis but also to gaps formed by 

complex geometrical configurations.  

The dominant natural frequencies in the gap of twin rectangular bodies are 

extensively calculated based on the approach mentioned above. The bodies are 

subjected to the same heave motion. The velocity field is therefore symmetric. Thus, 

only symmetric modes can be excited and antisymmetric modes are not present. Effects 

of the gap width and body draught on the natural frequencies are considered. The 

natural frequency of each mode drops rapidly as the gap width increases. The piston 

mode natural frequency 0  in a narrow gap decreases significantly as the body draught 

increases. In general, the piston mode dominates in narrow gaps, while the sloshing 

modes dominate in large gaps. For twin bodies in close proximity but with different 

draughts, 0  reduces slightly after the draught of one body 1D  exceeds that of the other 

0D . Here 0 1D   is kept unchanged. The gap free-surface RAO reaches its peak at 

1 0D D . 

 First‐	and	second‐order	wave	resonance	in	the	gap	

For wave resonance in the gap excited by forced harmonic motions of surrounding 

bodies, it depends on the modes of body motions, namely heave, sway and roll. The 

twin bodies are forced to oscillate with the same parameters, i.e. amplitude, frequency 

and direction. At resonance, the wave elevation in the gap cannot grow to infinity due to 

radiation damping and energy dissipation through the gap and periodic states can be 

reached. The increase of body motion amplitude has only minor effects on the gap free-

surface RAO at piston mode resonance. Second-order resonance is more pronounced 

and easily provoked in a larger gap. It suggests that for side-by-side vessels of small 

draughts second-order resonance should also be considered during operation. The 

horizontal forces are significantly affected by the resonance in the gap. For frequencies 

close to first-order resonance frequency, the force patterns depend on the gap width. 

Envelopes appear for large gap. 

For wave resonance in the gap induced by an incident wave, there are some 

features different from the above radiation problems. Firstly, the total flow field is now 

always asymmetric. First-order resonance can be triggered when the incoming wave 
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frequency I  is at any of the natural frequencies, and second-order resonance when I  

is at half of any natural frequencies. The flow field of radiation problems can be 

asymmetric as well, which however is not the case in this thesis. Secondly, nearly 

standing waves in front of the upwave body can be formed due to the superposition of 

incident waves and reflected waves when the amplitude reflection coefficient 1 . 

Here   can be much influenced by the liquid oscillation in the gap, especially at 

resonance where  becomes a local minimum. Thirdly, there exists a large horizontal 

drift force on the upwave body. First- and second-order resonance in the gap can 

manifest themselves in the wave loads on both bodies. Fourthly, the increase of incident 

wave steepness affects the normalised liquid motion in the gap slightly when the piston 

mode free surface pattern dominates. For other higher-order sloshing modes, it would 

make the RAO in the gap drop dramatically at or near resonance. 

 Wave	resonance	in	the	gap	of	two	freely	floating	bodies	

When the two bodies can respond freely to the incident waves, there are mutual 

dependences between the hydrodynamic forces and body motions. Auxiliary function 

approach has been widely used to decouple the motions and forces in a single body case. 

In this thesis, the mathematical formulation, based on the coupled auxiliary function 

approach, is used for the first time for two bodies floating freely under incident wave. 

The twin freely floating bodies are restrained by mooring lines from drifting away 

and are simplified to linear springs in all the simulations. The incident wave steepness is 

set to be very small to make sure that the simulations can be run for a sufficiently long 

time in order to observe the resonance behaviour in the gap more clearly. The gap width 

L  and body draught D  have values corresponding to the fluid at rest, and 1D   during 

all the calculations. The conclusions are drawn based on the results obtained from these 

particular cases. Firstly, wave resonance in the gap does not occur at the natural 

frequencies associated with fixed bodies but happen at lower frequencies. Secondly, 

second-order resonance can be more easily triggered in a larger gap and its effects can 

be more significant than first-order resonance. Thirdly, when wave resonance occurs, 

the resulting body motions show a clear dependence on the resonance patterns, 

especially the horizontal motions. Specifically, the two bodies move horizontally in 

opposite directions during piston mode resonance, and in the same direction during first 

sloshing mode resonance. The amplitude of the body motions increases as well due to 

the resonance in the gap. It ought to be pointed out that in all the simulated cases, the 
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incident wave steepness is small. Therefore the amplitudes of the motions of both 

bodies are small, even when at the resonance mode. 

7.2 	Limitations	and	suggestions	for	future	work	

The findings in this thesis are all based on the results obtained from potential flow 

theory. It has been commonly acknowledged that potential flow model works well in 

capturing the natural frequencies in the gap, but tends to significantly over-predict the 

free surface elevations at resonance, mainly due to the neglect of fluid viscosity and 

related energy dissipation. However, the value of the Reynolds number is 710  or higher 

for flows with real ships in sea waves. Hence viscous effects are confined to very thin 

boundary layers on the ships’ hulls. The problem lies in accounting for the advection of 

the vorticity out of the boundary layers, as and when they separate and pass into the 

main part of the fluid domain. Boundary-layer separation is to be expected to occur 

periodically from the sharp corners of the modelled 2D barges. This vorticity can affect 

the transient forces on the barges, and might be modelled and computed as discrete 

concentrations of vorticity, in e.g. free line-vortices. Furthermore, free line-vortices 

could be accommodated with the potential-flow theory used in the thesis when the focus 

is on predicting the actual wave elevations in the gap. Additionally, the geometrical 

configurations are simplified to rectangular boxes, which is far from practical 

applications. However, the observations can provide some new insights into the 

fundamental mechanism for wave resonance in the gap. 

For further study of the wave resonance in a gap formed by floating bodies, there 

are serval topics worthy of investigation: (1) side-by-side located multiple bodies under 

a complex sea environment including wind, wave, and current; (2) violent wave motion 

in the gap including wave breaking, overturning and slamming on the bottom of the 

superstructure at resonance; (3) resonance analysis of the actual simplified models of 

FPSO, FLNG and LNG carrier. When the BEM code is extended to 3D, the resonance 

motion responses of multiple floating vessels in a tandem configuration can be studied. 

For multiple floating vessels in a side-by-side configuration, coupled resonance analysis 

of body motion responses and wave elevations in the gap needs to be done, since there 

are natural frequencies of the bodies and in the gap. The long term goal of these works 

is to simulate both hydrodynamic and mechanical interactions during complex multiple 
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bodies operation. The mechanical interactions are resulting from the connecting devices 

between bodies, usually mooring lines or spring hawsers.   
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