
	 1	

The Nexus Between Energy Systems and 
Public Health 

An investigation into the co-impacts of energy sector technology transitions 
on outdoor air pollution and public health in  

the United Kingdom and Greater London 
 
 

Melissa Christenberry Lott 
UCL Institute for Sustainable Resources 

University College London 
 

Supervisors: Paul Ekins & Michael Davies 
 
 

A thesis submitted for the degree of  
Doctor of Philosophy 

 
 

July 11, 2017 
 

 
 
 
 
 
 

  



	 2	

This	page	was	intentionally	left	blank.	

  



	 3	

Declaration 
I, Melissa Christenberry Lott, confirm that the work presented in this thesis is my own. Where 
information has been derived from other sources, I confirm that this has been indicated in the 
thesis.  

 
……………………………………….. 

Melissa Christenberry Lott 
July 11, 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
	 	



	 4	

This	page	was	intentionally	left	blank.	

 

	  



	 5	

Abstract 
There is significant value to be gained from insights on the trade-offs and synergies between 

proposed air quality and climate interventions. But, the models used in support of 

decarbonisation and air quality policies have not holistically considered these co-impacts. 

 

This thesis documents the use of an energy systems model to quantify the co-impacts of 

decarbonisation pathways on air pollution and vice versa in the United Kingdom. This 

manuscript further documents the soft-linking of this model to a public health tool in order to 

quantify the public health implications of these pathways. 

 

This research made a number of unique contributions to its field of research, including:  

 

1. incorporating air pollution emissions for particulate matter and nitrogen oxides, in the 

United Kingdom TIMES model (UKTM-UCL) to create the U.K. TIMES model with 

air quality (UKTM-UCL-AQ)1 

2. the creation of the PollutION Emissions from EneRgy (PIONEER) model, an air 

pollution and public health tool2 

3. soft-linking UKTM-UCL-AQ to PIONEER to quantify the air pollution and public 

health co-impacts of U.K. energy technology transitions for Greater London 

 

The results suggest that there are numerous opportunities for climate and air quality policies to 

be mutually supportive. However, without considering their co-impacts, individual policies can 

undermine the others’ progress and create tension between policy efforts. The results also show 

the increasing importance of modal shifting in the transport sector in order to avoid future air 

pollution challenges. 

  
																																																								
1 The author of this thesis manuscript completed all TIMES model update work related to the transport sector 

(including development and implementation) as well as a significant portion of the electricity sector. She provided 

input to work for all other sectors, but did not directly implement these model updates.  
2 The PollutION Emissions from EneRgy (PIONEER) model was created specifically for this research project 

exclusively by the author of this thesis. 
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Chapter 1 – Introduction 
1.1 Overview 
Access to energy is a foundation of modern life and one of the key differentiators between 

healthy, wealthy societies and sick, poor ones (International Energy Agency (IEA), 2004; 

Gaye, 2008). As populations grow and countries develop, energy demand has historically risen.  

 

In many instances, increasing energy use will be beneficial to public health. Indeed, over the 

past century fossil fuels have contributed to huge improvements in global public health and 

development (Costello et al., 2009). However, energy production and consumption have also 

led to some negative environmental and human health impacts, including those resulting from 

increased pollution levels. Rising energy demand will increase these pressures. As a result, the 

reduction of pollution from the energy sector has emerged as a key priority in energy and 

environmental policies around the globe, including in the United Kingdom (Sokhi and 

Kitwiroon, 2011).  

 

With regards to the energy system, multiple air pollutants are often produced by the same 

individual technologies (e.g. fossil fuel power plants, gasoline and diesel vehicles) (Pye et al., 

2008; Lott, Pye and Dodds, 2017). Therefore, one can surmise that actions to reduce a subset 

of these emissions would have impacts on other pollutants. The question is “by how much?” 

and, furthermore, “in what direction?”. For example, how could action to reduce greenhouse 

gas emissions impact urban air pollution?  

 

While it is tempting to believe that actions to reduce a subset of air pollutants produced by the 

energy sector will lead to reductions in others, the true relationships are more nuanced. Indeed, 

technologies and policies that are designed to reduce a sub-set of pollutants can have a wide 
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range of impacts on others – both positive and negative. For example, fuel switching from 

fossil fuels to biomass can result in increasing levels of local air pollution and the introduction 

of carbon capture and storage (CCS) can increase non-CO2 air pollution because of the parasitic 

load created by the capture and storage processes that can reduce net power output by 20-30% 

(Cohen, 2012; Lott, Pye and Dodds, 2017). In turn, it is vital to holistically consider a range of 

key pollutants in the design of a future energy systems and policies that impact their evolution. 

 

Energy systems models that incorporate a range of air pollutants can provide insights on these 

co-impacts, as this research demonstrates. This chapter gives an overview of the context of this 

study on both a global and UK basis, including information on efforts to reduce air pollution 

from the UK energy sector as well as facilitate its decarbonisation (Section 1.2). This overview 

is followed by a discussion of the scope and overarching objectives of this study (Section 1.3) 

and a list of specific research questions that were explored (Section 1.4). The chapter concludes 

with details of the structure of this thesis, including the five chapters that follow this 

introduction (Section 1.5). 

 

1.2 Global Context 
There exists widespread agreement in the scientific community that outdoor air pollution is 

detrimental to the environment and human health, both through its contribution to global 

climate change and local air quality challenges (World Health Organization, 2013b; Watts et 

al., 2015). Each year, air pollution kills more people than HIV, malaria, and tuberculosis 

combined (Carrington, 2015; Lelieveld et al., 2015). Outdoor particulate air pollution (PM2.5) 

alone causes an estimated 800,000 early deaths, corresponding to 6.4 million years of life lost 

each and every year (Cohen et al., 2006). This public health threat is particularly increasing in 

urban areas, corresponding to rising energy demands in these population centres (Sokhi and 

Kitwiroon, 2011). 
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Current epidemiological and toxicological evidence supports the causal linkage between air 

pollution and public health effects (Beevers et al., 2013; World Health Organization, 2013b; 

Williams et al., 2014). Of particular significance to this research project are studies 

documenting a causal relationship between traffic-generated nitrogen oxides (NOx) and 

particulate matter (PM) air pollution and the onset of childhood asthma, non-asthma respiratory 

symptoms, impaired lung function, total and cardiovascular mortality, and cardiovascular 

morbidity (Committee on the Medical Effects of Air Pollution (COMEAP), 2006; Health 

Effects Institute, 2010).  

 

According to the World Health Organization (WHO) in their Review of Evidence on Health 

Aspects of Air Pollution (REVIHAAP) project published in 2013, the health impacts of 

particulate matter (PM) have been particularly well documented (World Health Organization, 

2013b). Overall, this evidence shows that there exists “no evidence of a safe level of exposure 

or a threshold below which no adverse health effects occur” (Pope et al., 2002; World Health 

Organization, 2013b). Indeed, the adverse health impacts from both short- and long-term 

particulate matter exposure have been documented in urban populations in both developed and 

developing countries (Pope et al., 2002; World Health Organization, 2005).  

 

Despite this existing body of evidence on the negative health impacts of air pollution, the vast 

majority (~90%) of Europeans living in urban areas and almost all (98%) of those living in 

cities in low and middle income countries are exposed to air pollution levels in excess of World 

Health Organization standards. As an illustration of this fact, current average annual outdoor 

particulate matter (PM2.5) concentrations are shown in Figure 1.1 with the dashed line 

indicating the current World Health Organization guideline level for this type of air pollution 
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(International Energy Agency (IEA), 2016). This figure was published by the International 

Energy Agency in their 2016 report “Energy and Air Pollution”, which is discussed in more 

detail elsewhere in this thesis. 

 

Figure 1.1: Average annual outdoor PM2.5 concentrations in selected urban areas3 
(International Energy Agency (IEA), 2016; World Health Organization, 2016b) 

 

 

On the global scale, greenhouse gas emissions (CO2-eq) and their contributions to climate 

change are also recognized as a significant threat to human health, particularly in developing 

economies (Haines et al., 2009). In 2015, the multi-disciplinary and international Lancet 

Commission on Health and Climate Change concluded that “that tackling climate change could 

be the greatest global health opportunity of the 21st century” (Watts et al., 2015).  

 

According to the IPCC, global anthropogenic CO2 emissions were approximately 38 

Gigatonnes (Gt) in 2010 (Intergovernmental Panel on Climate Change (IPCC), 2014). Of this 

total, around two-thirds of these emissions come from the energy sector, with 17% (6.5 Gt) 

																																																								
3 graphic by the International Energy Agency (International Energy Agency (IEA), 2016) 
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being produced directly by road transport (Intergovernmental Panel on Climate Change 

(IPCC), 2014; International Energy Agency (IEA), 2015a). Indeed, air pollution from human 

activities is overwhelmingly produced by the energy sector including almost all nitrogen oxide 

(NOx) and the majority (85%) of particulate matter (International Energy Agency (IEA), 2016).  

In the IPCC’s Fifth Assessment Report, Working Group 3 highlights these interlinkages in the 

report’s Chapter 7 on “Energy Systems” and go on to state that (Bruckner et al., 2014): 

 

“To avoid creating new environmental and health problems, assessments of mitigation 

technologies need to address a wide range of issues, such as land and water use, as well 

as air, water, and soil pollution, which are often location-specific.” 

 

1.3 UK Context	
This section includes discussion of the air quality and greenhouse gas policies currently found 

in the United Kingdom. It also includes a section that is focused on current air quality 

monitoring practices in the United Kingdom. 

 

1.3.1 Air Quality Policy in the United Kingdom 

As mentioned by London Mayor Sadiq Khan in 2016, the United Kingdom’s largest city was 

plagued by “pea soupers” (smog) in the first 60 years of the 20th century (Mayor of London. 

London Assembly, 2016b). Perhaps most famous was the “Great Smog” of 1952, which lasted 

five days and shrouded London in “a fog so thick and polluted it left thousands dead…The 

smoke-like pollution was so toxic it was even reported to have choked cows to death in the 

fields. It was so thick it brought road, air and rail transport to a virtual standstill” (Met Office, 

2015). According to reports, about 4,000 people were known to have died prematurely as a 

result of this smog (Met Office, 2015). The subsequent year, a Committee on Air Pollution 

(sometimes referred to as the “Beaver Committee”) was established under the chairmanship of 
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Sir Hugh Beaver. This committee would go on to recommend a Clean Air Act for the United 

Kingdom (Brimblecombe, 1987).  

 

In 1956, the U.K. Parliament passed the initial Clean Air Act, which included a number of air 

pollution control measures (United Kingdom Parliament, 1956). Perhaps most significant was 

its requirement that only smokeless fuels be burned in London. Subsequent Acts – including a 

revision in 1968 and then a consolidated Clean Air Act in 1993 - would further restrict air 

pollution emissions from the energy sector, including transport, power production, and 

residential heating with a particular focus on small combustion processes (Abbott et al., 2012). 

As a result, the type of smog seen in 1952 has become a distant memory for Londoners though 

challenges remain as discussed elsewhere in this manuscript (Met Office, 2015).  

 

In addition to the Clean Air Act of 1993, the United Kingdom is also subject to a number of 

directives at the European (EU) level4, including the National Emissions Ceilings Directive 

(2001/81/EC) and the EU Air Quality Directive (2008/50/EC) and its legally binding limits on 

outdoor air pollution levels. The former requires that Member States develop and maintain 

national programmes to meet emissions ceilings and required reporting of emissions 

inventories for sulphur dioxide (SO2), nitrogen oxides (NOx), non-methane volatile organic 

compounds (NMVOCs), and ammonia (NH3). The latter includes limits for particulate matter 

(both PM10 and PM2.5) and nitrogen dioxide (NO2). Due to its lack of compliance with 

European Union guidelines, the United Kingdom’s Supreme Court ruled in 2015 that the 

government must take action to reduce air pollution levels to meet EU Air Quality Directive 

																																																								
4 Though this could change significantly should the United Kingdom invoke article 50 of the Lisbon 

treaty, and withdraw from the European Union as is currently under discussion. 
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limits for outdoor air pollution, which it currently violates. The result of this decision has 

already led to the proposal of an Ultra-Low Emission Zone (ULEZ) in central London as a 

mechanism for reducing the high air pollution concentrations currently found in this urban area 

(Transport for London (TfL), 2015a, 2015b). The ULEZ is currently expected to become fully 

active in September 2020, though the current Mayor of London Sadig Khan has proposed to 

accelerate this timeline (Vaughan, 2016).  

 

Due to their prevalence in the United Kingdom, both NO2 and particulate matter (PM10 and 

PM2.5) are included by the Committee on the Medical Effects of Air Pollution (COMEAP) in 

their Review of the UK Daily Air Quality Index (DAQI), which “covers the [air pollutants] 

that are most likely to affect health on a day-to-day basis” (Committee on the Medical Effects 

of Air Pollution (COMEAP), 2011). The primary health impacts and main sources of 

particulate matter and nitrogen dioxide (NO2) air pollution in the United Kingdom are outlined 

in Table 1.1 (Committee on the Medical Effects of Air Pollution (COMEAP), 2011). Noted 

here is that the main sources for both types of air pollution are combustion – in particular, 

combustion processes in the energy sector. 

 
Table 1.1: Primary health impacts and main sources of pollution in the UK (Committee on the 
Medical Effects of Air Pollution (COMEAP), 2011) 
Air Pollutant Primary Health Impacts Main sources in the UK 
Particulate 
matter (PM10 
and PM2.5) 

Respiratory and cardiovascular 
illness, in particular for finer 
particles (PM2.5 and smaller) 

Combustion - stationary (power 
plants, quarries, other industry) 
and mobile (transport) 

Nitrogen 
Oxides (NOx) 
including NO2 

Airway inflammation, asthma, 
respiratory stress.  
 
Also, contributes to secondary 
particle and ground level ozone 
formation 

Combustion (transportation and 
electricity production) 

 
 
Under the Environment Act 1995, the U.K. Government and devolved administrations in 

England, Scotland, Wales and Northern Ireland are responsible for producing a national air 
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quality strategy to address air quality challenges. This strategy was last reviewed and published 

in 2007 and set out a plan for meeting the United Kingdom’s air quality objectives via action 

at national, regional and local levels for a number of pollutants including nitrogen dioxide, 

particulate matter, and sulphur dioxide. Under Part IV of this Act, along with Order 2002, local 

authorities in the UK are required to measure their local air quality and establish air quality 

management areas for locations requiring improvement (Department for Environment Food 

and Rural Affairs (DEFRA), 2013a).  

 

While outdoor air pollution levels have improved considerably in the United Kingdom since 

the famous “pea soupers” (smog) seen in the first half of the 20th century and the decade after 

the Second World War – due in large part to the nation’s Clean Air Act - an estimated 40,000 

people still prematurely die each year due to exposure to outdoor air pollution with the overall 

cost for the UK economy estimated as £20 billion annually due to negative mortality impacts 

resulting from air pollution exposure  (Royal College of Physicians, 2016). In London, ~9,400 

people die prematurely each year due to anthropogenic particulate matter (PM2.5) and nitrogen 

dioxide (NO2) pollution exposure alone, with an estimated annual monetized cost of £1.4–3.7 

billion (Walton et al., 2015).  The bottom of this range includes the estimated economic costs 

associated with long-term exposure to PM2.5 and mortality, short-term exposure to PM2.5 and 

hospital admissions, and short-term exposure to NO2 and both premature deaths and hospital 

admissions. The top of this range replaces values for short-term exposure to NO2 with long-

term exposure to NO2 and its impact on mortality. 

 

1.3.2 Air Quality Monitoring in the United Kingdom 

In order to monitor air quality in the United Kingdom, air pollution data for the United 

Kingdom are collected and published via the United Kingdom’s Department for Environment 
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Food & Rural Affairs (DEFRA) in their Air Information Resource (UK-AIR) and National 

Atmospheric Emissions Inventory (NAEI), which consists of the Greenhouse Gas Inventory 

(GHGI) and the Air Quality Pollutant Inventory (AQPI). These databases are hosted and 

maintained by Ricardo-AEA on behalf of DEFRA. 

 

The UK-AIR database includes data from approximately 300 monitoring sites across the UK, 

which automatically measure NO2 and PM10 concentrations on an hourly basis (Department 

for Environment Food and Rural Affairs (DEFRA), 2013c). The National Atmospheric 

Emissions Inventory (NAEI) database is compiled by gathering activity data and background 

data, which is then used to calculate overall emissions levels and corresponding emissions 

factors (Department for Environment Food and Rural Affairs (DEFRA), 2013b).  

 

At an urban level, the London Atmospheric Emissions Inventory (LAEI) provides an emissions 

inventory including sources and location for the Greater London area. In particular for the 

transport sector, this inventory includes vehicle speeds and flows for each road link and uses 

automatic number plate recognition data to build vehicle stock information. The LAEI is 

maintained by the Environmental Research Group at Kings College London5. 

 

1.3.3 Greenhouse Gas Policy in the United Kingdom 

In addition to the targeted clean air regulations discussed previously, the United Kingdom has 

set a long-term national greenhouse reduction target of 80% by 2050 compared to 1990 levels 

through the national Climate Change Act.  Passed into law in 2008, this Act includes the 

requirement that the Government set a series of legally binding “carbon budgets” for each five-

																																																								
5 http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/modelling/Emissions-Inventory.aspx 
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year period starting in 2008, which are shown in Table 1.2 (Committee on Climate Change, 

2010, 2015b).  

 

The Climate Change Act 2008 also established the Committee on Climate Change (CCC), an 

independent, statutory body that provides advice to the Government on how to set and meet 

the carbon budgets and tracks the country’s progress toward meeting these budgets (United 

Kingdom Parliament, 2008). Advice from the Committee on Climate Change is published via 

formal reports that are open to the public. The United Kingdom is currently in its 2nd Carbon 

Budget period and has passed a total of five (5) carbon budgets into law. The 2nd Carbon Budget 

spans from 2013-2015 and requires a 29% reduction in total equivalent carbon dioxide (CO2e) 

emissions compared to the 1990 base year. This reduction equates to a final carbon budget 

level of 2,782 million metric tons of CO2e. Most recently, the U.K. Government passed the 5th 

carbon budget (2028 – 2032) into law in July 2016, based on guidance published by the 

Committee on Climate Change in November 2015 (Committee on Climate Change, 2015b).  

 
Table 1.2: U.K. Carbon Budgets (Committee on Climate Change, 2010, 2015b) 

Carbon Budget Carbon Budget 
Level (MtCO2e) 

% emissions reduction 
below 1990 base year 

Has been enacted 
into law? 

1st (2008 – 2012) 3,018 23% yes 
2nd (2013 – 2017) 2,782 29% yes 
3rd (2018 – 2022) 2,544 35% by 2020 yes 
4th (2023 – 2027) 1,950 50% by 2025 yes 
5th (2028 – 2032) 1,765 57% yes 

 
 
In its June 2016 report, the Committee on Climate Change (CCC) states that carbon dioxide 

equivalent (CO2e) emissions in the United Kingdom have fallen by an average of 4.5% per 

year since 2012 (Committee on Climate Change, 2016). According to the CCC, these drops 

were almost entirely due to rapid decarbonisation in the power sector, particularly through the 
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rapid decline in coal for power generation in favour of renewables. Indeed, the report highlights 

that: 

 

“There has been almost no progress in the rest of the [United Kingdom’s] economy, 

where emissions have fallen less than 1% a year since 2012 on a temperature-adjusted 

basis. That is because there has been slow uptake of low-carbon technologies and 

behaviours in the buildings sector (i.e. low rates of insulation improvement, low take-

up of low-carbon heat) and improved vehicle efficiency has been offset by increased 

demand for travel as the economy has grown and fuel prices have fallen…Progress will 

need to be broader to meet the recommended fifth carbon budget and to prepare 

sufficiently for 2050. For example, while the complete replacement of coal-fired 

generation with low-carbon generation in the power sector is an important part of our 

scenarios, this would provide less than half of the total emissions reduction required by 

2030.” 

 

1.3.4 Linking Climate and Air Quality Policies 

Both greenhouse gas and other key types of air pollution overwhelmingly arise from the energy 

sector, particularly via the combustion of fossil fuels (e.g. oil, natural gas, coal) and biomass 

(International Energy Agency (IEA), 2016). The energy sector represents the largest single 

source of greenhouse gas emissions globally according to the International Energy Agency 

(IEA), producing an estimated two-thirds of all greenhouse-gas emissions resulting from 

human activities (Intergovernmental Panel on Climate Change (IPCC), 2014; International 

Energy Agency (IEA), 2015a). Furthermore, energy sector technologies are responsible for 

almost all sulphur dioxide (SO2) and nitrogen oxide (NOx) emissions as well as around 85% of 
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particulate matter emissions produced around the world each year according to the IEA in their 

2016 publication Energy and Air Pollution (International Energy Agency (IEA), 2016).   

 

Given that multiple air pollutants are often produced by the same energy sector technologies, 

one can surmise that actions to reduce a subset of these emissions would have impacts on other 

air pollutants. This fact indicates the potential for tensions between efforts to reduce subsets of 

these pollutants. It also highlights the potential opportunities for substantial co-benefits if all 

types of air pollution are factored into the decision-making process (Watts et al., 2015).  

 

In Section 7.9 of the International Panel on Climate Change 5th Assessment Report, the authors 

highlight this potential for both opportunity and tensions, stating that (Bruckner et al., 2014): 

 

“Energy supply options differ with regard to their overall environmental and health 

impacts, not only their GHG emissions…Renewable energies are often seen as 

environmentally benign by nature; however, no technology—particularly in large scale 

application—comes without environmental impacts.” 

 

The United Kingdom’s Department for Environment, Food and Rural Affairs (DEFRA) 

highlighted this opportunity in their 2010 report on the relationship between climate action and 

air pollution (Department for Environment Food and Rural Affairs (DEFRA), 2010). In this 

report, the authors state that (Department for Environment Food and Rural Affairs (DEFRA), 

2010): 

 

“Our commitments to building a low carbon economy as set out in the UK and Scottish 

Climate Change Acts will reduce air pollution, but choices about the route we take to 



	 33	

2050 will affect the scale of improvements to air quality. Factoring air quality into 

decisions about how to reach climate change targets results in policy solutions with 

even greater benefits to society. Optimising climate change policies for air pollution 

can yield additional benefits of some £24 billion (net present value) by 2050.” 

  

Existing studies have explored these potential co-impacts at a variety of scales as discussed in 

Chapter 2 of this thesis. However, none of these studies have conducted in-depth analysis of 

the nexus between climate change mitigation and its co-impacts on outdoor air pollution (and 

vice versa).  

 

This fact is significant for UK energy policy makers, as highlighted in 2013, Jensen et. al. 

where these authors stated their belief that (Jensen et al., 2013a): 

 

“UK policy makers will, most likely, have to adopt elements which involve the initial 

net societal costs in order to achieve future emission targets and longer-term benefits 

from GHG reduction. Cost-effectiveness of GHG strategies is likely to require 

technological mitigation interventions and/or demand-constraining interventions with 

important health co-benefits and other efficient-enhancing policies that promote 

internalization of externalities.” 

 

These researchers also identified the need to develop holistic assessment methodologies that 

include the total co-impacts (both positive and negative) of these technological and demand-

constraining interventions, stating (Jensen et al., 2013a): 
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“Health co-benefits can play a crucial role in bringing down net costs, but our results 

also suggest the need for adopting holistic assessment methodologies which give proper 

consideration to welfare-improving health co-benefits with potentially negative 

economic repercussions (such as increased longevity).” 

 

In their work, Jensen et. al. highlight that increased longevity comes with a combination of 

positive and negative economic impacts. For instance, in their study these authors discuss the 

impacts of increased longevity on total social benefit pay-outs to elderly individuals (Jensen et 

al., 2013a). 

 

1.4 Scope and objectives 
The scope of this research is broadly defined under three overarching goals, which are to better 

understand the following with respect to the energy sector: 

 

1. The co-impacts of the United Kingdom’s efforts to decarbonize the energy sector on 

other types of outdoor air pollution (including particulate matter and nitrogen oxides) 

at both the national and urban scale. 

2. The ways in which considering the costs of other types of outdoor air pollution 

(including particulate matter and nitrogen oxides) might alter the “optimum” 

decarbonisation pathway for the national energy sector. 

3. The extent to which local action in the urban transport sector could potentially address 

local air pollution challenges and contribute to national progress toward the 

decarbonisation of the energy sector. 

 

As a result, this research included the outdoor air pollution generated by local energy systems 

in the United Kingdom and the Greater London area (e.g. pollution from cars travelling through 
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the city or region of interest). In turn, it did not include a full accounting of emissions produced 

in the production of energy technologies (e.g. pollution produced in the construction of solar 

panels or vehicles in overseas manufacturing centres). It also did not include shifts in sources 

of cross-boundary pollution originating outside of the United Kingdom, though these aspects 

were considered in a related collaborative project between this researcher and colleagues at 

University College London and Kings College London (Williams et al., 2016). Previous work 

by the IPCC’s Working Group 3 as presented in Chapter 7 of this report discussed the life-

cycle impacts of renewable and coal power generation technologies, concluding that (Bruckner 

et al., 2014):  

 

“Reducing fossil fuel combustion, especially coal combustion, can reduce many forms 

of pollution and may thus yield co-benefits for health and ecosystems…most renewable 

power projects offer a reduction of emissions contributing to particulate matter 

exposure even compared to modern fossil fuel-fired power plants with state-of-the-art 

pollution control equipment.” 

 

This limitation in scope is appropriate given the three overarching goals of this research. 

However, any future work related to the impacts of the UK energy system on global air 

pollution levels should consider the importance of life-cycle emissions.    

 

This research primarily focused on the road transport sector because of both global trends and 

project resource considerations. With the former, the global trend toward increasing levels of 

urbanization, the current predominance of road transport as a local air polluter in developed 

countries, and the growing demand for access to transportation in developing economies make 

this sector of high interest (Haines et al., 2009, 2014; Woodcock et al., 2009; Sokhi and 
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Kitwiroon, 2011; Jensen et al., 2013a; Pascal et al., 2013). As stated by Woodcock, et. al. “the 

adverse health effects resulting from climate change, road-traffic crashes, physical inactivity, 

urban air pollution, energy insecurity, and environmental degradation are linked via their 

common antecedent of fossil-fuel energy use in transport” (Woodcock et al., 2007). 

 

With regard to project resource considerations, given the overall PhD timeframe for a single 

primary researcher – albeit with significant input and feedback from members of the research 

community as well as a number of collaborative side projects that provided the opportunity for 

intensive learning and practical experience gathering - urban transportation provides a good 

focus area given the plethora of data available related to urban transportation in the United 

Kingdom (in particular, within London) for a focused and successful Ph.D. project. 

Furthermore, this focus will create a strong platform for future research. 

 

This research focused predominately on the health impacts resulting from changes in outdoor 

air pollution levels for particulate matter (PM10 and PM2.5) as well as nitrogen oxides (NOx). 

While some road transport methods (e.g. active transport with biking and walking) can have 

significant positive health effects that are not air quality related (e.g. increased activity levels 

contributing to reduced instances of obesity), these health impacts are not studied directly here 

(Woodcock et al., 2009; Jensen et al., 2013a). Rather, the focus of this research is solely on the 

health effects resulting from changes in outdoor air pollution levels from pollution produced 

within the geographical boundaries that are studied (i.e. the United Kingdom, Greater London). 

This is an appropriate focus for this research project given its primary goal of developing a 

better understanding of the co-impacts of and interactions between local air pollution and local 

decarbonisation efforts on public health. 
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There are certainly a quite large number of interesting questions to be asked that fall within the 

identified research gap, but exist outside of the identified scope. These questions offer valuable 

opportunities for later work and/or collaborative projects to be completed outside of the core 

Ph.D. research presented in this thesis and are part of a longer-term strategic vision for research 

at the intersection of energy systems and public health.  

1.5 Research Questions 
The key research questions that were explored in this research were as follows with regards to 

energy technology transitions in the United Kingdom and Greater London urban area: 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on both a national and urban 

scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on both a 

national and urban scale?   

 

The intention of the first research question is to better understand the extent to which 

decarbonisation pathways could impact other types of air pollution – namely particulate matter 

and nitrogen oxides. These two air pollutants are of particular interest due to their prevalence 

in the United Kingdom and Greater London urban area, as well as their public health impact as 

described elsewhere in this thesis. The driver of change in research question 1 is 

decarbonisation, while changes in particulate matter and nitrogen oxide air pollution are 

viewed as co-impacts.  

 

The aim of the second research question is to explore how the “optimum” decarbonisation 

pathway could change if the impacts of other types of air pollution are considered. The answers 
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to this research question could provide insight on potential areas for tension between climate 

and air quality interventions. In turn, this information could be quite useful in the design of 

climate change and air quality policies that would be mutually supportive.  

 

These research questions are explored in the context of a transition between present day and 

2050 as this is the timeline currently used by the United Kingdom government in setting its 

long-term decarbonisation goals.  

 

1.6 Thesis Overview 
The remaining chapters of this thesis are structured as follows. First, a literature review 

provides an overview and discussion of the existing body of scientific literature as it relates to 

this research project (Chapter 2). This discussion is followed by a presentation of the 

methodology that was applied in the answering of the posed research questions (Chapter 3). 

The next two chapters present the results from the application of this methodology for both the 

United Kingdom (Chapter 4) and London (Chapter 5) regions. These results are followed by a 

summary of the main insights and conclusions that can be drawn from this work as well as its 

limitations and opportunities for future investigations and research (Chapter 6).  

	
	 	



	 39	

Chapter 2 - Literature Review 

2.1 Overview 

This chapter includes a discussion of the existing body of scientific literature as it relates to 

this Ph.D. research project and is structured into three sections. First, pertinent background 

information is presented on the health impacts of air pollution with emphasis being placed on 

energy sector pollution sources in order to reinforce the motivations behind this research 

project (Section 2.2). This section is followed by an overview of key existing co-impact studies, 

grouped by spatial focus (global, national, and urban) (Section 2.3) and a discussion of 

prominent models that have been used in assessing the co-impacts of climate change mitigation 

efforts (Section 2.4). The chapter concludes with a clear articulation of the existing research 

gap (Section 2.5). As discussed elsewhere in this manuscript, the research presented in this 

thesis partially fills a portion of this gap. 

 

2.2 Background and Context 

This section provides an overview of the health impacts of outdoor air pollution, the 

recommendations included in the World Health Organization’s guidance for air quality, and 

specific information relating to the health impacts of air pollution in the United Kingdom. This 

section is meant as an overview to provide context for this research as opposed to presenting a 

detailed systematic review of the epidemiological evidence related to the health impacts of air 

pollution. Such reviews can be found in the studies referenced in this thesis, in particular by 

the World Health Organization in their recent Review of the Evidence on the Health Impacts 

of Air Pollution (REVIHAAP) project (World Health Organization, 2013a, 2013b).  
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2.2.1 World Health Organization Definitions and Guidelines for Air Pollution 

Air pollution is defined by the World Health Organization as the “contamination of the indoor 

or outdoor environment by any chemical, physical or biological agent that modifies the natural 

characteristics of the atmosphere” (World Health Organization, 2007, 2013b). Current 

epidemiological and toxicological evidence supports the causal linkage between air pollution 

and public health (Beevers et al., 2013; World Health Organization, 2013b; Williams et al., 

2014; Walton et al., 2015). Furthermore, according to the World Health Organization “[air] 

pollutants of major public health concern include particulate matter, carbon monoxide, ozone, 

nitrogen dioxide and sulphur dioxide. Outdoor and indoor air pollution causes respiratory and 

other diseases, which can be fatal” (World Health Organization, 2007, 2013b). 

 

Of particular relevance to this research are existing studies that document a causal relationship 

between traffic-generated nitrogen oxides (NOx) and particulate matter6 (PM) air pollution with 

the onset of childhood asthma, non-asthma respiratory symptoms, impaired lung function, total 

and cardiovascular mortality, and cardiovascular morbidity (Hoek et al., 2002, 2013; 

Committee on the Medical Effects of Air Pollution (COMEAP), 2006; Health Effects Institute, 

2010; Ashmore et al., 2011; Beevers et al., 2012; World Health Organization, 2013b; Favarato 

et al., 2014). These two types of pollutants are both prevalent in the United Kingdom and 

London, which are the geographic focus areas examined within this research. These pollutants 

are also largely produced by the energy sector, and have been linked to tens of thousands of 

premature deaths nationwide, including around 9,400 deaths in the Greater London area (Miller 

																																																								
6 Particulate matter (PM) air pollution is described in terms of the diameter of individual particles. Particulate 

matter that consists of particles of 10 micrometres or less is referred to as PM10. A subset of PM10 includes PM2.5, 

which refers to particles with a diameter of 2.5 micrometres or less. 



	 41	

and Hurley, 2010; Committee on the Medical Effects of Air Pollution (COMEAP), 2011; Yim 

and Barrett, 2012; Walton et al., 2015).  

 

2.2.1.1 Health Impacts of Particulate Matter Exposure 
The negative health impacts of both long- and short-term exposure to particulate matter have 

been documented in the literature through studies of populations in both developed and 

developing countries (Pope et al., 2002; World Health Organization, 2005, 2013b). This 

section includes discussion of four key studies that review the existing epidemiological 

evidence base and have been published since 2000. 

 

In their study published in 2002, Pope, et. al. assess the relationships between long-term 

exposure to fine particulate matter air pollution (PM2.5) and all-cause, lung cancer and 

cardiopulmonary mortality. In their analysis, Pope. et. al. use statistics from the American 

Cancer Society’s Cancer Prevention II study, which began in 1982 and included 1.2 million 

adults in the United States (Pope et al., 2002). According to the analysis produced by these 

researchers, the American Cancer Society’s statistics show that each 10 µg/m3 increase in 

PM2.5 concentrations in the ambient air is associated with a 4%, 6% and 8% increased risk in 

all-cause, cardiopulmonary, and lung cancer mortality (respectively) (Pope et al., 2002).  

 

In 2013, Hoek et. al. summarised their review of evidence from epidemiological studies 

published through January of that year in their paper published in the journal Environmental 

Health (Hoek et al., 2013). According to their analysis, the studies that they identified in their 

search process support the previous associations made between long-term exposure to PM2.5 

and increased risk of all-cause and cardiovascular mortality identified in previous reviews of 

the epidemiological evidence. Furthermore, Hoek et. al. found a 6% overall increase in the risk 

of all-cause mortality for each 10 µg/m3 increase in PM2.5 (i.e. higher than the 4% observed by 
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Pope, et. al. in their 2002 review) as well as an 11% increase in risk for cardiovascular 

mortality. 

 

Also in 2013, the World Health Organization published a review of the current body of 

evidence on the health effects of air pollution gathered in their Review of EVIdence on Health 

Aspects of Air Pollution (REVIHAAP) project. Overall, the authors of this publication 

conclude that there exists “no evidence of a safe level of exposure [to particulate matter 

pollution] or a threshold below which no adverse health effects occur” (World Health 

Organization, 2013b). Furthermore, and of particulate relevance to the portion of this research 

dedicated to the United Kingdom, “more than 80% of the population in the WHO European 

Region (including the European Union, EU) lives in cities with levels of PM exceeding WHO 

Air Quality Guidelines” (World Health Organization, 2013b). On average, exposure to 

particulate matter air pollution reduces life expectancy by almost 9 months in Europe (Pascal 

et al., 2013). 

 

In 2014, Atkinson, et. al. conducted a systematic review and meta-analysis of 110 peer-

reviewed time series studies to assess the associations between particulate matter (PM2.5), daily 

mortality, and hospital admissions (Atkinson et al., 2014). According to their analysis, 

increases in PM2.5 exposure levels are positively associated with mortality and hospital 

admissions related to cardiovascular and respiratory illnesses. Across the studies, an 

incremental change in PM2.5 concentrations of 10 µg/m3 was associated with a 1.04% (95% CI 

0.52% to 1.56%) increase in the risk of death with hospital admissions data revealing that 

respiratory causes of deaths were larger than cardiovascular (1.51% vs. 0.84%). However, 

overall mortality rate increases varied substantially by region, from 0.25% to 2.08% indicating 
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that caution would be wise when applying these values (Atkinson et al., 2014; Walton et al., 

2015).  

 

2.2.1.2 Health Impacts of Nitrogen Dioxide Exposure 
Nitrogen dioxide (NO2) has been associated with morbidity and early mortality, both from its 

associated toxicants and the pollutant itself (Hoek et al., 2013; World Health Organization, 

2013b; Favarato et al., 2014). While the attributional evidence for the health effects is not 

currently as strong as that for particulate pollution, oxides of nitrogen have been linked to 

increases in total mortality from both short- and long-term exposure. In particular, NO2 has 

been linked to respiratory and cardiovascular illness leading to mortality in both cases (Hoek 

et al., 2013; U.S. Environmental Protection Agency, 2013; World Health Organization, 2013b). 

Long-term NO2 exposure has also been linked with reproductive and developmental effects as 

well as higher instances of cancer (U.S. Environmental Protection Agency, 2013). 

 

With regards to the transportation sector, nitrogen dioxide pollution has been identified as a 

potential primary indicator of other traffic-related air pollution impacts because of the 

uncertainty relating to co-pollutant confounding (U.S. Environmental Protection Agency, 

2013). The effect refers to the extent to which observed health impacts in people with exposure 

to NO2 can be attributed directly to NO2 versus other co-pollutants (e.g. PM, volatile organic 

compounds, SO2, and O3) (Tétreault, Perron and Smargiassi, 2013; U.S. Environmental 

Protection Agency, 2013). The WHO has recommended that up to one-third of the long-term 

effects of NO2 exposure may overlap with effects from long-term PM2.5 exposure based on 

evidence from cohort studies published to date (World Health Organization, 2013b). In 

addition to co-pollutants, other confounding factors (e.g. time, space, dietary habits, smoking) 

can distort the estimated health impacts of air pollution exposure (Jerrett et al., 2009; Zanobetti 

and Schwartz, 2011; Zanobetti et al., 2012; U.S. Environmental Protection Agency, 2013).  
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2.2.1.3 World Health Organization Guidelines for Air Pollution 
Due to the potential for air pollutants to negatively impact human health and given their current 

prevalence around the globe, the World Health Organization has developed air quality 

guidelines for air pollutants including particulate matter (PM) and nitrogen dioxide (NO2), with 

a focused group of guidelines for Europe (World Health Organization, 2000, 2005). In their 

subsequent 2013 review of the current scientific evidence relating to the health impacts of air 

pollution, the World Health Organization primarily focused on particulate matter (PM10 and 

PM2.5), nitrogen oxides (NO and NO2), and tropospheric ozone7 (O3) (World Health 

Organization, 2013b).  

 

The World Health Organization air quality guidelines are based on both scientific evidence 

regarding indicators of health effects (e.g. physiological measures like changes in lung 

function, inflammation markers) and “the most critical population health indicators, such as 

mortality and unscheduled hospitalizations” (World Health Organization, 2005). In their 

review of the scientific literature, the World Health Organization found that only the complete 

removal of air pollution could eliminate the threat to human health (World Health Organization 

Media Center, 2011; World Health Organization, 2013b). Therefore, compliance with the 

WHO air quality guidelines does not eliminate the public health impacts of air pollution. 

Rather, meeting these targets will only help in reducing or eliminating the worst of the potential 

negative health impacts caused by these pollutants.  

 

Generally speaking, World Health Organization guideline values represent concentrations that 

have been shown to be achievable in large urban areas in developed countries and also expected 

to significantly reduce health risks. Furthermore, the guideline values acknowledge that 

																																																								
7 A secondary pollutant formed in the presence of nitrogen oxides (NOx), carbon monoxide (CO), and volatile 
organic compounds (VOCs) when they are exposed to sunlight. 
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“national standards will vary according to the approach adopted for balancing health risks, 

technological feasibility, economic considerations and various other political and social 

factors, which in turn will depend on, among other things, the level of development and 

national capability in air quality management” (World Health Organization, 2005). These 

guidelines are meant to provide countries with a basis for reducing the negative health impacts 

of air pollution. They are listed in Table 2.1 (World Health Organization, 2000, 2005). 

 

Table 2.1: WHO Air Quality Guidelines 
Air pollutant  WHO Air Quality Guidelines (2005) 
PM10  20 µg/m3 annual mean, 50 µg/m3 24-hour mean  
PM2.5 (including black carbon)  10 µg/m3 annual mean, 25 µg/m3 24-hour mean  
NOX (NO and NO2)  NO2: 40 µg/m3 annual mean, 200 µg/m3 1-hour mean  
	

2.2.2 The Health Impacts of Outdoor Air Pollution in the United Kingdom 

Despite significant improvements in air quality in the United Kingdom since the passing of the 

Clean Air Act in 1956, studies estimate that tens of thousands of people in the United Kingdom 

still die prematurely due to exposure to particulate matter and nitrogen dioxide air pollution. 

According to the Committee on the Medical Effects of Air Pollutants (COMEAP) in the United 

Kingdom, an estimated 29,000 premature deaths occurred in the U.K. in 2008 due to 

anthropogenic particulate matter pollution, the equivalent of around 340,000 years of life lost 

(i.e. 12 years of life per person) (Miller and Hurley, 2010; Committee on the Medical Effects 

of Air Pollution (COMEAP), 2011).  

 

In 2012, Yim and Barrett published their analysis on the impacts of particulate matter (PM2.5) 

air pollution from combustion processes on human health in the United Kingdom (Yim and 

Barrett, 2012). According to their analysis, PM2.5 air pollution emissions from combustion 

cause ~19,000 premature deaths in the United Kingdom each year. Of these deaths, 

approximately 13,000 are caused by emissions produced in the United Kingdomwhile the 
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remaining ~6,000 are linked to non-U.K. European Union combustion emissions. Furthermore, 

the leading domestic contributor to these premature deaths is PM2.5 air pollution produced by 

transport sector, which leads to around 7,500 premature deaths per year in the United Kingdom. 

According to Yim and Barrett, power generation and industrial emissions of PM2.5 air pollution 

result in ~2,500 and ~830 early deaths per year, respectively (Yim and Barrett, 2012). Overall, 

PM2.5 concentrations and their corresponding health impacts were highest in the Greater 

London area (Yim and Barrett, 2012). This observation makes sense given the population 

density of this area, which leads to higher total exposure levels. 

 

Figure 2.1: Particulate Matter (PM2.5) Concentrations across the United Kingdom from Yim 
and Barrett (Yim and Barrett, 2012) 

 

Reference: Yim, Steve H.L. and Steve R.H. Barrett. Public Health Impacts of Combustion 
Emissions in the United Kingdom. Environmental Science & Technology 2012, 46, 4291-4296 
 

In May 2016, newly elected Mayor of London Sadiq Khan clearly stated his “mandate to clean 

up London’s air – [the city’s] biggest environmental challenge” (Mayor of London. London 

Assembly, 2016b). According to the Mayor (Mayor of London. London Assembly, 2016a): 
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“In the past, London has only responded after an emergency, like with the Clean Air 

Act, which followed the Great London Smogs of the 1950s. But I want to act before an 

emergency, which is why we need big, bold and sometimes difficult policies if London 

is to match the scale of the challenge.” 

 

In his full remarks, Khan refers to scientific evidence published by Walton, et. al with Kings 

College London in 2015 (Mayor of London. London Assembly, 2016a). In this study, 

researchers estimate that around 9,400 Londoners died prematurely in 2010 due to exposure in 

the city to two types of air pollution (Walton et al., 2015). More specifically, this figure 

includes the estimated health burden of human-produced particulate matter (PM2.5) and – for 

the first time –  nitrogen dioxide (NO2) air pollution. These two pollutants are of particular 

concern in London due to their currently unhealthy (and, in the case of nitrogen dioxide, 

illegally high8) concentration levels in the city (Vidal, 2013; World Health Organization, 

2016c).  

 

According to Walton, et. al. the total mortality burden of long-term exposure to particulate 

matter (PM2.5) air pollution in 2010 is estimated to be more than 52,000 life-years lost – the 

equivalent of around 3,500 deaths at typical ages. The health consequences of long-term 

exposure to nitrogen dioxide (NO2) was estimated at significantly higher levels than PM2.5 air 

pollution, with around 88,000 life-years lost (the equivalent of almost 5,900 premature deaths) 

in 2010. Moreover, the estimate for the health impacts of NO2 is potentially a conservative one, 

																																																								
8 In 2015, the UK Supreme Court ruled that the government must take further action to reduce air pollution 

levels in order to meet European Untion Air Quality Directive limits for outdoor air pollution, with which it is 

currently in violation. 



	 48	

as it assumes a 30% overlap9 between the health effects of PM2.5 and NO2 as suggested by the 

World Health Organization in their 2013 Review of Evidence on Health Aspects of Air 

Pollution (REVIHAAP) project technical report (World Health Organization, 2013a; Walton 

et al., 2015).  

 

Walton, et. al. also attribute the health burden from PM2.5 and NO2 air pollution in 2010 to the 

pollution source, finding that exposure to anthropogenic PM2.5 air pollution from: 

• London road transport pollution led to 346 premature deaths (5,147 life-years lost)  

• other (i.e. non-road transport) London sources led to 666 premature deaths (9,913 life-

years lost) 

• non-London pollution sources led to 2525 premature deaths (37,570 life-years lost) 

 

Furthermore, this research estimate that the mortality burden of NO2 from: 

• London sources (road transport + other sources) led to between 3,892 and 5,302 

premature deaths (58,332 to 79,441 life-years lost) 

• Non-London sources led to between 1,987 and 2,707 premature deaths (29,781 to 

40,558 and 29,781 life-years lost) 

 

Both of these source apportionment breakdowns highlight the limits to local policy action, 

including the limits of the Mayor of London’s ability to eliminate the city’s air quality 

challenges. Indeed, according to Walton, et. al. the majority of premature deaths resulting from 

																																																								
9 This recommendation by the World Health Organization resulted from a review by Hoek. et. al. of all cohort 

studies published before 2013 on the long-term health effects of ambient air pollution – a total of eleven (11) 

studies (Hoek et al., 2013; World Health Organization, 2013b). 
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particulate matter (PM2.5) pollution are caused by non-London sources of air pollution, which 

highlights the necessity of coordinated action to address these challenges. The numbers for 

NO2 pollution source apportionment are slightly more encouraging with regards to the impact 

of local action to reduce premature mortality due to air pollution exposure. Indeed, of the 

estimated range of 5,879 to 8,009 total premature deaths occurring in London each year due to 

NO2 air pollution exposure, around two-thirds of them could be off-set by eliminating pollution 

sources that are within London. 

 

Of note here is that the higher of the values presented by Walton, et. al. represents the total 

estimated attributable NO2 mortality burden while the smaller value assumes the 30% overlap 

with the health effects of particulate matter (PM2.5) previously mentioned. Furthermore, the 

London sources of NO2 pollution could not be apportioned into road traffic and other sources 

by Walton, et. al. in order to comply with guidelines from the U.K. Department for 

Environment, Food and Rural Affairs (Defra) (Walton et al., 2015).  

 

This 2015 report by Walton et. al. represents the first publication of estimates assessing the 

mortality burden of nitrogen dioxide (NO2) air pollution in London using the findings and 

recommendations from the World Health Organization’s REVIHAAP and Health Risks of Air 

Pollution in Europe (HRAPIE) projects (World Health Organization, 2013a, 2013b; Walton et 

al., 2015). It also presents updated estimates of the health burden of particulate matter (PM2.5) 

in London, which had been previously evaluated by Public Health England and the Institute of 

Occupational Medicine predominately using methods recommended by the Committee on the 

Medical Effects of Air Pollution (COMEAP) (Committee on the Medical Effects of Air 

Pollution (COMEAP), 2010, 2011; Miller, 2010; Miller and Hurley, 2010; Gowers, Miller and 

Stedman, 2014). Another study by Yim and Barrett estimates the mortality burden of air 
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pollution specifically from combustion processes (Yim and Barrett, 2012). Key differences 

between the estimates presented by Walton, et. al. and its predecessors include refinements to 

the previously used methodology as well as somewhat more significant updates to input data. 

Walton et. al. also accounted for air pollution produced by human activities (i.e. anthropogenic) 

as opposed to total PM2.5 and/or combustion-specific emission sources as was done by Miller, 

et. al. in their 2010 study  (Miller, 2010; Walton et al., 2015). A comparison of the results from 

Walton, et. al. and these preceding studies is shown in Table 2.2. As one can clearly see in this 

table, the estimated mortality burden in London of exposure to particulate matter (PM2.5) is 

similar between all four of these studies though there does exist a range due in part to the fact 

that these studies analysed different years in addition to the previously differences in the 

applied methodologies discussed elsewhere in this section.  

 

Table 2.2: London Mortality Burden Estimates Resulting from Long-Term Air Pollution 
Exposure (Miller, 2010; Yim and Barrett, 2012; Gowers, Miller and Stedman, 2014; Walton et 
al., 2015) 

Study Estimated Mortality 
Burden in London – 
PM2.5 

Difference compared 
to Walton, et. al. 
(2015) 

Estimated 
Mortality Burden 
in London (2010) 
– NO2 

Kings College London 
(Walton, et. al. 2015) 

3,537 premature deaths 
(53,630 life-years lost) 
in 2010 

--- 5,879 premature 
deaths (88,113 life-
years lost) 

Public Health England 
(Gowers, et. al 2014) 

3,389 premature deaths 
(41,404 life-years lost) 
in 2010 

Premature deaths:   
-148 (4%) 
Life-years lost:   
12,226 (22%) 

n/a 

Massachusetts 
Institute of Technology 
(Yim & Barrett, 2012) 

~3,200 air quality-
related deaths per year 
(based on 2007 data) 

Premature deaths:   
-337 (9.5%) 
 

n/a 

Institute of 
Occupational Medicine 
(Miller, et. al 2010) 

4,267 premature deaths 
in 2008 

--Not calculated due to 
the difference in base 
years-- 

n/a 

 

In the study published by Public Health England in 2014, Gowers, et. al. present mortality risk 

increases associated with long-term exposure to particulate air pollution (PM2.5). In their work, 

the authors of this study model the health impacts of particulate matter (PM2.5) using annual 
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average concentrations of this pollutant resulting from human activities with spatial resolution 

down to the local authority level. Furthermore, the authors used central estimates of the 

mortality burden that could be attributed to long-term PM2.5 pollution. Overall, Gowers et. al. 

estimate that PM2.5 air pollution resulted in 3,389 premature deaths (41,404 life-years lost) in 

2010 in Greater London. However, the authors highlight that, due to uncertainties in the 

mortality risk associated with outdoor PM2.5, the actual health burdens “could range from 

approximately one-sixth to about double” of these figures (Gowers, Miller and Stedman, 2014).  

 

In the 2010 study authored by Brian G. Miller at the Institute of Occupational Medicine, the 

author calculates the health burden of air pollution in London using the relationships between 

air pollution concentration and mortality rates as recommended by the Committee on the 

Medical Effects of Air Pollution (COMEAP) in their national-level study (Committee on the 

Medical Effects of Air Pollution (COMEAP), 2010; Miller, 2010; Miller and Hurley, 2010). 

In turn, Miller calculates the mortality impacts for Greater London with spatial resolution down 

to the ward level for 2008.  Overall, Miller estimates that PM2.5 air pollution led to the mortality 

equivalent of 4,267 deaths in Greater London in 2008 with a range of 756 to 7,965 when 

uncertainties in the direct health impacts of PM2.5 are included. Miller also estimates the 

potential health impacts that would result from a permanent reduction in PM2.5 concentrations 

by 1 µg/m3. Miller’s calculations show that this decrease in air pollution concentrations would 

lead an overall gain of 400,000 years of life for the current population – an average of 3 weeks 

per person (Miller, 2010). Noted here is that the air pollution concentrations used by Miller in 

his modelling work for this study include both human-produced (i.e. anthropogenic) pollution 

and that coming from natural sources. The latter would be more difficult to significantly reduce 

than the pollution resulting from identified human activities.  
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London is not alone in its air pollution challenges and resulting public health burdens (Jack 

and Kinney, 2010; Kan et al., 2010; Pascal et al., 2013). According to the World Health 

Organization, “more than 80% of people living in urban areas that monitor air pollution are 

exposed to air quality levels that exceed the World Health Organization (WHO) limits” 

including 98% of those living in cities in low- and middle-income countries (World Health 

Organization, 2016a, 2016b). Furthermore, according to the 2016 release of the World Health 

Organization’s urban air quality database, global urban air pollution levels increased by 8% 

from 2008-2013 despite improvements in urban air quality in some regions (World Health 

Organization, 2016a, 2016c).  

 

Figure 2.2: Average annual outdoor PM2.5 concentrations in selected urban areas (International 
Energy Agency (IEA), 2016; World Health Organization, 2016a, 2016c)10 

 

 

While low-income cities are the most impacted by these air pollution challenges, all regions of 

the world are currently affected (World Health Organization, 2016c). Globally, air pollution is 

																																																								
10	graphic by the International Energy Agency (International Energy Agency (IEA), 2016)	



	 53	

the fourth greatest overall risk to human health with around 7 million premature deaths, 

including both indoor and outdoor air pollution (World Health Organization, 2014) Of these 

premature deaths, 3.7 million are linked to outdoor air pollution while the remaining 3.3 million 

result from outdoor air pollution exposure (World Health Organization, 2014a).  

 

In the same assessment, the World Health Organisation published a breakdown of premature 

deaths attributed to specific diseases (World Health Organization, 2014a). These data 

underlining that the vast majority of premature deaths resulting from outdoor air pollution 

exposure are due to the following diseases: 

 

• 40% – ischaemic heart disease 

• 40% – stroke 

• 11% – chronic obstructive pulmonary disease (COPD) 

• 6% - lung cancer 

• 3% – acute lower respiratory infections in children 

 

Furthermore, the vast majority of premature deaths resulting from indoor air pollution exposure 

were attributed to the following diseases: 

 

• 34% - stroke 

• 26% - ischaemic heart disease 

• 22% – chronic obstructive pulmonary disease (COPD) 

• 12% - acute lower respiratory infections in children 

• 6% - lung cancer 
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As one can see in these data, a set of five diseases lead to the vast majority of all premature 

deaths resulting from air pollution exposure. However, indoor air pollution exposure leads to 

a higher percentage of deaths due to chronic obstructive pulmonary disorder disease (COPD) 

and acute lower respiratory infections in children. Outdoor air pollution exposure lead to a 

higher percentage of premature deaths due to ischaemic heart disease and strokes than for 

indoor air pollution exposure. 

  

The World Health Organization’s estimates were based on mortality data from 2012 and the 

evidence base linking health outcomes with air pollution exposures as it was available prior to 

their estimates as published in March 2014 (World Health Organization, 2014a). Exposure 

level estimates for outdoor air pollution exposure incorporated satellite data, ground-level 

monitoring measurements and data on pollution emissions from key sources, as well as 

modelling of how pollution drifts in the air. 

 

2.2.2.1 Public Health Impact Calculations 

Mortality and morbidity are two key indicators in measuring the overall effects of air pollution 

on public health (Miller and Hurley, 2003; World Health Organization, 2014b). Furthermore, 

changes in these indicators resulting from shifts in air quality can be calculated using an impact 

pathway or a more generalized damage function approach (Department for Environment Food 

and Rural Affairs (DEFRA), 2013d).  Both of these methodologies have been widely used in 

the literature and are discussed in more detail here (Miller and Hurley, 2003; Department for 

Environment Food and Rural Affairs (DEFRA), 2011; Walton et al., 2015). Also discussed is 

the life tables approach, which is related to the impact pathway methodology.  
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2.2.2.1.1	Impact	Pathway	Approach	
The impact pathway approach (IPA) methodology traces the sources of air pollutants and their 

movement through the location/population that it impacts, effectively mapping the cause and 

effect of air pollutants on mortality (Department for Environment Food and Rural Affairs 

(DEFRA), 2013d). The impact pathway approach methodology is currently used by the United 

Kingdom Department for Environment, Food and Rural Affairs (DEFRA) to place a value on 

changes in air quality in the United Kingdom to measure impacts across four categories: health, 

amenity, productivity and ecosystem impacts (Department for Environment Food and Rural 

Affairs (DEFRA), 2013d).  

 

In the implementation of the impact pathway approach, one begins with quantifying baseline 

emissions and the likely emissions levels under a proposed scenario. Subsequently, air 

pollution dispersion modelling is used to convert these emissions levels into population-

weighted concentrations. These values are then used to quantify exposure levels and then health 

and non-health impacts are calculated. When sufficient data exist, these values are monetized 

in order to measure the economic impacts (Department for Environment Food and Rural 

Affairs (DEFRA), 2013d).    

 

Challenges with the impact pathway approach include large data requirements and significant 

computational intensity. Furthermore, uncertainties exist throughout the process, including 

those related to emissions and the dispersion of air pollution as well as those uncertainties 

related to health impact and valuation estimations for changes in public health outcomes 

(Department for Environment Food and Rural Affairs (DEFRA), 2013d; Walton et al., 2015). 

These uncertainties can be minimised through detailed air quality and exposure modelling 

(Department for Environment Food and Rural Affairs (DEFRA), 2013d). A related project 
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focusing on this type of detailed air quality modelling is being undertaken by the author of this 

thesis in partnership with researchers at Kings College London (Williams et al., 2016).  

 

For both the impact pathway approach and damage cost approach, the timeframe considered is 

of prime importance. Many health benefits, including the development of cancer and 

cardiovascular illnesses, present with a significant time lag to the environmental change of 

interest. As this lag period can be a decade or more in many cases, care must be taken to prevent 

understating of public health benefits. Conversely, given the multiple factors that influence 

public health and uncertainty about future air pollution scenarios, consideration should also be 

given to prevent the overstating of any benefits (Jarrett et al., 2012; Jensen et al., 2013b). 

 

2.2.2.1.1		Damage	Cost	Approach 
An alternative to the impact pathway approach relies on damage costs. This approach uses the 

results of impact pathway analyses, but is less resource intensive. 

 

The damage function approach estimates the direct monetary impacts of changes in air 

pollution levels. First, one estimates a coefficient to represent the physical damage of changes 

in air quality on non-fatal human health effects (morbidity) or fatal effects (mortality) based 

on existing epidemiological evidence in the scientific literature. Second, the quantity of the 

health effects resulting from changes in air quality are estimated by examining the population 

that are exposed to these changes in air quality (i.e. exposure levels) as well as the 

environmental change itself. This calculation therefore takes into account how many 

individuals are exposed to a change in air quality. Third, the number of health effects are 

multiplied by the associated costs, potentially including lost wages, medical treatment 

expenses, and other costs of interest (e.g. non-financial welfare costs) depending on the purpose 

behind the calculation (U.S. Environmental Protection Agency National Center for 
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Environmental Economics, 2014a). The results are then overlaid with the associated change in 

air pollution levels, resulting in damage cost values (e.g. in units of $ per tonne of pollution 

emitted). 

 

This approach to estimating health benefits presents two challenges in valuing morbidity 

decreases. First, the potential impacts of behavioural changes are not included (e.g. individuals 

choosing to stay indoors on polluted days or buying and using an air filter in one’s home to 

reduce exposure levels or walking a different route to avoid a pollution hot spot that has 

developed) nor is willingness to pay. This limitation to the damage cost approach is also present 

in mortality estimates. Second, as morbidity effects are measured in terms of directly avoided 

costs, the amount that individuals would be willing to pay to avoid illnesses is not accounted 

for. Consequently, the total estimated benefits could be incomplete and therefore not 

representative of the total benefit that could be realised (U.S. Environmental Protection Agency 

National Center for Environmental Economics, 2014a, 2014b).  

 

2.2.2.1.3 Life Tables 
 
A life table is a technique that is frequently used to summarise mortality patterns across 

populations (Miller and Hurley, 2010; Department for Environment Food and Rural Affairs 

(DEFRA), 2013d). Life tables frequently compute survival rates for different age groups, either 

from birth or from the previous year of life. In turn, average life expectancies are calculated 

using age-specific death rates to provide additional insights (Miller and Hurley, 2010). 

 

In order to complete a life-table mortality impact estimation, one uses age-specific all-cause 

mortality rates to calculate survival curves, which plot the number of survivors by age over 

time. Changes in air pollution levels are then converted to changes in hazard rates and applied 
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to each age group. Changes in death rates and the corresponding life-years lost are then 

summed over the combination of age groups and timeframe desired for the analysis (Miller and 

Hurley, 2010). 

 

The World Health Organization began producing annual life tables for all of its Member States 

in 1999. In 2009, these tables shifted from an annual to a biannual publication schedule. These 

tables are used in all of the World Health Organization’s calculations of all-cause and cause-

specific mortality. Civil registration and vital statistics information (e.g. records of births and 

deaths) is the primary data resource used for the production of these life tables. Additional 

information is gathered from the United Nations Population Division (World Health 

Organization, 2014b).  

 

2.3 Overview of existing studies 

This section provides an overview of the process that was undertaken to identify existing 

studies that 1) focused on the co-impacts of decarbonisation of energy systems on air quality 

and vice versa and 2) were of interest to the research project presented in this thesis. This 

process overview is followed by discussion of twelve (12) key studies that were identified in 

this process. These studies are grouped by geographical focus (global, national, urban). 

 

2.3.1 Literature Identification Process 

The construction of this section of the literature review consisted of three main steps: 

 

1. a formal search process using keywords 

2. discussions with experts in this research field 

3. reading and analysis of identified studies 
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The formal search process was conducted using the University College London’s online library 

and Elsevier Science Direct search engines. A series of keywords were identified using 

literature that has been previously discovered in the development of the initial research concept. 

The keywords that were used in this search included: 

 

1. air pollution 

2. outdoor air quality 

3. health 

4. energy 

5. transportation 

6. climate change 

 

In the search process, these identified keywords could be found in any portion of a journal 

publication, including subject, keywords, author, title, or the article text itself. The potential 

pool of peer-reviewed literature was narrowed by requiring that the publication include at least 

three of these keywords, or related permutations (e.g. “air pollution” and “air pollutants”). The 

abstracts of the publications identified in these search processes were then reviewed to 

determine the paper’s potential relevance to this research project. Tables 2.3 and 2.4 present 

the results of this formal search process.   
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Table 2.3: Number of Journal Articles Identified Using UCL Library Search Engine for Journal 
Articles Only in April 2014 

Primary keyword Secondary keyword Tertiary keyword 

Air pollution 423,211 Outdoor Air Quality 1,930 Health 580 

Air pollution 423,211 Outdoor Air Quality 1,930 Energy 114 

Outdoor Air Quality 3,107 Health 882 Energy 109 

Air Pollution 423,211 Energy 2,885 Health 246 

Health 1,615,760 Energy 68,516 Transportation 1,407 

Energy 2,457,838 Climate Change 30,090 Health 1,422 

 

For the search using Elsevier Science Direct, keywords were identified and applied to a search 

through the entire paper including title, author, keywords, and the article text. The results of 

this search are displayed in Table 2.4 The first column represents the number of articles 

containing the first keyword only. The second column shows the number of articles containing 

both the first and second keywords. The third column displays the number of articles that both 

contained the first and second keyword and also had been classified as being part of the listed 

topic. Of note here is that topics related to the previously identified keywords were also 

reviewed (e.g. “public health” and “health” were both viewed as acceptable topics for 

“health”). A zero in the far-right column indicates that no published journal articles were found 

as being listed under the indicated topic (or reasonably related topics) for the indicated 

combination of keywords.  
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Table 2.4: Number of Journal Articles Identified Using Elsevier Science Direct Search Engine 
in April 2014 

Elsevier Science Direct – journal articles only 

First Keyword Second Keyword Topic 

Air pollution 210,117 Health 101,464 Climate Change 624 
Air pollution 210,117 Outdoor Air Quality 11,816 Climate Change 77 
Outdoor Air 
Quality 

25,857 Health 15,439 Climate Change 85 

Health 2,647,815 Energy 470,382 Climate Change 1,187 
Energy 3,039,001 Climate Change 161,259 Health 0 
Energy 3,039,001 Health 470,382 Air pollution 0 
Health 2,647,815 Climate Change 106,063 Air Quality 412 
Transportation 281,424 Health 92,195 Air pollution 305 

Transportation 281,424 Air pollution 32,438 Climate change 279 

 
 
 
These search engines certainly do not represent a comprehensive compilation of all existing 

publications and do not include publications that are in progress or under review. Nor should 

the keywords used in this search process be considered as the only applicable search terms. 

However, this process still provided a first approach for systematically identifying literature of 

potential interest and narrowing the field of potential literature to be reviewed further.   

 

This formal search process was complemented by discussions with researchers in the field. In 

this process, experts were consulted in London, the United Kingdom and the United States and 

asked to suggest additional literature of potential interest. As with the previous step in this 

process, the abstracts of the publications recommended by experts in the field were reviewed 

to determine the paper’s potential relevance to this research project. Unsurprisingly, there was 

a significantly higher rate of success – defined in terms of the number of directly relevant 

papers discovered compared to the total number of papers initially identified - in this portion 

of the literature review process compared to the broader use of search engines. 
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In the third step in the literature review process, identified papers of potentially high interest 

were read in full. Those that were found to be of particularly high interest and applicability 

were then grouped according to geographic focus (global, national, local) for presentation in 

this thesis in order to provide an overview of the existing literature and how it relates to the 

research presented here. Publications were also monitored on an on-going basis to ensure that 

the most recent literature was captured. 

 

	
	
2.3.2 Key Related Studies  

The previously discussed process of identifying key related publications resulted in the 

identification of a group of particularly high interest publications, including ten (10) key related 

studies in the peer-reviewed literature in the last decade. An additional two (2) consulting 

reports by Pye, et. al. were also identified, due to their particular relevance to this work given 

that they incorporated other air pollutants into the United Kingdom MARKet ALlocation 

(MARKAL) model, which is the predecessor to the UK TIMES Model (UKTM-UCL) used in 

the research presented in this thesis. An overview of these twelve (12) studies is included in 

Table 2.5. 
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Table 2.5: Comparison of Key Related Studies of Interest 
Study Spatial focus Sector/ Scenarios Energy 

systems 
model? 

Multiple 
scenarios 
included? 

Co-impacts 
considered in 
optimisation? 

Intergovernmental 
Panel on Climate 
Change (2014) 

Global Energy Sector Yes Yes No 

International 
Energy Agency 
(2016) 

Global Clean Air Scenario Yes Yes Yes/No11 

Anenberg, et. al. 
(2012) 

Global  Climate change 
mitigation via 
methane and black 
carbon emissions 
controls 

No Yes No 
(focus on 
Africa, Asia) 

Dessens, et. al. 
(2014) 

Global Transport – shipping 
and aviation 

No No Yes/No 

Barker, et. al 
(2010) 

Global Rapid global 
decarbonisation  

Yes/No Yes Yes 
(focus on 
Mexico - with 
urban 
conclusions) 

Jensen, et. al. 
(2013) 

National (UK) Healthy diet, active 
travel, household 
energy efficiency, 
cleaner cars 

No No Yes 

Pye, et. al (2008a 
& 2008b) 

National (UK) Low GHG emissions, 
BAU – accounting for 
SO2, PM10, NOx 

Yes No Yes 

Wadud and Waitz 
(2011) 

National (United 
States) 

Transport (road, 
ocean, rail, aviation) 

No No Yes 

U.S. EPA (2009) National (United 
States) 

Impact of climate 
change on O3 

No Yes Yes 

Jack and Kinney 
(2010) 

Urban  A range of policy 
scenarios – a review 
paper of existing 
literature 

No No No 

Woodcock, et. al. 
(2009) 

Urban (London, 
Delhi) with 
other 

BAU and low-GHG 
using WHO 
comparative risk 
assessment 

No Indirectly No 

Jarrett, et. al. 
(2012) 

Urban (England 
and Wales) 

Travel mode shifting 
(active) 

No No No 

																																																								
11	 The	 “Clean	 Air	 Scenario”	 published	 in	 this	 report	 includes	 the	 “implementation	 of	 additional	 measures	

intended	 to	 achieves	 a	 significant	 reduction	 in	 air	 pollutant	 emissions”	 including	 energy	 efficiency,	 targeted	

actions	 to	 reduce	 in	 coal-fired	power	plant	use	with	a	 complete	ban	of	new	coal	power	plant	 construction,	

emission	limits	for	all	combustion	power	plants,	higher	vehicle	emission	standards,	increasing	renewable	energy	

investment	and	the	phasing	out	fossil	fuel	subsidies	(International	Energy	Agency	(IEA),	2016).	
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As discussed in further detail in the following sections, each of these studies included the use 

models to understand aspects of the co-impacts of climate change mitigation on air pollution 

and/or vice versa. It is noted that the global study by the International Energy Agency and the 

reports by Pye, et. al. were of particular importance in this research project (Pye and Palmer, 

2008; Pye et al., 2008; International Energy Agency (IEA), 2016). The former utilised the 

International Energy Agency’s World Energy Model (WEM) in conjunction with the 

Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model from the 

International Institute for Applied System Analysis (IIASA) and represents the current state of 

the art in joint modelling on the co-impacts of energy system transitions on air pollution. The 

latter included the most advanced work done in the United Kingdom to analyse the co-impacts 

of changes to the energy system on air pollution levels using an energy systems model that is 

at the core of UK government decision making.  

	
	
2.3.3 Global Studies 

This section contains discussion of four key global scale studies related to this research that 

were identified as previously discussed in this thesis. The first, by the Intergovernmental Panel 

on Climate Change, can be considered the landmark review of this area and pays particular 

attention to the potential co-impacts of energy system transitions in its Chapter 7 (Bruckner et 

al., 2014). The second, by the International Energy Agency, uses their World Energy Model in 

conjunction with the GAINS model from the International Institute for Applied System 

Analysis (IIASA) to construct a Clean Air Scenario for the global energy system and represents 

arguably the most closely related and state-of-the-art in joint modelling in this area. The third, 

Anenburg, et. al. examines the impacts on air quality and health of a group of specific black 

carbon and methane emission control measures that are expected to have climate benefits, 

showing an alternative point of view of climate change mitigation as a co-benefit of air 
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pollution controls (as opposed to vice versa). The fourth, Dessens, et. al. focuses on the 

potential impacts of an explicit global greenhouse emissions trading scheme as a method for 

reducing both greenhouse gases and other atmospheric emissions that lead to air pollution and 

provides insights drawn from the examination of a specific scheme for reducing emissions 

rather than policy-agnostic approach. Their focus is on international transport, including both 

air and shipping. 

 

2.3.3.1 Intergovernmental Panel on Climate Change (2014) 

In Section 7.9 of the Fifth Assessment Report by the Intergovernmental Panel on Climate 

Change (IPCC), its authors state that (Bruckner et al., 2014): 

 

“Besides economic cost aspects, the final deployment of [climate change] mitigation 

measures will depend on a variety of additional factors, including synergies and 

tradeoffs across mitigation and other policy objectives. The implementation of 

mitigation policies and measures can have positive or negative effects on these other 

objectives – and vice versa. To the extent these side-effects are positive, they can be 

deemed ‘co-benefits’; if adverse and uncertain, they imply risks.” 

 

In their analysis, the authors focus on the co-impacts of a set of mitigation measures in the 

energy supply sector. Most relevant to the research presented in this thesis is their consideration 

of the replacement of coal with nuclear for power generation as well as the increased use of 

renewable energy resources (e.g. solar, wind, geothermal, hydro) and the corresponding 

potential impact on air pollution. In their report, the authors highlight that (Bruckner et al., 

2014): 
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“To avoid creating new environmental and health problems, assessments of mitigation 

technologies need to address a wide range of issues, such as land and water use, as well 

as air, water, and soil pollution, which are often location-specific.” 

 

In the Fifth Assessment Report, the authors highlight the fact that the “stabilization of GHG 

concentrations [will require] fundamental changes in the global energy system relative to a 

baseline scenario” and illustrate the potential pathways for this transition using three models. 

These models include MESSAGE, REMIND and GCAM which are applied in order to explore 

the changes to the global primary energy supply that would be required to stabilise global CO2-

equivalent emissions (Bruckner et al., 2014). Of these tools, the MESSAGE model is the most 

closely related integrated assessment model to the TIMES model that is used to support energy 

policy development in the United Kingdom as described elsewhere in this thesis. Furthermore, 

it is utilised by the International Institute of Applied Systems Analysis (IIASA), which also 

houses the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model that 

is perhaps the most advanced tool for understanding the interactions between greenhouse gas 

and air pollution mitigation options (International Institute for Applied Systems Analysis 

(IIASA), 2016). The GAINS model was used in a 2016 report by the International Energy 

Agency that is described in more detail elsewhere in this chapter (International Energy Agency 

(IEA), 2016). 

 

Each of the scenarios presented in the IPCC report include changes in the primary energy 

supply that could have significant impacts on air pollution and public health. However, none 

of the models are applied to directly quantify the co-impact of these changes to the energy 

system on air pollution levels around the globe (Bruckner et al., 2014). For example, each 

model shows increasing use of renewable energy technologies including solar and wind as well 
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as higher levels of energy efficiency that might result in significant decreased levels of air 

pollution emissions compared to a baseline scenario. At the same time, these models show 

increasing use of coal, natural gas oil, and biomass in systems that include carbon capture and 

storage, which could have mixed implications for air pollution and its corresponding impact 

on human health. 

 
 
2.3.3.2 International Energy Agency (2016) 

In 2016, the International Energy Agency (IEA) published a World Energy Outlook special 

report titled “Energy and Air Pollution” dedicated to the connections between energy, air 

pollution and health. In this report, scenarios are constructed in this report using the IEA’s 

World Energy Model (WEM) in conjunction with the Greenhouse Gas and Air Pollution 

Interactions and Synergies (GAINS12) model from the International Institute for Applied 

System Analysis (IIASA). The former produces projections of energy-related greenhouse gas 

emissions but “does not, in isolation, generate projections for energy-related air pollution” 

according to the IEA (International Energy Agency (IEA), 2015b, 2016). The GAINS model 

has been used to estimate historic air pollution emissions by country and was used in this 

application to project future emission levels, its effects on ambient air quality, and the resulting 

impacts on human health and ecosystems (Amann et al., 2009; International Institute for 

Applied Systems Analysis (IIASA), 2009, 2016; Kiesewetter et al., 2014; International Energy 

Agency (IEA), 2016). 

 

 

 

 

																																																								
12 http://www.iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.en.html 
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In this report, the IEA presents two scenarios (International Energy Agency (IEA), 2016): 

 

1. New Policies - includes the energy-related components of the Intended Nationally 

Determined Contributions (INDCs) pledged at the COP21 meeting in Paris  

2. Clean Air – includes “proven energy policies and technologies” that are “tailored to 

national circumstances” in order to achieve significant additional reductions in other 

air pollution emissions.	

 

This work by the IEA is the first of its kind to analyse scenarios for achieving a set of climate 

change mitigation targets as set under the Paris Agreement in the Intended Nationally 

Determined Contributions (INDCs) both with and without the integration of air pollution 

mitigation policies and technologies. In turn, it currently sets the standard for global analysis 

of the linkages between changes in the energy systems and its resulting co-impacts on air 

pollution and public health around the globe with country-level spatial resolution through the 

year 2040.  

Beyond the differences in the time horizon (2040 in the IEA report versus 2050 in the research 

presented in this thesis) and geographic focus (global, with some regional and country-level 

work versus a country and urban geographic focus) that were examined, the work by the IEA 

differs from the work presented in this research in that, broadly speaking, the WEM is designed 

to project future pathways based on current trajectories in the energy system brought forward 

while incorporating the expected impact of specific policies like the INDCs. 

 

Conversely, tools like the TIMES model used in this research are designed to create potential 

energy system development pathways to achieving a defined set of future goals (e.g. climate 

change mitigation) at the least cost. The reasons for using the TIMES model in this research 
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are discussed in Chapter 3. Additional discussion on the GAINS model, focuses on the 

implementation of specific approaches to air pollution abatement, is included elsewhere in this 

chapter. 

 

2.3.3.3 Anenberg, et. al. (2012) 

In 2012 an international group of researchers from the United States, United Kingdom, Austria, 

and Kenya published findings from their investigation of the global air quality and health co-

benefits of mitigating near-term climate change through methane and black carbon emission 

controls (Anenberg et al., 2012). The objective of this study was to examine the air quality and 

health benefits of 14 specific air pollution emission control measures that targeted black carbon 

and methane. In this work, Anenberg et. al. explore a relevant related research thread on the 

potential for targeting action to reduce air pollution to result in co-benefits in the form of 

climate change mitigation.  

 

The measures considered in this study included technical measures that would target methane 

or black carbon emissions as well as non-technical measures for reducing black carbon and 

methane emissions (Anenberg et al., 2012). These specific control measures “were selected 

because of their potential to reduce the rate of climate change over the next 20-40 years” in 

addition to reducing black carbon and methane emissions (Anenberg et al., 2012). The latter is 

a precursor to tropospheric ozone (O3) formation.  

 

This study used global composition-climate models (GISS-PUCCINI and ECHAM-

HAMMOZ) for their analysis (Anenberg et al., 2012). The National Aeronautics and Space 

Administration (NASA) Goddard Institute for Space Studies (GISS) model for Physical 
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Understanding of Composition-Climate Interactions and Impacts (GISS-PUCCINI13) is 

designed to simulate the Earth’s climate system with a major focus on studying human impacts 

on climate. EECHAM-HAMMOZ14 is an atmospheric general circulation model that was 

developed at the Max Planck Institute for Meteorology.  

 

Critically, this work included mitigation control measures for portions of the energy system, 

including some specific to transport that are particularly interesting with regards to the 

transport-focused analysis presented in Chapter 5 of this thesis. It also provided significant 

insights on the impacts of air pollution mitigation on health and the uncertainty in the 

concentration response functions currently used to estimate human health impacts. These 

uncertainties are highlighted in Chapter 5 and 6 in discussions on the health impacts of changes 

to the London transport sector. Unlike this research, it did not calculate the expected carbon 

emissions impacts of these control measures nor holistically consider the entire transport or 

energy system. 

 

2.3.3.4 Dessens, et. al (2014) 

Whereas Anenberg, et. al. examined the potential air pollution control measures that would 

likely also benefit climate, Dessens, et. al. examined the potential impacts of one specific 

method for reducing both greenhouse gases and other atmospheric emissions that lead to air 

pollution, namely an explicit global emissions trading scheme (GETS). Their focus was on the 

co-benefits of climate change mitigation in international shipping and aviation on air pollution 

and radiative forcing.  

																																																								
13 http://www.giss.nasa.gov/projects/gcm/ 

14 http://www.mpimet.mpg.de/en/science/models/echam/ 
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This research utilised the E3MG global energy-environment-economy model and the p-

TOMCAT atmospheric model to evaluate changes in global CO2, NOx, SO2, VOC, CH4 and 

CO emissions over the period from 2000 to 2050 (Dessens et al., 2014). The p-TOMCAT 

model version used in this research was the same as that used in the QUANTIFY project, a 

joint research initiative led by P. Hoor at the Max Planck Institute in Germany with researchers 

from the Netherlands, United Kingdom, USA, Norway, Germany, France, Italy, and 

Switzerland to quantify the impact of emissions by road, aircraft and ship traffic air pollution 

concentrations in the air, including ozone (Hoor and Borken-Kleefeld, 2009) 

 

This study revealed significant insights on the potential impacts of a theoretical global 

emissions trading scheme with a specific focus on international transport (shipping and air) 

and explores the linkages between changes in transport demand and final air pollution 

emissions levels, which is particularly relevant to the analysis presented in Chapter 5 of this 

thesis. It did not evaluate each impact on a national or urban scale, though the former could 

have been presented using these tools and a related study for Mexico is presented elsewhere in 

this chapter.  

 

2.3.4 National Studies 

This section discusses four key national-level studies that informed the work presented in this 

thesis. The first, Barker, et. al., investigated the potential impacts of climate change mitigation 

on air quality in Mexico under two scenarios - one with national decarbonisation goals and the 

other with global targets to 2050 (Barker et al., 2010). The second, Jensen, et. al. focused on 

the importance of health co-benefits in macroeconomic assessments of climate change policy 

impacts using a single-country computational general equilibrium (CGE) model (Jensen et al., 
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2013a). The third, by Wadud and Waitz further investigated these types of health co-impacts 

through a review of the literature related to the health impacts of the transport sector air 

pollution in the United States (Wadud and Waitz, 2011). The fourth, by the U.S. Environmental 

Protection Agency looks at the impacts of climate change on air quality in the United States, 

which is an interesting related topic to that explored in this research (U.S. Environmental 

Protection Agency, 2009). 

 

2.3.4.1 Barker, et. al (2010) 

In 2010, Barker et. al. published the results of their global air pollution analysis to improve our 

understanding of the impact of climate change mitigation on air quality in Mexico under two 

scenarios – the first with Mexico alone reducing CO2 emissions by 77% and the other with 

80% reductions globally by 2050. As with Dessens, et. al in their 2014 global analysis, these 

researchers utilized a one-way coupling of the global energy-economy-environment model 

(E3MG) and the p-TOMCAT global atmospheric chemistry model that has been used in other 

prominent research collaborations and can be considered a leading tool in global atmospheric 

chemistry modeling (Barker et al., 2010; Dessens et al., 2014).  

 

Overall, Barker, et. al. show that “substantial investment in low-carbon technologies, such as 

electric vehicles, heat pumps and geo-thermal power” could leads to many co-benefits 

including bringing concentrations of tropospheric ozone “close to the WHO guideline levels” 

(Barker et al., 2010). Furthermore, in their analysis, these researchers saw air pollution 

concentrations for SO2, NOx, CO, and volatile organic compounds decrease significantly across 

both scenarios, confirming the already recognized potential for climate change mitigation to 

have co-benefits for other types of air pollution (Ekins, 1996; Barker et al., 2010). 
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The work is particularly interesting for the research presented in this thesis in that it examined 

the potential impacts for mitigation efforts not only on a national level but also specifically in 

the Mexico City urban area. According to the authors, the existing literature on the specific 

effects of climate policy on air pollution is “very limited” (Barker et al., 2010). In turn, they 

used assumptions drawn from studies for Santiago and New York as well as evidence from the 

PROAIRE programme in Mexico City, which included 22 measures to improve air quality in 

the metropolitan areas (Barker et al., 2010). Overall, these researchers concluded that “climate 

control in the form of rapid decarbonisation of the Mexican economy will have substantial 

effects on air pollution, at no extra cost, especially if the mitigation actions are focused on 

Mexico City” by evaluating the co-impacts on both greenhouse gas emissions and tropospheric 

ozone (O3) (Barker et al., 2010).   

 

The work by Barker, et. al. differs from the work presented in this research in terms of 

geographic focus, the models utilized, the focus on tropospheric ozone, and the types of 

insights that can be drawn from the outcomes – in particular, insights on the possible 

technology transition pathway for achieving the emissions reductions evaluated.  However, it 

still provides significant insights for comparison to outputs from the research project presented 

in this thesis. 

 

2.3.4.2 Jensen, et. al. (2013) 

In 2013, Jensen, et. al. published the results of investigation into the importance of health co-

benefits in macroeconomic assessments of greenhouse gas emission reduction strategies in the 

United Kingdom (Jensen et al., 2013a). This research provides valuable insights related to the 

relative importance of co-impacts in the UK’s climate change mitigation efforts. Of particularl 

note is that this study included not just the economic co-benefits of these efforts resulting from 



	 74	

improved public, but also the negative economic impacts associated with extended lifetimes 

that are not included in other studies. For the latter, these include the additional cost associated 

with social security payments for longer-living populations (Jensen et al., 2013a). 

 

Jensen, et. al. framed their research within the observation “that UK policy makers will, most 

likely, have to adopt elements which involve initial net societal costs in order to achieve future 

emission targets and longer-term benefits from GHG reductions.” Furthermore, “cost-

effectiveness of GHG strategies is likely to require technological mitigation interventions 

and/or demand-constraining interventions with important health co-benefits and other 

efficiency-enhancing policies that promote internalization of externalities” (Jensen et al., 

2013a). These observations articulate a key component in the justification for undertaking this 

research project. More specifically, the relative importance of co-benefits in supporting climate 

change mitigation efforts. 

 

In this research by Jensen, et. al., the researchers focused on health co-benefits using a single-

country computable general equilibrium (CGE) model across four strategies (healthy diet, 

active travel, household energy efficiency, and cleaner cars). Overall, they found that a strategy 

including both active travel and cleaner vehicles could be a cost-effective strategy due to its 

impact on illness related to low activity levels and obesity in the UK, which are important to 

the discussions presented in this thesis in Chapters 5 and 6. According to these researchers, 

their results “suggest the need for adopting holistic assessment methodologies which give 

proper consideration to welfare-improving health co-benefits with potentially negative 

economic repercussions (such as increased longevity)” (Jensen et al., 2013a). For example, 

increased longevity can result in a higher cost for social programs such as retirement pensions 

and social security. 
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Similar to this study are several other publications related to macroeconomic assessments 

looking at the health co-benefits of reduced air pollution (Garbaccio, Ho and Jorgenson, 2000; 

Ho, Jorgenson and Di, 2002; Dessus and O’Connor, 2003; Jensen et al., 2013a). For example, 

Garbaccio, et. al. investigated the co-impacts of a carbon tax policy on particulate matter and 

sulphur dioxide emissions in China.  Their work focused on illustrating a process for evaluating 

these health co-benefits, using an economy-energy-health modelling framework with 

rudimentary air quality modelling efforts and generalizations across sectors (Garbaccio, Ho 

and Jorgenson, 2000).  

 

Ho, et. al. also looked at air pollution in China, examining some pollution control policies and 

how they might impact economic performance. They placed emphasis on economy-wide 

policies (e.g. fuel taxes) and examined how these taxes impact fuel use and, in turn, affect air 

pollution levels and public health damage. They also estimated how these policies could impact 

economic growth in China over time (Ho, Jorgenson and Di, 2002).  

 

Dessus and O’Connor examined the health co-benefits of climate change policy in Chile using 

an economy-wide CGE model, focusing on identifying policies that would result in no net loss 

in welfare. They concluded that direct tax on particulate matter would be a more efficient 

approach to decreasing the negative health impacts of air pollution. However, they also found 

that some carbon reduction policies could be economically justified using ancillary health 

benefits (Dessus and O’Connor, 2003).  
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2.3.4.3 Pye, et. al (2008a and 2008b) 

Pye, et. al. authored a series of two consultancy reports in 2008 that summarised their work to 

quantify changes in air quality pollutant emissions in policy scenarios for the United Kingdom 

(Pye and Palmer, 2008; Pye et al., 2008). While these reports were not published in the peer-

reviewed scientific literature, they are discussed here because of their close relationship with 

and relevance to the national-level work undertaken in this research project. They also 

constitute the most advanced work completed prior to the research presented in this thesis on 

quantifying the co-impacts (both positive and negative) of energy system technology 

transitions on air pollution levels in the United Kingdom using the energy system optimisation 

models that are utilised by the UK government. 

 

In this work, Pye et. al. incorporated three pollutants - sulphur dioxide (SO2), nitrogen oxides 

(NOx) and particulate matter of less than 10-microns in diameter (PM10) – into the UK 

MARKAL energy systems model. These researchers undertook two model runs at the national 

level in order to calculate overall changes in air pollution emissions by sector at a national 

level; the Energy White Paper 2007 base case and 60% carbon reduction runs (Pye et al., 2008). 

The stated goal of these two runs was to “assess the difference between AQ emissions in the 

reference case and under a climate policy target case” (Pye et al., 2008).  

 

In this work, Pye et. al. found that “air quality emissions could be significantly reduced in 

future years as a result of technology improvements, improved efficiency and less use of 

polluting fuels under a reference case… [and] benefits due to [air quality] emission reductions 

are estimated at between £0.9 -1 billion in 2050” (Pye et al., 2008). 
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These benefits were estimated using a damage cost approach but did not complete a full impact 

pathway analysis due to its “resource intensive” nature. The authors note that the model “could 

be further developed to assess both climate and air quality targets simultaneously. This could 

be done by including emission ceilings, for example, for air quality pollutants, which the model 

would factor in as part of the optimisation process” (Pye et al., 2008).  

 

2.3.4.4 Wadud and Waitz (2011) 

In 2011, Wadud and Waitz specifically evaluated the air quality-related mortality impacts of 

different modes of transportation in the United States. According to the authors, “[k]nowledge 

about the environmental impacts of various transportation modes is important for 

understanding trade-offs that may be involved in policy options that affect different 

transportation modes in different ways” (Wadud and Waitz, 2011). In turn, this paper “reviews 

the literature on human health impacts attributed to various transportation modes, focusing on 

premature mortality, to carry out a comparative analysis of the modes” (Wadud and Waitz, 

2011). These results articulate the importance of understanding the co-impacts in achieving 

climate change mitigation goals for the transport sector and are a key component in the 

motivations behind this research project. 

 

This study considered “the relative contribution of four different modes to degrading air quality 

and uses the associated health impacts as a metric for comparison” including road transport, 

ocean shipping, rail and aviation on a national level for the United States (Wadud and Waitz, 

2011). Their results presented were normalized to account for the different volumes and types 

of services provided by each mode of transport.   
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The main output of this study were quantified values for the air pollution-related premature 

deaths on a per-ton-mile basis (Wadud and Waitz, 2011). While the study was limited to four 

modes of transport, its results provide valuable insights on exposure and resulting health 

impacts of air pollution from different modes of transport at the national scale. Their discussion 

is important to this work in its comparison of the human health impacts attributed to various 

transportation modes, including road transport technologies that are the focus in Chapter 5 of 

this thesis. 

 

2.3.4.5 U.S. EPA (2009) 

In 2009, the U.S. Environmental Protection Agency (EPA) produced a report of their 

assessment of the impacts of global climate change on regional U.S. air quality. This work 

focused on the climate change impacts of ground-level ozone (O3). The design of this 

assessment was geared toward exploring and communicating “the potential effects of climate 

change on air quality in the United States” (U.S. Environmental Protection Agency, 2009).  

 

The motivation for the focus in this report was to “ascertain whether climate change should be 

considered in the formation of future air quality policy” (U.S. Environmental Protection 

Agency, 2009). The EPA has also produced reports on the health impacts of air pollutants, 

many of which can claim energy production and use as a primary source.  

 

These reports have been used as the basis for national clean air regulations including the 2014 

Clean Power Plan. This proposed rule would institute additional air pollution restrictions on 

coal-fired power plants in the United States, focusing on carbon dioxide emissions (U.S. 

Environmental Protection Agency, 2014). The EPA has yet to publically release work that 

includes a complete quantification of the air quality and public health impacts of energy 
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technology transitions designed to mitigate climate change. However, their work is still 

important in illustrating some of the limitations of the approach presented here in that the 

research in this thesis did not analyse the effects of climate change on air quality itself.  

 

2.3.5 Urban Studies 

Perhaps most pertinent to the research questions explored in Chapter 5 of this thesis are those 

studies that have focused on an urban scale. In the existing literature, there are numerous studies 

that have looked at large urban areas, including London. While none have had the same focus, 

scope, and approach as the research undertaken in this thesis, they provided valuable insights 

that informed the design of this research project as well as a basis for comparison with regards 

to the final results.  

 

Three key urban-scale studies are discussed in this section. The first, by Jack and Kinney 

focused broadly on the human health benefits of climate mitigation policies, with an emphasis 

on urban settings (Jack and Kinney, 2010). The second, by Woodcock, et. al. explored the 

potentially substantial health co-benefits of measures to reduce greenhouse gas emissions, 

including two urban-focus areas for the transport sector – London and Delhi – in addition to a 

number of broader geographical focus areas (Woodcock et al., 2009). Finally, Jarrett et. al. 

focused specifically on quantifying the economic benefits of shifting to increased levels of 

active travel (i.e. walking and biking) in London for the National Health Service.  

 

2.3.5.1 Jack and Kinney (2010) 

Jack and Kinney’s 2010 manuscript is focused on the health co-benefits of climate mitigation 

in urban areas and includes a detailed review of the methodologies applied in more recent 

additions to the co-benefits literature including more than a dozen studies (Jack and Kinney, 
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2010). Jack and Kinney particularly focused on policy, environmental, and health modelling 

to estimate these co-benefits in urban areas and concluded that  “future contributions should 

look beyond air pollution, analyse developing economies, and draw on research teams that 

bring sophistication on both the science and the policy aspects of the co-benefits question” 

(Jack and Kinney, 2010). Their work was aimed at providing policy-relevant estimates of these 

co-benefits by linking economic behaviour, environmental process, and health models. As a 

result, their main conclusions were a set of four dimensions where researchers can improve 

“the salience and credibility of co-benefits research” (Jack and Kinney, 2010).  

 

Specifically, they recommended retrospective evaluations of past policy actions, holistic 

benefits inclusion beyond air quality changes (e.g. impact of active travel on obesity levels), 

increasing focus on developing economies, and an interdisciplinary approach that includes 

experts from across fields of study (Jack and Kinney, 2010). They did not recommend the 

inclusion of energy sector experts in this discussion, which is consistent with the largely non-

technical focus of their discussion (Jack and Kinney, 2010). 

 

2.3.5.2 Woodcock, et. al. (2009) 

In 2009, Woodcock, et. al. published their results from a Comparative Risk Assessment using 

World Health Organization (WHO) methodology in The Lancet medical journal. Their analysis 

included the quantification of the effects of emissions from motor vehicle combustion for 

scenarios that included low-carbon-emissions motor vehicles and increased active travel and is 

a leading paper in the medical literature on the climate change mitigation, air pollution and 

public health nexus. Overall, Woodcock et. al. found that “although uncertainties remain, 

climate change mitigation in transport should benefit public health substantially.”  
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Their analysis of two urban areas – London and Delhi – differs from the approach undertaken 

in this project in a number of ways including the fact that Woodcock et. al. included a much 

more limited treatment of technology options, did not utilize an energy systems model, 

included only CO2 and a limited treatment of particulate matter (PM2.5), and did not evaluate 

nitrogen oxide (NOx) or non-combustion emissions from motor vehicles (Woodcock et al., 

2009). With the last of this list, it is noted that non-tailpipe emissions have been shown to 

represent the majority of current air pollution emissions from motor vehicle operation in 

London (Dajnak, 2013). 

 

2.3.5.3 Jarrett et. al (2012) 

Jarrett, et. al. discussed the impacts of increasing active travel in urban England and Wales on 

costs to the United Kingdom’s National Health Service (NHS) in their study, published in 2012. 

This investigation is the leading academic review of the potential economic co-benefits of 

mode shifting for the NHS and presents a strong case for incentivizing mode shifting in the 

population to more active travel. 

 

In their work, Jarrett, et. al. focused on the impacts of mode shifting from passive to active 

travel technologies (i.e. biking and walking) on obesity rates. In turn, the study included the 

economic benefits of reduced instances of type 2 diabetes, dementia, cerebrovascular disease, 

breast cancer, colorectal cancer, depression, and ischaemic heart disease resulting from 

decreased obesity rates using the World Health Organization (WHO) comparative risk 

assessment method and NHS costing templates. It did not include analysis of the long-term 

health effects of climate change or the “the effect of walking an cycling on environmental 

factors such as improved air quality because of reduced vehicle emissions” (Jarrett et al., 2012). 
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In turn, the work presented in this thesis compliments rather than duplicates Jarrett, et. al.’s 

findings. 

 

2.4 Modelling Air Quality Co-Impacts 

More than ten integrated assessment models have been developed to evaluate the impacts of 

climate change policy within those modelling efforts evaluated by the Intergovernmental Panel 

on Climate Change (IPCC) and government entities in the United Kingdom and United States 

(Nemet, Holloway and Meier, 2010). Of these models, two (2) include an estimate of the air 

quality co-benefits as shown in Table 2.6 and so are most relevant in informing the research 

undertaken in this project. Noted here is that, while both of these models have been applied to 

analysis in the United Kingdom, these applications were not completed in the same manner as 

undertaken in this research project. Additional details on the models used in the IPCC’s Fifth 

Assessment Report are discussed elsewhere in this chapter. 
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Table 2.6: The treatment of air quality co-benefits by integrated assessment models of climate 
change policy (Stern and Taylor, 2006; Intergovernmental Panel on Climate Change (IPCC), 
2007; Energy Information Administration, 2008; Department of Energy and Climate Change 
(DECC), 2009; Nemet, Holloway and Meier, 2010) 

Model Name Includes GHG 
impact estimates  

Estimates the 
climate impact 
value 

Estimates the air 
quality      
co-benefit 

Estimates the value of the 
air quality co-benefit 

IMAGE Yes No No No 
MERGE Yes No No No 
MESSAGE Yes No No No 

MiniCAM Yes No No No 

WIAGEM Yes No No No 
DICE Yes Yes No No 

MARKAL15 Yes Yes Yes Yes 
PAGE2002 Yes Yes Yes Yes16 
ADAGE Yes No No No 
IGEM Yes No No No 

 

The Stern Review quantified the air quality co-benefits of climate change mitigation policy as 

being “up to 1% of [global] GDP” using a single integrated model, PAGE2002 (Stern and 

Taylor, 2006). In the United Kingdom, the Department of Energy and Climate Change (DECC) 

concluded that the air quality co-benefits of the Climate Change Act  2008 could be worth £32 

billion (Department of Energy and Climate Change (DECC), 2009). According to Nemet, et. 

al., the co-benefits of climate change policies could bring a co-benefit of $2-196 per ton of 

carbon dioxide, due to the corresponding reductions health-damaging air pollutants (e.g. 

particulate matter, nitrogen oxides, and sulphur dioxide). Amann, et. al. and Bollen, et. al have 

estimated that air quality co-benefits could be twice as valuable as climatic benefits (Amann et 

al., 2009; Bollen et al., 2009). However, reviews of these types of economic studies have 

highlighted the sensitivity in co-benefits analyses to choices about both methodology and 

parameter values (Bell et al., 2008; Nemet, Holloway and Meier, 2010). 

																																																								
15 In the Impact Assessment of the Climate Change Act 2008 – other air pollutants not considered directly in the 

optimisation pathway in UK MARKAL. 

16 These values are not included in final impact values. 
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The Dynamic Integrated model of Climate and the Economy (DICE) model used by Nordhaus 

is a globally aggregated model. Housed at Yale University, this model is intended to represent 

the economic, policy, and scientific aspects of climate change rather than specifically explore 

the energy sector (Nordhaus and Sztorc, 2013).  

 

The Applied Dynamic Analysis of the Global Economy (ADAGE) model is a computational 

general equilibrium model used by the U.S. Environmental Protection Agency to examine the 

impacts of economic, energy, environmental, climate change mitigation, and trade policies on 

geographic scales from state-level to international coverage (U.S. Environmental Protection 

Agency, 2016). Conversely, the U.S. EPA’s Intertemporal General Equilibrium Model (IGEM) 

models the U.S. economy and simulates the effects of policy and other changes on the price, 

production level, and consumption of energy and pollution emissions (U.S. Environmental 

Protection Agency, 2016). 

 

As shown in Table 3.2, the Intergovernmental Panel on Climate Change (IPCC) reports have 

used outputs from at least five (5) integrated assessment models in their evaluation of climate 

change policy, including: 

 

1. The Integrated Model to Assess the Greenhouse Effect (IMAGE) from the National 

Institute for Public Health and Hygiene in the Netherlands  

2. A Model for Estimating the Regional and Global Effects of greenhouse gas reductions 

(MERGE) housed at Stanford University 



	 85	

3. The Model for Energy Supply Strategy Alternatives and their General Environmental 

Impact (MESSAGE) that has been developed by the International institute for Applied 

Systems Analysis (IIASA) in Austria since the 1980s 

4. The Mini Climate Assessment Model (MiniCAM) from the Pacific Northwest National 

Laboratory (PNNL) in the United States 

5. The World Integrated Assessment General Equilibrium Model (WIAGEM) created at 

the University of Oldenburg in Germany 

 

Of these five models, MESSAGE is the most closely related to the TIMES-based model utilised 

in this research project. Similar to TIMES, the MESSAGE systems engineering optimisation 

model is used by the International Institute for Applied Systems Analysis (IIASA) to produce 

socioeconomic and technological “response strategies” to major energy challenges including 

decarbonisation (International Institute for Applied Systems Analysis (IIASA), 2013). Also at 

IIASA and of relevance to this research is the Greenhouse gas – Air pollution Interactions and 

Synergies (GAINS) model, which looks specifically at air pollution abatement technologies 

and how they could be applied to reduce air pollution emissions from the energy sector (Amann 

et al., 2009; International Institute for Applied Systems Analysis (IIASA), 2011).  

 

Unlike MESSAGE, the MARKAL/TIMES modelling platform has already been successfully 

adopted and utilized in the United Kingdom for more than a decade and has gained acceptance 

amongst both UK academics and the government. According to Strachan, et. al. in the 2009 

paper published in Energy Policy (Strachan, Pye and Kannan, 2009): 

 

“In the UK, the MARKAL family of energy systems models has played an iterative 

role, providing analytical underpinning into all recent major energy policy reviews.” 
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In 2014, Taylor, et. al. stated that “the ability of MARKAL to perform different roles for 

different groups has served to embed and institutionalise the model in the energy policy 

community” (Taylor et al., 2014). In turn, the UK TIMES Model (UKTM-UCL) was used 

instead of MESSAGE in this research in order to increase its policy relevance in the United 

Kingdom. It is noted here that a transport-sector specific model was not selected for use in this 

research project because of its inability to account for non-transport related interactions. For 

example, the large-scale adoption of electric vehicles and its corresponding impact on 

electricity demand and emissions from the electricity sector. 

 

Furthermore, with regards to the GAINS model, this tool is currently designed for global 

analysis and is used for analysis related to the Convention on Long-range Transboundary Air 

Pollution and the European Union. While the GAINS model can distinguish between 165 

regions, including 48 European countries and 46 provinces/states in China and India it is not 

designed to specifically focus on a particular urban area (International Institute for Applied 

Systems Analysis (IIASA), 2011, 2016). Furthermore, the model is not open-source, which 

prevented this researcher from exploring the possibility to disaggregate the GAINS model 

regions to include a region for “Greater London”. Finally, the GAINS model is primarily 

focused on a set of 2000 defined emission control measures and their costs and not broader 

energy system technologies (International Institute for Applied Systems Analysis (IIASA), 

2016). In turn, for this research project, it was more appropriate to use a model that was 

accessible for use by the researcher so that she could include an urban disaggregation for 

Greater London, as opposed to using the GAINS model. 
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2.5 Articulation of the research gap 

While notable studies exist related to the air-pollution co-impacts of changes in the energy 

system, in-depth analysis of the nexus between the co-impacts of climate change mitigation on 

outdoor air pollution (and vice versa) has not yet taken place on a significant scale, with few 

exceptions (e.g. Barker et. al. 2010 and Woodcock et. al. 2009, IEA 2016) (Woodcock et al., 

2009; Barker et al., 2010; International Energy Agency (IEA), 2016). For the United Kingdom 

in particular, published studies have yet to link an energy systems model (i.e. a TIMES-based 

or a similarly comprehensive model) to air pollution and public health tools, nor have they 

holistically evaluated energy technology transition options from a climate and public health 

co-impacts perspective. Given that these optimisation models are central to energy sector 

policy assessment in the United Kingdom, the addition of other air pollutants could provide 

valuable insights on the co-impacts of climate and air quality interventions. 

 

In 2014, Dessens et. al. highlighted this existing research gap, stating that (Dessens et al., 

2014):  

 

“in depth analysis of this integration [of air pollution abatement and climate change 

mitigation policies] has not generally taken place, either in policy literature or in the 

modelling. Instead the air pollution and other co-benefits have been treated as 

occasional added benefits for climate change policy (e.g. Stern, 2007 p. 314), or 

sometimes not mentioned at all (e.g. Nordhaus, 2007).”  

 

In the United Kingdom, initial qualitative discussions of these potential co-benefits have been 

quantified for a limited number of scenarios (Williams, 2007; Pye and Palmer, 2008; Pye et 

al., 2008; Milner, Davies and Wilkinson, 2012; Jensen et al., 2013a). Furthermore, a 
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comparative risk assessment has been used to estimate the health effects of reductions in 

combustion-related carbon dioxide emissions from urban land transport technologies in 

London (Woodcock et al., 2009).  Outside of the peer-reviewed literature, two consulting 

reports (Pye and Palmer, 2008; Pye et al., 2008) integrate non-GHG air pollution into a whole 

energy systems model, quantifying changes in air quality pollutant emissions under different 

U.K. policy scenarios. In this work, they included three pollutants (SO2, NO2, and PM10) into 

the UK MARKAL energy systems model and found that “air quality emissions could be 

significantly reduced in future years as a result of technology improvements, improved 

efficiency and less use of polluting fuels under a reference case… [and] benefits due to [air 

quality] emission reductions are estimated at between £0.9–1.0 billion in 2050” (Pye et al., 

2008). At the time, the authors noted that the model “could be further developed to assess both 

climate and air quality targets simultaneously. This could be done by including emission 

ceilings, for example, for air quality pollutants, which the model would factor in as part of the 

optimisation process” (Pye et al., 2008).  

 

In 2009, Haines, et. al noted that “the varying costs of implementation of [strategies to reduce 

greenhouse-gas emissions] can be offset at least partly by the benefits to health and 

development, and these co-benefits should be taken into account in international negotiations” 

(Haines et al., 2009). Furthermore, “the methods for assessing the health effects of mitigation 

strategies for climate change…should be further developed and applied to inform policy 

making.” 

 

The statements by Haines, et. al. echoed ideas published previously by Williams in 2006. In 

his work to qualify and quantify the co-benefits of climate change mitigation strategies, 

Williams noted “significant synergies and co-benefits are possible through a concerted 
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consideration of air quality and climate change policies.” This researcher has subsequently 

focused his efforts on developing air quality models that quantify the public health impacts of 

changes in air quality (Beevers et al., 2012, 2013)   

  

In 2011, Thambiran and Diab stated that “air quality and climate change are inextricably 

linked… this relationship provides a scientific basis for developing integrative policies that 

derive multiple benefits for simultaneously improving air quality and addressing climate 

change.” Furthermore, they note that “opportunities to use air quality interventions in an 

innovative manner to contribute toward creating low carbon, resilient communities are mostly 

overlooked” in their home country of South Africa (Thambiran and Diab, 2011). 

 

The next chapter provides an overview of the methodologies applied in this research project. 

Subsequent chapters present and discuss the results of the application of these methodologies. 
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Chapter 3 - Methodology 

3.1 Overview 

This chapter provides details of the methodology applied over the course of this research 

project to explore the co-impacts of energy technology transitions on climate change mitigation 

efforts and air pollution.  This methodology can be broadly outlined as followed with regards 

to each research questions explored in this work, namely: 

 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on both a national and urban 

scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on both a 

national and urban scale?   

 

For the United Kingdom, the following steps were undertaken: 

Step 1: Understand historic trends to provide a foundation for future scenario 

development and analysis of air quality and energy-sector air pollution in the United 

Kingdom in order to quantify the current gap between air pollution levels and World 

Health Organization recommended levels and estimate the future trajectory given 

historic trends.  
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1.1 Approach: Sustainability Gap (SGAP) methodology  

1.2 Determine historic trends of particulate matter (PM10 and PM2.5), nitrogen 

oxides (NOx), sulphur oxides (SOx), ammonia (NH3), non-methane volatile 

organic compounds (NMVOCs) and carbon dioxide equivalent (CO2-eq, Kyoto 

basket) for the United Kingdom.  

1.3 Calculate the existing gap between current pollution levels and World Health 

Organisation (WHO) targets. 

1.4 Identify pollutants of interest for subsequent evaluation in an energy systems 

model and an air quality model. 

 

Step 2: Construct a variant of the energy systems model (UKTM-UCL) that includes air 

pollutants of interest. Use this model (UKTM-UCL-AQ) to calculate the co-impact of 

decarbonisation scenarios on other air pollutants of interest and determine the impact of 

including air pollution damage costs in the optimization pathway. 

 

2.1 Identify data inputs of interest (e.g. technology emissions factors) and update  

the UKTM-UCL model to include these values, producing the UKTM-UCL-

AQ model. 

2.2 Produce outputs for scenarios using UKTM-UCL-AQ to 2050, including all 

sectors. 

2.3 Incorporate damage costs (using methodology from U.K. Department of Energy 

and Climate Change and Department for Environment, Food & Rural Affairs, 

2011 guidance) 
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2.4 Re-run scenarios with damage costs included for air pollutants of interest, 

including all sectors in order to account for air pollution changes from other 

sectors at an aggregated level. 

2.5 Compare outputs to previous model runs to determine impacts of incorporating 

health impacts to develop potential answers. 

 

The combination of Step 1 and Step 2 as outlined above allow for the exploration of the answers 

to the research questions on a national scale. Steps 3 and 4 as outlined below then enable the 

examination of the two research questions at the urban scale after examining the outputs from 

the national scale analysis. As previously discussed in this thesis, focus was placed on the 

Greater London region for this research project. 

 

Step 3: Create a model that can disaggregate UKTM-UCL-AQ outputs into two regions 

(Greater London, rest-of-UK) and calculate the resulting public health impact for Greater 

London of changes in air pollution levels. 

 

3.1  Gather data, particularly with regards to London-specific population growth and 

energy demand.  

3.2  Examine the strength of existing scientific evidence related to air pollution 

health impacts to identify the sub-set of pollutants examined in the United 

Kingdom research that can be explored in depth with regards to public health 

impacts in Greater London. 

3.3  Incorporate public health impact calculations into the model for identified 

pollutants of interest. 
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Step 4: Use the PIONEER model developed in Step 3 to examine the impacts of the 

technology transitions produced in scenarios along two dimensions - technological and 

behavioural change – to improve understanding of the potential impacts of each. 

 

4.1  Produce output scenarios from PIONEER to 2050 for the Greater London road 

transport sector using scenarios from United Kingdom analysis. 

4.2  Run variants to include both technological and behavioural change, completing 

an iterative loop to ensure model convergence (as needed).  

4.3  Compare outputs. 

 

The PollutION Emissions from EneRgy (PIONEER) model was developed specifically for this 

research project by the author of this thesis. This model allows for the quantification of the 

potential air pollution and public health impacts of national scale technology transition 

scenarios on the Greater London region. It also allows the user to explore targeted action for 

the Greater London area to quantify the relative impact of urban versus national action. 

 

In this work, the PIONEER model was soft-linked to a variant of the UK TIMES Model 

(UKTM-UCL-AQ) that includes endogenized non-greenhouse gas air pollution from the 

energy sector for particulate matter (PM10 and PM2.5), nitrogen oxides (NOx), sulphur oxides 

(SOx), ammonia (NH3) and non-methane volatile organic compounds (NMVOCs). The author 



	 95	

of this thesis is also using PIONEER to support ongoing work to build a multi-region UK 

TIMES Model (London-TIMES) as is briefly described in this chapter17. 

 

The chapter begins with an overview of the Sustainability Gap (SGAP) methodology (Section 

3.2) followed by a history of energy systems models and their use in energy policy making in 

the United Kingdom with details on the choice of the energy systems model that was used in 

this research (Section 3.3). This discussion is followed by background details on the United 

Kingdom’s energy sector, including the country’s ongoing climate change mitigation efforts 

(Section 3.4). This section is followed by sections on the application of the SGAP methodology 

(Section 3.5) and details on the UKTM-UCL model and the development of the UKTM-UCL-

AQ model variation used in this work (Section 3.7). The PIONEER model structure is then 

discussed including details of its soft-linking with UKTM-UCL-AQ (Section 3.7). The final 

section briefly discusses the ongoing work to build a multi-region London-TIMES model as 

well as to extend this work to incorporate explicit analysis of the air quality impacts of energy 

technology transitions in partnership with Kings College London utilizing their Community 

Multi-Scale Air Quality (CMAQ) model for the United Kingdom (Section 3.8). The 

relationships between each of these models with regards to topical coverage and their 

application in this research project are displayed in Figure 3.1. 

 

As described in more detail elsewhere in this manuscript, the UKTM-UCL-AQ model was 

developed by a team of researchers at University College London – including the author of this 

																																																								
17 The author of this thesis built the transportation sector of this UKTM-UCL variant, as well as a portion of the 

electricity sector with more minor contributions to the other (industry, services, residential, agriculture) portions 

of the energy sector. 



	 96	

thesis - in partnership with Aether, an air quality and climate change emissions consultancy 

with offices in the United Kingdom and Spain that specializes in emission inventories, 

environmental data systems and air quality assessments18. The PollutION Emissions from 

EneRgy (PIONEER) model was created specifically for this research project exclusively by 

the author of this thesis and applied to the Greater London urban area. The Community 

Multiscale Air Quality Model (CMAQ) is housed at Kings College London and is being used 

in a related collaborative project involving the author of this thesis and her colleague, Steve 

Pye at University College London’s Energy Institute, and researchers at Kings College London 

(Williams et al., 2016).  

 

Figure 3.1: The Topical Coverage of the Core Models Used in This Research Project 

 

 

Throughout these sections are explicit details on key assumptions made in the construction of 

these tools. Specific assumptions related to the implementation of these tools are discussed in 

																																																								
18 http://www.aether-uk.com/ 
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subsequent chapters, which focus on the analysis conducted at the national (United Kingdom) 

and urban (Greater London) level. 

 

3.2 Sustainability Gap Methodology 

Historic data can be used to explore potential future air pollution trends and air pollutants of 

research interest using a wide array of assumptions. With regards to this research, the difference 

between current levels of air pollution and sustainable levels has been defined under the 

Sustainability Gap (SGAP) methodology. The SGAP methodology also includes a Years-to-

Sustainability (YtS) indicator, which assumes a continuation of historic air pollution trends as 

one moves into the future.  For the sake of transparency and ease of understanding among a 

heterogeneous audience, this approach approximates all trends as being linear over the period 

evaluated and assumes that they will continue in a linear fashion moving forward (Ekins and 

Simon, 2001). The SGAP metric and YtS indicator concepts are displayed graphically in Figure 

3.2 under this methodology. 

 

Figure 3.2: The Sustainability Gap (SGAP) methodology (Lott, Ekins and Davies, 2014) 

 

Within the SGAP framework, sustainability standards are set according to scientific 

understanding of the day with respect to the emissions limits that the environment and human 

The Sustainability Gap (SGAP) methodology 
(prepared by Melissa C. Lott on January 14, 2014) 

---Years to Sustainability (YtS)-- 

Historic emissions 
levels and trend 

Current emissions 
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Sustainability 
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Time 
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health can tolerate from anthropogenic sources. Where possible, standards are compared with 

policy targets (also referred to as sustainability targets) and used to quantitatively establish the 

sustainability gaps for the particular air pollutants that were discussed.  

 

In 2001, Ekins and Simon calculated the SGAP air emissions component with respect to three 

environmental themes - climate change (Ceq), ozone depletion (Oeq) and acidification (Aeq) 

(Ekins and Simon, 2001). Furthermore, global carbon dioxide equivalent19 emissions and six 

types of local pollutants20 emissions were included in the 2001 SGAP analysis by Ekins and 

Simon. In 2014, public health impacts were added to this work (Lott, Ekins and Davies, 2014). 

 

The air pollution component of the SGAP methodology includes pollutants that, broadly 

speaking, significantly: 

 

1. contribute to global climate change 

2. harm/destroy the ozone layer 

3. negatively impact on human health 

 

The updated SGAP methodology includes air pollution targets that are based both on total 

emissions levels (tonnes/year) and concentration-based targets (µg/m3) in order to capture the 

health impacts of both prolonged exposure and spikes in pollution levels (Lott, Ekins and 

Davies, 2014). For the application of the SGAP methodology for the United Kingdom, 

pollutants are included in the updated methodology based on their current prevalence in the 

																																																								
19 CO2, CH4, CFCs, HFCs, PFCs, SF6, CF4, N2O.  

20 SO2, CO, VOCs, Pb, particulate matter, and NO2  
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United Kingdom in addition to their impact under one of the three categories previously 

identified.  

 

While this methodology is both transparent and easily understood by a heterogeneous audience, 

there are many reasons why YtS values could be overly optimistic, including:  

- in the case of pollutants that have already seen dramatic reductions, assuming that 

historic trends can be extended into the future could be unrealistic.  

- for those pollutants with sustainability standards equal to zero, the Years to 

Sustainability (YtS) values imply that these pollutants could be completely eliminated, 

which might not be practical depending on the sources for these pollutants.  

- for those SGAPs that are policy (and not sustainability) targets, the YtS metric is likely 

significantly larger. For example, the sustainability target for particulate matter would 

be “0” as only complete elimination of this type of pollution would eliminate the 

corresponding health impact. However, a larger target value would provide a more 

practical goal. 

 

However, this methodology still provides a straightforward structure for evaluating historic 

emissions datasets and providing one viewpoint on possible future trends. This information 

also helps in identifying pollutants of interest for future investigations by providing context 

and a high-level understanding of potential future impacts. 

 
 
3.3 Energy System Models: History and Their Use in Policy-Making 

This section includes a history of energy system models and their use in energy policy making 

in the United Kingdom. This discussion is followed by a brief overview of the use of integrated 

assessment models to evaluate the air pollution co-impacts of climate mitigation strategies (and 
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vice versa). This information provides background on the development of energy modelling 

and justification for the selection of a TIMES-based energy system model (UKTM-UCL-AQ) 

for use in this research project. This section concludes with an overview of the specific models 

used in this research project. 

 

3.3.1 A Brief History of Energy Systems Modelling  

A wide variety of models have been developed since the early 1970s for analysing energy 

systems and sub-systems as an extension of previous work with energy balances. These models 

have included methodologies from disciplines including engineering, economics, and 

operations research. As a result, they have allowed users to increase their understanding of the 

present energy system and improve future planning (Bhattacharyya and Timilsina, 2010). 

Today, energy models can claim a long track record of informing major energy policy 

initiatives around the globe (Jebaraj and Iniyan, 2006; Strachan, Pye and Kannan, 2009).  

 

Each energy model can differ in its applied techniques as well as its “purpose, philosophy, 

features, capabilities, possible overlaps and data demand” that make them more or less 

appropriate for sets of specific applications and given resource availability (Bhattacharyya and 

Timilsina, 2010). Furthermore, existing energy systems models can be differentiated according 

to their approach (bottom-up versus top-down), methodology (partial equilibrium, general 

equilibrium, or hybrid), modelling technology (optimisation, econometric, or accounting) and 

spatial dimension (sub-national, national, regional, and global).  

 

While most of these terms are self-explanatory, bottom-up versus top-down models bear some 

additional explanation (Hourcade, Jaccard and Bataille, 2006). The former approach focuses 

on technical characteristics within the energy sector and can be quite useful in investigating the 
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tradeoffs that come with technology substitutions (Hourcade, Jaccard and Bataille, 2006; 

Bhattacharyya and Timilsina, 2010).  The latter follows an collected view of the energy sector 

and can be used more effectively than bottom-up models to explore questions of economic 

competitiveness and wider economy impacts (Hourcade, Jaccard and Bataille, 2006; 

Bhattacharyya and Timilsina, 2010).   Hourcade, et. al. illustrate the tradeoffs between energy-

economy models across three dimensions in their 2006 manuscript, as shown in Figure 3.3. 

These dimensions include: 

 

1. technological explicitness 

2. microeconomic realism 

3. macro-economic completeness 

 

Figure 3.3: Three-Dimensional Assessment of Energy-Economy Models (Hourcade, Jaccard 
and Bataille, 2006) 

 

 

While the use of models that examine the interactions between energy, resources, and the 

economy can be traced back to the 1960s, the interactions between energy and the environment, 
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including climate change came into prominence in the 1990s according to Bhattacharyya and 

Timilsina in their review of energy system models that was published in 2010 in the 

International Journal of Energy Sector Management (Bhattacharyya and Timilsina, 2010). 

Environmental effects related to energy production, conversion, and use were incorporated into 

energy models during this period using environmental and pollution coefficients, which 

allowed these models to link environmental impacts with economic implications 

(Bhattacharyya and Timilsina, 2010). In 1990, at the start of this rise to prominence for these 

models, four approaches were identified for the inclusion of environmental impacts into 

electricity planning models that also hold for energy system models that wish to include 

environmental effects (Markandya, 1990): 

 

1. models that include environmental costs as part of energy supply costs and then 

minimise the total costs 

2. models that include environmental costs in the supply-side but minimise costs subject 

to environmental constraints 

3. models that aim for cost minimisation but also include an impact calculation model that 

is run iteratively to evaluate alternative scenarios 

4. models not based on optimisation but rather analyse the impacts of alternative system 

development scenarios 

 

Lists of prominent energy-economy models can be found in the literature with one list being 

reproduced here in Table 3.1 (Pandey, 2002; Bhattacharyya and Timilsina, 2010).  
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Table 3.1 Classification of energy-economy models (Bhattacharyya and Timilsina, 2010) from 
(Pandey, 2002) 

Paradigm Space Sector Time Examples 

Top-down/simulation Global, 
national 

Macro-
economy, 
energy 

Long term AIM, SGM2, I/O 
models 

Bottom-up 
optimisation/ 
accounting 

National, 
regional 

Energy Long term MARKAL, TIMES, 
LEAP 

Bottom-up 
optimisation/ 
accounting 

National, 
regional, 
local 

Energy Medium term, 
short term 

Sector models 
(power, coal) 

 

With regards to dynamic technology-economic models, the Market Allocation Model 

(MARKAL) is perhaps the most well-known. Developed by the International Energy Agency’s 

Energy Technology Systems Analysis Programme (ETSAP), this modelling platform includes 

users at more than 75 institutions in more than three dozen countries, including many 

developing economies. This technology-rich, bottom-up model is tailored for particular 

applications using input data that is specific to the nation, region, state, or community to which 

it will be applied (Energy Technology System Analysis Programme (ETSAP), 2014a). In their 

2001 publication, Seebregts, et. al. state that the “MARKAL family of models has been 

contributing to energy/environmental planning since the early 1980s” and that this “family of 

models is unique, benefiting from application in a wide variety of settings and global technical 

support from the international research community” (Seebregts, Goldstein and Smekens, 

2002). 

 

In 2008, The Integrated MARKAL-EFOM System (TIMES) model generator was chosen to 

replace MARKAL by its developers in order to conduct in-depth energy and environmental 

analyses (Loulou et al., 2005). This model “combines two different, but complementary, 

systematic approaches to modelling energy: a technical engineering approach and an economic 
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approach” (Energy Technology System Analysis Programme (ETSAP), 2014b).  TIMES is a 

bottom-up, perfect-foresight model that optimizes across all sectors and all periods of time for 

a prescribed scenario (Loulou et al., 2005). More details on the TIMES methodology are found 

elsewhere in this Chapter. 

 

3.3.1.1	Choice	Of	The	Energy	Systems	Model	Used	For	This	Research	
This section includes discussion of the choice of the specific modelling tools used for this 

research. Furthermore, details are provided on the limitations of these tools at the onset of this 

research project in 2013 and the efforts that were required to further develop the core tools. 

 

As discussed elsewhere in this chapter and Chapter 2, a variety of modelling tools have been 

developed and used to provide a sound analytical framework from which to systematically 

explore pathways to meet decarbonisation goals via technology transitions in the energy system 

(Pandey, 2002; Bhattacharyya and Timilsina, 2010).   In their 2016 paper on “improving deep 

decarbonisation modelling capacity for developed and developing country contexts”, Pye and 

Bataille discuss the key motivations for the use of particular models to explore energy 

transitions in a given context, including their (Pye and Bataille, 2016): 

 

1. being fit-for-purpose 

2. having in-country capacity 

3. transparency, communicability and policy credibility 

 

In the context of this research project, being “fit-for-purpose” means that any modelling tools 

used had to be capable of incorporating relatively long time horizons (i.e. through 2050 in line 

with the UK Climate Change Act) and at varying spatial scales (i.e. both the United Kingdom 

and an urban subset of that area). Furthermore, this research required the use of a modelling 
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approach that could capture the multiple impacts of energy system decarbonisation that the 

researcher wished to explore - namely, the co-impact of changes in energy technologies to meet 

decarbonisation goals on non-greenhouse gas air pollution and public health. In turn, it was 

important to understand the technology transition pathway in high levels of detail in order to 

capture these co-impacts. 

 

In determining what type of model to use for this research, the key strengths and weaknesses 

of the bottom-up versus top-down modelling approaches that are described elsewhere in this 

chapter were considered. Broadly speaking, top-down models have an advantage over bottom-

up models in that they can model the impacts of decarbonisation policies on GDP, employment 

and the economy but they are more limited in their ability to accurately model detailed 

technology-focused policies and regulations (Pye and Bataille, 2016). This limitation is 

particularly problematic for this research, where the co-impacts resulting from technology 

transitions driven by decarbonisation policies are vital in assessing the air pollution and public 

health co-impacts.    

 

In comparison, bottom-up models can provide an integrated view of the full energy system 

with explicit representation of individual technologies and the interactions between energy sub-

sectors (e.g. transport, power, etc). Their detailed representation of energy system technologies 

allows for the effective modelling of the co-impacts of technology-focused policies and 

regulations, which are key in both the United Kingdom and Greater London analyses presented 

in this thesis. Therefore, these bottom-up models are more appropriate for this research than 

their top-down counterparts.  
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However, it should be noted that bottom-up models have weaknesses that are important to be 

aware of when drawing insights from the outputs of these types of models. These weaknesses 

include their significant data requirements and the resulting uncertainties, approach to 

incorporating human behavior, exogenously defined energy service demands, and lack of 

ability to model many of the broader economy impacts of changes to the energy system (e.g. 

the impact of increased efficiency on industrial demand) (Usher and Strachan, 2012; Pye, Sabio 

and Strachan, 2015; Pye and Bataille, 2016). Furthermore, in the application of these models, 

the evaluation of transitions over long timeframes inherently introduce significant uncertainties 

regarding technology development and deployment in the energy system as well as technology 

costs. Finally, these models do not include the impacts of changes outside of their system 

boundaries beyond the input assumptions provided (e.g. availability and cost of imported fuel), 

which limits the insights that can be drawn with regards to air quality impacts that are a function 

of both changes inside and outside of the spatial boundaries considered.  

  

Of the available bottom-up models, the TIMES modelling framework (i.e. UKTM-UCL) was 

the most suitable for this research in the context of its having both “in-country capacity” and 

“transparency, communicability and policy credibility” in the United Kingdom.  The history 

of energy systems modelling in the United Kingdom, including the extensive use of the 

MARKAL and TIMES models in support of numerous Energy White Papers and other 

government reports is discussed in more details elsewhere in this thesis (Usher and Strachan, 

2012; Ekins et al., 2013; Dodds, Keppo and Strachan, 2014; Pye et al., 2015; Hall and Buckley, 

2016).  Additional details on the TIMES model methodology can be found elsewhere in 

Chapter 3. 
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The TIMES model that was chosen for this research project (i.e. UKTM-UCL) required the 

addition of a set of capabilities that were not previously included at the start of this research in 

2013 in order to facilitate its effective implementation in this work. In line with the primary 

goals sets out for this research project as described in Chapter 1, these capabilities included the 

need to capture the impact of energy system technology transition pathways on 1) key types of 

air pollution, including their public health impact and 2) on air pollution emissions in an urban 

area within the United Kingdom. The process of incorporating these capabilities into the tools 

used in this work is described elsewhere in Chapter 3 in the decription of the development of 

both the UKTM-UCL-AQ and the PollutION Emissions from Energy (PIONEER) models.   

 

Specifically, with regards to spatial and temporal resolution, the tools selected and developed 

for this research examine changes in the energy system in five-year time slices with country- 

and urban-level resolution. In turn, they are appropriate for the quantification of trends on these 

scales, which is appropriate given the geographic focus of the United Kingdom’s Climate 

Change Act. However, these tools would not be appropriate for use in examining a number of 

related research questions that require quite high levels of spatial and/or temporal resolution 

nor those requiring detailed air pollution chemistry modelling (for example, the impact of air 

pollution from cars driving on a particular street in Greater London on hourly or daily mean 

air pollution concentrations).  

 

3.3.2 TIMES Methodology Overview 

As described by Dodds, et. al. in their 2014 paper, energy systems models can be both opaque 

and difficult to understand as new model versions are developed. In turn, according to the 

authors (Dodds, Keppo and Strachan, 2014): 
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“energy system models need to be as clear and transparent as possible to ensure quality 

assurance for users and replicability for practitioners…	 Model transparency and 

repeatability are even more relevant for energy system models as these technology-rich, 

economic optimisation models, such as [MARKAL/TIMES], have become critical 

tools for informing policy and business decisions in low-carbon energy technologies in 

many countries” 

 

A full documentation of the TIMES model generator used in this research is provided by 

ETSAP in their five-part series titled “Documentation for the TIMES Model” (Loulou, 

Goldstein, et al., 2016; Loulou, Kanudia, et al., 2016; Loulou, Lehtilä, et al., 2016; Loulou, 

Remme, et al., 2016; Wright et al., 2016). In the interest of transparency and repeatability, the 

second part of this documentation as it existed during the course of this research project is 

included in the appendix of this thesis. As stated by the authors (Loulou, Lehtilä, et al., 2016): 

 

“Part II [of this documentation series] constitutes a comprehensive reference manual 

intended for the technically minded modeler or programmer looking for an in-depth 

understanding of the complete model details, in particular the relationship between the 

input data and the model mathematics, or contemplating making changes to the model’s 

equations. Part II includes a full description of the sets, attributes, variables, and 

equations of the TIMES model.” 

 

As this portion of the documentation includes all of the key structural details of the TIMES 

model, the other portions of the TIMES model documentation provided by ETSAP did not 

need to be reproduced in the Appendix of this thesis.  
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In addition to this documentation, an overview of key components of the TIMES model 

generator that was used to determine scenario outputs in this research is discussed in this 

section. Of particular importance is the role of user inputs and the structure of the objective 

function. 

 

3.3.2.1	The	TIMES	Model	Generator 
The TIMES model generator is used to create technology explicit, region specific, partial 

equilibrium models of the energy system that assume energy markets that are competitive and 

have perfect foresight (Loulou, Goldstein, et al., 2016).  According to the ETSAP 

documentation’s authors (Loulou, Goldstein, et al., 2016): 

 

"TIMES (an acronym for The Integrated MARKAL-EFOM System) is an economic 

model generator for local, national, multi-regional, or global energy systems, which 

provides a technology-rich basis for representing energy dynamics over a multi-period 

time horizon.” 

 

The TIMES model generator is not intended to create models that will predict the future 

technology make-up of the energy system. Rather, it is a tool for exploring possible future 

scenarios in order to better understand their potential impacts and relative trade-offs. 

 

All TIMES-based models use an identical mathematical structure and are economically 

rational, meaning that they strive to maximize the total surplus (i.e. the sum of producer and 

consumer surplus) of an energy economy over the entire time horizon being analysed (Loulou, 

Goldstein, et al., 2016). However, each unique TIMES-based model is ultimately defined by 

sets of user inputs that are specific to the region being analysed (Loulou, Goldstein, et al., 

2016).  For this research, the TIMES model used is specific to the United Kingdom. 
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Included in the TIMES model generator is a reference energy system with a defined set of 

technologies, commodities, and commodity flows. These components are defined as follows 

(Loulou, Goldstein, et al., 2016): 

 

• Technologies (also called processes): representations of physical devices that transform 

commodities into other commodities. Processes may be primary sources of 

commodities (e.g. mining processes, import processes), or transformation activities 

such as conversion plants that produce electricity, energy-processing plants such as 

refineries, end-use demand devices such as cars and heating systems, etc.   

• Commodities: energy carriers, energy services, materials, monetary flows, and 

emissions. A commodity is generally produced by some process(es) and/or consumed 

by other process(es).   

• Commodity flows: the links between processes and commodities. A flow is of the same 

nature as a commodity but is attached to a particular process, and represents one input 

or one output of that process. 

	
3.3.2.2	TIMES	Model	Inputs 
In order to create a TIMES model that can be applied in order to produce future energy 

scenarios, users input four key sets of information as exogenous inputs to the TIMES model 

framework (Loulou, Goldstein, et al., 2016): 

 

1. energy service demands by type (e.g. heating, demand for cars) over time - calculated 

using defined demand drivers (e.g. population, GDP) for a defined time horizon 

2. resource availability (i.e. the amount of a resource that the model can use to supply 

demand at a specified cost) 
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3. policies - any information on the policy setting under which the scenario is to be run 

(e.g. carbon reduction targets) 

4. technical and economic parameters - including all descriptive parameters for individual 

technologies and processes (e.g. cost, efficiency, construction timelines, technical life, 

commodity use per activity) 

 

With regards to energy service demands by type, these values are typically calculated within 

TIMES using user-inputted assumptions for both demand drivers and elasticities of demand. 

Total energy service demand is calculated using the aforementioned demand drivers. 

Furthermore, the model calculates the resulting demand for individual commodities in order to 

meet the energy service demands (Loulou, Goldstein, et al., 2016).  

 

Resource availability is set by the modeller in terms of the amount of available resource at a 

defined cost (Loulou, Goldstein, et al., 2016). In turn, energy supply becomes defined as an 

energy supply curve that represents the amount of resource that can be utilized in the model's 

solution at a defined cost. For example, reserves of oil are defined in terms of the amount of 

oil that is available at each of a series of prices. 

 

The modeller also defines policies that can impact the energy scenario that they wish to be 

included in their scenarios (Loulou, Goldstein, et al., 2016). For example, a solar mandate is 

included as a requirement for the model to use a specified amount of the available solar 

resource. With regards to decarbonisation, constraints are included to meet defined limits on 

greenhouse gas emissions for specific timeframes as defined by the modeller. Given the 

model’s structure as previously described, these constraints are met just-in-time and with 

perfect foresight. 
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As previously discussed, TIMES is a bottom-up model and its technology and economic 

parameters are defined exogenously by the modeller for all technologies and processes 

(Loulou, Goldstein, et al., 2016). For example, if the modeller wishes to consider a specific 

type of car technology that can be used to meet a demand for vehicles, they will define a long 

list of characteristics for the car including the initial investment cost as well as the costs for 

maintenance when used. The user will also define the car's fuel requirements, which will - of 

course - have their own associated costs. All of these parameters can vary over the time horizon 

being explored in a given scenario or be held constant for the period. A generalised schematic 

of the TIMES model structure is provided in Figure 3.4.  

 

Figure 3.4:  Schematic of a generalised TIMES model (Loulou et al., 2005) 

 

 

In TIMES-based models, the time horizon and level of temporal resolution is defined 

exogenously by the modeller. In the runs presented in this research, that time horizon of interest 
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was defined as 2010 - 2050 with 5-year times slices. In turn, the outputs of the scenario include 

results for nine points including 2010 (i.e. the baseyear), 2015, 2020, 2025, 2030, 2035, 2040, 

2045 and 2050. In practice, the model was set to run to 2060 in order to avoid distortions in the 

2050 results. As noted elsewhere in this chapter, these types of distortions are a known issue 

in the TIMES modelling platform and are avoided by running the model beyond the time 

horizon that the modeller wishes to analyse (Loulou, Lehtilä, et al., 2016). 

 

3.3.2.3	The	TIMES	Objective	Function 
TIMES models are driven to minimize the total discounted cost of the entire energy system 

over the selected time horizon (Loulou, Lehtilä, et al., 2016). This total discounted cost is 

represented by the model’s objective function, which is defined as the sum of all regional 

objectives (REG_OBJ) over all years (y) and regions (r), with all of the costs discounted using 

an exogenously defined discount rate (DISC) to the same user-selected base year (z) (Loulou, 

Lehtilä, et al., 2016). This function is shown in Equation 1. 

 

𝑉𝐴𝑅_𝑂𝑏𝑗(𝑧) = 	 𝑅𝐸𝐺_𝑂𝐵𝐽(𝑧, 𝑟)
34567

	 

Eq. 1 

	
Within each regional objective is a set of nine cost components and two revenue components, 

as shown in Equation 2 (Loulou, Lehtilä, et al., 2016).  
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𝑅𝐸𝐺_𝑂𝐵𝐽 𝑧, 𝑟

= 	 𝐷𝐼𝑆𝐶 𝑦, 𝑧
=4 >?,@?

× 𝐼𝑁𝑉𝐶𝑂𝑆𝑇 𝑦 + 𝐼𝑁𝑉𝑇𝐴𝑋𝑆𝑈𝐵 𝑦 + 𝐼𝑁𝑉𝐷𝐸𝐶𝑂𝑀 𝑦 + 𝐹𝐼𝑋𝐶𝑂𝑆𝑇 𝑦

+ 𝐹𝐼𝑋𝑇𝐴𝑋𝑆𝑈𝐵 𝑦 + 𝑆𝑈𝑅𝑉𝐶𝑂𝑆𝑇 𝑦 + 𝑉𝐴𝑅𝐶𝑂𝑆𝑇	 𝑦 + 𝑉𝐴𝑅𝑇𝐴𝑋𝑆𝑈𝐵 𝑦

+ 𝐸𝐿𝐴𝑆𝑇𝐶𝑂𝑆𝑇 𝑦 − 𝐿𝐴𝑇𝐸𝑅𝑅𝐸𝑉𝐸𝑁𝑈𝐸𝑆 𝑦 − 𝑆𝐴𝐿𝑉𝐴𝐺𝐸	(𝑧) 	 

 

Eq. 2 

 

The nine cost and two revenue components are listed below, with corresponding descriptions 

(Loulou, Lehtilä, et al., 2016): 

 

1. Investment Costs (INVCOST): the costs related to the investment, which occur in the 

year an investment is decided upon and/or during the construction period for that 

investment. These investment costs can be single payments, or can be period payments 

made over a series of years. 

2. Taxes and subsidies on investments (INVTAXSUB): these costs are assumed to be 

incurred at the same time as the investment cost is incurred.  

3. Decommissioning/Dismantling capital costs (INVDECOM): these costs are incurred 

after the end-of-life of an investment and can include a lag period, as defined by the 

user. 

4. Fixed annual costs (FIXCOST): the fixed annual cost that is paid during the operation 

of the investment.  

5. Annual taxes/subsidies on capacity (FIXTAXSUB): these annual taxes/subsidies are 

assumed to be paid at the same time as any fixed annual costs.  
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6. Survival cost (SURVCOST): these costs also include annual costs during any lag period 

between end-of-life and the start of decommissioning. 

7. Variable operating costs (VARCOST): includes those costs that vary according to the 

activity being undertaken by the investment 

8. Variable taxes/subsidies (VARTAXSUB): includes those costs corresponding to 

annual taxes/taxes 

9. Cost of demand reductions (ELASTCOST): this cost applies in scenarios where elastic 

energy service demands are used and represented the cost resulting from the loss of 

welfare due to the reduction (or increase) of demands  

10. Late revenues from endogenous commodity recycling (LATEREVENUE): these costs 

include revenues from any materials and energy that are embedded in a process and are 

subsequently released after the end of the scenario time horizon.  

11. Salvage value (SALVAGE): when an investment’s technical life extends beyond the 

scenario time horizon, this value is used to represent the value of the unused portion of 

the investment 

 

Further details on each of these components is found in the Appendix of this thesis.  

 

There are a few notable issues that result from the structure of the TIMES objective function 

that can impact a model’s evaluation of the cost competitiveness of individual technologies. 

These challenges have been documented by the model’s developers, along with a set of 

recommended mitigation techniques to reduce distortions to the final costs as calculated by the 

TIMES model itself (Loulou, Goldstein, et al., 2016). These issues include the following 

(Loulou, Lehtilä, et al., 2016):  
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• distortions resulting from the specific assumptions made related to annual payments 

versus available capacity – these distortions are “usually quite small” except in the case 

of “longer periods having an even number of years” according to the model’s 

developers. (Loulou, Lehtilä, et al., 2016).  

• in the case where the end of the time horizon analysed directly corresponds to the end 

of life for an investment, investment cost accounting can result in distortions in the 

model’s salvage value accounting.  

• for investments, capacity availability assumptions can cause “a small distortion in the 

cost accounting” because any capacity available in a given year has a larger value than 

the same capacity in the subsequent year (Loulou, Lehtilä, et al., 2016). 

• in the case of variable period lengths where investment costs change over time, there 

can be accounting distortions due to the fact that investment cost data is taken from the 

start year of each investment step. 

 

In turn, when using the TIMES model generator, researchers should be particularly cautious –

in their approach to defining investment timelines and analysis time periods. They should also 

familiarize themselves with the steps that the TIMES model generator’s developers have taken 

to address the four issues previously mentioned. These steps include optional switches to 

eliminate the distortions resulting from discounting and annual payment assumptions related 

to investment and fixed costs (Loulou, Lehtilä, et al., 2016).   

 

 
3.3.3 Energy System Modelling in the United Kingdom 

There exists a long track record of energy modelling supporting policy initiatives in the United 

Kingdom (Strachan, Pye and Kannan, 2009). In particular, the MARKAL energy system model 

has been used extensively to inform U.K. energy and climate policy since the turn of the 
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century and remains a dominate energy systems model today (Dodds, 2014; Taylor et al., 2014; 

Hall and Buckley, 2016). Outputs and analysis from both UK-MARKAL and, more recently, 

the United Kingdom TIMES Model (UKTM-UCL) provided inputs for the 2003 Energy White 

Paper, 2007 Energy White Paper, and 2011 Carbon Plan as well as the Committee on Climate 

Change reports Building a Low-Carbon Economy, Fourth Carbon Budget, and Fifth Carbon 

Budget (Department of Trade and Industry (DTI), 2003; Department of Energy and Climate 

Change (DECC), 2007; Committee on Climate Change, 2008, 2010, 2015a, 2015b).  

 

According to Taylor, et. al. in their 2014 paper published in Energy Research and Social 

Science on the operation of technical energy models within social systems,  “the ability of 

MARKAL to perform different roles for different groups has served to embed and 

institutionalise the model in the energy policy community” (Taylor et al., 2014). Furthermore, 

Taylor, et. al. state that MARKAL has the ability to serve “different but intersecting needs of 

academic and policy communities over a sustained period of time.” In turn, the use of this 

model has brought together communities across these two worlds, resulting in an influential 

network of academics and policy makers within the United Kingdom (Taylor et al., 2014). 

 

Noted here is that, prior to this thesis, neither UK MARKAL or the UK TIMES Model (UKTM-

UCL) were equipped to directly consider the public health impacts of changes in outdoor air 

quality resulting from air pollution from the energy sector. Furthermore, the UKTM-UCL 

model is built to execute a national-level (single region) energy system analysis.  
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3.4 Background – Energy and Air Pollution in the United Kingdom 

This section provides background on energy and air pollution in the United Kingdom. A 

majority of the discussion centres around 2010, which is the base year used in much of this 

research. However, some information on changes and pertinent events since 2010 are included. 

This section is followed by a discussion of the application of UKTM-UCL-AQ in this research. 

 

3.4.1 U.K. Total Primary Energy Supply & Final Energy Consumption 

 
The United Kingdom – including England, Scotland, Wales, and Northern Ireland – had a total 

primary energy supply of 203 million tonnes of oil equivalent (Mtoe) in 2010 according to 

energy statistics reported by the U.K. Department of Energy and Climate Change21 in the 

Energy Consumption in the UK publication. The vast majority (88%) of this supply came from 

fossil fuels including natural gas (42%), oil (31%) and coal (15%) (Department of Energy and 

Climate Change (DECC), 2015a). However, these values have been on the decline as the nation 

works to achieve an array of climate change and air pollution goals (International Energy 

Agency (IEA), 2012). One indicator of this trend can be seen in Scotland, which shut-down 

the last operating coal-fired power plant within its borders in March 2016 (Lott, 2016).  

 

According to these statistics from the Department of Energy and Climate Change, the vast 

majority (81%) of final energy consumption in the United Kingdom was in England in 2010 

as shown in Figure 3.5 (Department of Energy and Climate Change (DECC), 2015a). This fact 

is unsurprising given that around 83% of the nation’s population also live in this country 

according to data from the United Kingdom Office of National Statistics (Office of National 

Statistics, 2010). Disaggregating energy consumption for Greater London from the national 

																																																								
21 now the Department of Business, Energy and Industrial Strategy (BEIS) 
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totals reveals that this urban area consumes 9% of the nation’s total energy as shown in Figure 

3.6. In 2010, the total population for the London area was 8.1 million people or about 13% of 

the total population for the United Kingdom (Office of National Statistics, 2010).  

 

Figure 3.5: Final Energy Consumption by Country in the United Kingdom (2010) (Department 
of Energy and Climate Change (DECC), 2015a) 

 

 

Figure 3.6 Final Energy Consumption by Country in the United Kingdom with Greater London 
Break-Out (2010) (Department of Energy and Climate Change (DECC), 2015a) 

 

 

Final energy consumption in the United Kingdom by sector can roughly be divided into thirds, 

with the largest portion (37% of total) being attributed to the industrial and commercial sectors 

and transport representing the smallest wedge (30% of total) as shown in Figure 3.7. For 
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comparison, final energy consumption in Greater London includes a smaller wedge (20%) for 

transport, with a much larger portion (41%) being dedicated to domestic use as shown in Figure 

3.8.  

 

Figure 3.7 Final Energy Consumption by Sector in the United Kingdom (2010) (Department 
of Energy and Climate Change (DECC), 2015a) 

 

 
Figure 3.8: Final Energy Consumption in Greater London by Sector (2010) (Department of 
Energy and Climate Change (DECC), 2015a) 
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3.4.2 Greenhouse Gas Emissions in the United Kingdom 

The United Kingdom’s greenhouse gas emissions, as reported by the Department of Energy 

and Climate Change (DECC) are displayed in Figure 3.9 for 1990 – 2010 (Department of 

Energy and Climate Change (DECC), 2014a). In this figure, one will see an overall downward 

trend for greenhouse gas emissions that are weighted for their global warming potential. 

However, hydrofluorocarbon (HFC) emissions have actually been increasing since the late 

1990s though they are still below their 1997 peak.  

 

The values displayed in Figure 3.9 for each of the individual type of air emissions includes the 

land use, land-use change, and forestry sector (LULUCF) over the UK and Crown 

Dependencies. However, they exclude UK Overseas Territories.  Of note here is that the Kyoto 

greenhouse gas basket line is not merely a sum of the individual pollutant emissions levels. 

Rather, this line includes three distinctions compared to the individual pollutant emissions, 

namely (Department of Energy and Climate Change (DECC), 2014b, 2015b): 

 

1. a narrower definition for what is included in the LULUCF sector  

2. the inclusion of the U.K. Overseas Territories22 

3. the inclusion of emissions from flights between the United Kingdom, U.K. Crown 

Dependencies23, and U.K. Overseas Territories 

 

																																																								
22 Anguilla Montserrat Bermuda Pitcairn Island British Antarctic Territory St Helena British Indian Ocean 

Territory St Helena dependencies (Ascension Island, British Virgin islands Tristan da Cunha) Cayman Islands 

South Georgia and the South Islands Falkland Islands Turks and Caicos Islands Gibraltar 

23 Isle of Man, Bailiwicks of Jersey and Guernsey 
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Furthermore, these time series data are not held static each year. Rather, they are updated as 

emissions accounting methodologies improve over time. As a result, emissions levels could 

appear different depending on the year in which those data were published. 

 

 

Figure 3.9: UK greenhouse gas emissions (1990-2010), weighted by global warming potential 
(Department of Energy and Climate Change (DECC), 2016a) 

 
 
 

In 2010, the base year used in this research project’s modelling efforts, 97% of total carbon 

dioxide emissions and 82% of total greenhouse gas emissions in the United Kingdom came 

from fossil fuel combustion processes (International Energy Agency (IEA), 2012).  

 

3.4.3 Air Pollution Emissions in the United Kingdom 

Annual emissions of select local air pollutants in the United Kingdom are reported by the 

National Atmospheric Emissions Inventory (NAEI) for the Department for Environment, Food 

and Rural Affairs (DEFRA), the Scottish Government, the Welsh Assembly Government, and 

the Northern Ireland Department of Environment as well as an array of local authorities and 

European organizations. The National Atmospheric Emissions Inventory is funded by the 
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Department for Energy and Climate Change (DECC), Department for Environment, Food, and 

Rural Affairs (DEFRA), Scottish Government, Welsh Government, and Northern Ireland 

Department of Agriculture, Environment and Rural Affairs. It is developed and maintained by 

consultants including Ricardo Energy & Environment, Aether, CEH, and Gluckman 

Consulting.  

 

The most recent total emissions inventory was released in 2014 and includes data through 2012. 

Annual particulate matter emissions (PM10 and PM2.5) by sector are displayed in Figures 3.10 

and 3.11. Noted here is the fact that these two air pollutants have been declining consistently 

since 1990 in absolute (total tonnes per year) terms. A map produced by the United Kingdom’s 

Department for Environment, Food and Rural Affairs (Defra) that shows the spatial distribution 

of sources of particulate matter (PM10) pollution in the United Kingdom is shown in Figure 

3.12. 

 

 

Figure 3.10: Annual emissions of particulate matter (PM10) by sector, 1970-2014 (Department 
for Environment Food and Rural Affairs (DEFRA), 2016f) 
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Figure 3.11: Annual emissions of particulate matter (PM2.5) by sector, 1970-2014 (Department 
for Environment Food and Rural Affairs (DEFRA), 2016f) 

 

 
 
Figure 3.12: Map of annual emissions of particulate matter (PM2.5) by source location, 2014 
(Department for Environment Food and Rural Affairs (DEFRA), 2016d) 
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Annual emissions of non-methane volatile organic compounds (NMVOCs), sulphur oxides 

(SOx as SO2), nitrogen oxides (NOx as NO2), and ammonia (NH3) as reported in the National 

Atmospheric Emissions Inventory are displayed in Figures 3.13 thru 3.16. Noted here is that 

all data in these figures are displayed for 1970-2014 except for ammonia, which is displayed 

for 1980-2014 as data from the 1970s are not reported in the National Atmospheric Emissions 

Inventory Database for this pollutant. 

 
Figure 3.13: Annual Emissions of NMVOCs by sector, 1970-2014 (Department for 
Environment Food and Rural Affairs (DEFRA), 2016f) 

 
 
 
 
Figure 3.14: Annual Emissions of SOx by sector, 1970-2014 (Department for Environment 
Food and Rural Affairs (DEFRA), 2016f) 
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Figure 3.15: Annual Emissions of NOx by sector, 1970-2014 (Department for Environment 
Food and Rural Affairs (DEFRA), 2016f) 

 
 
 
 
Figure 3.16: Annual Emissions of NH3 by sector, 1980-2014 (Department for Environment 
Food and Rural Affairs (DEFRA), 2016f) 
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Figure 3.17: Map of annual emissions of non-methane volatile organic compounds (NMVOCs) 
by source location, 2014 (Department for Environment Food and Rural Affairs (DEFRA), 
2016c) 

 
 

 
Figure 3.18: Map of annual emissions of nitrogen oxides (NOx as NO2) by source location, 
2014 (Department for Environment Food and Rural Affairs (DEFRA), 2016b) 
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Figure 3.19: Map of annual emissions of sulphur oxides (SOx as SO2) by source location, 2014 
(Department for Environment Food and Rural Affairs (DEFRA), 2016e) 

 
 
 

Figure 3.20: Map of annual emissions of ammonia (NH3) by source location, 2014 (Department 
for Environment Food and Rural Affairs (DEFRA), 2016a) 
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With the exception of ammonia, all of these air pollutants have been declining in terms of total 

annual emissions at a national level since approximately 1990. But there is still work to be 

done. For example, in 2015 the United Kingdom’s Supreme Court ruled that the government 

must take action to reduce air pollution levels to meet European Air Quality Directive limits 

for outdoor air pollution, which it currently violates (United Kingdom Supreme Court, 2015; 

Carrington, 2016). 

 
3.4.4 Climate Change Legislation 

 
The United Kingdom is both a signatory to the United Nations Framework Convention on 

Climate Change (UNFCCC) treaty adopted in 1992 and a party to the Kyoto Protocol adopted 

in 1997 (International Energy Agency (IEA), 2012). The former is an international treaty that 

focuses on mobilising international efforts in climate change mitigation and adaptation. The 

latter is an international agreement which commits countries to binding greenhouse gas 

emission reduction targets, which entered into force in 2005 (United Nations Framework 

Convention on Climate Change (UNFCCC), 2016).  

 

At the heart of the United Kingdom’s domestic climate change policy is the Climate Change 

Act 2008, which requires that the nation (United Kingdom Parliament, 2008; Department of 

Energy and Climate Change (DECC), 2009): 

 

• cut its greenhouse gas emissions by at least 34% by 2020 and 80% by 2050 

compared to 1990 levels 

• set and meet five-year carbon budgets during this period of time, with 

carbon budgets being set three periods (i.e. 15 years) ahead of the present 

day to provide clarity on the near-term emissions reduction path.  
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Most recently, the UK Government set out the 5th carbon budget (2028 – 2032) in late July 

2016 based on guidance published by the Committee on Climate Change in 2015 (Committee 

on Climate Change, 2015b; Department for Business Energy and Industrial Strategy (BEIS), 

2016; Department of Energy and Climate Change (DECC), 2016b). The government has also 

instituted a number of market reforms and infrastructure planning acts to support the energy 

transition required by the Climate Change Act 2008 as well as investing significantly in 

communication and consultation to improve public awareness (United Kingdom Parliament, 

2008; International Energy Agency (IEA), 2012). The U.K. Climate Change Act 2008 is 

discussed elsewhere in this thesis in more detail. 

 

3.4.5 Air Quality Legislation 

As discussed elsewhere in this thesis, the United Kingdom has adopted a number of air quality 

objectives at the national, regional, and local levels for pollutants including particular matter 

(PM), nitrogen dioxide (NO2) , and sulphur dioxide (SO2) (Department for Environment Food 

and Rural Affairs (DEFRA), 2013a). The nation is also subject to several directives at the 

European (EU) level, including the National Emissions Ceilings Directive (2001/81/EC) and 

the EU Air Quality Directive (2008/50/EC) and its legally binding limits on outdoor air 

pollution levels. However, these obligations could change now that the United Kingdom has 

formally indicated its intention to withdraw from the European Union after the referendum 

vote24 that took place in June 2016 in the United Kingdom.  

 

																																																								
24 often referred to as the “Brexit” vote 
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3.5 Sustainability Gap (SGAP) Calculations 

As discussed in the methodology chapter of this thesis in Section 3.2, the Sustainability Gap 

(SGAP) methodology was originally developed by Ekins and Simon at the turn of the century 

to measure progress toward (or away from) a set of sustainability standards, including targets 

for air pollution (Ekins and Simon, 2001).  The SGAP method was subsequently expanded in 

2014 to include sustainability targets for human health (Lott, Ekins and Davies, 2014). This 

methodology is applied in this research to understand historical trends in key air pollutants in 

order to identify pollutants of interest to explore further. 

 

Current policy targets for air pollution in the United Kingdom include those set on the regional 

and national scales (Beevers et al., 2012; Lott, Ekins and Davies, 2014). The existing 

sustainability targets and standards (where applicable) and resulting SGAP targets are found in 

Table 3.2 and calculated YtS values are found in Table 3.3 (Lott, Ekins and Davies, 2014).  
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Table 3.2: Air pollution standards and targets for SGAP calculations (World Health 
Organization, 2005; Committee on the Medical Effects of Air Pollution (COMEAP), 2011; 
Department for Environment Food and Rural Affairs (DEFRA), 2013c; Lott, Ekins and Davies, 
2014)25,26 

 
 
 
 
 

																																																								
25 CO2-eq includes CO2, CH4, N2O, and Fluorinated gases (HFCs, PFCs, SH6, NF3) 

26 The UK Climate Change Act 2008 policy target number was calculated using 1990 baseline numbers (767.3 

million tonnes CO2-e excluding LULUCF) to reach an 80% reduction compared to 1990 levels 

	

Air pollutant Policy Targets (Sustainability Targets) Sustainability 
Standards 

SGAP Target 

CO2-eq UK Climate Change Act 2008: 153 million 
tonnes/year (2050) 
Kyoto Protocol/UNFCCC: 80% reduction 
compared to 1990 baseline - 156 million 
tonnes/year by 2050 

OECD/IEA:  
0 tonnes/year by 
2100 from the 
energy sector 

156 million tonnes 

Lead (Pb) EU Air Quality Directive: 0.5 µg/m3 (annual 
mean) 
DEFRA/Air Quality Strategy: 0.25 µg/m3 
(annual mean) 

0 tonnes/year 0 tonnes 

NOX  

(NO and 
NO2) 

Gothenburg Protocol: 707 ktonnes (2050) 
EU Air Quality Directive -DEFRA/Air 
Quality Strategy – NO2: 200 µg/m3 (1-hour 
mean) not exceeded more than 18 times/year, 
40 µg/m3 (annual mean) 
EU Air Quality Directive -DEFRA/Air 
Quality Strategy – NOx: 30 µg/m3 (annual 
mean) 
National Emissions Ceiling Directive 
(NECD): 1167  kilotonnes/year by 2010 

WHO guidelines 
(2005) for NO2: 40 
µg/m3 annual mean, 
200 µg/m3 1-hour 
mean  
 
 

707 thousand tonnes 
 

0 instances of violation 

O3  EU Air Quality Directive -DEFRA/Air 
Quality Strategy: 100 µg/m3 (8-hour mean) 
not to be exceeded more than 10 times per 
year) 

Set to NMVOCs and 
NOx emissions 

0 instances of violation 

PM10 EU Air Quality Directive -DEFRA/Air 
Quality Strategy: 40 µg/m3 (annual mean), 50 
µg/m3 (24 hour mean) not to be exceeded 
more than 35 times per year. 

WHO guidelines 
(2005): 20 
µg/m3 annual mean, 
50 µg/m3 24-hour 
mean   
 
 

0 tonnes 
 
0 instances of violation 

PM2.5 
(including 
black 
carbon) 

Gothenburg Protocol: 59 ktonnes (2050) 
EU Air Quality Directive -DEFRA/Air 
Quality Strategy (annual mean): 25 µg/m3 for 
UK (except Scotland), 12 µg/m3 for 
Scotland, 15% reduction in concentrations at 
urban background 

WHO guidelines 
(2005): 10 
µg/m3 annual mean, 
25 µg/m3 24-hour 
mean  

0 tonnes 
 

0 instances of violation 

SOx (as SO2) National Emissions Ceilings Directive 
(NECD): 585 kt 
Gothenburg Protocol: 282 kt 

282 kt 0 tonnes 

Ammonia 
(NH3) 

National Emission Ceilings Directive 
(NECD): 297 kt 
Gothenburg Protocol: 283 kt 

283 kt 0 tonnes 
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Table 3.3: SGAP and YtS indicator for key air pollutants (total annual emissions level targets) 
(Lott, Ekins and Davies, 2014) 
 

Air 
pollutant 

x 
(year) 

Emissions 
level (el)x 
(million 
tonnes) 

y 
(year) 

Emissions 
level (el)y 
(million 
tonnes) 

SGAP 
Target 
(million 
tonnes) 

SGAP 
(million 
tonnes) 

YtS 
(years) 

CO2-eq 1990 591  2012 474  156 318  36  
Lead (Pb) 1990 0.00289 2008 0.000067 0 0 1 
PM2.5  
(including 
black 
carbon) 

1990 0.21 2012 0.08 0 0.08 8 

PM10 1990 0.27 2012 0.11 0 0.11 16 

NOX  
(NO and 
NO2) 

1990 2.9 2012 1.1  0.707 0.39  3 

SOX  
(as SO2) 

1990 3.7 2012 0.44 0  0.44 3 

NH3 1990 0.32 2012 0.28 0 0.28 125 

 

There are many reasons why the YtS values displayed in Table 4.2 could be overly optimistic 

as previously discussed, including:  

 

• in the case of pollutants that have already seen dramatic reductions, assuming the 

historic trends moving into the future could be unrealistic.  

• for those pollutants with sustainability standards equal to zero, the YtS values imply 

that these pollutants could be completely eliminated, which might not be practical.  

• for those SGAPs that are policy (not sustainability) targets, the YtS metric is likely 

significantly larger.  

 

As a result of this analysis, air pollution emissions of CO2-equivalent, particulate matter (PM10 

and PM2.5), NOx, SOx, and NH3 are initially included in this analysis. Furthermore, non-
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methane volatile organic compounds (NMVOCs) are included due to their role in the formation 

of tropospheric ozone. 

 

3.6 UKTM-UCL-AQ 

This section provides an overview of UKTM-UCL-AQ and the set of six (6) scenarios that are 

used to explore the impacts of incorporating non-greenhouse gas air pollution in UK 

decarbonisation strategies in Chapter 4 (Lott et al., 2016; Lott, Pye and Dodds, 2017).  

Particular assumptions related to the implementation of UKTM-UCL-AQ discussed in this 

chapter with further details included in the Appendix. 

 

3.6.1 Development Process 

The UKTM-UCL and UKTM-UCL-AQ models are built using The Integrated MARKAL-

EFOM System (TIMES) model generator. The first of these two models, UKTM-UCL, was 

developed by researchers within the UCL Energy Institute over the period of 2012-2015 and 

was preceded by the UK MARKAL model (Dodds, 2014; Dodds, Keppo and Strachan, 2014). 

As mentioned at the beginning of this thesis, UKTM-UCL-AQ was developed in 2015 by 

researchers at University College London – namely, Birgit Fais, Melissa C. Lott27, Steve Pye, 

and Paul Dodds – in collaboration with colleagues from Aether, an environmental consultancy 

company based in the United Kingdom, as a part of a project funded by the former U.K. 

Department of Energy and Climate Change, which now operates within the Department of 

Business, Energy and Industrial Strategy. Both of these models use the VErsatile Data Analyst 

																																																								
27 For this project, Melissa C. Lott completed all UKTM-UCL model development for the transport sector as 

well as a large portion of the electricity sector. She provided input for all other sectors, but was not the lead 

researcher.  
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(VEDA) model management software platform for data handling in the manner depicted in 

Figure 3.21 (Energy Technology Systems Analysis Program (ETSAP), 2016). 

 

Figure 3.21: Overview of the VEDA system for TIMES modelling (Energy Technology 
Systems Analysis Program (ETSAP), 2016) 

 

 

This approach to building an energy system model results in a partial equilibrium energy 

system for the United Kingdom that is technically detailed and suitable for investigating the 

economic and technological trade-offs of energy scenarios to 2100, though the analyses 

presented in this thesis were limited to a 2050-time horizon28.  

 

 

 

 

 

																																																								
28 Noted here is that longer time horizons have been explored on a limited basis for the United Kingdom. In 

2015, Pye et. al. explored potential pathways to complete energy sector decarbonisation with a time horizon of 

2100 as a part of the Deep Decarbonisation Pathways Project (DDPP) (Pye et al., 2015). 
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These models take a bottom-up view of the energy system and energy transitions. For UKTM-

UCL-AQ, an air pollutant emissions factor database is incorporated into UKTM-UCL for six 

(6) air quality pollutants:  

 

1. particulate matter that is less than 10 micrometres in diameter (PM10) 

2. particulate matter that is less than 2.5 micrometres in diameter (PM2.5) 

3. nitrogen oxides (NOx as NO2) 

4. sulphur dioxide (SOx as SO2) 

5. ammonia (NH3) 

6. non-methane volatile organic compounds (NMVOCs) 

	
This update allows air pollution emissions accounting by year out to 2050 with the model 

defaulted to five-year time slices, though this level of temporal granularity can be adjusted 

(Lott, Pye and Dodds, 2017).. This model variant was developed in the fall of 2015 by 

researchers at the University College London and colleagues from Aether in a project funded 

by the U.K. Department of Energy and Climate Change. The author of this thesis manuscript 

completed all TIMES model update work related to the transport sector (including development 

and implementation) as well as a significant portion of the electricity sector. She provided input 

to work for all other sectors, but did not directly implement these model updates. Figure 3.22 

contains the flow diagram for UKTM-UCL-AQ to compliment the generalised schematic 

presented in Figure 3.4.  

 

 

 

 

 



	 137	

Figure 3.22: Analysis Flow Diagram UKTM-UCL-AQ  

 

 

3.6.1.1	Emission	Factors 
In this development process, emission factors (EFs) for the current energy system were 

compiled for a large number of sectors from the United Kingdom’s National Atmospheric 

Emissions Inventory (NAEI)29 using the 2014 dataset. However, some of the National 

Atmospheric Emissions Inventory emission factors were confidential due to commercial 

sensitivity and other emission factors did not directly match the UKTM fuels and technologies. 

																																																								
29 Emission factors (EFs) were mapped from the National Atmospheric Emissions Inventory (NAEI), published 

online at http://naei.defra.gov.uk (accessed November 2015), which provides the official annual air quality 

pollutant emission estimates for the United Kingdom. The inventory is structured around reporting under the 

United Nations Economic Commission for Europe (UNECE) Convention on Long Range Transboundary Air 

Pollution (CLRTAP) and emission estimates are presented in Nomenclature for Reporting (NFR) format.  A full 

list of the emission factors used in this research are included in the Appendix. 

 



	 138	

In these cases, the closest match in the NAEI was used or alternative data sources were 

identified and documented in consultation with experts.  

 

Data from the NAEI was appropriate for use in this research as it provided a transparent and 

accessible centralised source of emission factors data. Furthermore, its use allowed for 

comparisons with previous work done in this area by Pye et. al. in 2008 (Pye and Palmer, 2008; 

Pye et al., 2008).  However, there are certainly ample opportunities for future work to examine 

these emission factors and the uncertainty in the published figures. Furthermore, as the NAEI 

database is updates on an annual basis, it would be valuable to examine how updated 

information on these emission factors in the future impact the outputs in this thesis (Department 

for Business Energy & Industrial Strategy (BEIS), 2016). 

 

As discussed in more detail elsewhere in this Chapter, fuel-based emission factors (EFs) were 

used for all sectors, with the exception of domestic transport, which used activity-based factors. 

Fuel-based factors account for emissions based on the amount of fuel that is burned (e.g. grams 

emitted per PJ) versus activity-based factors that are structured around the activity undertaken 

(e.g. grams per mile travelled). Activity-based factors are more appropriate for transport as 

they account for non-tailpipe emissions – including tyre, brake, and road wear – as well as 

approved European Union Standards (e.g. Euro VI standards for road vehicles) that would be 

ignored using a fuel-based EF.  

 

Noted here is that these activity-based EFs are based on test cycle emissions as opposed to real 

world, which could have important implications on the output emissions levels and 

corresponding policy recommendations. There have been notable scandals recently showing 

how different real-world versus test-cycle emissions can be, which leads to questions as to the 
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validity of values in current databases. For example, in 2015, the U.S. Environmental 

Protection Agency (EPA) found that many diesel vehicles produced by Volkswagen included 

software that changed the vehicle’s performance during emissions testing. All told, this 

software meant that vehicles could emit up to 40 times the U.S.’s legal limit for nitrogen oxide 

pollution. This “defeat device” was included in about 11 million cars sold worldwide, including 

8 million in Europe (Hotten, 2015).  In 2016, Mitsubishi admitted to cheating on its fuel 

economy tests for more than two decades, which has significant implications for the 

corresponding emissions factors for all combustion products from the affected vehicles (Soble, 

2016). Other research, including a study by Brand published in 2016, has explored the 

implications of these unaccounted and future air pollutant emissions and energy use for cars in 

the United Kingdom (Brand, 2016).  That being said, test cycle emission factors were still used 

for the purpose of this research in order to allow for calibration with other air pollution research 

in the United Kingdom and provide consistency.  

 

For the transport sector, hot exhaust emissions as well as non-tailpipe emissions from tyre wear, 

brake wear, and road abrasion were included for all road transport technologies. Cold start 

emissions and evaporative emissions were not included for these technologies because a 

detailed transport emission model would be needed for proper accounting. These emissions 

make up about 10% of NOx emissions from cars and 5% of LGV NOx emissions. For shipping 

and aviation, emission factors were calculated by taking the total emissions for each pollutant 

from the National Atmospheric Emissions Inventory for these sectors and dividing it by the 

corresponding activity values in UKTM-UCL-AQ for the base year.  

 

For the fuel-based EFs used for all non-transport emissions, it was assumed that pollution levels 

would be most impacted by changes in the efficiency of fuel use – which could arise from 
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technology changes - and shifts in total fuel demand. When modelling on a time horizon to 

2050, there are a range of new technologies, not currently in the system, for which emissions 

information therefore does not exist. Such technologies include carbon capture and storage 

(CCS), for which some estimates have been made by organizations including the European 

Environment Agency (European Environment Agency, 2011). For hydrogen and biofuel 

production, no emission factors are assumed due to the absence of data estimates (i.e. they are 

set at zero) (Lott, Pye and Dodds, 2017). For alternative fuel vehicles, additional information 

published by the National Atmospheric Emissions Inventory is used along with their published 

values for non-tailpipe emissions as discussed in Chapter 3 in more detail (Murrels and Pang, 

2013). A full list of the emission factors used in UKTM-UCL-AQ can be found in the Appendix 

of this thesis. 

 

3.6.2 Analysis of Emissions Accounting Coverage 

A post-mapping evaluation reveals the extent to which the UKTM accounted for these six (6) 

air pollutants, since the model only represents the energy system, while significant emissions 

of specific pollutants come from other parts of the economy (Lott, Pye and Dodds, 2017). All 

told, a majority of NOx, SOx and PM (both PM10 and PM2.5) air pollution were represented in 

UKTM-UCL-AQ in 2010, with NOx and SOx having the most complete coverage as shown in 

Table 3.4.  Conversely, sectoral coverage of NH3 and NMVOC emissions is limited, 

representing an opportunity for future model development. For the air pollution emissions that 

were included in UKTM-UCL-AQ, a validation exercise was undertaken to compare the 

UKTM-UCL-AQ 2010 base year against the corresponding National Atmospheric Emissions 

Inventory sector totals, with the objective to be within 10-15% difference for total emission 

values.  
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Table 3.4: Air pollution inventory mapping between NAEI and UKTM-UCL-AQ (Lott et al., 
2016; Lott, Pye and Dodds, 2017) 

  

Type of Air Pollution 

NOx  
(as NO2) 

    
NMVOC SOx  

(as SO2) 
NH3 PM2.5 PM10 

% of NAEI inventory 
mapped in UKTM 94% 15% 92% 5% 74% 58% 

 
 

In the case of particulate matter, the majority of PM10 emissions that are not included are from 

agricultural sources (livestock and crops) as well as mining and quarrying. A more detailed 

breakdown of the sources of these excluded emissions is shown in Table 3.5.  

 

Table 3.5: Particulate matter emissions that were excluded from UKTM-UCL-AQ in the 2010 
emissions calibration, by sector  (Lott et al., 2016; Lott, Pye and Dodds, 2017) 

Sector PM10 PM2.5 
Mining and quarrying 5% 1% 
Iron and Steel process 3% 3% 
Road Paving 3% 2% 
Off road combustion 3% 4% 
Waste open burning 1% 2% 
Livestock 14% 4% 
Crops 4% 1% 
Fugitives (exploration and production of fossil fuels) 2% 2% 
Other (including glass and other mineral products) 7% 7% 

Excluded from UKTM 42% 26% 
 

For NMVOC and NH3, emissions are dominated by sources not adequately characterised in 

UKTM-UCL-AQ including solvents, fugitive emissions and emissions from the agricultural 

sector (e.g. from manure) (Lott et al., 2016; Lott, Pye and Dodds, 2017).  
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3.6.3 Damage Cost Database 

In the United Kingdom, two broad methods have been used to estimate the cost of air pollution 

– a detailed “impact pathway” and a simpler “damage cost” approach (Miller and Hurley, 2010; 

Her Majesty’s Treasury, 2013). As discussed in this chapter in more detail, the impact pathway 

approach requires detailed emission, air quality modelling and health impact assessments and 

is therefore resource intensive. The damage costs approach uses the output of impact pathway 

studies to quantify the monetary impact of changes per unit of pollutant emitted (Department 

for Environment Food and Rural Affairs (DEFRA), 2013d; Walton et al., 2015). These damage 

costs are a more direct way to place an economic value on the impacts of air pollution on both 

public health and the environment (including both buildings and materials) in UKTM-UCL-

AQ, and therefore are more straightforward to include in the optimization process.  

 

Crucially, the damage costs approach does factor in the spatial distribution of air pollution and 

the likely exposure. It is therefore appropriate to use such nationally-derived damage costs 

values in a model such as UKTM-UCL-AQ. While recognised as a credible approach for policy 

appraisal, the limitation in using these values is the implicit assumption that such damage cost 

values hold for future years, in which this spatial distribution of pollution–exposure–impact 

may change. 

 

The damage cost values that are used in UKTM-UCL-AQ and within the scenarios presented 

here were developed by the UK Department for Environment, Food and Rural Affairs 

(DEFRA) and are shown in Table 3.6. All values represent the cost impact of a change in 

pollution by one tonne in a given year (“annual pulse damage costs”). These damage cost 

values include the air pollution impacts of particulate matters (PM10 and PM2.5) on health, 

including both chronic mortality and morbidity effects as well as building soiling impacts. For 
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nitrogen oxides (NOx), these values include the health impacts of secondary particulate matter 

resulting from NOx emissions but does not include the health impacts of ozone formation as 

the result of NOx emissions. The sulphur oxide (SOx) damage costs include this secondary PM 

formation and impacts of SO2 on health and building materials. For ammonia (NH3), these 

costs include the health impacts of secondary particulate matter formation (Department for 

Environment Food and Rural Affairs (DEFRA), 2011).  

 

In the case of particulate matter and nitrogen oxide air pollution, the damage cost values are 

more disaggregated to reflect the relative impact of pollution source on the population and 

surrounding built environment (e.g. particulate matter from power plant stacks in rural areas 

versus cars travelling at ground level on roads). Damage costs are not included for non-methane 

volatile organic compounds (NMVOCs), as DEFRA does not publish these values. In turn, this 

type of pollution is inventoried, but is not included in the cost-optimisation process in UKTM-

UCL-AQ. For the work presented in this thesis, the “Central” annual pulse damage costs from 

Table 3.6 were applied.  
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Table 3.6: Damage costs by sector and subsector (modified from (Department for Environment 
Food and Rural Affairs (DEFRA), 2011))30 

Air Pollutant Sector 

Annual Pulse Damage Costs (GBP per tonne - 

2010 prices) 

Low High Central 

PM10 

Electricity supplies industries (ESI) £2,072 £3,007 £2,645 

Domestic £24,029 £34,875 £30,690 

Agriculture £8,287 £12,026 £10,583 

Industrial £21,543 £31,267 £27,515 

Waste £17,815 £25,856 £22,753 

Transport £41,429 £60,129 £52,913 

NOx (as NO2) 

Electricity supplies industries (ESI) £383 £1,533 £958 

Domestic £4,444 £17,778 £11,111 

Agriculture £1,532 £6,130 £3,832 

Industrial £3,984 £15,938 £9,962 

Waste £3,294 £13,180 £8,238 

Transport £7,662 £30,651 £19,157 

SOx (as SO2) -- £1,439 £2,025 £1,781 

NH3 -- £1,678 £2,444 £2,151 

NMVOCs -- None None None 

 

When these damage costs are excluded from individual scenarios, the model simply accounts 

(i.e. inventories) the total emission levels for each of these air pollutants. In turn, air pollution 

emissions do not directly affect the model solution.  

 

																																																								
30 In the model implementation phase, damage cost values were adjusted over time with a 2% per annum lift 

rate to take into account willingness to pay. 
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When air pollution damage costs are included, these costs are considered in the optimisation 

process and so will influence energy technology choices. This functionality allows for analysis 

related to the impacts of including these costs on scenario outputs. In the implementation stage, 

these costs are included as additional operating costs that are either fuel- or activity-based, 

depending on the sector as previously discussed.  

 

3.7 Demand Drivers & Technology Cost Assumptions 

Energy flows for the base year (i.e. 2010) are calibrated to match the data found in the Digest 

of United Kingdom Energy Statistics (DUKES31) as published in 2011. Demand for energy 

services and the cost of energy system technologies are defined exogenously to the UKTM-

UCL-AQ model. All input values for the analyses presented in Chapter 4 parallel those used in 

previous analyses using UKTM-UCL (Committee on Climate Change, 2015a; Pye et al., 2015).  

 

3.8 Scenarios for the United Kingdom 

The scenarios presented in Chapter 4 for the United Kingdom cover a range of policy ambitions 

for both decarbonisation and air pollution. The former was mapped along a range of three 

scenarios and across the spectrum from 1) where decarbonisation is no longer a priority to 2) 

where current decarbonisation goals are met. For air pollution, two potential scenarios are 

considered – the first where non-greenhouse gas air pollution is ignored in the energy system’s 

development and the second where the damage costs associated with these pollutants are 

included in the development of the energy system. More specifically, these damage cost values 

are included in the cost-optimisation process for UKTM-UCL-AQ and, in turn, have a direct 

impact on the model solution. This range of policy ambition for decarbonisation and 

consideration of air pollution damage costs is displayed in Figure 3.23. 

																																																								
31 https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes 
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Figure 3.23: Scenarios Map for United Kingdom Analysis 

 

 

3.9 The PollutION Emissions from EneRgy (PIONEER) Model  

This section includes details on the creation of the PollutION Emissions from EneRgy 

(PIONEER) model, including its soft-linking with the UKTM-UCL-AQ model for the purpose 

of the urban-scale analysis presented in Chapter 5. Throughout these sections are explicit 

details on key assumptions made in the construction of the PIONEER model. Particular 

assumptions related to the implementation of this tool are discussed in Chapter 5 with 

additional details in the Appendix. 

 

3.9.1 PIONEER Methodology Overview`  

The PollutION Emissions from EneRgy (PIONEER) model is an accounting model designed 

to disaggregate urban level results from the outputs of national-scale energy systems models 

to enable the quantification of the air pollution and health impacts of road transport technology 

transitions in the energy system to 2050. PIONEER is designed specifically for the road 

transport sector, accounting for demands across five vehicle technology types – motorcycles, 
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cars, buses, light goods vehicles (LGVs), and heavy goods vehicles (HGVs) as defined by the 

United Kingdom Department for Transport (Department for Transport (Dft), 2014). It was 

created for two primary reasons – specifically, to allow for the: 

 

1. disaggregation of road transport in an urban region from the outputs of national-

level energy systems models to enable the evaluation of targeted local interventions 

in these regions 

2. accounting of the air pollution and health impacts associated with these targeted 

interventions 

 

This model was designed to be particularly straightforward to use in conjunction with the 

UKTM-UCL-AQ model in order to investigate the health impacts associated with technology 

transitions in the road transport sector. However, its design allows it to be coupled with any 

bottom-up and technology-rich energy systems model should adequate datasets be available to 

account for air pollution and public health impacts for the desired analysis region. 

 

Beyond the outputs from UKTM-UCL-AQ, other inputs to PIONEER include demand 

disaggregation factors (e.g. DfT forecasts, population projections) that are used to separate 

demand for road transport in Greater London from the total demand values for the United 

Kingdom. Scenario constraints include technological and behavioural change factors that can 

impact either or both the technological change pathway or the demand values for Greater 

London (e.g. technology mandates, degree of modal shifting).  
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The outputs from the PIONEER are: 

 

• disaggregated road transport demand (billion vehicle kilometres) by technology type 

(e.g. cars, LGVs) for Greater London 

• air pollution emissions levels (kilotonnes) from the road transport sector by vehicle type 

from 2010-2050  

• estimated public health impacts in Greater London resulting from air pollution 

emissions (PM2.5 and NOx) produced by the local road transport sector  

 

Figure 3.24 contains the flow diagram for the soft-linked PIONEER and UKTM-UCL-AQ 

models. As shown in this Figure, the outputs of UKTM-UCL-AQ for the transport sector are 

inputted into PIONEER and then the transport sector is disaggregated into two regions, namely 

1) Greater London and 2) Rest-of-UK. When required, the outputs from PIONEER are 

subsequently used as the inputs to UKTM-UCL-AQ, ensuring harmonization of the two models 

and allowing the modeller to understand the impacts on the technology transition pathway in 

the United Kingdom of changes in the transport system that are exclusively applied in Greater 

London. Practically speaking, the full process, including the “loop” between UKTM-UCL-AQ 

and PIONEER, is completed with the following steps: 

 

1. Run UKTM-UCL-AQ for the desired national-scale scenario 

2. Use the outputs of UKTM-UCL-AQ for road transport as inputs to PIONEER 

3. Define and input any additional constraints (e.g. demand reduction measures, 

technology mandates) for Greater London to be used in the PIONEER-produced 

scenarios 

4. Run PIONEER  
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5. Use PIONEER’s outputs as inputs to UKTM-UCL-AQ as appropriate (e.g. changes to 

demand over time due to targeted behavioural change) 

6. Use the outputs from UKTM-UCL-AQ as inputs to PIONEER to verify convergence 

of the models. 

7. Repeat this process as necessary… 

 

Figure 3.24: Analysis Flow Diagram for Soft-linked PIONEER and UKTM-UCL-AQ Models 

 

 

As discussed in more detail in Chapters 4 and 5, because of the limited impacts to the transport 

sector that are seen with the national level decarbonisation pathway, the analysis undertaken 

specifically for the Greater London transport sector is framed along two additional dimensions 

– technological and behavioural change – in order to more fully explore the “what ifs” and 

possibilities of targeted local action in this urban region. These dimensions are shown in Figure 

3.25 and map a range of potential futures resulting from targeted action to support 

technological and/or behavioural change. Justification for choosing a range of 0-40% modal 
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shifting away from cars is discussed elsewhere in this chapter. The technological change 

pathways that result in zero tailpipe emissions from cars by 2050 are discussed in more detail 

in Chapter 5. 

 

Figure 3.25 Scenario Map for Greater London Analysis 

 

 

3.9.1.1	Disaggregation	of	Demand	in	PIONEER		
As with UKTM-UCL-AQ, the PIONEER model uses population projections to calculate 

demand over time by transport type. First, per capita demand (PerCapDem) is calculated for 

Greater London using the user inputs for both population (Pop) and total demand (Dem) in the 

base year for each vehicle technology type (tech) as shown in Equation 3. As previously stated, 

both of these values are user inputs (i.e. exogenous) to PIONEER. The “0” in the equation 

below indicates that this calculation is completed for the base year. 

 

𝑃𝑒𝑟𝐶𝑎𝑝𝐷𝑒𝑚73PQRP3STUVTU,W,RPXY = 	
𝐷𝑒𝑚73PQRP3STUVTU,T,RPXY

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛73PQRP3STUVTU,W,RPXY	
 

Eq. 3 
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Subsequently, this per capita demand value is used in conjunction with population projections 

for Greater London using a subset of the same ONS statistics that are also used in UKTM-

UCL-AQ to calculate road transport demand (Office of National Statistics, 2010). This 

calculation is completed by multiplying the base year per capita demand value (Equation 3) by 

the projected population for each time slice (y) and technology type (tech). This equation is 

shown in Equation 4. 

 

𝐷𝑒𝑚𝑎𝑛𝑑73PQRP3STUVTU,RPXY,=

= (𝑃𝑒𝑟𝐶𝑎𝑝𝐷𝑒𝑚𝑎𝑛𝑑73PQRP3STUVTU,RPXY,W)×(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛73PQRP3STUVTU,=) 

Eq. 4 

  

This demand value for Greater London by year is subsequently used to calculate the demand 

for the Rest-of-UK region by subtracting it from the total UK demand projection using the 

same process using Equation 6. An internal check is then performed by PIONEER to ensure 

that the sum of the values totals the demand projection output values provided by UKTM-

UCL-AQ. 

 

𝐷𝑒𝑚𝑎𝑛𝑑5PaR>Tb>cd,RPXY,= = 	𝐷𝑒𝑚𝑎𝑛𝑑cd,= − 𝐷𝑒𝑚𝑎𝑛𝑑73PQRP3STUVTU,= 

Eq. 6 

 

For the alternative case where demand in the United Kingdom or Greater London is assumed 

to follow a demand projection that considers other demand drivers beyond changes population, 

these values are taken directly from the projections. They are subsequently checked to ensure 

consistency with the other model. 
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As a default, demands are disaggregated in PIONEER in five-year time slices to match the 

outputs from UKTM-UCL-AQ, including 2010 to 2050. Linear interpolation is used for any 

analysis conducted that requires smaller time slides.  Should UKTM-UCL-AQ be modified to 

use a higher number of time slices (e.g. annual, biannual) and assuming appropriate data 

availability, the PIONEER system can be modified to accommodate this change in temporal 

resolution. 

 

3.9.1.2	Linking	UKTM-UCL-AQ	Outputs	to	PIONEER 
Emission factors for each type of air pollution (pollutant) and technology type (e.g. cars, LGVs) 

resulting from the technology transition pathway outputted by UKTM-UCL-AQ are calculated 

directly in PIONEER. This calculation is completed using outputs from UKTM-UCL-AQ for 

the total emissions (Emiss) for each type of pollutant (pollutant) by technology type and 

corresponding demand values (Dem). These values are used to calculate a set aggregate 

emission factor for each road transport technology type (tech) as shown in Equation 7. This 

approach simultaneously ensures consistency in the emission factors used in UKTM-UCL-AQ 

and PIONEER while creating a convenient opportunity for a simple but important data quality 

check. Emission factors (EFs) are calculated in units of kilotonnes per billion vehicle 

kilometres (kt/bvkm). 

 

𝐸𝐹73PQRP3STUVTU,eTffgRQUR,RPXY,= = 	
𝐸𝑚𝑖𝑠𝑠cd,eTffgRQUR,RPXY,=

𝐷𝑒𝑚cd,RPXY,=	
 

Eq. 7 
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Furthermore, total emissions of a given pollutant in Greater London by a type of road transport 

technology (e.g. cars, LGVs) is calculated using Equation 8.  

 

𝐸𝑚𝑖𝑠𝑠73PQRP3STUVTU,RPXY,= = 𝐸𝐹73PQRP3STUVTU,eTffgRQUR,RPXY,=	×	𝐷𝑒𝑚73PQRP3STUVTU,RPXY,=	 

Eq. 8 

 

3.9.1.4	Incorporating	Scenario	Constraints	in	PIONEER	
As a default, PIONEER assumes that Greater London follows the technology transition 

pathway defined by the outputs from UKTM-UCL-AQ with the demand levels that were 

previously disaggregated from United Kingdom demand. However, additional scenario 

constraints can be applied in PIONEER for Greater London through the definition of 

technological and behavioural change pathways over time. Put another way, these constraints 

are defined in terms of how they impact either the technology transition pathway (i.e. the 

aggregate emission factors for each technology type) or demand over time. For example, a 

scenario could be constructed to represent targeted action in the Greater London urban region 

to adopt a specific technology subtype (e.g. zero-tailpipe vehicles) or to reduce demand. The 

former would be defined in terms of the impact that this increased adoption of a technology 

subtype will impact the aggregate emissions factor for cars. The latter would impact the 

demand assumptions in both PIONEER and UKTM-UCL-AQ. 

 

3.9.1.4.1	Scenarios	with	Changes	to	the	Technology	Transition	Pathway	
	
In the case where the scenario constraints impact the technological transition pathway, the user 

inputs the amount of demand that must be supplied by an individual technology subtype 

(subtech) for each year (y) included as a time slice in the defined scenario for Greater London 

(scenario). For example, this type of constraint is used if the modeller wishes to require that a 
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technology subtype be adopted in a geographically diverse manner (i.e. proportionally more of 

less electric vehicles in Greater London versus the rest of the United Kingdom). 

 

After these scenario constraints have been inputted, PIONEER does an internal check to ensure 

that the technologies are available to meet the user inputs by comparing the demand values 

with the outputs from UKTM-UCL-AQ. An error appears if user constraint cannot be met.  

 

If the user constraint is valid, the user constraints are then utilized by PIONEER to calculate 

the impact that the inputs have on the aggregate emissions factor for the technology type and, 

in turn, the total emissions for Greater London over time in the scenario. This process begins 

with re-calculating the aggregate emissions factor for the technology type as shown in Equation 

9 where values are summed over all the subtechs in the UKTM-UCL-AQ model outputs. In 

this equation: 

 

• 𝐸𝐹eTffgRQUR,cd,RPXY,agiRPXY,= : emissions factor (EF) for the technology subtype 

(subtech), which is taken directly from the UKTM-UCL-AQ emission factor 

assumptions. 

• 𝐷𝑒𝑚73PQRP3STUVTU,RPXY,agiRPXY,=,aXPUQ3jT: demand (Dem) for the subtype in Greater 

London, which is defined by the user in their scenario constraint.  

• 𝐷𝑒𝑚73PQRP3STUVTU,RPXY,=: demand for the technology type (e.g. cars, LGVs) in Greater 

London, which is defined in the demand disaggregation process described elsewhere 

in this Chapter. 

• 𝐸𝐹5PaR>Tb>cd,eTffgRQUR,RPXY,=,aXPUQ3jT: emissions factor for the area of the United 

Kingdom outside of Greater London for the technology type 
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• 𝐷𝑒𝑚5PaR>Tb>cd,RPXY,agiRPXY,=,aXPUQ3jT: as shown in Equation 11, this is defined as the 

difference between the total demand for the individual technology subtype (e.g. 

electric vehicles) in the United Kingdom and the demand for the subtype in Greater 

London as inputted by the user in their scenario constraints.  

 

𝐸𝐹73PQRP3STUVTU,eTffgRQUR,RPXY,=,aXPUQ3jT 	

=
[(𝐸𝐹cd,eTffgRQUR,RPXY,agiRPXY,=)×(𝐷𝑒𝑚73PQRP3STUVTU,RPXY,agiRPXY,=,aXPUQ3jT)]agiRPXY

𝐷𝑒𝑚73PQRP3STUVTU,RPXY,=
 

Eq. 9 

 

Correspondingly, the impact of the user constraints on emission factors outside of the Greater 

London area are calculated as shown in equations 10 and 11. 

 

𝐸𝐹5PaR>Tb>cd,eTffgRQUR,RPXY,=,aXPUQ3jT 	

= 	
[(𝐸𝐹cd,eTffgRQUR,RPXY,agiRPXY,=)×(𝐷𝑒𝑚5PaR>Tb>cd,RPXY,agiRPXY,=,aXPUQ3jT)]agiRPXY

𝐷𝑒𝑚5PaR>Tb>cd,RPXY,=
			 

Eq. 10 

 

𝐷𝑒𝑚5PaR>Tb>cd,RPXY,agiRPXY,=,aXPUQ3jT

= 𝐷𝑒𝑚cd,RPXY,agiRPXY,= − 𝐷𝑒𝑚73PQRP3STUVTU,RPXY,agiRPXY,=,aXPUQ3jT 

Eq. 11 

 

Total emissions (Emis) per year for each year (y) for that technology type for Greater London 

in the scenario is then calculated in PIONEER by multiplying the scenario-definedemission 

factor for the technology type by the demand for that technology type in Greater London as 

shown in Equation 12. The same calculation is completed for the area outside of Greater 
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London using Equation 12 by applying “Rest-of-UK” values for both the emission factors and 

demands which allows the modeller to examine the impact of the scenario constraints for 

Greater London on air pollution levels from road transport in the rest of the United Kingdom. 

 

𝐸𝑚𝑖𝑠73PQRP3STUVTU,RPXY	,=,aXPUQ3jT

= 𝐸𝐹73PQRP3STUVTU,eTffgRQUR,RPXY,=,aXPUQ3jT	×	𝐷𝑒𝑚73PQRP3STUVTU,RPXY,=,aXPUQ3jT 

Eq. 12 

 

Noted here is that, functionally, this type of scenario constraint only modifies the geographic 

distribution of technology deployment. It does not change any of the overarching demand or 

technology assumptions used in UKTM-UCL-AQ. In turn, an iterative loop is not needed 

between UKTM-UCL-AQ and PIONEER in this type of scenario. This is not the case for 

changes in overall demand values, as described below.  

 

3.9.1.4.2	Scenarios	with	Behavioural	Change	
In the case where the scenario constraints impact the demand pathway for Greater London, the 

user inputs the amount of demand that will be removed or added for each time slice and 

technology type in Greater London. This amount of demand change is then incorporated into 

the demand projections for the United Kingdom using Equation 13 and holding demand in the 

rest of the UK constant with UKTM-UCL-AQ projections.  

 

𝐷𝑒𝑚𝑎𝑛𝑑cd,RPXY,= = 	𝐷𝑒𝑚𝑎𝑛𝑑73PQRP3STUVTU,RPXY,= +	𝐷𝑒𝑚𝑎𝑛𝑑5PaR>Tb>cd,RPXY,= 

Eq. 13 
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In this case, the scenario constraint for Greater London has a direct impact on the assumptions 

that are used in the UKTM-UCL-AQ model for demand in the United Kingdom. In turn, 

UKTM-UCL-AQ is re-run using the updated demand values for each technology type. After 

this iterative “loop”, the emission factors for Greater London are re-calculated using the 

process described previously in this chapter. Furthermore, if the scenario uses a combination 

of behaviour and technological change constraints, the latter is checked for validity as 

described in the previous section. 

 

3.9.1.5	Calculating	Public	Health	Impacts	in	PIONEER	
The health impacts in the PollutION Emissions from EneRgy (PIONEER) model are calculated 

using research published in 2015 by Walton, et. al. from Kings College London, which utilises 

the impact pathway approach (Favarato et al., 2014; Walton et al., 2015). This research uses 

emerging techniques to assess the mortality burdens of nitrogen dioxide (NO2) and also updates 

previous work on the health impacts of PM2.5 in London by the Committee on the Medical 

Effects of Air Pollution (COMEAP) and Public Health England (Miller and Hurley, 2010; 

Committee on the Medical Effects of Air Pollution (COMEAP), 2011; Gowers, Miller and 

Stedman, 2014; Walton et al., 2015).    

 

Noted here is the existence of uncertainty in the evidence associated with the mortality burdens 

of NO2 and so these numbers “need to be used with care” (World Health Organization, 2013a, 

2013b; Walton et al., 2015). This study relied on data published in the London Atmospheric 

Emissions Inventory (LAEI)32 and its associated modelling efforts related to air pollution 

concentrations throughout the Greater London area. This inventory includes data for 32 

London Boroughs, the City of London, and up to the M25 Motorway and includes detailed air 

																																																								
32 http://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2010 
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quality and exposure modelling for the Greater London area (Walton et al., 2015). The latest 

publication of this inventory is the LAEI 2013, which was published in 2016. The map in 

Figure 3.26 illustrates the geographical coverage of this inventory (Martin, 2016). 

 

Figure 3.26: Geographies Included in the LAEI 2013 Publication, from the GLA (Martin, 2016) 
 

 

As discussed elsewhere in this thesis in more detail, the total mortality burden in London in 

2010 of PM2.5 originating from human activity has been most recently estimated at 3,537 

premature deaths, the equivalent of 52,630 life-years lost (Walton et al., 2015). Of these early 

deaths, air pollution originating from outside of London is the largest contributor though 

London sources also contributed significantly to the health burden (Walton et al., 2015).  

 

For the same year, the total mortality burden of long-term exposure to NO2 is estimated to be 

up to 5,879 premature deaths (88,113 life-years lost) (Walton et al., 2015) . This value assumes 

an up to 30% overlap between the effects of PM2.5 and NO2 that is recommended by the World 

Health Organization in order to avoid double counting (World Health Organization, 2013a, 
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2013b). Of these early deaths, air pollution from inside of London (including road transport) is 

the largest contributor (Walton et al., 2015). 

 

In these estimates, Walton et al. use the following relative risk values for (Walton et al., 2015): 

 

• PM2.5: relative risk of 1.06 (plausibility interval 1.01 to 1.12) for changes in mortality 

resulting from long-term exposure to PM2.5. These values are derived from the 

American Cancer Society Study and were subsequently recommended for use in the 

UK by the Committee on the Medial Effects of Air Pollution with the plausibility 

interval from COMEAP (Pope et al., 2002; Committee on the Medical Effects of Air 

Pollution (COMEAP), 2010) 

• NOx (as NO2): relative risk of 1.039 (95% CI 1.022 – 1.056) for the change in mortality 

as a result of long-term exposure to NO2. These values are derived from studies by 

Hoek et al. and are recommended for use the World Health Organization Health Risks 

of Air Pollution in Europe (HRAPIE) project (Hoek et al., 2013; World Health 

Organization, 2013a).  

 

Of note with regards to the NOx values is that these relative risks include the 30% maximum 

adjustment for potential overlap with the health effects of PM2.5 as recommended by the World 

Health Organization in the HRAPIE project. Without these adjustments, this relative risk 

increases to 1.055 (95% CI 1.031 - 1.080) (World Health Organization, 2013a; Walton et al., 

2015). 

 

Combined, these negative health impacts in Greater London have an estimated economic cost 

of £1.4 – 3.7 billion (Walton et al., 2015). This economic impact is estimated using London-
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specific damage cost values that consider the area’s particular exposure profiles (Committee 

on the Medical Effects of Air Pollution (COMEAP), 2011; Atkinson et al., 2014; Mills et al., 

2015; Walton et al., 2015).   

 
 
Overall, of the previously discussed mortality burden estimates for London, a slight majority 

(52%) come from London sources of PM2.5 and NO2 pollution (Walton et al., 2015). More 

specifically for road transport, an estimated 30% of total premature deaths in London result 

from air pollution produced by London road transport – a total of 2,825 premature deaths 

(42,229 life-years lost). Of these deaths, the vast majority (2,448 premature deaths) result from 

NO2 pollution with the balance (377 premature deaths) (Walton et al., 2015). This total value 

represents the total current opportunity for Greater London that could be realised in terms of 

targeted local action to reduce PM2.5 and NO2 air pollution from local road transport. Of course, 

action to reduce emissions in Greater London would also have impacts on areas outside of this 

urban area. 

 

These values can be used without detailed air quality and exposure calculations to provide an 

initial estimate the health impacts of changes in levels of air pollution from road transport 

(road). In PIONEER, these changes are calculated using Equation 14, which assumes a linear 

relationship between changes in air pollution levels and the corresponding annual attributable 

premature death (Death) resulting from changes in emissions levels of a specific pollutants 

(pollutant) from Greater London road transport (road) in a particular year (y). The 

corresponding years of life lost (YLL) are calculated using Equation 15. 
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𝐷𝑒𝑎𝑡ℎ3TQV,eTffgRQUR,= = 	𝐷𝑒𝑎𝑡ℎ3TQV,eTffgRQUR,nWoW×
𝐸𝑚𝑖𝑠3TQV,eTffgRQUR,=
𝐸𝑚𝑖𝑠3TQV,eTffgRQUR,nWoW

	  

	 

Eq. 14 

 

𝑌𝐿𝐿3TQV,eTffgRQUR,= = 	𝑌𝐿𝐿3TQV,eTffgRQUR,nWoW×
𝐸𝑚𝑖𝑠3TQV,eTffgRQUR,=
𝐸𝑚𝑖𝑠3TQV,eTffgRQUR,nWoW

	  

	 

Eq. 15 

 

Per the defined scope of this research project, this process only accounts for changes in 

mortality levels in Greater London resulting from changes in road transport in Greater London. 

Of course, as discussed by Walton, et. al., the realization of the health effects resulting from 

changes in air pollution will be observed over an extended period of time after the initial change 

has occurred (Walton et al., 2015). In turn, the resulting values should be viewed as the 

cumulative health benefit of a change in air pollution levels. 

 

Furthermore, due to the spatial resolution of the models used in this research, this process 

assumes that air pollution reductions lead to evenly distributed effects on air pollution 

concentrations and exposure levels across the Greater London area and, in turn, mortality 

burdens. Furthermore, the knock-on effects of pollution level changes are assumed to be 

negligible in PIONEER’s calculations. For example, dramatic reductions in nitrogen oxide 

levels could lead to increasing levels of tropospheric ozone due to knock-on effects33. Each of 

																																																								
33 This type of knock-on effect is being investigated in a related project that includes the author of this thesis 

and researchers from Kings College London (Williams et al., 2016). 
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these assumptions represents an opportunity for additional future work, particularly in air 

quality modelling to determine the potential impacts of these types of interactions. As discussed 

elsewhere in this thesis, a portion of this type of work is currently being pursued as a part of a 

collaborative project between the author of this thesis and researchers at Kings College 

London. 

 

3.9.2 Mode Shifting Potential in Greater London 

 
The ability to shift personal car use to other forms of travel (e.g. walking, cycling, public 

transport) has been discussed in this Greater London context via work by both Transport for 

London in the 2010 report on cycling potential for Greater London and by Pye and Daly in 

their 2015 paper that focuses on modelling mode shifting in urban areas in the United Kingdom 

(Transport for London (TfL), 2010; Pye and Daly, 2015). 

 

In the Transport for London report, analysts reviewed data from the London Travel Demand 

Survey (LTDS) to estimate the extent to which trips made by other modes of travel could be 

replaced with cycling (Transport for London (TfL), 2010). When identifying trips that could 

potentially be made by bike, these analysts excluded all trips over 8 kilometres (~ 5 miles) or 

those trips that would take at least 20% more time if cycled. They also excluded trips that were: 

 

• Already walked or cycled;  

• Made by young children, elderly and/or disabled people;  

• Made between 8pm and 6am; or  

• Carrying heavy or bulky goods. 
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According to London Travel Demand Survey data, the average distance travelled per day by 

London residents is 15 kilometres (~9.3 miles) as the “crow-fl[ies]” with an average travel time 

of 70 minutes per day (Transport for London (TfL), 2010). For those trips made wholly within 

the London region, average distances travelled per day were 9 kilometres. This value removes 

any distorting effect potentially caused by long distance trips made by London residents to 

other parts of the United Kingdom. 

 

This analysis was included in work presented by Pye and Daly in 2015, which focuses on their 

energy systems approach to modelling modal shift in urban areas in the United Kingdom. In 

their assessment, they reviewed a number of existing studies to estimate the maximum degree 

of modal shifting that could be achieved in urban areas in the United Kingdom, including the 

TfL study (Transport for London (TfL), 2010; Pye and Daly, 2015). Pye and Daly consider the 

ability for cycling, walking and public transport (bus and train) to offset demand for car travel 

in Greater London, concluding that a maximum of 44% of per capita car travel in 2050 could 

potentially be offset by these alternative modes of travel (Pye and Daly, 2015). In turn, while 

100% mode shifting might be theoretically possible from a technical standpoint, the values 

used in the scenarios presented here are grounded by these previous studies to arguably more 

realistic values of 0-40%. 

 

For context, Pye and Daly note that this value includes a 700% increase in annual per capita 

cycling, to reach 670 km in 2050 (Pye and Daly, 2015). This level is below the current Dutch 

average of 850 km per year (Ministerie van Verkeer en Waterstaat, 2009; Pye and Daly, 2015).  
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3.10 Ongoing Related Projects  

This section provides a brief overview of the ongoing work to extend this research to 

incorporate explicit analysis of the air quality impacts of energy technology transitions in 

partnership with researchers at Kings College London. In this research, the UKTM-UCL-AQ 

model has been soft-linked to the Community Multiscale Air Quality Model (CMAQ) for the 

United Kingdom (Williams et al., 2016). This soft-linking allows for the explicit modelling of 

the air quality impacts of changes in the energy system in a manner that accounts for non-

energy sector air pollution. It also accounts for impacts on tropospheric ozone, a secondary 

pollutant that is formed through the interaction of nitrogen oxides (NOx), carbon monoxide 

(CO), and volatile organic compounds (VOCs) in the presence of sunlight.  

 

The next chapter includes the presentation of results from the application of UKTM-UCL-AQ 

for the United Kingdom. 	
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Chapter 4 – UK Analysis 
4.1 Overview 

This chapter presents an overview of the analysis that was done in this research to quantify the 

co-impacts of energy system decarbonisation on non-greenhouse gases emission levels in the 

United Kingdom. It begins with an overview of the key outcomes and insights from this 

research (Section 4.2). This section is followed by details on the application of the UKTM-

UCL model variant (UKTM-UCL-AQ) that was developed in Fall 2015 for a set of six 

scenarios (Section 4.3) with additional details included in the Appendix of this manuscript. The 

chapter concludes with a brief discussion and series of conclusions (Section 4.4). Additional 

discussion on the implications of these findings is provided in Chapter 6 of this thesis.   

 

The goal of the analysis presented here was to explore the two research questions identified in 

this research project with regards to the United Kingdom energy sector, namely: 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on a national scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on a 

national scale?   

 

These research questions were explored in the context of an energy system technology 

transition between 2010 (i.e. the base year) and 2050. This time is currently used by the United 

Kingdom government in setting its long-term decarbonisation goals as is the ultimate target set 

under the Climate Change Act of 2008 that is discussed in more detail in Chapter 2 of this 

thesis (United Kingdom Parliament, 2008).  
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The core tool used in this portion of this research project is the UKTM-UCL-AQ model, which 

was developed in Fall 2015. As mentioned elsewhere in this manuscript, the UKTM-UCL-AQ 

model is a bottom-up technoeconomic optimization model that includes air pollution and its 

associated damage costs. Its topical coverage and relationship to the other models used in the 

research project and a related ongoing collaborative side project can be seen in Figure 4.1. The 

UKTM-UCL-AQ model is a single region, national scale model for the United Kingdom while 

PIONEER is a single region, urban scale model for the Greater London area.  

 

Figure 4.1: Topical Coverage of the UKTM-UCL-AQ Model in Relation to PIONEER and 
CMAQ 

 

As discussed in Chapter 3, the scenarios presented in this Chapter cover a range of policy 

ambitions for both decarbonisation and air pollution. For the sake of completeness and to avoid 

potential confusion, Figure 4.2 is included here as well as in Chapter 3. 
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Figure 4.2: Scenarios Map for United Kingdom Analysis 

 

 

Portions of the work discussed in this chapter have been presented at three conferences, 

published in the Journal of Transport and Health, and published by Energy Policy (Lott, Ekins 

and Davies, 2014; Lott and Daly, 2015; Lott et al., 2016; Williams et al., 2016; Lott, Pye and 

Dodds, 2017). The author of this thesis served as primary author/presenter for all of these 

publications and presentations, with the exception of Williams, et. al. 2016, which relates to 

ongoing related work in partnership with Kings College London that is described in more detail 

in the Appendix (Williams et al., 2016). 

 

4.2 Key Outcomes & Insights 

1. Air pollution emission factors for six (6) air quality pollutants - PM10, PM2.5, NOx, 

SOx, NH3, and NMVOCs were integrated for all energy sectors into the UK TIMES 

Model (UKTM-UCL) to create the UKTM-UCL-AQ variant. 
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2. UKTM-UCL-AQ could represent the vast majority of NOx and SOx pollution sources 

in the United Kingdom, a majority of PM10 and PM2.5 pollution, and a minority of NH3 

and NMVOCs pollution. 

3. The estimated costs to the environment and human health were integrated into 

UKTM-UCL-AQ for all energy sectors using damage cost values that are based on an 

impact pathway approach. 

4. Incorporating the damage costs of air pollution led to significant changes in air 

pollution levels over time to 2050, resulting from changes in technology choices and 

fuel-switching particularly in the non-transport sectors. 

5. The inclusion of air pollution damage costs had little impact on energy system costs, 

with an overall increase of 0.15% to 0.5%. 

6. In particular, the incorporation of damage costs impacted where biomass was used as 

an input fuel in the energy system, shifting away from residential sector use. 

7. Results were quite sensitive to assumptions, including the degree to which fuel 

shifting could occur but not including constraints on the nuclear fleet expansion. 

8. Transport was the least impacted of the sectors considered within the energy system, 

suggesting that targeted polices would be needed to address transport-sector air 

pollution impacts. 

 

4.3 Scenario Outputs 

A set of six (6) scenarios are developed to better understand the relative impacts of the inclusion 

or exclusion of the damage costs for outdoor air pollution. These scenarios include a baseline 

(base), reference (ref), and low greenhouse gas (lowGHG) both with and without damage costs 

as shown in Table 4.1. The scenarios which included damage costs for non-greenhouse gas air 

pollutants as displayed in Table 4.1 are indicated with a “_DAMC” at the end of the scenario 
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name. For example, the “base” and “base_DAMC” scenarios are the same except that the latter 

included damage costs in the optimisation process. 

 

Table 4.1: Scenario Overview 
Scenario Name Carbon target/price? Damage costs? 

base No No 

base_DAMC Yes 

ref Yes - £30/tonne in 2030 
 

No 

ref_DAMC Yes 

lowGHG Yes – 80% reduction by 2050 with 
interim targets (i.e. carbon 

budgets) 

No 

lowGHG_DAMC Yes 
 
 

The base and ref scenarios did not include the United Kingdom’s 2050 decarbonisation goal or 

interim targets. The latter included a £30 per tonne carbon price that was linearly phased in 

from 2015 to 2030 and then held constant to 2050 in order to simulate a central case where the 

system moves away from the most carbon-intensive technologies (e.g. coal in the electricity 

sector) but long term decarbonisation goals are not achieved. In the lowGHG scenario, the 

energy system is required to meet existing U.K. decarbonisation targets for a total reduction in 

greenhouse gas emissions of 80% by 2050 compared to 1990 levels including interim targets 

through the 4th Carbon Budget. In late July 2016, the UK Government set a 5th Carbon Budget 

of 1,725 million tonnes of carbon dioxide equivalent for the 2028–2032 budgetary period in 

agreement with recommendations from the Committee on Climate Change (Department for 

Business Energy and Industrial Strategy (BEIS), 2016). The reduction trajectory used in this 

analysis is broadly consistent with this recently agreed 5th Carbon Budget, though it was not 

explicitly included as this budget was under development when these scenarios were 

constructed and executed. 
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The scenarios examine the period to 2050 for the United Kingdom using demand drivers that 

rely upon official population and economic growth projections and energy efficiency 

expectations from the Office of National Statistics (Office of National Statistics, 2010).   

 

4.3.1 Scenarios without damage costs 

For the three scenarios without damage costs (i.e. base, ref and lowGHG), the decarbonisation 

of the energy sector results in significant co-benefits for reducing air pollutant emissions in 

2050. For particulate matter, decarbonisation in the lowGHG scenario results in an additional 

34% (41 kilotonne) decrease in PM10 emissions and 38% (29 kt) decrease in PM2.5 pollution 

levels in 2050 compared to both the base and ref scenarios in that year as shown in Figure 4.3. 

These additional decreases were the result of shifts away from fossil fuels (including coal).  

This result indicates that the carbon tax applied in the ref scenario did not have a significant 

impact on 2050 levels of particulate matter air pollution (both PM10 and PM2.5), though some 

intermediate differences are seen as shown in Figure 4.3. A full set of figures showing air 

pollution by sector for these scenarios can be found in the Appendix of this thesis. 

 

However, decarbonisation in the lowGHG scenario results in increased particulate matter 

pollution between 2020 and 2045 due to rises in the use of biomass for residential heating. 

These units would likely be located in areas with higher population densities, giving rise to 

concerns over pollution exposure levels in urban areas and corresponding policy questions for 

local governments. This mid-term PM emissions increase is avoided with the inclusion of 

damage costs, as discussed in the next section. 
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The differences in NOx emission levels in 2050 across scenarios were also notable, with an 

additional 25% (125 kilotonne) and 18% (84 kt) reduction in emissions in 2050 in the lowGHG 

compared to the base and ref scenarios, respectively. These results are displayed in Figure 4.3. 

 

The most dramatic absolute reductions in air pollution emissions between scenarios in 2050 

were seen for SOx pollution levels. All told, decarbonisation in the lowGHG scenario led to a 

58% reduction (203 kt) in SOx emissions compared to the base case in 2050. The difference in 

SOx between the lowGHG and ref scenario – with its intermediate carbon price linearly phased 

in between now and 2030 - was 100 kilotonnes in 2050. These results are displayed in Figure 

4.3. Of note here is that – unlike for particulate matter air pollution – emissions of NOx and 

SOx air pollution in 2050 were impacted by the carbon price included in the ref scenario, which 

leads to different emission levels of these two pollutants in 2050.  

 

Figure 4.3: Total Air Pollution Emissions by Type in the United Kingdom for Scenarios 
Without Damage Costs, 2010-2050 
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Noted here is that the ability for fuel-switching to biomass in the residential sector to meet 

heating demand was limited to the rates shown in the scenario output for the lowGHG scenario. 

These rates are equal to the maximum allowed by user constraints placed in the model. Without 

this constraint, the spike in biomass use in the residential sector for heating purposes was much 

higher and seemingly quite unlikely.  

 

This output is illustrated below in the results from the lowGHG scenario variant 

“lowGHG_lessconstrainedbio”. In this variant, all scenario inputs and constraints were 

identical to the lowGHG scenario with one exception – that is, the constraint for fuel-switching 

to biomass was relaxed. This relaxed constraint resulted in increasing levels of mid-term 

biomass use, resulting in a much higher spike in particulate matter air pollution as displayed in 

Figures 4.4 and 4.5. This result indicated a high sensitivity of the outputs to this residential 

biomass constraint. 

 

Figure 4.4 Total Particulate Matter (PM10) Emissions in the United Kingdom for 
lowGHG_lessconstrainedbio” and “lowGHG”, 2010-2050 
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Figure 4.5: Total Particulate Matter (PM2.5) Emissions in the United Kingdom for 
lowGHG_lessconstrainedbio” and “lowGHG”, 2010-2050 

 

 

4.3.2 Scenarios that include damage costs 

When the damage costs of other air pollutants (i.e. particulate matter, nitrogen oxides, sulphur 

oxides, ammonia, and non-methane volatile organic compounds) are in the optimisation 

process, the model selected somewhat different technologies and fuel use patterns across all 

scenarios. Again, this is because the model explicitly sees the external costs of air pollution, 

which therefore becomes an economic determinant in energy system choices. For example, 

coal is replaced by natural gas for electricity generation. There is also a decrease in biomass 

switching, in particular in the residential sector between 2020 and 2045, showing the inherent 

air quality risks in decarbonisation pathways that rely heavily on bioenergy use. As discussed 

in Chapter 3, these scenarios used the “Central” annual pulse damage costs as shown in Table 

3.6. 

 

Primary energy consumption in 2050 by fuel type is displayed in Figure 4.6 for all scenarios. 

Overall, the inclusion of damage costs in the base scenario led to increased use of natural gas 
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and decreased use of biomass and biofuels as well as coal and coke in 2050. Decarbonisation 

ambitions resulted in increased use of nuclear power for the ref and lowGHG scenarios. For 

the latter, the inclusion of damage costs had little impact on final primary energy consumption 

in 2050, though the pathway taken was significantly different. 

 

Figure 4.6: Primary energy consumption (PJ) in 2050 by scenario 
 

 
 

Figure 4.7 shows the decrease in particulate matter emissions (for PM10) that results from the 

inclusion of damage costs in the lowGHG scenario. In particular, the inclusion of damage costs 

prevents fuel-switching to biomass in the residential sector which, in turn, eliminates the rise 

in particulate matter pollution between 2020 and 2045. Along with this decrease in fuel-

switching to biomass in the residential sector, increased levels of both electricity and other 

renewables use are seen as well as some smaller increases in natural gas use in the 

lowGHG_DAMC scenario compared to the scenario where damage costs were not included 

(i.e. lowGHG). 
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Figure 4.7: Total PM10 Emissions from Energy by Sub-Sector, 2010-2050 

 

 

For the base and ref scenarios, the inclusion of damage costs resulted in lower 2050 air 

pollution levels across all air pollutants as shown in Figure 4.8 and Table 4.2.  The impacts of 

including damage costs was less dramatic for the lowGHG scenario.  

 

Figure 4.8: Air Pollution Levels in 2050 by Scenario 
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Table 4.2: Total Air Pollution by Scenario in 2050 
Pollutant Scenario Without damage 

costs (kt) 
With damage costs 

(kt) 
Difference 

(%) 
  

PM10 
  

base 90 46 -49% 
ref 90 46 -49% 
lowGHG 59 42 -29% 

  
PM2.5 

  

base 76 35 -54% 
ref 77 34 -55% 
lowGHG 47 30 -35% 

  
NOx 

  

base 504 460 -9% 
ref 463 408 -12% 
lowGHG 379 362 -4% 

  
SOx 

  

base 346 181 -48% 
ref 293 178 -39% 
lowGHG 144 131 -8% 

 

For the transport sector, the inclusion of damage costs results in some limited technology shifts 

including the electrification of passenger rail across all scenarios. Overall, the relatively small 

level of change in transport sector pollution levels between scenarios indicates that the level of 

damage costs assumed were not enough to produce a significant shift in transport sector 

technologies. 

 

For the base scenario, decreasing emission trends are observed from all forms of road transport, 

except for cars. For the ref and lowGHG scenarios, less dramatic technology shifts are seen, 

indicating that energy sector decarbonisation was the driving force behind the technology 

pathway chosen by the model. Total emissions from transport by emission type and scenario 

in 2050 as well as the percentage change compared to the base scenario in 2050 are shown in 

Table 4.3.  
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Table 4.3: Total Transport Emissions by Type and Scenario in 2050 

Scenario 

Total Transport Emissions in 2050 (kilotonnes) 

PM10 
% 

Change* PM2.5 
% 

Change* NOx 
% 

Change* SOx 
% 

Change* 

base 35.4 -- 25.0 -- 233.6 -- 62.2 -- 

ref 35.4 0.01% 25.0 0.0% 244.7 5% 62.2 0.0% 

lowGHG 35.1 -0.81% 25.0 - 1.1% 231.0 -1% 61.9 -0.4% 

base_DAMC 35.4 -0.15% 25.0 - 0.2% 225.4 -4% 62.1 - 0.3% 

ref_DAMC 35.3 -0.29% 24.9 - 0.4% 229.9 -2% 62.1 - 0.0% 

lowGHG_DAMC 35.0 -1.28% 24.5 - 1.8% 222.2 -5% 61.8 -0.4% 
*compared to the Base scenario 

 

For road transport, total PM10 emissions decline slightly to 2020 across all scenarios and then 

slowly increase to 2050 to within 5% of 2010 levels as shown in Table 4.4. A similar trend is 

seen with PM2.5 as shown in Table 4.5.  These two outputs show the growing importance of 

non-tailpipe (i.e. road, tyre, and brake wear) particulate matter pollution that is directly a 

function of distance travelled and not of the type of fuel used. They also illustrate how 

increasing demand for road transport could slowly outstrip previous improvements in 

particulate matter pollution mitigation efforts despite improvements in engine technology.  

 

Table 4.4: Total Transport PM10 Emissions by Scenario, 2010 - 2050 

Scenario 

Total Particulate Matter (PM10) Emissions from Transport, 2010-2050 
by Scenario in kilotonnes 

2010 2015 2020 2025 2030 2035 2040 2045 2050 

base 

45.0 

42.0 38.0 36.7 35.6 35.2 35.3 35.3 35.4 

ref 42.0 38.0 36.7 35.6 35.2 35.3 35.3 35.4 

lowGHG 41.9 38.0 36.7 35.5 35.1 35.2 35.2 35.1 

base_DAMC 42.0 37.9 36.6 35.5 35.1 35.2 35.3 35.4 

ref_DAMC 42.0 37.9 36.6 35.5 35.1 35.2 35.2 35.3 

lowGHG_DAMC 41.9 37.9 36.6 35.4 35.0 35.0 35.0 35.0 
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Table 4.5: Total Transport PM2.5 Emissions by Scenario, 2010 - 2050 

Scenario 

Total Particulate Matter (PM2.5) Emissions from Transport, 2010-2050 
by Scenario in kilotonnes 

2010 2015 2020 2025 2030 2035 2040 2045 2050 

base 

37.0 

33.9 29.6 27.9 26.5 25.8 25.6 25.3 25.0 

ref 33.9 29.6 28.0 26.5 25.8 25.6 25.3 25.0 

lowGHG 33.8 29.6 27.9 26.5 25.8 25.5 25.1 24.7 

base_DAMC 33.9 29.5 27.8 26.4 25.7 25.5 25.2 24.9 

ref_DAMC 33.9 29.5 27.8 26.4 25.7 25.5 25.2 24.9 

lowGHG_DAMC 33.8 29.5 27.8 26.4 25.7 25.3 25.0 24.5 
 

For NOx pollution, a distinct downward trend in total emissions is seen as more efficient and 

cleaner road transport technologies – in part related to Euro standards for new road vehicles - 

are adopted over time as shown in Tables 4.6 and 4.7. Similarly, SOx emissions from road 

transport decreased in 2050 compared to the base year, though less dramatically. Of note is that 

SOx emissions in the transport sector are predominately produced by non-road transport (in 

particular, international shipping). As mentioned, there are no options for targeted SOx 

abatement for these technologies in the UKTM-UCL-AQ model at this time.  

 

Table 4.6: Total Transport NOx Emissions by Scenario, 2010 – 2050 

Scenario 

Total Nitrogen Oxide (NOx as NO2) Emissions from Transport, 2010-
2050 by Scenario 

2010 2015 2020 2025 2030 2035 2040 2045 2050 

base 

642.5 

541.9 429.7 334.8 294.6 267.2 253.5 243.9 233.6 

ref 552.5 440.0 344.8 297.8 273.3 262.7 252.4 244.7 

lowGHG 556.4 451.4 334.4 275.6 253.3 246.7 234.4 231.0 

base_DAMC 469.2 345.9 305.5 270.2 255.5 246.7 236.3 225.4 

ref_DAMC 469.1 345.0 304.9 272.1 258.3 250.6 241.1 229.9 
lowGHG_ 
DAMC 469.2 346.3 298.7 261.4 249.9 239.7 229.8 222.2 
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Table 4.7: Total Transport SOx Emissions by Scenario, 2010 – 2050 

Scenario 

Total Sulphur Oxide (SOx as SO2) Emissions from Transport, 2010-2050 
by Scenario 

2010 2015 2020 2025 2030 2035 2040 2045 2050 

base 

101.1 

106.6 97.4 87.9 78.6 72.9 69.9 66.1 62.2 

ref 106.6 97.4 87.9 78.6 72.9 69.7 66.1 62.2 

lowGHG 106.6 97.4 87.9 78.5 72.8 69.6 65.9 61.9 

base_DAMC 106.6 97.3 87.8 78.5 72.8 69.6 66.0 62.0 

ref_DAMC 106.6 97.3 87.8 78.5 72.8 69.6 66.0 62.0 
lowGHG_ 
DAMC 106.6 97.3 87.8 78.4 72.7 69.5 65.8 61.8 

 

It is interesting to examine road transport – cars, 2-wheelers (motorcycles), buses, low-gross 

vehicles, and high-gross vehicles – in isolation in order to better understand the impacts of 

increasing demand on air pollution emission profiles as it swamps gains made with decreasing 

emission factors in some cases. In particular, non-GHG air pollution emissions over time for 

the “cleanest” of the six scenarios (i.e. the lowGHG_DAMC scenario) where the 80% 

decarbonisation target is met and the damage costs of non-greenhouse gas air pollutants are 

included in the optimisation process are displayed in Figure 4.9. Here, one sees increasing 

levels of particulate matter emissions from 2020 due to increasingly dominant non-tailpipe 

emissions coupled with increasing levels of demand. There is also sees rising levels of nitrogen 

oxide air pollution levels after 2030 due to increasing demand for car travel. 
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Figure 4.9: Air Pollution Emissions from Road Transport by Technology for the 
lowGHG_DAMC scenario, 2010-2050 

   

 

With regards to cars, the inclusion of damage cost did accelerate the transition away from diesel 

vehicles to petrol and hybrid electric cars. This trend is shown in Figure 4.10 for the base and 

base_DAMC scenarios. As discussed elsewhere in this thesis, these scenarios did not include 

any decarbonisation goal or carbon price. In turn, the differences observed in the outputs of 

these two scenarios isolate the impact of damage costs on technology trends. For example, 

diesel vehicles are phased out completely by 2040 in the base scenario versus 2030 when 

damage costs are included (i.e. in the base_DAMC scenario) as seen in Figure 4.10.  
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Figure 4.10: Transport demand by engine type (bvkm) for the base and based scenarios 

 
 

Impacts from the inclusion of damage costs are seen throughout the other sectors as well and 

lead to a number of interesting areas for future work. For example, total PM10 emissions in the 

agriculture sector was significantly impacted by the inclusion of damage costs in the scenarios 

run as shown in Figure 4.11. These results indicate that relatively cheap mitigation options 

exist in this sector. Whether or not these emission reductions could be practically realised in 

the U.K. agriculture sector – and, indeed, if additional reductions could be realised - represent 

an opportunity area for future exploration and research. 
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Figure 4.11: Total PM10 emissions from the agriculture sector from 2010-2050 across six 
scenarios 

 

 

Similar results, conclusions, and opportunities for future work were found in the industrial 

sector as shown in Figures 4.12 and 4.13. In the case of SOx, less dramatic differences were 

seen in the lowGHG scenario as shown in Figure 4.14. 

 

Figure 4.12 Total PM10 emissions from the industrial sector from 2010-2050 across six 
scenarios 
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Figure 4.13: Total PM2.5 emissions from the industrial sector from 2010-2050 across six 
scenarios 

 

 

Figure 4.14: Total SOx emissions from the industrial sector from 2010-2050 across six 
scenarios 
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difference in the pace of decarbonisation in the lowGHG scenarios (i.e. lowGHG and 

lowGHG_DAMC), though differences are observed in individual technology choices across 
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significant exception to this observation is found in the ref scenario, where damage costs 

noticeably accelerated energy sector decarbonisation between 2020 and 2035 – though 2050 

GHG emission levels are essentially unaffected as the U.K. greenhouse emissions reduction 

target drives the 2050 emission levels. In turn, it is clear that the decarbonisation ambition – 

and not the damage costs associated with the other types of air pollution - is the dominate 

driving force behind the technology transition pathway for the scenarios considered. 

 

Figure 4.15: Total annual carbon dioxide equivalent emissions in the UK across six scenarios, 
2010-2050 

 

 

From a cost perspective, the shifts in the technology choices made in the pathways driven by 

the inclusion of the damage costs of other types of air pollution have limited impact, as shown 

in Figure 4.16. In fact, if the air pollution damage cost (Cost_Com) component is removed, the 

actual additional costs of energy system expenditure were minimal with overall increases of 

0.15% to 0.5%. In summary, the inclusion of these damage costs resulted in large air pollution 

emission benefits but had quite small impact on overall energy system costs.   
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Figure 4.16: Overall System Costs (annual, undiscounted), including CO2 or air pollution tax 
levels 

 
Legend: investment costs, annualised (Cost_Inv); fixed operation and maintenance (Cost_Fom); energy/fuel (Cost_Flo); variable operation 

and maintenance (Cost_Act); CO2 tax/shadow price (Cost_Comx); air pollution damage costs (Cost_Com)  

 
 
 

4.4 Limiting New Nuclear Capacity 

As discussed previously in more detail in Chapter 2, the United Kingdom has achieved an 

average decrease in carbon dioxide equivalent (CO2e) emissions of 4.5% per year since 2012 

(Committee on Climate Change, 2016). According to the Committee on Climate Change in its 

June 2016 report, these drops were almost entirely due to decarbonisation in the power sector, 

particularly through the rapid decline in coal for power generation in favour of renewables. 

Indeed, the report highlights that: 

 

“There has been almost no progress in the rest of the [United Kingdom’s] economy, 

where emissions have fallen less than 1% a year since 2012 on a temperature-adjusted 

basis. That is because there has been slow uptake of low-carbon technologies and 

behaviours in the buildings sector (i.e. low rates of insulation improvement, low take-

up of low-carbon heat) and improved vehicle efficiency has been offset by increased 

demand for travel as the economy has grown and fuel prices have fallen…Progress will 
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need to be broader to meet the recommended fifth carbon budget and to prepare 

sufficiently for 2050. For example, while the complete replacement of coal-fired 

generation with low-carbon generation in the power sector is an important part of our 

scenarios, this would provide less than half of the total emissions reduction required by 

2030.” 

 

Moving forward, the lowGHG case discussed in the previous section includes a significant 

increase in electricity generation from nuclear power in the United Kingdom with nuclear 

generation capacity increasing from 10 GW in 2010 to 34 GW in 2050 in this cost-optimised 

scenario. Electricity production over time for this scenario is displayed in Figure 4.17. 

 

Figure 4.17: Electricity Generation by Technology Type, 2010-2050 for lowGHG Scenario 

 

This dramatic increase in new nuclear capacity in conjunction with the recent controversy and 

delay relating to the proposed third nuclear power station to be built at Hinkley Point in 

Somerset, England raises significant questions as to the feasibility of this future scenario 
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nuclear capacity is capped at a 50% increase in 2050 compared to 2010 (i.e. an increase from 

10 GW to 15 GW over this forty-year period). The resulting electricity production over time 

outputs for this scenario are displayed in Figure 4.18, which shows the increased role for natural 

gas both with and without carbon capture and storage (CCS) that resulted from limiting future 

nuclear capacity growth.   

 

Figure 4.18: Electricity Generation by Technology Type, 2010-2050 for 
lowGHG_NuclearLimit Scenario 
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resulted in 41 kilotonnes (11%) more NOx emissions than the lowGHG scenario as shown in 

Figure 4.22.  

 

Figure 4.19: Total annual carbon dioxide equivalent emissions in the U.K. for lowGHG and 
lowGHG_NuclearLimit scenarios, 2010-2050 

 

 

Figure 4.20: Total annual PM10 emissions in the U.K. for lowGHG and lowGHG_NuclearLimit 
scenarios, 2010-2050 
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Figure 4.21: Total annual PM2.5 emissions in the U.K. for lowGHG and 
lowGHG_NuclearLimit scenarios, 2010-2050 

 

 
Figure 4.22: Total annual nitrogen oxide (NOx) emissions in the U.K. for lowGHG and 
lowGHG_NuclearLimit scenarios, 2010-2050 
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Table 4.8: Annual undiscounted energy systems costs for lowGHG and 
lowGHG_NuclearLimit scenarios  

   
 
 

4.5 Discussion & Conclusions 

As mentioned at the start of this chapter, this research was meant to explore the answer to the 

following two research questions: 

 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on a national scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on a 

national scale?   

 

Across all scenarios at the national level, it is clear that climate policy has significant benefits 

for reducing air pollution emissions in the United Kingdom in 2050. However, some potentially 

concerning increases are seen with respect to particulate matter emissions in the medium term 

Annual	undiscounted	energy	system	costs 2010 2015 2020 2025 2030 2035 2040 2045 2050

lowGHG 1,252						 1,819							 1,081							 1,132							 2,811						 4,012						 4,237						 4,915						 5,140						
lowGHG_NuclearLimit 1,252						 1,864							 1,141							 1,190							 2,848						 3,770						 3,649						 3,888						 4,184						

difference 45												 61												 58													 37												 (242)								 (588)								 (1,027)					 (956)								
difference	(%) 2.5% 5.6% 5.1% 1.3% -6.0% -13.9% -20.9% -18.6%

lowGHG 31,991				 12,852				 31,483				 34,704					 25,718				 27,688				 34,437				 36,224				 37,197				
lowGHG_NuclearLimit 31,991				 12,654				 29,545				 32,963					 26,066				 30,124				 38,767				 42,082				 43,996				

difference (198)									 (1,938)					 (1,741)						 349										 2,436						 4,330						 5,858						 6,799						
difference	(%) -1.5% -6.2% -5.0% 1.4% 8.8% 12.6% 16.2% 18.3%

lowGHG 106,700		 117,096		 122,380		 130,868		 139,732		 148,408		 156,593		 163,991		 170,341		
lowGHG_NuclearLimit 106,700		 117,266		 122,927		 131,291		 139,812		 148,117		 156,338		 163,839		 169,975		

difference 169										 547										 423										 80												 (291)								 (255)								 (151)								 (366)								
difference	(%) 0.1% 0.4% 0.3% 0.1% -0.2% -0.2% -0.1% -0.2%

lowGHG 98												 74,117				 121,983		 162,200		 190,749		 210,832		 230,845		 247,195		 264,154		
lowGHG_NuclearLimit 98												 74,116				 122,551		 162,315		 190,249		 208,763		 228,893		 245,710		 263,296		

difference (0)													 567										 115										 (501)								 (2,069)					 (1,952)					 (1,485)					 (858)								
difference	(%) 0.0% 0.5% 0.1% -0.3% -1.0% -0.8% -0.6% -0.3%

lowGHG 140,041		 205,884		 276,926		 328,905		 359,011		 390,939		 426,112		 452,324		 476,832		

lowGHG_NuclearLimit 140,041		 205,900		 276,163		 327,759		 358,975		 390,774		 427,647		 455,519		 481,451		

difference 16												 (763)									 (1,145)						 (36)										 (165)								 1,535						 3,195						 4,619						

difference	(%) 0.0% -0.3% -0.3% 0.0% 0.0% 0.4% 0.7% 1.0%

Sum	(M£)

---

---

---

---

---

Investment	costs,	
Cost_Inv	(M£)

Fixed	O&M	costs,	
Cost_Fom	(M£)

Flow	costs,	Cost_Flo	
(M£)

Activity	costs,	
Cost_Act	(M£)
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as the result of rising levels of biomass use in the residential sector for the scenario where the 

United Kingdom achieved its decarbonisation goals (i.e. the lowGHG scenario). 

 

The consideration of health impacts – in the form of air pollution damage costs included in the 

optimisation process – result in changes in the fuels and technologies selected by the model. 

The inclusion of these costs eliminates previously mentioned rises in residential air pollution 

emission levels before 2045, showing the importance of simultaneously considering the impact 

of climate policy on efforts to reduce air pollution and vice versa. However, including these 

damage costs does not significantly impact the CO2 emissions trajectory, with the exception of 

the ref scenario in the medium term.  

 

Particulate matter air pollution from transport is not significantly impacted by the inclusion of 

damage costs in UKTM-UCL-AQ, indicating that targeted policies would be required to 

substantially reduce these emissions in the future, even if there were a move away from internal 

combustion engine vehicles. This result is largely due to the fact that, in the scenarios presented 

here, non-tailpipe particulate matter air pollution increasingly dominates air pollution in road 

transport over time due to rising demand. 

 

Overall, this work shows that technoeconomic energy systems models can provide significant 

insight on particulate matter (PM10 and PM2.5), nitrogen oxide (NOx), and sulphur oxide (SOx) 

air pollution. With respect to other local air pollutants, the vast majority of emission sources 

for non-methane volatile organic compounds (NMVOC) and ammonia (NH3) are not within 

the energy sector, which means that these emissions are not fully captured in UKTM-UCL-AQ 

and offer interesting areas for future research.  
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Failure to consider non-GHG air pollution in decarbonisation strategy development creates 

tension between decarbonisation, air pollution, and public health policies and could result in 

mid-term air pollution challenges between 2025 – 2040. Considering damage costs in the 

decarbonisation pathway reduces particulate matter pollution from residential heating systems 

using biomass fuel 2025 and 2040. Constraints relating to the expansion of the nuclear fleet 

did not have a significant impact on particulate matter or SOx air pollution levels in a scenario 

where long-term decarbonisation goals were reached but damage costs for air pollution were 

not included. However, the nuclear constraint considered did result in an 11% increase in NOx 

emissions in 2050. 

 

This research approach and the resulting insights illustrate the importance of understanding the 

relationship between greenhouse gas and other air pollution emissions, which share many 

important sources in the energy sector. The former is a growing concern and the latter is an 

immediate public health problem in the United Kingdom. Understanding the trade-offs and 

synergies between these two groups of air pollutants could be critical to effective policy design. 

 

However, it should be noted that this approach did not include all air pollution abatement 

options, but in effect restricts responses to fuel switching and efficiency gains through 

technology turnover. Future work is needed in this area to combine work specifically on air 

quality abatement technologies and their incorporation in energy system optimisation models 

as this could illuminate the potential role of these technologies in further reducing air pollution 

levels on a cost-optimised basis. Additional insights would also be gained through the analysis 

of the model’s outputs in a detailed air quality model. This aspect of the research is currently 

being explored through a partnership with Kings College London. Further improvements could 
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also be made through study of the likely emissions factors for new technologies and refinement 

of those factors used for existing technologies.  

 

One key limitation of the analysis presented in this chapter lies in the level of spatial 

disaggregation included in the model given that UKTM-UCL and UKTM-UCL-AQ are 

national-scale models. In turn, these models are only equipped to provide limited insights on 

potential air pollution hotspots (e.g. urban areas) and how these hotspots might be impacted by 

changes in energy system technologies. The next chapter in this thesis explains research 

completed in this PhD to explore the effects of decarbonisation efforts on urban areas in the 

United Kingdom, with particular emphasis on the Greater London area.     
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Chapter 5 – London Analysis 

5.1 Overview 

This chapter presents details on the application of the PollutION Emissions from EneRgy 

(PIONEER) model soft-linked to the UKTM-UCL-AQ energy systems model that is described 

in Chapters 3 and 4. It begins with the presentation of the key outcomes and insights from this 

work (Section 5.2) followed by an overview of the development of a set of eighteen (18) 

scenarios using PIONEER soft-linked to UKTM-UCL-AQ (Section 5.3). It then gives a 

presentation and discussion of key results from this application in scenarios without behaviour 

change (Section 5.4) and those scenarios with behaviour change including the public health 

impacts of all scenarios considered (Section 5.5). Included in each of these two sections are 

sensitivity tests and discussion on the impacts of changing the demand assumptions used in the 

primary set of scenarios. This chapter concludes with an overview of key insights drawn from 

this work (Section 5.6).  

 

The goal of this research was to explore the answer to the research questions included in this 

research project with regards to the Greater London area’s road transport sector, namely: 

 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on an urban scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on an urban 

scale?   
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As discussed in Chapter 4 and presented in Table 4.3, the answers to these two questions with 

specific reference to the road transport sector appears to be that the co-impacts are quite limited. 

In turn, the research presented in this chapter explores the extent to which local action in the 

Greater London area could contribute to reductions in locally produced air pollution and its 

associated public health impacts.  This research takes into consideration two dimensions – 

technological and behavioural change – which is described in more detail in elsewhere in this 

chapter. 

 

In this research, focus is placed on three key primary non-greenhouse gas air pollutants – 

namely, particulate matter (PM10 and PM2.5) and nitrogen oxides (NOx). This emphasis is 

placed as discussed in Chapter 1-4 of this thesis. First, these air pollutants are both prevalent 

in the Greater London area and can be largely attributed to the energy sector. Second, a 

significant portion of the estimated local public health impact of these pollutants has been 

linked directly to the local transport sector in recent studies (Miller and Hurley, 2010; Beevers 

et al., 2013; Atkinson et al., 2014; Gowers, Miller and Stedman, 2014; Walton et al., 2015). 

Third, these pollutants are of primary concern with regards to air pollution in Greater London 

and are largely captured in the UKTM-UCL-AQ energy system model.   

 

5.2 Key Outcomes & Insights 

The key outcomes of the work presented in this chapter are as follows: 

 

1. The PollutION Emissions from EneRgy (PIONEER) model was created and soft-linked 

to the UKTM-UCL-AQ energy systems model in order to disaggregate the Greater 

London region transport sector from the broader United Kingdom. 
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2. The air pollution and public health impacts of a range of scenarios were analysed to 

establish the extent to which the Greater London region could successfully reduce local 

air pollution levels from road transport using combinations of technology and 

behavioural change (i.e modal shift away from cars). 

3. The public health impacts of the scenarios were quantified. 

 

Key insights for this work include: 

1. Technological change was the principle driver of changes in air pollution emissions, 

even when considering up to a 40% mode shift away from cars. 

2. Decarbonisation led to reductions in tailpipe emissions of vehicles and increased the 

relative importance of non-tailpipe PM2.5 emissions.  

3. In the absence of technological change, particulate matter emissions (PM10 and PM2.5) 

as well as nitrogen oxide (NOx) emissions produced by road transport in Greater 

London increased in all scenarios, including those that incorporated up to a 40% 

modal shift away from cars. 

4. For all scenarios that included technological change to meet decarbonisation targets 

set forth in the UK Climate Change Act, particulate matter (PM10 and PM2.5) and 

nitrogen oxide (NOx) emissions decreased over time to below 2010 levels. 

5. The public health gains from reductions in NOx emissions overshadowed gains in 

PM2.5 reductions and offered the largest potential health benefit of those considered. 

 
 
5.3 Scenario Development	
For the research presented in this chapter, the PIONEER model is soft-linked to the UKTM-

UCL-AQ model as discussed in Chapter 3. Functionally, the outputs from UKTM-UCL-AQ as 

discussed in Chapter 4 for road transport in the United Kingdom serve as inputs to PIONEER 

and then the outputs of PIONEER are used as inputs into UKTM-UCL-AQ in a “loop” until 
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harmonization is achieved between the two models as discussed in Chapter 3. The analysis 

flow diagram presented in that chapter is reproduced here for the sake of clarity in Figure 5.1.  

 

Figure 5.1: Analysis Flow Diagram for Soft-linked PIONEER and UKTM-UCL-AQ Models 

 

 

The topical coverage of the results from this soft-linking is shown in Figure 5.2, including the 

relationship of the PIONEER model with the UKTM-UCL-AQ that is also used in this research 

project and the Community Multiscale Air Quality (CMAQ) models that is used in a related 

collaborative project with Kings College London as mentioned elsewhere in this thesis 

(Williams et al., 2016).  
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Figure 5.2: Topical Coverage Map of the Core Models Used in This Research Project 

 

 
For the research presented in this chapter, scenario outputs from UKTM-UCL-AQ that are 

described in Chapter 4 for the lowGHG_DAMC scenario are used as inputs to the PollutION 

Emissions from EneRgy (PIONEER) model. Scenarios are then constructed across the 

technological and behaviour change dimensions as discussed in Chapter 3. Combined, the 

analyses along these dimensions result in a set of eighteen (18) scenarios as shown in Figure 

5.3.  

 

Figure 5.3: Scenario Map for Greater London Analysis 
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For the technological change dimension, scenarios are designed to map the range of possible 

future emissions profiles that would result from the span from 1) zero action to reduce tailpipe 

emissions from road transport to 2) one where all road transport vehicles with tailpipe 

emissions are banned from the Greater London region in 2050 along a set of four (4) potential 

technology deployment pathways in order to more fully explore the decision space. The former 

represents a sort of “worst case” scenario for locally produced air pollution emissions while 

the latter represents a “best case” for local action to reduce these emissions. In turn, the outputs 

of these scenarios effectively map the range of possibilities for future air pollution emissions 

levels resulting from technological change within Greater London. 

 

For behavioural change, scenarios are designed to map the range of possibilities spanning from 

no modal shifting in Greater London up to a 40% modal shift away from cars in 2050. This 

research does not explore the ability to achieve in practice the behavioural changes discussed 

in this research project. Previous studies on this topic and the justification for exploring this 

range of mode shift are discussed in Chapter 3 of this thesis. 

 

The combination of the two dimensions – technological and behavioural change – that are 

considered in this work lead to the construction of eighteen (18) scenarios to 2050, which are 

presented in Table 5.1. For these scenarios, the outputs of the scenario presented in Chapter 4 

that included a national policy ambition toward decarbonisation and damage costs are included 

(i.e. the lowGHG_DAMC scenario) in the optimisation process in UKTM-UCL-AQ are used 

as inputs to the PollutION Emissions from EneRgy (PIONEER) model.  
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Table 5.1: Scenario Names and Definitions with regards to the Analysis Dimensions 
 
Scenario Name 

Dimension 
Technological Change Behavioural 

Change  
NoChange_NoChange No change from 2010 No change from 

2010 
NoChange_80:20 20% mode shift 

away from cars 
NoChange_60:40 40% mode shift 

away from cars 
UK_NoChange Follows trends in United 

Kingdom for the 
lowGHG_DAMC scenario. 

No change from 
2010 

UK_80:20 20% mode shift 
away from cars 

UK_60:40 40% mode shift 
away from cars 

50:50_NoChange Half the availability for zero-
tailpipe emission cars is taken by 
Greater London and the other 
half is dispersed around the rest 
of the United Kingdom until 
tailpipe emissions from cars are 
eliminated in Greater London. 

No change from 
2010 

50:50_80:20 20% mode shift 
away from cars 

50:50_60:40 40% mode shift 
away from cars 

Doubling_NoChange After initially adopting half of the 
availability for zero-tailpipe  
emission vehicles in 2025, the 
total use of zero-tailpipe 
emission cars doubles during 
each five-year period until 2045, 
at which point the zero-tailpipe 
emission vehicles are adopted 
rapidly to meet total demand for 
cars in 2050. 

No change from 
2010 

Doubling_80:20 20% mode shift 
away from cars 

Doubling_60:40 40% mode shift 
away from cars 

CleanLondon _NoChange 100% of zero-tailpipe emission 
cars that are available in the 
United Kingdom are adopted in 
Greater London until all of 
demand for cars in this urban area 
are met by zero-tailpipe emission 
vehicles. 

No change from 
2010 

CleanLondon _80:20 20% mode shift 
away from cars 

CleanLondon _60:40 40% mode shift 
away from cars 

JustInTime_NoChange Adoption of zero-tailpipe 
emission cars in Greater London 
is delayed until the last time 
period considered (i.e. 2045-
2050), at which point they are 
adopted rapidly to meet total 
demand for cars. 

No change from 
2010 

JustInTime _80:20 20% mode shift 
away from cars 

JustInTime _60:40 40% mode shift 
away from cars 
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Combined, the discussions contained in Chapter 4 and Chapter 5 explore of the range of 

impacts resulting from national and local action to reduce greenhouse gas emissions and other 

types of air pollution emissions.. A visual mapping of these dimensions is displayed in Figure 

5.4, including: 

 

• National dimensions: decarbonisation policy ambition, air pollution costs 

• Local dimensions: technological change, behavioural change 

 

Figure 5.4 Scenario Dimension Mapping 

 

The assumptions made with regards to demand disaggregation factors, technological change 

(i.e. emission factors) and behavioural change are discussed in more detail elsewhere in this 

chapter.  

 

5.3.1 Emission Factors 

The technological change dimension for each scenario has direct impacts on each set of 

emissions profiles for the scenarios constructed for the analysis presented in this chapter. In 

order to map the range of possible air pollution trajectories moving forward, six sets of 

technological change pathways (and their corresponding emission factors) as previously 
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outlined in Figure 5.3. A complete list of all emission factor values used for these scenarios is 

included in the Appendix of this thesis.  

 

With regards to the pathways where tailpipe emissions are eliminated by 2030, these types of 

transition could be achieved through a technology mandate, ambitious low emission zone 

initiative or similar measure for Greater London that restricts the use of internal combustion 

engines for cars in this urban area.  

 

For these scenarios, the emphasis is placed on cars in order to enable a detailed discussion of 

the tradeoffs and synergies between transitioning to zero tailpipe emission vehicles versus 

modal shift away from car travel in Greater London. That being said, there is certainly an 

opportunity for additional work on non-car road transport and the impacts of zero emission 

vehicles in these portions of the system.  

 

For the lowGHG_DAMC scenario produced using UKTM-UCL-AQ, the transition pathway 

seen for cars is shown in Figure 5.5. Highlighted in this figure and in Table 5.2 are the 

deployment pathways seen for two types of no-tailpipe emission cars – electric and hydrogen 

fuel cell. All told, 164 billion vehicles kilometres are travelled by electric and hydrogen cars 

in the United Kingdom in 2050 in the lowGHG_DAMC scenario. These technologies begin 

deploying in 2025 and 2030 (for hydrogen and electric vehicles, respectively) in small 

numbers, with their deployment accelerating more rapidly from 2035 onwards as shown in 

Figure 5.5. 
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Figure 5.5 Car demand by engine type (bvkm) in the United Kingdom for the lowGHG_DAMC 
scenario 

 

 

 

Table 5.2 Car demand by engine type (bvkm) for electric and hydrogen vehicles in the United 
Kingdom for the lowGHG_DAMC scenario 
 

 

 

Overall, this technology transition pathway means that there would be be sufficient zero-

tailpipe emission vehicles in the system to meet the total travel demand for cars in Greater 

London by just before 2040 as shown in Figure 5.6 if one assumes that all of these vehicles are 

deployed in Greater London.  
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Figure 5.6: Total Greater London Car Demand (Group 1) Versus Availability of Zero-Tailpipe 
Emission Vehicles in the lowGHG-DAMC scenario (2010-2050) 

 

 

However, it is unlikely that none of these cars will deploy outside of this urban area prior to 

2040. In turn, measures are taken to understand the impacts of the relative use of zero-tailpipe 

emission cars in and out of Greater London as previously discussed in this chapter.  

 

For each of these scenarios, cars that are not zero-tailpipe emission are assumed to follow the 

overall technology pathway seen for other cars in the UK. For non-car road transport, all 

vehicles are assumed to follow UK trends. These potential pathways are displayed graphically 

in Figures 5.7 to provide additional clarity on the resulting technology transition pathway. In 

this figure, the solid lines display the total vehicle kilometres driven by zero-emission vehicles 

in Greater London for each of the four scenarios. The dashed lines in Figure 5.7 show total car 

demand in Greater London and the total availability of zero tailpipe emission cars in the United 

Kingdom. In all of these scenarios, tailpipe emissions from cars in Greater London are 

eliminated by 2050. 
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Figure 5.7: Four Scenarios for Zero-Emission Car Deployment in Greater London versus Total 
Availability in the United Kingdom and Total Demand for Cars in Greater London (2010-2050) 

 

 

Figure 5.8 displays the emissions factors used for cars across the scenarios used for Greater 

London that did not include behavioural change to help in visualizing the range of emission 

factors assumed. As shown in these figures, zero-tailpipe emission vehicles still produce 

particulate matter (both PM10 and PM2.5) via tyre, brake and road wear. In turn, these emission 

factors never reach zero. For non-tailpipe emissions, the values assume that these emissions 

are the same as in 2014 on a per kilometre basis, which might not be the case given a number 

of factors including evolving braking technologies, the increased hybridization of cars where 

energy is recovered and stored in batteries rather than being dispersed as waste heat through 

the braking system, tyre design improvements and increasing vehicle weights.  

 

Contrastingly to particulate matter air pollution, the nitrogen oxide emission factors for cars in 

London go to zero by 2050 for zero-tailpipe emission cars. However, NOx emissions are still 

produced by non-car road transport vehicles in the scenarios considered here. Figures 5.9 – 

5.12  display the emissions factors used for 2-wheelers (motorcycles), buses, LGVs and HGVs 

that were used in this analysis.   
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Figure 5.8: London Emission Factors, Cars (2010 – 2050) for PM10, PM2.5 and NOx  

 

 

Figure 5.9: London Emission Factors, 2 Wheelers (2010 – 2050) for PM10, PM2.5 and NOx  
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Figure 5.10: London Emission Factors, Buses (2010 – 2050) for PM10, PM2.5 and NOx  

 

 
Figure 5.11: London Emission Factors, LGVs (2010 – 2050) for PM10, PM2.5 and NOx  
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Figure 5.12: London Emission Factors, HGVs (2010 – 2050) for PM10, PM2.5 and NOx  

 

 

5.3.2 Demand Disaggregation Factors  

As discussed previously in Chapters 3 and 4, the demand drivers used within UKTM-UCL-AQ 

to calculate transport demand over time in the United Kingdom utilise per capital demand 

values by transport type for 2010 in conjunction with population projections from the Office 

of National Statistics (Office of National Statistics, 2010).  In PIONEER, road transport 

demand for Greater London is disaggregated from the United Kingdom demand values using 

the same methodology and data input sources in order to ensure consistency between the two 

models as discussed in more detail in Chapter 3 (Office of National Statistics, 2010). The 

demand values used for Greater London in the analysis presented in this chapter are found in 

Table 5.3. 
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Table 5.3 Demand for Transport in Greater London, 2010-2050 (bvkm) for Group 1 

	
 
 
5.4 Outputs for Scenarios Without Modal Shift 
A set of six (6) scenarios were produced in order to map the impacts of the technological change 

dimension of the research presented in this Chapter. These scenarios do not include mode 

shifting to active transport as shown in Table 5.4. The additional set of twelve (12) scenarios 

that include up to a 40% mode shift away from cars are discussed in a subsequent section of 

this chapter. 

Table 5.4: Scenarios Isolating Impacts of Technological Change Dimension 
 
Scenario Name 

Dimension 

Technological Change Behavioural 
Change  

NoChange_NoChange No change from 2010  
 
 
 
 
 
 
No change 
 

UK_NoChange Follows trends in United Kingdom for the 
lowGHG_DAMC scenario. 

50:50_NoChange Half the availability for zero-tailpipe emission 
cars is taken by Greater London and the other half 
is dispersed around the rest of the United 
Kingdom until tailpipe emissions from cars are 
eliminated in Greater London. 

Doubling_NoChange After initially adopting half of the availability for 
zero-tailpipe  emission vehicles in 2025, the total 
use of zero-tailpipe emission cars doubles during 
each five-year period until 2045, at which point 
the zero-tailpipe emission vehicles are adopted 
rapidly to meet total demand for cars in 2050. 

CleanLondon_NoChange 100% of zero-tailpipe emission cars that are 
available in the United Kingdom are adopted in 
Greater London until all of demand for cars in this 
urban area are met by zero-tailpipe emission 
vehicles. 

JustInTime_NoChange Adoption of zero-tailpipe emission cars in Greater 
London is delayed until the last time period 
considered (i.e. 2045-2050), at which point they 
are adopted rapidly to meet total demand for cars. 

 
 
 

DfT	Scenario	1	(version:	March	2015)	through	to	2040	+	population	assumptions	(LT	migration)	for	motorcycles	and	buses	(because	those	aren't	in	DfT's	projections);	for	2045	and	2050	for	cars,	LGV,	HGV,	assumed	same	rate	of	increase	as	from	2030	-	2040

2010 2015 2020 2025 2030 2035 2040 2045 2050

Cars 23.70 25.17 26.41 27.47 28.37 29.91 31.53 33.24 35.04
2W 0.70 0.74 0.78 0.81 0.84 0.88 0.93 0.98 1.03
Buses 0.60 0.64 0.67 0.70 0.72 0.76 0.80 0.84 0.89
LGVs 3.80 4.03 4.23 4.41 4.55 4.80 5.06 5.33 5.62
HGVs 1.00 1.06 1.11 1.16 1.20 1.26 1.33 1.40 1.48

TOTAL 29.80 31.64 33.20 34.55 35.67 37.61 39.65 41.79 44.06

Cars 23.70 25.31 26.88 28.26 29.42 31.39 33.50 35.75 38.14
2W 0.70 0.75 0.79 0.83 0.87 0.93 0.99 1.06 1.13
Buses 0.60 0.64 0.68 0.72 0.74 0.79 0.85 0.90 0.97
LGVs 3.80 4.06 4.31 4.53 4.72 5.03 5.37 5.73 6.12
HGVs 1.00 1.07 1.13 1.19 1.24 1.32 1.41 1.51 1.61

TOTAL 29.80 31.82 33.80 35.53 36.99 39.47 42.12 44.95 47.96

Cars 23.70 26.42 28.24 30.08 31.08 32.23 33.20 34.20 35.22
2W 0.70 0.78 0.78 0.81 0.84 0.88 0.93 0.98 1.03
Buses 0.60 0.64 0.67 0.70 0.72 0.76 0.80 0.84 0.89
LGVs 3.80 4.69 5.32 5.94 6.53 7.05 7.57 8.14 8.75
HGVs 1.00 1.00 1.03 1.06 1.09 1.13 1.16 1.20 1.23

TOTAL 29.80 33.52 36.04 38.59 40.26 42.05 43.66 45.36 47.13

Group	3:	DfT

Group	1:	ONS	Long-Term

Group	2:	ONS	Short-Term
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Given that this subset of results is produced for the decarbonisation ambition set in the 

lowGHG_DAMC scenario presented in Chapter 4 (i.e. an 80% reduction in total CO2e 

emissions by 2050 with interim carbon budget targets), the discussion presented in this and the 

subsequent section of this thesis focus on a portion of the scenario dimension map highlighted 

in grey within Figure 5.13. 

 

Figure 5.13: Scenario Dimensions Covered in this Discussion 

 

5.4.1 Results  

For the scenario where no technology transition or behavioural shifts occur (i.e. 

NoChange_NoChange), PM10 emissions from Greater London road transport increase from 

1.33 to 1.96 kilotonnes between 2010 and 2050. When Greater London road transport follows 

the same technology transition pathway as the rest of the United Kingdom in the 

lowGHG_DAMC scenario presented in Chapter 4, PM10 emissions reach their minimum of 

0.97 kilotonnes in 2020 and then slowly rise to 1.20 kilotonnes by 2050. This trend is due to 

the face that increasing demand for road transport in in Greater London outstrips gains with 

improving emission factors as non-tailpipe emissions increasingly dominate. For scenarios 
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where tailpipe emissions from cars are eliminated by 2050 in Greater London, total PM10 

emissions decrease to 0.73 kilotonnes in 2050. This pollution is comprised of non-tailpipe 

emissions (i.e. road, tyre and brake wear) that is not eliminated with the adoption of electric 

and hydrogen fuel cell cars as well as both tailpipe and non-tailpipe emissions from other forms 

of road transport. These results are shown in Figure 5.14. 

 

Figure 5.14: Total PM10 Emissions in Greater London area for scenarios without behavioural 
shifts for Group 1 demand values (2010-2050) 

 	 

 

For PM2.5, as shown in Figure 5.15 emissions increase from 0.94 to 1.39 kilotonnes between 

2010 and 2050 in the NoChange_NoChange scenario. For the UK_NoChange scenario, PM2.5 

emissions levels reach their minimum in 2025 and then rise to 0.67 kilotonnes by 2050 due to 

increasing demand over time. For scenarios where tailpipe emissions from cars in Greater 

London are eliminated by 2050, total PM10 emissions decrease to 0.38 kilotonnes in 2050.  
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Figure 5.15: Total PM2.5 Emissions in Greater London area for scenarios without modal 
shifting for Group 1 demand values (2010-2050) 

  

 

For NOx pollution, as shown in Figure 5.16, emissions increase from 20.72 to 30.63 kilotonnes 

between 2010 and 2050 in the NoChange_NoChange scenario. For the UK_NoChange 

scenario, NOx emissions levels reach their minimum (2.16 kilotonnes) in 2030 and then rise to 

2.55 kilotonnes by 2050. For scenarios where tailpipe emissions from cars in Greater London 

are eliminated by 2050 in Greater London, total NOx emissions decrease to 0.39 kilotonnes in 

2050. This value represents the total tailpipe emissions from non-car road transport in Greater 

London in 2050.  

 

Figure 5.16: Total NOx Emissions in Greater London area for scenarios without modal shifting 
for Group 1 demand values (2010-2050) 
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The scenarios presented in this section do not alter any of the assumptions or scenario 

constraints that produced the national level “lowGHG_DAMC” scenario produced using 

UKTM-UCL-AQ. Rather, they explore the impacts of decisions with regards to the geographic 

distribution of road transport technologies by disaggregating technologies and demands that 

were previously presented as single values for the entire UK by UKTM-UCL-AQ into separate 

values for Greater London and the area outside of Greater London using PIONEER. In turn, 

steps 5-7 of the modelling process outlined in Chapter 3 were not required. However, these 

steps are required for the scenarios that include behavioural change as is described in that 

section of this chapter. 

 

5.4.2 Sensitivity Analysis for Scenarios without Behavioural Change 

The two areas of greatest sensitivity in the scenario outputs discussed in the previous section 

of this chapter relate to assumptions made for the: 

 

1. technology transition pathway for Greater London 

2. demand for road transport in Greater London 

 

Combined, these six scenarios explore the decision space in a manner that illustrates the 

sensitivities of the results to the technology transition pathway assumed for Greater London. 

This section includes additional sensitivity tests to understand the impact of changing the 

demand disaggregation factors for Greater London. 

 

As discussed in Chapter 3 in more detail, transport demand for Greater London is disaggregated 

from total demand in the United Kingdom using the same process and input assumptions as in 

UKTM-UCL-AQ. More specifically, per capita demand values by transport type for 2010 in 
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Greater London are used in conjunction with population projections from the Office of 

National Statistics in their “long-term migration” scenario, which includes a disaggregation for 

Greater London (Office of National Statistics, 2010). The demand values for Greater London 

are the same in the scenario results discussed in the previous section. This section includes an 

examination of the sensitivity of scenario results to changes in the disaggregated demand 

values for Greater London.  

 

According to analysis published in 2014 by Transport for London (TfL), demand for transport 

demand in Greater London is primarily driven by population size (Transport for London (TfL), 

2014). In turn, it is appropriate to use population projections to calculate future demand for 

road transport in Greater London. However, other factors should be acknowledged in order to 

understand the uncertainty that exists in these future demand calculations. More specifically, 

according to TfL “modal trends have not uniformly followed population growth” (Transport 

for London (TfL), 2014). In their analysis, Transport for London identifies several other factors 

that have influenced transport demand trends in London since the mid-1990s, including: 

 

• income 

• economic performance of inner versus outer London and the broader United Kingdom 

• demographics 

• cost of public transport 

• supply34 

• road capacity and car ownership saturation 

• policies 

																																																								
34 i.e. the availability of public transport 
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With regard to transport policies, Transport for London identifies parking policies from the 

mid-1990s and congestion charging as having particularly significant impacts on travel demand 

in London (Transport for London (TfL), 2014). Specifically, with regards to car travel, TfL 

observes a number of supply, underlying demand, and structural changes that have ongoing 

impacts on mode shifting from car travel to public transport. A summary graphic of these 

factors produced by TfL is displayed in Figure 5.17 (Transport for London (TfL), 2014). 

 

Figure 5.17 Factors Contributing to Modal Shifts from Cars to Public Transport in Greater 
London  (Transport for London (TfL), 2014) 

 

 

In turn, for the core analysis presented in this Chapter, it is assumed that population was the 

primary driver of road transport demand in Greater London (as was also the case in UKTM-

UCL-AQ). Noted here is that the population projections for the United Kingdom and Greater 
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London that were used in UKTM-UCL-AQ and in PIONEER were published before the United 

Kingdom’s European Union Referendum vote (often referred to as the “Brexit” vote), where 

52% of voters supported the United Kingdom’s exit from the European Union. It is unclear 

what impact this result will have on future population growth. However, it is reasonable to 

suspect that this decision could slow population growth rates to some degree should the United 

Kingdom move ahead with this departure from the European Union. 

 

For the sensitivity analyses presented in this section, two new sets of demand input values are 

used. The first new set of demand values (i.e. Group 2 demands) is disaggregated from 

national-level demand values using the same process as for the core results. That is, per capita 

demand as in 2010 for Greater London is used in conjunction with population projections from 

the Office of National Statistics. However, in this set of demand calculations, the ONS’s “short-

term migration” projections for Greater London were used to calculate total demand by year to 

2050 in five-year time slices while the demand values for the United Kingdom are held 

constant. In turn, the total demand for the United Kingdom is the same in Groups 1 and 2 with 

the change being applied to the proportion of this demand that will exist in Greater London. 

This calculation is completed using the equations presented in Chapter 3.  

 

For the third set of demands (Group 3), projections for road transport demand in Greater 

London are gathered from the United Kingdom Department for Transport (DfT) and Transport 

for London (TfL) (Transport for London (TfL), 2011; Department for Transport (Dft), 2014). 

This set of demand projections accounts for some of the other factors (i.e. beyond population) 

that influence transport demand in Greater London as previous discussed. As with Groups 1 

and 2, this set of demand disaggregation calculations, total demand for road transport in the 

United Kingdom is held constant. 
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The outputs of all these calculations resulted in the demand values shown in Table 5.5, where 

the demand groups are defined as follows: 

 

• Group 1: demand defined using ONS population projections under their “long term 

migration” scenario for Greater London  

• Group 2: demand defined using ONS population projections under their “short term 

migration” scenario for Greater London 

• Group 3: demand inputs defined using Department for Transport projections for 

Greater London 

 

Table 5.5 Demand in Greater London by Road Transport Type (2010-2050) for Group 1, 2, 3 

 
 

Overall, this process resulted in the demand inputs shown in Figure 5.18. Of note here is the 

slightly different demand profile seen in Group 3 compared to Group 1 and 2. As previously 

discussed, Group 3 projections included the potential influence of non-population factors. 

 

DfT	Scenario	1	(version:	March	2015)	through	to	2040	+	population	assumptions	(LT	migration)	for	motorcycles	and	buses	(because	those	aren't	in	DfT's	projections);	for	2045	and	2050	for	cars,	LGV,	HGV,	assumed	same	rate	of	increase	as	from	2030	-	2040

2010 2015 2020 2025 2030 2035 2040 2045 2050

Cars 23.70 25.17 26.41 27.47 28.37 29.91 31.53 33.24 35.04
2W 0.70 0.74 0.78 0.81 0.84 0.88 0.93 0.98 1.03
Buses 0.60 0.64 0.67 0.70 0.72 0.76 0.80 0.84 0.89
LGVs 3.80 4.03 4.23 4.41 4.55 4.80 5.06 5.33 5.62
HGVs 1.00 1.06 1.11 1.16 1.20 1.26 1.33 1.40 1.48

TOTAL 29.80 31.64 33.20 34.55 35.67 37.61 39.65 41.79 44.06

Cars 23.70 25.31 26.88 28.26 29.42 31.39 33.50 35.75 38.14
2W 0.70 0.75 0.79 0.83 0.87 0.93 0.99 1.06 1.13
Buses 0.60 0.64 0.68 0.72 0.74 0.79 0.85 0.90 0.97
LGVs 3.80 4.06 4.31 4.53 4.72 5.03 5.37 5.73 6.12
HGVs 1.00 1.07 1.13 1.19 1.24 1.32 1.41 1.51 1.61

TOTAL 29.80 31.82 33.80 35.53 36.99 39.47 42.12 44.95 47.96

Cars 23.70 26.42 28.24 30.08 31.08 32.23 33.20 34.20 35.22
2W 0.70 0.78 0.78 0.81 0.84 0.88 0.93 0.98 1.03
Buses 0.60 0.64 0.67 0.70 0.72 0.76 0.80 0.84 0.89
LGVs 3.80 4.69 5.32 5.94 6.53 7.05 7.57 8.14 8.75
HGVs 1.00 1.00 1.03 1.06 1.09 1.13 1.16 1.20 1.23

TOTAL 29.80 33.52 36.04 38.59 40.26 42.05 43.66 45.36 47.13

Group	3:	DfT

Group	1:	ONS	Long-Term

Group	2:	ONS	Short-Term
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Figure 5.18:  Demand in Greater London by Road Transport Type (2010-2050) for Group 1, 
2, 3 
 

 

 
For PM10 emissions, the outputs from PIONEER show that changing the demand inputs 

between the three groups resulted in a range in total air pollution emissions from 1.96 

kilotonnes to 2.17 kilotonnes in 2050 for the scenario where emission factors are held constant 

(i.e. NoChange_NoChange scenario) as shown in Figure 5.19. For the scenario where emission 

factors follow UK trends (i.e. the UK_NoChange scenario), total PM10 emission levels ranged 

from 1.20 to 1.30 kilotonnes in 2050. Finally, for the scenarios were all tailpipe emissions were 

eliminated by 2050 (i.e. 50:50_NoChange, Doubling_NoChange, CleanLondon_NoChange 

and JustInTime_NoChange), total PM10 emissions ranged from 0.73 to 0.81 kilotonnes between 

the three demand groups.  The remaining PM10 emissions in these scenarios come from the 

non-tailpipe emissions from cars and the combination of both tailpipe and non-tailpipe 

pollution from other types of road vehicles. 

 

As shown in Figure 5.19, the scenarios resulted in three distinct clusters of outputs, 

demonstrating the relative importance of the technology transition pathway compared to the 

demand input assumptions in determining the final results for the range of demand inputs 

considered. Cluster A includes the outputs from the “NoChange_NoChange” scenario for the 

three demand groups, where emission factors were held constant from 2010. Cluster B includes 
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the results from the “UK_NoChange” scenario, where emission factors changed in line with 

the results seen in the United Kingdom for the lowGHG_DAMC scenario. Cluster C includes 

all of the scenarios where tailpipe emissions were eliminated in Greater London by 2050.  

 
Figure 5.19: Total PM10 Emissions in Greater London area for scenarios without behavior 
change for a range of demand groups, 2010-2050 

 

 
 

For PM2.5 emissions, the outputs from PIONEER show that changing the demand inputs 

between the three groups resulted in a range in total air pollution emissions from 1.39 to 1.56 

kilotonnes in 2050 for the NoChange_NoChange scenario as shown in Figure 5.20. For the 

UK_NoChange scenario, total PM2.5 emission levels ranged from 0.67 to 0.73 kilotonnes in 

2050. Finally, for the scenarios were all tailpipe emissions were eliminated by 2050, total PM2.5 

emissions ranged from 0.38 to 0.42 kilotonnes between the three demand scenarios. As with 

PM10, the remaining PM2.5 emissions in these scenarios come from the non-tailpipe emissions 

from cars and the combination of tailpipe and non-tailpipe pollution from other types of road 

vehicles. Furthermore, the scenarios again produce three distinct clusters of outputs, 
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demonstrating the importance of the technology transition pathway in determining the final 

PM2.5 levels in 2050 as shown in Figure 5.20.  

 
Figure 5.20:  Total PM2.5 Emissions in Greater London area for scenarios without behavior 
change for a range of demand groups, 2010-2050 

	
 
 
For NOx emissions, the outputs from PIONEER show that changing the demand inputs 

between the three groups resulted in a range in total air pollution emissions from 30.63 to 33.34 

kilotonnes in 2050 for the NoChange_NoChange scenario as shown in Figure 5.21. For the 

UK_NoChange scenario, total NOx emission levels ranged from 2.55 to 2.77 kilotonnes in 

2050. Finally, for the scenarios were all tailpipe emissions were eliminated by 2050, total NOx 

emissions were 0.38 to 0.42 in 2050 in all three demand scenarios as all NOx emissions from 

cars were eliminated. The remaining NOx emissions in these scenarios represent the NOx 

emissions from other types of road transport. As with particulate matter, the scenarios resulted 

in three distinct clusters of outputs, demonstrating the importance of the technology transition 
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pathway in determining the final NOx levels in 2050 for the range of demands considered as 

shown in Figure 5.21. 

 
Figure 5.21:  Total NOx Emissions in Greater London area for scenarios without behavior 
change for a range of demand groups, 2010-2050 
 

 
 

Overall, these results show that the assumptions used for both demand and emission factors in 

Greater London have significant impact on the outputs from PIONEER. However, the 

technology transition pathway is the primary driver of changes in pollution levels in 2050 in 

the range of demand values examined. That being said, demand assumptions had a more 

significant impact (from the standpoint of final total emission levels) for scenarios where high 

emission factors were assumed as shown by the larger spread in the final values on a total 

emissions basis in the NoChange_NoChange scenario outputs. 

 

Similarly, with regards to emission factors, one could explore the possibility of higher emission 

factors or, in the case of particulate matter, lower emission factors to include the possibility of 

reduced non-tailpipe emissions levels over time (for example, due to changes in braking 
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technology or driving patterns). However, the range explored above is considered sufficient 

for the work presented in this thesis as it is able to capture the impacts of an overall trend of 

decreasing emission factors over time relative to changes in demand. Furthermore, it is in line 

with the broader focus of this research on the co-impacts of decarbonisation on air pollution 

(as opposed to the impacts of targeted non-greenhouse gas pollution control measures).  

	
5.5 Scenarios with Behavioural Change 
 
This section includes results from those scenarios that focused on the behavioural change 

dimension where mode shifting away from car travel would occur in Greater London.  

 
In the previous sections of this chapter, a set of six (6) scenarios were presented in order to 

explore the impacts of the technological change dimension. In this section, varying degrees of 

behavioural change (i.e. modal shift) are incorporated, producing a set of twelve (12) additional 

scenarios as shown in Table 5.6. These scenarios include up to a 40% mode shift away from 

cars in 2050 for reasons discussed in Chapter 3. Combined with the results in the previous 

section, these scenarios span the range of mode shift away from cars of 0-40% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 224	

Table 5.6: Scenarios Focusing on Behavioural Change Dimension 
Scenario Name Technological Change Behavioural 

Change 
NoChange_80:20  

No change from 2010 
 

20% of car travel 
shifted 

NoChange_60:40 40% of car travel 
shifted 

UK_80:20 Follows trends in United Kingdom for the 
lowGHG_DAMC scenario. 

20% of car travel 
shifted 

UK_60:40 40% of car travel 
shifted 

50:50_80:20 Half the availability for zero-tailpipe emission 
cars is taken by Greater London and the other half 
is dispersed around the rest of the United 
Kingdom until tailpipe emissions from cars are 
eliminated in Greater London. 

20% of car travel 
shifted 

50:50_60:40 40% of car travel 
shifted 

Doubling_80:20 After initially adopting half of the availability for 
zero-tailpipe  emission vehicles in 2025, the total 
use of zero-tailpipe emission cars doubles during 
each five-year period until 2045, at which point 
the zero-tailpipe emission vehicles are adopted 
rapidly to meet total demand for cars in 2050. 

20% of car travel 
shifted 

Doubling_60:40 40% of car travel 
shifted 

CleanLondon_80:20 100% of zero-tailpipe emission cars that are 
available in the United Kingdom are adopted in 
Greater London until all of demand for cars in this 
urban area are met by zero-tailpipe emission 
vehicles. 

20% of car travel 
shifted 

CleanLondon_60:40 40% of car travel 
shifted 

JustInTime_80:20 Adoption of zero-tailpipe emission cars in Greater 
London is delayed until the last time period 
considered (i.e. 2045-2050), at which point they 
are adopted rapidly to meet total demand for cars. 

20% of car travel 
shifted 

JustInTime_60:40 40% of car travel 
shifted 

 

In practical terms, additional mode shifting could be achieved through penalty measures 

including congestion charging and bans on cars in Greater London. Conversely, incentive 

measures such as reduced cost public transport, improved access to convenient public transport 

options, extensive walking and cycling networks, and access to shared and low-cost bicycles 

could support increased mode shifting away from cars.  

 

Shifting car travel to active travel (i.e. cycling, walking) and public transport (i.e. buses, trains) 

is represented in PIONEER as a reduction in demand for car travel that is linearly phased in 

over time from 2020 – 2050 to reach the indicated level of mode shift (i.e. 20% or 40%) by 
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2050. Demand values over time for each of these scenarios that incorporate behavioural change 

for Greater London is shown in Figure 5.22 for Group 1 demand values.  

 

Figure 5.22: Demand for Scenarios that Include Behavioural Change, 2010-2050 (Group 1) 

 

 

While these reductions in total demand due to mode shifting in Greater London are quite small 

relative to total car demand in the United Kingdom, these shifts do – by definition - impact the 

total demand assumptions used in UKTM-UCL-AQ. In turn, the lowGHG_DAMC scenario 

was re-run with the updated to reflect these reduction in expected future demand, resulting in 

the demand value projections shown in Tables 5.7 and 5.8 for 20% and 40% mode shifting, 

respectively.  

 
Table 5.7 Updated Road Transport Demand Projections from UKTM-UCL-AQ 
lowGHG_DAMC for the 80:20 Scenarios (Group 1) 

 

 
Table 5.8: Updated Road Transport Demand Projections from UKTM-UCL-AQ 
lowGHG_DAMC for the 60:40 Scenarios (Group 1) 

 

United	Kingdom

bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Cars 413 439 472 506 526 547 566 587 608
2W 5.30 4.79 4.79 4.75 4.72 4.69 4.66 4.63 4.60
Buses 4.80 4.97 5.13 5.29 5.43 5.56 5.67 5.78 5.89
LGVs 68 74 84 94 104 112 121 131 141
HGVs 27 27 29 30 31 32 33 35 36

0 0 1 2 3 4 5 6 7
0.0% 0.0% 0.2% 0.4% 0.6% 0.7% 0.9% 1.0% 1.1%

United	Kingdom	-	20%	Mode	Shift,	Group	1

Total	Demand

Change	in	Demand	for	Cars	
Compared	to	Original	Run

bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Cars 413 439 471 504 523 543 561 581 601
2W 5.30 4.79 4.79 4.75 4.72 4.69 4.66 4.63 4.60
Buses 4.80 4.97 5.13 5.29 5.43 5.56 5.67 5.78 5.89
LGVs 68 74 84 94 104 112 121 131 141
HGVs 27 27 29 30 31 32 33 35 36

0 0 2 4 6 8 10 12 14
0.0% 0.0% 0.4% 0.8% 1.1% 1.5% 1.8% 2.0% 2.3%

United	Kingdom	-	40%	Mode	Shift,	Group	1

Total	Demand

Change	in	Demand	for	Cars	
Compared	to	Original	Run
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As discussed in Chapter 3, the scenario constraints in PIONEER were subsequently checked 

for validity against the results from UKTM-UCL-AQ and the emission factors were re-

calculated. The updated emission factors and zero-tailpipe emission vehicles deployment 

curves can be found in the Appendix of this thesis. Overall, these deployment pathways were 

only minimally impacted by the change in demand assumptions. Of course, should these 

degrees of mode shifting be applied to the United Kingdom as a whole, one would expect a 

more significant impact. Noted here is that UKTM-UCL-AQ was re-run for each of the Greater 

London demand group assumptions that are used later in this chapter in the sensitivity test 

discussion. 

 

Also, it should be noted that this process inherently assumes that there is capacity in the 

network to accommodate additional passengers both on the sidewalks and roads as well as 

within the public transport network (i.e. buses and trains). Any future work using detailed 

transport models should be cognisant of this assumption and its potential impacts on demand 

for transport infrastructure including roads and sidewalks, which are not captured in the energy 

systems model used in this work.  

 

5.5.1 Results 

In the case where technologies and their associated emission factors are held constant over time 

(i.e. the NoChange_80:20 and NoChange_60:40), particulate matter air pollution (PM10) from 

road transport in Greater London rises over time from 1.33 kilotonnes in 2010 to between 1.52 

and 1.74 kilotonnes in 2050 depending on the degree of modal shift assumed in the scenario as 

shown in Figure 5.23. For comparison, this value rose to 1.96 kilotonnes when no modal shift 

was assumed. For scenarios where Greater London follows the broader UK technology 
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transition pathway for the lowGHG_DAMC scenario (i.e. UK_NoChange, UK_80:20 and 

UK_60:40), emissions in 2050 ranged from 0.87 to 1.03 kilotonnes compared to 1.20 

kilotonnes when no modal shift was included. For the other scenarios, where all tailpipe 

emissions from cars are eliminated by 2050 in Greater London, emissions in 2050 ranged from 

0.59 to 0.66 kilotonnes compared to 0.73 kilotonnes when no modal shift was included. Again, 

the scenario outputs resulted in three distinct clusters, demonstrating the importance of the 

technology transition pathway in determining the final PM10 levels in 2050 for the range of 

modal shift considered here as shown in Figure 5.23, in particular for the scenarios where 

tailpipe emissions for cars are not eliminated by 2050.  

 

Figure 5.23: Total PM10 Emissions in Greater London area for scenarios both with and without 
behavioural change, 2010 – 2050 (Group 1) 
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For PM2.5, air pollution emissions in 2050 ranged from 1.09 to 1.24 kilotonnes in 2050 for 

scenarios without a technology transition where emission factors were held constant over time 

but a mode shift away from cars of up to 40% was included (i.e. NoChange_80:20 and 

NoChange_60:40) compared to 1.39 kilotonnes without modal shift as shown in Figure 5.24. 

For the scenarios where emissions followed the rest of the UK (i.e. UK_80:20 and UK_60:40), 

emissions in 2050 ranged from 0.48 to 0.58 kilotonnes compared to 0.67 kilotonnes without 

modal shift. For the other scenarios, where all tailpipe emissions from cars are eliminated by 

2050 in Greater London, emissions in 2050 ranged from 0.31 to 0.35 kilotonnes when a modal 

shift was included versus 0.38 kilotonnes without modal shift.  

 	 

Figure 5.24: Total PM2.5 Emissions Greater London area for scenarios both with and without 
behavioural change, 2010 – 2050 (Group 1) 
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For NOx, air pollution emissions in 2050 ranged from 25.42 to 28.03 kilotonnes in 2050 for 

scenarios without a technology transition where emission factors were held constant over time 

(i.e. NoChange_80:20 and NoChange_60:40) compared to 30.63 kilotonnes without modal 

shift as shown in Figure 5.25. For scenarios that followed UK trends (UK_80:20 and 

UK_60:40), emissions in 2050 ranged from 1.68 to 2.11 kilotonnes versus 2.55 kilotonnes 

without modal shift. For the other scenarios, where all tailpipe emissions from cars are 

eliminated by 2050 in Greater London, emissions in 2050 was 0.39 kilotonnes. There was no 

range in this final value because, as previously discussed, all tailpipe emissions from cars are 

eliminated by 2050 and emissions from other vehicles are the same in each of these scenarios. 

The latter was done in order to isolate the impact of mode shifts away from car travel. 

 

Figure 5.25: Total NOx Emissions Greater London area for scenarios both with and without 
behavioural change, 2010 – 2050 (Group 1) 
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These scenarios help in understanding the tradeoffs and synergies between two measures for 

reducing air pollution emissions in Greater London – technology change to cleaner vehicles 

versus mode shifting away from car travel. Overall, for the range of mode shifting evaluated 

in this research (i.e. 0-40% away from cars) and the technology transition pathways evaluated 

here, technological change is the primary driver of reductions in emissions by 2050 as shown 

by the distinct clustering of results in Figures 5.23-5.25. This is particularly interesting because, 

on a kilometre by kilometre basis, mode shifting is a more effective way of reducing air 

pollution levels. This is because mode shifting eliminates both tailpipe and non-tailpipe 

emissions whereas zero-tailpipe emission vehicles will still produce non-tailpipe emissions. 

However, these results show technological change driving the results more than mode shifting, 

even at a 40% level in 2050.   

	
5.5.2 Sensitivity Analysis for Scenarios with Behavioural Change 

As discussed for the scenarios that did not include any degree of modal shift, it is particularly 

worthwhile to explore the impacts of two factors - namely the inputs used to define the 

technological change pathway and demand in Greater London – on the results presented. In 

turn, as was done previously for scenarios without model shift, this section includes outputs 

from PIONEER that use alternative demand assumptions. These demands are displayed in 

Figure 5.26 and 5.27 for Group 2 and Group 3 demands, respectively.  

 
Figure 5.26: Demand for Scenarios that Include Behavioural Change, 2010-2050 (Group 2) 
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Figure 5.27: Demand for Scenarios that Include Behavioural Change, 2010-2050 (Group 3) 

 

 

As mentioned previously, changing the level of demand for cars in Greater London will, by 

definition, impact the demand assumptions used in UKTM-UCL-AQ. In turn, UKTM-UCL-

AQ is re-run as earlier in this chapter using the methods outlined in Chapter 3. The updated car 

demand inputs that were included in UKTM-UCL-AQ for all demand groups in scenarios with 

behavioural shift are included in Figure 5.28 in order to illustrate the relative size of these 

changes to overall car demand in the United Kingdom. Noted here is that these scenarios only 

impacted car demand because, as previously noted, these scenarios assume that there is 

sufficient capacity in the system to accommodate these levels of shift to active travel (i.e. 

walking and cycling) as well as public transport (i.e. buses and trains).  

 

Figure 5.28 Updated Car Demand Inputs for UKTM-UCL-AQ for All Groups in Scenarios 
with Behavioral Shift 
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Air pollution emissions over time are shown in Figures 5.29, 5.30 and 5.31 (PM10, PM2.5 and 

NOx respectively) for all eighteen scenarios considered in this chapter for Greater London, 

including the three demand variants used in the sensitivity analysis for a total of fifty-four (54) 

sets of outputs.  When looking at the results of the scenarios across all the technology pathways, 

behavioural change pathways, and demand groups, one still sees in three distinct clusters of 

outputs corresponding to the technological change dimension. These results demonstrate the 

relative importance of the technology transition pathway compared to the behavioural 

dimension in determining the final results for the range of demand inputs considered. The 

clusters include: 

 

• Cluster A: outputs from the all the scenarios where the technology profile and 

corresponding emission factors were held constant from 2010, including three degrees 

of behavioural change (i.e. none, 20% shift from cars, 40% shift from cars) and three 

sets of demand assumptions.  

• Cluster B: outputs from all scenarios where the technology profile changed in line with 

the national-scale lowGHG_DAMC scenario, including the same three degrees of 

behavioural change and three sets of demand assumptions as Cluster A. 

• Cluster C: outputs from all scenarios where tailpipe emissions from cars were 

eliminated in Greater London by 2050, including the same three degrees of behavioural 

change and three sets of demand assumptions as Clusters A and B.  

 

Emission factor and demand data for each of these scenarios and sensitivities can be found in 

the Appendix. 
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Figure 5.29: Total PM10 Emissions in Greater London area for all scenarios and demand 
groups, 2010-2050 

 

 
Figure 5.30: Total PM2.5 Emissions in Greater London area for all scenarios and demand 
groups, 2010-2050 
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Figure 5.31: Total NOx Emissions in Greater London area for all scenarios and demand groups, 
2010-2050 

	

 

5.5.3 Public Health Impacts  

As stated elsewhere in this thesis, the public health impacts considered in this work are limited 

to those resulting directly from changes in air pollution emission levels. There has been 

significant research on the public health benefits of increasing levels of active travel in urban 

areas (e.g. decreased obesity rates) that could be used in future work to analyse these potential 

benefits (Woodcock et al., 2009; Jarrett et al., 2012; Jensen et al., 2013b).  

 

As discussed in Chapter 3, reductions in the mortality burdens and corresponding life-year 

increases are calculated for each of the scenarios presented in this Chapter using previous work 

published by Walton, et. al. for PM2.5 and NOx (Walton et al., 2015). The results are displayed 

in Figures 5.32 and 5.33 for changes in PM2.5 and NOx (as NO2) pollution across all scenarios 

and demand groups used in the sensitivity tests shown in the previous sections. 
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In the “NoChange” scenarios where emission factors were held constant from 2010, net annual 

premature deaths in Greater London due to PM2.5 air pollution produced by Greater London 

road transport increase from 377 in 2010 to 557 with 2050 emission levels when modal shift 

away from cars is not included (i.e. the NoChange_NoChange scenario). With a 20% mode 

shift away from cars (i.e. the NoChange_80:20), this value decreases to of 498. A 40% mode 

shift away from cars (i.e. the NoChange_60:40 scenario) further decreased this value to 439.  

 

For the scenarios where emission factors decrease in Greater London in line with the rest of 

the United Kingdom, falling PM2.5 emissions lead to a decrease in premature deaths due to 

PM2.5 air pollution to 268 with 2050 emission levels when mode shifting is not included. 

Including a mode shift away from cars of 20% and 40% led to further decreases in these values 

to 231 and 194, respectively.   

 

For the scenarios where emission factors decrease in Greater London until all tailpipe 

emissions from cars reach zero with the rest of the road transport fleet following UK trends 

(i.e. the 50:50_NoChange, Doubling_NoChange, CleanLondon_NoChange and 

JustInTime_NoChange scenarios), falling PM2.5 emissions lead to a decrease in premature 

deaths to 153 with 2050 emission levels when mode shifting is not included. Including a mode 

shift away from cars of 20% and 40% led to further decreases in these values to 139 and 125, 

respectively.   

 

For nitrogen oxides (as nitrogen dioxide, NO2), premature deaths increased from 2,448 in 2010 

to 3,619 with 2050 emission levels when modal shift away from cars is not included (i.e. the 

NoChange_NoChange scenario). With a 20% mode shift away from cars (i.e. the 
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NoChange_80:20), this value decreases to of 3,312. A 40% mode shift away from cars (i.e. the 

NoChange_60:40 scenario) further decreased this value to 3,004.  

 

For the scenarios where emission factors decrease in Greater London in line with the rest of 

the United Kingdom (i.e. UK_NoChange, UK_80:20 and UK_60:40), falling NOx emissions 

lead to a dramatic decrease in premature deaths due to 301 with 2050 emission levels when 

mode shifting is not included. Including a mode shift away from cars of 20% and 40% led to 

further decreases in these values to 250 and 199, respectively.   

 

For the scenarios where emission factors decrease in Greater London until all tailpipe 

emissions from cars reach zero with the rest of the road transport fleet following UK trends 

(i.e. the 50:50_NoChange, Doubling_NoChange, CleanLondon_NoChange and 

JustInTime_NoChange scenarios), decreasing NOx emissions lead to a decrease in premature 

deaths to 46. As previously discussed, mode shifting away from cars did not impact these 

values as NOx emissions from cars had already been eliminated with the adoption of zero-

tailpipe emission vehicles. 
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Figure 5.32: Annual Premature Deaths by Scenario for PM2.5 and NOx (as NO2) in 2050 for 
Groups 1, 2 and 3 
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Figure 5.33: Life Years Lost by Scenario for PM2.5 and NOx (as NO2) in 2050 for Groups 1, 2 
and 3 
 

 

 

These total mortality burden values do not account for transboundary effects of changes to the 

road transport fleet in Greater London. In other words, this work does not consider the impacts 

of changes in air pollution emission levels from Greater London road transport on the rest of 

the United Kingdom. Should these values be calculated, they are expected to be in the same 

direction (positive/negative) as for Greater London though with different absolute values 

depending on the region considered. Furthermore, as discussed in Chapter 3, only a small 

portion of these health impact changes would be realised in 2050. Longer-term benefits (e.g. 

through reductions in instances of cancer and other diseases resulting from long-term exposure 

to these air pollutants) would be increasingly realised over time after 2050 (Walton et al., 

2015).	
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5.6 Discussion & Conclusions 

As discussed at the outset of this Chapter, the research presented for the Greater London area 

explores the extent to which local action in this urban area could contribute to reduction in 

locally produced air pollution and its associated health impacts.  This research takes into 

consideration two dimensions – technological and behavioural change – and three key primary 

non-greenhouse gas air pollutants – namely, particulate matter (PM10 and PM2.5) and nitrogen 

oxides (NOx).  

 

After creating the PollutION Emissions from EneRgy (PIONEER) model, it was soft-linked to 

the UKTM-UCL-AQ energy systems model in order to disaggregate the Greater London region 

transport sector from the broader United Kingdom. The air pollution and public health impacts 

of a range of scenarios were analysed to establish the relative impacts of technological versus 

behavioural change on air pollution emissions from Greater London road transport as well as 

the resulting health impacts. Overall, it was found that technological change was the primary 

driver of changes in air pollution emissions and public health across all scenarios and data 

assumptions considered.  

 

These results are discussed in more detail in Chapter 6. 
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Chapter 6 – Discussion and Conclusions 

6.1 Overview and Key Contributions 

This thesis documented the development and use of a technoeconomic energy systems 

optimisation model (UKTM-UCL-AQ) to quantify the co-impacts of technological transition 

pathways to achieve decarbonisation targets on air pollution and vice versa for the United 

Kingdom. This manuscript further documented the development of an air pollution and public 

health tool (PIONEER) and its subsequent soft-linking to UKTM-UCL-AQ in order to 

disaggregate the Greater London area from national-level outputs. Finally, this thesis 

documented the combined use of these tools to both quantify and improve understanding of 

the air pollution and public health implications of energy system transition pathways to identify 

“win-win” opportunities.  

 

There are three set of key contributions that were directly made by this work. The first includes 

the creation of fit-for-purpose tools that allow for the detailed examination of the co-impacts 

of climate change mitigation efforts in the energy system on other types of air pollution and 

vice versa at a national scale. Through the development of UKTM-UCL-AQ to include other 

types of air pollution, this research produced a unique tool to allow the researcher to explore 

and quantify these co-impacts in the United Kingdom. In turn, it achieved its goal of helping 

to quantify and understand the synergies and trade-offs between climate change mitigation and 

air pollution reduction efforts in the United Kingdom.  

 

Second, this research produced a unique tool that allowed for the disaggregation and evaluation 

of these co-impacts on road transport in an urban area. Through the development of the 

PIONEER model, this research achieved the goal of understanding the impacts of national 
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scale decarbonisation ambitions on urban air pollution as outlined in Chapter 1. It further 

enabled the evaluation of the relative impacts of technological versus behavioural change on 

air pollution from road transport in the Greater London area, revealing the importance of 

technological change in driving air pollution emission reductions. 

 

Third, through the soft-linking of UKTM-UCL-AQ and PIONEER, this research allowed for 

the evaluation of the extent to which technological and behavioural change could facilitate air 

pollution reductions and public health gains in the Greater London urban area. In doing so, it 

bridged some of the existing gaps between energy system and public health models in the 

literature as discussed in more detail elsewhere in this chapter as well as in Chapters 1 and 2. 

 

Overall, the research presented in this thesis allowed for the exploration of the research 

questions posed at the beginning of this thesis, including: 

 

1. What are the co-impacts (both positive and negative) on particulate matter and nitrogen 

oxide air pollution levels for energy sector decarbonisation pathways that are optimised 

with regards to reducing total greenhouse gas emissions on both a national and urban 

scale? 

2. How does considering the impact of these other types of outdoor air pollution (i.e. 

particulate matter and nitrogen oxides) impact the decarbonisation pathway on both a 

national and urban scale?   

 

The results from this work are encouraging, as they suggest that there are numerous 

opportunities for climate change midication and air pollution reduction efforts to be mutually 

supportive. They also strengthen the evidence base related to the importance of considering air 
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pollution co-impacts in the evaluation of potential pathways for achieving decarbonisation 

goals in order to avoid tensions between mitigation and air pollution reduction efforts.  

 
This chapter starts with a discussion on the key insights gained from this research and how 

they compare with previous work by other researchers (Section 6.2). This section is followed 

by a discussion of the significance of this work for the modelling community and in policy 

development (Section 6.3) and an examination of the limitations of the approach taken (Section 

6.4), including discussion of the ways that this research can be enhanced and expanded moving 

forward (Section 6.5).   

 

6.2 Key Insights and Comparisons with Previous Work 

This section includes the key insights from this research, presented in the context of the 

research questions explored. This discussion is followed by a critical comparison of this 

research and its key insights with previous work in this field, including studies presented in 

Chapter 2.  

 

6.2.1 Key Insights  

As discussed in the preceding chapters, initial focus in this research project was placed on a set 

of six (6) non-greenhouse gas air pollutants that are inventoried in the National Atmospheric 

Emissions Inventory (NAEI), including particulate matter (PM10 and PM2.5), nitrogen oxides 

(NOx as NO2), sulphur oxides (SOx as SO2), ammonia (NH3), and non-methane volatile organic 

compounds (NMVOCs). These pollutants were integrated into a national-scale TIMES-based 

energy systems model (UKTM-UCL-AQ), which was able to account for the majority of 

emissions from PM10, PM2.5, NOx, and SOx but only a small minority of NH3 and NMVOCs 

for the United Kingdom as discussed in Chapter 4.  
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The UKTM-UCL-AQ model was used to evaluate the co-impacts of energy technology 

transition pathways on air pollution emissions levels in the United Kingdom. Subsequently, 

the associated damage costs of the non-greenhouse gas air pollutants were included in the cost-

optimisation in UKTM-UCL-AQ to quantify and understand how including these co-impacts 

might affect the transition pathways. Overall, a set of six (6) scenarios were constructed across 

two dimensions – decarbonisation ambition and air pollution costs – and the sensitivity of 

model outputs was examined with regards to constraints placed on biomass and nuclear power. 

 

At an urban level, focus was placed on the Greater London urban area and three key primary 

non-greenhouse gas air pollutants – namely, particulate matter (PM10 and PM2.5) and nitrogen 

oxides (NOx). These pollutants represent a significant portion of estimated local public health 

impact of air pollution and are largely captures by the UKTM-UCL-AQ energy systems 

model as discussed in Chapters 3, 4 and 5. This research then explored a set of eighteen (18) 

scenarios to explore the relative impacts of technological change and behavioural change as 

well as a set of sensitivity runs as discussed in Chapter 5. 

 

Overall, this research revealed that the UKTM-UCL-AQ model could represent the vast 

majority of NOx and SOx pollution sources in the United Kingdom, a majority of PM10 and 

PM2.5 pollution, and a minority of NH3 and NMVOCs pollution as discussed in Chapter 4. In 

turn, use of UKTM-UCL-AQ could provide significant insights on the co-impacts of national 

scale decarbonisation efforts on the first four pollutants (NOx, SOx, PM10 and PM2.5). 

Conversely, much less could be said about trends in NH3 and NMVOCs as the dominate 

sources of these types of pollution are external to the energy system in the United Kingdom 

(i.e. outside of the system boundary) 
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The subsequent implementation of UKTM-UCL-AQ across a range of decarbonisation 

ambitions showed the potential for tensions to develop between decarbonisation and air 

pollution reduction efforts. This tension arose from increasing levels of particulate matter air 

pollution between 2025-2040, resulting from the use of biomass in residential heating 

systems. However, this tension was alleviated with the inclusion of damage costs in the 

optimisation pathway, which provided a strong indicator of the importance of considering air 

pollution co-impacts in the development of the transition pathways to achieve decarbonisation 

goals.  

 

Furthermore, the inclusion of air pollution damage costs had a quite small impact on total 

energy system costs in the scenario where the United Kingdom achieved its national scale 

decarbonisation ambition. In fact, if one removes the air pollution damage cost component 

from the total system costs, the additional costs of the energy system expenditure amounted 

to a 0.15% to 0.5% increase (Lott, Pye and Dodds, 2017).  

 

That being said, these results were sensitive to the assumptions used in the UKTM-UCL-AQ 

model, in particular related to the degree to which fuel-shifting could occur in the residential 

sector. However, the results did not appear to be sensitive to constraints on nuclear fleet 

expansion in the United Kingdom. This was a particularly interesting result given that the 

electricity sector was a primary driver of decarbonisation in the decarbonisation scenario. 

 

The results from UKTM-UCL-AQ also further reinforced evidence on the relative difficulty 

in achieving significant greenhouse gas reductions in the transport sector compared to other 

sectors (e.g. electricity) from the viewpoint of this cost-optimised model. 
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As discussed in Chapter 4, the transport sector was the least impacted of the sectors 

considered within the energy system. Though, it is noted that the inclusion of damage costs 

did accelerate the transition to lower emission vehicles. This result suggests that targeted 

polices and/or significant cost reductions would be needed to address transport-sector air 

pollution impacts.  

 

As discussed in Chapter 1, the current predominance of road transport as source of local air 

pollution in urban areas makes this sector of high interest (Woodcock et al., 2009; Sokhi and 

Kitwiroon, 2011).  The results in Chapter 4 further heightened this interest as the transport 

sector only realised small changes in the technological change pathway. In turn, the focus of 

Chapter 5 explored the extent to which local action in Greater London could contribute to 

reductions in locally produced air pollution and its associated public health impacts.  

 

Overall, across the scenarios considered in Chapter 5, the principle driver of air pollution 

emissions changes was the technological pathway taken in Greater London. This finding held 

across a range of behavioural change including significant mode shift away from cars as well 

as sensitivity tests that focused on demand levels for road transport in Greater London.  

 

With regards to public health impacts, the results presented in Chapter 5 illustrated the 

increasingly dominate role of non-tailpipe emissions in premature deaths due to PM2.5 

emissions. However, this was overshadowed by the relative importance of nitrogen oxide 

emissions produced in Greater London on public health. Overall, the results showed that 

reducing tailpipe emissions from Greater London road transport offers the largest potential 

health opportunity. Furthermore, as previously discussed, given the recent questions that have 

been introduced regarding the ability of auto manufacturers to reduce tailpipe emissions of 
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nitrogen oxides, these results further strengthen arguments for transitioning more quickly to 

zero-tailpipe emission vehicles (Brand, 2016). 

 

6.2.2 Comparison of United Kingdom Results with Previous Work  

As discussed in Chapter 2 (Section 2.3.2), the global study by the International Energy Agency 

and reports by Pye, et. al. are of particular importance in this research project. The former 

represents the most advanced work done globally to examine the co-impacts of energy system 

transitions to reach climate change mitigation targets under the Paris Climate Agreement in a 

way that considers the air pollution co-impacts. The latter is the most advanced work that has 

been done in the United Kingdom to analyse the co-impacts of changes to the energy system 

on air pollution levels using the energy systems model that is at the core of UK government 

decision making (Pye and Palmer, 2008; Pye et al., 2008; International Energy Agency (IEA), 

2016).  

 

6.2.2.1	Comparison	with	IEA	(2016) 
At a high level, the IEA’s 2016 report quantifies the relative role of the global energy system 

in the production key types of primary air pollution (International Energy Agency (IEA), 

2016). Overall, they found that essentially all of global SO2 and NO2 emissions are produced 

by the energy sector as well as more than 85% of particulate matter (PM2.5). Conversely, the 

IEA reports that only 3% of global NH3 emissions are produced by the energy sector.  

 

Similarly, in the development of UKTM-UCL-AQ as described in Chapter 3, this research 

found that this energy systems model included the sources of the vast majority of NOx (as 

NO2) and SOx (as SO2) pollution in the United Kingdom, capturing 94% and 92% of these 

emissions, respectively. The model also included a majority (74%) of PM2.5 pollution. 

However, UKTM-UCL-AQ only captured a small minority (5%) of NH3 pollution (Lott, Pye 
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and Dodds, 2017).  These results further reinforce the important role of the energy sector in 

air pollution production, as well as give an indication of the relative role of energy for each 

of these key pollutants. 

 

Furthermore, in the IEA’s 2016 report the authors find that - in a scenario that includes the 

Intended Nationally Determined Contributions (INDCs) that have been pledged by countries 

around the globe - incorporating air pollution mitigation measures results in an early peak in 

carbon dioxide emissions around the globe (International Energy Agency (IEA), 2016). In their 

scenarios, targeting air pollution reductions led to a co-benefit in the form of a 13% reduction 

in total CO2 emissions in 2040 in the European Union (International Energy Agency (IEA), 

2016). Noted here is that the current INDCs generally only include ambitions through 2025 or 

2030 and are not expected to achieve the overall goals set forth in the Paris Climate Agreement 

of limiting global average temperature rise to less than 2 Degrees (Pye et al., 2017).  

 

Similarly, in the research presented in this thesis, modelling showed that the inclusion of 

damage costs in a scenario with medium climate ambition (i.e. the ref_DAMC scenario) leads 

to accelerated decarbonisation compared to the same scenario without damage costs (i.e. the 

ref scenario). This acceleration spanned the period from 2020-2035. This result supports the 

IEA’s finding that attention to air pollution can support accelerated decarbonisation. Though, 

it is noted here that this accelerated decarbonisation was not observed in the research presented 

in this thesis in a scenario where a more ambitious decarbonisation target was included (i.e. the 

lowGHG_DAMC scenario). 

 

Also of note is that actions to reduce non-greenhouse gas emissions in tandem with climate 

change mitigation were shown to be relatively inexpensive in both the IEA study and the 
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research presented in this thesis in Chapter 4. In the case of the IEA study, a 7% ($4.8 trillion) 

increase in total global energy system investment between now and 2040 could significantly 

reduce global premature deaths due to air pollution exposure (International Energy Agency 

(IEA), 2016). In this research, scenarios that considered air pollution damage costs resulted in 

a minimal cost increase of 0.15% to 0.5% while achieving significant decreases in air pollution 

levels as shown in Chapter 4, Figure 4.24 and Table 4.7.  Highlighted in the context of this 

comparison is the fact that the IEA included a set of targeted air pollution abatement 

technologies and policies in their analysis that were not explicitly considered in the scope of 

the research project presented in this thesis. 

 

6.2.2.1	Comparison	with	Pye,	et.	al.	(2008) 
As discussed in Chapter 2, the 2008 report by Pye et. al. accounted for non-greenhouse gas air 

pollutants in the United Kingdom MARKet ALlocation model (UK MARKAL), which was 

the precursor to UKTM-UCL (Pye and Palmer, 2008; Pye et al., 2008). In this work, Pye and 

his co-authors tracked air pollution emissions of particulate matter (PM10), sulphur dioxide 

(SO2), and nitrogen oxides (NOx) arising from all combustion processes in the energy sector. 

As was done in this research presented in this thesis, Pye et. al. also included marginal damage 

cost values from the United Kingdom’s Department for Environment, Food & Rural Affairs 

(Defra) in their model, using the 2006 National Atmospheric Emissions Inventory (NAEI) 

emission factors as far as possible (Pye et al., 2008).  

 

The UK MARKAL model was then applied to two model runs using scenarios released as a 

part of the 2007 Energy White Paper – namely, the base scenario and a decarbonisation 

scenario that included a 30% greenhouse gas emission reduction target by 2030 and a 60% 

reduction target by 2050 (compared to 2000 levels) – in order to “provide examples of outputs” 

that could be produced using this tool (Department of Energy and Climate Change (DECC), 
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2007; Pye et al., 2008). This application was similar – though not the same – as the scenarios 

applied in this research, which included an 80% greenhouse gas reduction target in 2050 and 

included the interim targets as set out in the UK carbon budgets.  

 

Overall, Pye et. al. concluded that their “analysis shows that air quality emissions could be 

significantly reduced in future years as a result of technology improvements, improved 

efficiency and less use of polluting fuels, under the reference case” (Pye et al., 2008). They 

observed a further reduction of NOx emissions in 2050 of 131 kt (24.6%) in the decarbonisation 

scenario versus the base case as well as additional reductions of 11.6 kt for PM10 and 287 kt 

for SO2 (Pye et al., 2008). By comparison, the results from UKTM-UCL-AQ presented in this 

research showed a difference in NOx emissions between the base and lowGHG scenarios of 

125 kt (25%) as well as a 41 kt reduction in PM10 emissions compared to a 2010 base year. As 

was the case in the results presented in this thesis, Pye et. al. found that transport was only 

minimally impacted by the inclusion of decarbonisation targets and damage costs for other 

types of air pollution (Pye et al., 2008). 

 

While the results this study by Pye, et. al. are not directly comparable to the results presented 

in this thesis in Chapter 4due to differences in the scenario constraints (e.g. the differences in 

decarbonisation targets, base years, cost assumptions, etc). However, one can still gain insights 

from comparing the overall trends. In turn, it is noted here that both sets of results support the 

hypothesis that decarbonisation of the energy system would lead to reductions in other types 

of air pollution over time. Combined, these studies strengthen the conclusion that targeted 

policies are needed to effectively reduce the impacts of air pollution from the transport sector.   

Though, the work presented in this thesis further highlights potential tensions relating to the 

increased use of biomass.  
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6.2.3 Comparison of Greater London Results with Previous Work 

For Greater London, the results presented in Chapter 5 illustrated the relative importance of 

technological and behavioural change in reducing air pollution produced within this urban area.  

Overall, it was shown that technological change was the primary driver of pollution emissions 

reductions across the range of scenarios considered, though behaviour change did have 

noticeable impacts. Furthermore, deploying an increased proportion of available zero-tailpipe 

emission cars (both electric and hydrogen fuel cell) in Greater London had significant air 

pollution health benefit resulting from decreases in local pollution levels. These benefits 

outpaced gains realised in scenarios where up to a 40% mode shift away from cars was 

included. 

 

6.2.3.1	Comparison	with	Barker	et.	al	(2010) 
These conclusions are in broad agreement with those previously made by Barker, et. al in their 

2010 study of global mitigation efforts, with a focus on Mexico and within Mexico City. In 

this study, Barker et. al. concluded that (Barker et al., 2010):  

 

“climate control in the form of rapid decarbonisation of the Mexican economy will have 

substantial effects on air pollution, at no extra cost, especially if the mitigation actions 

are focused on Mexico City”.  

 

As discussed in Chapter 2, this study by Barker, et. al. differs from the research presented in 

this thesis not just in terms of modelling approach but in choice of air pollutants to examine 

(Barker et. al. focused on greenhouse gas emissions and tropospheric ozone). However, they 

support the findings in this research at a high level in that mitigation efforts resulted in 

substantial benefits for air pollution at minimal (or no) extra cost. Furthermore, there are 

substantial benefits to be gained by concentrating mitigation actions in urban areas in both 
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studies as shown in Chapter 5 of this thesis in the scenarios that included increased adoption 

of zero-tailpipe emission vehicles in Greater London.    

 

6.2.3.2	Comparison	with	Woodcock,	et.	al	(2009) 
With regards to the health co-benefits from climate change mitigation in transport, the results 

presented in this thesis in Chapter 5 support the previous findings by Woodcock, et. al. in their 

2009 study. As discussed in Chapter 2, these researchers found that “although uncertainties 

remain, climate change mitigation in transport should benefit public health substantially” 

(Woodcock et al., 2009).  

 

Furthermore, the research presented in this thesis is complimentary to the work by Woodcock 

et. al., given that their 2009 evaluation did not consider non-tailpipe or nitrogen oxide 

emissions. As discussed in Chapter 5, non-tailpipe emissions are increasingly important over 

time as they are not eliminated with the adoption of zero-tailpipe emission vehicles. 

Furthermore, nitrogen oxide air pollution provided substantial health co-benefits in Greater 

London that were not included in the work by Woodcock, et. al. in their 2009 study (Woodcock 

et al., 2009). 

 

6.2.3.3	Comparison	with	Jarrett,	et.	al.	(2012) 
With regards to the work discussed in Chapter 2 by Jarrett et. al., the results presented in this 

thesis serves to complement their work related to the co-benefits of increased active travel in 

urban England and Wales for the National Healthcare Service. As stated in Chapter 2, Jarrett 

et. al. did not consider the effect of mode shifting “on environmental factors such as improved 

air quality because of reduced vehicle emissions” (Jarrett et al., 2012).  
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However, further work would be required in order to fully interlink this research with Jarrett 

et. al.’s work. In particular, the methodology applied in Chapter 5 would need to be applied to 

all urban areas in Wales and England in addition to disaggregating the effects of mode shifting 

to active travel (i.e. walking, cycling) versus public transport (i.e. buses and trains) and 

expanded to associate direct treatment costs for the NHS to the health co-impacts realised. This 

activity represents an interesting opportunity for future work in this area. 

 

6.3 Significance for the Modelling Community & Policy Development 

As discussed in Chapter 2, researchers have discussed that the potential co-benefits of energy 

sector decarbonisation on other types of air pollution, hypothesizing that it could be an 

important benefit of decarbonisation activities. The value in the research presented in this thesis 

is that these air pollution co-impacts can now be quantified directly when exploring 

decarbonisation pathways using the same energy systems model (UKTM-UCL-AQ) at a 

national scale for the United Kingdom.  In turn, it provides quantitative outputs instead of more 

nebulous impressions, allowing researchers to understand the potential implications of policies 

targeting decarbonisation or air quality in order to eliminate potential tensions between these 

types of policies and identify “win-win” opportunities. Noted here is that the UKTM-UCL-AQ 

model is now being used by the former Department of Energy and Climate Change (DECC), 

which became the Department for Business, Energy & Industrial Strategy (BEIS) in July 2016. 

 

Furthermore, this research enabled the disaggregation of an urban areas from the national level 

outputs produced by UKTM-UCL-AQ using the PIONEER model. This disaggregation 

provides additional insights that are particularly pertinent to air quality policy development, 

where urban areas often represent air quality “hot spots”, as is the case with Greater London as 

discussed in Chapters 1 and 2. For the policy community, the outputs of this research relating 
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specifically to the road transport sector highlight the need for more targeted solutions (e.g. 

policies and regulation) in order to support this sector’s transition. It also showed the relative 

importance of technological and behavioural change in reducing local air pollution emisisons. 

 

6.4 Limitations of the Research Approach 

At the core of this research are two models, as discussed in more detail in Chapter 3 with details 

of their application in Chapters 4 and 5. The first of these tools is an energy systems model 

(UKTM-UCL-AQ) that includes a simplified version of the United Kingdom’s energy system, 

allowing its users to explore the many “what ifs” of energy systems planning and development 

from a cost-optimised viewpoint without extraordinarily high levels of computational intensity. 

The second tool is an air pollution and public health model (PIONEER) allows users to further 

understand the co-impacts of national and local efforts on air pollution and public health.  

Neither of these models is designed to predict the future, but rather to gain insight on the 

possible pathways that could be taken to achieve a variety of goals.  

 

As discussed in Chapter 3, the choice of the particular models used in this research was 

predominately motivated by its: 

 

1. being fit-for-purpose 

2. having in-country capacity 

3. transparency, communicability and policy credibility 

 

The simplified representations in UKTM-UCL-AQ and PIONEER can provide significant 

insights into the real-world energy system and the potential impacts of its evolution on air 
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pollution and public health. There are many reasons for these simplifications, including the 

following practical considerations: 

 

1. resource constraints 

2. availability of data 

3. hardware and software access 

 

However, the modelling approach taken in this research – as with any modelling approach – 

limits the types of insights that can be drawn. These limitations and key considerations to be 

away of are discussed below.   

 

6.4.1 Cost Optimisation Approach 

The optimisation process in UKTM-UCL-AQ is designed to provide insights on the possible 

pathways to achieve a future energy system that will meet a set of exogenously prescribed 

demands at a minimum total system cost. Because of its approach, changes in technology costs 

can have dramatic impacts on the technology transition pathway results – a concept sometimes 

called the “penny switching” or “bang bang” effect where “small changes in input parameters 

might lead to considerable modifications in the output” (Held, 2010; Pfluger, 2014). In turn, 

the assumptions made for these future energy service demands, resource availability, and 

technology costs (including initial investment, operation and maintenance) are of primary 

importance in determining the outputs from this model.  
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6.4.1.1	Energy	Service	Demand	Assumptions	
With regards to energy service demands, the core research presented in this thesis used future 

population growth rate projections from national statistics as the primary driver of demand as 

discussed in Chapters 3, 4 and 5. These statistics were published prior to the 2016 Brexit vote 

and the ongoing negotiations related to the United Kingdom’s potential departure from the 

European Union. This is just one example of a source of potential uncertainty for future 

population trends and the corresponding energy service demands, which supports the 

completion of the sensitivity tests presented in Chapter 5. 

 

6.4.1.2	Resource	Availability	and	Technology	Costs	Assumptions 
With regards to resource availability and technology costs, inputs to the UKTM-UCL-AQ 

model included both the availability of resources and their associated costs as well as the 

technology costs for both initial capital investments and on-going operation and maintenance 

of each technology. As discussed in Chapter 3, these inputs included factors such as 

construction timelines, limits on change rates (e.g. fuel switching), learning curves and future 

innovations including the availability and costs of future technologies. The values used in this 

research project are in line with other analyses completed using UKTM-UCL to further support 

transparency and credibility (Committee on Climate Change, 2015a; Pye et al., 2015; Lott, Pye 

and Dodds, 2017). However, awareness of the role of these assumptions is important both in 

determining the insights that can be drawn from this research as well as in designing approaches 

to future work. 

 

In this work, awareness of this sensitivity led to the use of identical cost assumptions across all 

mode runs presented in Chapter 4 in addition to using assumed values that are in line with 

previous peer-reviewed studies in order to isolate the co-impacts of the decarbonisation 

ambition and how these co-impacts area affected when pollution damage costs are included. 
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Furthermore, in the analysis presented in Chapter 5, hydrogen fuel-cell and electric vehicles 

were aggregated into a “zero-tailpipe” classification. In turn, the conclusions presented in this 

chapter are dependent on either of these two technologies being deployed and so are not 

influenced by the relative prices of one of these two car types and the other. That being said, 

this aggregation does not eliminate the sensitivity of the deployment of these zero-tailpipe cars 

to their assumed cost relative to internal combustion engine models.  

 

6.4.1.3	Emission	Factor	and	Damage	Cost	Assumptions 
The UKTM-UCL-AQ model also used a series of assumptions related to the emission factors 

for technologies as described in Chapter 3 as well as the damage costs of these emissions. With 

regards to the emission factors, this research drew from the National Atmospheric Emissions 

Inventory (NAEI). As discussed in Chapter 3, the emission factors for future technologies were 

often based on existing values, which might be inaccurate. Furthermore, assumptions were 

made related to the lifetime for each current and future technology as well as its emissions 

performance over that lifetime. For the scenarios that included damage costs in the optimisation 

pathway (i.e. base_DAMC, ref_DAMC and lowGHG_DAMC), the emission factors are of 

particular importance.  

 

The NAEI was appropriate for use in this research as it provided a transparent and accessible 

centralised source of emission factors data. Furthermore, using this database allowed for 

comparisons of this work to previous efforts by Pye, et. al. (Pye and Palmer, 2008; Pye et al., 

2008). As the NAEI database is updated on an annual basis, it would be valuable to examine 

how updated information on these emission factors in the future impact the outputs in this thesis 

(Department for Business Energy & Industrial Strategy (BEIS), 2016). There also exist ample 

opportunities for future work to examine these emission factors and the impact of uncertainty 
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in the published figures in the light of the recent “dieselgate” scandals as was discussed in 

Chapter 2  (Brand, 2016). 

 

With regards to damage cost values, as discussed in Chapters 3 and 4, the values assumed in 

this work for the damage cost values of air pollution were based on previous impact pathway 

assessments, which explicitly accounted for air pollution and exposure profiles. These damage 

costs are a more direct way to place an economic value on the impacts of air pollution on both 

public health and the environment (including both buildings and materials) in UKTM-UCL-

AQ, and therefore are more straightforward to include in the optimization process (Lott, Pye 

and Dodds, 2017).  

 

Crucially, the damage costs approach does factor in the spatial distribution of air pollution and 

the likely exposure. It is therefore appropriate to use such nationally-derived damage costs 

values in a model such as UKTM-UCL-AQ. While recognised as a credible approach for policy 

appraisal, the limitation in using these values is the implicit assumption that such damage cost 

values hold for future years, in which this spatial distribution of pollution–exposure–impact 

may change (Lott, Pye and Dodds, 2017). 

 

These values also make assumptions related to healthcare costs for treating conditions resulting 

from air pollution exposure. By holding these costs constant over time in real terms, this 

approach does not capture the effects of healthcare and treatment innovations nor changes in 

standards of care in the healthcare system. These and related topics are beyond the scope of the 

research presented in this thesis and represent an interesting opportunity for future 

collaborations and work in partnership with the medical research community. 
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6.4.2 Spatial Resolution & System Boundaries 

As discussed in Chapter 3, with regards to spatial and temporal resolution, the tools selected 

and developed for this research examine changes in the energy system in five-year time slices 

with country- and urban-level resolution. In turn, they are appropriate for the quantification of 

trends on these scales, which is reasonable given the geographic focus and timescale of the 

United Kingdom’s Climate Change Act. However, these tools are not appropriate for use in 

examining a number of related research questions that require quite higher levels of spatial 

and/or temporal resolution nor those requiring detailed air pollution chemistry modelling (for 

example, the co-impact of changing car technologies on air pollution levels on a particular 

street in Greater London and their corresponding impact on hourly or daily mean air pollution 

concentrations).  

 

With regards to system boundaries, UKTM-UCL-AQ draws its boundaries around the United 

Kingdom energy system in each of the scenarios presented in Chapter 4. These boundaries 

have particularly important implications in this work as it relates to sources of air pollution and 

the resulting air quality impacts. More specifically, this boundary means that sources of air 

pollution that exist outside of either the 1) energy system and/or 2) geographical boundaries 

drawn (i.e. the United Kingdom, Greater London area) are held constant over time. In turn, 

insights are limited to potential co-impacts of energy systems changes that occur within these 

system boundaries and do not account for changes outside of their limits.  

 

As discussed elsewhere in this manuscript, the energy system processes included within the 

system boundaries of UKTM-UCL-AQ represent the majority of man-made particulate matter, 

nitrogen oxide, and sulphur oxide pollution produced in the United Kingdom (Lott et al., 2016; 

Lott, Pye and Dodds, 2017). This fact, coupled with the existing body of scientific evidence 
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related to the direct health impacts of air pollution, mean that the most significant insights of 

this research related to public health are associated with changes in particulate matter and 

nitrogen oxide air pollution emission levels (World Health Organization, 2013b; Walton et al., 

2015). Future work to enhance this research could include its expansion beyond the energy 

system or to otherwise account for other air pollution sources. 

 

For the PIONEER model, system boundaries were drawn around the Greater London area as 

described in Chapter 3. In turn, direct insights resulted from those changes occurring inside of 

this urban area. However, when coupled with UKTM-UCL-AQ, additional insights could be 

drawn relating to the impact of national-level action on urban-level air pollution and public 

health as discussed in Chapter 5. Furthermore, the soft-link (including an iterative loop) 

between PIONEER and UKTM-UCL-AQ allowed for insights to be drawn on the impact of 

certain types of actions (e.g. mode shifting) within Greater London on national-level 

decarbonisation pathways.  

 

6.4.3 Temporal Resolution 

As discussed in Chapter 3 with regards to temporal resolution, the tools selected and developed 

for this research examine changes in the energy system in five-year time slices. In turn, they 

are appropriate for the quantification of trends over longer periods of type, which is appropriate 

given the geographic focus of the United Kingdom’s Climate Change Act. However, these 

tools would not be appropriate for use in examining a number of related research questions that 

require quite high levels of temporal resolution nor those requiring detailed air pollution 

chemistry modelling. For example, the impact of air pollution from cars on hourly, daily or 

even seasonal mean air pollution concentrations.	Furthermore,	this	course	level	of	temporal	
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resolution	limits	the	conclusions	that	can	be	made	with	regards	to	operational	viability	of	the	

technology	transitions	output.	 

 

6.5 Opportunities for Future Work 

Given an appropriate level of resource availability, the logical next steps in this research 

include the following: 

1. Expand work relating to the air quality and exposure impacts of changes in air 

pollution levels.  

2. Expand work to consider energy transitions outside of the United Kingdom to 

improve cross-boundary pollution assumptions. 

3. Increase the temporal granularity of these modelling efforts, to capture additional 

insights related to the operational implications of these future scenarios. 

4. Soft-link the outputs of these models with an air quality tool to explore the 

implications of the scenarios on hourly and daily mean air pollution concentrations. 

5. Increase spatial granularity of models to study the implications of changing travel 

patterns on air quality and public health. 

6. Further develop data on emission factors, in particular for future technologies.  

7. Explore the potential impacts of energy sector technology innovation, including the 

car-sharing economy and the impacts of changes in future travel patterns (e.g. through 

increased remote working). 

8. Explore the potential impacts of technology innovation in the road transport sector, 

especially as it pertains to impacts on non-tailpipe emissions. 

9. Improve the representation of explicit air pollution abatement technologies by 

including these technology options in UKTM-UCL-AQ.  
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10. Disaggregate the effects of mode shifting to active travel (i.e. walking, cycling) versus 

public transport (i.e. buses and trains) to allow for a more granular discussion on 

behavioural shifts. 

 

From a publication standpoint, the London-specific work presented in Chapter 5 should be 

used as the basis of an academic journal paper that considers the implications of these results 

on the country’s compliance with the National Emissions Ceiling Directive. This work is 

currently being pursued by the author of this thesis. Furthermore, the results presented in both 

Chapters 4 and 5 should be used as the basis for a paper discussing the economic impact of 

these technology transitions on the United Kingdom’s National Healthcare System (NHS).  
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A.2: Emission Factors – National Scale (United Kingdom) Analysis 
 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Agriculture	stationary	
combustion,	coal	

2010	 PM10	 AGR	 0.117	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	stationary	
combustion,	coal	

2010	 PM2.5	 AGR	 0.109	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	stationary	
combustion,	coal	

2010	 NH3	 AGR	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	stationary	
combustion,	coal	

2010	 SO2	 AGR	 0.655	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	stationary	
combustion,	coal	

2010	 NOx	 AGR	 0.179	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	stationary	
combustion,	coal	

2010	 Non	
Methane	
VOC	

AGR	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	natural	gas	

2010	 PM10	 AGR	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	natural	gas	

2010	 PM2.5	 AGR	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	natural	gas	

2010	 NOx	 AGR	 0.044	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	natural	gas	

2010	 Non	
Methane	
VOC	

AGR	 0.0	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 PM10	 AGR	 0.732	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 PM2.5	 AGR	 0.718	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 NH3	 AGR	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 SO2	 AGR	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 NOx	 AGR	 0.089	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	straw	

2010	 Non	
Methane	
VOC	

AGR	 0.002	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Agriculture	-	stationary	
combustion,	fuel	oil	

2010	 PM10	 AGR	 0.0243	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	fuel	oil	

2010	 PM2.5	 AGR	 0.0243	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	fuel	oil	

2010	 SO2	 AGR	 0.3526	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	fuel	oil	

2010	 NOx	 AGR	 0.1867	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	stationary	
combustion,	fuel	oil	

2010	 Non	
Methane	
VOC	

AGR	 0.0033	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 PM10	 AGR	 0.0575	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 PM2.5	 AGR	 0.0546	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 NH3	 AGR	 0.0008	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 SO2	 AGR	 0.0335	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 NOx	 AGR	 0.5978	 kilotonnes	 PJ	 NAEI	2013	

Agriculture	-	mobile	
machinery,	gas	oil	

2010	 Non	
Methane	
VOC	

AGR	 0.1114	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 NOx	 IND	 0.755	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 Non	
Methane	
VOC	

IND	 0.237	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 PM10	 IND	 0.068	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 PM2.5	 IND	 0.064	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 SO2	 IND	 0.026	 kilotonnes	 PJ	 NAEI	2013	

Industrial	off-road	
mobile	machinery	
(weighted	average)	

2010	 NH3	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 PM10	 RES	 0.060	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 PM2.5	 RES	 0.059	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 NH3	 RES	 0.035	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 SO2	 RES	 0.531	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 NOx	 RES	 0.141	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coke	

2010	 Non	
Methane	
VOC	

RES	 0.173	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Domestic	combustion,	
coal	

2010	 PM10	 RES	 0.324	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coal	

2010	 PM2.5	 RES	 0.319	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coal	

2010	 NH3	 RES	 0.035	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coal	

2010	 SO2	 RES	 0.631	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coal	

2010	 NOx	 RES	 0.124	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
coal	

2010	 Non	
Methane	
VOC	

RES	 0.494	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 PM10	 RES	 0.057	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 PM2.5	 RES	 0.057	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 SO2	 RES	 0.565	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 NOx	 RES	 0.134	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
SSF	

2010	 Non	
Methane	
VOC	

RES	 0.173	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 PM10	 RES	 0.0032	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 PM2.5	 RES	 0.0032	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 SO2	 RES	 0.012	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 NOx	 RES	 0.074	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
burning	oil	

2010	 Non	
Methane	
VOC	

RES	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
LPG	

2010	 PM10	 RES	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
LPG	

2010	 PM2.5	 RES	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
LPG	

2010	 SO2	 RES	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Denmark	

Domestic	combustion,	
LPG	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Switzerland	

Domestic	combustion,	
LPG	

2010	 NOx	 RES	 0.071	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
LPG	

2010	 Non	
Methane	
VOC	

RES	 0.004	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Domestic	combustion,	
natural	gas	

2010	 PM10	 RES	 0.0006	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
natural	gas	

2010	 PM2.5	 RES	 0.0006	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
natural	gas	

2010	 SO2	 RES	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Denmark	

Domestic	combustion,	
natural	gas	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Switzerland	

Domestic	combustion,	
natural	gas	

2010	 NOx	 RES	 0.025	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
natural	gas	

2010	 Non	
Methane	
VOC	

RES	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 PM10	 RES	 0.624	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 PM2.5	 RES	 0.583	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 NH3	 RES	 0.075	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 SO2	 RES	 0.008	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 NOx	 RES	 0.066	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
wood	

2010	 Non	
Methane	
VOC	

RES	 0.536	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 PM10	 RES	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 PM2.5	 RES	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 SO2	 RES	 0.034	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 NOx	 RES	 0.074	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
gas	oil	

2010	 Non	
Methane	
VOC	

RES	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 PM10	 SER	 0.104	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 PM2.5	 SER	 0.096	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 NH3	 SER	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 SO2	 SER	 0.718	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 NOx	 SER	 0.190	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	coal	

2010	 Non	
Methane	
VOC	

SER	 0.002	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Public	sector	
combustion,	sewage	gas	

2010	 PM10	 SER	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	sewage	gas	

2010	 PM2.5	 SER	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	sewage	gas	

2010	 NH3	 SER	 NE	 kilotonnes	 PJ	 ATSDR,	2001	

Public	sector	
combustion,	sewage	gas	

2010	 SO2	 SER	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	sewage	gas	

2010	 NOx	 SER	 0.267	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	sewage	gas	

2010	 Non	
Methane	
VOC	

SER	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 PM10	 SER	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 PM2.5	 SER	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 NH3	 SER	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 SO2	 SER	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 NOx	 SER	 0.061	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	natural	gas	

2010	 Non	
Methane	
VOC	

SER	 	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 PM10	 IND	 0.027	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 PM2.5	 IND	 0.025	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 SO2	 IND	 0.661	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 NOx	 IND	 0.186	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coal	(weighted	
average)	

2010	 Non	
Methane	
VOC	

IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 PM10	 IND	 0.027	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 PM2.5	 IND	 0.025	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 SO2	 IND	 0.671	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 NOx	 IND	 0.031	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	
(weighted	average)	

2010	 Non	
Methane	
VOC	

IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Industry,	fuel	oil	
(weighted	average)	

2010	 PM10	 IND	 0.025	 kilotonnes	 PJ	 NAEI	2013	

Industry,	fuel	oil	
(weighted	average)	

2010	 PM2.5	 IND	 0.025	 kilotonnes	 PJ	 NAEI	2013	

Industry,	fuel	oil	
(weighted	average)	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 IIR	Switzerland,	
2013	

Industry,	fuel	oil	
(weighted	average)	

2010	 SO2	 IND	 0.353	 kilotonnes	 PJ	 NAEI	2013	

Industry,	fuel	oil	
(weighted	average)	

2010	 NOx	 IND	 0.222	 kilotonnes	 PJ	 NAEI	2013	

Industry,	fuel	oil	
(weighted	average)	

2010	 Non	
Methane	
VOC	

IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	LPG	

2010	 PM10	 IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	LPG	

2010	 PM2.5	 IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	LPG	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Switzerland	

Other	industrial	
combustion,	LPG	

2010	 SO2	 IND	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Denmark	

Other	industrial	
combustion,	LPG	

2010	 NOx	 IND	 0.073	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	LPG	

2010	 Non	
Methane	
VOC	

IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 PM10	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 PM2.5	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 NH3	 IND	 NE	 kilotonnes	 PJ	 	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 SO2	 IND	 0.416	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 NOx	 IND	 0.082	 kilotonnes	 PJ	 NAEI	2013	

Industry,	coke	oven	gas	
(weighted	average)	

2010	 Non	
Methane	
VOC	

IND	 NE	 kilotonnes	 PJ	 	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 PM10	 IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 PM2.5	 IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 SO2	 IND	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 NOx	 IND	 0.107	 kilotonnes	 PJ	 NAEI	2013	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 Non	
Methane	
VOC	

IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Biogas	from	anaerobic	
digestion	for	the	
industry	sector	

2010	 NH3	 IND	 NE	 kilotonnes	 PJ	 ATSDR,	2001	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 PM10	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 PM2.5	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 NH3	 IND	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 SO2	 IND	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 NOx	 IND	 0.094	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion,	MSW	

2010	 Non	
Methane	
VOC	

IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 PM10	 IND	 0.033	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 PM2.5	 IND	 0.033	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 SO2	 IND	 0.010	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 NOx	 IND	 0.085	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	wood	

2010	 Non	
Methane	
VOC	

IND	 0.030	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 PM10	 IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 PM2.5	 IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 NH3	 IND	 NE	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 SO2	 IND	 0.012	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 NOx	 IND	 0.076	 kilotonnes	 PJ	 NAEI	2013	

Other	industrial	
combustion,	burning	oil	

2010	 Non	
Methane	
VOC	

IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 PM10	 IND	 0.011	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 PM2.5	 IND	 0.011	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 NH3	 IND	 NE	 kilotonnes	 PJ	 ATSDR,	2001	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 SO2	 IND	 0.031	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 NOx	 IND	 0.273	 kilotonnes	 PJ	 NAEI	2013	

Miscellaneous	
industrial/commercial	
combustion	(of	landfill	
gas)	

2010	 Non	
Methane	
VOC	

IND	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 PM10	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 PM2.5	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 NH3	 IND	 0.002	 kilotonnes	 PJ	 Sowa	et	al.	2009	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 SO2	 IND	 0.416	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 NOx	 IND	 0.082	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Other	
(coke	oven	gas)	

2010	 Non	
Methane	
VOC	

IND	 0.025	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Domestic	combustion,	
petroleum	coke	

2010	 PM10	 RES	 0.090	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
petroleum	coke	

2010	 PM2.5	 RES	 0.089	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
petroleum	coke	

2010	 NH3	 RES	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Switzerland	

Domestic	combustion,	
petroleum	coke	

2010	 SO2	 RES	 4.215	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
petroleum	coke	

2010	 NOx	 RES	 0.100	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
petroleum	coke	

2010	 Non	
Methane	
VOC	

RES	 0.144	 kilotonnes	 PJ	 NAEI	2013	

Industrial	sector	
combustion	of	natural	
gas	(weighted	average)	

2010	 NH3	 IND	 0.000	 kilotonnes	 PJ	 IIR,	2011	
Switzerland	

Power	stations,	coal	 2010	 PM10	 ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	 2010	 PM2.5	 ELC	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	 2010	 NH3	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	 2010	 SO2	 ELC	 0.166	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	 2010	 NOx	 ELC	 0.175	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	 2010	 Non	
Methane	
VOC	

ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	coal	CCS	 2010	 PM10	 ELC	 0.004	 kilotonnes	 PJ	 EEA	CCS	2011	

Power	stations,	coal	CCS	 2010	 PM2.5	 ELC	 0.002	 kilotonnes	 PJ	 EEA	CCS	2011	

Power	stations,	coal	CCS	 2010	 NH3	 ELC	 0.000	 kilotonnes	 PJ	 EEA	CCS	2011	

Power	stations,	coal	CCS	 2010	 SO2	 ELC	 0.025	 kilotonnes	 PJ	 EEA	CCS	2011	

Power	stations,	coal	CCS	 2010	 NOx	 ELC	 0.175	 kilotonnes	 PJ	 EEA	CCS	2011	

Power	stations,	coal	CCS	 2010	 Non	
Methane	
VOC	

ELC	 0.001	 kilotonnes	 PJ	 EEA	CCS	2011	

Electricity	sector	blast	
furnace	gas	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Berdowski,	
Pacyna	and	
Woodfield,	1999	

Electricity	sector	blast	
furnace	gas	

2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Energy	p17	

Electricity	sector	blast	
furnace	gas	

2010	 NOx	 ELC	 0.089	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Energy	p17	

Electricity	sector	blast	
furnace	gas	

2010	 Non	
Methane	
VOC	

ELC	 0.003	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Energy	p17	

Electricity	sector	blast	
furnace	gas	

2010	 PM10	 ELC	 0.089	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Energy	p17	

Electricity	sector	blast	
furnace	gas	

2010	 PM2.5	 ELC	 0.089	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Energy	p17	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Power	stations,	landfill	
gas	

2010	 PM10	 ELC	 0.011	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	landfill	
gas	

2010	 PM2.5	 ELC	 0.011	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	landfill	
gas	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	landfill	
gas	

2010	 SO2	 ELC	 0.031	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	landfill	
gas	

2010	 NOx	 ELC	 0.273	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	landfill	
gas	

2010	 Non	
Methane	
VOC	

ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 PM10	 ELC	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 PM2.5	 ELC	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 NOx	 ELC	 0.267	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	sewage	
gas	

2010	 Non	
Methane	
VOC	

ELC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Existing	small	oil-fired	
gas	turbine	

2010	 NH3	 ELC	 0.000	 kilotonnes	 PJ	 IIR	Switzerland,	
2013	

Power	stations,	MSW	 2010	 PM10	 ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	MSW	 2010	 PM2.5	 ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	MSW	 2010	 NH3	 ELC	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	MSW	 2010	 SO2	 ELC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	MSW	 2010	 NOx	 ELC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	MSW	 2010	 Non	
Methane	
VOC	

ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 PM10	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 PM2.5	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 NH3	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 SO2	 ELC	 0.031	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 NOx	 ELC	 0.264	 kilotonnes	 PJ	 NAEI	2013	

Autogenerators,	biogas	 2010	 Non	
Methane	
VOC	

ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

	



	 657	

 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Public	sector	
combustion	(sewage	
gas)	

2010	 PM10	 ELC	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion	(sewage	
gas)	

2010	 PM2.5	 ELC	 0.006	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion	(sewage	
gas)	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 ATSDR,	2001	

Public	sector	
combustion	(sewage	
gas)	

2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion	(sewage	
gas)	

2010	 NOx	 ELC	 0.267	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion	(sewage	
gas)	

2010	 Non	
Methane	
VOC	

ELC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Existing	hydro	reservoir	
plants	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	

Existing	hydro	reservoir	
plants	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	hydro	reservoir	
plants	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	hydro	reservoir	
plants	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	hydro	reservoir	
plants	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	hydro	reservoir	
plants	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	onshore	wind	
turbines	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	offshore	wind	
turbines	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	
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Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	large-scale	solar	
photovoltaic	(PV)	
installations	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Existing	small-scale	PV	
installations	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Pressurized	water	
reactor	(PWR)	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Advanced	gas-cooled	
reactor	(AGR),	newer	
generation	

2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	
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AGR,	older	generation	 2010	 PM10	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

AGR,	older	generation	 2010	 PM2.5	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

AGR,	older	generation	 2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

AGR,	older	generation	 2010	 SO2	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

AGR,	older	generation	 2010	 NOx	 ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

AGR,	older	generation	 2010	 Non	
Methane	
VOC	

ELC	 NE	 kilotonnes	 PJ	 Black	and	Flarend,	
2010	p121	

Power	stations,	natural	
gas	

2010	 PM10	 ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	natural	
gas	

2010	 PM2.5	 ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	natural	
gas	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2009	

Power	stations,	natural	
gas	

2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	natural	
gas	

2010	 NOx	 ELC	 0.037	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	natural	
gas	

2010	 Non	
Methane	
VOC	

ELC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	heavy	
fuel	oil	

2010	 PM10	 ELC	 0.025	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	heavy	
fuel	oil	

2010	 PM2.5	 ELC	 0.019	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	heavy	
fuel	oil	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	heavy	
fuel	oil	

2010	 SO2	 ELC	 0.495	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	heavy	
fuel	oil	

2010	 NOx	 ELC	 0.142	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	heavy	
fuel	oil	

2010	 Non	
Methane	
VOC	

ELC	 0.002	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 PM10	 ELC	 0.001	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 PM2.5	 ELC	 0.001	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 NOx	 ELC	 0.089	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gaseous	
fuels	

2010	 Non	
Methane	
VOC	

ELC	 0.003	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	biomass	 2010	 PM10	 ELC	 0.155	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	biomass	 2010	 PM2.5	 ELC	 0.133	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	biomass	 2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	biomass	 2010	 SO2	 ELC	 0.011	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	biomass	 2010	 NOx	 ELC	 0.081	 kilotonnes	 PJ	 EMEP/EEA,	2013	
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Power	stations,	gas	oil	 2010	 PM10	 ELC	 0.003	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gas	oil	 2010	 PM2.5	 ELC	 0.001	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gas	oil	 2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gas	oil	 2010	 SO2	 ELC	 0.047	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gas	oil	 2010	 NOx	 ELC	 0.065	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	gas	oil	 2010	 Non	
Methane	
VOC	

ELC	 0.001	 kilotonnes	 PJ	 EMEP/EEA,	2013	

Power	stations,	LPG	 2010	 PM10	 ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	LPG	 2010	 PM2.5	 ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	LPG	 2010	 NH3	 ELC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Power	stations,	LPG	 2010	 SO2	 ELC	 0.000	 kilotonnes	 PJ	 IIR	Denmark,	
2011	

Power	stations,	LPG	 2010	 NOx	 ELC	 0.074	 kilotonnes	 PJ	 NAEI	2013	

Power	stations,	LPG	 2010	 Non	
Methane	
VOC	

ELC	 0.004	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 PM10	 SER	 0.026	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 PM2.5	 SER	 0.026	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 NH3	 SER	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 SO2	 SER	 0.353	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 NOx	 SER	 0.175	 kilotonnes	 PJ	 NAEI	2013	

Public	sector	
combustion,	fuel	oil	

2010	 Non	
Methane	
VOC	

SER	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 PM10	 RES	 0.057	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 PM2.5	 RES	 0.034	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 NH3	 RES	 0.030	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 SO2	 RES	 0.457	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 NOx	 RES	 0.134	 kilotonnes	 PJ	 NAEI	2013	

Domestic	combustion,	
anthracite	

2010	 Non	
Methane	
VOC	

RES	 0.052	 kilotonnes	 PJ	 NAEI	2013	
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Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Iron	and	
steel	(blast	furnace	gas)	

2010	 PM10	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Iron	and	
steel	(blast	furnace	gas)	

2010	 PM2.5	 IND	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Iron	and	
steel	(blast	furnace	gas)	

2010	 NOx	 IND	 0.075	 kilotonnes	 PJ	 NAEI	2013	

Stationary	combustion	
in	manufacturing	
industries	and	
construction:	Iron	and	
steel	(blast	furnace	gas)	

2010	 Non	
Methane	
VOC	

IND	 0.023	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 PM10	 PRC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 PM2.5	 PRC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 NH3	 PRC	 0.000	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 SO2	 PRC	 0.017	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 NOx	 PRC	 0.007	 kilotonnes	 PJ	 NAEI	2013	

Fuels	combusted	in	the	
refinery	sector	
(calculated	IEF)	

2010	 Non	
Methane	
VOC	

PRC	 0.007	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 PM10	 PRC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 PM2.5	 PRC	 0.002	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 NH3	 PRC	 0.001	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 SO2	 PRC	 0.085	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 NOx	 PRC	 0.034	 kilotonnes	 PJ	 NAEI	2013	

Coke	production	
(calculated	IEF)	

2010	 Non	
Methane	
VOC	

PRC	 0.003	 kilotonnes	 PJ	 NAEI	2013	

	



	 662	

 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 PM10	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 PM2.5	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 NH3	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 SO2	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 NOx	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Natural	gas	for	the	
processing	sector	
(refineries)	

2010	 Non	
Methane	
VOC	

PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 PM10	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 PM2.5	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 NH3	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 SO2	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 NOx	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Coal	for	the	processing	
sector	(coke	production)	

2010	 Non	
Methane	
VOC	

PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 PM10	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 PM2.5	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 NH3	 PRC	 0.000	 kilotonnes	 PJ	 IIR	Switzerland,	
2013	

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 SO2	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 NOx	 PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Heavy	fuel	oil	for	the	
processing	sector	(CHP	
from	refineries)	

2010	 Non	
Methane	
VOC	

PRC	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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Hydrogen	production	
for	the	processing	
sector	

2010	 PM10	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Hydrogen	production	
for	the	processing	
sector	

2010	 PM2.5	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Hydrogen	production	
for	the	processing	
sector	

2010	 NH3	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Hydrogen	production	
for	the	processing	
sector	

2010	 SO2	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Hydrogen	production	
for	the	processing	
sector	

2010	 NOx	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Hydrogen	production	
for	the	processing	
sector	

2010	 Non	
Methane	
VOC	

PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 PM10	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 PM2.5	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 NH3	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 SO2	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 NOx	 PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Bioenergy	for	the	
processing	sector	

2010	 Non	
Methane	
VOC	

PRC	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM10	 TRA	 0.023	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM2.5	 TRA	 0.013	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NH3	 TRA	 0.037	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NOx	 TRA	 0.204	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.070	 gram	 kilometre	 NAEI	2013	
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Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 PM10	 TRA	 0.023	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 PM2.5	 TRA	 0.013	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 NH3	 TRA	 0.037	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 NOx	 TRA	 0.204	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.070	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM10	 TRA	 0.023	 gram	 kilometre	 NAEI	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM2.5	 TRA	 0.013	 gram	 kilometre	 NAEI	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NH3	 TRA	 0.037	 gram	 kilometre	 NAEI	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NOx	 TRA	 0.153	 gram	 kilometre	 NAEI	2013	

Existing	LPG	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.070	 gram	 kilometre	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM10	 TRA	 0.023	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM2.5	 TRA	 0.013	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NH3	 TRA	 0.037	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NOx	 TRA	 0.133	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Petrol	
Car	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.070	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 PM10	 TRA	 0.023	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 PM2.5	 TRA	 0.013	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 NH3	 TRA	 0.037	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 NOx	 TRA	 0.133	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Hybrid	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.070	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM10	 TRA	 0.045	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 PM2.5	 TRA	 0.034	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NH3	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 NOx	 TRA	 0.643	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Car	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 NAEI	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM10	 TRA	 0.042	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM2.5	 TRA	 0.032	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NH3	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NOx	 TRA	 0.707	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Car	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 PM10	 TRA	 0.186	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 PM2.5	 TRA	 0.133	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 NH3	 TRA	 0.003	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 SO2	 TRA	 0.004	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 NOx	 TRA	 6.581	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Buses	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
evaporative	emissions,	
hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.169	 gram	 kilometre	 NAEI	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM10	 TRA	 0.177	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM2.5	 TRA	 0.125	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NH3	 TRA	 0.003	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 SO2	 TRA	 0.004	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NOx	 TRA	 7.240	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Buses	Emissions	
incl.	Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.169	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM10	 TRA	 0.079	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM2.5	 TRA	 0.063	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NH3	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NOx	 TRA	 0.901	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.045	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM10	 TRA	 0.075	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 PM2.5	 TRA	 0.059	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NH3	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 NOx	 TRA	 0.991	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	

Existing	Diesel	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(bio-diesel	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.045	 gram	 kilometre	 NAEI	2013	&	NAEI	
alternative	fuelled	
vehicle	report,	
Feb	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM10	 TRA	 0.032	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM2.5	 TRA	 0.018	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NH3	 TRA	 0.043	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NOx	 TRA	 0.669	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.218	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 PM10	 TRA	 0.031	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 PM2.5	 TRA	 0.018	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 NH3	 TRA	 0.043	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 SO2	 TRA	 0.001	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 NOx	 TRA	 0.669	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Light	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	
(ethanol	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.218	 gram	 kilometre	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM10	 TRA	 0.025	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM2.5	 TRA	 0.020	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NH3	 TRA	 0.002	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 SO2	 TRA	 0.000	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NOx	 TRA	 0.223	 gram	 kilometre	 NAEI	2013	

Existing	Petrol	Two-
wheelers	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 1.095	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 PM10	 TRA	 0.022	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 PM2.5	 TRA	 0.017	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 NH3	 TRA	 0.002	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 SO2	 TRA	 0.000	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 NOx	 TRA	 0.223	 gram	 kilometre	 NAEI	2013	

Existing	Two-wheelers	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(ethanol	
fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 1.095	 gram	 kilometre	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM10	 TRA	 0.153	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 PM2.5	 TRA	 0.110	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NH3	 TRA	 0.003	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 SO2	 TRA	 0.004	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 NOx	 TRA	 4.045	 gram	 kilometre	 NAEI	2013	

Existing	Diesel	Heavy	
Truck	Emissions	incl.	
Brake,	Tyre,	Road	
abrasion,	hot	exhaust	

2010	 Non	
Methane	
VOC	

TRA	 0.097	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 PM10	 TRA	 0.146	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 PM2.5	 TRA	 0.104	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 NH3	 TRA	 0.003	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 SO2	 TRA	 0.004	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 NOx	 TRA	 4.450	 gram	 kilometre	 NAEI	2013	

Existing	Heavy	Truck	
Emissions	incl.	Brake,	
Tyre,	Road	abrasion,	
hot	exhaust	(bio-diesel	
fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 0.097	 gram	 kilometre	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 PM10	 TRA	 0.05	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 PM2.5	 TRA	 0.05	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 SO2	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 NOx	 TRA	 1.01	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2010	 Non	
Methane	
VOC	

TRA	 0.06	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 PM10	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 PM2.5	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 SO2	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 NOx	 TRA	 2.55	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2015	 Non	
Methane	
VOC	

TRA	 0.14	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 PM10	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 NH3	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 SO2	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 NOx	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Rail,	coal	 2010	 PM10	 TRA	 0.127794731	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2010	 PM2.5	 TRA	 0.048561998	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2010	 SO2	 TRA	 0.50969892	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2010	 NOx	 TRA	 0.187569686	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2010	 Non	
Methane	
VOC	

TRA	 0.206120348	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2010	 PM10	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2010	 PM2.5	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2010	 SO2	 TRA	 0.001194318	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2010	 NOx	 TRA	 0.019927719	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2010	 Non	
Methane	
VOC	

TRA	 0.001838914	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Aircraft	-	domestic	take	
off	and	landing	

2010	 PM10	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2010	 PM2.5	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2010	 SO2	 TRA	 0.003565642	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2010	 NOx	 TRA	 0.05	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2010	 Non	
Methane	
VOC	

TRA	 0.009690053	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2010	 PM10	 TRA	 0.0415	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2010	 PM2.5	 TRA	 0.0393	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2010	 SO2	 TRA	 0.1626	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Domestic	shipping	-	Gas	
oil	

2010	 NOx	 TRA	 0.86	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 PM10	 TRA	 0.0271	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 PM2.5	 TRA	 0.0256	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 SO2	 TRA	 0.10	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 NOx	 TRA	 0.33	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	fuel	
oil	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	-	
gas	oil	

2010	 PM10	 TRA	 0.048673067	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2010	 PM2.5	 TRA	 0.046112864	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2010	 SO2	 TRA	 0.586505391	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Iinternational	shipping	-	
gas	oil	

2010	 NOx	 TRA	 1.825520201	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 PM10	 TRA	 0.14512424	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 PM2.5	 TRA	 0.137490705	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 SO2	 TRA	 0.74397264	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 NOx	 TRA	 1.670984436	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2010	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 PM10	 TRA	 0.05	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 PM2.5	 TRA	 0.05	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 SO2	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 NOx	 TRA	 1.01	 kilotonnes	 PJ	 NAEI	2013	

Railways	passenger,	gas	
oil	(weighted	average)	

2015	 Non	
Methane	
VOC	

TRA	 0.06	 kilotonnes	 PJ	 NAEI	2013	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Rail,	coal	 2015	 PM10	 TRA	 0.127794731	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2015	 PM2.5	 TRA	 0.048561998	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2015	 SO2	 TRA	 0.50969892	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2015	 NOx	 TRA	 0.187569686	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2015	 Non	
Methane	
VOC	

TRA	 0.206120348	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2015	 PM10	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2015	 PM2.5	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2015	 SO2	 TRA	 0.001194318	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2015	 NOx	 TRA	 0.019927719	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2015	 Non	
Methane	
VOC	

TRA	 0.001838914	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Aircraft	-	domestic	take	
off	and	landing	

2015	 PM10	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2015	 PM2.5	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2015	 SO2	 TRA	 0.003565642	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2015	 NOx	 TRA	 0.047648032	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2015	 Non	
Methane	
VOC	

TRA	 0.009690053	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Domestic	shipping	-	Gas	
oil	

2015	 PM10	 TRA	 0.0415	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2015	 PM2.5	 TRA	 0.039288003	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2015	 SO2	 TRA	 0.162595264	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Domestic	shipping	-	Gas	
oil	

2015	 NOx	 TRA	 0.86	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 PM10	 TRA	 0.0271	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 PM2.5	 TRA	 0.0256	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 SO2	 TRA	 0.0980	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 NOx	 TRA	 0.3254	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	-	
gas	oil	

2015	 PM10	 TRA	 0.048673067	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2015	 PM2.5	 TRA	 0.046112864	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2015	 SO2	 TRA	 0.586505391	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Iinternational	shipping	-	
gas	oil	

2015	 NOx	 TRA	 1.825520201	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 PM10	 TRA	 0.14512424	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 PM2.5	 TRA	 0.137490705	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 SO2	 TRA	 0.74397264	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 NOx	 TRA	 1.670984436	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
fuel	oil	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2015	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	hydrogen	fuel	cell	
passenger	train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	electric	freight	
train	with	additional	
track	electrification	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
diesel	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 PM10	 TRA	 0.05	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 PM2.5	 TRA	 0.05	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 SO2	 TRA	 0.03	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 NOx	 TRA	 1.01	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Railways	passenger,	gas	
oil	(weighted	average)	

2020	 Non	
Methane	
VOC	

TRA	 0.06	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	diesel	
passenger	train	(bio-
light	fuel	oil	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 EMEP/EEA,	2013	
Railways	p8	

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Existing	electric	
passenger	train	
(electricity	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Rail,	coal	 2020	 PM10	 TRA	 0.127794731	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2020	 PM2.5	 TRA	 0.048561998	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2020	 SO2	 TRA	 0.50969892	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2020	 NOx	 TRA	 0.187569686	 kilotonnes	 PJ	 NAEI	2013	

Rail,	coal	 2020	 Non	
Methane	
VOC	

TRA	 0.206120348	 kilotonnes	 PJ	 NAEI	2013	

New	hydrogen	fuel	cell	
passenger	train	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Railways	freight,	gas	oil	 2020	 PM10	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2020	 PM2.5	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2020	 SO2	 TRA	 0.03	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2020	 NOx	 TRA	 2.55	 kilotonnes	 PJ	 NAEI	2013	

Railways	freight,	gas	oil	 2020	 Non	
Methane	
VOC	

TRA	 0.14	 kilotonnes	 PJ	 NAEI	2013	

New	electric	freight	
train	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	electric	freight	
train	with	additional	
track	electrification	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Aircraft	-	international	
take	off	and	landing	

2020	 PM10	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2020	 PM2.5	 TRA	 0.000158612	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2020	 SO2	 TRA	 0.001194318	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2020	 NOx	 TRA	 0.019927719	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing	

2020	 Non	
Methane	
VOC	

TRA	 0.001838914	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	international	
take	off	and	landing		
(bio-kerosene	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing	

2020	 PM10	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2020	 PM2.5	 TRA	 0.000456766	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2020	 SO2	 TRA	 0.003565642	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2020	 NOx	 TRA	 0.047648032	 kilotonnes	 PJ	 NAEI	2013	

Aircraft	-	domestic	take	
off	and	landing	

2020	 Non	
Methane	
VOC	

TRA	 0.009690053	 kilotonnes	 PJ	 NAEI	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Aircraft	-	domestic	take	
off	and	landing		(bio-
kerosene	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Aviation	
Economics,	2014	

Domestic	shipping	-	Gas	
oil	

2020	 PM10	 TRA	 0.0415	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2020	 PM2.5	 TRA	 0.039288003	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2020	 SO2	 TRA	 0.162595264	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Domestic	shipping	-	Gas	
oil	

2020	 NOx	 TRA	 0.86	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Gas	
oil	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 PM10	 TRA	 0.0271	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 PM2.5	 TRA	 0.0256	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 SO2	 TRA	 0.0980	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 NOx	 TRA	 0.3254	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	-	Fuel	
oil	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Domestic	shipping	(bio-
light	fuel	oil	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	
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Factor	

Units	 Activity	
Units	
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Iinternational	shipping	-	
gas	oil	

2020	 PM10	 TRA	 0.048673067	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2020	 PM2.5	 TRA	 0.046112864	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2020	 SO2	 TRA	 0.586505391	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 EMEP	/	EEA,	2013	
Navigation	p14	

Iinternational	shipping	-	
gas	oil	

2020	 NOx	 TRA	 1.825520201	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
gas	oil	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 PM10	 TRA	 0.14512424	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 PM2.5	 TRA	 0.137490705	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 SO2	 TRA	 0.74397264	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 NOx	 TRA	 1.670984436	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	-	
Fuel	oil	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 NAEI	2013	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Iinternational	shipping	
(bio-oil	fuelled)	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 European	
Biofuels,	2015	

Hydrogen	for	the	
residential	sector	

2010	 PM10	 RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	for	the	
residential	sector	

2010	 PM2.5	 RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	for	the	
residential	sector	

2010	 NH3	 RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	for	the	
residential	sector	

2010	 SO2	 RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	for	the	
residential	sector	

2010	 NOx	 RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	for	the	
residential	sector	

2010	 Non	
Methane	
VOC	

RES	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

	



	 687	

 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
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Fuel	cells	in	the	
residential	sector	

2010	 PM10	 RES	 NE	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Fuel	cells	in	the	
residential	sector	

2010	 PM2.5	 RES	 NE	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Fuel	cells	in	the	
residential	sector	

2010	 NH3	 RES	 NE	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Fuel	cells	in	the	
residential	sector	

2010	 SO2	 RES	 0.00015	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Fuel	cells	in	the	
residential	sector	

2010	 NOx	 RES	 0.000846878	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Fuel	cells	in	the	
residential	sector	

2010	 Non	
Methane	
VOC	

RES	 NE	 kilotonnes	 PJ	 H2FC	Supergen	
White	Paper.	May	
2014	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 PM10	 SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 PM2.5	 SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 NH3	 SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 SO2	 SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 NOx	 SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	services	sector	

2010	 Non	
Methane	
VOC	

SER	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 PM10	 IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 PM2.5	 IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 NH3	 IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 SO2	 IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 NOx	 IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	

Hydrogen	(gaseous)	for	
the	industry	sector	
(before	distribution	
grid)	

2010	 Non	
Methane	
VOC	

IND	 NE	 kilotonnes	 PJ	 Crabtree,	
Dresselhaus	and	
Buchanan,	2004	
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New	petrol	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2015	 NH3	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2015	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2015	 NOx	 TRA	 0.026	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	petrol	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2015	 NH3	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2015	 NOx	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 NH3	 TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 NOx	 TRA	 0.011	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2015	 Non	
Methane	
VOC	

TRA	 0.005	 gram	 kilometre	 DEFRA,	2013	

New	diesel	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2015	 NH3	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2015	 SO2	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2015	 NOx	 TRA	 0.634	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	diesel	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2015	 NH3	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2015	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2015	 NOx	 TRA	 0.427	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	
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Units	
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New	plug-in	hybrid	
diesel	cars	

2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2015	 NH3	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2015	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2015	 NOx	 TRA	 0.427	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	hydrogen	fuel	cell	
cars	

2015	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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A	new	hybrid	liquified	
hydrogen	car		

2015	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	cars	 2015	 NH3	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	cars	 2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	cars	 2015	 NOx	 TRA	 0.020	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 NH3	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 NOx	 TRA	 0.020	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	cars	
(for	E85)	

2015	 PM10	 TRA	 0.023	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2015	 NH3	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2015	 NOx	 TRA	 0.026	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	electric	battery	
cars	

2015	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 NH3	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 NOx	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2015	 Non	
Methane	
VOC	

TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	electric	battery	
operated	two-wheelers	

2015	 PM10	 TRA	 0.011	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2015	 PM2.5	 TRA	 0.006	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 PM10	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 PM2.5	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 NH3	 TRA	 0.002	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 NOx	 TRA	 0.127	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2015	 Non	
Methane	
VOC	

TRA	 0.267	 gram	 kilometre	 UK	IIR,	2015	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 PM10	 TRA	 0.011	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 PM2.5	 TRA	 0.006	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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New	diesel	light	trucks	 2015	 PM10	 TRA	 0.032	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2015	 PM2.5	 TRA	 0.018	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2015	 NH3	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2015	 SO2	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2015	 NOx	 TRA	 0.928	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2015	 Non	
Methane	
VOC	

TRA	 0.025	 gram	 kilometre	 UK	IIR,	2015	

New	electric	battery	
light	truck	

2015	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2015	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	petrol	light	trucks	 2015	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2015	 NH3	 TRA	 0.025	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2015	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2015	 NOx	 TRA	 0.032	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 UK	IIR,	2015	

New	hydrogen	fuel	cell	
light	trucks	

2015	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2015	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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Factor	

Units	 Activity	
Units	

Reference	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	petrol	light	
trucks	

2015	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2015	 NH3	 TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2015	 NOx	 TRA	 0.021	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 NH3	 TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 NOx	 TRA	 0.021	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 PM10	 TRA	 0.032	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 PM2.5	 TRA	 0.018	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 NH3	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 NOx	 TRA	 0.617	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

	



	 694	

 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	
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New	plug-in	hybrid	
diesel	light	truck	

2015	 PM10	 TRA	 0.032	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2015	 PM2.5	 TRA	 0.018	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2015	 NH3	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2015	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2015	 NOx	 TRA	 0.617	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2015	 Non	
Methane	
VOC	

TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	light	
trucks	

2015	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2015	 NH3	 TRA	 0.025	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2015	 NOx	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 UK	IIR,	2015	

New	LPG	fueled	light	
trucks	

2015	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2015	 NH3	 TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2015	 NOx	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 NH3	 TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 NOx	 TRA	 0.032	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	light	
trucks	(for	E85)	

2015	 Non	
Methane	
VOC	

TRA	 0.010	 gram	 kilometre	 DEFRA,	2013	

New	diesel	heavy	trucks	 2015	 PM10	 TRA	 0.113	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2015	 PM2.5	 TRA	 0.074	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2015	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2015	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2015	 NOx	 TRA	 1.623	 gram	 kilometre	 UK	IIR,	2015	



	 695	

 

  

Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
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New	hybrid	diesel	
heavy	trucks	

2015	 PM10	 TRA	 0.113	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2015	 PM2.5	 TRA	 0.074	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2015	 NH3	 TRA	 0.003	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2015	 SO2	 TRA	 0.004	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2015	 NOx	 TRA	 1.623	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.016	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 PM10	 TRA	 0.087	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 PM2.5	 TRA	 0.048	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	heavy	
trucks	

2015	 PM10	 TRA	 0.091	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2015	 PM2.5	 TRA	 0.052	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2015	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2015	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2015	 NOx	 TRA	 1.039	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2015	 Non	
Methane	
VOC	

TRA	 0.016	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 PM10	 TRA	 0.124	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 PM2.5	 TRA	 0.076	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 NOx	 TRA	 2.845	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2015	 Non	
Methane	
VOC	

TRA	 0.026	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	diesel	buses	 2015	 PM10	 TRA	 0.124	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2015	 PM2.5	 TRA	 0.076	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2015	 NH3	 TRA	 0.003	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2015	 SO2	 TRA	 0.004	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2015	 NOx	 TRA	 2.845	 gram	 kilometre	 DEFRA,	2013	
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New	electric	battery	
buses	

2015	 PM10	 TRA	 0.098	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2015	 PM2.5	 TRA	 0.050	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	buses	 2015	 PM10	 TRA	 0.102	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2015	 PM2.5	 TRA	 0.054	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2015	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2015	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2015	 NOx	 TRA	 1.821	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2015	 Non	
Methane	
VOC	

TRA	 0.026	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 PM10	 TRA	 0.098	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 PM2.5	 TRA	 0.050	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2015	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	passenger	
train	

2015	 PM10	 TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		

New	electric	passenger	
train	

2015	 PM2.5	 TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		

New	electric	passenger	
train	

2015	 NH3	 TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		

New	electric	passenger	
train	

2015	 SO2	 TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		

New	electric	passenger	
train	

2015	 NOx	 TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		

New	electric	passenger	
train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 gram	 kilometre	 Included	
elsewhere:		
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Factor	
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New	hydrogen	fuel	cell	
passenger	train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
freight	train	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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New	electric	freight	
train	with	additional	
track	electrification	

2015	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2015	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	petrol	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2020	 NOx	 TRA	 0.061	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	petrol	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2020	 NOx	 TRA	 0.040	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 NH3	 TRA	 0.005	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 NOx	 TRA	 0.025	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	cars	

2020	 Non	
Methane	
VOC	

TRA	 0.026	 gram	 kilometre	 DEFRA,	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	diesel	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2020	 NH3	 TRA	 0.002	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2020	 SO2	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2020	 NOx	 TRA	 0.210	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.008	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	diesel	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2020	 NH3	 TRA	 0.002	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2020	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2020	 NOx	 TRA	 0.141	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.008	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 PM10	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 NH3	 TRA	 0.002	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 NOx	 TRA	 0.141	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	cars	

2020	 Non	
Methane	
VOC	

TRA	 0.008	 gram	 kilometre	 DEFRA,	2013	

New	hydrogen	fuel	cell	
cars	

2020	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
cars	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	cars	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	plug-in	hybrid	
hydrogen	fuel	cell	cars	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

A	new	hybrid	liquified	
hydrogen	car		

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	cars	 2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	cars	 2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	cars	 2020	 NOx	 TRA	 0.046	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 UK	IIR,	2015	

New	LPG	fueled	cars	 2020	 PM10	 TRA	 0.024	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2020	 PM2.5	 TRA	 0.014	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2020	 NOx	 TRA	 0.046	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	cars	 2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 DEFRA,	2013	

New	flexible-fuel	cars	
(for	E85)	

2020	 PM10	 TRA	 0.023	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2020	 PM2.5	 TRA	 0.013	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2020	 NOx	 TRA	 0.061	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	cars	
(for	E85)	

2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 UK	IIR,	2015	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	electric	battery	
cars	

2020	 PM10	 TRA	 0.022	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
cars	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 PM10	 TRA	 0.023	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 PM2.5	 TRA	 0.013	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 NOx	 TRA	 0.040	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	flexible-fuel	
car	(for	E85)	

2020	 Non	
Methane	
VOC	

TRA	 0.065	 gram	 kilometre	 DEFRA,	2013	

New	electric	battery	
operated	two-wheelers	

2020	 PM10	 TRA	 0.011	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2020	 PM2.5	 TRA	 0.006	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
operated	two-wheelers	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 PM10	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 PM2.5	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 NH3	 TRA	 0.002	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 NOx	 TRA	 0.127	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fuelled	(petrol)	two-
wheelers	

2020	 Non	
Methane	
VOC	

TRA	 0.267	 gram	 kilometre	 UK	IIR,	2015	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 PM10	 TRA	 0.011	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 PM2.5	 TRA	 0.006	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	two-wheelers	with	
hydrogen	fuel-cell		

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	diesel	light	trucks	 2020	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2020	 PM2.5	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2020	 NH3	 TRA	 0.002	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2020	 SO2	 TRA	 0.001	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2020	 NOx	 TRA	 0.221	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	light	trucks	 2020	 Non	
Methane	
VOC	

TRA	 0.035	 gram	 kilometre	 UK	IIR,	2015	

New	electric	battery	
light	truck	

2020	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2020	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
light	truck	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	petrol	light	trucks	 2020	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2020	 PM2.5	 TRA	 0.018	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2020	 NOx	 TRA	 0.064	 gram	 kilometre	 UK	IIR,	2015	

New	petrol	light	trucks	 2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 UK	IIR,	2015	

New	hydrogen	fuel	cell	
light	trucks	

2020	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2020	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hydrogen	fuel	cell	
light	trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	light	trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 PM10	 TRA	 0.030	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 PM2.5	 TRA	 0.016	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	liquified	
hydrogen	light	trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	petrol	light	
trucks	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2020	 PM2.5	 TRA	 0.018	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2020	 NOx	 TRA	 0.042	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	petrol	light	
trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 PM2.5	 TRA	 0.018	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 NOx	 TRA	 0.042	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
petrol	light	truck	

2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 DEFRA,	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	hybrid	diesel	light	
trucks	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2020	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2020	 NH3	 TRA	 0.002	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2020	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2020	 NOx	 TRA	 0.147	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	light	
trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.035	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 PM2.5	 TRA	 0.017	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 NH3	 TRA	 0.002	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 SO2	 TRA	 0.001	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 NOx	 TRA	 0.147	 gram	 kilometre	 DEFRA,	2013	

New	plug-in	hybrid	
diesel	light	truck	

2020	 Non	
Methane	
VOC	

TRA	 0.035	 gram	 kilometre	 DEFRA,	2013	

New	CNG	fueled	light	
trucks	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2020	 PM2.5	 TRA	 0.018	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2020	 NOx	 TRA	 0.048	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	light	
trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 UK	IIR,	2015	

New	LPG	fueled	light	
trucks	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2020	 PM2.5	 TRA	 0.018	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2020	 NOx	 TRA	 0.048	 gram	 kilometre	 DEFRA,	2013	

New	LPG	fueled	light	
trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 DEFRA,	2013	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 PM10	 TRA	 0.031	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 PM2.5	 TRA	 0.017	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 NH3	 TRA	 0.012	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 NOx	 TRA	 0.064	 gram	 kilometre	 UK	IIR,	2015	

New	flexible-fuel	light	
trucks	(for	E85)	

2020	 Non	
Methane	
VOC	

TRA	 0.096	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 PM10	 TRA	 0.087	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 PM2.5	 TRA	 0.048	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 NH3	 TRA	 0.011	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 NOx	 TRA	 0.291	 gram	 kilometre	 UK	IIR,	2015	

New	diesel	heavy	trucks	 2020	 Non	
Methane	
VOC	

TRA	 0.008	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	diesel	
heavy	trucks	

2020	 PM10	 TRA	 0.087	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2020	 PM2.5	 TRA	 0.048	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2020	 NH3	 TRA	 0.011	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2020	 SO2	 TRA	 0.004	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2020	 NOx	 TRA	 0.291	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	
heavy	trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.008	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 PM10	 TRA	 0.087	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 PM2.5	 TRA	 0.048	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	heavy	trucks	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	heavy	
trucks	

2020	 PM10	 TRA	 0.087	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2020	 PM2.5	 TRA	 0.048	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2020	 NH3	 TRA	 0.011	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2020	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	heavy	
trucks	

2020	 NOx	 TRA	 0.186	 gram	 kilometre	 UK	IIR,	2015	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	conventionally	
fueled	(diesel)	buses	

2020	 PM10	 TRA	 0.101	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2020	 PM2.5	 TRA	 0.053	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2020	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2020	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2020	 NOx	 TRA	 0.597	 gram	 kilometre	 UK	IIR,	2015	

New	conventionally	
fueled	(diesel)	buses	

2020	 Non	
Methane	
VOC	

TRA	 0.022	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	diesel	buses	 2020	 PM10	 TRA	 0.101	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2020	 PM2.5	 TRA	 0.053	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2020	 NH3	 TRA	 0.003	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2020	 SO2	 TRA	 0.004	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2020	 NOx	 TRA	 0.597	 gram	 kilometre	 DEFRA,	2013	

New	hybrid	diesel	buses	 2020	 Non	
Methane	
VOC	

TRA	 0.022	 gram	 kilometre	 DEFRA,	2013	

New	electric	battery	
buses	

2020	 PM10	 TRA	 0.098	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2020	 PM2.5	 TRA	 0.050	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	electric	battery	
buses	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	CNG	fueled	buses	 2020	 PM10	 TRA	 0.099	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2020	 PM2.5	 TRA	 0.051	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2020	 NH3	 TRA	 0.003	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2020	 SO2	 TRA	 0.004	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2020	 NOx	 TRA	 0.382	 gram	 kilometre	 UK	IIR,	2015	

New	CNG	fueled	buses	 2020	 Non	
Methane	
VOC	

TRA	 0.022	 gram	 kilometre	 UK	IIR,	2015	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 PM10	 TRA	 0.098	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 PM2.5	 TRA	 0.050	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 NH3	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 SO2	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 NOx	 TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	

New	hybrid	hydrogen	
fuel	cell	buses	

2020	 Non	
Methane	
VOC	

TRA	 0.000	 gram	 kilometre	 TIMES	Model	
Assumption	
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	electric	passenger	
train	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	hydrogen	fuel	cell	
passenger	train	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
passenger	train	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	passenger	
train	with	additional	
track	electrification	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		
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Source	sector/		
technology	

Year	 Pollutant		 Sector	 Emission	
Factor	

Units	 Activity	
Units	

Reference	

New	hydrogen	fuel	cell	
freight	train	

2020	 PM10	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
freight	train	

2020	 PM2.5	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
freight	train	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
freight	train	

2020	 SO2	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
freight	train	

2020	 NOx	 TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	hydrogen	fuel	cell	
freight	train	

2020	 Non	
Methane	
VOC	

TRA	 NE	 kilotonnes	 PJ	 Not	estimated	as	
no	Efs	available	

New	electric	freight	
train	with	additional	
track	electrification	

2020	 PM10	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 PM2.5	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 NH3	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 SO2	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 NOx	 TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

New	electric	freight	
train	with	additional	
track	electrification	

2020	 Non	
Methane	
VOC	

TRA	 IE	 kilotonnes	 PJ	 Included	
elsewhere:		

Aircraft	-	domestic	take	
off	and	landing	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Aircraft	-	domestic	take	
off	and	landing	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Aircraft	-	domestic	take	
off	and	landing	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Aircraft	-	international	
take	off	and	landing	

2010	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Aircraft	-	international	
take	off	and	landing	

2015	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	

Aircraft	-	international	
take	off	and	landing	

2020	 NH3	 TRA	 NE	 kilotonnes	 PJ	 	
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A.3: Graphs of Air Pollution by Sector for All Scenarios (National Scale, United 
Kingdom) 
 
A.3.1: Graphs of Air Pollution by Sector – Base Scenario 
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A.3.2: Graphs of Air Pollution by Sector – Ref Scenario 
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A.2.3: Graphs of Air Pollution by Sector – lowGHG Scenario 
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A.2.4: Graphs of Air Pollution by Sector – Base_DAMC Scenario 
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A.2.5: Graphs of Air Pollution by Sector – Ref_DAMC Scenario 
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A.2.6: Graphs of Air Pollution by Sector – lowGHG_DAMC Scenario 
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A.3: Demand Values – Urban Scale (Greater London) Analysis 
	
A.3.1: For Scenarios without Behaviour Change 

 
 
 
A.3.2: For Scenarios with Behaviour Change 

 
 

Group	1	(LT	migration) Population	driven	(LT	migration)	-	using	2010	per	capita	rates
Motorcycle Car Buses LGV HGV TOTAL

2010 0.70 23.70 0.60 3.80 1.00 29.80
2015 0.74 25.17 0.64 4.03 1.06 31.64
2020 0.78 26.41 0.67 4.23 1.11 33.20
2025 0.81 27.47 0.70 4.41 1.16 34.55
2030 0.84 28.37 0.72 4.55 1.20 35.67
2035 0.88 29.91 0.76 4.80 1.26 37.61
2040 0.93 31.53 0.80 5.06 1.33 39.65
2045 0.98 33.24 0.84 5.33 1.40 41.79
2050 1.03 35.04 0.89 5.62 1.48 44.06

Group	2	(ST	migration) Population	driven	(ST	migration)	-	using	2010	per	capita	rates
Motorcycle Car Buses LGV HGV TOTAL

2010 0.70 23.70 0.60 3.80 1.00 29.800
2015 0.75 25.31 0.64 4.06 1.07 31.820
2020 0.79 26.88 0.68 4.31 1.13 33.801
2025 0.83 28.26 0.72 4.53 1.19 35.530
2030 0.87 29.42 0.74 4.72 1.24 36.994
2035 0.93 31.39 0.79 5.03 1.32 39.475
2040 0.99 33.50 0.85 5.37 1.41 42.122
2045 1.06 35.75 0.90 5.73 1.51 44.946
2050 1.13 38.14 0.97 6.12 1.61 47.960

Group	3	(DfT) DfT	Scenario	1	(version:	March	2015)	through	to	2040**
Motorcycle Car Buses LGV HGV TOTAL

2010 0.70 0.60 0.60 1.00 29.80 32.70
2015 0.00 26.42 0.00 4.69 1.00 32.10 values	are	calculated
2020 0.00 28.24 0.00 5.32 1.03 34.59 values	are	directly	from	DfT
2025 0.00 30.08 0.00 5.94 1.06 37.08 updated	to	match	DfT's	TRA0206
2030 0.00 31.08 0.00 6.53 1.09 38.70
2035 0.00 32.23 0.00 7.05 1.13 40.41
2040 0.00 33.20 0.00 7.57 1.16 41.94
2045 0.00 34.20 0.00 8.14 1.20 43.53
2050 0.00 35.22 0.00 8.75 1.23 45.21

**population	assumptions	(ONS	Long-Term	migration)	for	motorcycles	and	buses	(because	those	aren't	in	DfT's	projections);for	all	2045	and	2050	

projections	for	cars,	LGV,	HGV,	assumed	same	rate	of	increase	as	from	2030	-	2040

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 25.17 25.40 25.47 25.37 25.91 26.52 27.23 28.03
Motorcycle 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.0
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9
LGV 3.8 4.0 4.2 4.4 4.5 4.8 5.1 5.3 5.6
HGV 1 1.1 1.1 1.2 1.2 1.3 1.3 1.4 1.5
Mode	Shifting 0 0 1.00 2.00 3.00 4.00 5.01 6.01 7.01
TOTAL 29.80 31.64 33.20 34.55 35.67 37.61 39.65 41.79 44.06

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 25.17 24.40 23.47 22.37 21.90 21.52 21.23 21.02
Motorcycle 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.0
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9
LGV 3.8 4.0 4.2 4.4 4.5 4.8 5.1 5.3 5.6
HGV 1 1.1 1.1 1.2 1.2 1.3 1.3 1.4 1.5
Mode	Shifting 0 0 2.00 4.00 6.01 8.01 10.01 12.01 14.02
TOTAL 29.80 31.64 33.20 34.55 35.67 37.61 39.65 41.79 44.06

Group	1	(LT	migration)	---	60:40

Group	1	(LT	migration)	---	80:20
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A.3.3: Zero-Tailpipe Emission Cars Availability versus Demand for Scenarios with 

Behaviour Change  

 

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 25.31 25.79 26.08 26.15 27.04 28.05 29.21 30.51
Motorcycle 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 1.0
LGV 3.8 4.1 4.3 4.5 4.7 5.0 5.4 5.7 6.1
HGV 1 1.1 1.1 1.2 1.2 1.3 1.4 1.5 1.6
Mode	Shifting 0 0 1.09 2.18 3.27 4.36 5.45 6.54 7.63
Total 29.80 31.82 32.71 33.35 33.72 35.12 36.67 38.41 40.33

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 25.31 24.70 23.90 22.88 22.68 22.60 22.67 22.89
Motorcycle 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 1.0
LGV 3.8 4.1 4.3 4.5 4.7 5.0 5.4 5.7 6.1
HGV 1 1.1 1.1 1.2 1.2 1.3 1.4 1.5 1.6
Mode	Shifting 0 0 2.18 4.36 6.54 8.72 10.90 13.08 15.26
Total 29.80 31.82 31.62 31.17 30.46 30.76 31.22 31.87 32.70

Group	2	(ST	migration)	---	80:20

Group	2	(ST	migration)	---	60:40

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 26.42 27.15 27.90 27.81 27.87 27.75 27.66 28.18
Motorcycle 0.7 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9
LGV 3.8 4.7 5.3 5.9 6.5 7.0 7.6 8.1 8.7
HGV 1 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2
Mode	Shifting 0 0 1.09 2.18 3.27 4.36 5.45 6.54 7.04
Total 29.80 33.52 36.04 38.59 40.26 42.05 43.66 45.36 47.13

2010 2015 2020 2025 2030 2035 2040 2045 2050
Car 23.70 26.42 26.06 25.72 24.54 23.51 22.30 21.12 21.13
Motorcycle 0.7 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0
Buses 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9
LGV 3.8 4.7 5.3 5.9 6.5 7.0 7.6 8.1 8.7
HGV 1 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2
Mode	Shifting 0 0 2.18 4.36 6.54 8.72 10.90 13.08 14.09
Total 29.80 33.52 33.86 34.23 33.72 33.33 32.77 32.28 33.04

Group	3	(DfT)	---	60:40

Group	3	(DfT)	---	80:20
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A.4: Emission Factors – Urban Scale (Greater London) Analysis for Scenarios 
without Behaviour Change (i.e. no mode shift) for all Demand Groups 
 
A.4.1: PM10 

 

No	Mode	Shift

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.031 0.028 0.025 0.024 0.024 0.024 0.023 0.021 0.010
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.031 0.028 0.025 0.023 0.022 0.017 0.010 0.010 0.010
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.031 0.028 0.025 0.024 0.024 0.024 0.024 0.023 0.010
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm)

PM
10

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.4.2: PM2.5 

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange

0.03 Cars 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.021 0.017 0.014 0.014 0.013 0.012 0.009 0.005 0.005
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.010 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.005
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.010 Cars 0.021 0.017 0.014 0.014 0.012 0.009 0.005 0.005 0.005
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.010 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.014 0.014 0.005
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

lowGHG	+	
DAMC

Scenario

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.4.3: NOx 

 
 
  

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange

0.02 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.005 Cars 0.37 0.21 0.09 0.05 0.04 0.03 0.02 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.005 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.005 Cars 0.37 0.21 0.09 0.05 0.04 0.02 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.005 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

NO
x

Scenario

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC
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A.5: Emission Factors – Urban Scale (Greater London) Analysis for Scenarios with 
20% Mode Shift Away from Cars 
 
A.5.1: PM10 

A.5.1.1:	Group	1	

 
 

20%	Mode	Shift	-	Group	1

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm)

PM
10

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.5.1.2:	Group	2	

	

20%	Mode	Shift	-	Group	2

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

London	(tonnes/bvkm)

PM
10

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario
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A.5.1.3:	Group	3	

	
 
 

20%	Mode	Shift	-	Group	3

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

London	(tonnes/bvkm)

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

PM
10

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC
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A.5.2: PM2.5 

A.5.1.1:	Group	1	

 
 

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.03 Cars 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC
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A.5.1.2:	Group	2	

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.03 Cars 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario
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A.5.1.3:	Group	3	

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.02 Cars 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Scenario

London	(tonnes/bvkm)London	(tonnes/bvkm)

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

PM
2.
5
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A.5.3: NOx 

A.5.1.1:	Group	1	

	
 

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.02 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.02 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.04 0.04 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.03 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

NO
x

Scenario
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A.5.1.2:	Group	2	

	
	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.0211 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.02 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.04 0.04 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.02 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

NO
x

Scenario

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario
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A.5.1.3:	Group	3	

 
	
  

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.0211 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.02 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.04 0.03 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.02 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

Scenario

London	(tonnes/bvkm)London	(tonnes/bvkm)

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

NO
x
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A.6: Emission Factors – Urban Scale (Greater London) Analysis for Scenarios with 
40% Mode Shift Away from Cars 
	
A.6.1: PM10 

A.5.1.1:	Group	1	

	
 

40%	Mode	Shift	-	Group	1

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm)

PM
10

Scenario

Scenario
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A.5.1.2:	Group	2	

	

40%	Mode	Shift	-	Group	2

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm)

PM
10

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.5.1.3:	Group	3	

	
 

40%	Mode	Shift	-	Group	3

kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010
Cars 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Buses 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
LGVs 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
HGVs 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
UK
Cars 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
50:50
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Doubling
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Clean	London
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09
kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
Just	in	Time
Cars 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Buses 0.21 0.12 0.12 0.10 0.09 0.08 0.08 0.08 0.08
LGVs 0.08 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03
HGVs 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Scenario

London	(tonnes/bvkm)

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

PM
10

Scenario

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.6.2: PM2.5 

A.5.1.1:	Group	1	

	
 

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.03 Cars 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Scenario

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

Scenario

lowGHG	+	
DAMC
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A.5.1.2:	Group	2	

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.03 Cars 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC
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A.5.1.3:	Group	3	

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.03 Cars 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211 0.0211
0.02 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.21 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.08 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.15 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.02 Cars 0.021 0.017 0.014 0.014 0.014 0.014 0.013 0.013 0.013
0.01 2W 0.018 0.016 0.013 0.014 0.014 0.015 0.015 0.012 0.007
0.08 Buses 0.147 0.073 0.071 0.060 0.045 0.044 0.042 0.041 0.040
0.03 LGVs 0.060 0.034 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.09 HGVs 0.110 0.074 0.048 0.048 0.048 0.048 0.048 0.048 0.048
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
0.08 Buses 0.15 0.07 0.07 0.06 0.05 0.04 0.04 0.04 0.04
0.03 LGVs 0.06 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.09 HGVs 0.11 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 2W 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.08 Buses 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.03 LGVs 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.09 HGVs 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Scenario

London	(tonnes/bvkm)London	(tonnes/bvkm)

Scenario

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

PM
2.
5

Scenario

Scenario

lowGHG	+	
DAMC

lowGHG	+	
DAMC

Scenario

lowGHG	+	
DAMC
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A.6.3: NOx 

A.5.1.1:	Group	1	

	
 

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.0211 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.03 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.05 0.05 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.03 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

lowGHG	+	DAMC

Scenario

NO
x

Scenario

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

Scenario

lowGHG	+	DAMC
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A.5.1.2:	Group	2	

	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.02 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.04 0.04 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.04 0.04 0.04 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.04 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

London	(tonnes/bvkm) London	(tonnes/bvkm)

NO
x

Scenario

Scenario

lowGHG	+	DAMC
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A.5.1.3:	Group	3	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050
NoChange Emission	Factors	Constant	from	2010

0.0211 Cars 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.02 2W 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.15 Buses 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27
0.06 LGVs 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
0.11 HGVs 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

UK
0.013 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.05 0.06
0.007 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.040 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.017 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.048 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

50:50
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.03 0.00 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Doubling
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.05 0.05 0.05 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Clean	London
0.01 Cars 0.37 0.21 0.09 0.05 0.04 0.04 0.00 0.00 0.00
0.01 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.04 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.02 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.05 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04
2050 kt/bvkm 2010 2015 2020 2025 2030 2035 2040 2045 2050

Just	in	Time
0.01 Cars 0.37 0.21 0.09 0.05 0.05 0.05 0.05 0.06 0.00
0.02 2W 0.20 0.18 0.14 0.14 0.15 0.15 0.16 0.09 0.00
0.15 Buses 7.27 2.71 2.62 1.70 0.43 0.41 0.32 0.19 0.19
0.06 LGVs 0.89 0.36 0.11 0.11 0.05 0.06 0.04 0.04 0.03
0.11 HGVs 4.05 1.62 0.29 0.21 0.17 0.15 0.13 0.09 0.04

Scenario

London	(tonnes/bvkm)London	(tonnes/bvkm)

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

lowGHG	+	DAMC

NO
x

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC

Scenario

lowGHG	+	DAMC
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