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Abstract

Axon diameter plays a key role in the function and performance of nerve pathways

of the central and peripheral nervous system. Therefore, there is a growing interest

in imaging axon diameter non-invasively. One such technique is using diffusion

MRI. The purpose of this thesis is to test the feasibility of axon diameter imaging

using diffusion MRI. This thesis provides for the first time a thorough experimental

framework for evaluation and comparison of diffusion MR sequences, specifically

two promising sequences: SDE and OGSE.

The thesis involves designing a phantom to determine intrinsic sensitivity of

the diffusion sequences to axon diameters. Additional experiments involving an ex

vivo monkey brain and a viable rat sciatic nerve are carried out. The comparison of

OGSE and SDE sequences across all different experiments demonstrate that OGSE

is better than SDE. Diameter estimates of the optimal sequences are compared to

the ground truth and the accuracy are found to depend on the gradient strength and

SNR. For clinical scanners (G=62 mT/m and SNR>20), diameters of 5 µm are

below the resolution limit. At G=300 mT/m and SNR=20, the resolution limit is 2.5

µm within an ex vivo monkey brain, causing overestimated diameters; however, an

excellent prediction of the low-high-low diameter trend across the corpus callosum

is observed. For G=800 mT/m and SNR=10, the resolution limit is at 2.5-3 µm for

a viable rat sciatic nerve and excellent histology match is obtained.

This thesis demonstrates that axon diameter imaging using diffusion MRI is

possible in the nervous system. The small axons of the central nervous system

require strong gradients, which are increasingly becoming more available, and pe-

ripheral nervous system have axons that are large enough to be imaged at clinical
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gradient strengths. This, therefore, opens up possibilities of using axon diameters as

biomarkers for neurodegenerative diseases and peripheral nerve regeneration stud-

ies.
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Chapter 1

Introduction

Axon diameter is an important factor in the conduction velocity of signal trans-

mission throughout the neural pathways in the central nervous system (CNS) and

peripheral nervous system (PNS) [1, 2].

In CNS, bundles of axons form white matter tracts, which connect different re-

gions of the brain and spinal cord. Estimates of axon diameter can provide essential

information on the performance and function of white matter pathways [3–6], which

can be used in studies of ageing [7] or CNS diseases, such as amyotrophic lateral

sclerosis [8, 9] and schizophrenia [10, 11], as well as pscyhiartic conditions such as

autism [12, 13], where axonal degeneration can lead to abnormal axon diameters.

In PNS, bundles of axons form peripheral nerves, which connect CNS to other

parts of the body and unlike CNS axons, PNS axons can regenerate. In damaged

nerves, axon diameter estimates can be used to accurately monitor and quantify the

extent of axon regeneration [14, 15].

Developing a realistic technique to measure axon diameter is thus of great

interest. Traditionally this has only been possible through biopsy and histology,

which provide the gold standard. However traditional methods are invasive. Diffu-

sion magnetic resonance imaging (MRI) is a non-invasive technique that has been

developed over the last 20 years for investigating and understanding the microstruc-

ture of biological tissues. The diffusion signal is dependent on the displacement of

water molecules and hence structural information can be inferred at the microscopic

level in vivo.
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A number of methods that use diffusion MRI for estimating axon diameter

have been proposed, such as q-space imaging (QSI) [16], double diffusion encod-

ing (DDE) sequences [17, 18], AxCaliber [19] and ActiveAx [20]. The techniques

use either single diffusion encoding (SDE) sequences or DDE sequences, which

have similar sensitivity to diameters as SDE sequences [21, 22]. These techniques

are not reliable yet and are still under development as they usually require advanced

MR hardware and long scan times. In all cases, the diameter estimates are larger

than those from histology suggesting that the techniques are not sensitive to changes

in axon diameters. However, various authors suggest that oscillating gradient spin-

echo (OGSE) offers benefits over the standard SDE sequences for imaging diame-

ters [23–25].

OGSE sequences have a lot of potential to provide detailed maps of microstruc-

ture. As the name suggests, OGSE sequences have oscillating gradient waveforms

that replace the typical single pulsed field gradient waveforms in SDE sequences.

The oscillations allow for shorter effective diffusion times and hence can probe

shorter distances. Theoretically [24, 25], it has been shown that low frequency

OGSE sequences show additional sensitivity to axon diameters in realistic cases of

unknown orientation and fibre dispersion compared to SDE sequences [24] and this

sensitivity increases further with larger gradient strengths. However, this has not

been studied in practice.

Here we experimentally investigate the feasibility of imaging axon diameters

using diffusion MRI, more specifically OGSE and SDE sequences. We explore the

potential of the sequences for axon diameter imaging, both in clinical and preclini-

cal settings, using non-biological and biological substrates.

1.1 Scope and objectives

The aim of this thesis is to test the feasibility of axon diameter imaging using diffu-

sion MRI in practice. Here we especially focus on the potential of OGSE sequences

in imaging axon diameters of biological tissues and compare their performance to

the standard SDE technique. The scope of this investigation covers clinical and pre-
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clinical settings and substrates including glass micro-capillaries, ex vivo monkey

brain and viable rat sciatic nerve tissue.

Our specific objectives are to:

1. Implement and validate OGSE sequences on a clinical scanner.

2. Design a physical phantom that represent the cylindrical geometry of axons

in nerve tissue.

3. Investigate the feasibility of using diffusion MRI for measuring diameters on

a clinical scanner using the physical phantom designed in 2.

4. Apply and compare OGSE and SDE protocols on an ex vivo monkey brain

together with simulation studies on a preclinical scanner.

5. Assess the performance of OGSE and SDE using diffusion MRI for measur-

ing diameters on a preclinical scanner using the physical phantom designed

in 2.

6. Assess the performance of OGSE and SDE beyond the standard tissue model

using simulations on a preclinical scanner.

7. Apply and compare OGSE and SDE protocols on a viable rat sciatic nerve

tissue on a preclinical scanner.

1.2 The outline of the thesis and contributions made
This thesis is structured as follows, with contributions made appearing in italic:

• In Chapter 2, we give an overview of the importance of axons in the central

and peripheral nervous system, which is followed by the background theory

on MRI, diffusion MRI and axon diameter mapping techniques using diffu-

sion MRI.

• In Chapter 3, we implement and validate OGSE sequences on a Philips 3T

clinical scanner. With issues surrounding patient safety, which has to comply
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with safety standards set by International Electrotechnical commission (IEC),

and hardware safety, implementing oscillating gradients onto a clinical MRI

system faces many considerations. We show that implemented OGSE se-

quences pass through the safety checks of the Philips MRI scanner simulator

and also stay within the manufacturer set limits for both patient safety (pe-

ripheral nervous stimulation (PNS)) and hardware safety (gradient coil and

amplifier heating). We also validate the implementation of OGSE sequences

on the MR scanner using gelatine phantoms to ensure images are artefact

free. We conclude the chapter with successful implementation and validation

of OGSE sequences on the clinical scanner.

• In Chapter 4, we test the feasibility of using OGSE sequences on a clinical

scanner to estimate axon diameters. The translation of axon diameter imag-

ing techniques to clinical MR scanners is a big challenge due to the limited

gradient strengths ≤ 60mT/m. Here we use a phantom with varying micro-

capillaries diameters (5, 10 and 20 µm), which we specifically developed to

represent the geometry of nerve tissue, and image this phantom with a range

of OGSE sequences. We assess the feasibility of using OGSE sequences by

reporting the accuracy and precision of the estimated pore diameters of the

phantom. We conclude the chapter stating that axon diameter mapping of

the human brain is not currently possible at G = 60 mT/m because at this

gradient strength diameters below 5 µm cannot be distinguished even in the

simplest of phantoms.

• In Chapter 5, we evaluate the performance of optimised OGSE sequences

over optimised SDE sequences in an ex vivo monkey brain on a preclinical

4.7 T MR scanner at a gradient strength of 300 mT/m. We also confirm the

findings from ex vivo white matter tissue in silico using multi-diameter sub-

strates. We show for the first time in experiments that OGSE sequences are

more sensitive than SDE sequences to smaller axon diameters at G = 300

mT/m.
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• From Chapter 6 onwards, we investigate the performance of OGSE and SDE

sequences optimised for a viable rat sciatic nerve on a preclinical 9.4 T MR

scanner at a gradient strength of 800 mT/m. In Chapter 6, we design a new

phantom containing a range of microcapillaries and use the phantom to test

the innate sensitivity of the optimised OGSE and SDE protocols to the di-

ameters of the microcapillaries. We conclude the chapter by demonstrating

OGSE gives slightly more accurate estimates of the smallest diameter (2µm)

than SDE sequences, especially when the number of measurements are re-

duced. In addition to this, we also determine the range of diameters in the new

phantom that are accurately estimated by the optimised sequences, which can

serve as a guideline for the range of diameters that can detected under the best

circumstances in tissue when using the same sequences.

• In Chapter 7, we investigate the performance of OGSE and SDE sequences in

synthetic substrates that mimic the axon distribution of a rat sciatic nerve and

further determine whether the standard tissue model is the best tissue model

to represent the rat sciatic nerve. We use synthetic substrates with a range of

intra-axonal volume fractions and cylinders that range from single diameters

to multi-diameters. We find that the standard tissue model requires a simple

modification to give accurate diameter estimates and improves the agreement

of the measured signal with the analytical signal model. Regardless of the

model used, we also find the OGSE gives higher accuracy than SDE.

• In Chapter 8, we perform axon diameter mapping for the first time on a

viable rat sciatic nerve tissue using the optimised OGSE and compare its

performance to the optimised SDE protocols. We assess the ability of the two

sequences to give accurate tissue model parameter estimates that are robust

when the number of measurements are reduced by comparing the results with

histology. We conclude by demonstrating accurate axon diameter mapping

in the viable rat sciatic nerve tissue, with OGSE giving more accurate axon

diameter estimates than SDE.
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• In Chapter 9, we discuss the findings and conclusions of the previous chap-

ters and suggest some potential future applications of OGSE sequences in

clinical and pre-clinical environments.



Chapter 2

Background

This chapter provides the background knowledge for axon diameter imaging using

diffusion MRI. The first section describes our main tissue of interest, the axons. The

second section presents the basic principles of MRI, including the nuclear magnetic

resonance phenomenon, signal excitation and imaging. The third section describes

the theory of diffusion weighted MRI, especially analytical expressions for mod-

elling free and restricted diffusion. The fourth section introduces different methods

of axon diameter imaging which includes some model-based and some model-free

methods. The fifth section explains the clinical MRI hardware constraints that are

relevant to diffusion MRI.

2.1 Axons

Figure 2.1: The components of a typical nerve cell and the pathway of the electrical signal.
Diagram adapted from [26].

An axon is the long wire-like portion of a nerve cell which conducts signal
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towards other nerve cells. Figure 2.1 illustrates the structure of a typical axon.

Billions and billions of nerve cells (also known as neurons) participate in cell-to-

cell communication, like electrical wires, to build a communication network, which

make up a large part of the nervous system. The nervous system (as shown in

Figure 2.2), which comprises of the central nervous system (CNS) and peripheral

nervous system (PNS), uses this communication network to coordinate and control

the functions of the body [27].

Figure 2.2: The nervous system is divided into the central nervous system (CNS) and the
peripheral nervous system (PNS). The brain and spinal cord make up the CNS,
and the peripheral nerves that reach all others parts of the body make up the
PNS. Image as featured in [28].

In general, communication between nerve cells begins from the arrival of an

electrical signal from a neighbouring nerve cell. The signal is received by the den-

drites of the nerve cell and is passed along to its cell body. Here the signal is

processed and passed towards the axon. At the axon, the signal is conducted along

the length of the axon and is transmitted across a gap (synapse) to the dendrites of

the adjacent nerve cells. Figure 2.1 describes this process pictorially and a more

rigorous description is provided in Section 2.3.4.1.

The speed of signal transfer along the axons are determined by two primary
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factors: insulation of the axon and diameter of the axon. Axons of most nerve cells

are surrounded by an electrically insulating tissue known as the myelin sheath. The

myelin sheath insulates the signal, whilst nodes that separate the myelin sheaths

(known as nodes of Ranveir) allow the signal to ‘jump’ to the next node of Ranveir,

speeding up the signal transmission [27].

The diameter of the axon is the main focus of this thesis. Axon diameter is

directly proportional to the conduction velocity of myelinated axons [1, 2]. As a

result, imaging axon diameter is very important because it can provide information

on the role and performance of neural pathways of the nervous system.

2.1.1 The central nervous system (CNS)

The central nervous system (CNS) is made up of the brain and spinal cord. They

are responsible for processing sensory information and coordinating the associated

body function, both voluntarily or involuntarily. The brain alone is also responsible

for complex functions such as emotions, memory and speech [27].

Axons of the central nervous system are mostly present in the white matter of

the brain and spinal cord. Their diameters usually range from 0 to 3 µm in a human

brain [29–31] and 1 to 10 µm in the human spinal cord [32, 33]. The axons are

surrounded by myelin sheath, produced by glial cells that are specific to the CNS

(oligodendrocytes), which increases the speed of signal transfer. The myelinated

axons are usually tightly packed into large bundles, known as tracts. These tracts

connect different functional regions of the brain and enable communication.

White matter is only one of the three main components of CNS. The other

two components are grey matter and the cerebrospinal fluid (CSF). Grey matter

comprises mostly of nerve cell bodies, which are the information processing centres

of the brain. Cell bodies with similar functions and structures are grouped together

to form larger functional areas called nuclei. These nuclei then work together to

perform simple to complex tasks using the white matter tracts as the means for

communication between the nuclei. Unlike the grey matter and white matter, both

of which are involved in information processing, CSF mainly exists in the CNS to

provide a mechanical and immunological protection to the brain.
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Figure 2.3: (a) An example of a typical CNS axon (as featured in [34]) (top). (b) An ex-
ample of axons within a white matter region, known as the corpus callosum (as
featured in [3]) (bottom).

.

2.1.2 The peripheral nervous system (PNS)

The peripheral nervous system (PNS) consists of spinal and cranial nerves (known

as peripheral nerves) which connect the CNS to the entire body and carry infor-

mation between them. PNS is further subdivided into the somatic and autonomic

nervous system. The former is involved in the voluntary control of body movements

and the latter regulates automated body functions such as heart rate and blood pres-

sure.

Axons of the peripheral nervous system are housed deep within a peripheral

nerve, as shown in Figure 2.4. Their diameters usually range from 1 to 14 µm in

humans [36, 37]. These axons are surrounded by myelin sheath, produced by glial

cells that are specific to the PNS (Schwann cells), which increases the speed of

signal transfer. The myelinated axons are surrounded by a connective tissue known

as the endoneurium. The ensemble is bound by the perineurium into a structure

called fascicle. Multiple fascicles, along with some blood vessels, are then bound by

the epineurium to form a peripheral nerve [28]. As an example, Figure 2.4 shows the

largest single peripheral nerve in the body called the sciatic nerve, which originates
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Schwann 
cell 

Figure 2.4: (a) An example of a typical PNS axon (adapted from [34]) (top). (b) An exam-
ple of a peripheral nerve (as featured in [35]) (bottom).

from the lower portion of the spinal cord and is responsible for the nervous system

of the whole leg.

2.1.3 Importance of axon diameter imaging

Axon diameter is important in both CNS and PNS. As mentioned before, diameters

of myelinated axons are directly correlated with the conduction velocity of signal

transfer along the axon [1, 2]. The location and diameter of axons, therefore, are a

good indicator of the roles and functions of the areas that receive/send the informa-

tion [30].

A key white matter region is the corpus callosum (CC) which is shown in Fig-

ure 2.3. It is a collection of tracts, known as the commissural fibres that connect

many different functional areas between the left and right hemispheres of the brain.

The CC is divided into three smaller regions: genu (located at the front of the CC),

midbody (located at the middle of the CC) and splenium (located at the back of the

CC) [38]. Densely packed small-diameter axons at the genu connect the left and

right prefrontal cortices to provide a diverse amount of information that is required
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by the cortices to make complex decisions. Large-diameter axons in the midbody

connect the left and right motor cortices to provide fast signal processing which

are required for the coordination of voluntary movement. Similar to the genu, at

the splenium, densely packed small diameter axons connect the left and right tem-

poroparietal visual areas [29, 38, 39]. This distinct low-high-low axon diameter

trend, along with the high-low-high axon density, has been repeatedly observed in

humans [29] and in monkeys [39].

In the PNS, axons with large diameters are present in motor pathways where

rapid signalling is required. Small-diameter axons, on the other hand, are found in

pathways that require slower neuronal communication such as those responsible for

temperature and nociceptive sensations [40]. In general, axon diameters can help

us understand and determine the roles of the functional areas in the CNS and PNS.

Understanding and detecting neurological diseases related to the CNS or PNS

is one of the main factors for axon diameter imaging. Abnormal axon diameters in

patients, in comparison to controls, can indicate the presence of certain neurological

diseases. For instance, swollen axons appear in amyotrophic lateral sclerosis (ALS)

[8, 9] and schizophrenia [10, 11], both of which arise from a process called demyeli-

nation. The demyelination in ALS occurs from damage to healthy myelin sheath,

which progressively leads to loss of all voluntary movement. On the other hand, the

demyelination in schizophrenia occurs from disruption to the function of the glial

cells supporting the axons. Psychiatric conditions like autism have also shown a

higher density of unusually small axons in the anterior cingulate and orbitofrontal

cortices, which is associated with the mechanism responsible for the abnormalities

in emotion and attention seen in the disorder [12, 13].

Another key reason for axon diameter imaging is to monitor regeneration rate

of peripheral nerves. Physical injuries, such as road traffic accidents, can damage

axons or the nerves that house the axons, causing either a physical division of the

nerve (very severe) or crushing of the nerve (less severe). The injuries therefore

lead to either delayed or completely halted signal transfer. Damaged nerves further

undergo a process known as Wallerian degeneration over a period of several days,
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which involves the decay of the distal portion of the axon (the part that is discon-

nected from the associated cell body of the nerve cell [41]). Following this, the PNS

axons are able to regenerate to restore the function of the affected nerve, provided

the injury site has been cleared by macrophages [42]. Unfortunately, axon recovery

is inhibited in CNS [43] and therefore CNS injuries permanently impact the quality

of life of the affected person. In PNS, the nerve regeneration process involves the

release of chemicals by the distal targets of the affected peripheral nerve to guide

and enhance the growth of proximal axons towards the distal targets. When sev-

ered nerves occur, surgical intervention is required to bridge the gap between the

transected peripheral nerves to allow axonal regrowth. As such, the non-invasive

monitoring of nerve regeneration rate is essential [44] for ensuring that the nerves

re-grow correctly. A good indicator of nerve regeneration rate has been shown to

be the axon length and axon diameter [14, 15]. Hence imaging axon diameters can

also assist in non-invasive monitoring of nerve regeneration rate.

2.1.4 Traditional approach for axon diameter imaging

The traditional approach of imaging axon diameters is using histology. The tissue

of interest (white matter or peripheral nerve) has to be carefully dissected, fixed and

then stained to ensure visibility of the myelinated axons. The tissue samples are then

viewed under a light microscope, which provides an imaging resolution in the order

of micrometres [29, 45]. The use of electron microscopy (see Figure 2.5) is more

common nowadays with resolution at the nanoscale that allows detailed imaging

and quantification of axon structure, their diameter, distribution of axon size and

density [29, 39]. Currently, histology is perceived as the gold standard for axon

diameter imaging. However, the method also poses a few disadvantages. First,

sample preparation, involving tissue fixation and staining needs to be carried out

carefully but quickly to prevent tissue sample deterioration. Second, the fixation

process used to preserve the tissue tends to cause shrinkages of up to a factor of

30% [31]. The final and main disadvantage of using histology for clinical use is

that painful invasive biopsies are required to obtain tissue samples, and additionally

in the brain biopsies are possible but are extremely invasive.
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Figure 2.5: An electron-micrograph of bovine optic nerve in the parallel (left) and perpen-
dicular (right) to the axis of the main fibre orientation. The Figure is as featured
in [46].

.

As a result, there have been a lot of research into developing methods for non-

invasively imaging axon diameters. Most of these methods involve the use of MRI.

We describe these methods in Section 2.3 and Section 2.4 but first in the next sec-

tion, we will describe the foundations of MRI.

2.2 Magnetic Resonance Imaging (MRI)
Throughout the past few decades, MRI has become a powerful imaging modality,

especially for imaging soft tissues in the human body. The popularity of MRI stems

from using non-ionising radiation (unlike X-rays and γ-rays) to generate high res-

olution images that allow non-invasive probing of the internal structures and func-

tions of biological tissues. MRI also provides variety of contrast mechanisms (such

as T1-weighted, T2-weighted and diffusion-weighted imaging) depending on the

application. Such advantages make MRI a safe, reliable and a universal imaging

tool for people of all ages, as well as animals.

2.2.1 Spins, magnetic moments and bulk magnetization

MRI is an application of a physical phenomenon known as nuclear magnetic reso-

nance (NMR). NMR was first observed in the late 1945 by Purcell and Bloch. The

phenomenon relies on the interaction between atomic nuclei with a non-zero spin

and a magnetic field. In most MRI applications, the nucleus of interest is hydrogen

because of the abundant hydrogen atoms found in biological tissues.

The nucleus of hydrogen consists of one proton and therefore has a charge,
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mass and a quantum mechanic property called ‘spin’, I = 1
2 . The mass and spin

give rise to the quantum angular momentum of the proton, J. In addition, the com-

bination of angular momentum and charge of the proton induces a magnetic field,

known as the nuclear magnetic moment, µ .

µ = γJ (2.1)

where γ = 2.68 × 108 s−1T−1, the gyromagnetic ratio for 1H.

When no external magnetic field is present, the direction of µ is random due

to the thermal movements of hydrogen atoms. Therefore, the magnetic moments

cancel each other out resulting in a zero net magnetization. This is illustrated in

Figure 2.6.

Figure 2.6: Hydrogen atoms and the directions of their magnetic moments in absence of a
static external magnetic field (left) and presence of the static external magnetic
field (right). Note the parallel and and anti-parallel alignment to the B0 field.
Figure extracted from [47].

However, when an external static magnetic field, B0, is applied, the magnetic

moment interacts with the external magnetic field producing a torque that causes

the protons to precess about the main axis of B0, at an angular frequency known as

the Larmor frequency:

ω0 = γB0 (2.2)

In the presence of the external magnetic field, quantum mechanics states

that hydrogen has two discrete energy levels: ‘spin up’/parallel to B0 and ‘spin
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down’/anti-parallel to B0, as illustrated in Figure 2.6. The ratio of the number of

atoms in the spin-up state (N↑↑) to the spin-down state (N↓↓) is defined by the Boltz-

mann distribution (Equation 2.3). This ratio is dependent on the strength of B0 and

depends inversely on temperature (T) of the sample.

N↑↑
N↓↓

= e
∆E
kT = e

γ h̄B0
kT (2.3)

where k = 1.38 × 10−23 J/K, the Boltzmann constant and h̄ = 1.05 × 10−34 Js, the

reduced Planck constant.

For example, at typical body temperature (37oC) and for a standard MRI sys-

tem (B0 = 3 T), for every 100,000 spin-down nuclei, there are an extra 2 spin-up

nuclei and for an animal MR system (B0 = 9.4 T), there are an extra 6 spin-up nu-

clei. The net sum of the magnetic moments, due to these extra magnetic moments,

creates an equilibrium magnetization, M0, parallel to the direction of the main mag-

netic field B0:

M0 =
Nγ2h̄2B0

4kT
(2.4)

where N is the number of protons per unit volume.

As the net magnetization is measured from a volume, and not from individ-

ual nuclei, in an MRI experiment, their average behaviour can be described using

classical mechanics, instead of quantum mechanics [48].

2.2.2 Excitation and detection of MR signal

The net magnetization per unit volume gives rise to the macroscopic magnetization,

M. In order to be able to measure M(t), it has to be perturbed from the thermal equi-

librium position (away from the main magnetic field B0). This is done by applying

a RF (radiofrequency) pulse, perpendicular to the B0, for a specific duration and is

commonly referred to as the B1 field. The B1 field rotates at the same frequency

as the precession frequency of the macroscopic magnetization, and allows M to be

tipped away from the main field. This is called the ‘resonance effect’.

The evolution of M with time t, in the presence of a magnetic field, B(t) is
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describe by Equation 2.5 from which information on the sample of interest can be

characterized.

dM(t)
dt

= γ. M(t)×B(t) (2.5)

which can be expanded to:

dMx(t)
dt

= γ(My(t)Bz(t)−Mz(t)By(t)) (2.6)

dMy(t)
dt

= γ(Mz(t)Bx(t)−Mx(t)Bz(t)) (2.7)

dMz(t)
dt

= γ(Mx(t)By(t)−My(t)Bx(t)) (2.8)

When the B0 field is parallel to the z-axis, Bz(t) = B0, a constant, whereas Bx(t) =

By(t) = 0. Hence, the evolution of M(t) from Equation 2.5 becomes:

dMx(t)
dt

= γMy(t)Bz(t) (2.9)

dMy(t)
dt

=−γMx(t)Bz(t) (2.10)

dMz(t)
dt

= 0 (2.11)

Figure 2.7: Tipping of M due to application of B1 shown in (a) the stationary frame and (b)
the rotating frame of the B1 field . These figures are featured in [47].

In the presence of the B1 field, Bx(t) = B1cos(ωt), By(t) = B1sin(ωt) and

Bz(t)=B0. Here, M will be tipped away from the z-axis provided that the ω=ω0.

Typically in most MRI applications, a 90o RF pulse is applied to allow M to reach
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the xy plane. Figure 2.7 illustrates the tipping in the stationary frame of reference

(left) and rotating frame of reference (right).

The macroscopic magnetization has a tendency to realign with the main B0

field. Hence, when the RF pulse is switched off, the z-component of M, Mz, will

increase in magnitude via a process known as longitudinal relaxation (or T1 relax-

ation) and Mxy will decrease in magnitude in the xy plane by another independent

mechanism called transverse relaxation (or T2 relaxation). This is described by the

Bloch equations below:

dMx(t)
dt

= γ(My(t)Bz(t)−Mz(t)By(t))−
Mx(t)

T2
(2.12)

dMy(t)
dt

= γ(Mz(t)Bx(t)−Mx(t)Bz(t))−
My(t)

T2
(2.13)

dMz(t)
dt

= γ(Mx(t)By(t)−My(t)Bx(t))−
Mz(t)−M0

T1
(2.14)

where T1 and T2 are the relaxation constants for the T1 and T2 relaxation processes,

respectively. The T1 relaxation occurs when spins exchange energies between each

other, as they come close together, which causes dephasing of the individual spins

of the nuclei and hence reduces Mxy. The longitudinal relaxation occurs due to

the loss of energies associated with the spins of the nuclei to its surroundings. As

examples, the T1 and T2 of white matter are 600 ms and 80 ms [49], respectively,

peripheral nerves are 700 ms and 70 ms [50], respectively, and water is ≈ 3000 ms

[51].

The precession of Mxy (subjected to T2 relaxation) around the main magnetic

field generates a free induction decay (FID) signal. The signal is received by the RF

receiver coils and induces an alternating voltage that can be recorded.

However, in reality, the signal decays much faster because the decay in Mxy

is also affected by magnetic inhomogeneity in the surrounding environment of the

nuclei. If we call this apparent relaxation time T′2, then the effective T2 relaxation,

which is usually referred to as T2* can be described using Equation 2.15.

1
T2∗

=
1
T2

+
1

T2′
(2.15)
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The effect of inhomogeneities can be reversed by using a technique known as

spin echo. At the start of the experiment, a 90oRF excitation pulse is used to flip

the macroscopic magnetization of the ensemble of spins on the xy axis. As time

increases, the spins dephase (as shown by circles on the top of Figure 2.8) due to

T2 relaxation, and especially due to T2*, which reduces the signal Mxy. At time

TE/2, a second refocusing 180oRF pulse flips the spins, so that the spins with faster

precession are behind the spins that precess slowly. At time TE, the spins rephase

to form a signal echo. This is known as spin-echo.

Figure 2.8: The spin-echo sequence. Diagram as featured in [52]
.

2.2.3 Spatial encoding

The acquired NMR signal is an average signal over the whole volume of the sample

[49]. In order to create an image, the signal needs to be spatially localised. This is

achieved during MR acquisition by using additional magnetic field gradients, G(t)

= (Gx, Gy, Gz), which are applied along the x, y and z scanner axes. The role of the

gradients is to modify the effective magnetic field strength, Be f f :
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Be f f = B0 +G.r (2.16)

The gradients cause Be f f to spatially vary as a function of position, r = (x, y,

z). Consequently, the precession frequency of the spins within the sample being

scanned and the phases accumulated by the spins also vary spatially (as in Equation

2.2). This enables direct encoding of spatial information into the measured signal.

For a 3D volume, spatial localization is usually achieved through three main

steps: (1) slice encoding (2) frequency encoding and (3) phase encoding.

Slice encoding involves the use of a slice select gradient to ensure that only a

two dimensional plane within the 3D volume is imaged. The slice selection gra-

dient, which is applied simultaneously with an RF excitation pulse, linearly varies

the resonant frequencies of the spins as a function of the position along the gradient

direction (slice direction). The RF pulse usually has a narrow distribution of fre-

quencies, known as the bandwidth, and therefore, only the frequencies of spins that

are within the RF bandwidth are excited and produce a signal. Different slices can

be excited by varying the frequencies of the RF pulse.

Once the slice is selected (for example, along the z-axis), spatial encoding is

required to localise the signals within the two dimensional plane using frequency

encoding (for example, along the x-axis) and phase encoding direction (for example,

along the y-axis). First, the phase encoding gradient (Gy) is briefly switched on for

a time, τPE . During this time, the precession frequencies of the spins vary with

their position. When the gradient is switched off, all of the spins revert back to

the Larmor frequency, however with different phases along the y position, which is

given by:

φ(y) = y
∫

τPE

0
γGy(t)dt (2.17)

Subsequently the frequency encoding gradient is then applied along the x-

position for a time τFE at time TE. The frequency encoding gradient alters the
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precession frequency of the spins along the x position to be:

ω(x) = ω0 + x
∫ T E+τFE

T E
γGx(t)dt (2.18)

After carrying out the spatial encoding in the 2D plane, the total MR signal,

S(t), is:

S(t) =
∫ ∫

I(x,y)e−i2πy
∫ τPE

0 γGy(t)dte−i2πx
∫ T E+τFE

T E γGx(t)dtdxdy (2.19)

where I(x,y) is the image function. S(t) can be further simplified to:

S(t) =
∫ ∫

I(x,y)e−i2πkyye−i2πkxxdxdy (2.20)

where, kx and ky are defined as the spatial frequencies:

kx =
∫ T E

T E+τFE

γGx(t)dt ky =
∫ 0

τPE

γGy(t)dt (2.21)

There is a Fourier relation between the image function I(x,y) and the signal

S(kx, ky). Therefore by measuring the signal at many points of kx and ky, often

called the k-space, the image function can be recovered.

A standard method to fill up k-space is using a linear scheme. At each phase

encoding step, frequency encoding is carried out to fill one line of k-space. Repeat-

ing this process of phase and frequency encoding multiple times (for example 64

times) results in acquiring the data for all values of kx and ky (as shown on the right

panel of Figure 2.9).

The current method of filling up the k-space takes a long time. One line of

k-space is read per TR, and therefore to cover 64 points in the ky-direction, 64*TR

is required. In diffusion imaging, image acquisition needs to fast to allow time for

measuring diffusion in many directions. In this thesis, the majority of methods use

a technique called single-shot spin echo imaging (SS-EPI) or multi-shot spin echo

imaging (MS-EPI) to speed up image acquisition.
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In SS-EPI, once the slice of interest is excited, phase encoding for the whole

slice is carried out within one TR. In order to achieve this, the k-space is traversed

from the centre ((kx,ky)=(0,0)) to the bottom left corner of k-space by using large

negative gradients Gx and Gy. Subsequently, the oscillating Gx and the ‘blipped’

Gy pulses allow the k-space to be sampled in a linear zig-zag pattern as illustrated

in Figure 2.9 until the whole k-space is filled. On the other hand, MS-EPI involves

multiple phase encoding per TR, until all the ky-space is filled.

Figure 2.9: Schematic representation of a single shot echo planar imaging (SS-EPI) se-
quence (left). Diagram as featured in [53]

.

Once the k-space is filled, the image I(x,y) can be reconstructed from the raw k-

space data using a 2D inverse Fourier transform. I(x,y) is a complex image function

which can be used to form both magnitude and phase images [49].

2.2.4 Summary

Overall, in this section, we have described the basics of MR signal generation, sig-

nal excitation and signal detection. The mechanisms of signal decay (T1, T2 and

T2*) are also briefly outlined. We then describe the principles behind spatial encod-

ing of the signal to generate an MR image, and end with a very brief description of

the fast MR acquisition methods that will be used in thesis.
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2.3 Theory of diffusion MRI

The method of axon diameter imaging that we focus on in this thesis is related to

a specific modality of MRI called diffusion weighted MRI. In this section, we will

describe the principles behind diffusion MRI, the different types of waveforms used

to measure diffusion as well as analytical expressions used to calculate free and

restricted diffusion signal.

2.3.1 Diffusion of water molecules

Diffusion is the random motion of particles from an area of high concentration to

an area of low concentration and is described by Fick’s first law:

J(r) =−D.∇c(r) (2.22)

where D is the diffusion coefficient (with units of µm2/ms) which is a property of

the sample and is dependent on the size of the sample, temperature of the sample

and microscopic structures surrounding the sample. c(r) is the particle concentra-

tion along a position r and J(r) describes the net flux of particles (with units of

number/µm2/ms) from high to low regions of concentration (hence the negative

sign) in a system where concentration does not change with time [54].

In practice, the concentration of particles change with time and Fick’s second

law describes this :

∂c(r, t)
∂ t

=−∇J(r, t) = D.∇2c(r, t) (2.23)

This is known as the diffusion equation [54].

In a medium with no net concentration gradient, self diffusion of particles,

termed “Brownian motion” occurs. The random thermal motion of particles was

first observed by Robert Brown and later on mathematically described by Albert

Einstein in terms of diffusion under probability gradients. The rewritten Fick’s
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second law by Einstein is:

∂P(r1, t1|r0, t0)
∂ t1

= D.∇2P(r1, t1|r0, t0) (2.24)

where P(r1,t1|r0,t0) is the diffusion propagator and describes the likelihood of a

molecule freely diffusing from an initial position r0 at time t0 to a new position

r1 over a time t1− t0 and with a diffusion coefficient D. For a medium with a

large ensemble of freely diffusing particles with no net concentration gradient, no

barriers and with initial condition P(r1,0|r0,0) = δ (r1-r0) (where δ (r) is the Dirac

delta function) and boundary condition P → 0 as r1 → ∞, the solution (the diffu-

sion propagator) to Equation 2.24, is defined by the Gaussian probability density

function (PDF):

P(r1, t1|r0, t0) =
1

(4πD(t1− t0))3/2 e
− (r1− r0)

2

4D(t1− t0) (2.25)

The mean square displacement can be calculated from Equation 2.25 for particles

undergoing free diffusion as:

〈(r1− r0)
2〉=

∫
∞

−∞

(r1− r0)
2P(r1, t1|r0, t0)dr0dr1 = nD(t1− t0) (2.26)

where n = 2, 4 or 6 for one, two or three dimensions.

In the presence of a boundary, such as the cell wall, diffusion of particles

(water molecules) are restricted within the cell and diffusion is no longer free.

Here, given that initial condition is P(r1,0|r0,0) = δ (r1-r0) and boundary condition,

Dn̂∇r1P(r1,t1|r0,t0) = 0 (where n̂ is the outward flux perpendicular to the bound-

ary and ∇r1P(r1,t1|r0,t0) is the probability gradient), shows no flux through the cell

wall, the general solution to Equation 2.24 has the form:

P(r1, t1|r0, t0) =
∞

∑
n=0

e−Dλn|t2− t1|un(r0)un ∗ (r1) (2.27)

where un(r) are orthogonal functions and λn are the coefficients [55] that are specific
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to the geometry of the boundary. Analytical solutions for planar, cylindrical and

spherical geometries are given in [55].

2.3.2 Diffusion weighted imaging

Diffusion of molecules can be probed using MR measurements. This method is

termed Diffusion MRI. A standard method of measuring diffusion was developed

by Stejskal and Tanner in 1965, which is often known as ‘single pulsed field gradient

(sPFG)’, ‘pulsed gradient spin-echo (PGSE)’ or ‘single diffusion encoding (SDE)’.

In this thesis, we refer to them as SDE.

Figure 2.10: A basic SDE sequence for diffusion imaging. Diffusion gradients (symmet-
rical about the 180 RF pulse) are placed in a spin-echo sequence. δ denotes
the duration (ms) of the gradient waveform, tr denotes the slope duration (ms)
and denotes the centre to centre time spacing (ms) for the two gradients and is
known as the diffusion time. G is the gradient strength usually in mT/m and
TE is the echo time (ms). t1-t4 are time points showing the start and end times
of each gradient waveform. Figure adapted from [49]

The SDE sequence, illustrated in Figure 2.10, include two symmetrical gradi-

ents, with time duration δ , rise time tr and gradient strength G(t), placed on either

side of the RF 180o pulse, such that the time between the start of the two gradients

is ∆. The gradients, known as diffusion encoding gradients, are similar to those

used for imaging but are much higher in gradient strength. For instance, in clini-

cal scanners, the diffusion sensitizing gradients have gradient strength of G ≥ 30

mT/m, whereas imaging gradients usually tend to have G ≤ 5 mT/m [56].

Initially, when a sample is placed in a homogeneous magnetic field, B0, their

spins precess at the Larmor frequency and accrue a phase, φ = ω0t = γB0t, which
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Figure 2.11: Diagram depicting the net phase accumulation for the case when (a) water
molecule is stationary and (b) when water molecule diffuses.

is independent of their positions. On application of the first gradient waveform (at

time t1 in Figure 2.10 and Figure 2.11), the spins experience different precession

frequencies depending on their position, r, with respect to the gradients. By the

end of the first waveform (at time t2 in Figure 2.10 and Figure 2.11), they will have

accumulated a net phase φ1. The application of the 180o RF pulse inverts the phases

of all the spins. Following this, the second gradient pulse (by time t4 in Figure 2.10

and Figure 2.11), induces a phase shift φ2 that is opposite to the first gradient pulse.

The resultant phase, φ f inal , induced by two identical diffusion gradient pulses placed

either side of a 180o RF pulse is therefore:

φ f inal = φ1 +φ2 =−γ

(∫ δ

0
G(t)r(t)dt +

∫
δ+∆

∆

G(t)r(t)dt
)

(2.28)

If the spins are stationary, the phases gained (φ1 and φ2) are equal in magnitude

and therefore φ f inal = 0 (Figure 2.11a). If movement of the spins occur, spins are

not completely refocused (φ1 6= -φ2) and therefore φ f inal 6= 0, which results in an

attenuated MR signal (Figure 2.11b). The attenuated signal, known as the diffusion
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signal, characterises the amount of diffusion within the sample along the direction

of the applied gradient waveform.

Repeating this procedure along many gradient directions provide the attenuated

measurements along these directions and builds up a 3D picture of water diffusion

within the sample.

2.3.3 Oscillating gradient spin echo (OGSE) sequences

Diffusion weighted imaging is not limited to SDE sequences, where gradient pulses

have a constant gradient strength across the gradient duration δ . In the literature, a

wide range of diffusion gradient pulses have been used to induce diffusion weight-

ing. For example, double diffusion encoding (DDE) sequences [18, 57] helps to

differentiate between signals from compartments with different shapes. Dual spin

echo sequences (DSE) [58] reduce eddy current distortions and are sensitive to com-

partments with different sizes. Generalised gradient waveform sequences are flexi-

ble and can be optimised for high sensitivity to microstructure parameters [59, 60].

However, generalised gradient waveforms are limited by their difficult implementa-

tion on the scanner and the long times required for parameter fitting since the signal

calculations have to be done numerically.

OGSE sequences [24, 61, 62] have oscillating gradient waveforms that reduce

the diffusion time of the experiment from ∆ (time between the two pulses in the

SDE) to approximately half period of the oscillation depending on the type of os-

cillating gradient waveform. By changing the frequency of the oscillations, the

OGSE sequence can be tuned to probe a range of different diffusion times includ-

ing the short time limit which can improve estimation of the intrinsic diffusivity.

Figure 2.12 illustrates different types of OGSE sequences that are currently used

in literature. Here we consider only trapezoidal OGSE sequences as it was shown

previously [59, 63] that they maximize the sensitivity to microstructure parameters

by maximizing the diffusion weighting for fixed time. We constrain N, the number

of half oscillations, to be an integer number as is most typically used for OGSE

methods [61, 62, 64]. When N=1, the trapezoidal oscillating gradient reduces to a

SDE sequence.
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In comparison to the different types of diffusion weighted sequences that re-

quire implementation of two RF pulse (DDE, DSE, generalised waveforms, etc),

trapezoidal OGSE sequences are very simple to implement on a scanner and help

reduce eddy current distortions [24]. Furthermore, the OGSE sequence itself re-

quires only one extra parameter in comparison to SDE sequences, and that is the

number of half oscillations. The simplicity of OGSE and its potential for higher

sensitivity towards microstructure parameters are the reasons we focus on using

OGSE sequences in this thesis, along with the standard SDE sequences.

Trapezoidal 
SDE 

N 

Rectangular 
SDE 

Rectangular 
OGSE 

Apodized 
cosine OGSE 

Sine  
OGSE 

Trapezoidal 
OGSE 

tr 

Figure 2.12: Schematic of different types of oscillating diffusion gradient waveforms and
their location in a standard diffusion sequence. The sequences highlighted in
bold are our sequences of interest. Figure adapted from [53]
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2.3.4 Safety issues related to diffusion MRI

A part of this thesis will also involve implementation of OGSE sequences on a

clinical scanner, safety issues regarding the diffusion gradient waveforms have to

be considered.

Figure 2.13 gives a brief overview of a standard MR system and their compo-

nents to demonstrate their roles in MRI.

Figure 2.13: Simple block diagram of the main components in a standard MRI system. (a)
Magnet which provides the static magnetic field used for generating the MR
signal. (b) Gradient coils in the x, y and z directions of the scanner coordinates
used for diffusion MRI and for imaging, where the power is supplied by their
individual amplifier (shown in green). (c) Radiofrequency coils to generate
the alternating B1 field required for MR signal excitation. The switch (d) can
be used to change between the transmitting RF and receiving MR signal from
patient. (e) Computer controls the scanner sequences and carries out image
processing. This diagram was extracted from [47].

Diffusion gradient waveforms (and even imaging gradients) require the use of

gradient coils. The gradient coils have specific inductance and resistance and are

mounted inside the bore of the magnet (Figure 2.13). Each of these coils have their

own independent gradient amplifier, which drives current through their own gradient

coil and thus the coils produce a proportional gradient strength in the presence of

the large static magnetic field within that coil.

In standard diffusion MRI, there are two major issues, regarding time varying

gradients, such as those used in EPI readout or diffusion waveforms, that constrain

the maximum performance of gradients. (1) Peripheral nervous stimulation (PNS)
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and (2) gradient coil heating. These constraints are typical in EPI sequences due

to the rapid gradient switching during the fast k-space readout. However, safety

can potentially be a bigger issue when introducing oscillating gradients because it

also means further addition of much stronger and rapidly switching gradients in

comparison to the EPI imaging gradients [56].

2.3.4.1 Peripheral nervous stimulation (PNS)

Peripheral nervous stimulation (PNS) describes the electrochemical process of sig-

nal transfer from a dendrite to the tail end of the axon. It is an important concept

because artificial PNS stimulation from imaging gradients can cause tingling sen-

sation, muscle twitching or in the worst case scenario, cardiac stimulation.

Figure 2.14: A typical action potential in a neuron. Nerve cells contain intracellular potas-
sium ions and extracellular sodium ions. A nerve cell will initially be in a
resting state (-70mV). Inflow of sodium ions will cause the axon region to be-
come more positive. Activation will occur by depolarization (by further inflow
of sodium ions), if its PNS threshold potential is achieved (-40mV to -55mV).
Once this threshold is reached, the region will be automatically further de-
polarized, after which a peak is reached and hyper-polarization (outflow of
potassium ions) occurs. This returns that region back to the resting state (after
a brief further drop in its potential). The sodium ions will then flow along an
electrochemical gradient inside the axon to the next node because the myelin
sheath prevents any sodium/potassium influx/outflux. Arrival of sodium ions
at the adjacent node of Ranvier is referred to as an electrical impulse or an
action potential. This activates the whole process of depolarization, and the
electrical impulse is effectively passed on. Figure as featured in [65].

Different types of nerve cells will have different action potential duration (see

Figure 2.14), also known as time-constants. If a PNS stimulus is applied to a nerve
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cell that has crossed the threshold potential and is undergoing an action potential,

the nerve cell will not be affected by this stimulus. However, if the stimulus is

applied straight after the time-constant, nerve fibre will be activated. Peripheral

nerves fibres have time-constants of approximately 120 µs, compared to the longer

time-constants of cardiac nerve fibres (3 ms) [66]. Hence peripheral nerve fibres

can be activated more frequently than cardiac nerve fibres.

2.3.4.2 PNS thresholds in MRI

PNS occurs in MRI because the threshold energy can be provided by the gradient

switching in the imaging gradients or in the diffusion gradients. The change in mag-

netic field with time, dB/dt of the waveform, generates an electric field within the

body. If this exceeds the threshold dB/dt (threshold PNS), it will cause peripheral

nerve stimulation [67].

Safety regulations [66] use dB/dt and ts,e f f (which is maximum change in gra-

dient strength divided by the slew rate) to estimate PNS threshold in humans in

whole body MR equipment using trapezoidal waveforms of EPI readouts. The dif-

ferent limits of PNS for varying operation levels in whole body gradients are:

1. L01: Limit of dB/dt for normal operation mode (80% of dB/dt that will cause

PNS)

2. L12: Limit of dB/dt for first level controlled operation mode (100% of dB/dt

that will cause PNS)

3. Cardiac stimulation: Limit of dB/dt for cardiac stimulation (threshold above

which ventricular fibrillation occurs).

Fortunately, nerve stimulation thresholds of cardiac tissue are greater than 100 T/s

at the ts,e f f commonly used in MRI (below 1 ms) and hence chances of cardiac

stimulation are very low. However, for nerve tissue, at the clinically used ts,e f f ,

PNS thresholds are much lower and PNS stimulation can be possible [66] if lower

ts,e f f (i.e. high slew rates) are used.

One method of preventing the MR scanners from exceeding the PNS threshold

is using an empirical method called SAFE (Stimulation Approximation by Filtering
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and Evaluation) [68] to relate the PNS threshold to the gradient waveforms and the

rise time, regardless of the shape of the waveform [66]. Generally, the output from

the model is compared to the given limits of stimulation thresholds and exceeding

this should stop the scanner to prevent PNS stimulation.

2.3.4.3 Gradient heating

Gradient amplifiers, associated with the gradient coils, contain transistors that al-

low amplification of current. High levels of current inputted into the transistor for

an extended period of time can cause the temperature of the transistor to rise and

exceed the limit set by the manufacturer [69].

Gradient coils that transform current generated by the amplifiers into magnetic

gradients can also be overheated in the presence of a large static magnetic field.

This is because of the eddy current that are generated during this procedure, which

in turn generates Lorentz force that causes the gradient coils to vibrate producing

loud acoustic noise and heat. Additionally, coil resistance will also lead to heat gen-

eration. Thus hot-spots (regions with high local current density) within the gradient

set in the MR scanner contain the highest temperatures and hence must not exceed

the given manufacturer‘s temperature limits.

In both cases of gradient amplifiers and coils, reduction in temperature are

carried out through a cooling system, which uses water or air. In addition to this,

the scan time is also lengthened by introducing ‘dead-time’ to prevent any further

use of gradient amplifiers and coil [70].

2.3.5 Gaussian phase distribution (GPD) approximation

Safe implementation of time varying gradient waveforms, specifically OGSE se-

quences, have recently been demonstrated in clinical scanners by [71, 72] for diffu-

sion imaging of the human brain. Once diffusion images are acquired, it is important

to characterize the type of diffusion in tissue from which potential biomarkers could

be inferred. This is possible by matching the measured diffusion signal to a theoret-

ical diffusion signal. In the literature there are several approaches for approximating

the restricted and free diffusion signal analytically or numerically.
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One analytical approach is known as Single Gradient Pulse (SGP) approxi-

mation. It relates the diffusion signal to the diffusion propagator (P(r1|ro,∆)) and

assumes that diffusion does not take place during the application of gradients and

therefore is only valid when δ<<∆. When SGP is satisfied, we can also estab-

lish a Fourier relation between the average propagator (P(R,∆), the probability of

an ensemble of spins to be displaced by R in time ∆, and the measured signal -

a technique known as q-space imaging [73, 74]. However, in practice, the condi-

tion δ<<∆ is not usually satisfied due its requirements for high gradient strengths

coupled with very short gradient duration.

The diffusion signal can also be numerically calculated for generalised wave-

forms using a method known as matrix formalism [75]. However the method has

been known to be computationally expensive [53].

Another analytical approach, and the one we are interested in, is known as

the Gaussian phase distribution (GPD) approximation. Unlike SGP approximation

and matrix method formalism, GPD approximation can be used in practical situa-

tions because it is valid for a finite δ and is also computationally fast, respectively.

Hence, throughout this thesis, for both SDE and OGSE sequences, we use GPD

approximation described below.

GPD approximation involves expressing the signal attenuation in terms of

phase accrual at TE.

E(G,∆) =
∫ −∞

∞

P(φ ,∆)eiφ dφ =
∫ −∞

∞

P(φ ,∆)cos(φ)dφ (2.29)

where P(φ ,∆) is the probability distribution of phases at the end of time, ∆. The GPD

approximation assumes that when the number of spins in sample is large compared

to the displacement of the spins during time ∆, the probability distribution of the

phases is Gaussian [76] and the signal attenuation can be derived to be [77]:

E(G,∆) = e
−< φ 2 >

2 (2.30)

where < φ 2 > is the mean squared phase change.
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The signal attenuation, E(G,∆), can be calculated by evaluating < φ 2 >. In the

case of free diffusion, under the application of rectangular SDE gradient waveforms,

E(G,∆) becomes [77]:

E(G,∆) = e
−
[
γ

2
δ

2G2(∆− δ

3
)
]
D

(2.31)

where D is the diffusion coefficient and the rest of the diffusion gradient parameters

inside the brackets [..] are defined as the b-value. The higher the b-value, the

stronger the degree of diffusion weighting and hence lower the measured signal

attenuation.

For a trapezoidal SDE, with rise time tr, the b-value is given by [78]:

b = G2
γ

2
[
(δ − tr)2

(
∆− 1

3
(δ − tr)

)
− 1

6
(δ − tr)t2

r +
1

30
t3
r

]
(2.32)

For a trapezoidal OGSE with rise time tr, the b-value is given by [64]:

b =
2G2γ2δ 3

15N2 (5− 15trN
2δ
− 5t2

r N2

4δ 2 +
4t3

r N3

δ 3 )+G2
γ

2(∆−δ )

(
(1− (−1)N)(δ −N · tr)

2N

)2

(2.33)

where N is the number of half oscillations in the waveform, which we will call

‘lobes’.

The GPD approximation is only fully accurate in the limit of free diffusion

[76]. Free diffusion can also include the presence of restriction but provided ∆ is

very short compared to the time required by the spins to reach the boundary [79].

Additionally, the approximation is also valid for when ∆ is long (∆→ ∞) because

the positions of the spins and their phases become independent of the start position,

which results in a Gaussian distribution [79].

In the presence of restriction at intermediate times, the mean squared phase

distribution is almost Gaussian. [80] showed in simulation that GPD approxima-

tion of restricted diffusion inside spheres and parallel planes for rectangular SDE

waveforms are accurate enough for practical cases. [64] later also validated GPD
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approximations using simulations for rectangular and trapezoidal waveforms. As-

suming GPD approximation and using the diffusion propagator from Equation 2.27,

the restricted diffusion signal from a gradient waveform is given by [55, 64]:

E(G,∆) = e

(
− 2γ2

D2

∞

∑
n=0

Bn

λ 2
n

Γn

)
(2.34)

where Bn and λn depends on the underlying geometry and gradient directions.

In this thesis, we use a model of cylinders to represent axons. Bn and λn for

restricted diffusion within a cylinder with gradient perpendicular to the main axis

of the cylinder is:

Bn =
2(R/µn)

2

µ2
n −1

λn =
(

µn

R

)2
(2.35)

where µn is the nth root of the equation J′1 and J1 is a Bessel function of first kind

[64]. The parameter Γn in Equation 2.34 defines the contribution of the gradient

waveform to the mean squared phase distribution and in the case of rectangular

SDE waveforms is [81]:

Γn = G2{λnDδ −1+ e−λnDδ + e−λnD∆(1− cosh(λnDδ ))} (2.36)

In the case of trapezoidal SDE (N=1) and OGSE (N>1) sequences, Γn is given by

[64]:

Γn =
G2

2D2λ 2
n t2

r

[
(−1)N

E2
1+

(et̃r −1)2(et̃r − eλnD/2ν)2e−δ̃−2t̃r
(

e−∆̃
(
−1+(−1)Neδ̃

)2−

2
(
1+(−1)Neδ̃ (N−1+Ne−λnD/2ν)

))
+N

(
2e−λnD/2ν

(
et̃r −1)2−

4(e−t̃r −1+λnDtr)+λ
3
n D3t2

r (1/ν−8tr/3)
)]

, (2.37)

where ν = N/(2δ ), δ̃ = Dλnδ , ∆̃ = Dλn∆, t̃r = Dλntr, E1+ = eDλn/(2ν)+1
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2.3.6 Summary

Overall, in this section, we have described the main theory behind diffusion MRI.

This includes analytical expressions for the diffusion propagator, i.e. the probabil-

ity distribution function, for both free and restricted diffusion. Following this we

introduced the concept of diffusion weighted imaging and the range of sequences

that can be used to carry out the measurements, SDE and OGSE sequences being

the main focus. We also discuss the patient and scanner hardware safety that are

related to using time varying diffusion gradient waveforms (such as OGSE). We

also described the process of analytically approximating the diffusion signal using

the Gaussian phase distribution approximation for both SDE and OGSE sequences

for both cases of free and restricted diffusion.

2.4 Models in diffusion MRI
Analytical models of diffusion MR signal can be fitted to the diffusion measure-

ments for estimating tissue-specific parameters by matching the resultant analytical

signal to the measured diffusion signal. Repeating this procedure over all voxels

builds up a map of the parameter of interest. This section presents some common

models used to analyse the diffusion MR data. In the first part, we will describe the

popular method of modelling diffusion MR data, which is known as diffusion tensor

imaging (DTI). DTI gives parameters estimates that reflect the measured diffusion

signal, however, due to the simplicity of tensor model, DTI parameters can be non-

specific to actual tissue microstructural features. For this reason, in the second part,

we focus on ‘biophysical’ tissue models that geometrically represent the underlying

tissue. More specifically, we focus on tissue models for axon diameter imaging,

which is the main focus of this thesis.

2.4.1 Diffusion tensor imaging (DTI)

Diffusion tensor imaging is a popular method of analysing diffusion MR data of the

brain [4]. The method uses a 3D Gaussian model of spin displacements to acknowl-

edge that diffusion in an anisotropic environment varies along different directions.

In this case, the scalar diffusion coefficient, D, in Equation 2.25, is defined instead
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by a 3×3 symmetric matrix known as the diffusion tensor, D:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.38)

where Dxx, Dyy and Dzz are the diffusivities in the x, y and z directions and Dxy, Dyz

and Dxz are the correlation between the given directions [82].

The measured diffusion signal accounting for changes due to gradient direc-

tions is written as:

S = S0e−bĜT DĜ (2.39)

where S0 is the MR signal without any diffusion weighting, b is the diffusion

weighting factor and Ĝ is a unit gradient vector along which the diffusion is mea-

sured. To find the 7 unknowns parameters (S0, Dxx, Dyy, Dzz, Dxy, Dyz and Dxz),

at least 7 measurements, one b=0 s/mm2 and six diffusion measurements acquired

using non-collinear gradient directions are required. In practice, 20-30 gradient

directions are optimal to reduce the effect of noise in the estimates and to ensure

oriental invariance [83]. Additionally, standard b-values for DTI in clinical scenar-

ios tend to be between b = 600-1200 s/mm2 [84].

Once the diffusion tensor is estimated, an eigenvalue decomposition of D is

carried out to find the eigenvectors (e1, e2 and e3) and their corresponding eigen-

values (λ1 ≥ λ2 ≥ λ3). The largest eigenvalue and its corresponding eigenvector,

denotes the direction of fastest diffusivity, and hence the main fibre direction.

The eigenvalues can be used further to compute some common rotationally

invariant indices such as fractional anisotropy (FA):

FA =

√
3
2

√
(λ1−〈λ 〉)2 +(λ2−〈λ 〉)2 +(λ3−〈λ 〉)2√

λ 2
1 +λ 2

2 +λ 2
3

(2.40)

where FA = 0 corresponds to isotropic diffusion and FA = 1 corresponds to diffusion

occurring along one specific direction. However FA cannot distinguish between
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different shapes of diffusion tensors. For instance, FA is high for cases when λ1 >

λ2 = λ3, where diffusion is ‘cigar’ shaped and when λ1 = λ2 > λ3, where diffusion

is ‘pancake’ shaped. [85] introduced an alternative approach to visualising the shape

of the diffusion tensor. The newly introduced indices are ‘linearity’ (Cl), ‘planarity’

(Cp) and ‘sphericity’ (Cs):

Cl =
λ1−λ2√

λ 2
1 +λ 2

2 +λ 2
3

Cp =
2(λ2−λ3)√
λ 2

1 +λ 2
2 +λ 2

3

Cs =
3λ3√

λ 2
1 +λ 2

2 +λ 2
3

(2.41)

A tensor with a ‘cigar’ shape therefore will have high linearity and low pla-

narity, whereas a tensor with a ‘pancake’ shape will have low linearity and high

planarity. Although indices estimated from DTI reflects the measured signal, the

indices are non-specific to microstructural changes in tissue. For instance, axon

diameter, axon density and myelination are some of the factors that could effect

estimates of the DTI indices [83]. As a result, biophysical tissue models were intro-

duced to provide more specific microstructure parameters.

2.4.2 Biophysical tissue models for axon diameter imaging

Biophysical tissue models provide a geometrical representation of the underlying

tissue microstructure. The analytical diffusion signal are calculated for the specific

model and then the inverse problem can be solved to estimate the tissue model

parameters given the measured diffusion data.

The first such model was introduced by [46] for modelling the bovine op-

tic nerves in the brain. The total signal from SDE sequences was modelled as a

weighted sum of signals that came from three different compartments: restricted

diffusion within spherical glial cells, restricted diffusion within prolate ellipsoidal

axons and hindered diffusion in the extra-cellular space. The analytical signal for

each compartment was calculated using the SGP approximation in the parallel and

perpendicular direction with respect to the main direction of the ellipsoidal axons.

The model fitting was then carried out to match the analytical signal to the mea-

sured diffusion signal. Tissue parameters such as the weighting, also known as the
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volume fraction, of the compartments, diffusivity of intracellular and extracellular

compartments, sizes of glial cells (sphere radius) and axons (short and long axis of

the ellipsoids), as well as membrane permeabilities were then extracted. Due to the

large number of parameters, a high quality dataset had to be acquired with multiple

gradient strengths and diffusion times. Although the extracted parameter estimates

were found to agree with histology, the long acquisition times and high gradient

strengths associated with the dataset prevents the translation of this model in vivo.

Hence simpler tissue models are essential for the possibility of in vivo microstruc-

ture imaging.

A particularly simple tissue model is the ball and stick model [86]. It is a two

compartment white matter model, where intra-axonal diffusion occurs only in the

parallel direction, i.e. stick, and the extra-axonal diffusion is isotropic, i.e. ball,

and both compartments have the same diffusivity, d. The total signal is then the

weighted sum of the signals from the two compartments:

S = S0( f e−bd(n̂.Ĝ) +(1− f )e−bd) (2.42)

where f is the intra-axonal volume fraction and n̂ is the fibre direction and Ĝ is the

direction of the diffusion gradient.

Although, the simplicity of ball and stick model makes it clinically feasible,

the model does not account for other important microstructures parameters such as

axon diameter, which as pointed out in Section 2.1.3 is a potential biomarker for

changes within CNS and PNS. As the focus of the thesis is axon diameter imaging,

a brief review of the current techniques developed for axon diameter imaging is

given in the following sections. The techniques include q-space imaging (Section

2.4.2.1), angular double diffusion encoding (Section 2.4.2.2), temporal diffusion

spectroscopy (Section 2.4.2.3), CHARMED & AxCaliber (Section 2.4.2.4), and

ActiveAx (Section 2.4.2.5). In Sections 2.4.2.6 and 2.4.2.7, specific advances of

ActiveAx will be discussed.
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2.4.2.1 q-space imaging

One method of imaging axon diameter is q-space imaging (QSI). When conven-

tional SDE sequences are used the dependence of the signal attenuation, E(q,∆),

on the wave vector, q = (2π−1)γGδ , exhibits a diffraction pattern when using ∆

ranging from ∆ = 0 to ∆ > = a2/D, where a/2 is the distance from the boundary to

the centre. This is a signature of restriction [87]. When no restriction is present, the

diffraction patterns disappear. Hence the diffraction pattern can be used to charac-

terize difference types of diffusion and restriction sizes. However, [88] showed that

heterogeneity in restriction sizes causes the diffraction pattern to diminish.

[73] used Fourier transform of the measured signal (E(q,∆)) acquired in q-

space to estimate the average propagator, also known as the displacement probabil-

ity distribution function (PDF) in heterogeneously sized yeast cells. By assuming a

Gaussian-shaped displacement distribution, the diameter of the yeast cells were then

inferred from the full width half maximum (FWHM) of the displacement PDF. Un-

like in the cases of isotropic diffusion in yeast cells, axons tend to have anisotropic

diffusion. [74] demonstrated that the FWHM of the PDF of unrestricted diffusion

increase in width as the diffusion time is increased. However, they showed that

when diffusion measurements are perpendicular to the main axon axis in the white

matter of a rat spinal cord, i.e. under anisotropic restricted diffusion, the FWHM

is independent of diffusion time and is correlated with the size of restrictions. Al-

though this was encouraging, when [89] carried out simulations and white matter

tissue experiments, their axon diameter estimates were overestimated (i.e. width of

FWHM was large). They then suggested that multi-compartment models may help

improve the accuracy of axon diameters estimates because larger width of FWHM

could be attributed to hindered diffusion in the extra-cellular space.

A two-compartment model (restricted diffusion in the intra-axonal space and

free diffusion in the extra-axonal space) using QSI was experimentally explored by

[16] to accurately estimate axon diameters in the ex vivo mouse spinal cord. The

displacement PDFs for both compartments were estimated and the diameter of ax-

ons were determined from the FWHM of the intra-axonal PDF. However, the main
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limitation of the method comes from the requirement for high and commercially

unavailable gradient strengths (G > 3000 mT/m) to fulfil the SGP approximation.

On current state-of-the-art MR scanners in clinical research such as the Connectom

scanner, gradient strengths only reach up to G≤ 300 mT/m [90, 91]. Hence, in vivo

axon diameter imaging using QSI at currently available clinical gradient strengths

is not a promising method [92].

2.4.2.2 Angular double diffusion encoding (DDE)

Another approach used to estimate restriction size is using angular double diffu-

sion encoding (DDE) sequences (Figure 2.15). The signal attenuation profile from

the DDE sequence is a function of φ , E(φ) and probes the correlation between

displacement of water molecules in different time scales and different directions,

giving more sensitivity to microstructure parameters such as axon diameter.

Figure 2.15: Schematic representation of a double diffusion encoding (DDE) sequence.
Two pairs of SDE pulses, separated by a mixing time, are used. The first
pair of diffusion gradients, G1, in the direction of restriction, is fixed, while
the second pair of diffusion gradients, G2, is varied by an angle ψ , in the same
plane, with respect to G1. Figure as featured in [53].

Angular DDE for axon diameter imaging uses very little or no mixing time

[93] and unlike SDE sequences, at high q-values, can extract the diffraction pattern

of heterogeneous sizes. The sizes of restriction can then be extracted. However, as

sizes become smaller, higher q-value is required to extract the diffraction pattern and

with the short δ requirement of SGP approximation, this results in unattainable high

gradient strength [93, 94]. [95] later theoretically demonstrated that high q-values

are not required to extract sizes and [57] validated this later in experiments by using
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cylinders with diameters of 10 µm and comparing the signal attenuation profiles

from the SGP approximation [93] to the low q-value method [95] for various δ .

Using the low q-values, the potential to translate the method to clinical research

arose. Hence two compartment tissue model with low q-value angular DDE were

then applied to a range of cases of axon diameter imaging, such as water filled

micro-capillaries [17], in vivo rat corpus callosum and ex vivo porcine spinal cord

[18] and even in vivo human corpus callosum [96].

Although DDE has shown encouraging results on estimating axon diame-

ters, one disadvantage of the method is that in cases of unknown orientation and

anisotropic sample, such as the white matter, DDE is unsuitable. After acquiring

a separate DTI to calculate the fibre orientations at each voxel, the DDE sequence

(G1, which is fixed and is perpendicular to the fibre orientation and G2 which is

varied across angles), has to be repeated as many times as the calculated number

of different orientations to ensure orthogonality and hence accuracy of diameter es-

timate. This in the long run would not be clinically feasible. On a different note,

recent work by [21, 22] theoretically demonstrated that at low q-values, DDE pro-

vides the same information on restriction size as SDE when assuming GPD. In fact,

the main advantage of DDE over SDE sequences is their higher sensitivity towards

microscopic anisotropy, especially at high q-values [21, 22, 97].

2.4.2.3 Temporal diffusion spectroscopy

A different approach to measuring axon diameter is using temporal diffusion spec-

troscopy. This is a method based on sampling the diffusion spectrum, D(ω), of a

substance. In general, spins undergoing free diffusion have D(ω) = D (from Equa-

tion 2.24). In the case of restriction, D(ω) is dependent on the frequency of the

waveform, where D(ω) is constant at high frequencies but underestimated at low

frequencies. The temporal diffusion spectroscopy approach involves sampling the

diffusion spectra using OGSE sequences with a range of frequencies, each with a

range of b-values [23, 61].

[98] estimated restriction sizes in ex vivo rat brain using the cosine modulated

OGSE waveforms. They modelled the diffusion spectrum as a function of dis-
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tance between two parallel planes. They then modelled the diffusion signal using

a kurtosis model (Kurtosis, Kapp, is a measure of the deviation of diffusion from a

gaussian) over a range of diffusion times and b-values.

S(b) = S0e
−b.ADC+

1
6

b2.ADC2.Kapp
(2.43)

ADC was then estimated at various frequencies by fitting the corresponding diffu-

sion signal to the kurtosis model. The restriction size was then computed from the

analytical diffusion spectrum that best fits the estimated ADC spectrum from the

raw dataset.

Another approach of using temporal diffusion spectroscopy for imaging axon

diameters was demonstrated recently by [99]. They measured axon diameters by

fitting a biophysical model to the acquired OGSE dataset using an analytical signal

model for apodized cosine modulated OGSE sequences. The tissue model, itself,

is a two compartment model similar to the ball & stick model with modelling as-

sumptions that are similar to the modelling frameworks based on the CHARMED

model [100], i.e. AxCaliber [19] and ActiveAx [101]. Details on the CHARMED

models are provided in later sections. The restricted diffusion of the intra-axonal

compartment is modelled as randomly packed identical parallel cylinders, each with

a volume weighted diameter α (identical to ActiveAx [20]). The hindered diffu-

sion within the extra-axonal compartment are represented by a ‘zeppelin’ compart-

ment (referring to the taxonomy by [102] and similar to the models based on the

CHARMED model [100]). The signal model for apodized cosine modulated OGSE

sequences assumes GPD approximation to describe restriction within cylinders pro-

vided the diffusion measurement is perfectly perpendicular to the main axon orien-

tation and has been validated theoretically in Monte Carlo simulations [103] and

then experimentally in phantoms [104] and in vivo perfused rat brains [99]. Excel-

lent agreement between the estimated axon diameters and histology were observed

in all cases.

A key disadvantage of temporal diffusion spectroscopy is its requirement for
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large gradient strengths (to enable fixed b-values and a range of frequencies) and

perfect gradient alignment with fibre orientation, which limits the method to pre-

clinical settings only. Furthermore, although temporal diffusion spectroscopy is

extremely useful for characterising the tissue microstructure by estimating the dif-

fusion spectrum, in cases where the model of the underlying tissue is well known,

it is equivalent to simply using model-based fitting of the diffusion MRI signal di-

rectly. This direct fitting approach is a standard method of estimating axon diameter

in [19] (see Section 2.4.2.4) and [20] (see Section ActiveAx) and is the method we

use in this thesis.

2.4.2.4 CHARMED and AxCaliber

Similar to the ball & stick model, CHARMED (composite hindered and restricted

model of diffusion) is also a two-compartment tissue model [100]. However, it rep-

resents the restricted diffusion of the intra-axonal compartment as cylinder(s) and

hindered diffusion within the extra-axonal compartment as a symmetric diffusion

tensor compartment (also known as the ‘zeppelin’ compartment according to the

taxonomy in [102]). By fixing the axon diameter of the cylinders to some typical

values in the spinal cord, CHARMED allows the estimation of the cylinder orienta-

tion, diffusivity parallel to the main axis of the cylinder, d|| (which is the same for

both intra- and extra-axonal space), perpendicular diffusivity of the hindered com-

partment, dh or d⊥, as well as the intra- and extra-axonal volume fractions, f and

(1-f ), respectively. Figure 2.16 illustrates the two compartment CHARMED model

from which the total signal can be described as:

S = S0( f Sr +(1− f )Sh) (2.44)

where Sr and Sh are the restricted and hindered diffusion signal arising from the

intra- and extra-axonal compartments, respectively.

The importance of imaging axon diameter is evident in Section 2.1.3 and so

CHARMED was later extended by the same group to estimate a distribution of

axon diameters, but assuming a fixed fibre orientation. The modelling framework is
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Figure 2.16: The CHARMED tissue model developed by [105]. This figure was extracted
from [105].

known as AxCaliber [19]. Here, a gamma distribution describes the axon diameter

distribution, consistent with histological work [29].

Several papers based on the AxCaliber approach have been published, which

provide estimates of axon diameter in in vitro porcine spinal cord tissue [19], in vivo

rat CC [106], in vivo and ex vivo human CC [91, 107]. In some cases, an additional

compartment (‘Ball’ in accordance to the taxonomy of models by [102]) is added

to account for the isotropic diffusion of the cerebral spinal fluid [106, 107]. Across

all cases, high gradient strengths, G ≥ 150 mT/m, are employed to image the axon

diameters.

Although, the animal studies showed excellent agreement with histology, in

vivo human data showed overestimated axon diameters, even at very high q-values.

Furthermore, AxCaliber requires fibre orientation to be known [108], and so can

only be applied for gradients perpendicular to the fibres. Lastly, due to the num-

ber of parameters, the method also requires many measurements (by varying diffu-

sion time and gradient strengths) to the nerves to enable stable parameter estimates,

which significantly lengthens acquisition time (more than 50 minutes [91, 107]).
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2.4.2.5 ActiveAx

ActiveAx [20, 101] is also based on the CHARMED model and was developed at

the same time as AxCaliber. The ActiveAx framework models the axon popula-

tions using randomly packed identical and parallel cylinders with a diameter, α .

The extra-axonal compartment is the same as in the CHARMED model but the

perpendicular diffusivity, dh, is constrained by a simple tortuosity model [109]. An

additional compartment to account for the isotropic diffusion of CSF is also added

for in vivo brain imaging [101] and a further isotropic restricted compartment to

represent trapped water for ex vivo brain imaging [110].The model has also been

referred to as the minimal model of white matter diffusion (MMWMD) [110].

Minimal model of white matter diffusion (MMWMD)

The different compartments of MMWMD are visualised in Figure 2.17. No ex-

changes between the water populations of the four compartments are assumed.

Henceforth, the full model for the diffusion MRI signal, S, is:

S = S0

n

∑
i=1

fiSi (2.45)

where, S0 is the non-diffusion weighted signal, n is the number of compartments

(n=4), Si are the signals from these compartments and fi corresponds to the volume

fraction of water from the resulting compartments. In the rest of the chapter, f1 is

known as the intra-axonal volume fraction ( ficv f ), f2 is known as the extra-axonal

volume fraction ( fextra), f3 is known as the CSF volume fraction ( fCSF ) and f4 is

known as the dot volume fraction ( fdot).

The analytical diffusion signal from the four compartments are described be-

low:

1. Intra-axonal compartment models the signal S1 coming from a population of

parallel cylinders (to represent axons), each with the same diameter a. The

parameter d|| defines the intrinsic diffusivity within this compartment. S1 is
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Figure 2.17: Schematic representation of the compartmentalisation of the four compart-
ment white matter tissue model and their corresponding volume fractions.
Intra-axonal compartment refers to water population within the axon. Extra-
axonal compartment refers to water population outside the axon. Cere-
brospinal fluid (CSF) compartment refers to the fast flowing free water popu-
lation in the brain, where the axons do not affect diffusion. Dot compartment
accounts for signal coming from water population trapped in very small struc-
tures like glial cells and cell membranes of fixed tissues.

defined by:

S1 = S1||(d||)S1⊥(a,d||) (2.46)

The diffusion is assumed to be free parallel to the axis of the cylinder(s), S1||,

and is defined by:

S1|| = e−(b cos2 θ d||) (2.47)

for a diffusion gradient parallel to the cylinder with strength |G|cosθ , where

θ is the angle between the cylinder’s long axis and G. b in Equation 2.47 is

the b-value and is given by Equation 2.32 [64, 78].

S1⊥(a,d||) is the diffusion signal from the perpendicular direction to the main

axis of the cylinder(s). This diffusion is restricted by the cylinder wall and

the signal is approximated from the GPD approximation (Equation 2.30 [55]

and Equation 2.33 [64, 81]).

2. Extra-axonal compartment models the signal S2 as anisotropic Gaussian dis-

placements [82] with diffusivity d|| parallel to the cylinder and diffusivity of
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dh perpendicular to the axons. S2 is defined by:

S2 = e−(b cos2θ d||)e−(b (1−cos2θ) dh) (2.48)

where dh is modelled by the tortuosity model [109]:

dh = (1− ficv f )d||). (2.49)

3. Cerebrospinal fluid (CSF) compartment models the signal S3 as isotropic

Gaussian displacements with diffusivity diso and is defined by:

S3 = e−bdiso (2.50)

4. Dot compartment accounts for trapped water molecules inside cell membrane

of fixed tissues or glial cells [101]. It does not contribute to the signal atten-

uation and is included to allow a fraction of the signal to remain constant,

i.e.:

S4 = 1 (2.51)

Pulse sequence optimisation

An important aspect of ActiveAx is experiment design. This enables ActiveAx to

be used for imaging axon diameters under tolerable times for live subjects. Simulta-

neously, it ensures that the diffusion sequences used for imaging are most sensitive

to the parameters of interest given the tissue model and hardware constraints of

the MR scanner (for example maximum gradient strength, maximum slew rate and

maximum echo time).

The optimisation framework finds pulse sequence combinations (defined by G,

δ and ∆) that minimize the sum of the expected variance of each model parameter.

The objective function is:

F =
K

∑
i=1

(J−1)ii

p2
i

(2.52)

where pi is the ith model parameter and (J−1)ii is the corresponding Cramer-Rao
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lower bound (CLRB) for the parameter and is calculated assuming a Rician noise

model [20]. The CRLB provides the lower bound on the variance of the parameter

estimates and is known to correlate with the true variance. The optimisation to find

the minimum objective function is carried out using a stochastic algorithm, known

as SOMA (self-organising migratory algorithm) with population size of 50, 500

migrations and other default settings.

Axon diameter index

One of the main traits of ActiveAx is the description of the axon diameter index as

a single summary statistic to quantify the range of axon diameters present in tissue.

The model description of MMWMD above states that there is only a single axon

diameter, a in tissue, however in reality, tissue contains a range of axon diameters.

The estimated axon diameter produces fitted diffusion signal that best match the

measured diffusion signal, where the measured signal contains signal contribution

from all of the axons. Each contribution is proportional to the volume of water

within the axons, and in turn proportional to the diameter squared of the axons.

Therefore, we expect and indeed [101] has shown that the estimated axon diameter

correlates with the volume weighted axon diameter in tissue as demonstrated by the

equation below:

α =
∑

n
i=1 a2

i .ai

∑
n
i=1 a2

i
(2.53)

where the numerator is the volume weighted axon diameter calculated across n

axons and the denominator is used for normalization. We refer to this estimated

axon diameter, α , as the “axon diameter index” from here onwards to indicate the

range of axon diameters present in tissue.

Previous work based on the ActiveAx framework

[20] developed and applied the sequence optimisation for a simplified MMWMD

model (where S3 = 0 and S4 = 0) and used the optimised protocols to estimate

diameters of various synthetic cylinders (2-40 µm). They demonstrated that a-priori

diameters in the range of 10-40 µm can find optimised protocols that minimise the

CRLB very easily. They also showed that diameters in the range of 10-20 µm are



2.4. Models in diffusion MRI 66

easiest to estimate using the optimised protocols.

Later, on they experimentally demonstrated the use of the ActiveAx framework

to map the axon diameters in an in vivo human brain at a low gradient strength

of only 60 mT/m. The work highlighted that ActiveAx framework is simple, re-

quires reduced number of measurements (due to pulse sequence optimisation) and

is orientationally-invariant to enable whole-brain mapping. However, axon diame-

ters were found to be overestimated but at the corpus callosum, the ‘low-high-low’

pattern of axon diameters was consistent. [111, 112] later suggested that overesti-

mation can occur from fibre dispersion (fanning and bending of fibres) in the brain.

[111] modelled dispersion and showed slight improvements on the accuracy of axon

diameters but the overestimation still persisted. Recently, [110] used the ActiveAx

framework on a pre-clinical scanner with a gradient strength of G = 300 mT/m to

measure axon diameters across an ex vivo monkey corpus callosum. They suggested

that use of SDE sequences would require high gradient strengths than those offered

currently by conventional clinical scanners, which is also the same conclusion that

was later reached by two studies using the Connectom scanner equipped with G =

300 mT/m: [113] using ActiveAx and [91, 107] when using AxCaliber. Addition-

ally, the ActiveAx framework has also been extended to different forms of diffusion

sequences, such as double spin echo [58] and OGSE sequences [59, 60, 63], in the

hope to discover diffusion sequences that are more sensitive towards the microstruc-

ture parameters.

2.4.2.6 Advances of modelling in ActiveAx

For modelling frameworks based on the CHARMED model such as AxCaliber and

ActiveAx, the consistent overestimated axon diameters, even at G = 300 mT/m,

have proved to be highly challenging and has thus attracted a lot of interest. It is

possible that finding the tissue model that could best represent tissue microstructure

could potentially improve accuracy of axon diameters. [102, 113, 114] have carried

out extensive studies using a range of SDE waveforms to generate high a quality

dataset and added additional compartments to represent the main pools of water in

tissue (corpus callosum of an ev vivo rat and of an in vivo human) such as intra-
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axonal space, extra-axonal space, CSF and glial cells. Some of the representative

compartments are summarised in Figure 2.18. Their work collectively found that

the best model for white matter tissue is a three compartment model with either

the restricted diffusion being modelled as a distribution of ‘sticks’ with anisotropic

dispersion or as parallel cylinders. However, axon diameter was still found to be

significantly overestimated (≥ 3µm) when using the best model with cylinders to

represent the white matter [113]. It is possible that using waveforms such as OGSE

sequences could potentially improve axon diameter estimates.

2.4.2.7 Axon diameter imaging using OGSE ActiveAx

There is evidence that OGSE can improve axon diameter estimates [23–25, 99].

Oscillating gradient waveforms reduce the diffusion time of the experiment from

the ∆ (time between the two pulses in the SDE) to half period of the oscillation.

Therefore, frequencies of the oscillations can be tuned to make OGSE sequences

more sensitive to intrinsic diffusivity and leading to improved sensitivity towards

diameters.

Initially, [59] used the optimisation framework to find the optimal waveform

shape for probing diameter and diffusivity when the diffusion measurement direc-

tion is orthogonal to the main axis of the cylinder. Square oscillating gradient wave-

forms with maximum gradient strength emerged from the optimisation. Their fre-

quencies also increased as the diameter reduced. Later on, [60] explored the effects

of varying the diffusion measurement direction on the shape of the optimal wave-

forms and demonstrated that diffusion measurements parallel to the main axis of the

cylinder provides a robust estimates of intrinsic diffusivity, which otherwise would

be harder to estimate from perpendicular measurements. They also demonstrated

that diffusion measurements in the parallel direction also help to reduce the overall

oscillation frequency of the optimised gradient waveforms because intrinsic diffu-

sivities are calculated through the measurements in the parallel directions, which

is then used, along with lower frequency OGSE sequences, to estimate diameters

that could not be accessed previously in [59]. Later on [62] experimentally demon-

strated axon diameter imaging in an ex vivo corpus callosum of a rat using a range
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Figure 2.18: Some of the compartments used to represent diffusion in tissue and their as-
sociated model parameters (in blue). The intra-axonal compartments (‘stick’,
‘cylinder’, and ‘GDRcylinders’ (cylinders with gamma distributed radii) in
the order of top to bottom in the first column) model restricted diffusion. The
parameter d is the intrinsic diffusivity of the cylinders and a is their diame-
ter. In terms of GDRcylinders,the parameters, k and ν are the shape and scale
parameter respectively. The extra-axonal compartments (‘ball’ and ‘zeppelin’
in the order of top to bottom in the second column) model the hindered diffu-
sion in the extra-axonal space. Here the diffusivity within the compartment is
either given by d or d|| and dh, which are the parallel and perpendicular diffu-
sivities of the zeppelin compartment. Lastly, the other compartments (‘sphere’
and ‘dot’ in the order of top to bottom in the third column) model isotropic
restricted diffusion. For the sphere compartment, the intrinsic diffusivity is
again described as d and the size of the restriction is define by a. Both d and
a are zeroed for the dot compartment, which can be used to define trapped
water. Note that although the ‘ball’ and ’sphere’ compartment look similar,
the prior models Gaussian diffusion while the latter models restricted diffu-
sion. θ and φ define the fibre orientation. According to the taxonomy by
[102], the MMWMD model is comprised of cylinder, zeppelin, ball and dot
compartments. Figure adapted from [102].
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of optimised gradient waveforms, which included OGSE and SDE sequences, with

gradient strength fixed at G = 400 mT/m. The findings showed that OGSE provided

the lowest axon diameter estimates consistent with findings from [60]. However,

largely overestimated diameter up to 10 µm are observed in the dataset suggest-

ing the method was not fully refined. Additionally, the automatic optimisation

framework gave the final acquisition protocol and the results showed that OGSE

sequences improved the estimates of diffusion coefficient and hence in turn that of

the axon diameter [60], however, it was unclear whether OGSE sequences provide

better sensitivity than SDE sequences to the axon diameter itself.

A very recent study by [24] explored the signal sensitivity of SDE and OGSE

sequences to axon diameters under a range of situations, which included looking

at the ideal case of parallel cylinders with known orientation and realistic cases of

unknown orientation and dispersion within fibres. They empirically demonstrated

that under ideal conditions, SDE sequences with long gradient duration and maxi-

mum available gradient strength give the highest sensitivity to small axon diameters

(a ∈ {0,10} µm), while under realistic cases, low frequency OGSE sequences are

preferred for a < 7 µm, with the frequency increasing as the diameter is reduced.

Under realistic cases, the low b-value is able to retain signal sensitivity by avoid-

ing excessive signal attenuation from the freely diffusing water along the length of

the fibre. More importantly, [24] introduced the concept of the diameter resolution

limit, which is the smallest diameter that can be distinguished from zero. They

outlined the diameter resolution limits after considering T2 of white matter and dif-

ferent levels of SNR under idealistic and realistic cases. At current clinical gradient

strengths of G ≥ 80 mT/m, the resolution limit is approximately 5 µm whereas at

high gradient strength that are achievable on the Connectom scanner, the resolution

limit is around 2.5 µm. The very recent theoretical work by [25] also agrees with

the findings from [24].
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2.4.3 Summary and motivation for the thesis

In this section, we have introduced microstructure imaging using diffusion MRI,

with a focus on axon diameter imaging. We have presented the different meth-

ods of measuring axon diameters, ranging from q-space imaging, angular double

diffusing encoding sequences, temporal diffusion spectroscopy methods and most

importantly models based on the CHARMED model which are AxCaliber and Ac-

tiveAx. The review so far suggests that ActiveAx is the most practical framework

to use because it requires reduced number of measurements and is orientationally

invariant - two factors that are essential for in vivo imaging. The review also sug-

gests that OGSE and SDE sequences are the best waveforms for estimating axon

diameters [24, 25] because, theoretically, they have the highest sensitivity towards

small axon sizes. The theory also suggests that under practical scenarios, such as

when fibre orientation is unknown or when fibres are dispersed, OGSE sequences

show additional sensitivity towards axon diameters, which increases further when

higher gradient strengths are used. In this thesis, we verify the theoretical findings

experimentally.

Although a previous attempt has been made to compare OGSE and SDE se-

quences [62], the work showed largely overestimated axon diameters which were

not validated with histology. Overestimated axon diameters are a common issue in

ActiveAx, as well as in AxCaliber. Two potential reasons that have been mentioned

so far in the review are fibre dispersion and insufficient gradient strengths. The

prior reasoning has been investigated by [111] but were shown to have very small

effects in reducing the overestimation. On the other hand, the latter case of using

low gradient strength (G ≤ 80 mT/m) in clinical settings, has been shown to limit

the smallest axon diameter that can be detected [91, 101, 107, 110, 113], leading to

largely overestimated diameters. In this thesis, we will carry out extensive experi-

ments to compare axon diameter imaging using OGSE and SDE sequences across

a range of gradient strengths, including at the maximum available clinical gradient

strength. We use simulations, phantoms and animal models to test the performance

of these sequences across substrates ranging from simple to complex environments.
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More importantly, we will directly validate the resultant microstructure estimates

across most of the substrates using ground truth values, such as manufacturer pro-

vided diameters for phantoms and histology for tissue.

Ultimately, the thesis will provide the answer to whether OGSE is preferred in

practice for axon diameter imaging. In the big picture, the findings from this thesis

can contribute towards using axon diameters as biomarkers for neurodegenerative

diseases, such as amyotrophic lateral sclerosis (ALS), and for peripheral nerve re-

generation studies.



Chapter 3

Clinical scanner: Implementation

and validation of OGSE sequences

The main purpose of this chapter is to implement and validate the performance

of OGSE sequences on a typical hospital clinical scanner. In the first section, we

implement trapezoidal OGSE sequences with a sine profile onto the clinical scanner

and test the implementation using an MR scanner simulator. In the second section,

we validate the implementation using gelatine phantoms. The implementation and

validation in this section are carried out under the supervision of David Atkinson

and Rachel W Chan (Centre of Medical Imaging, University College London).

3.1 Implementation

The purpose of this section is to describe the implementation of the oscillating gra-

dients onto the MRI scanner. The hardware specifications and the software of the

MRI system will be explained in general terms to protect proprietary information.

The layout of the Philips source code and the procedure of building a diffusion-

weighted sequence will also be described. After which, the implementation of the

new gradient waveform will be explained in detail, including tests carried out for

safety checks to ensure the safe implementation of the OGSE sequences.
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3.1.1 Materials and methods

3.1.1.1 Philips Achieva 3.0T TX and source code

The MRI scanner used in this chapter is the Philips Achieva 3.0T TX located at the

University College London Hospital (UCLH). This is a standard clinical scanner,

which is also used for research purposes. The maximum gradient strength avail-

able for this scanner in clinical mode is 62mT/m with a maximum slew rate of

100mT/m/s. The Philips Achieva 3.0T TX has a pulse programming environment

(PPE) to allow low-level control of the MRI scanner, which enables customisation

of default MRI sequences. The Philips source code contains a massive library of

functions involving functions that create basic sequences, add or modify objects

such as diffusion-weighted gradients and spoilers into these sequences, as well as

functions that carry out patient-related and MR hardware-related safety checks re-

lating to these particular sequences, such as peripheral nervous stimulation and gra-

dient heating.

Figure 3.1: Overall process used to create a modified sequence

Figure 3.1 shows the overall process that is used to create the modified MRI

pulse sequences. When a modified source code is compiled, it creates an executable

patch file, which is used to update the interface of the Philips simulator. This in-
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terface is the same user interface that will be displayed in the Philips Achieva 3.0T

Tx scanner. The amended sequence can then run in this modified Philips simula-

tor, which is shown in Figure 3.2. Any modifications of a default Philips sequence

requires checks in the appropriate areas of the Philips library. These modifications

must be ensured to have been registered by the required safety checks by debugging

the source code and viewing the whole simulated pulse sequence in a graphical

viewer. This newly modified sequence can only be inserted into the actual Philips

MR scanner when this whole process is completed successfully and the modified

source code has been heavily reviewed by another experienced individual (as an

additional safety check). Validation of the sequence using the MRI scanner can be

then carried out.

Figure 3.2: Snapshot of the Philips simulator containing the newly introduced oscillating
gradient parameters outlined in red.

3.1.1.2 Philips basic diffusion code

In order to understand the process of implementing a diffusion-weighted oscillating

gradient sequence, Figure 3.3 illustrates the implementation of the standard Philips

SDE diffusion sequence.

In Philips and most other scanners, diffusion waveforms are trapezoidal in

shape, which can be defined by their rise-time or slope (units of ms), gradient

strength (units of mT/m) and gradient duration (units of ms). Prior to adding the dif-

fusion gradients to the sequence, the required diffusion weighting (b-value (s/mm2)
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Figure 3.3: Overview of the processing pipeline for the creation of a standard SDE se-
quence.

is inputted by the user. The gradient duration time (δ ) is also specified by the

user. The slope (tr) for the gradients is pre-determined automatically by the existing

Philips software and is set to 0.9 ms. The standard relationship for b-value of trape-

zoidal gradients with respect to the diffusion gradient duration (δ ) diffusion time

(∆) and the diffusion gradient strength (G) is given by Equation 2.32 in Chapter 2.

Using Equation 2.32, the G and ∆ required for the specific b-value can be automat-

ically calculated. The timings of the gradients are then calculated with respect to

the imaging sequence template. The diffusion gradients are then fully defined and

therefore placed in the imaging sequence template to create a diffusion weighted

imaging sequence.

3.1.1.3 Implementation of OGSE sequences

In order to implement OGSE sequences, a similar procedure to the previous section

is carried out. Here, we replace the two large trapezoidal blocks of pulsed gradients

with trapezoidal waveforms with multiple half oscillations. From here onwards we

will refer to the half oscillations of the OGSE sequences as number of lobes (Figure
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3.4).

Figure 3.4: The top diagram shows a standard SDE sequence with two blocks of trape-
zoidal gradients placed on either sides of the RF180 pulse. The bottom dia-
gram shows the OGSE sequence with 8 lobes that replaces the standard single
gradient blocks.

The δ and TE parameters, which control ∆, are specified by the user as before.

Figure 3.5 shows the new parameters that are introduced during this study. The user

now has to define the number of lobes, N, of the OGSE diffusion sequence. The

second new parameter that is introduced is the way in which we control b-value.

The first option of the new parameter uses b-value inputted by the user to de-

cide the gradient strength. To do this, the standard SDE b-value equation (Equation

2.32) is replaced with the OGSE b-value equation, Equation 2.33 in Chapter 2 [64].

The second option is to use the maximum gradient strength available to max-

imise the b-values. The gradient strength, in this case, is set to Gmax (62 mT/m)

instead of determining the gradient strength from Equation 2.33. Figure 3.6 demon-

strates that the introduction of OGSE sequences cause a fast decay in b-value with

respect to the number of lobes N ∈ [1,25] used, for a fixed δ=45.5 ms, ∆=59.1 ms

and TE=120 ms.

3.1.1.4 Safety considerations

There are two major issues associated with the modification of the diffusion gradient

waveform in standard diffusion MRI which prevent maximum performance of gra-

dients: (1) patient safety (peripheral nervous stimulation (PNS)) and (2) hardware

safety (gradient coil and amplifier heating). These are also typical in EPI sequences

due to the rapid gradient switching during the fast k-space readout by the imaging

gradients. However, safety can potentially be a bigger issue when introducing os-

cillating gradients for diffusion MRI because much stronger gradients are used in
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Figure 3.5: Overview of the processing pipeline implementing the new OGSE sequence.

Figure 3.6: Graph showing the reduction of b-value, of an OGSE sequence with fixed ∆

and δ , as a function of the number of lobes when maximum gradient strength
is used.
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comparison to the EPI imaging gradients. In the next three sections, we check the

performance of our sequences and ensure that they do not override the manufac-

turer’s safety checks. It must be clarified here that all work that is carried out in this

section is on the Philips simulator.

3.1.1.5 Test 1 - Patient safety: Peripheral nervous stimulation (PNS)

Philips use an empirical method called SAFE (Stimulation Approximation by Fil-

tering and Evaluation) [68] to relate the PNS threshold to the gradient waveforms

and the rise time, regardless of the shape of the waveform.

Here we check whether our implemented oscillating gradients (which are new

objects that were created and added to the diffusion sequence) are being accounted

for. In Philips, amplitudes and time points of all involved gradient waveforms within

a sequence are logged. Hence to ensure that the new gradient objects are accounted

for, we check the logged PNS calculations. Furthermore, the implemented oscillat-

ing gradients and the oscillating gradients used in normal EPI readouts only differ in

terms of maximum gradient strength and duration of the gradient. The similarities

between the two types of oscillating gradients are in their slew rates and approxi-

mate frequencies of oscillations. Hence the SAFE model should still be valid for

our OGSE sequences.

In this experiment, we use three different diffusion sequences applied in the

x-axis only to ensure that the PNS limit set by Philips is pushed to its limits when

using OGSE sequences. Figure 3.7 illustrates the following sequences:

• A standard diffusion sequence, with parameters N=1, b=500 s/mm2, G=9

mT/m, which we call OGSE1lowG.

• A diffusion sequence with a very large b value, with parameters N=1,

b=25000 s/mm2, G=62 mT/m, which we call OGSE1maxG.

• A diffusion sequence with the maximum number of lobes possible for the

specified TE, with parameters N=25, b=12 s/mm2, G=62 mT/m, which we

call OGSE25.
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We also repeat the OGSE25 by choosing the diffusion encoding direction to involve

an equal combination of the x, y and z axes gradients to ensure that a combination

of gradient waveforms does not exceed the PNS limit. We refer to this sequence

as ‘OGSE25oblique’. It must also be clarified here that the OGSE1 sequences men-

tioned above are simple SDE sequences but are run using the new implementation

developed above. We expect that OGSE25 and OGSE25oblique will generate the

OGSE1lowG 

OGSE1maxG 

OGSE25 

OGSE1, oblique 

Figure 3.7: Diagram showing the 3 different diffusion sequences used to check the gradient
heating model. (a) OGSE1lowG, (b) OGSE1maxG, (c) OGSE25 (although only
N=8 are shown here for clarity). The gradient strength are not scaled. Also, the
X corresponds to the gradients axis in the scanner coordinates.

higher PNS value as they have the maximum number of lobes possible for TE=120

ms, and in the case of OGSE25oblique a combination of gradients is used. If the PNS

limits for these sequences are satisfied, then the PNS limits should also be satisfied

for all other sequences.

3.1.1.6 Test 2a - Hardware safety: Gradient heating

Here we verify that our OGSE implementation is registered by the Philips gradi-

ent heating model and is not inadvertently ignored. We test the model by changing

the parameters of the oscillating gradients (such as the number of lobes used), and

check that resultant changes in the predicted temperature from the Philips simulator

does occur. The predicted temperature of the transistors within the gradient ampli-

fiers and the hotspot regions within the gradient coils are obtained from the Philips

simulator’s log file. Similar to the previous section, it is important to clarify here

that this is carried out on the simulator and that we are not changing the gradient
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heating model that is incorporated into the Philips scanner.

We record the temperature of the transistors and the hot spot regions from

the log file for the same three sequences in Figure 3.7. Additionally, instead of

using the OGSE25 sequence from the section above, here we use OGSE1maxG

with a combination of the x, y and z axes gradients and refer to this particular

sequence as OGSE1maxG,oblique. We expect the last two sequences in Figure 3.7 and

OGSE1maxG,oblique to generate the maximum heat possible for TE=120ms because

they require maximum b-value, maximum number of lobes and use of a combi-

nation of gradients, respectively. Hence if these sequences pass the test, the less

extreme sequences should pass as well.

3.1.1.7 Test 2b - Hardware safety: Capacitor drain of the gradient

amplifier’s power supply

In Philips, a function is available to check whether the implemented diffusion gra-

dients will drain the capacitor voltage of the gradient amplifier’s power supply to

below minimum. The gradient strength and the total gradient duration time (see

Figure 3.8) are used to calculate the present power drawn from the power supply by

the gradient amplifier in the Philips simulator. This function had to be modified be-

cause the total gradient duration time of the oscillating lobes is initially interpreted

as the gradient duration time in Figure 3.8. Thus the function is modified for OGSE

sequences to include the total time duration of the oscillating gradient waveforms.

We then use the log file to check the capacitor voltage for OGSE1maxG and OGSE25

from Figure 3.7 to ensure that the changes have been registered.

Figure 3.8: Illustration of the gradient duration and total gradient duration time used in
calculation of capacitor voltage of the power supply of the amplifier.
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3.1.2 Results and discussion

3.1.2.1 Test 1 - Patient safety

For each gradient waveform, we follow the available log file of the simulator and

plot the amplitudes and time points. The PNS limit set by Philips at any time point

is 84.69 T/s, which is the first operation mode. For a standard SDE, (OGSE1lowG)

a maximum PNS of 18.7 T/s is attained. On the other hand, Figure 3.9 shows that

a higher PNS of 53.6 T/s and 68.4 T/s is reached for OGSE1maxG and OGSE25,

respectively. Furthermore comparison of the PNS for OGSE25oblique shows a max-

imum PNS value of 77.1 T/s. This confirms that the simulated PNS data obtained

from the OGSE sequences is accounted for and does comply with the safety regu-

lations set by Philips (which can vary between the EU and USA).

Figure 3.9: The outputs from the SAFE model of the OGSE1maxG (red) and OGSE25 (blue)
sequence are shown here with respect to the duration of the gradient waveform
applied. Diffusion weighting is applied only in the x-direction of the scanner
coordinates. The PNS threshold is 84.69 T/m and is plotted in green.

3.1.2.2 Test 2a - Hardware safety

Hotspot temperatures within gradient coils were recorded but were found to vary

by a maximum of 1oC for the sequences with high b-value and high number of

lobes and thus graphs for this case have not been generated. This is good because,
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OGSE1lowG OGSE1maxG OGSE25 OGSE1maxG, oblique 

Sequence	type	

Figure 3.10: Graph to show the temperature of the transistor for the sequences in Figure
3.7. The threshold and rest temperature for the transistors are also shown.

otherwise, increases in the temperature of the hotspot regions could indicate local

heating due to our implemented oscillating gradients.

Figure 3.10 shows temperatures of the transistors within the gradient amplifier

for the sequences defined in Figure 3.7. For all cases, the temperatures lie below

the threshold (red line). Exceeding this threshold by the transistor may cause MR

hardware failure. The rise in temperature for the transistor junction for positive

output current corresponds to when a positive gradient amplitude is used in the dif-

fusion sequence and vice versa for the transistor for negative output current. For

example, temperature increases are only observed for the transistor for the neg-

ative output current in the cases of OGSE25, where oscillating lobes occur, and

OGSE1maxG,oblique, where combination of gradients are used.

We only apply the diffusion encoding gradient in the x-axis for most sequences,

and therefore, we expect and also observe maximum gradient heating occurring

only in the x-axis for majority of the sequences. However, two exceptions occur.

First is the OGSE1maxG,oblique sequence where gradient heating occurs on all axes

due to the combination of axes used. Second is the OGSE1lowG, where the very
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low gradient strength results in minimal temperature increase in the x-axis. Inter-

estingly, we also observe an increased but constant temperature in the transistor

junction for positive output current in the y-axis across all sequences with diffusion

encoding gradient in the x-axis. We believe this temperature increase in the y-axis

is not due to the diffusion encoding gradients as the temperature is stable across all

sequences.

We also observe from the sequences using maximum gradient strengths that

OGSE1maxG and OGSE1maxG,oblique had much higher increases in temperature than

OGSE25, which had the same gradient duration time. This is probably because both

of the OGSE1maxG and OGSE1maxG,oblique sequences require continuous current

input at maximum power, whereas the OGSE25 sequence requires maximum power

in intervals of 1.8 ms (2 × slope of the diffusion gradient waveform).

For the cases where temperature rises, the gradient heating model adds

some ‘dead time’ to the sequence, which allows time for the gradient ampli-

fiers to cool down [70]. Hence for OGSE25 and both cases of OGSE1maxG and

OGSE1maxG,oblique, extra time that correlates with the temperature of the transistors

of the amplifier, as shown in Table 3.1, is added into the sequence.

Table 3.1: Table to show the additional time extension added to the end of the diffusion
sequence to allow the gradient amplifiers to cool down after heating up. These
time values are recorded from the Philips log file.

OGSE1lowG OGSE1maxG OGSE25 OGSE1maxG,oblique
Time
extension
(ms)

0.0 75.2 47.4 74.4

This section has checked that the Philips gradient heating model does include

the implemented oscillating gradients in the system checks.

3.1.2.3 Test 2b - Hardware safety

The maximum available capacitor voltage of the gradient amplifier’s power supply

is 4.7 kV. The voltages calculated for both the OGSE1maxG and OGSE25 from Fig-

ure 3.7 are 1.8kV and 0.59 kV, respectively. This makes sense because the positive

to negative gradient strength for OGSE (+62 mT/m to -62 mT/m) requires double
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the voltage from the capacitor than the OGSE1maxG case. Thus it can be stated that

the threshold capacitor voltage of the power supply of the gradient amplifiers is not

exceeded.

Overall, all of the safety checks that have been conducted in this section sug-

gests that the implemented OGSE sequences are safe to use. This, therefore, allows

us to move onto the validation of these implemented sequences using phantoms.

3.2 Validation
The previous section ensured that the newly added oscillating diffusion gradient

waveforms do run through the main software checks that all standard Philips SDE

diffusion gradients experience. The aim of this section is to validate the implemen-

tation of the oscillating diffusion gradients onto the actual Philips Achieva 3.0T Tx

MR scanner using a gelatine phantom to check the image quality.

A gelatine phantom is commonly used in quality assurance of MR scanners.

Their advantages over water phantoms are that (1) they have a lower T2 (40-150 ms)

similar to those found in tissue, (2) they do not require settling time and (3) they

prevent issues regarding physical vibrations, which could vary depending on the

extent of the oscillating gradients [115]. The last advantage is the most important in

our case because otherwise non-uniform images of the phantom could be acquired,

preventing any conclusion on the implementation of the OGSE.

3.2.1 Methods

3.2.1.1 Gelatine phantom preparation

In order to prepare the homogeneous phantom for MR scanning, a set procedure

is used. A large plastic container is filled with 1 l of boiling water. 132 g of Dr

Oetker‘s beef gelatine are then placed in the container and this gelatine mixture is

simultaneously stirred gently with a plastic spatula.

Once all the required gelatine is dissolved, the gelatine mixture is transferred

by pouring slowly into a standard plastic food container (NMR invisible) that is

going to be used as a phantom (Figure 3.11).

The container, with dimensions of 220 mm × 160 mm × 60 mm, is roughly
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Figure 3.11: Photograph of the gelatine phantom, which is essentially a food container
containing two smaller plastic containers inside.

the size of the head in the Head-Foot and Left- Right directions. It also has an air

tight lid to prevent any future substance leakage. Two smaller plastic containers

(with dimensions of 140 mm × 105 mm × 50 mm and 105 mm × 75 mm × 50

mm), are also contained within this large food container, where the smallest con-

tainer is stacked on top of the medium sized container. Hence this provides a three

compartment gelatine phantom. Any bubbles on the surface are removed with the

plastic spatula. The air tight lid is then locked onto the food container, and the whole

phantom is slowly transferred to a refrigerator (which is at a temperature of +3oC),

and is placed on an even surface. The phantom is left for 24 hours to fully set. It

is then transported with caution, to prevent movement causing de-gelatinisation of

the phantom, into the MR scanning room and is left for 4 hours to reach the room

temperature of the scanning room. This approach is taken to ensure that the tem-

perature changes in the phantom, which can further cause T1 and T2 lengthening

along with changes to diffusivity, do not occur during the experiment itself.

3.2.1.2 Image acquisition

Gelatine phantom is placed on an MR head coil (SENSE Head coil 8 elements) and

secured in place with NMR invisible wedges. One standard Philips SDE sequence

(N=1 run using the standard implementation) and two trapezoidal OGSE sequences

(N=2, N=3), with TE/TR = 120 ms/1000 ms , δ /∆=45 ms/59 ms and G=9, 19,

26 mT/m, respectively, and with equal b-values (500 s/mm2) are applied on the

gelatine phantom in three directions (readout, phase-encoding and slice-encoding
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directions). The imaging matrix is 115 × 36 × 24 with a resolution of 2 mm × 2

mm × 5 mm. Other sequence parameters are: Half Fourier=0.618, repetitions=10

and total acquisition time is 30 minutes.

Only one transverse slice at the phantom centre, averaged over 10 repetitions,

is used to analyse the gelatine phantom to validate the OGSE sequence implemen-

tation.

3.2.2 Results and discussion

Figure 3.12 shows the images of the gelatine for the three trapezoidal OGSE se-

quences over the three gradient directions. It also shows the corresponding b=0

image for each sequence. No systematic artefacts or distortions are observed in the

images. The signal intensity for all diffusion-weighted images also look the same

and are quantified in Figure 3.13.

Figure 3.12: Images of a single slice of the gelatine phantom acquired for three trapezoidal
OGSE sequences (a) N=1 (b) N=2 and (c) N=3, all with b = 500 s/mm2. The
first column shows the b=0 s/mm2 measurements and the subsequent columns
display the diffusion weighted images in the readout (G1), phase-encoding
(G2) and slice-encoding (G3) directions. The two red boxes indicated on each
of the b=0 images are regions of interest (ROI 1 (left) and ROI 2 (right)) used
in Figure 3.13.

Figure 3.13 shows the mean and standard deviation of the MR signal calculated

for each measurement at the two ROIs (indicated by the red boxes in the b=0 images

in Figure 3.12). The MR signal across all diffusion weighted measurements are the

same because the gelatine phantom has isotropic diffusion. Therefore, the signal

attenuation is independent of gradient directions, as visually observed in Figure

3.12. The results demonstrates that the OGSE sequences used here are comparable
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Figure 3.13: The graph shows the mean and standard deviation in (a) ROI 1 and (b) ROI 2
across all measurements of the three trapezoidal OGSE sequences displayed
in Figure 3.12. Black circle data points represent the signal from the b=0
images, while the green triangles, blue crosses and red squares represent the
diffusion weighted signal from the readout (G1), phase-encoding (G2) and
slice-encoding (G3) directions, respectively. As the images are highly homo-
geneous, the standard deviations are too small to be seen on the graphs.

to the standard SDE sequences (i.e N=1).

In general, the sensible images of the gelatine phantom suggest that the scan-

ner implementation of the oscillating diffusion gradients is successful and that the

gradients are applied as expected.

3.3 Conclusion
Overall in this chapter, we implement and validate trapezoidal OGSE sequences

on a clinical scanner. We test the implementation of the sequences on the Philips

simulator and ensure that the safety limits for both patients (in terms of peripheral

nerve stimulation) and scanner hardware (in terms of gradient heating) are met by

pushing the diffusion gradients to their limits on the simulator. We then validate

the implemented sequences on the clinical scanner by imaging a gelatine phantom

with isotropic diffusion using diffusion sequences with same b-values, over multiple

gradient directions, but with varying number of lobes, N. As expected, the diffusion

signal is independent of N and gradient directions, and therefore demonstrates suc-

cessful implementation of the sequences on the clinical scanner.

In the next chapter, we attempt to use these newly validated OGSE sequences

to carry out microstructure imaging in phantoms with restricted diffusion.



Chapter 4

Clinical scanner: Pore diameter

mapping of micro-capillaries

phantom

In chapter 3, we implemented oscillating trapezoidal OGSE sequences onto a clini-

cal scanner. Here we explore the sensitivity of OGSE to various capillary diameters

on a clinical scanner using the OGSE ActiveAx approach.

We use water-filled micro-capillaries array plates as a model for axons and

OGSE ActiveAx [59, 60, 63, 64, 116] with a range of frequencies for the estimation

of microstructure indices. The practical experiments in this section are carried out

under the supervision of David Atkinson and Rachel W Chan (Centre of Medical

Imaging, University College London).

The work in this chapter is published as:

L S Kakkar, D Atkinson, R W Chan, B Siow, A Ianus and I Drobnjak. Pore diame-

ter mapping on a clinical scanner using orientationally-invariant OGSE ActiveAx,

Computational Diffusion MRI, MICCAI Workshop 2016.

4.1 Methods
This section outlines the diffusion MR model for the micro-capillaries array plates

representing the white matter axons. It then describes the preparation of the micro-

capillaries array plates, specifies the imaging protocols and lays out the data pro-
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cessing pipeline.

4.1.1 Phantom model

We use a single restricted compartment of unknown orientation as a model for our

phantoms (i.e. a very simplified MMWMD model from Chapter 2, Section 2.4.2.5,

where S2 = 0, S3 = 0 and S4 = 0). All microcapillaries (representing axons) are

parallel and non-abutting cylinders, with equal radii and impermeable walls. The

parameters of the model are (1) microcapillary diameter, a, (2) intrinsic diffusivity,

d||, and (3) microcapillary direction, n.

4.1.2 Phantom experiments

4.1.2.1 Sample preparation

The microcapillaries array plates (as shown in Figure 4.1a) are thin square plates

(each of dimensions 20 mm × 20 mm × 1 mm) made up of borosilicate glass

(Incom, inc). The microcapillaries array plates will simply be referred to as ‘plates’

from here onwards. Each plate consists of many microcapillaries. This study uses

three pairs of plates with ground truth microcapillary diameters of 5, 10 or 20 µm,

and an open area fraction between 60 and 65 % (Figure 4.1b, c and d). The ground

truth diameters of the microcapillaries are provided by the manufacturer and these

are the only available sizes which broadly mimic the possible in vivo axon diameters

that are encountered in the central nervous system [5].

The 3 pairs of plates are slotted into a 3D printed phantom holder (using Objet

VeroBlue (Stratasys Ltd) as the material) containing distilled water such that the

microcapillaries are aligned parallel to the main magnetic field. Since there are

differences in the susceptibility of the water (susceptibility of -9.03 ppm [117])

and plates that are made up of borosilicate glass (susceptibility of -11.05 ppm),

the alignment helps to reduce the inhomogeneity in the main magnetic field, which

otherwise can lead to artefacts such as image distortion and signal loss. Afterwards,

the plates are also soaked in the distilled water for one week to remove air bubbles

at the plate surface.
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Figure 4.1: (a) Photograph of an example microcapillaries array plate with microcapillary
diameters of 5 µm (plate 1). Each plate is vertically slotted into a phantom
holder containing distilled water. Magnified light microscopy images of (b) 5
µm (plate 1), (c) 10 µm (plate 1) and (d) 20 µm (plate 1), at the approximate
point indicated by the red arrow, to show the cross-section of the microcapil-
laries array plate.

4.1.2.2 Image acquisition

Trapezoidal OGSE diffusion sequences, as shown in Figure 4.2, are implemented

on a Philips Achieva 3.0T TX MRI system (University College London Hospital,

London, UK). We choose trapezoidal OGSE waveforms with a fixed maximum gra-

dient strength as it has been shown previously that these are the most sensitive to

microcapillary diameters [59, 63]. The main user controlled parameters are echo

time (TE), pulse duration (δ ), diffusion time (∆) and number of half period oscilla-

tions, referred to as ‘lobes’ (N). Gradient strength, G, and slew rate for the trapezoid

waveforms are fixed at 62 mT/m and 68.9 mT/m/ms, respectively, to adhere to man-

ufacturer set threshold for peripheral nervous stimulation (PNS). The b-value for the

OGSE sequences with trapezoidal gradient are calculated as in [64].



4.1. Methods 91

Figure 4.2: Schematic representation of the OGSE diffusion imaging protocols (left) and
corresponding plate example images (right). The protocol included (a) the sin-
gle shot echo planar imaging (SS-EPI) sequence containing the excitation, refo-
cusing pulse and readout timings; and the OGSE sequences with (b) N = 1, (c)
N = 2 and (d) N = 9. The parameters depicted here are: echo time (TE), pulse
duration (δ ), diffusion time (∆), gradient strength (G) and number of lobes (N).
The example plate images show the 5 µm pair (immersed vertically in wa-
ter) scanned perpendicular to the plane of the plate. (e) is the non-diffusion
weighted image. (f), (g) and (h) display diffusion weighted images for OGSE
sequence shown in (b), (c) and (d) respectively. The diffusion weighted images
are in the parallel and two nearly perpendicular directions relative to the long
axis of the microcapillaries. These are only three example directions of the
32 gradient directions that were used in this study. High signal attenuation is
seen in the parallel gradient direction indicating free diffusion of water along
the long axis of the microcapillaries. Signal appears bright in the perpendicular
directions which comes from the restricted diffusion of water across the long
axis of the microcapillaries.

The plates are scanned during the same session using Philips SENSE Flex Sur-

face coils. A room temperature of 20 oC is maintained throughout the experiment.

The diffusion protocol consists of 9 HARDI shells with b-values 120-20000 s/mm2,

each with 32 gradient directions and one b=0 s/mm2. The shells have a fixed pulse

duration (δ = 39ms, ∆ = 63ms) but the number of lobes varies from N = 1 to N = 9

(i.e. frequencies between 12.8 - 115 Hz), and consequently the b-values varied (see

Figure 4.2). An additional, standard SDE diffusion sequence (N = 1, δ = 10 ms,∆ =

92ms) with a b-value of 1860 s/mm2 is also included for comparison.

All diffusion protocols use single-shot-echo-planar imaging (SS-EPI). Each
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acquired image has one slice of thickness 10 mm, which is orthogonal to the plane

of the plate (see Figure 4.2). The imaging matrix is 76× 19 with a resolution of 0.4

× 1.6 mm, which is used to ensure at least one row of the voxels does not contain

partial volume effects. In order to obtain sufficient diffusion weighting for all N, we

extend the diffusion gradient duration by using a long echo time (in terms of clinical

scanning) TE = 120 ms for all shells. Other sequence parameters are: Half Fourier

= 0.8, TR = 3 s, repetitions = 1 and acquisition time per protocol is 1.75 minutes.

4.1.3 Data analysis

4.1.3.1 Data processing

The acquired images are registered using FMRIB Software Library (FSL, FMRIB,

Oxford) rigid-body registration [118] to account for any potential vibrations from

the oscillating gradient waveforms. The SNR is calculated from the mean and stan-

dard deviation across 9 b = 0 images per voxel. The region of interest (ROI) is

chosen from the b = 0 images by manually excluding edges of the plate to avoid

voxels affected by partial volume effect. The ROIs of all plates has a mean SNR

> 45. Additionally, as the direction of the microcapillaries, n, is assumed to be

unknown, n is estimated using OGSE diffusion tensor imaging and then is inputted

into our model fitting procedure described below.

4.1.3.2 Model fitting

A voxel-wise two stage model fitting procedure, as defined in [101], is used to

estimate diameter and diffusivity of the plate samples.

Grid search An initial search for the maximum likelihood parameter settings given

a Rician noise model is carried out by iterating over a fixed grid of parameter values

within a specified range of physically plausible values. The objective function (fOb j)

to be minimised is the negated Rician log likelihood of the model parameter values

given the measured data (Rlog) [20]:

fOb j =−Rlog =−2log(σ)− S2 +A2

2σ2 + log(A)+ I0(
AS
σ2 ) (4.1)
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where σ is the gaussian standard deviation, A is the measured signal, S is the pre-

dicted signal from the model described in Section 4.1.1 and I0 is the Bessels function

of the first kind order 0.

To reduce the search space, the axon orientation, n, which is assumed to be

unknown, n is estimated using a Diffusion Tensor model. The results from the grid

search are used as the starting points for the next stage.

Active-set method The active-set algorithm is used with the same Rician noise

model as in grid search to refine the maximum likelihood parameter estimates. The

algorithm is a non-linear constrained optimisation method and more details can be

found in [119]. It uses a line search procedure to find the direction in which the

objective function is decreases. Subsequently, the objective function moves a cer-

tain distance provided the constraint boundaries are satisfied. This step is iterated

until the direction does not changes and the objective function reaches a minima.

Constrained optimisation such as this increases the speed of convergence and is a

disadvantage in un-constrained algorithms like Levenberg-Marquardt which is used

in [101, 102]. The active-set user-defined constraints for all parameters, lower and

upper bound limits, are a = 0.002 and 30.0 µm, and d|| = 0.002 and 3 µm2/ms,

respectively. Once the microcapillary diameters and diffusivities with the highest

log-likelihood are found for each voxel for each plate across the given ROI, their

mean and standard deviation are calculated across this region.

4.2 Results
First we test whether the microcapillary diameter and the intrinsic diffusivity can be

estimated based on the entire trapezoidal OGSE imaging protocol in Figure 4.2. We

then test which of the OGSE sequences out of those in Figure 4.2 provide the most

accurate parameter estimates by analysing each shell separately, and we compare

the results with the parameters obtained from the standard SDE with long diffusion

time.

Figure 4.3a and b display the parameter maps (diameter and diffusivity, re-

spectively) for the ROIs of our plates. Both pairs of 10 and 20 µm plates have
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Figure 4.3: The (a) diameter, a, and (b) diffusivity, d||, maps, respectively, across the ROIs
of the 5 µm (plates 1 & 2), 10 µm (plates 1 & 2) and 20 µm (plates 1 & 2)
plates. All images have been cropped and magnified by the same amount for
visual clarity. The graphs show the mean and standard deviation of the (c) di-
ameters of the microcapillaries (µm) and (d) intrinsic diffusivities (µm2/ms),
which are calculated over the ROIs. The diamond and triangle data points rep-
resent the first and second set of plates, respectively. The dashed line represent
the line of equality for (c), and for (d) it represents the theoretical water diffu-
sivity calculated using [120] for water at 20 oC.

accurate and precise (indicated by the homogeneous maps) estimates. The param-

eter maps for the 5 µm plates are partially inhomogeneous and they significantly

underestimate the diameter. Figure 4.3c and d reflect the accuracy and precision

of the parameters, displayed in Figure 4.3a and b, as the mean and standard devi-

ation of the estimated a and Di calculated across the ROI. The figure also shows

very similar parameter estimates within each pair of plates suggesting that the re-

sults are reproducible. For the first set of 5, 10 and 20 µm plates, the estimates of

mean±standard deviation for [a,d||] are [1.5± 2.4 µm, 2.0± 0.1 µm2/ms], [10.1±

0.5 µm, 2.0 ± 0.1 µm2/ms] and [19.8 ± 0.4 µm, 2.0 ± 0.1 µm2/ms], respectively.

For the second set of 5, 10 and 20 µm plates, the values of [a,d||] are: [0.7 ± 1.9

µm, 1.9 ± 0.1 µm2/ms], [10.3 ± 0.2 µm, 2.1 ± 0.1 µm2/ms] and [19.8 ± 0.6 µm,
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2.0 ± 0.1 µm2/ms], respectively. We observe the highest accuracy and precision

for 10 µm plate pairs, and the worst for 5 µm plate pairs. A possible reason for

the diameter index estimates of 5 µm plates hitting the lower bound, 0.0 µm, is

due to model instability. Fitting errors caused by model instability usually occur

when there are insufficient diffusion measurements for the given model or when the

model has too many parameters [121, 122]. However, in our case, neither reasons

justify the lower bound estimate as a fitting error because our simple model has

only two parameters and a large number of measurements (9 shells each with 30

measurement directions). In addition to this, the accurate measurements of 10 and

20µm plates also suggest that the model is stable. This suggests that the current set

of diffusion measurements may not be sensitive to diameters of 5 µm plates.

Figure 4.4 shows the quality of fit by comparing measurements with predic-

tions from the fitted model (dashed line) and the ground truth (solid line) in the

central voxel of each plate ROI. The ground truth curve was generated using the

manufacturer provided diameters and a diffusivity constant (2.0 µm2/ms) calcu-

lated for the free water compartment at 20 oC ([120]). The representative voxels

chosen here are typical for the ROIs. A good agreement can be observed between

the measurements and the fitted curve across all plates and the quality of fit can

be quantified using Rlog (see Equation 4.1). The Rlog for 5, 10 and 20 µm plates

are 1.4×105, 1.1×105, and 1.7×105 for the first pair of plates, respectively, and

1.3×105, 1.3×105 and 1.4×105 for the second pair of plates, respectively. A good

agreement is also observed between the fitted curve and the ground truth curve for

the first pair of 10 µm and 20 µm plates. However, slight differences between the

fitted curve and the ground truth curve can be observed in the second plates of 10

and 20 µm. This can be due to the overestimated diffusion constant caused poten-

tially by partial volume effects. For this central voxel, in the case of 5 µm plates

(Figure 4.4a and b), the differences between signals predicted using the known pa-

rameters [a,d||] = [5.0 µm, 2.0 µm2/ms] and model estimates [a, d||] = [0.0 µm, 2.0

µm2/ms] for the first 5 µm plate are small, despite the model estimates of diameter

being so different. The difference is slightly larger in the second 5 µm plate ([a,d||]
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= [0.0 µm, 1.8 µm2/ms]) but this is most likely due to an underestimation in the

diffusion constant. These results suggest the change in measured signal is negligi-

ble for microcapillaries with diameters at or below 5 µm, i.e the measured signal is

not very sensitive to diameters at or below 5 µm.

Figure 4.5 shows the mean and standard deviation of the estimated diameter

and diffusivity obtained by separately analysing each individual shell with N lobes

(from Figure 4.2). Here, results from a standard SDE sequence (N = 1,δ = 10 ms)

are also included for comparison. 10 and 20 µm plate diameter estimates are close

to the ground truth values for the majority of N, whereas 5 µm estimates are largely

underestimated for all N. Focusing on 10 and 20 µm plates, N ∈ 2,3,4} perform

very well, while for N≥ 5, the estimates are progressively less accurate and precise

as N increases. This may be due to insufficient diffusion weighting as N increases.

At low N (N = 1 (δ = 39ms)), the fitting fails to correctly estimate the parameters

for 20 µm plates because of the strong diffusion attenuation, forcing the model to

fit to the noise floor. As a sanity check we compare the results to (N = 1,δ = 10ms)

and find that diameter and diffusivity of microcapillaries with diameter of 20 µm

are estimated accurately for this SDE sequence, however, 10 µm plates are poorly

estimated. Hence, for this particular TE and diffusion gradient duration, we find

that N>1 gives better results overall.

N = 3 gives the best estimates for both 10 and 20 µm plates. N = 3 outputs

[a,d||] of [9.7± 0.5 µm, 2.0± 0.0 µm2/ms] and [20.1± 0.5 µm, 1.9± 0.1 µm2/ms]

for the first pairs of 10 and 20 µm plates, respectively. We also see consistency in

our estimates because the estimates ([a,d||] ) for the second pair are [9.9 ± 0.3

µm, 2.1 ± 0.0 µm2/ms] and [20.1 ± 0.8 µm, 1.9 ±0.1 µm2/ms]. The diameter

estimates from N = 3 are close to the ground truth and are also within the confidence

limits of the estimates from the combined OGSE protocol shown in Figure 4.3. The

diffusivity estimates have slightly higher accuracy and slightly lower precision for

both pairs of 10 and 20 µm plates in comparison to the combined OGSE protocol.

The diffusivity estimates are also very close to the estimates from the combined

OGSE protocol. These results suggest that, for the case of idealised systems, one
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Figure 4.4: Plots of normalised signal from central voxel of each ROI in Figure 4.3a against
absolute dot product between the gradient directions and the estimated direc-
tion of the microcapillaries; signals from perpendicular gradient direction are
towards 0 on the x-axis, and from parallel directions towards 1. The measure-
ments are represented by markers, while the solid (−) and dashed (- -) lines
show the predicted signal from the ground truth and estimated parameters, re-
spectively. The colours indicate the different N of the imaging protocol. The
black horizontal dotted lines around S/S0 = 1 show the b=0 measurements. All
measurements are normalised by the averaged b0 signal per voxel. The pa-
rameter estimates for the representative voxels here are: [a,d||] = [0.0 µm, 2.0
µm2/ms],[10.2 µm, 2.0 µm2/ms] and [20.1 µm, 2.0 µm2/ms] for the first pair
of 5, 10 and 20 µm plates, respectively. For the second pair, the respective
[a,d||] are [0.0 µm, 1.8 µm2/ms], [10.4 µm, 2.1 µm2/ms] and [20.5 µm, 2.1
µm2/ms]. The Rlog for 5, 10 and 20 µm plates are 1.4×105, 1.1×105, and
1.7×105 for the first pair, respectively, and 1.3×105, 1.3×105 and 1.4×105 for
the second pair of plates respectively.



4.3. Discussion 98

Figure 4.5: Mean diameter (a) and diffusivity (b) estimates calculated for each N from
Figure 4.2 (labelled as 1 to 9 (39ms), where δ = 39ms) and also from the
standard SDE sequence (labelled as ‘1 (10ms)’, where δ = 10ms), for all plates.
The same central row of voxels, as in Figure 4.3, is used to calculate the mean
and the standard deviation. The dashed lines represents the real ground truth
diameters in (a), and the calculated diffusivity from [120] in (b). N = 3 produces
the best diameter and diffusivity for both pairs of 10 µm and 20 µm plates.

OGSE shell can perform similarly compared to a combination of OGSE shells.

4.3 Discussion
In this chapter we explore the sensitivity of OGSE to microstructural dimensions of

microcapillaries of unknown orientation on a clinical scanner. We find that 10 and

20 µm micro-capillary diameters can be accurately and precisely estimated whereas

5 µm estimates are neither accurate nor precise. We also find that low frequency

OGSE sequences give the best results and are optimal for parameter estimation. In

particular, N = 3 OGSE sequence can be used on its own to give estimates that are

very similar to those of the combined OGSE frequencies (N = 1 to N = 9).

Our observations support the theoretical findings in [24, 123] regarding the

clinical scanner diameter resolution limit which, based on their calculations, for

gradient strength of G = 62 mT/m, is approximately 6 µm for SNR ≈ 50. We get

excellent estimates for 10 and 20 µm plates and can assume that the same would be

true for the diameters of microcapillaries within this range (a ∈ 10,20 µm). On the

other hand, 5 µm diameters cannot be estimated as they fall below the resolution
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limit. In our study, we used idealised phantom plates (homogeneously and densely

packed with microcapillaries), which were imaged with a HARDI type acquisition,

pushed to the clinically feasible limits. We used a ‘long’ TE = 120 ms (in terms of

standard clinical settings) in order to allow for larger diffusion weighting which is

necessary to improve the sensitivity to the smaller diameter microcapillaries (5 µm).

We also maximised SNR (≥ 45) on the clinical scanner by imaging the phantom

ensemble with a surface coil and using water as the substrate (long T2 relaxation

time ≈ 1500 ms). Yet for a gradient strength of 62 mT/m, the diffusion weighted

signal for the 5 µm microcapillaries could not be differentiated from a diffusion

signal for 0µm microcapillaries. This highlights that diameters of 5 µm cannot be

estimated on clinical scanners even under idealised conditions. Moreover, this is

also further evidence for the validity of models of brain nerve tissue where axons

can be represented as sticks and not as cylinders at G ≤ 62 mT/m [86, 124]. On the

other hand, when we place the same 5 µm plates in a pre-clinical scanner with 800

mT/m gradients we estimate 5 µm almost perfectly (see Chapter 6, suggesting that

the reason is the insufficient gradient strength).

Our analysis of individual OGSE sequences shows that there is an optimal

range of OGSE lobes, for estimation of diameters of microcapillaries and intrinsic

diffusivity. The optimal OGSE shells are with low number of lobes, (N ∈ {2, 3,

4}) and their parameter estimates are accurate and precise, especially for N = 3.

Our experimental findings are consistent with the recent ActiveAx simulation study

[24] and spectroscopy study [104], which show that OGSE sequences with lower

N are optimal for the measurement of fibre diameters. The result highlights the

importance of optimisation for microstructure indices estimation.

In this work we analysed the sensitivity of OGSE sequences to fibre diameter in

micro-capillaries. Based on theoretical studies which compare OGSE and SDE se-

quences [24, 25], we do not expect SDE based techniques to provide better diameter

estimates, with the same gradient constraints. Although we have not directly com-

pared the sensitivity of other more complex sequences (e.g. DDE [53, 57]), similar

conclusions hold, as the sensitivity and resolution limit is driven by the maximum
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gradient strength and pulse duration [25].

The phantom we use in this study is much simpler than in vivo nerve tissue.

However, the purpose of this work is to test the innate sensitivity of OGSE se-

quences to fibre diameters on a clinical scanner, which requires ideal diffusion sub-

strates. We expect that results for in vivo nerve tissue to be similar or worse. For

instance, resolution limit would be lower, i.e. since 5 µm diameter can not be esti-

mated in an ideal phantom with extremely long T2 of pure water and simple parallel

cylindrical capillaries, then its potential to be estimated in vivo is further reduced.

As for the optimal frequency of the OGSE, the exact value would be different, how-

ever it is predictable that it would be of low frequency [24].

A potential drawback of using the phantoms in the study are possible artefacts

such as signal loss and image distortions that could arise from inhomogeneous mag-

netic field which are further caused by the differences in the susceptibility between

the plates and water. These artefacts could be reduced in the future by using micro-

capillaries that are longer than the sensitive length of the RF coil (50mm in length)

and ensuring that they continue to be aligned parallel to the main magnetic field

[116].

Unlike the drawbacks, there are numerous benefits of using physical phantoms

with known geometry and microstructural characteristics. They are not degrad-

able over time and are easy to use in validating microstructure imaging protocols

[17], even over multiple clinical trial sites. There are other ongoing development

of more complex phantoms such as biomimetic phantoms [125] being developed

for validating diffusion MR imaging with a focus on materials that are have similar

susceptibility to tissue. However, the simplicity of the plates used in this study is

also ideal for validation and calibration purposes. Additionally, there is also po-

tential here to develop an integrated phantom with a more finely graded range of

microcapillary diameters to explore the resolution limit with more accuracy.
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4.4 Conclusion
Overall, our results suggest that imaging axon diameter in the brain on a standard

clinical scanner with gradient strength of 60-80 mT/m is extremely challenging.

This was demonstrated by the insensitivity of the sequences towards diameters at or

below 5 µm, which is the majority of axon diameters in the brain [29, 30]. Using

stronger gradient strengths could potentially increase the sensitivity of the pulse

sequences to axon diameter. With the increasing practice in the community to build

clinical scanners with stronger gradients, for instance the Connectom scanner [90,

91, 107], in vivo axon diameter mapping could also be a possibility in the near

future. In the following chapters we focus our research on exploring the potential

of axon diameter mapping, and evaluate both OGSE and SDE sequences, using

stronger gradients.



Chapter 5

Preclinical scanner: Axon diameter

mapping in ex vivo monkey brain

In chapter 4, we experimentally demonstrate that OGSE sequences with low fre-

quency provide more accurate and more precise diameter estimates of pores in ide-

alised phantoms at clinical gradient strengths (G = 62 mT/m) than standard SDE

sequences. We also show that the sequences were insensitive to diameters below

5 µm in these simple phantoms with no extra-axonal space. Previous theoretical

work by [24, 25] support these results and suggest that smaller diameters can only

be accessed with higher gradient strengths (G>100 mT/m).

This chapter focuses on using higher gradient strength to experimentally

demonstrate axon diameter mapping in a biological tissue, an ex vivo monkey brain.

The work is carried out in collaboration with Tim Dyrby (from the Danish

Research Centre For Magnetic Resonance), who acquired the experimental dataset

required for this study, and the manuscript is in preparation.

5.1 Motivation
In CNS and PNS tissues, most axon diameters are far below 5 µm [29, 30, 126].

Accurate axon diameter imaging is therefore extremely difficult on standard clinical

scanners with gradient strengths below 80 mT/m, although some attempts have been

made [58, 101, 111]. Recent developments of human MR systems equipped with

much higher gradients of 300 mT/m, such as the Connectom scanner [90], have
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been shown to benefit axon diameter imaging in in vivo [91, 107, 114] and in ex

vivo [110] white matter tissue using SDE sequences.

In this chapter, we use stronger gradient strengths, G = 300 mT/m, to exper-

imentally demonstrate axon diameter mapping in an ex vivo monkey brain. Here

we overcome the limitations presented by the simplicity of the plates, mainly the

presence of extra-axonal space that was absent in the plates. This chapter is further

motivated by previous work from [110], in which optimised SDE sequences at G

= 300 mT/m were used but overestimated axon diameters were measured. Here,

we investigate whether using OGSE can provide estimates close to the histological

values that are found in literature [29, 30] and compare their performance to newly

optimised SDE sequences.

The comparison for axon diameter mapping is carried out by calculating

axon diameter index maps using the minimal model of white matter diffusion

(MMWMD). This white matter model is orientationally invariant, but it does as-

sume that axons are straight and parallel throughout each voxel. It is therefore

important to ensure that we only apply the model of white matter where we believe

this to be the case. Hence the white matter of interest in this study is the corpus cal-

losum (CC). Furthermore, we also carry out simulation experiments to support our

imaging experiments by using synthetic substrates that mimic axons in biological

tissues.

5.2 Methods

This section starts by outlining our procedure for the preparation of tissue sample,

i.e. the monkey brain, for imaging. It then describes the tissue model used to rep-

resent the microstructure of the region of interest, corpus callosum, in the monkey

brain. This is followed by a description of the optimisation of the diffusion imag-

ing protocols, the MRI scanner hardware and imaging sequence parameters used

to acquire the raw data. The pre-processing steps for the raw data and the model

fitting procedure that generates the final parameter maps using the full tissue model

are then outlined. Following this, the details of the segmentation of CC is outlined,
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which is used to carry out an in-depth analysis of the dataset. In the last section

simulation experiments, which are used to support the tissue results, are described.

5.2.1 Tissue samples

The tissue sample used in our MRI experiments is from the brain of a male Vervet

monkey (Chlorocebus pygerythrus), who is obtained from the Montreal Monkey

Brain Bank. We follow the optimised ex vivo imaging pipeline guidelines on prepa-

ration of subjects and scanning outlined by [127]. Briefly, the live monkey is han-

dled and cared for on the Island of St. Kitts according to a protocol approved by

the local ethics committee (The Caribbean Primate Centre of St. Kitts). The brain

is excised and then perfusion fixated in 4% formaldehyde and post-fixed for at least

3 weeks in 1% formaldehyde. The tissue is then placed in phosphate buffer saline

(PBS) and kept at 5oC for long-term storage to restore T2-relaxation. Prior to the

experiment, the monkey brain is kept at a temperature close to that of the inside of

the MR magnet for ≈6 hours to ensure temperature stabilisation during scanning.

5.2.2 Tissue model

The minimal model of white matter diffusion (MMWMD) [101], as used by [101]

and [110], is chosen to represent the CC microstructure for our study. The model is

based on the simplified CHARMED model [100, 105] and is detailed in Chapter 2,

Section 2.4.2.5. The parameters of the model are (1) axon diameter, α , (2) intrinsic

diffusivity, d||, (3) CSF diffusivity, diso,(4) intra-axonal volume fraction, ficv f , (5)

CSF volume fraction, fCSF , (6) trapped water volume fraction, fdot and (7) axon

direction, n.

5.2.3 Protocol optimisation and imaging protocols

The OGSE and SDE diffusion imaging protocols are both optimised for a simpli-

fied MMWMD, where S3 = 0 and S4 = 0 (i.e. the CSF and dot compartment are

excluded), using the optimisation framework from [20, 59] (see Chapter 2 Section

2.4.2.5 for more details). The optimisation seeks the diffusion sequence parame-

ters: gradient strength (G), diffusion time (∆), gradient duration (δ ) and also, in the

case of OGSE, the waveform frequency (ω); that maximise sensitivity to the tissue
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model parameters.

Figure 5.1: Schematic representation of the optimised SDE (top) and OGSE (bottom) 3-
shell diffusion imaging protocols with a single-line readout 2D spin echo se-
quence containing the excitation, refocusing pulse and readout timings. The
corresponding instance of a diffusion weighted image of the mid-sagittal slice
of the monkey brain is also displayed next to each sequence. All images are at
the same grayscale level.

We optimise both OGSE and SDE protocols using a priori model parameters

settings (similar to [101]) of ficv f = 0.70, d|| = 0.60 µm2/ms, dh = 0.18 µm2/ms, and

for axon diameter indices of 1.5, 3.0, and 6.0 µm. The diffusion imaging scanner

settings for the optimisation are: Gmax = 300 mT/m, number of gradient directions

= 60, slew rate = 2000 T/m/s and maximum echo time (TE) = 40ms. SDE protocols

are constrained to non-oscillating gradient waveforms, while OGSE protocols are
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allowed to have both non-oscillating gradient waveforms and oscillating gradient

waveforms. The final optimised protocols for SDE and OGSE are displayed in

Figure 5.1, each with 3 HARDI shells and unique b-values.

We use a 4.7 T Varian Imaging System with 120 mm bore size and a maximum

gradient strength of 300 mT/m with a slew rate of 2000 T/m/s to acquire our diffu-

sion images. All sequences use a single-line readout 2D spin echo (SE) sequence,

in-plane image matrix 256 × 128 × 10, resolution 0.5 × 0.5 × 0.5 mm3, constant

TE (40 ms) and TR (2500 ms).

Our final dataset consisted of 360 measurements per protocols (two repetitions

of each protocol) and an additional 48 b=0 measurements that were acquired sepa-

rately.

5.2.4 Data preprocessing

We carry out preprocessing on the raw dataset to identify our region of interest, the

corpus callosum. OGSE and SDE image volumes with b < 3050 s/mm2 are first

concatenated together to make a large volume and then a set of rules are applied to

extract the appropriate voxels.

1. Visual inspection of data sets suggests that no preprocessing is needed to

correct subject motion before fitting. Some voxels across the CC have much

larger attenuated diffusion signal than the non-diffusion weighted signal and

such voxels are removed.

2. We apply an initial threshold mask to exclude all voxels where S0 (the b=0

measurement) is more than twice the average S0 across all voxels. This helps

to avoid large partial volume effects with CSF in the white matter.

3. A Diffusion Tensor model is fitted to the remaining voxels and the linearity

and planarity are calculated (see Equation 2.41 [85]). Voxels with linearity

less than 0.55 or planarity greater than 0.25 are removed from the threshold

mask.

4. The SNR (signal to noise ratio) image of our b=0 measurements is calculated

by dividing the mean voxel values across the 48 b=0 images by its standard
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deviation. All voxels with SNR < 10 are excluded from the threshold mask

to avoid fitting to noise.

5. The final threshold mask is applied separately to the SDE and OGSE volumes.

A box filter is then used to smooth the data. The filter takes the mean signal

values in a 5 × 5 voxel square for all voxels, independently across all images

in the volume. We considered only voxels that are present in the final mask

to calculate the smoothed value of the voxel.

5.2.5 Model fitting

We carry out model fitting for each voxel in the final region of interest using a

two stage procedure (similar to that described in Chapter 4, Section 4.1.3.2 and

described by [101]) and the tissue model, MMWMD.

Grid Search Grid search as in Chapter 4, Section 4.1.3.2 is performed. Addition-

ally, to reduce the search space, fixed values are used for the intrinsic diffusivity

parameter d|| = 0.6 µm2/ms. For the monkey data, due to its CSF compartments,

diso = 2.0 µm2/ms is also fixed. These are the values recommended in the literature

for diffusivity in fixed ex vivo samples [101, 110]. The results of the grid search are

used as the starting points for the next stage.

Active-set algorithm For the non-linear fitting, d||, diso and n are fixed and all other

parameters are treated as free parameters. The active-set algorithm is as in Chapter

4, Section 4.1.3.2. The algorithm is run 10 times, first using the starting point

found in the grid search, and then 9 further times from starting points randomly

perturbed from that original starting point. The parameter values with the highest

log-likelihood are chosen as the final fitted model parameter estimates.

We then visually display the generated microstructure parameter maps by over-

laying them on top of the b=0 measurements.

5.2.6 Analysis

In order to analyse the parameter patterns across CC, we segment the monkey CC

into 10 different in-plane regions. We first fit a Diffusion Tensor model to all mea-

surements below b = 3050 s/mm2. The resultant fractional anisotropy (FA) map is
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used to segment out the CC by only considering voxels with FA≥ 0.3. As suggested

by [128], at the mid-sagittal slice, we draw a midline stretching from the genu to

the splenium and then divide the CC into 10 specific anatomical regions. The same

regions are then translated to all other slices. The corresponding mean parameter

values per regions are then calculated and compared across the CC and slices for

OGSE and SDE protocols.

5.2.7 Simulations

Prior to using the monkey corpus callosum, simulations are carried out to investigate

the sensitivity of the optimised OGSE and SDE protocols to axon diameter in a con-

trolled environment. Two experiments are carried out to investigate the sensitivity

of the optimised OGSE and SDE protocols to axon diameters in simulations.

5.2.7.1 Simulation experiment 1

Experiment 1 tests the performance of the optimised OGSE and SDE protocols

shown in Figure 5.1 for estimating axon diameters.

5.2.7.2 Simulation experiment 2

Experiment 2 tests the importance of oscillating gradient waveforms in estimating

axon diameters. In this case, we replace the oscillating gradient sequence in the

optimised OGSE protocol with equivalent b-value SDE sequences. The parame-

ters of the different SDE sequences are calculated by constraining the sequence

parameters (gradient strength, slope time and b-value) using the trapezoidal b-value

equation [78], where only ∆ and δ are allowed to vary. A total of three protocols

are generated and are shown in Figure 5.6. The new SDE sequences for OGSE

equivalent protocol (1), OGSE equivalent protocol (2) and OGSE equivalent proto-

col (3) have (∆, δ ) as (29.76 ms, 2.30 ms), (13.91 ms, 3.30 ms) and (8.59 ms, 4.30

ms),respectively.

5.2.7.3 Data synthesis for simulations

For both experiments, we use Monte-Carlo diffusion simulations via the CAMINO

framework [20, 129, 130] and generate synthesised data using 3D digital phantoms

representing the white matter tissue substrates. Each phantom is characterised as a
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unique combination of four parameters: the shape k and the scale parameter θ of

the axon radius distribution, the intrinsic diffusivity of spins d|| and the intra-axonal

volume fraction ficv f . To mimic the structure of the monkey corpus callosum, we

model the tissue as a collection of non-abutting parallel cylinders, which are ran-

domly packed as in [130], with radius drawn from a gamma distribution. The shape

and the scale parameters of the gamma distribution are obtained from [101]. [101]

predetermined the parameters from 11 histograms of axon diameters from histology

studies of human [29] and monkey [39] corpus callosum. [101] also accounted for

potential shrinkage and two different ficv f (maximum volume fraction that can be

achieved and volume fraction that is 0.1 less than the maximum) to bring the to-

tal number of synthetic substrates to 44. 22 of the substrates (i.e. for one volume

fraction) are shown in Figure 5.2. Lastly, a d|| = 0.6 µm2/ms is used.

Diameter of simulated axons (μm)
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Figure 5.2: Histograms of axon diameter distributions we use to generate digital substrates
for the Monte Carlo simulations are shown here. Although, there are 44 sub-
strates in total (22 gamma distributions, each with two intra-axonal volume
fractions), only 22 of those substrates are shown here (i.e. only one intra-axonal
volume fraction) in the order of increasing axon diameter indices (shown as
black dashed lines on each histogram) from left to right. Note that the first and
second rows have different scales.

All simulations are performed using 50000 spins, 20000 time steps and 100

cylinders, similar to the study by [101]. The noise-free dataset is referred to as SNR

= ∞. In order to make the synthesised dataset more realistic, 100 different instances

of random Rician noise (SNR = 20) are introduced to the final dataset. This noisy

dataset is referred to as SNR = 20. Finally the tissue model described in Section
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5.2.2 is fitted to the noise-free and noisy dataset to estimate the model parameters

using the model fitting procedure in Section 5.2.5.

5.3 Results
In this section, we first present the results from experiment 1 and 2 from our simu-

lation study, and then present the results from the monkey dataset.

5.3.1 Simulation experiment 1
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Figure 5.3: Graph shows the axon diameter index estimates plotted against the true axon
diameter index for a series of voxels simulated with the CAMINO Monte Carlo
simulator using the optimised SDE (left column) and OGSE (right column)
protocol. Results from two datasets: noise free (top) and noisy (SNR = 20, bot-
tom) are shown.The noisy dataset contains 100 different instances of random
Rician noise (SNR = 20) for each substrate, and the estimates for each of these
instances are displayed as red squares. The blue crosses indicate the mean esti-
mated axon diameter index across the 100 runs. The dashed line is the identity
line.
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Figure 5.3 compares the fitted axon diameter index with the ground truth di-

ameter index (from Figure 5.2) for the optimised SDE and OGSE protocols in noise

free and noisy cases. In the noise free case, SDE and OGSE perform similarly for α

≥ 4 µm. Both protocols underestimate large axon diameter indices as the diffusion

time of our protocols may not be long enough to probe restriction of large diameters.

However, OGSE outperforms SDE for α < 4 µm and moreover the OGSE protocol

is sensitive to α < 3 µm unlike the SDE protocol. Overall, OGSE estimates the

axon diameter index more accurately than SDE in noise free and, more importantly,

in noisy cases, suggesting the robustness of OGSE sequences to realistic data.

Similar to Figure 5.3, Figure 5.4 shows the estimated intra-axonal volume frac-

tion plotted against the ground truth intra-axonal volume fraction. As indicated by

the close proximity of the data points to the identity line, there is high correlation

between the estimates and the ground truth for the optimised SDE and OGSE cases

for both noise free and noisy cases.

Figure 5.5 compares the signals from three sample voxels from the simulation

substrates where the ground truth diameter indices are 3.80 µm, 2.85 µm and 1.59

µm, respectively and the ground truth intra-axonal volume fractions are 0.68, 0.53

and 0.48, respectively. The almost perfect fits to the raw data for both SDE and

OGSE are indicated by the high Rlog values and suggests that the current model

assuming tortuosity can roughly describe the signal from the gamma distributed

axon diameter voxels.

5.3.2 Simulation experiment 2

Figure 5.6 shows the effect of replacing the oscillating gradient waveform in the

optimised OGSE protocol, with different b-value equivalent SDE sequences, when

generating and fitting for both noise free and noisy datasets. For each protocol,

their corresponding graphs show the correlation between the fitted axon diameter

indices with respect to the ground truth axon diameter indices for the noise free

and noisy cases. The b-value equivalent SDE protocols do not maintain the axon

diameter sensitivity of OGSE below 3 µm. We also consistently see that α < 2

µm are only sensitive to the original optimised OGSE protocol. The same patterns
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Figure 5.4: Graph shows the estimated intra-axonal volume fraction plotted against the true
intra-axonal volume fractions for a series of voxels simulated using optimised
SDE (left column) and OGSE (right column) protocol. The same description
as Figure 5.3 applies.

are also true for the noisy signals even if we acknowledge the bias in all equivalent

SDE protocols due to the noise floor for α < 2 µm. This suggests the importance

of oscillating gradient waveforms in probing small microstructures.

Figure 5.7 shows differences between the signal attenuation of the oscillat-

ing gradient waveform and the three b-value equivalent SDE sequences, all with

b = 886 s/mm2. The restricted signal is most attenuated for the oscillating gradi-

ent waveform.This is probably because the shorter diffusion time of the oscillating

gradient waveform allows them to ‘see’ more of the diffusing particles and there-

fore the resultant signal cancels out the most. As all other measurements in each

of the protocols in Figure 5.6 show almost identical attenuation, this suggests that

the difference in restricted signal attenuation contributed to the higher sensitivity of
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Figure 5.5: The signal attenuations of the simulated sample voxels 1, 2 and 3 (shown in
columns) are plotted for OGSE and SDE cases with and without noise (rows).
The signal attenuation is plotted against absolute dot product between the gra-
dient directions and the estimated axon orientation; signals from perpendicular
gradient direction are towards 0 on the x-axis, and from parallel directions to-
wards 1. The measurements are represented by markers, while the solid lines
show the predicted signal from the estimated parameters. The fitted parameter
estimates (α and ficv f ) and Rlog of the measurements given the model parame-
ters for each voxel are also displayed on each graph. The colours on the graph
indicate the different b-value of the imaging protocol. Note that the only os-
cillating gradient waveform in the OGSE protocol is b=886 s/mm2. The black
horizontal dotted lines near S/S0 = 1 show the b=0 measurements. All mea-
surements are normalised by the averaged b=0 signal per voxel.
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Figure 5.6: Optimised OGSE protocol (top row) and three instances of OGSE equivalent
SDE protocols (2nd-4th row) are shown in the first column. Each protocol is
used with CAMINO framework to simulate voxels containing axon diameter
distributions obtained from literature [29, 39]. Similar to Figure 5.3, the 2nd
and 3rd columns show the estimated axon diameter index plotted against the
true axon diameter index for a series of voxels in the case of no noise (second
column) and in the case of added Rician noise at SNR=20 (third column).
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oscillating gradient waveforms to small diameters.
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Figure 5.7: Signal attenuations from all protocols in Figure 5.6 are shown here overlapped
on top of each other. The same sample voxels as in Figure 5.5 are used. The
b=886s/mm2 measurements for the SDE waveforms are in green and the OG
waveforms are in pink. The fitted parameter estimates (α and ficv f ) for each
voxel and each protocol are also displayed on each graph.

5.3.3 Monkey corpus callosum

The theoretical findings on the advantages of the OGSE protocol over SDE protocol

under realistic conditions are encouraging. Here we show the results for the ex vivo

monkey brain.

Figure 5.8 displays the fitted parameter maps of the axon diameter index (α),

volume fractions of all the compartments ( ficv f , fCSF , fdot , fextra (using 1- ficv f ))

and calculated map of axon density, ρ , (using equation (5) from [101]). All maps

are overlaid on top of the mid-sagittal slice of the monkey corpus callosum for both

SDE and OGSE protocols. Figure 5.9 compares the trend of the axon diameter index

across the corpus callosum and also across slices for SDE and OGSE protocols.

The maps of axon diameter index (in the top row of Figure 5.8) for both proto-

cols show a low diameter distribution at the genu and splenium end and high diam-

eter distribution at the mid-body and Figure 5.9 shows that this trend is consistent
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Figure 5.8: The fitted parameter maps of the mid-sagittal slice of the monkey corpus cal-
losum are shown here superpositioned on top of the b=0 measurements. The
maps were generated by fitting the four compartment model to the optimised
SDE (left) and optimised OGSE (right) dataset. The parameters on display
are axon diameter index (µm) (1st row), axon density (axons/µm2) (2nd row,
calculated from [101]), intra-axonal volume fraction (3rd row), extra-axonal
volume fraction (4th row, calculated using 1-ficv f ), CSF volume fraction (5th
row) and trapped water volume fraction (6th row). The corresponding legends
are also shown.

across the CC slices. This low-high-low trend is in agreement with findings from

previous studies [101, 110] but only in partial agreement with histological findings

from [39].

Direct comparison between the protocols demonstrate the ability of OGSE pro-
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Figure 5.9: Comparison between the median axon diameter index trend estimated by SDE
and OGSE protocols across the corpus callosum and across multiple slices.
The error bars indicate the 25th and 75th percentile. The median values are
calculated over the available voxels in each segmented region of the corpus
callosum.
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tocol to consistently estimate lower axon diameter indices. SDE protocols have es-

timates ranging from α ≈ 5.4-9.2 µm at the genu, α ≈ 5.8-9.2 µm at the mid-body

and α ≈ 4.4-9.0 µm at the splenium. OGSE protocol estimates lower axon diam-

eter indices for the same regions; α ≈ 4.8-9.7 µm at the genu, α ≈ 4.0-9.4 µm at

the mid-body and α ≈ 0.2-9.0 µm at the splenium. For both protocols, areas, B3,

I and S1 show more variability which we believe has been caused by Gibbs ringing

present in the image.

Fitted parameters α , ρ , ficv f and fextra (in Figure 5.8) give a good indication of

the axon topography within the CC as they show complementary patterns across the

CC. Both OGSE and SDE protocols show occurrences of small axons, high axon

density, high signal contribution from the intra-axonal compartment and low sig-

nal contribution from the extra-axonal compartment occurring at the splenium and

genu. Similarly, larger axons, lower axon density, lower intra-cellular signal contri-

bution and higher extra-cellular signal contribution occur in the mid-body region.

The observation agrees with histological findings [39], where tightly packed small

axons are found in the genu and splenium, and large axons with large extra-cellular

spaces between them occur at the mid-body.

Figure 5.8 compares the fCSF maps for the OGSE and SDE protocols. The

SDE fCSF map suggests very little contamination (<1%) occurs from the free water

compartment within the CC except at the splenium end, where free water compart-

ment can contribute to almost 5% of the total signal. OGSE fCSF map indicates that

the same voxels in the splenium suffer from partial volume effects that are twice

as large in comparison to SDE (≈ 10%), which causes the axon diameter estimates

here to hit the lower diameter limit used as a fitting constraint. Furthermore, OGSE

protocol also highlights the region of genu with free water signal contribution up

to 3%, suggesting the potential likelihood of CSF contamination in the genu. It is

possible that the low b-value (≈ 900 s/mm2) of the OGSE protocol preserves the

fast decaying free water signal compared to the lowest b-value of the SDE protocol

(≈ 3050 s/mm2), and thus makes the OGSE protocol more sensitive to the CSF

compartment, allowing for more accurate estimates of fCSF .



5.3. Results 119

The fdot maps shown on the sixth row of Figure 5.8 for both OGSE and SDE

are almost identical. They show the lowest amount of trapped water (≈ 15%) at the

splenium end, while the higher amount of trapped water occurring at the rest of the

CC can contribute to around 30% of the total signal. These large signal contribu-

tions have to be accounted for because [101] have highlighted the importance of not

considering trapped water compartment in ex vivo data, which can otherwise result

in bad fitting to the signal.
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Figure 5.10: Example voxels across the mid sagittal slice at the genu (left), mid-body (mid-
dle) and splenium (right) and their corresponding signal attenuations for the
SDE (second row) and OGSE (third row) protocols. The fitted parameter es-
timates (α , ficv f , fCSF , fdot) for each voxel are also displayed on each graph.
The quality of fit of the predicted data to the measured data is quantified us-
ing Rlog of the voxels (from left to right). The Rlog for the SDE protocol are
0.82×103, 1.65×103 and 0.30×103, respectively, and the Rlog for the OGSE
protocol are 0.33×103, 0.67×103 and 0.30×103, respectively.

Similar to findings from [101], we also observe that majority of the model pa-

rameters are independent of each other. Scatter plots (not shown) of all of the model

parameters against each other confirm this. Also, as expected, there is interdepen-
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dency between α and ρ , because ρ is proportional to α−2 by definition and this

is reflected by strong negative correlations between the two parameters (data not

shown).

Figure 5.10 shows the quality of fit by comparing measurements (data points)

with predictions from the fitted model (solid line) in the voxels indicated by the red

squares in the b=0 measurement of the corpus callosum. The red squares are chosen

specifically to be in the genu, mid-body and splenium. Qualitatively, a moderately

good agreement can be observed between the measurements and the fitted curve in

most cases and this is further indicated by the calculated Rlog values which are of a

similar order for both SDE and OGSE protocols. However, similar to [101], signal

fits of the large b-value SDE sequences are not perfect when S/S0 is near 1.

5.4 Discussion

In this chapter we investigate axon diameter mapping in an ex vivo monkey corpus

callosum using a gradient strength of G = 300 mT/m. We reproduce a well estab-

lished study that applies optimised SDE sequence to estimate axon diameter [110]

and similarly find that axon diameter is overestimated compared to the histological

values from literature [29, 30]. We show that the results can be improved when

using optimised OGSE sequence and although overestimation still occurs, OGSE

achieves a lower resolution limit than SDE. Our results are consistent for both sim-

ulation and scanning data.

Key finding

A key finding in this study is that when the fibre direction is unknown and/or

have multiple directions, the optimised OGSE protocol consistently shows higher

sensitivity to small axon diameters than for the SDE protocol both in simulation

experiments and in the ex vivo monkey corpus callosum scanning experiment. We

also show that the oscillating waveform is a key component of the protocol. These

results support previous simulation studies [24] and theoretical work [25], which

states that in the presence of dispersed fibres or fibres with unknown directions, and



5.4. Discussion 121

hence non-perpendicular angles between fibres and gradients, OGSE sequences are

optimal for axon diameter imaging. This is because the optimal gradient waveforms

for axon diameter sensitivity have long duration [24, 25] and in the case of SDE

sequences that requirement results in extremely large b-values that can diminish

the parallel component of the intra-axonal signal, and hence the total intra-axonal

signal. On the other hand, low frequency OGSE sequences can have gradient

waveforms with long duration at a relatively low b-value, which preserves the intra-

axonal signal better.

Comparison with histology

Another encouraging outcome of this study is the reproducibility of the low-high-

low axon diameter index trend across the corpus callosum. This is similar to the

trend reported in previous studies on axon diameter [91, 101, 107, 110, 111, 131].

One difference between the diffusion MRI studies (including our study) and the

histology studies [39, 45, 126] is that we report larger axons at the genu than at

the splenium, which is opposite to the histological findings. A likely cause could

be the dispersion of fibres at the genu [132]. Another difference with the histology

studies is that we consistently get much larger diameter estimates. We show that

OGSE sequence provides lower estimates than SDE, however these are still larger

than the histology estimates. One possible reason for this could be the dispersion of

the fibres, however studies that model dispersion [111] still report overestimation.

The more likely reason is that the sequence lacks sensitivity to smaller axons, as we

show in simulation, and that the signal change comes from a very small proportion

of larger axons in the voxel. There is more ongoing work that involves studying

the corpus callosum architecture as well as improvements in tissue models (dis-

cussed in Limitations) [111, 131, 133, 134] to better understand the reasons behind

mismatch between histology and axon diameter imaging using diffusion MRI.

Similar to trends in histology with respect to tissue results, in simulation, we

also expect axon diameters to be overestimated at smaller diameters (α < 3 µm

- range of axons in brain tissue). However, in simulation we observe that axons
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down to α >2 µm are roughly estimated. Unlike in tissue, larger axons (>3 µm )

can make up about <1% of the fibre population [31] whereas in simulations only

<0.05% of the axon diameters are above 3 µm. Hence in tissue, it possible that

the axon diameter index is weighted more by the larger diameters resulting in over-

estimated diameters. Additionally, simulated substrates have parallel, non-abutting

cylinders with impermeable walls and non-existent myelin, with the same diffusiv-

ity occurring in the intra-axonal and extra-axonal spaces. The simplicity of simu-

lated substrates is matched by the tissue model used in this chapter, which poten-

tially allows more accurate microstructure estimates in simulation.

We also expect that our simulation results will differ from previous work by

[110] using SDE sequences. Software improvements in the CAMINO simula-

tion framework for synthesizing substrates means that although we use the same

parametrized gamma distributions as in [110] to simulate our substrates, our SDE

results cannot estimate α = 2 µm whereas in previous work it is estimated. Ap-

pendix A shows that this is due to improvements in the CAMINO simulation

framework over the years to allow better sampling of the parametrized gamma dis-

tributions.

Limitations

A potential limitation of our work is that the protocol optimisation may not be the

best. We find that SDE protocols from Section 5.3.2 with different b-values give

lower axon diameter estimates than the optimised SDE protocol. It is possible that

during protocol optimisation, the SDE protocol could have been in a local minima

- a known problem in optimisation techniques [20]. This suggests that OGSE se-

quences could have been equally affected too. In the future, protocol optimisation

will be run 10 times to ensure that the global minima is reached.

Another important limitation is that we use a very simple model of white mat-

ter tissue. The tissue is much more complex containing axons that are either undu-

lated and/or dispersed and other microstructures such as glial cells, microfilaments

within the axons. As our tissue model is unable to capture variations in axon ar-
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chitecture, such as undulations [132] and dispersion [112] at the genu, this could

potentially lead to overestimated diameters. Accounting for axon dispersion [111]

could potentially resolve this issue to some extent. Recent studies have also shown

that imaging multi-diameter substrates using a large range of diffusion times (such

as the measurements in the OGSE protocol) can lead to time dependency of the

hindered diffusion coefficient (dh) and can cause overestimated axon diameters in

simulations [133] and in vivo [131]. More over, even more recent work by [134]

suggests that not only is the hindered diffusion coefficient time dependent, the in-

trinsic diffusion coefficient (d||) also has some time dependency. In the future, it is

possible to incorporate all of these effects into a complex tissue model if the new

model can achieve significantly higher improvement in axon diameter estimates,

however complex models usually require more number of measurements, which

can significantly increase scan times, and are usually more unstable than simple

models [113].

Finally, our validation was purely qualitative and we did not compare our re-

sults to the actual histology of the sample used. However there is ongoing work to

make this possible.

Translation to in-vivo studies

Th results of this work can not be directly used for in vivo situations since there

are differences in the intrinsic diffusivities between the two tissue types, which can

easily influence the diameter estimates [24, 110]. Ex vivo tissue has low intrinsic

diffusivity (d|| ≈ 0.6 µm2/ms), caused by fixation [135, 136] and lower temperature

used for ex vivo imaging, whereas in vivo tissue, which is usually at body tem-

perature (37oC) has intrinsic diffusivity that is almost three times higher. Higher

diffusivity in vivo tissue means that smaller axons become difficult to detect and

larger diameters are less difficult [24, 110]. [24] suggests that in this case, OGSE is

even more advantageous over SDE, compared to that of ex vivo case, because the

low b-values of OGSE sequences prevents fast signal loss from the high diffusivity

of the tissue. Consequently, the significant differences between OGSE and SDE
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protocols that are already observed in this ex vivo tissue study should be also be en-

hanced in in vivo tissue studies. In the next chapters, I will focus on experimentally

demonstrating axon diameter mapping in in vivo tissue.

5.5 Conclusion
Overall, this chapter demonstrates that the OGSE protocols are more advantageous

than SDE protocols for axon diameter mapping in the CNS white matter at G=300

mT/m. The work confirms that sensitivity of OGSE to small axon diameters are

higher, by almost 1-2 µm, than for SDE in ex vivo tissue, and the results are sup-

ported by our simulation work. Additionally, our findings support other studies

of axon diameter mapping on the benefits of using high gradient strength human

MR scanners, such as the Connectom scanner [90, 91, 107, 113]. The combination

of high gradient strength human MR scanners and the added advantage of OGSE

protocols for axon diameter mapping could potentially contribute towards the de-

velopment of axon diameter mapping techniques for diagnosis of CNS diseases

which cause axonal degeneration leading to abnormal axon diameters, such as in

amyotrophic lateral sclerosis [8, 9], autism [12, 13], and schizophrenia [10, 11].



Chapter 6

Preclinical scanner: Rat sciatic nerve

- Sequence optimisation and

phantom testing

In chapter 5, I demonstrate that OGSE protocols have higher sensitivity to small

axons than SDE protocols. The finding is experimentally demonstrated in a fixated

ex vivo corpus callosum from a monkey, which is further supported by Monte Carlo

simulation experiments.

In order to evaluate the axon diameter mapping in close to in vivo conditions

and to be able to quantitatively validate the work, we design experiments that use

viable nerve tissue and perform a thorough histology that is then compared to the

diameter estimates.

The experiments are done in three stages and presented in the three following

chapters. The first stage (Chapter 6) presents optimisation of sequences and their

testing using microcapillary array phantoms. The second stage (Chapter 7) presents

a simulation study using the optimised sequences and model selection. Finally, the

last stage (Chapter 8) presents a scanning experiment using the optimised sequences

and the selected model, validated using histology experiments.

The overall purpose of the experiments will be to test the performance of

OGSE waveforms and SDE waveforms. To compare the protocols, we evaluate

them on three separate criteria: (i) Accuracy of model estimates compared to the
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ground truth (for simulated data) or histology (for scanning data); (ii) Robustness

of model estimates as the total number of diffusion measurements changes; (iii)

Precision of model estimates.

The experiments here are carried out with help from Bernard Siow for fine tun-

ing the imaging sequences to avoid artefacts. Parts of this work are featured in the

recently accepted paper to NeuroImage:

L S Kakkar, O F Bennett, B Siow, S Richardson, T Quick, D Atkinson, J B Phillips

and I Drobnjak. Comparison of OGSE and SDE ActiveAx for axon diameter map-

ping: An experimental study in viable nerve tissue.

6.1 Motivation

There are differences between ex vivo and in vivo tissues that directly prevent our

findings from ex vivo tissue to be related to in vivo tissue. For instance, water dif-

fuses much slower in ex vivo tissue than in in vivo tissue [135, 136], enabling smaller

axons to be detected more easily in ex vivo tissue. Additionally, tissue fixation used

to preserve the tissue causes axons to shrink resulting in diameter reductions of 30%

or more [30]. As a result, the changes in the diffusion signal can lead to misleading

diameter estimates that are different to those from in vivo samples. Thereby, it is

necessary to validate biophysical models and advanced diffusion sequences in vivo

[101, 131].

However, in vivo microstructure imaging can be difficult. There are issues such

as subject motion, restricted scan duration and invasive tissue extractions for histol-

ogy that hamper in vivo imaging. On the other hand, ex vivo tissue imaging does not

have any of these disadvantages. To bridge this gap between the in vivo state and the

more convenient but less realistic ex vivo tissue experiments, [137] introduced the

viable isolated tissue (VIT) system. This is an experimental technique that allows

tissue samples to be kept in a physiologically stable state during which the tissue is

as close to in vivo as possible, maintaining the same diffusion properties and expe-

riencing negligible amount of tissue degradation. The tissue can be kept in the VIT

chamber for an extended period of time (≈ 12 hours) and can therefore emulate in
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vivo imaging experiments with extensive acquisition times.

The aim of this chapter is to assess the performance of diffusion imaging pro-

tocols, OGSE and SDE, to estimate microstructure parameters, especially axon di-

ameters, in a viable rat sciatic nerve. The protocols are initially optimised for a

rat sciatic nerve tissue and are tested for their innate sensitivity to diameters using

simple idealised phantoms. Each phantom (referred to as ‘plates’ as in chapter 4)

contains microcapillaries with a specific diameter (2, 5, 7, 10, 15 or 20 µm), and

the range of diameters cover the range that are usually present in peripheral nerve

tissues. The performance of the OGSE and SDE protocols are evaluated from their

ability to recover the size of capillaries within the plates.

6.2 Method
This section introduces the optimisation of the diffusion imaging protocols that are

used across the three chapters (Chapter 6, Chapter 7 and Chapter 8). It then briefly

describes the protocol optimisation and outlines the scanning parameters used for

imaging the plates. The section then outlines the steps for plates preparation, data

preprocessing and model fitting used to acquire the microstructure parameter esti-

mates of the plates.

6.2.1 Phantom model

In this chapter, the tissue model used for model fitting of the plates only uses a sin-

gle restricted compartment of unknown orientation (i.e. a very simplified MMWMD

model from Chapter 2, Section 2.4.2.5, where S2 = 0, S3 = 0 and S4 = 0). It con-

tains just the intra-axonal space to represent the capillaries within the plates. The

parameters of the model are (1) microcapillary diameter, a, (2) intrinsic diffusivity,

d||, and (3) microcapillary direction, n.

6.2.2 Protocol optimisation and imaging protocols

The purpose of our work in the future chapters is to image a peripheral nerve tissue.

Hence the OGSE and SDE diffusion imaging protocols are both optimised for the

peripheral nerve tissue model using the simplified MMWMD model, where S3 =

0 and S4 = 0 (i.e. the CSF and dot compartment are excluded), and the ActiveAx
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optimisation framework [20, 59] (see Chapter 2 Section 2.4.2.5 for more details).

Hence the apriori model parameters required are: (1) axon diameter, α , (2) intrinsic

diffusivity, d||, (3) hindered diffusivity, dh, (4) intra-axonal volume fraction, ficv f

and (5) axon direction, n.

Both OGSE and SDE protocols are optimised using a priori model parameters

settings from rat histological studies. The settings are α = (2.26, 4.50, and 6.74) µm

(obtained from [15]), ficv f = 0.60 (obtained from [138]), d|| = 1.7 µm2/ms (obtained

from [101]), dh = 0.68 µm2/ms [109] and n is assumed to be unknown. The scanner

settings for the optimisation are as follows: Gmax = 800 mT/m, number of gradient

directions = 8, 16 and 32, slew rate = 2000 T/m/s and maximum echo time (TE) =

40 ms. The gradient waveform shape in the OGSE protocol is constrained to sine-

like trapezoidal waveforms. The final optimised protocols for SDE and OGSE, for

the three separate gradient directions sets (8, 16 and 32), are displayed in Figure 6.1,

each with 3 HARDI shells and unique b-values. An additional 9 b=0 measurements

are also included in the final optimised protocols.

All MR measurements are conducted with a small bore 9.4T scanner (Agilent

Inc., Santa Clara, CA, USA) equipped with 1000mT/m imaging gradients and a

33mm RF bird cage volume coil (RAPID, Biomedical GmbH, Rimbar, Germany).

The diffusion protocol is read out using a multi-shot echo planar imaging sequence,

with an echo train length = 16. Similar to Chapter 4, the images are acquired or-

thogonal to the plane of the plate. The imaging matrix is 128× 64 with a resolution

of 0.13 × 0.38 mm and a slice thickness of 10 mm. Other relevant parameters are:

TR = 3 s, NSA = 2, acquisition time per protocol = 30 minutes and number of

b=0 measurements = 6. An example of the b=0 image acquired using the imaging

parameter is shown in Figure 6.3c.

6.2.3 Phantom preparation

Prior to imaging, we prepare the phantom. We insert plates with capillary diameters

2 µm, 5 µm, 7 µm, 10 µm, 15 µm and 20 µm (displayed in Figure 6.2), into a

newly designed phantom holder shown in Figure 6.3a. The phantom holder is 3D

printed and is made up of Objet VeroClear and Objet VeroWhite (Stratasys Ltd).
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(b) OGSE

(a) SDE

8 gradient directions 16 gradient directions 32 gradient directions

Figure 6.1: The optimised protocols for SDE (top row) and OGSE (bottom row). The dia-
grams show the diffusion weighting waveforms used in the three shells of the
8 (left column), 16 (middle column) and 32 (right column) direction protocols.
The sequence parameters are also given for each measurement as: b-value (b),
duration of the first gradient waveform (δ ), time between the start of the first
gradient waveform and start of the second gradient waveform (∆) and frequency
of the waveforms (ω).

The plates are surrounded by water and are separated by 1 mm thick hollow spacers,

which allow the gaps between the plates to be filled with water, as demonstrated in

Figure 6.3b. Similar to previous plate experiments in Chapter 4, we leave the sample

immersed in water for a week before carrying out any experiments.

6.2.4 Data preprocessing

After data acquisition, we carry out preprocessing on the raw dataset to identify

our regions of interest, the plates. As the voxel-wise SNR of the plates is very low

(SNR = 3 to SNR = 11), we average across voxels to improve the SNR. To do this,

each plate (which is 8 by 55 voxels) is initially assigned a 3 by 38 voxels ROI that

is fully contained within the plate. The voxels within each ROI are averaged across

the shorter axis of the ROI, which results in the final ROI for each plate - that is 38

voxels, each with almost double the SNR compared to the original data.
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2 µm 5 µm 7 µm 

10 µm 15 µm 20 µm 

Figure 6.2: Light microscopy of the six plates with capillary diameters 2 µm, 5 µm, 7 µm
(in the first row, left to right), and 10 µm, 15 µm and 20 µm (in the second
row, left to right), which are used in this chapter. The scale bar = 90 µm.

(a) 

(b) (c) 

Direction of the main B0 field 

plate 

Hollow 
spacer 

plate 

water 

Figure 6.3: (a) The new phantom holder containing the plates with different diameters,
where the plates are surrounded by water. (b) Magnified version of the plates
ensemble to show the hollow spacers that ensure water filled gaps between the
plates. (c) b=0 image of the plates. The plates are positioned in random order
of diameter in the image: 5, 10, 7, 2, 15 and 20 µm, from left to right.
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6.2.5 Sequence calibration

At the high gradient strengths, G = 800 mT/m, the diffusion encoding gradient

waveforms inserted may not be the same as the gradient waveforms that play out

during data acquisition [139]. Preliminary results showed that using uncalibrated

sequences caused diffusivity of water to be overestimated up to 3 µm2/ms. To

prevent this from happening, we calibrate our sequences. Post data acquisition, the

gradient strengths of SDE sequences are modified to match the gradient strength

that are reverse calculated from the trace of the b-matrix in the image header file.

This is not possible for newly implemented oscillating gradient sequences, and so

they are calibrated using the plates dataset. Similar to [116], the analytical signal of

the intra-axonal compartment is calibrated to match the measured signal from the

capillaries in the plates by only varying the gradient strength. The gradient strength

which maximises the log likelihood of the the measured signal given the analytical

signal for the Rician noise model is chosen as the calibrated gradient strength for

the sequence.

6.2.6 Model fitting

The pre-processed data is then fitted to a one compartment model to estimate the

model parameters, d|| and a, using an adapted voxel-wise model fitting procedure

described by [101]. The same method as in Chapter 4, Section 4.1.3.2 is performed.

First, in order to reduce the number of combination of parameters a diffusion tensor

is fitted to the data to find the fibre orientation. Next, a two stage process that

involves a grid search and then an active-set algorithm (which is run 10 different

times with a different set of a priori parameters each time) is performed to estimate

d|| and a using the computed fibre orientation.

After the fitting procedure, noisy data (SNR < 10) is removed. The data is

then further filtered to remove any voxels that are not aligned in parallel with the

ground truth direction of the capillaries within the plates. A dot product between

the estimated fibre orientation for each voxel and the ground truth orientation is

computed and voxels with a dot product below 0.99 are omitted.
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6.3 Results
Histograms (8, 16, 32 dirs in columns.

pgse 1st row ogse 2nd row.)
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di↵usivity:

Histograms (8, 16, 32 dirs in columns.
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8 gradient directions 16 gradient directions 32 gradient directions

(a) SDE

(b) OGSE

2 μm 5 μm 7 μm 10 μm 15 μm 20 μm 

Figure 6.4: Histograms of the diameter estimates computed using the 8 (left), 16 (middle)
and 32 (right) gradient directions SDE (top row) and OGSE (bottom row) pro-
tocols. Each histogram displays the voxel-wise estimates for all of the plates in
different colours as shown in the legend below the figure (a = 2 µm (blue), a =
5 µm (green), a = 7 µm (orange), a = 10 µm (cyan), a = 15 µm (purple) and a
= 20 µm (yellow)). The dashed lines indicate the median diameter estimate for
each plate, and the markers at y=0 indicate the true diameter of the plates.

Figure 6.4 displays the histograms of the estimated diameter indices of the

plates computed from the 8, 16 and 32 gradient directions of SDE and OGSE pro-

tocols. Each histogram contains the diameter estimates for each plate in different

colours (a = 2 µm (blue), a = 5 µm (green), a = 7 µm (orange), a = 10 µm (cyan),

a = 15 µm (purple) and a = 20 µm (yellow)). Visually, all protocols for OGSE and

SDE can equally distinguish the range of diameters used here. However, a closer

look at the histograms show that at a = 2 µm, many of the voxels for the SDE

protocols hit the lower diameter limit used in model fitting, whereas most of the

OGSE protocols show accurate estimates. This suggests that OGSE protocols show

a higher innate sensitivity towards diameters of 2 µm than for SDE protocols.

Table 6.1 compares the relative accuracy of the diameter estimates between

SDE and OGSE protocols. The accuracy is defined in terms of the average percent-

age difference between the voxel-wise diameter estimates and the true diameter for



6.3. Results 133

each plate. The interquartile range is also displayed in brackets to demonstrate the

spread in the data. A lower percentage difference refers to higher accuracy for that

diameter. The most accurate diameter estimates across all protocols are for diame-

ters a = 10 µm and a = 15 µm (3-10% difference from the true diameter), whilst the

least accurate estimates are for a = 2 µm (> 40% difference from the true diameter).

Table 6.1: Comparison between OGSE and SDE protocols on the relative accuracy of di-
ameter estimates of each plate. The median, along with the interquartile range
in brackets (), of the percentage difference (%) between diameter estimates from
the ROI of each plate and its corresponding true diameter is shown. Two sided
Wilcoxon rank test is carried out to test whether the difference between SDE and
OGSE is statistically significant. The significance levels of p < 0.01 and p <
0.005 are indicated by * and **, respectively. Note that for a = 2 µm, most of
the SDE voxels hit the lower diameter limit as shown in Figure 6.4.

8 gradient directions 16 gradient directions 32 gradient directions
Plates SDE OGSE Plates SDE OGSE Plates SDE OGSE
2 µm 90 (45) 87 (40) 2 µm 70 (45)** 44 (11)** 2 µm 53 (42) 54 (18)
5 µm 15 (12)*** 25 (16)*** 5 µm 14 (7.2) 16 (11) 5 µm 16 (7.0) 16 (7.0)
7 µm 13 (7.9) 17 (9.2) 7 µm 12 (5.5)** 8.1 (10)** 7 µm 16 (11.7)*** 11 (8.9)***
10 µm 4.8 (6.4) 6.1 (7.3) 10 µm 9.7 (12) 8.2 (10) 10 µm 5.8 (8.5) 5.9 (6.0)
15 µm 7.5 (6.7) 3.7 (8.5) 15 µm 6.2 (8.5)* 3.0 (4.3)* 15 µm 6.5 (7.2)* 3.0 (5.3)*
20 µm 22 (8.2)*** 3.6 (4.1)*** 20 µm 7.4 (13) 7.3 (4.5) 20 µm 9.7 (11) 14 (19)

In terms of the OGSE and SDE performance for diameter estimation, across

most plates, both types of protocols provide similar accuracy. The exceptions are

at a = 5 µm where there SDE protocols give significantly more accurate diameter

estimate than the OGSE protocols. At 8 gradient directions, OGSE gives better

estimates for a = 20 µm than the SDE protocol. For a = 2 µm, OGSE also has

overall better accuracy across 32 and 16 gradient directions spread is much narrower

at 17%.

Figure 6.5 shows the SDE (top row) and OGSE (bottom row) estimates of in-

trinsic diffusivity for each plate and for each set of gradient directions, similar to

Figure 6.4. The median diffusivity estimates of plates at each protocol show a sim-

ilar range of diffusivities, which range between 1.8-2.2 µm2/ms. On average, the

diffusivity estimates agree with the theoretical diffusivity of water at room temper-

ature (20oC), which is approximately 2.0 µm2/ms [120]. Additionally, the compar-

ison of the relative accuracy of diffusivity estimates (similar to that in Table 6.1 but

data not shown) show no significant differences between the OGSE and SDE diffu-
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Figure 6.5: Histograms of the diffusivity estimates computed using the 8 (left), 16 (mid-
dle) and 32 (right) gradient directions SDE (top row) and OGSE (bottom row)
protocols. Same caption as in Figure 6.4 applied here. The dashed lines indi-
cate the median diffusivity estimate for each plate, and the white marker at y=0
labels the theoretical diffusivity of water at 20oC [120].

sivity estimates for each plate at each gradient directions set. The only exceptions

occur at 10 µm and 15 µm plates for the 8 gradient directions protocol and 5 µm,

10 µm and 15 µm plates for the 32 gradient directions protocol. At 8 gradient di-

rections, OGSE shows significantly more accurate diffusivity estimates (p < 0.05),

where the percentage difference in diffusivity estimates relative to the theoretical

diffusivity for α = 10 µm is 9.5% compared to 19% for SDE. In contrast, for α =

15 µm OGSE is less accurate, with a percentage difference of 11% compared to

4.1% for SDE. In terms of 32 gradient directions, OGSE shows significantly more

accurate diffusivity estimates (p < 0.05), where the percentage difference in diffu-

sivity estimates relative to the theoretical diffusivity for α = 5 µm, α = 15 µm and

α = 20 µm are 15%, 4% and 7%, compared to 21%, 11% and 22%,respectively,

for SDE. Our results suggests that diffusivity estimates for each diameter case are

stable and are independent of the type of waveform used in our diffusion protocols.

Figure 6.6 shows the fitted model signal for a voxel from each ROI of the plates

for the 32 gradient directions SDE and OGSE protocols, only. As expected, both

protocols show that the plate with the smallest capillary diameter (a = 2 µm) shows
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Figure 6.6: Graphs showing the model signals fitted (dashed lines) to the raw data (data
points) of a voxel from an ROI of each plate in Figure 6.4. Signals from the 32
gradient directions SDE (left column) and OGSE (right column) protocols are
shown. The x-axis is the absolute dot product between the gradient directions
and the estimated fibre orientation. The three curves represent the model fit to
each of the three measurement shells. The corresponding calibrated b-values
of the measurements are displayed here, out of which b=594 and 3100 s/mm2

from the OGSE measurements have oscillating waveforms. The estimated pa-
rameters (α and d||), as well as the Rlog to quantify the quality of fit are shown
in the bottom right hand corner of each graph. The horizontal dashed lines
around S/S0=1 represent the spread in the b=0 measurements.
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lower attenuation than the plates with the largest capillary diameter (a = 20 µm).

This is because larger diameters allow diffusion to occur for a longer time without

coming across any boundaries and as a result causes the signal to be attenuated.

For similar reasons, the oscillating gradient sequences (b=594 and 3100 s/mm2)

also show much larger signal attenuation in the restricted direction (S/S0=0) than

for the SDE sequence (b=2720 s/mm2). OGSE sequences have shorter effective

diffusion times, which allows them to ‘see’ water molecules before the molecules

come across boundaries, leading to signal attenuation. In addition to this, the high

b-value (b≥ 7000 s/mm2) signals of the SDE protocol at a≥ 10 µm are completely

attenuated to the noise floor and there is effectively only one measurement that is

used for estimating the model parameters. Overall, however, the figure shows a

good match between the raw data and the fitted signal.

6.4 Discussion

In this chapter, we have assessed the performance of optimised OGSE and SDE

sequences to estimate microstructure parameters of simple idealised phantoms. We

have estimated the diameter of capillaries and diffusivity within the capillaries of

each plate using OGSE and SDE protocols that were optimised for 8, 16 and 32

gradient directions. In total 6 plates were used with capillary diameters 2,5,7, 10,

15 or 20 µm. Our results demonstrate that both OGSE and SDE protocols can easily

distinguish between the whole range of diameters used here, with a = 10 µm and

a = 15 µm having the highest diameter accuracy and a = 2 µm having the lowest

diameter accuracy.

The accuracy of the pore diameter estimates in the plates are not perfect and

depart from the ground truth values even for diameters of 7 or 10 µm, which should

be more accurate given the powerful gradients of 800mT/m. This is due to the very

low SNR in the sample, 7-15 for individual voxels. Based on numerical work in

[24] and analytical work in [25], the resolution limit for 800mT/m and SNR=10 is

2.36 µm. Hence, the plates results obtained on the clinical scanner (Chapter 4),

although achieved with lower gradient strength, are accurate as they have an order
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of magnitude higher SNR.

Another compounding effect here are the susceptibility effects such as image

distortion and signal dropouts. These artefacts arise from alterations to the homoge-

nous magnetic field which are caused by the difference in susceptibility of our plates

(susceptibility of -11.05 ppm) and water (-9.03 ppm [117]). At high magnetic field

such as 9.4 T we use here, the susceptibility effects become larger. This is especially

true when capillary diameter are very small (a<3 µm). As diameter decreases the

number of capillaries within the plates increase, which in turn means that there are

increased interactions between glass and water resulting in increased susceptibility

effects [116]. In addition to ensuring the microcapillaries continue to be aligned to

the main magnetic field, it is also possible to reduce the susceptibility effects by us-

ing microcapillaries that are longer than the sensitive area of the RF coil - however,

this would require purchase of new phantoms which are costly [116].

SDE and OGSE protocols perform very similarly for most plate sizes across all

number of directions. Based on [24, 25], the OGSE sequences have better sensitiv-

ity than SDE when imaging small diameters (below 5 µm), and here we have only a

2 µm plate in that range which is just below resolution limit for our SNR. Neverthe-

less, although both sequences provide non-perfect estimates of 2 µm, overall OGSE

provides more accurate estimates on average especially as the number of directions

reduces.

6.5 Conclusion
In conclusion, this chapter optimised and tested the performance of the SDE and

OGSE protocols on simple phantoms. We found that both protocols provide good

estimates of pore diameters that are within the resolution limit possible for the gra-

dient strength and the SNR achieved. We found that for the smallest diameter of 2

µm OGSE provides slightly better sensitivity than SDE. In the next chapter we use

these optimised protocols and design a simulation study to evaluate and compare

the two protocols for a finer range of diameters using realistic digital substrates to

represent rat nerve tissue.



Chapter 7

Preclinical scanner: Rat sciatic nerve

- simulations and model selection

In the previous chapter we optimised SDE and OGSE protocols for rat nerve tissue,

and evaluated their performance on the scanner using simple microcapillary array

phantoms.

In this chapter, we assess the performance of the previously optimised proto-

col in the presence of extra-axonal space using digital substrates that represent rat

sciatic nerve tissue.

Parts of this work are featured in the recently accepted paper to NeuroImage:

L S Kakkar, O F Bennett, B Siow, S Richardson, T Quick, D Atkinson, J B Phillips

and I Drobnjak. Comparison of OGSE and SDE ActiveAx for axon diameter map-

ping: An experimental study in viable nerve tissue.

7.1 Motivation
Although simple phantoms have been previously used for calibrating sequences

such as DDE [17] and OGSE [116], the phantoms are not representative of biolog-

ical tissues. Therefore they cannot be used to fully assess the extent of the perfor-

mance of new or established diffusion sequences. For instance, Chapter 6 suggests

that the range of diameters that are accessible to the optimised OGSE and SDE pro-

tocols are at least between 2 µm to 20 µm; however, in the presence of extra-axonal

space and multi-diameter sizes, these results will deviate.
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In the thesis so far, we have used a single 3D Gaussian displacement distri-

bution, constrained by a tortuosity model and with fixed diffusion coefficients to

represent tissue during the model fitting process. The tortuosity model has been

used for a range of different studies in the past [62, 101, 110, 111, 124, 140]. How-

ever, as of recently, it has been questioned because it does not take into account the

dependency of the hindered diffusivity on the diameter distribution of the substrates

[131, 133, 141]. Furthermore, a recent study points out that fixing the parallel dif-

fusivity can lead to erroneous conclusions [142].

In this chapter, our primary aim is to assess performance of the optimised pro-

tocols in the presence of extra-axonal space. We test the intrinsic sensitivity of

our optimised protocols using synthetic substrates containing only single diame-

ter cylinders and then test performance of our protocols using synthetic substrates

containing multi-diameter cylinders to mimic axons in biological tissues.

The secondary aim of this chapter is to select the most realistic model to repre-

sent the rat sciatic nerve tissue when doing the fitting of model parameters. We test

the standard model (with tortuosity assumption) against the new model (without the

tortuosity assumption) and choose the one that provides more accurate model es-

timates when compared to ground truth axon diameters in the synthetic substrates.

We do not fix the parallel diffusivity, in either cases, and estimate the diffusivity

along with other parameters. We select the tissue model that provides the most

accurate parameter estimates in realistic synthetic substrates across all of the opti-

mised protocols. The best model will then be used for axon diameter mapping in

sciatic nerve of a rat in Chapter 8.

7.2 Method

This section first introduces the two tissue models, the standard model (assumes

tortuosity) and the new model (does not assume tortuosity). It then outlines the gen-

eration of two types of synthetic substrates, single and multi-diameter, after which

the model fitting procedure is briefly described.
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7.2.1 Tissue model

A simplified MMWMD with a two compartment model comprised of the extra-

axonal and intra-axonal space only (i.e. CSF compartment, S3, and dot compart-

ment, S4, are set to 0 and hence are excluded), is used to represent the rat sciatic

nerve (see Chapter 2 Section 2.4.2.5 for more details).

In the standard model, dh is defined by the tortuosity model (dh=(1- ficv f )d||),

and so the parameters to be fitted are: axon diameter index (α), intra-axonal volume

fraction ( ficv f ) and intrinsic diffusivity (d||)).

In the new model, we relax the tortuosity assumption and the parameters to be

fitted are: axon diameter index (α), intra-axonal volume fraction ( ficv f ), intrinsic

diffusivity (d||) and hindered diffusivity (dh).

7.2.2 Simulations of synthetic substrates

We use Monte-Carlo diffusion simulations via the CAMINO framework [20, 129,

130] and generate synthesised data using 3-D digital phantoms representing the

nerve tissue substrates. Two types of substrates are simulated: cylinders with single

diameters and cylinders with various diameters (multi-diameter).

7.2.2.1 Single diameter substrates

Each of our single diameter substrates are characterised by a specific axon diameter

α , intra-axonal volume fraction ficv f and intrinsic diffusivity of spins d|| to mimic

the range of diameters and intra-axonal volume fraction present in the rat peripheral

nerve [15]. Diameters of α ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 , 5, 5.5} µm, intra-

axonal volume fractions of ficv f ∈ {0.4, 0.5, 0.6, 0.7} and diffusivity of d||=1.7

µm2/ms are used to construct 44 single diameter substrates in total. All substrates

contain non-abutting parallel cylinders which are arranged in a uniform hexagonal

geometry. We chose the synthetic substrates to match the substrates in the next

section (Section 7.2.2.2)

All simulations are performed using 200000 spins, 6000 time steps and 500

cylinders. These values are optimal because they provide a precision of 10−10 of

the unweighted diffusion signal, which is several orders of magnitude smaller than
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realistic signal noise [130]. In order to make the synthetic dataset more realistic,

50 different instances of random Rician noise (SNR=10) are introduced to the final

dataset. Finally the tissue models described in Section 7.2.1 are fitted to this noisy

dataset to estimate the model parameters.

7.2.2.2 Multi-diameter substrates

Each of our multi-diameter substrate is characterised as a unique combination of

four parameters: the shape k and the scale parameter θ of the axon radius distri-

bution, the intrinsic diffusivity of spins d||, and the intra-axonal volume fraction

ficv f . To mimic the structure of the rat peripheral nerve, we model the nerve as a

collection of non-abutting parallel cylinders with radius drawn from a gamma dis-

tribution. The shape and the scale parameters of the gamma distribution are deter-

mined from a collective fibre radius histogram of normal rats shown in [15], which

are further corrected to axon radius using g-ratio values reported there. We con-

struct 28 unique nerve substrates, with substrate parameters: (k,θ)∈ {(4.08,4.58×

10−7),(7.49,2.27 × 10−7),(4.08,3.27 × 10−7),(7.49,1.86 × 10−7),(7.49,1.65 ×

10−7),(7.49,1.45 × 10−7),(7.49,1.03 × 10−7)}; ficv f ∈ {0.4,0.5,0.6,0.7} and

d||=1.7 µm2/ms. The cylinders are randomly packed in the substrates as described

in [130], with example substrates shown in Figure 7.1.

(a)

(b)

ficvf = 0.7 ficvf = 0.6 ficvf = 0.5 ficvf = 0.4

Figure 7.1: (a) shows histograms of axon diameter distributions we use to generate dig-
ital substrates for the Monte Carlo simulations. The axon diameter index is
calculated for each and shown as a red dashed line. (b) shows digital tissue
substrates for the histogram furthest to the right in a) and four different intra-
axonal volume fractions we use in simulations. In simulations, each histogram
is combined with each of the four volume fractions producing 28 different sub-
strates.



7.2. Method 142

The simulations here are performed using 200000 spins, 6000 time steps and

500 cylinders (same as for single diameter substrates). Similarly, the simulations

here also introduce 50 different instances of random Rician noise (SNR=10) to the

final dataset. Finally the tissue models described in Section 7.2.1 are fitted to this

noisy dataset to estimate the model parameters.

7.2.3 Model fitting

A voxel-wise model fitting procedure involving diffusion tensor, grid search and

active-set algorithm (detailed in Chapter 4 Section 4.1.3.2) is used to compute the

model parameter estimates of the standard model ( ficv f , d|| and α) and the new

model ( ficv f , d||, dh and α).

An extra step is taken to carry out model fitting using the new tissue model. To

avoid model fitting instability due to a larger number of free parameters in the new

model than in the standard model, dh is fixed to a range of values (0.03 µm2/ms to 3

µm2/ms with an interval of 0.01 µm2/ms). Grid search and active-set algorithm are

then carried out to find the estimate of dh that maximises the maximum likelihood.

Finally, the same two stage process (involving grid search and active-set algorithm)

is performed to estimate ficv f , d|| and α using the calculated fibre orientation and

the estimated dh.

In order to test the precision of the estimates, we additionally run Markov

Chain Monte Carlo (MCMC) procedure assuming Rician noise model. The gradient

descent provides a starting point for the MCMC which then collects 125 samples

at intervals of 30000 iterations after a burn in of 5000 iterations. We then calculate

standard deviation of the posterior distribution of the parameter estimates and use it

to test the precision of the protocols.

7.2.4 Model comparison

Lastly, we use the standard model (assumes tortuosity) and the new model (does not

assume tortuosity) to carry out a small model comparison study.

The Akaike information criterion (AIC) [121] (Equation 7.1), as was used by

[113], and Bayesian information criterion (BIC) [122] (Equation 7.2), as was used
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by [102, 114] are used to find the best model across a sample of synthetic substrates

(with SNR = ∞). The lower the AIC and BIC, the better the model.

AIC =−2log(L)+2K (7.1)

where L is the likelihood of the model and K is the number of free parameters.

BIC =−nlog(L)+Klog(n) (7.2)

where L and K are as before and n is the sample size (i.e. number of measurements).

The log(L) from Equation 4.1 from the active-set algorithm stage is used to calculate

both AIC and BIC per voxel.

7.3 Results
In this section, we assess the performance of the optimised OGSE and SDE proto-

cols from Chapter 6 in terms of both the standard tissue model and the new tissue

model. In the first section, we demonstrate the intrinsic sensitivity of the proto-

cols using the accuracy of parameter estimates for synthetic substrates with sin-

gle diameter cylinders. In the second section, we use the synthetic substrates with

multi-diameter cylinders to evaluate the performance of the protocols across three

separate criteria: (i) Accuracy of parameter estimates compared to the ground truth;

(ii) Precision of parameter estimates; (iii) Robustness of parameter estimates as the

total number of diffusion measurements changes.

7.3.1 Single diameter substrates

Figure 7.2 displays the SDE and OGSE estimated parameters for the standard tissue

model plotted against the ground truth diameter indices for a range of single diame-

ter substrates with various intra-axonal volume fractions. The results are shown for

the 32 gradient direction protocols. SDE shows a positive correlation of estimated

axon diameter index with the ground truth in the first row, however, it underesti-

mates the diameter index for almost all substrates. At low diameters (α ≤3.5 µm),

majority of estimates hit the lower fitting limit of 0.2 µm. In contrast, the OGSE
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Figure 7.2: Accuracy of estimated parameters for single diameter substrates using the stan-
dard tissue model: axon diameter index (1st row), intra-axonal volume fraction
(2nd row) and intrinsic diffusivity (3rd row) for a range of intra-axonal vol-
ume fractions. The median, 25th and 75th percentile of the estimates across
50 different instances of random Rician noise (SNR=10), are shown for each
diameter index, with SDE median estimates in blue crosses and OGSE median
estimates in red squares. The identity lines are shown in black.

protocol accurately estimates most axon diameters (estimates are much closer to

the identity line), with the exceptions at smaller diameters (α <1.5 µm) and largest

diameter (α> 5.5 µm), where overestimations occur. Similarly, OGSE intra-axonal

volume fraction (in the second row) are much closer than the SDE ones, however

both protocols show improved accuracy of intra-axonal volume fraction estimates

as the ground truth intra-volume fraction decreases. In terms of the intrinsic dif-

fusivity (third row), both OGSE and SDE sequences perform similarly. Overall,

OGSE produces more accurate axon diameter index and intra-axonal volume frac-

tion compared to SDE when using the standard tissue model.

Figure 7.3 displays the SDE and OGSE estimated parameters for the new tissue

model plotted against the ground truth diameter indices across a range of volume

fractions, similar to Figure 7.2. The first row shows that although SDE shows a pos-

itive correlation with the ground truth diameter indices, below α = 3 µm the axon
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Figure 7.3: Accuracy of estimated parameters for single diameter substrates using the new
tissue model: axon diameter index (1st row), intra-axonal volume fraction (2nd
row) intrinsic diffusivity (3rd row) and hindered diffusivity (4th row) for a
range of intra-axonal volume fractions. The median, 25th and 75th percentile of
the estimates across 50 different instances of random Rician noise (SNR=10),
are shown for each diameter index, with SDE median estimates in blue crosses
and OGSE median estimates in red squares. The identity lines are shown in
black. dh plots do not have any identity lines as the ground truth for dh is
unknown and depends on the packing.

diameters cannot be distinguished from one another. In comparison, the OGSE pro-

tocol is much more accurate and only axon diameters below α = 2 µm cannot be

resolved. The intra-axonal volume fraction estimates in the second row are accu-

rate for the OGSE sequences but are slightly overestimated for the SDE sequences.

In terms of the diffusivities (third and fourth row), OGSE and SDE both perform

similarly. In general, OGSE produces more accurate axon diameter index and intra-

axonal volume fraction compared to SDE for a range of synthetic substrates when

using the new tissue model.
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The comparison between the accuracy of model parameter estimates for the

standard model (Figure 7.2) and the new model (Figure 7.3) shows that the new

model significantly improves on the accuracy of diameter indices and intra-axonal

volume fractions for both OGSE and SDE sequences. This is observed as parameter

estimates being much closer to the identity line for the new model than for the stan-

dard model. Similar observations are also made for the 8 and 16 gradient direction

protocols and as expected the interquartile range of the estimates increase as the

measurements are reduced (data not shown but similar to Figure 7.7 and Figure 7.8

in the later sections).

7.3.2 Multi-diameter substrates

Figure 7.4 shows the SDE and OGSE estimated model parameters plotted against

the ground truth diameter indices for the simulated multi-diameter substrates using

the standard tissue model. The results are shown for the 32 gradient direction pro-

tocol similar to the single diameter substrates. The first row shows that SDE has a

positive correlation with the ground truth index but the diameter index for almost all

substrates are underestimated while the OGSE protocol is much more accurate with

estimates closer to the identity line. The intra-axonal volume fraction estimates in

the second row are underestimated for both OGSE and SDE sequences, whereas the

intrinsic diffusivity (third row) appear similar for both sequences. The observations

align with the results for the single diameter substrates in Figure 7.2. Generally,

OGSE appears to give more accurate diameter index and intra-axonal volume frac-

tion estimates of multi-diameter substrates compared to SDE sequences when using

the standard model.

Figure 7.5 displays the SDE and OGSE estimated parameters for the new tissue

model plotted against the ground truth diameter indices across a range of volume

fractions, similar to Figure 7.4. The first row shows that both OGSE and SDE have

a positive correlation with the ground truth diameter indices, with OGSE showing

diameter indices that are closer to the identity line. The intra-axonal volume fraction

estimates in the second row are accurate for the SDE sequences but are slightly

underestimated for the OGSE sequences, mainly at substrates with large diameters
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Figure 7.4: Accuracy of estimated parameters for multi-diameter substrates using the stan-
dard tissue model: axon diameter index (1st row), intra-axonal volume fraction
(2nd row) and intrinsic diffusivity (3rd row) for a range of intra-axonal vol-
ume fractions. The median, 25th and 75th percentile of the estimates across
50 different instances of random Rician noise (SNR=10), are shown for each
diameter index, with SDE median estimates in blue crosses and OGSE median
estimates in red squares. The identity lines are shown in black.

(α = 5.5 µm). In terms of the diffusivities (third and fourth row), OGSE and SDE

both perform similarly. These findings agree with the results for single diameter

substrates in Figure 7.3. Overall, OGSE provides more accurate axon diameter

index than SDE, but SDE shows better accuracy for intra-axonal volume fraction

than OGSE when using the new model.

The comparison between the accuracy of model parameter estimates for the

standard model (Figure 7.4) and the new model (Figure 7.5) shows that the new

model improves accuracy of parameter estimates. The new model shows significant

improvements for SDE when estimating intra-axonal volume fraction and axon di-

ameter indices. For OGSE, the new model mostly improves intra-axonal volume

fraction estimates but axon diameter indices are largely unaffected. Only substrates

with large diameters, α > 5 µm, and high intra-axonal volume fraction ficv f >

0.6 show significant improvement in their diameter accuracy. Overall, the new tis-
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Figure 7.5: Accuracy of estimated parameters for multi-diameter substrates using the new
tissue model: axon diameter index (1st row), intra-axonal volume fraction (2nd
row) intrinsic diffusivity (3rd row) and hindered diffusivity (4th row) for a
range of intra-axonal volume fractions. The median, 25th and 75th percentile of
the estimates across 50 different instances of random Rician noise (SNR=10),
are shown for each diameter index, with SDE median estimates in blue crosses
and OGSE median estimates in red squares. The identity lines are shown in
black. dh plots do not have any identity lines as the ground truth for dh is
unknown and depends on the packing.

sue model appears to give more accurate diameter index and intra-axonal volume

fraction estimates than the standard tissue model.

Figure 7.6 shows the precision results for the 32 gradient direction protocols

using the standard (left panel) and the new (right panel) tissue model, respectively.

Both display the uncertainty in SDE and OGSE model parameter estimates across

all multi-diameter substrates, intra-axonal volume fractions and across the 50 dif-

ferent instances of random Rician noise (SNR=10). The uncertainty in the param-

eter estimates is represented by the standard deviation of the posterior distribution
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on the model parameter estimate. The uncertainty in the diameter estimates and

intra-axonal volume fraction estimates (first and second row, respectively) from the

OGSE protocol is lower than the SDE protocol. By contrast, the uncertainty in the

diffusivity (third row) is only slightly different between SDE and OGSE. For the

new model, the uncertainty of hindered diffusivity is not calculated here because

it is fixed to a pre-calculated value (mentioned above) throughout the fitting proce-

dure. Overall, OGSE appears to estimate parameters with higher precision across

the range of substrates compared to SDE.

The comparison between the two models show that the uncertainties on the

estimates of the diameters and intra-axonal volume fractions from the SDE protocol

are slightly higher for the new tissue model (assuming tortuosity, right panel) than

for the standard model (not assuming tortuosity, left panel). The lower number of

parameters in the standard model potentially contributes to the higher precision of

diameter and intra-axonal volume fraction.

Figure 7.7 and Figure 7.8 demonstrate the effects of reducing the number of

diffusion measurements for the standard (Figure 7.7) and the new (Figure 7.8) tis-

sue model. Each figure compares the robustness of parameter estimates between

SDE and OGSE protocols across the number of measurement directions (shown in

columns) for the full range of synthetic substrates with multi-diameter cylinders.

The box and whisker plots on each graph represent the range of estimates for each

substrate across its 50 instances of added noise. The dashed lines indicate ground

truth parameter values, and in the case of axon diameter index, the two dashed lines

indicate the minimum and maximum ground truth diameter index for the synthetic

substrates. Both figures show that OGSE protocols consistently deliver diameter

indices that are within the ground truth range regardless of the number of gradient

directions used. In addition to high accuracy, OGSE estimates also have lower in-

terquartile range with respect to the noise and these ranges are consistent in size

across most measurement directions. On the other hand, the figures show that SDE

estimates of diameter indices reduce in accuracy and robustness to noise as the

number of directions reduce. In terms of intra-axonal volume fractions and intrinsic
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Figure 7.6: Precision of estimated parameters for multi-diameter substrates using the stan-
dard tissue model (assuming tortuosity, left panel) and new tissue model (not
assuming tortuosity, right panel). Box-whisker plots of the standard deviation
of the posterior distribution, i.e. uncertainty, on the estimated axon diameter in-
dex (1st row), intra-axonal volume fraction (2nd row) and intrinsic diffusivity
(3rd row) for all substrates across all intra-axonal volume fractions and across
50 different instances of random Rician noise (SNR=10). SDE and OGSE val-
ues are shown in blue and red, respectively. The boxes show median, 25th and
75th percentiles of the uncertainty and the whiskers extend to the most extreme
data points excluding outliers.

diffusivity (and hindered diffusivity), OGSE and SDE show similar range of esti-

mates across the three sets of gradient directions for both of the tissue models. The

protocols also show expected increase in the number of outliers as the number of

directions are reduced. Overall, the observations on the robustness of the protocols

are consistent across both tissue models.

Signal plots of sample voxels (shown in Appendix B) to assess the signal fits

to the raw data do not show much difference when using the standard or the new

model and this is true for both protocols, visually, and even quantitatively (using the

objective function values). The low SNR of the data prevents making any conclu-

sion on the improvement of signal fits when using different tissue models for both
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Figure 7.7: Robustness of estimated parameters for multi-diameter substrates with respect
to the number of gradient directions using the standard tissue model. Box-
whisker plots of the median estimates for each substrate across its 50 instances
of added noise (SNR=10). All twenty eight substrates are included and the
results plotted for SDE (in blue) and OGSE (in red) protocols. The boxes show
median, 25th and 75th percentiles of the uncertainty and the whiskers extend to
the most extreme data points excluding outliers. The dashed black lines show
the ground truth values for ficv f and d||, the minimum and the maximum ground
truth value for α .

of our sequences. Therefore, to assess the intrinsic model signal fits, it is easier to

look at the signal fits for noise free data in Figure 7.9.

Figure 7.9 displays the signal fits for three sample voxels with noise free data

for the standard and the new model, for both SDE and OGSE 32 gradient direction

protocols. The new model mostly improves on the signal fits of the low b-value

measurements (bSDE = 695 s/mm2 and bOGSE = 528 s/mm2 ) from the standard

model across all substrates. This in turn seems to give sensitivity to smaller axon

diameters and gives more accurate axon diameter index and intra-axonal volume

fractions. On the other hand, the misfit between the ground truth and raw signal

persists for the high-b value measurements of the largest substrate (α = 4.37 µm),

suggesting the new tissue model is not ideal for large diameters. Overall, quali-
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Figure 7.8: Robustness of estimated parameters for multi-diameter substrates with respect
to the number of gradient directions using the new tissue model. Same caption
as Figure 7.7 applies here. dh ground truth values are not present as the value
is unknown.

tatively, the new model significantly improves the signal fits and the accuracy of

parameter estimates for our current protocols and majority of synthetic substrates.

Quantitatively, Table 7.1 displays the BIC values for the two tissue models

across the three synthetic substrates from Figure 7.9 for both SDE and OGSE 32

gradient directions protocol datasets. As AIC performs very similar to BIC, here we

only show the BIC values. The best model is confirmed to be the new model across

all voxels and protocols.
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Figure 7.9: Graphs showing the raw (data points), fitted (dashed lines) and ground truth
signals (solid lines) for three synthetic substrates (α = 4.37 µm, top row, α =
2.78 µm, middle row, and α = 1.98 µm, bottom row, with ficv f = 0.5) using
the 32 gradient directions SDE protocol (a and b) and OGSE protocol (c and
d) for the standard model (a and c) and new model (b and d). The x-axis is
the absolute dot product between the gradient directions and the estimated fibre
orientation. The three different coloured curves represent the model fit to each
of the three measurement shells. The estimated parameters are shown in the
bottom right hand corner of each graph. The horizontal dashed lines at S/S0=1
represent the b=0 measurements.

Table 7.1: The BIC values for the two tissue models across three different voxels ( ficv f =0.5,
α∈ {4.37, 2.78, 1.98} µm) are displayed here for both SDE and OGSE cases.

SDEstandard SDEnew OGSEstandard OGSEnew
α = 4.37 µm 2.09e+08 1.48e+08 α = 4.37 µm 65.5e+08 18.0e+08
α = 2.78 µm 8.45e+08 2.37e+08 α = 2.78 µm 33.5e+08 3.35e+08
α = 1.98 µm 37.4e+08 2.37e+08 α = 1.98 µm 28.7e+08 4.93e+08

7.4 Discussion

In this work, we have compared the performance of the optimised OGSE sequences

with SDE sequences by comparing their ability to estimate axon diameters in syn-

thetic substrates. We show that the optimal OGSE protocols (consisting of one sin-

gle lobe and two low frequency oscillating diffusion waveforms) consistently out-
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performs SDE in both simulated substrates of single and multi-diameter cylinders

in terms of the accuracy of axon diameter indices. We also show that the standard

model (assuming tortuosity) used so far in this work gives biased estimates of axon

diameter indices, mainly for SDE sequences, and intra-axonal volume fractions for

both OGSE and SDE sequences. The new model (not assuming tortuosity) over-

comes this issue and significantly improves on these named parameter estimates for

the given protocols, however at a cost of precision on the estimates. Furthermore,

OGSE estimates are more robust compared to the SDE estimates when the number

of measurements available for model fitting is reduced, and this is true regardless of

the tissue model that was used in this chapter.

Our single diameter results help to explain the diameter estimates for the multi-

diameter substrates. Focusing on just the new model, the single diameter substrates

provide the resolution limit for our sequences, which are 3 µm and 1.5 µm for SDE

and OGSE, respectively. This means that across the multi-diameter substrates, only

1-58% of the cylinders are measurable to the SDE protocol, whereas a much larger

amount, 50-96%, are visible to the OGSE protocol. At the smallest multi-diameter

substrates (α = 1.98µm and α = µm), SDE is only able to sense 1% and 16% of the

cylinder diameters, respectively, which could explain the failure of SDE protocols

in distinguishing between the diameter indices for these two substrates.

Our findings from this chapter agree with the results from Chapter 6 on the

higher sensitivity of the optimised OGSE sequences to small axon diameters (α <

2 µm), especially as we reduce the number of diffusion measurements. This sup-

ports the theoretical results recently published in [24], which showed numerically

that when gradient direction and short axis of the fibre is perfectly aligned, SDE

sequences with high b-values are best. However, in the presence of misalignment,

the intra-axonal SDE diffusion signal in the parallel direction of the fibre dimin-

ishes consequently reducing the total signal. In such cases, low frequency OGSE

sequences are preferred because the total signal remains preserved. This can be

seen in Figure 7.9, where the misalignment between the short axis of the cylinders

and the closest gradient direction is <2o (calculated using diffusion tensor analysis
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for the 32 gradient direction protocol). Results from both of our single and multi-

diameter substrates confirm that OGSE sequences from our protocols indeed probe

small diameters and this is true across a range of intra-axonal volume fractions.

Our results also confirm that the standard model is not ideal for axon diame-

ter imaging using SDE sequences. This agrees with the findings from [131], who

demonstrated that the tortuosity constraint biases axon diameter estimates. [143]

also suggested that the tortuosity constraint makes the intra-axonal volume fraction

estimates very sensitive to the intrinsic diffusivity estimates, which probably leads

to the inaccuracy of intra-axonal volume fraction estimates observed for our proto-

cols. The new model relaxes this tortuosity assumption and estimates the hindered

diffusivity, which significantly improves axon diameter and intra-axonal volume

fraction estimates.

In this chapter we have chosen a simple model of white matter tissue to rep-

resent our synthetic substrates. The model uses long straight circular cylinders that

mimic axon bundles, and have the same intrinsic diffusivity in the intra- and extra-

axonal compartment. These assumptions are true for our synthetic substrates but

may not be fully valid in real biological tissue (for instance the rat sciatic nerve to

be used in Chapter 8). Therefore, it is worth bearing in mind that the results for bi-

ological tissues may differ from our simulation work. However, the general trends,

such as the better accuracy of OGSE than SDE, from our simulation work should

still be valid.

7.5 Conclusion
Overall, this chapter confirms that low frequency OGSE sequences outperform SDE

sequences in estimating axon diameters in simulations regardless of the type of tis-

sue models that are used here. Between the tissue models, i.e the standard (assum-

ing tortuosity) and the new (not assuming tortuosity) tissue model, the new tissue

model is much more accurate and robust for axon diameter imaging, especially for

SDE sequences. In the next chapter, we will be using this model to carry out axon

diameter mapping on the rat sciatic nerve.



Chapter 8

Preclinical scanner: Rat sciatic nerve

- Axon diameter mapping

Our work in Chapter 7 demonstrates that the standard tissue model, which assumes

tortuosity does not fully describe the diffusion signal from the extra-axonal com-

partment. Instead a better model to use is by relaxing the tortuosity constraint on

the hindered diffusivity of the extra-axonal compartment.

The purpose of this chapter is to compare the performances of OGSE and SDE

protocols optimised in Chapter 6 for estimating axon microstructure in a viable

nerve tissue, using a viable isolated tissue (VIT) system, with a direct comparison

to histology. The MR imaging experiment is conducted on a 9.4 T preclinical scan-

ner using gradient strength, G = 800 mT/m. Similar to Chapter 7, we evaluate the

optimised OGSE and SDE protocols on three criteria: (i) Accuracy of the model

estimates compared to the histology; (ii) Precision of the model estimates; (iii) Ro-

bustness of the model estimates as the total number of diffusion gradient directions

reduces.

The experiments here are carried out with help from James B Phillips (for

extracting the sciatic nerve), Simon Richardson (for setting up the VIT system),

Bernard Siow (for fine tuning the imaging sequences to avoid artefacts) and Oscar

F Bennett (for data analysis and for the histology results). Parts of this work are

featured in the recently accepted paper to NeuroImage:

L S Kakkar, O F Bennett, B Siow, S Richardson, T Quick, D Atkinson, J B Phillips



8.1. Method 157

and I Drobnjak. Comparison of OGSE and SDE ActiveAx for axon diameter map-

ping: An experimental study in viable nerve tissue.

8.1 Method
This section outlines the rat sciatic nerve tissue sample preparation procedure,

briefly re-introduces the biophysical microstructure model representative of the tis-

sue of interest and describes the imaging parameters used to acquire the raw data.

The section continues by outlining the model fitting procedure used to acquire the

tissue microstructure parameter estimates, and briefly describes the transmission

electron microscopy method used to inspect the nerve microstructure, and the image

analysis algorithm used to extract the microstructure ground truth measurements

from the electron micrographs.

8.1.1 Tissue sample preparation

A sample of sciatic nerve tissue is freshly excised from an adult Sprague Dawley rat.

The nerve is ligated carefully at both ends and is placed into a specially designed

viable isolated tissue (VIT) chamber [137], which bathes the tissue in a tempera-

ture controlled (at 37oC) oxygenated artificial cerebrospinal fluid (aCSF) solution

in order to preserve viability during the course of the image acquisition. Figure 8.1

shows the nerve contained inside this chamber.

Figure 8.1: The bottom image shows the chamber used to hold the excised and ligated
nerve tissue within the bore of the scanner during the image acquisition. The
top image displays the magnified sciatic nerve (outlined in blue dashed lines)
which is ligated at both ends. Details about the chamber can be found in [137].

The experiments comply with the ARRIVE guidelines and are carried out in
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accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated

guidelines, EU Directive 2010/63/EU for animal experiments.

8.1.2 Tissue model

The new two compartment tissue model (the model that does not assume tortuosity)

from Chapter 7 is used to represent the nerve microstructure. The final tissue model

parameters to be estimated are: axon diameter index (α), intra-axonal volume frac-

tion ( ficv f ), intrinsic diffusivity (d||) and hindered diffusivity (dh).

8.1.3 Imaging protocol

The diffusion protocols from Chapter 6 Figure 6.1 are used to acquire the data for

this experiments. All MR measurements are conducted with a small bore 9.4 T

scanner (Agilent Inc., Santa Clara, CA, USA) equipped with 1000mT/m imaging

gradients and a 33 mm RF bird cage volume coil (RAPID, Biomedical GmbH,

Rimbar, Germany). A fast spin-echo readout is used with an echo train length of

8. The following imaging parameters were used: FOV = 6 mm × 6 mm × 2 mm,

voxel dimensions = 93.8 µm × 93.8 µm × 2 mm, 8 signal averages, TR = 1100

ms, effective TE (SDE) = 20 ms and effective TE (OGSE) = 35 ms. The total time

necessary to complete all imaging protocols is approximately 12 hours. Post data

acquisition, the calibrated sequences from Chapter 6 are used to analyse the data.

8.1.4 Model fitting

A voxel-wise model fitting procedure involving diffusion tensor fit, grid search,

active-set algorithm and MCMC is used to compute the tissue model parameter

estimates ( ficv f , d||, dh and α). First, in order to reduce the number of combination

of parameters a diffusion tensor is fitted to the data to find the fibre orientation.

Next, to avoid model fitting instability due to larger number of free parameters

than measurements, dh is fixed to a range of values (0.03 µm2/ms to 3 µm2/ms

with an interval of 0.01 µm2/ms). A two stage fitting procedure (grid search and

active-set algorithm) is then carried out to find the estimate of dh that maximises the

maximum likelihood. The same two stage process (involving grid search and active-
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set algorithm) is performed to estimate ficv f , d|| and α using the calculated fibre

orientation and the estimated dh. In order to test the precision of the estimates, we

additionally run Markov Chain Monte Carlo (MCMC) procedure assuming Rician

noise model.

8.1.5 ROI selection

In order to perform quantitative analyses of the results from model fitting a region

of interest (ROI) fully within the nerve is selected. The region corresponds to the

approximate extent of the large upper axon-rich nerve fascicle seen in the histology.

Voxels from this region are least likely to contain partial volume of the axon-free

epineurium or of free water outside the nerve and so are most suitable to use for as-

sessment of the chosen tissue model. A preprocessing step in the analysis excludes

a small subset of the ROI voxels from each protocol which have a signal-to-noise

ratio (SNR) < 10 and fractional anisotropy (FA) < 0.2.

8.1.6 Histology

Once the imaging is completed, the histology procedure is carried out as described

in [137]. The nerve tissue sample is removed from the chamber and fixed in 2%

paraformaldehyde, 2% glutaraldehyde and sodium cacodylate buffer (pH 7.3). The

sample is post-fixed with 1% osmium tetraoxide, dehydrated, set in resin, sec-

tioned and then stained with lead citrate in preparation for transmission electron

microscopy. The tissue section is imaged with a Joel 1010 transmission electron

microscope and the images recorded using a Gatan Orius CCD camera. The tissue

section used comes from the middle of the tissue volume lying within the image

slice selected during the MR scanning.

Twenty eight 64×50×5 µm transmission electron micrographs (TEM), an ex-

ample is shown in Figure 8.2, obtained at regularly spaced positions across the

whole nerve section are acquired to sample the axon microstructure. An in-house

MATLAB (The MathWorks, Natick MA.) based image processing algorithm is used

to automatically extract the size and number of intra-axonal areas in each image.

The algorithm involves a threshold segmentation of the axon myelin sheaths, fol-
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lowed by morphological operations to clean up the resulting segmentations, and

then finally a connected component analysis that extracts the intra-axonal regions

from within the images.

28 re
gions m

agnifie
d 

Example magnified 
region 

Segment myelin sheaths 
surrounding axons in 

each image 

Extract all intracellular 
regions. Use these to 
determine the local 
intracellular volume 

Extract intracellular regions 
not connected to image 

edge. Use these to 
determine the effective 
intracellular cylinders 

diameters 

Figure 8.2: An outline of the main steps in the image processing algorithm implemented
for histological microstructure measurements. Minor intermediate steps in the
pipeline have been omitted.

These intra-axonal regions are then used to calculate the local intra-axonal

volume fraction and the local axon diameter index. The local intra-axonal volume

fraction is calculated by dividing the total area of all the intra-axonal regions with

the total area in the image (excluding the myelin sheets). The local axon diameter

index is calculated using Equation 2.53, where the effective diameters come from

the intra-axonal regions not connected to the image edges, and additionally these

effective diameters are corrected for tissue shrinkage of 30% as suggested by [30].

The local axon diameter index and local intra-axonal volume fraction for each TEM

image are used for comparison with the parameter estimates obtained from model

fitting. An outline of the TEM processing pipeline is shown in Figure 8.2.
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8.2 Results
Here we characterise the performance of the two protocols using (i) Accuracy and

(ii) Robustness of their microstructure estimates. The accuracy is measured as the

proximity of the microstructure parameter estimates to histology. The robustness

of parameter estimates with respect to the number of gradient directions is then

evaluated.

8.2.1 Histology results

Figure 8.3 shows examples of micrographs obtained from the TEM procedure de-

scribed in Section 8.1.6. The entire nerve section is shown with the upper and lower

fascicles where the axons are located. The image of the nerve is created by com-

posing two large scale TEM images, and has been rotated to visually coincide with

the orientation of the nerve in the MR images and parameter maps presented later.

The ground truth microstructure measurements are obtained from 28 magnified

regions using the image processing algorithm described earlier in Section 8.1.6.

Interestingly, the majority of the sample regions do not seem to exhibit a gamma

distribution of axon diameters. Often the smallest axons (below 3 µm) are the most

numerous (≈45% of the average sample) and the larger axons (>5µm) occur in

fewer amounts (≈13% of the average sample). Overall, the averaged local axon

diameter index across the 28 samples is 4.80 ± 0.58 µm. The averaged local intra-

axonal volume fraction is 0.44 ± 0.11.

8.2.2 Imaging results

The nerve imaging data is acquired using the protocols described in Figure 6.1.

Voxel wise estimates of the model parameters ( ficv f , d||, dh and α) across the nerve

are obtained using the tissue model and the fitting procedure described in the Meth-

ods section. Figure 8.4 shows a T2 weighted cross-sectional image of the nerve

with no diffusion weighting applied and a region of interest (ROI) used for model

fitting. The red region covers the whole of the cross-sectional surface of the nerve.

The green region covers the inner area of the upper fascicle of the nerve seen in

Figure 8.3 to ensure no partial volume effects. We selected voxels at least one pixel
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Figure 8.3: TEM image of the entire nerve tissue section taken from the nerve in the centre
of the MR volume, with a scale bar = 100µm. 28 high magnification TEM
images of the axons at the indicated positions within the nerve fascicles are also
acquired. 12 examples of the magnified TEM images and their corresponding
histograms of the axon diameter distributions (corrected for the 30% tissue
shrinkage) are shown. The red bars on the high magnification TEM image
indicate the scale bar = 5µm. The axon diameter index α for a given ROI
is indicated as a red dashed line and the corresponding intra-axonal volume
fraction is labelled on each histogram.

away from the edge of the nerve and also ensured that only voxels with FA > 0.2

and SNR > 10 are chosen. Model fitting is performed on all voxels, however, only

voxels from the green region are used for the quantitative analysis.

Figure 8.5 shows a quality of fit for an example voxel in the green ROI of

the nerve. Estimated model parameters are shown in the bottom right corner, the

model predictions using those parameters are in dashed lines and the imaging data

is marked with crosses. Similarly to the simulation results, the signal in the free

diffusion direction (for |n.G|/|Gmax| → 1) cannot be distinguished from the noise

floor for b>2000s/mm2. The model prediction shows a good fit with the measured
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(a) (b)

Figure 8.4: (a) A T2 weighted cross-sectional image of the nerve with no diffusion weight-
ing applied. The black shape at the bottom of the image is the bench which
the nerve is resting on. (b) Region of interest selected for the analysis. The red
region covers the whole cross-sectional section of the nerve drawn on top of
the b=0 image shown in (a). The green region is a selected subsection of the
red region, fully within the upper fascicle, used for quantitative analysis.
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Figure 8.5: Graphs showing the model signals fitted (dashed lines) to the experimental data
(data points) for an example voxel from the 32 gradient directions SDE (left)
and OGSE (right) protocols. The x-axis is the absolute dot product between
the gradient directions and the estimated fibre orientation. The three curves
represent the model fit to each of the three measurement shells. b=594 and 3100
s/mm2 from the OGSE protocols have oscillating waveforms. The estimated
parameters (α , ficv f , d|| and dh) and the quality of fit (Rlog) are shown in the
bottom right hand corner of each graph. The horizontal dashed lines around
S/S0=1 represent the spread in the b=0 measurements.
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Figure 8.6: Accuracy of estimated parameters in the viable nerve experiment using the 32
direction SDE (left) and OGSE (right) protocols. Maps show the estimates for
each individual voxel in the red ROI defined in Figure 8.4b). Blue crosses and
red squares show the estimates from the green ROI for SDE and OGSE proto-
col respectively. Black circles are parameter estimates from the 28 histology
regions. Axonal diameter indices in the colour bar are in µm.

Figure 8.6 shows the diameter index and intra-axonal volume fraction maps

computed from the 32 gradient direction protocols. The estimated parameter values

in the right (blue box plot for the SDE and red box plot for the OGSE) are from

the green ROI shown in Figure 8.4. The figure shows that the SDE protocol mostly

overestimates the axon diameter index compared to the histology based estimates

(in black), while the OGSE protocol result is in excellent agreement with the histol-

ogy. Both SDE and OGSE protocol estimates of intra-axonal volume fraction are

aligned with histology, however OGSE is more tightly within the histology range

while a majority of the SDE voxels are outside of that range. Estimates of diffu-

sivity (data not shown here) show OGSE and SDE both give similar estimates of

diffusivity. These results suggest that the OGSE protocol has better accuracy than
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the SDE protocol, and this is also completely in line with the simulation results in

Figure 7.5.

Figure 8.7 quantifies the uncertainty values of the axon diameter index (top),

intra-axonal volume fraction (middle) and intrinsic diffusivity (bottom) from the

green ROI in Figure 8.4b for both OGSE and SDE 32-direction protocols. The

uncertainties across all parameter estimates for the SDE protocol are higher than

those from OGSE protocols, which agree with the simulation results in Figure 7.6.
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volume 
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 ficvf  

Diameter 
index, 

  

Figure 8.7: Precision of estimated parameters in viable nerve experiment using the 32 di-
rection SDE (in blue) and OGSE (in red) protocols. Box-whisker plots of of the
uncertainty calculated as the standard deviation of the posterior distribution are
shown. The boxes show median, 25th and 75th percentiles of the uncertainty
and the whiskers extend to the most extreme data points excluding the outliers.

Figure 8.8 quantitatively demonstrates how the parameter estimates from

OGSE and SDE protocols are affected by the number of measurement directions

included in the protocol. Similar to the simulation results in Figure 7.8 from Chap-

ter 7, this figure suggests that changes in the number of measurements seem to

affect the OGSE parameter estimates less than those of SDE as we move from 32

to 16 measurement directions. At 8 measurement directions both protocols begin

to produce unstable parameter estimates. In the case of intrinsic diffusivity, both
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OGSE and SDE provide robust estimates for all protocols (≈1.7-2.2 µm2/ms). By

comparison, the hindered diffusivity is extremely variable as we reduce the number

of directions and especially for the SDE protocols.
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Figure 8.8: Robustness of estimated parameters in viable nerve experiments with respect to
the number of gradient directions. The figure shows Box-whisker plots of the
parameter estimates within the green ROI of the nerve obtained for SDE (blue)
and OGSE (red) protocols. The boxes show median, 25th and 75th percentiles
of the uncertainty with respect to the noise and the whiskers extend to the most
extreme data points excluding the outliers.
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8.3 Discussion

In this work, we have compared the performance of OGSE sequences with SDE

sequences by comparing their ability to estimate axon diameters in tissue. Our work

demonstrates that optimised OGSE protocols (consisting of one single lobe and

two low frequency oscillating diffusion waveforms) outperform the optimised SDE

protocols in a viable rat sciatic nerve. The OGSE estimates of axon diameter have a

higher accuracy and a higher precision compared to those from SDE. Furthermore,

OGSE estimates are more robust compared to the SDE estimates when the number

of measurements available for model fitting is reduced. Finally, the OGSE estimates

of axon diameter and volume fraction are in remarkable agreement with histology

results. These results show for the first time, quantitatively and in an as close as

possible to in-vivo conditions, that low-frequency OGSE improves accuracy of axon

diameter mapping compared to using the standard SDE protocol.

The work from this chapter and the previous chapter (Chapter 7) show that

the imaging results are in good agreement with the simulation results, which also

demonstrates the nerve tissue is well represented by the synthetic substrates. Some

differences were expected between the simulations and the tissue sample due to

their different intrinsic diffusivity values (d|| = 1.7 µm2/ms in simulations and d||

≈ 2.1 µm2/ms in tissue). The differences are observed as 10-20% drops in the sig-

nal intensities for tissue data (Figure 8.5) with respect to the synthetic data (Figure

B.2 in Appendix B). Axon diameters for SDE are also more overestimated in tissue

than in synthetic substrates, and this could be attributed to the differences in fitting

hindered diffusivity in simulations and in tissue. However, the rest of the model es-

timates and the trends in the comparison between the OGSE and the SDE protocols

are similar between the simulations and tissue. Furthermore, in the imaging data,

the lack of signal above the noise floor at large b-values suggests an absence of the

artefactual trapped water compartment that is often present in ex vivo experiments

[101, 110], and emphasises the novelty and importance of this work in that it uses a

viable nerve tissue.

Similar to simulations, the imaging results we obtain here further support the
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theoretical results recently published in [24] and [123]. [24] showed numerically

that in practical situations when the fibre direction is unknown and/or there is orien-

tation dispersion, low frequency OGSE sequences are more sensitive to axon diam-

eter than SDE. [123] confirmed this result analytically. In this study, for which we

purposefully used high angular resolution diffusion imaging (HARDI) sequences to

experimentally test the theory, we show that low-frequency OGSE provides more

accurate estimates of axon diameter than the SDE protocol. The reasons behind

this mechanism is that a low frequency OGSE provides the same sensitivity to axon

diameter as a SDE sequence of the same squared gradient area, however for a much

smaller b-value. Since the axon diameter in the nerve tissue is so small, in order to

achieve sensitivity to it the squared gradient area needs to be extremely large. This

results in an extremely large b-value for the SDE sequence, much larger than that

of the OGSE. This can be seen in the optimal waveforms we obtained in Figure 6.1

in Chapter 6. Hence, the intra-axonal SDE diffusion signal in the parallel direction

of the fibre diminishes and consequently reduces the total signal as well. In the case

of the OGSE sequence the signal remains better preserved. This be seen both in

simulations (Figure B.2 in Appendix B) and in imaging data (Figure 8.5).

In this chapter, we choose a simple model of white matter tissue. Specifically,

the model uses long straight circular cylinders that mimic axon bundles and does not

account for curvature of axons, dispersion or crossing fibres. However, the nerves

in our tissue sample have been ligated and then stretched and tied in a taut man-

ner onto the bench within the chamber (as in Figure 8.1), and hence we believe the

effects of this simplification is minimised. Furthermore, although our model esti-

mates hindered diffusivity dh, which in itself is more realistic than using the simple

tortuosity assumption, it assumes that dh is not time dependent. Time dependence

of dh has been previously reported in [133] and [131], especially for our OGSE

sequences which have a wider range of diffusion times (1.5-26 ms), compared to

our SDE sequences (6.1-12.3 ms). However, our accurate OGSE and SDE parame-

ter estimates in simulations and in tissue sample demonstrate that the current tissue

model correctly describes the synthetic substrates, and thereby we expect the effects
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of time dependency on the dh to be minimal. Finally, we assume that the intra- and

extra- axonal intrinsic diffusivity is the same and it was suggested that they are dif-

ferent in tissue [142]. However, as pointed out in [114], this particular assumption

of separate diffusivities mainly affects our model results if the dispersion occurs in

tissue, which we do not expect to see in our tissue as the nerve is stretched.

The model parameters used to optimise the protocols were not the same as the

values determined here from the histology of the nerve tissue. In Appendix C, we

tested the consequence of using histology based values to optimise the sequences

and also tested their effects on analysing synthetic data with an intrinsic diffusivity

of d|| = 2.1µm2/ms (similar to histology). We found that using histology values for

the optimisation gives sequences with slightly lower b-value and more variations

within protocols, however, no statistical differences in the parameter estimates are

observed, especially for SDE protocols and for low intra-axonal volume fractions.

The experiments were done for only one gradient strength of G=800mT/m but the

conclusions of the paper are valid for any gradient strength as shown theoretically

in [24] and [25].

8.4 Conclusion
In general, the results for the viable nerve tissue presented here are encouraging

and are mostly supported by simulations in the previous chapter (Chapter 7). How-

ever, in reality, tissue samples are not straightened and do not appear in isolation.

They are much more complex and at the simplest will contain fibre dispersion. We

expect that the advantage of OGSE against SDE will hold even in such conditions

as OGSE has been theoretically shown to handle fibre dispersion much better than

SDE sequences [24, 25]. More importantly, our work demonstrates that OGSE

gives accurate diameter estimates even when the number of directions are signif-

icantly reduced. All of this suggests that OGSE waveforms are a more suitable

choice in potential future applications of axon diameter mapping.



Chapter 9

Conclusions and future work

9.1 Summary
The aim of this thesis was to test the feasibility of axon diameter imaging using

diffusion MRI. The motivation of this research was to contribute towards the devel-

opment of biomedical imaging techniques that are applicable to the human nervous

system.

Current techniques for axon diameter imaging, such as AxCaliber [19] or Ac-

tiveAx [101] use the standard single diffusion encoding sequences which have been

known to give overestimated axon diameters. Replacement of the standard SDE

sequences with OGSE sequences that can probe shorter diffusion time scales, have

been theoretically shown to improve sensitivity towards axon diameter [24, 123],

where the improvement increases with gradient strengths. This is only true in re-

alistic scenarios where fibre direction are unknown or when fibre dispersion exists.

To date, the performance of OGSE and SDE in axon diameter imaging in practice

has not yet been compared experimentally. The experiments in this thesis were

therefore designed with the following objectives:

1. To design a physical phantom that represents the cylindrical geometry of ax-

ons in nerve tissue, which can be used for evaluation of the intrinsic sensitivity

of sequences to pore diameters.

2. To compare the performance of OGSE and SDE sequences for measuring

diameters of a range of substrates over various gradient strengths.
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3. To evaluate the performance of the optimal protocols when compared to

ground truth or histology.

The conclusions of the investigations are discussed below.

9.1.1 A physical phantom to geometrically represent axons

A physical phantom with microstructural features is always necessary to assess the

performance of diffusion MR techniques. Chapter 4 introduced the phantoms used

in this thesis, which are glass plates containing many parallel microcapillaries. The

microcapillaries of each plate are of a single diameter. For instance in Chapter 4,

diameters of 5, 10 and 20 µm were available and by Chapter 6, additional diameters

of 2, 7 and 15 µm were purchased.

However, initial imaging experiments without a phantom holder were difficult.

Phantoms were prone to motion during scans and scan times were long because

every scan had to be repeated for each plate. Hence a lot of time was invested in

designing a phantom holder to secure the phantoms in place and enable simultane-

ous scanning. Chapter 4 and Chapter 6 show two different phantom holders, which

were 3D printed with the same MR invisible material. Both holders were effective

for their respective scanners and this is demonstrated by the accurate estimates of

micro-capillary diameter and intrinsic diffusivity in both cases.

One limitation of the work stems from the use of only single diameter mi-

crocapillaries with a single orientation. It is possible to combine multiple plates

to experimentally simulate multi-diameter phantoms [144]. However, due to the

inflexibility of the phantom holders to house these combinations, this was not at-

tempted and so currently numerical simulations using the CAMINO framework is

the only method of testing the performance of the diffusion sequences for substrates

with multi-diameter cylinders. A potential future work here could be to design a

new phantom to enable stacking of multiple plates. In terms of fibre orientation,

various orientations may not be possible due to the susceptibility effects from the

glass and water interface [116, 117]. The effects are only at minimum when the mi-

crocapillaries are aligned parallel to the main magnetic field, hence the positioning

of plates is limited [116].
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Another limitation of the work is that although microcapillaries have the ben-

efits of clearly defined diameters, they do not have extra-axonal space. This is

fine for calibrating axon diameter sequences across different MR scanners, however

the method does not fully assess how the sequences may perform in tissue, where

extra-axonal space is present. One main reason is that the phantoms are made up

of glass and so at high magnetic field strength they may suffer from susceptibil-

ity effects. Secondly and more importantly, the extra-axonal space is absent in the

phantoms used here and recently the importance of extra-axonal space in axon di-

ameter imaging have been highlighted by [131, 133]. Therefore, to achieve a more

realistic tissue microstructure phantom for testing axon diameter imaging, in the

future, biomimetic phantoms [125] may be the way forward.

9.1.2 Comparison of OGSE and SDE sequences for measuring

diameters of a range of substrates over various gradient

strengths

Throughout the thesis, the running theme has been to compare the performance of

OGSE and SDE sequences for estimating axon diameters. In Chapter 5 and Chap-

ter 8, ex vivo monkey brain and a viable sciatic nerve tissue are used, respectively,

to test the performance of the sequences under different axon diameter distribu-

tions (0-3 µm [29–31] and 1-14 µm [14, 36] respectively), diffusivities (d|| ≈ 0.6

µm2/ms and d|| ≈ 2.1 µm2/ms, respectively), intra-axonal volume fractions (ficv f

≈ 0.8 and ficv f ≈ 0.5, respectively) and using different gradient strengths (G = 300

mT/m and G = 800 mT/m respectively) and number of gradient directions (60 direc-

tions and ≤ 32 directions, respectively). Additionally, in Chapter 7, different tissue

models (the ActiveAx model assuming tortuosity and without tortuosity) are also

tested using both OGSE and SDE sequences. Across all of these instances, OGSE

sequences were more sensitive to small axon diameters than SDE sequences in both

simulations and in tissue. Small angular differences between fibre orientation and

gradient directions and additional dispersed fibres in tissue probably contributes to-

wards the success of OGSE sequences in imaging small axon diameters [24, 123].
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This, therefore, allows OGSE sequences to give more accurate diameter estimates.

OGSE sequences only require an extra parameter, the number of half oscilla-

tions (lobes), to achieve this additional sensitivity to small diameters that standard

SDE sequences cannot provide in realistic scenarios of fibre dispersion and un-

known fibre directions. On a standard clinical scanner, OGSE is very easy to use.

Chapter 3 demonstrates this by implementing and validating OGSE sequences on

a 3 T scanner with a maximum gradient strength of G = 62 mT/m. The OGSE se-

quence implementation was straightforward with no major changes to the software

and the sequences were safe to use both in terms of patient and scanner hardware

safety. The OGSE implementation was successful because the acquired images for

gelatine phantoms (Chapter 3) and micro-capillary phantoms (Chapter 4) were free

of artefacts and the OGSE sequences were able to recover the true micro-capillary

diameter and intrinsic diffusivity for phantoms with microcapillaries of diameters

between 10 µm and 20 µm. OGSE sequences, in general, are easy and safe to use.

9.1.3 Evaluating the performance of the optimal protocols when

compared to ground truth or histology

The gradient strength and SNR limit the smallest diameter that can be detected by

the OGSE sequences as with the standard SDE sequences. In a current clinical

setting, where gradient strength of 60-80 mT/m and SNR=20 are typical, there is

no sensitivity to axon diameters below 5 µm regardless of the type of diffusion

gradient waveform used. This was experimentally demonstrated in Chapter 4 and

theoretically stated by [24, 123].

Since the majority of the axons in the brain are between 0.1−3 µm [29, 30],

axon diameter mapping in the brain is mainly sensitive to the few larger axons and

hence has limited use for brain tissue at current gradient strengths (Chapter 5). At

G=300 mT/m, the optimal protocol, which is the OGSE protocol, still overesti-

mates the diameters compared to histology reported in literature, however we see

the low-high-low axon diameter trend across the corpus callosum which is good.

The simulations for the monkey data suggest a resolution limit of approximately

2.5 µm, which agrees very well with theoretical predictions published in [24, 25].
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Axons of the peripheral nervous system tend to be much larger (1-14 µm [36,

37]) than those from the CNS. At G=800 mT/m and SNR=10, when compared to

histology the most optimal protocol, which is the OGSE protocol, gives an excellent

match which suggests that for 800 mT/m and the sizes reported in the sciatic nerve

the diameter estimates can be extremely accurate. In line with this, the simulation

data reports a resolution limit between 2.5-3 µm, which agrees with the resolution

limit reported in [24, 25] (≈3 µm).

In both monkey and rat nerve tissue data, overestimated axon diameters oc-

cur. In simulations, over- or underestimated axon diameters exist for substrates

with either small axons or large axons, respectively. A reason could be the use

of the axon diameter index to describe the axon diameter distribution as a single

summary statistic of the diameter distribution [101]. Overestimated axon diameter

indices observed in tissue data can result from existence of small axons that are

below the resolution limit and thus have negligible signal attenuation making them

indistinguishable from each other, whereas larger diameters within the sample could

contribute more towards the total signal attenuation causing the diameter index to

be weighted towards the larger diameters [24, 25, 101]. On the other hand, when

axon diameters are very large (such as those simulated in Chapter 5, Chapter 7 and

in simulation studies [101, 110]), the axons cannot be detected because the diffu-

sion time of the protocols are not long enough to probe the restriction. This upper

resolution limit leads to underestimated axon diameters in substrates with large ax-

ons. Within the diameter range of the lower and upper resolution limit, the diffusion

model for the extra-axonal space plays an important role in increasing the accuracy

of the estimated diameter index. [131] demonstrated that the tortuosity constraint

on the hindered diffusivity of the extra-axonal space biases axon diameter estimates.

[143] further suggested that the tortuosity constraint makes the intra-axonal volume

fraction estimates very sensitive to the intrinsic diffusivity estimates, which prob-

ably leads to the inaccuracy of intra-axonal volume fraction and diameter indices

estimates. Thus by relaxing this tortuosity assumption and estimating the hindered

diffusivity significantly improves axon diameter and intra-axonal volume fraction
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estimates, as has been demonstrated in Chapter 7. Another more accurate method

of describing the diameter distribution is the Gamma distribution, which appears

frequently in biological tissues [19, 29], however a much larger number of measure-

ments are required to approximate this distribution accurately [101]. In the future,

the diameter distribution could potentially be modelled using a simpler distribution,

Poisson distribution (has only one parameter), as in the recent work by [131]. How-

ever, as the simulation work presented in this thesis, as well as previous simulation

work by [101], show that the volume weighted diameters are described by the esti-

mates of axon diameter indices, it is also equally fine to use the axon diameter index

to represent the underlying diameter distribution. Additional improvements to tis-

sue models, such as considering the effects of fibre undulation [112] and dispersion

[111], as well as incorporating further effects of modelling the extra-axonal space

such as the time dependency of the diffusivities [131, 133, 134], could also increase

the axon diameter accuracy; hence is definitely for future work.

9.2 Future work
There are some general future directions that could further improve on the contribu-

tions made in this thesis to improve the accuracy of axon diameter estimates using

diffusion MRI.

9.2.1 Tissue models

In this thesis, the multi-compartment tissue models assume hindered diffusion in the

extra-axonal space. More recently, the diffusivity in the extra-axonal space has been

shown to be dependent on diffusion time [133, 134, 145] and so only affects models

when diffusion measurements are acquired at different diffusion times. The time

dependency model effectively creates multiple 3D Gaussian displacement distribu-

tions which is dependent on the geometry of the substrates. This has been shown to

significantly improve axon diameter estimates in synthetic substrates and in tissue

[131, 133]. Low frequency OGSE sequences provides diffusivity in ex vivo brain

that is linearly dependent on their frequency, whereas standard SDE sequences are

not as much affected because pronounced time dependency is only observed at dif-
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fusion times larger than 100 ms [131, 133]. This also suggests that when using SDE

sequences at very low intra-axonal volume fractions such as those in the rat sciatic

nerve, time dependence of the diffusion in the extra-axonal space is not a limita-

tion. However, in the brain, where intra-axonal volume fractions are high, or when

OGSE sequences are being used, modelling the time dependence may be essential

for improving the accuracy of diameter estimates.

The above time dependence of diffusivity occurs perpendicular to the main ori-

entation of the axon. Time dependence of diffusivity (both intra- and extra-axonal)

parallel to the main axon orientation have been demonstrated by [134] in in vivo

white matter. It has been suggested that undulations of axon can cause this time

dependence and can potentially cause overestimated axon diameters [112]. There-

fore another factor in improving axon diameter estimates could be to incorporate

the time dependence along the axon length.

Lastly, dispersed axons are prevalent in the nervous system. [111] demon-

strated that if dispersion is not accounted for in modelling, axons that otherwise are

oblique to the assumed single axon orientation will have a larger cross section than

in reality, which can lead to overestimate diameters. Hence accounting for disper-

sion can potentially further improve axon diameter estimates. However, the number

of model parameters and in turn the number of measurements would increase if

dispersion is also accounted for.

One potential for future work could be to invest in implementing a tissue model

for OGSE sequences that accounts for majority of these factors affecting diameter

accuracy. A large dataset (similar to [114]) could then be used to compute model

parameter estimates. However, tolerable scan times for humans, stability of the

tissue model and acquisition of histology for validation are few of the challenges

that would need to be tackled.

9.2.2 Optimisation

Our current work uses optimised sequences to maximise sensitivity towards the

tissue model parameters of the samples of interest. It is otherwise difficult to decide

the range of sequence parameters that are sensitive to the model parameters and at
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the same time ensure that the number of sequences do not cause scan times to be

exceedingly long. However, to date, the optimisation itself has not been validated

thoroughly, especially the noise model used and the effect it has on the sequence

parameters. A potential and interesting idea for future work would be to explore

the whole range of sequence parameters space and to test whether the optimised

sequences for this particular case agree with the empirically optimised sequences.

Preliminary optimisation of sequences for water-filled microcapillaries with single

diameters of 10 and 20 µm with the assumption of unknown fibre orientation, long

T2 (70ms) and 30 gradient directions at G = 60mT/m outputs N = 4 as the number

of lobes for the optimal OGSE sequences with TE = 120ms. This is in agreement

with the empirically optimised OGSE sequences from Chapter 4, where the optimal

number of lobes are N ∈ {3,4}.

9.2.3 Diffusion sequences

Trapezoidal OGSE sequences with a sine profile have been used throughout this the-

sis. Our method of estimating axon diameters involve directly fitting the analytical

signal from the biophysical model to the measured signal. We use a number of gra-

dient directions to determine fibre orientation and using this further determine the

diffusivity parallel to the fibre orientation (i.e the intrinsic diffusivity). In the pres-

ence of straight cylinders, our OGSE sequences with sine profile should estimate the

true diffusivity of the substrate. However, in the presence of dispersed or undulated

fibres, the apparent diffusivity would be probed. In this case, it may be necessary

to use trapezoidal OGSE sequences with a cosine profile which would give a more

accurate diffusivity estimate for a given frequency than OGSE sequences with sine

profiles. Furthermore, cosine waveforms also have higher b value than their sine

counterparts, which is an additional benefit in imaging biological tissue, as this

would lead to reduced TE, and hence higher SNR.

Recently, ActiveAx optimisation of apodized cosine waveforms have been

made available. Therefore it would be very interesting to carry out experiments,

for instance on a monkey brain, to show the effect of using these waveforms on the

accuracy of axon diameter estimates.
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9.2.4 Validation

Validation is important for the development of imaging techniques, which in our

case would involve new sequences and new tissue models. The current simulations

and phantoms are too simple to assess the complex tissue models suggested in Sec-

tion 9.2.1. Experimental validation of the tissue models therefore would require

more realistic substrates such as numerical simulations considering fibre complexi-

ties [146], biomimetic phantoms [125] and viable tissues (similar to Chapter 8) with

histology.

9.2.5 Applications

9.2.5.1 Central nervous system

Majority of the axons in the brain (0.1-3µm [6, 29]) tend to be much smaller than

those found within peripheral nerves (1-14 µm [14, 36]). At current clinical gra-

dient strengths of 60-80 mT/m, the diameter resolution is not enough to measure

these white matter axons in the central nervous system. Even at the highest gradient

strength used for human imaging (G = 300 mT/m on the MGH Connectom scanner

[90, 91]), where the diameter resolution is around 3 µm, only <1% of the fibre

population in the brain may be captured at this gradient strength. Imaging the large

axons on its own can have benefits for monitoring some diseases, such as ageing

[7], where the large axons shrink and where the careful interpretation of the axon

diameter index could still provide a useful biomarker.

Axon diameters in the spinal cord are much larger (1-10 µm [32, 33]) and here

axon diameter imaging can open doors to clinical applications in diseases such as

amyotrophic lateral sclerosis (ALS) [147]. Additionally, preclinical settings with

gradient strengths greater than 300 mT/m can still be used to understand the struc-

ture and function of the brain from animal models. At such high gradient strengths,

OGSE sequences are theoretically superior to SDE sequences for estimating axon

diameters. Hence accurate axon diameter mapping in viable or ex vivo brain is an-

other one of the many applications for axon diameter imaging in the central nervous

system.
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9.2.5.2 Peripheral nervous system

The translation of axon diameter imaging using diffusion MRI to a clinical envi-

ronment setting for imaging peripheral nerves is an intriguing possibility. Axon

diameter sizes of 1-14 µm in PNS make axon diameter imaging possible even us-

ing clinical strength scanners. Recent studies have demonstrated that DTI using

SDE sequences of the human peripheral nerves in vivo [148, 149] is possible and

this can be easily and safely extended to OGSE sequences as shown in Chapter 3.

One of the most promising areas for applications in peripheral nervous system

is imaging nerve regeneration after injury. Nerve regeneration in the PNS plays a

key role in returning limb function after injury. Microstructural changes involved,

such as changes in density, orientation and size of the axons determine surgery out-

comes and recovery. However, in current clinical practice the assessment techniques

remain crude: they are subjective and inaccurate (Tinels sign), or are invasive. Axon

diameter techniques developed here could provide quantitative, objective and non-

invasive measures of extent and quality of neuronal growth.



Appendix A

Comparison of CAMINO codes

This section aims to validate the differences in our SDE simulation results from

Chapter 5 with the previous SDE simulation studies [110]. Figure A.1 compares the

estimated axon diameter index across two instances. (1) Diameter index estimates

for simulated substrates generated using SDE protocols from [110] and the previ-

ous version of CAMINO and (2) diameter index estimates for simulated substrates

generated using SDE protocols from [110] and the current version of CAMINO.
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Figure A.1: Graphs show the axon diameter index estimates plotted against the true
axon diameter indices across two instances: (1) estimates for simulated sub-
strates generated using SDE protocols from [110] and the previous version
of CAMINO and (2) estimates for simulated substrates generated using SDE
protocols from [110] and the current version of CAMINO. The same two-
parameter gamma-distributions are used to simulate all voxels for all cases.

Figure A.1 demonstrates that there are large differences between the estimates
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obtained from the previous (on the left) and current (on the right) CAMINO ver-

sions, especially at or below 3µm. As expected, the previous CAMINO version

diameter estimates (on the left of Figure A.1) and the diameter estimates from [110]

are in good agreement with each other. The current CAMINO version diameter es-

timates (on the right of Figure A.1) and the SDE diameter estimates from Figure

5.3 in Chapter 5 also agree with each other.

The changes in the results between the previous and current CAMINO versions

are expected because the CAMINO simulation code has improved over the years to

allow for better sampling of the parametrized gamma distributions. In the current

version, there is a higher number of small-diameter cylinders that are allowed and

therefore the changes are seen as lower axon diameter index and lower intra-axonal

volume fractions in the current CAMINO version. This is observed in Figure A.2,

Figure A.3 and Figure A.4 for the same number of cylinders packed into the same

voxel size.
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Figure A.2: Histograms of the axonal diameter distributions across the corpus callosum for
an ex vivo human brain and for an ex vivo monkey brain generated using the
previous (orange) and current (blue) version of CAMINO simulation frame-
work. There are 44 substrates in total. The axon diameter index are indicated
as dashed lines. Note that the diameter scale varies across all histograms.
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Figure A.3: Computed diameter indices of the 44 white matter substrates generated us-
ing the analytical expression for gamma probability distribution function (red
crosses), the previous version of CAMINO (orange triangles) and current ver-
sion of CAMINO (blue squares). The red crosses (analytical diameter index)
and the blue squares (diameter index from current version of CAMINO) are
near each other across majority of the substrates.
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Figure A.4: The ground truth intra-axonal volume fraction of the 44 white matter substrates
generated using the previous version of CAMINO (orange triangles) and cur-
rent version of CAMINO (blue squares).



Appendix B

Signal fits for synthetic substrates

using the standard and new model

The fitted signal for two example substrates for the 32 gradient direction SDE and

OGSE protocols are displayed in Figure B.1 and Figure B.2 for the standard model

(assumes tortuosity) and the new model (does not assume tortuosity), respectively.

The signal fits here are for the noisy data with SNR=10, in contrast to Figure 7.9

which is for SNR = ∞. As expected, both figures show that the substrate with the

small diameter index (α = 2.70 µm) shows lower attenuation than the substrate

with the larger diameter index (α = 4.37 µm). The figures also show a good match

between the raw signal and the fitted signal.
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Figure B.1: Graphs showing the signals of the standard tissue model fitted (dashed lines)
to the simulated data (data points) for two example substrates (α = 4.37 µm,
top row, and α = 2.78 µm, bottom row, with ficv f = 0.5) from the 32 gradient
directions SDE (left column) and OGSE (right column) protocols. The x-axis
is the absolute dot product between the gradient directions and the estimated
fibre orientation. The three curves represent the model fit to each of the three
measurement shells. b=528 and 2797 s/mm2 from the OGSE protocols have
oscillating waveforms. The estimated parameters are shown in the bottom right
hand corner of each graph. The horizontal dashed lines around S/S0=1 repre-
sent the spread in the b=0 measurements.
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Figure B.2: Graphs showing the signals of the new tissue model fitted (dashed lines) to the
simulated data (data points) for two example substrates (α = 4.37 µm, top row,
and α = 2.78 µm, bottom row, with ficv f = 0.5) from the 32 gradient direc-
tions SDE (left column) and OGSE (right column) protocols. Same caption as
Figure B.1 applies here.



Appendix C

Optimisation for rat sciatic nerve

using histology results

This section tests the effects of using the rat sciatic nerve histology results from

Chapter 8 to re-optimise the 32 gradient directions OGSE and SDE sequences. Here

we carry out simulation experiments to test the accuracy of parameter estimates

using the newly optimised protocols and compare them to the simulation results in

Chapter 7.

C.1 Methods

C.1.1 Tissue model

The standard tissue model from Chapter 7, Section 7.2.1 is used for optimisation

and the new tissue model is used for model fitting.

C.1.2 Optimisation

The same optimisation procedure as in Chapter 6, Section 6.2.2 is used. The excep-

tions are the new a priori tissue model parameter settings, which are now based on

the histology results from Chapter 8: ficv f =0.46 (median intra-axonal volume frac-

tion), d|| = 2.1 µm2/ms (median diffusivity from the 32 gradient direction OGSE

protocols), dh = 0.68 [109] and axon diameter indices of 3.9, 4.7 and 5.5 µm (the

minimum, median and maximum axon diameter index from histology).
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C.1.3 Synthetic substrates

Synthetic substrates with multi-diameter cylinders from Chapter 7 with ficv f ∈ {0.4,

0.6} are generated using the Monte-Carlo diffusion simulations via the CAMINO

framework. All simulation settings are the same as in Chapter 7, Section 7.2.2.2

except for the intrinsic diffusivity, which is fixed at d|| of 2.1 µm2/ms to match the

a priori value.

C.1.4 Model fitting

The voxel-wise model fitting procedure from Chapter 7 Section 7.2.3, involving

diffusion tensor, grid search and active-set algorithm is used to compute the tissue

model parameter estimates ( ficv f , d||, dh and α) of the synthetic substrates.

C.2 Results and discussion
Figure C.1 shows the optimised 32 gradient directions OGSE and SDE protocols.

The OGSE protocol has a lower frequency than the previous version in Figure 6.1

from Chapter 6 because the sequence optimisation is now for slightly larger diam-

eters (diameters between 3.9-5.5 µm instead of the previous 2.3-6.7 µm). In the

SDE protocol, lower b-value sequences occurs than in Figure 6.1 from Chapter 6.

(a) (b)

Figure C.1: Optimised 32 gradient directions protocols for (a) SDE and (b) OGSE using
the histology axon diameter index, intra-axonal volume fraction and intrinsic
diffusivity as a priori parameters.

Figure C.2 shows the fitted parameter estimates for the synthetic substrates.

OGSE diameter estimates appear more accurate and precise than for the SDE pro-
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tocol at ficv f = 0.4. At ficv f = 0.6, both OGSE and SDE diameter estimates fluctuate

similarly in accuracy but OGSE still shows higher precision for diameter estimates

across all diameters. In terms of intra-axonal volume fraction and intrinsic diffusiv-

ity, both OGSE and SDE show equal accuracy and precision.

The comparison between the newly analysed results from this section and the

original simulations results in Figure 7.5 shows that at low ficv f ( ficv f = 0.4), both

OGSE and SDE do not show significant differences in diameter and intra-axonal

volume fraction estimates. At ficv f = 0.6, differences in accuracy of parameter

estimates start to emerge for OGSE - the newly optimised OGSE waveforms tend

to give slightly overestimated diameters than for original protocol. For SDE, at

ficv f = 0.6, the uncertainty of the parameter estimates increase, which is indicated

by the large interquartile range in Figure C.2. Higher diffusivity of the new synthetic

substrates and optimisation of protocols for larger diameters and higher diffusivity

potentially causes the newly optimised protocols to be less sensitive towards small

diameters. This can result in the loss of accuracy and precision for OGSE and SDE,

respectively, for substrates with small axon diameter indices.

Overall, this section demonstrates that even when the sequences are optimised

using the histology results, OGSE performs more accurately and precisely than SDE

sequences for diameter estimation.
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Figure C.2: Accuracy of estimated model parameters in simulation experiments: axon di-
ameter index (1st row), intra-axonal volume fraction (2nd row) and intrinsic
diffusivity (3rd row) for intra-axonal volume fractions of 0.6 and 0.4. The me-
dian, 25th and 75th percentile of the estimates across 50 different instances of
random Rician noise (SNR=10), are shown for each diameter index, with SDE
median estimates in blue crosses and OGSE median estimates in red squares.
The identity lines are shown in black. The * above the ground truth α indicate
significant difference between estimates of the newly optimised protocol and
the original protocol. Red * is for SDE and blue * is for OGSE.
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