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Abstract

Reconstructing dense, detailed, 3D shape of dynamic scenes from monocular

sequences is a challenging problem in computer vision. While robust and even

real-time solutions exist to this problem if the observed scene is static, for

non-rigid dense shape capture current systems are typically restricted to the use

of complex multi-camera rigs, taking advantage of the additional depth channel

available in RGB-D cameras, or dealing with specific shapes such as faces or

planar surfaces. In this thesis, we present two pieces of work for reconstructing

dense generic shapes from monocular sequences.

In the first work, we propose an unsupervised approach to the challenging

problem of simultaneously segmenting the scene into its constituent objects and

reconstructing a 3D model of the scene. The strength of our approach comes

from the ability to deal with real-world dynamic scenes and to handle seamlessly

different types of motion: rigid, articulated and non-rigid. We formulate the

problem as a hierarchical graph-cuts based segmentation where we decompose

the whole scene into background and foreground objects and model the complex

motion of non-rigid or articulated objects as a set of overlapping rigid parts.

To validate the capability of our approach to deal with real-world scenes, we

provide 3D reconstructions of some challenging videos from the YouTube Objects

and KITTI dataset, etc.

In the second work, we propose a direct approach for capturing the dense,

detailed 3D geometry of generic, complex non-rigid meshes using a single

camera. Our method makes use of a single RGB video as input; it can capture

the deformations of generic shapes; and the depth estimation is dense, per-pixel

and direct. We first reconstruct a dense 3D template of the shape of the object,

using a short rigid sequence, and subsequently perform online reconstruction

of the non-rigid mesh as it evolves over time. In our experimental evaluation,

we show a range of qualitative results on novel datasets and quantitative

comparison results with stereo reconstruction.
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Chapter 1

Introduction

The recovery of 3D scene information from images is a fundamental problem

in computer vision. Recent years have seen significant progress [51, 29, 114,

63, 87, 37, 84, 89] in the field of Structure from Motion(sfm), which can be

defined as the problem of joint estimation of the motion of the cameras and

the 3D structure of the captured scenes. SfM algorithms have reached an

extremely high degree of maturity in which existing systems [87, 37, 89] are

capable of performing real time camera tracking and dense 3D reconstruction

from a hand-held camera. However, the fundamental assumption of existing

robust solutions is that the scene is static, which limits their application to

more general, real-world dynamic scenes.

The recent emergence of low cost depth sensors, has brought easy and fast

acquisition of 3D geometry closer to reality. Systems such as KinectFusion [88]

allow users to scan the detailed 3D shape of rigid scenes. The use of RGB-D

sensors has also been extended to markerless capture of non-rigid shapes. The

additional depth channel provides a strong geometric prior that has made

the recovery of accurate 3D models of deformable shapes from depth sensors

possible [73, 77] even in real time [144, 86, 56, 27]. At the same time, many

multi-camera techniques for markerless high-end dynamic 3D shape acquisition

have been developed over the last decade [31, 128, 33]. However, these multi-

camera systems are typically confined to studio settings with complex calibrated

camera setups and sophisticated lighting; are often model-based and specific to

human motion capture.

In contrast, the acquisition of dense 3D models of generic deformable

meshes from a monocular RGB-only video stream is significantly harder and

continues to be an unsolved and challenging problem in computer vision and

graphics. The ability to acquire time-varying dense shapes from monocular
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Figure 1.1: Reconstruction results of rigid scenes. Top row shows the 3D
reconstruction results from online image searches [114]. From left to right,
unstructured collections of photographs from online image search, 3D recon-
struction results (including camera viewpoints) and novel ways of browsing
the photos. Bottom rows shows accumulated pointclouds of all keyframes of a
medium-sized trajectory (from a hand-held monocular camera), generated in
real-time by Large-Scale Direct Monocular SLAM(LSD-SLAM) [37]. Images
reproduced from [114] (top row) and [37] (bottom row).

RGB video would open the door to easy, lightweight non-rigid capture and,

perhaps more importantly, from existing video footage or web-based video

libraries such as YouTube.

In this thesis, we focus on the problem of reconstructing dense deformable

shapes from a monocular video sequence.

1.1 Motivation

Although rigid sfm is now well understood [51] and has been widely used for

commercial applications, the world is essentially dynamic. Compared to static

environments, dynamic scenes are much more challenging to reconstruct in 3D,

due to the algorithmic and computational difficulties in non-rigid deformation

modelling. Multibody sfm and non-rigid structure from motion (nrsfm) have

addressed some of the limitations of sfm and have seen sustained progress in

dealing with dynamic scenes [91, 100, 97] or creating vivid life-like reconstruc-
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Figure 1.2: Reconstruction results of dynamic scenes with RGB-D camera. Top
row shows real-time template-based non-rigid tracking results for 3 different
sequences with a RGB-D camera from [144]. Bottom rows shows the results
of a real-time high quality 4D (i.e. spatio-temporally coherent) performance
capture system [33], allowing for incremental non-rigid reconstruction using
noisy input from multiple RGB-D cameras. Images reproduced from [144] (top
row) and [33] (bottom row).

tions of deformable objects [45, 119]. However, they remain far behind their

rigid counterparts. The research of this thesis aims to bridge the gap between

non-rigid reconstruction of dynamic scenes and its rigid counterparts. Our

motivation may be understood from two perspectives, first the key role of scene

reconstruction in computer vision research, and second the numerous potential

applications that will benefit from this research.

In Marr’s pioneering work [81], he described vision as the process of

discovering useful information by looking at the outside world, e.g. what is

present and where it is. The perception of 3D shape is one of the most

important cues for our vision system, since it provides useful information for

many vision tasks, such as, recognition, navigation, scene understanding, etc. It

has long been recognized that 3D reconstruction of the outside world is essential

for vision systems. In Marr’s classic work [81], he introduced a three-stage

representation framework for deriving 3D shape from images, namely, primal

sketch, 2.5D sketch and 3D model. This 3D information would be better suited

as input to recognition tasks than 2D cues as the 3D shape is a viewpoint
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independent representation.

Despite the obvious advantages of using 3D information for action and

object recognition tasks, recognition algorithms have traditionally focused on

using 2D images to learn semantic models of the world. The reason for this

can be mostly attributed to the lack of reliable and robust solutions for the

problem of 3D reconstruction of real-world dynamic scenes.

Apart from computer vision research, this work is also motivated by nu-

merous applications that have been made possible by progress in reconstructing

dynamic scenes. Two of the most significant applications are:

• Entertainment. Motion capture has been widely used in industry,

including gaming, movie, sports, media, etc. For example, the Microsoft

motion sensing device Kinect [1] has been successfully used in its gaming

console Xbox One. In the film industry, motion capture has a long history

of being used for CG (Computer Graphics) effects. For instance, in the

movie ‘The Lord of the Rings: The Two Towers’, the action of actor Andy

Serkis was mapped to computer generated skin of Gollum/Smeagol as it

was being performed in real time. Recently, Face2Face [121] has enabled

real-time facial reenactment of a monocular target video sequence (e.g.,

Youtube video) and has been successfully used in real-time telepresence

communication.

• Medical Imaging. Image-guided techniques have been used in mini-

mally invasive surgery (MIS) to reduce the damage to human tissue when

performing surgery. With the help of vision-based tracking of deforming

tissues in real time, surgeons would be able to observe augmented views

during the surgery and perform as small incisions as possible.

Although recent years have seen fantastic progress in motion capture, from

early marker based systems to recent markerless motion capture systems, its

wide application is still limited by the sophisticated setups. Existing systems

typically require depth cameras or multiple synchronised cameras, and are often

confined to studio settings and specifically tailored for human motion capture.

Monocular video cameras are probably the most common capturing device

and have become more and more ubiquitous with the recent emergence of video

cameras on phones and laptops. Compared to depth cameras such as Kinect,

a single RGB camera setup is less expensive, more lightweight, less invasive

and more widely applicable, meaning that it does not need to project specific

patterns and can work in a much longer range than active depth sensors.
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We believe that the ability to reconstruct dynamic deforming shapes from

monocular RGB video would not only be useful for vision research but also for

many industry applications.

1.2 Why is Dynamic Scene Reconstruction

Challenging?

Compared to rigid scenarios, the reconstruction of dynamic scenes is a less

constrained and much more challenging problem. Particularly, the difficulties of

reconstructing a general dynamic scene include: successful segmentation of the

scene into separate moving objects, 3D reconstruction of complex deformable

objects, and computational challenges.

First, to reconstruct general dynamic scenes, in particular, scenarios where

there are multiple moving objects, possibly articulated or non-rigid, we need to

simultaneously segment the scene into individual objects and reconstruct the

deformable shape of each object. The problem of simultaneous segmentation

and reconstruction is a difficult chicken-and-egg problem, and even more so

when the number of objects is unknown and the motion of objects is non-rigid.

Specifically, segmentation needs to be performed based on the motion of the

objects whose estimation in turn relies on the segmentation result.

Second, even with perfect segmentation, the problem of nrsfm is inherently

ill-posed. In rigid sfm, given the observations from many different viewpoints,

the problem is typically well constrained to guarantee a robust solution, while

for nrsfm problem this is not the case. In nrsfm, the problem is essentially

under constrained, with the number of measurements far fewer than the number

of unknowns. Without any priors on the camera motion or the observed scene,

the problem is equivalent to 3D reconstruction from a single image. As the

same image can be generated by an infinite number of 3D shapes, the problem

is ill-posed and has no unique solution. In order to solve the problem, we

would have to introduce object deformation priors as regularizers. However,

the deformation of generic objects is complex to model. The exact form of

deformation depends not only on the physical properties of the object itself,

but also on possible external forces. The shape may change arbitrarily and may

even change topology, making it very challenging to come up with reasonable

priors for generic deforming objects. Furthermore, as it is very difficult to

capture 3D ground truth for dynamic scenes or to simulate real-world dynamics

and create realistic synthetic sequences, the idea of using machine learning
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techniques to learn the prior is also stillborn due to the lack of training data.

Last but not least, the computational requirements are another contributing

factor that makes the problem challenging. Compared with the rigid case where

the world is static and fixed, in dynamic scenes, the 3D geometry may change at

every instant and the number of unknowns grows linearly with time, resulting

in a significant computational challenge. In fact, it is not until recently [104, 45]

that nrsfm approaches can only reconstruct sparse feature points. Even today

most methods still work in batch mode and are far from real time.

1.3 Contributions
This thesis tackles the problem of dense 3D reconstruction from a monocular

video. The main contributions made in the thesis can be summarized as:

• We offer a solution to the problem of scene reconstruction for real-world

dynamic monocular videos that deals seamlessly with the presence of

non-rigid, articulated or pure rigid motion. In an entirely unsupervised

approach, we reorganise/segment the scene into a constellation of ob-

ject parts, recognise which parts are likely to constitute objects, join

them together, and reconstruct the scene. More specifically, we offer

solutions to some of the problems of previous approaches to dynamic

scene reconstruction: (i) Our approach is able to adapt the topology of

the neighbourhood graph by breaking edges where necessary to preserve

boundaries between objects. In this way our approach can deal with

an entire scene where objects might occlude one another and not just

pre-segmented objects; (ii) Our work results in a hierarchical approach to

dynamic scene analysis. At the higher level of the hierarchy the scene is

explained as a set of objects that are detached from the background and

from each other. At the lower level of the hierarchy, each object could

be explained as a set of overlapping parts that can model more complex

motion. Figure 1.3 shows our segmentation and scene reconstruction

results for three challenging monocular sequences.

• We introduce an end-to-end system that builds a dense template from

an initial rigid subsequence and subsequently estimates the deformations

of the mesh with respect to the 3D template by minimizing a robust

photometric cost. Unlike previous template-based direct methods, we

demonstrate our approach on a variety of generic complex non-planar

meshes. Our work is the first template-based dense approach that only
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part− segmentation object− segmentation 3D − reconstruction

Figure 1.3: Segmentation and 3D reconstruction results of two dynamic se-
quences of the Youtube-Objects Dataset [96] and a football sequence downloaded
from YouTube. Left: segmentation into parts (rigid models). Centre: segmen-
tation into objects. Right: densified 3D video pop-up from a novel viewpoint.
The cat sequence is a non-rigid sequence occluding a static background. The
motorbike sequence, acquired with a moving camera, shows articulated motion.
Bottom row shows a reconstruction of football footage.

uses monocular RGB data; is frame-to-frame; direct; and suitable for

reconstructing generic shapes. To evaluate our system, we show a range of

qualitative results on novel datasets and quantitative comparison results

with stereo reconstruction. While our algorithm is not real-time, it is

sequential and relatively fast, typically requiring 2 seconds per frame on a

standard desktop machine to optimize a mesh with approximately 25,000

vertices. Figure 1.4 shows our direct and dense non-rigid reconstruction

results on a face sequence.

1.4 Thesis Structure

Chapter 2 introduces the background for the thesis by discussing related

techniques, including rigid sfm, multi-model fitting, higher order inference and

dense tracking. In Chapter 3 we review existing related work in the literature,

such as motion segmentation, multibody reconstruction, non-rigid structure

from motion, shape-from-template and model-based non-rigid reconstruction

approaches. Chapter 4 introduces our unified whole scene reconstruction

framework which can seamlessly deal with unknown number of moving objects
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Figure 1.4: Direct deformable reconstruction of our algorithm on a face sequence.
Each column corresponds to different views of the same frame.

and the presence of non-rigid, articulated or pure rigid motion. In Chapter 5,

we discuss our first RGB-only direct, dense and deformable tracking system.

Finally, we conclude the thesis and discuss future directions in Chapter 6.

1.5 Supporting Publications
The selected publications which support the chapters of this thesis are listed as

below. The full publication list is available in Appendix A.

1) Chris Russell*, Rui Yu* and Lourdes Agapito. Video Pop-up: Monocular

3D Reconstruction of Dynamic Scenes. In ECCV, 2014. (Main text of

Chapter 4)

2) Rui Yu, Chris Russell, Neill D. F. Campbell and Lourdes Agapito. Direct,

Dense, and Deformable: Template-Based Non-Rigid 3D Reconstruction

from RGB Video. In ICCV, 2015. (Main text of Chapter 5)

“*” means joint first authorship with equal contribution to the paper.



Chapter 2

Preliminaries

In this chapter, we discuss the background models and mathematical methods

that will be used throughout the thesis. First, we introduce the problem of rigid

structure from motion (sfm), including the camera projection model (perspective

and orthographic), 3D reconstruction using orthographic factorization, etc.

Then, we introduce the problem of multiple model fitting as well as some

state-of-the-art solutions. Furthermore, we discuss higher order graph-cuts

optimization techniques which will be used in the formulation of our scene

reconstruction. Finally, we introduce the problem of dense photometric tracking

and related optimization methods.

2.1 Rigid Structure from Motion

2.1.1 Camera Model

The projection of our 3D world onto a 2D image plane can be described by a

pinhole camera model, performing a perspective projection operation, as shown

in Figure 2.1. Without loss of generality, let the center of projection, e.g. the

camera focus, be at the origin of the world coordinate system. Alternatively,

we could apply a rigid transform to align it with the camera coordinate system.

As shown in Figure 2.1, given a 3D point X = [X, Y, Z]T , its projection

on the image plane can be given as:

x =

[
x

y

]
=

[
fX
Z
fY
Z

]
(2.1)

where f is the focal length of the camera, x and y are the coordinates of the

projected point on the image plane. Equation 2.1 assumes that the image

coordinate frame is centered at the principal point. In practice, we usually use

uv coordinate system (in pixels), where we define the top-left corner of the
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xc

yc

z0

Fc

X = [X,Y, Z]T

u

v

x

yz = f

(u, v)

principal
point

principal
axis

Figure 2.1: The projection of a point under pinhole camera model.

image plane as the origin:

u =

[
u

v

]
=

[
fX
Z

+ uo
fY
Z

+ vo

]
(2.2)

where, uo and vo are the coordinates of the offset of the principal point in the

uv coordinate system. Using homogeneous coordinates and matrix formulation,

equation 2.2 can be rewritten as:

λ

uv
1

 =

f 0 uo 0

0 f vo 0

0 0 1 0



X

Y

Z

1

 (2.3)

or

λũ = PX̃ = K
[

I 0
]

X̃ (2.4)

where ũ and X̃ are the homogeneous representation of point u and X, P is the

projection matrix, I is a 3× 3 identity matrix, 0 a 3× 1 zero vector and K is

the calibration matrix:

K =

f 0 uo

0 f vo

0 0 1

 (2.5)



2.1. Rigid Structure from Motion 25

Figure 2.2: Parallel projection of an orthographic camera: a cube (in blue) is
projected under orthography to the image plane of the camera.

In general, when the rigid transformation between the world and camera

coordinate systems is given by rotation matrix R and translation vector t, we

have:

λũ = PX̃ = K
[

R t
]

X̃ (2.6)

2.1.2 Orthographic Camera Model

The pinhole camera model introduced above is a perspective camera model,

and can model perspective effects, i.e. the size of an object in the image plane

is inversely proportional to its distance from the camera. However, when the

camera is far away compared to the size of the object, perspective effects are

negligible and the projection from the 3D world to the image plane can be well

approximated by an orthographic camera model. As shown in Figure 2.2, in

the orthographic case, the rays are parallel and orthogonal to the image plane.

The camera projection matrix can be written as:

P =

1 0 0 0

0 1 0 0

0 0 0 1

 (2.7)
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For a general orthographic projection, we assume that the rigid transformation

between the world and the camera coordinate systems is given by a rotation R

and translation t, therefore:

P =

1 0 0 0

0 1 0 0

0 0 0 1

[R t

0T 1

]
=

rT1 t1

rT2 t2

0T 1

 (2.8)

where R = [r1, r2, r3]T , t = [t1, t2, t3]T . For a 3D point X = [X, Y, Z]T , its 2D

projection u = [u, v]T on the image plane can be computed as:[
u

v

]
=

[
rT1

rT2

]
X +

[
t1

t2

]
(2.9)

The above equation shows clearly that for an orthographic model, the 2D

projection does not depend on the third component of the translation vector,

meaning that an object moving in the direction of the depth will preserve the

same projection.

2.1.3 Orthographic Factorization

Consider a set of 3D points {Xj, j = 1, 2, ...P} observed by an orthographic

camera. The projection of the jth point on the ith image plane via orthography

can be written as:

ui =

[
uij

vij

]
=

[
ri1
T

ri2
T

]
Xj +

[
ti1

ti2

]
= RiXj + ti (2.10)

where ui = [uij, v
i
j ]
T is the 2D projection and Ri and ti are the truncated rotation

matrix and translation vector of the orthographic camera respectively. Without

loss of generality, we assume that the origin of the world coordinate system

is defined at the centroid of the 3D points, therefore the translation vector ti

can be easily eliminated by subtracting the centroid of the 2D projections from

ui. We can now formulate the projection of P points into F camera frames in

matrix form:

W =


R1

R2

...

RF


[
X1 X2 · · · XP

]
= RS (2.11)
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where W is the so called measurement matrix:

W =



u1
1 u1

2 · · · u1
P

v1
1 v1

2 · · · v1
P

...
...

...
...

uF1 uF2 · · · uFP
vF1 vF2 · · · vFP


(2.12)

Th measurement matrix W is the product of two low rank matrices: the motion

matrix R(2F ×3) and the structure matrix S(3×P ). Based on this observation,

Tomasi and Kanade [122] proposed a factorization method for orthographic

reconstruction. The method has two main steps: low rank factorization and

metric upgrade.

In the first step, the 2F × P measurement matrix W is factorized into

two low rank matrices, a 2F × 3 matrix M̂ and a 3× P matrix Ŝ, by singular

value decomposition (SVD):

W ≈ U3Λ3V
T
3 = U3Λ

1/2
3 Λ

1/2
3 VT

3 = M̂Ŝ (2.13)

where U3 is a 2F × 3 matrix, Λ3 is a 3× 3 diagonal matrix that contains the

three largest singular values of W, and V3 is a P × 3 matrix. In general, the

recovered M̂ and Ŝ do not correspond to motion and structure matrices due to

the ambiguity of the factorization:

M̂Ŝ = M̂QQ−1Ŝ = RS (2.14)

where Q could be an arbitrary 3× 3 invertible matrix.

In the metric upgrade step, we solve for the rectification matrix Q. For

each rotation matrix Ri, i = 1, 2, · · · , F , we have the following orthonormality

constraints:

ri1
T ri1 = 1

ri2
T ri2 = 1

ri1
T ri2 = 0

(2.15)

Therefore, in order to recover the correct Euclidean reconstruction, we need to

find the rectification matrix Q such that R = M̂Q satisfies constraints 2.15.
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In other words, we have:

M̂iQQTM̂T
i = 1 ∀i ∈ {1, 2, · · · , 2F}

M̂2iQQTM̂T
2i−1 = 0 ∀i ∈ {1, 2, · · · , F}

(2.16)

where M̂i is the ith row of M̂. This leads to 3F linear constraints in the

elements of the symmetric Gram matrix G = QQT . With enough frames

G can be estimated via least squares and Q may be recovered via cholesky

decomposition.

It should be noted that in the presence of noise, the estimated ‘motion

matrix’ R does not strictly satisfy the orthonormality constraints as equation

2.16 is only solved in least squares sense. In order to obtain a valid motion

matrix, one could project matrix R onto the motion matrix manifold. To further

refine the motion matrix R and the structure matrix S, bundle adjustment

could be performed to minimize the reprojection error.

2.1.4 Ambiguities of Orthographic Reconstruction

In general, there are two ambiguities which can not be resolved when perform-

ing orthographic reconstruction: the depth and flip ambiguities. The depth

ambiguity is a per-frame ambiguity while the flip ambiguity is global.

The depth ambiguity arises from the fact that the depth component of the

3D translation vector t cannot be determined. It is not possible to recover the

absolute value for the translation along the depth direction, as any movement

in this direction results in the same 2D projection. In other words, the depth

component could take any value without changing the measurement matrix.

To understand the flip ambiguity, we introduce a 3× 3 matrix A,

A =

1 0 0

0 1 0

0 0 −1

 (2.17)

and rewrite equation 2.11 as

W = RS = RAAS = R′S′ (2.18)

where R′ and S′ are flipped motion and structure matrices, with the third

column/row flipped, respectively. To be more concrete, we assume R1 and

R′1 are the 3D rotation matrix associated with frame 1 and its flipped version
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respectively. Given a 3D point X1 and its flipped version X′1, we have

R1X1 =

r11 r12 r13

r21 r22 r23

r31 r32 r33


x1

y1

z1

 =

u1

v1

d1

 (2.19)

R′1X
′
1 =

 r11 r12 −r13

r21 r22 −r23

−r31 −r32 r33


 x1

y1

−z1

 =

 u1

v1

−d1

 (2.20)

Therefore, both the projections before and after flipping result in the same

measurement matrix and only differ in the sign of their depth values.

These two ambiguities are intrinsic, i.e. they do not depend on the structure

of the 3D scene or the motion of the camera, and cannot be resolved without

additional information.

In certain scenarios, either because the object’s 3D structure is close to

plane or because it becomes front-parallel and all visible points lie approximately

on a plane, an additional flip ambiguity may occur, with regard to every

degenerate frame. Suppose the 3D shape of visible points in frame f is Sf and

the corresponding 3D rotation is Rf . Suppose Sf is rank 2 and degenerate,

then we have:

Wf = RfSf = RfUDVT = RfUADVT = RfUAUT︸ ︷︷ ︸
R′f

UDVT︸ ︷︷ ︸
Sf

= R′fSf

(2.21)

When the 3D shape is close to being planar, an ambiguity appears since Rf

and R′f would lead to similar projections. This rotational flip ambiguity could

be resolved by enforcing temporal motion smoothness constraint, since it only

affects frames for which the structure appears as planar. By formulating this

as a dynamic programming problem over all the frames, this rotational flip

ambiguity can be solved efficiently.

2.2 Multiple Model Fitting

Multiple model fitting is a common problem in many computer vision applica-

tions, such as motion segmentation, piecewise-rigid reconstruction, etc. It is

a typical chicken-and-egg problem, where measurements need to be assigned

to an unknown number of models whose parameters must be estimated at the

same time. Existing multiple model fitting approaches can be classified into
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four main categories: (i) greedy generalisations of RANSAC to multiple models,

(ii) Hough transform based clustering methods, (iii) affinity based clustering

methods, and (iv) energy-based multiple model fitting methods.

When there is only one model, RANSAC [40] is a well-known robust

method which can deal with outliers. The basic idea is to generate a number of

proposals by randomly sampling data points and select the one with the largest

number of inliers (the fitting error is within a predefined threshold). Various

generalisations of RANSAC [123, 62] to multiple models have been proposed in

the literature. These methods usually run RANSAC sequentially and greedily

extract the model with the largest number of inliers at each step. However,

because of the greedy selection, these methods are fundamentally flawed and

sensitive to noise.

Hough transform based approaches formulate the problem as clustering in

the space of model parameters, where the identified modes in the parameter

space correspond to the models we are searching for. Each data point votes for

candidate models in the parameter space and the modes in the space correspond

to the models with the highest vote. When the number of model parameters is

large, this voting scheme suffers from the exponential nature of the algorithm

complexity and it’s sensitive to noise as the average number of votes in each

parameter bin will be small.

Affinity based methods first compute the similarity between points and

then perform clustering on the data based on the affinity matrix. Sparse

representation based methods [35], residual histogram analysis [142] and ordered

residual kernel methods [22] are amongst the most widely used similarity

computation methods. In the second step, given the affinity matrix, spectral

clustering [134] is often used for data points clustering. The performance of

this approach heavily relies on the similarity measure between the data points.

However, this two step pipeline approach is not optimal and moreover the

affinity computation often involves using heuristics.

Recently, energy-based methods [58] have been successfully used for mul-

tiple model fitting problems. Compared to previous methods, this approach

offers a more principled solution by minimizing a pre-defined global objective.

Moreover, by modifying the objective function, this formulation allows to incor-

porate priors more straightforwardly. For example, in geometric multi-model

fitting problems, neighbouring data points tend to belong to the same model.

This smoothness prior could easily be integrated to the formulation by adding

a smoothness term to the global energy.
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Figure 2.3: Multi-homography fitting result for stereo images from VGG
(Oxford) Merton College I using PEARL [58]. The spatial coherence prior is
well justified by the regular planar structures of the building. Figure from [58].

2.2.1 Energy-based Geometric Multiple Model Fitting

In this section, we introduce the formulation for energy-based geometric multi-

model fitting and discuss its applications in related computer vision problems.

In particular, we introduce the PEARL [58] algorithm, a general framework

which combines RANSAC-style model sampling from data points with iterative

re-estimation of inliers and model parameters by minimizing a global energy.

Assuming L is the set of all models, θ = {θl | ∀ l ∈ L} is the set of model

parameters, P is the set of input data points, and x = {x1, x2, · · · , xP} ∈ LP is

the labelling for all P input points, PEARL proposes to minimize the following

energy:

C(x,θ) =
∑
∀p∈P

ψp(θxp) +
∑

(p,q)∈N

ψpq(xp, xq) + ψ(x) (2.22)

where ψp(θxp) is the unary cost of assigning point p to model xp, ψpq(xp, xq)

is the spatial smoothness cost between neighbouring points p and q on the

neighbourhood graph N , and ψ(x) is the Minimum Description Length (MDL)

cost, i.e. it penalizes the total number of models.

Note that although spatial smoothness priors are widely used in vision,

they are not as common in geometric multi-model fitting methods. As this prior
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Algorithm 1: PEARL

Propose:
Generate model proposals by sampling from data points.

while not converged do
Expand:

Given the models, reassign the data points.
Re-estimate Labels:

Given the data points for each model, refit the models.
end

is not straightforward to encode in many other types of methods, it is usually

ignored. However, for geometric fitting problems, many authors [58, 59] have

argued that this prior should be exploited as its use gives better performance.

This spatial coherence prior can be justified generatively because clusters of

inliers are generated by regular objects, as shown in Figure 2.3.

PEARL is an acronym for ‘Propose Expand and Re-estimate Labels’. As

shown in Algorithm 1, the algorithm first proposes a large number of candidate

models (labels) by sampling the data points, and then it alternates between

model expansion and parameter re-estimation.

To illustrate the PEARL algorithm in more detail, we show its application

to line fitting as a working example. Specifically, for multi-line fitting, the

unary cost ψp(xp), i.e. the fitting error between each point p and its assigned

model xp, is the point-to-line distance. For point p = (x, y), assuming the

parameter of model xp is given by θxp = (a, b), we have:

ψp(θxp) =
|y − ax− b|2√

a2 + 1
(2.23)

Assuming a neighbourhood structure for the data points, which might

be obtained by K-nearest neighbour or delaunay triangulation, the pairwise

smoothness term ψpq(xp, xq) encourages neighbouring points to take the same

model:

ψpq(xp, xq) =

0 if xp = xq

λ exp(−‖p−q‖
2

σ2 ) otherwise
(2.24)

The third term in 2.22 is a label cost term, which penalizes the number of

models used to explain the input data:

ψ(x) = β
∑
∀l∈L

δl(x) (2.25)
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(a) Ground truth (b) Raw data (c) Proposals

(d) 1st iteration (e) 5th iteration (f) Convergence

Figure 2.4: Multi-line fitting result using PEARL. Above shows 900 raw data
points with 50% generated from 5 line intervals. Random sampling proposes a
list of candidate lines (we show 20 out of 100). The algorithm converges after
a few iterations. Figure from [32].

where the indicator function δl(x) is defined as:

δl(x) =

1 ∃p : xp = l

0 otherwise

Figure 2.4 shows the result of using PEARL for multi-line fitting. The data is

generated from 5 line intervals with 50% outliers. In this example, 100 initial

models are proposed by random sampling. Most of these models are removed

and only 5 models are left after the first iteration. The algorithm converges in

a few iterations and successfully recovers the 5 input lines.

PEARL has been used in many geometric multi-model fitting problems,

such as motion segmentation, homography estimation, fundamental matrix

estimation, etc. It provides a powerful framework for these kinds of problems by

combining data sampling with simultaneous model fitting and point assignment

via minimization of a single unified global energy.
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2.3 Higher Order Inference

The label cost term ψ(x) in the above section is defined over the labelling of

all the data points and is therefore a high order term, i.e. order greater than 2.

Apart from this, a variety of higher order potentials have been proposed and

successfully used in some interesting vision tasks. In comparison with unary

and pairwise potentials, higher order potentials are able to model more complex

interactions between variables. Because of their greater expressive power, it

has been shown that adding higher order potentials can significantly improve

performance in related vision applications, such as semantic segmentation [65],

stereo reconstruction [72], etc.

However, minimizing energies with higher order potentials is challenging

and their wider applications have been limited due to the lack of efficient opti-

mization algorithms for the corresponding energy. On the one hand, researchers

would like to use complex higher order potentials which could naturally model

the properties of related problems, on the other efficient algorithms would need

to be proposed for the resulting optimization problem. In this section, we

introduce some successful higher order potentials which have proved useful in

related applications and efficient optimization algorithms for dealing with these

potentials.

2.3.1 Graph-Cuts

Graph-cuts [14] is a well-known graph-based fast energy minimization algorithm

that has been successfully used for many problems in computer vision, such as

image denoising, image segmentation and stereo reconstruction. In particular,

it is efficient in solving a variety of labelling problems. Given a set of labels

L = {l1, l2, · · · , lk}, the task of a labelling problem is to assign a label xp ∈ L
for each point p such that the labelling x = {x1, x2, · · · , xP} ∈ LP achieves the

minimum for the corresponding energy. In many interesting vision applications,

we have the following energy:

C(x) =
∑
p∈P

ψp(xp) +
∑

(p,q)∈N

ψpq(xp, xq) (2.26)

where ψp(xp) and ψpq(xp, xq) are unary and pairwise potentials respectively. In

the case of binary labels, i.e. L = {0, 1}, if the pairwise potentials satisfy the

following submodularity condition:

ψpq(0, 1) + ψpq(1, 0) ≥ ψpq(1, 1) + ψpq(0, 0) (2.27)
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then this energy can be formulated as a graph-cuts problem and globally

minimized with a minimum cut of the corresponding graph. Following max-flow

min-cut theorem, this minimum cut solution could be found by solving an

equivalent maximum-flow problem. The advantage of using graph-cuts is that

for binary submodular energies, it gives the global optimal solution efficiently

and when used for solving more general submodular energies with multiple

labels, it achieves a locally optimal solution with good properties.

Consider a directed graph G = {V , E} defined over nodes V and edges

E . The set of nodes V = {v1, v2, · · · , vP , s, t} consists of one node vp for each

point p ∈ P and two terminal nodes, i.e. s and t, also referred to as the source

and sink nodes respectively. The set of edges E include two different kinds

of edges, terminal edges and neighbourhood edges. Terminal edges connect

nodes vp with terminal nodes s or t, while neighbourhood edges connect two

neighbouring nodes. Each edge e = (i, j) ∈ E is associated with a nonnegative

weight wij . We define a cut on the graph G as a partition of the nodes into two

disjoint sets S and T such that s ∈ S and t ∈ T . The cost of a cut is defined

as the sum of weights over edges between S and T :∑
i∈S,j∈T ,(i,j)∈E

wij (2.28)

It is straightforward to show that any cut of G could be described by a binary

labelling of the points P . Specifically, we set xp to 0 if vp ∈ S and 1 if vp ∈ T .

Therefore, G represents an energy function which maps the labellings of the

points to the cost of corresponding cuts. Moreover, minimizing this particular

energy function is equivalent to computing the minimum cut on the graph G.

The question remains what energy functions could be represented by graph G?

In [68] it was shown that pairwise potentials are representable with graphs if

and only if they are submodular.

In order to show the graph construction for a binary pairwise submodular

energy 2.26, we rewrite it in the following form (refer to [68] for details):

C(x) =
∑
p∈P

cspxp +
∑
p∈P

cpt(1− xp) +
∑

(p,q)∈N

cpq(1− xp)xq (2.29)

where csp ∈ R+
0 , cpt ∈ R+

0 ,∀p ∈ P and cpq ∈ R+
0 , ∀(p, q) ∈ E . The graph

construction for this energy is rather straightforward. For the first term we

draw a directed edge with weight csp from source s to node vp , while for the
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s

t

vp vq

csp

cpq
cqt

Figure 2.5: Graph construction result for a simple binary pairwise submodular
energy cspxp + cqt(1− xq) + cpq(1− xp)xq. Here all the three coefficients csp, cqt
and cpq are positive and we set xp to 0 if the corresponding node vp is connected
to source s after a cut, otherwise to 1.

second term we draw a directed edge with weight cpt from vp to sink s. For the

pairwise cost, we draw a directed edge with weight cpq from node xp to xq. See

Figure 2.5 for a simple example.

Alpha-Expansion Algorithm

Alpha-expansion [14] is a widely used algorithm for minimizing multi-labelling

submodular energies. The main idea is to convert the difficult multi-labelling

problem into a series of binary labelling problems, which can then be efficiently

optimized with graph-cuts. Specifically, the algorithm iterates over a randomly

selected label α and searches for a better local solution, also referred to as

α-expansion move. In an expansion move, each variable is given a binary choice

of either keeping its current label or switching to label α, encoded by moving

variables t = {t1, t2, · · · , tP} ∈ {0, 1}P . In particular, we have:

x′p =

xp if tp = 0

α if tp = 1
(2.30)

where xp and x′p are the labels before and after an expansion move respectively.

The best expansion move t is found via graph-cuts and the current labelling is

updated if the expansion move solution leads to a lower energy. The algorithm

converges when no better α-expansion move can be found.

2.3.2 Higher Order Potentials

P n Potts Model

The P n Potts model is a higher order potential proposed by Kohli et al. [64].
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It is an extension of the pairwise Potts model and can be defined as:

ψc(xc) =

γc,l if ∀p ∈ c : xp = l

γc,max otherwise
(2.31)

where γc,max > γc,l > 0,∀l ∈ L and xc is the labelling of the variables in the

clique c (a set of variables) of the potential. This potential encourages the

labelling of the clique to be consistent and pays a maximum fixed penalty

otherwise. In the binary case, this higher order potential can be rewritten in

the following form:

ψc(xc) = γc,max − k0
c

∏
i∈c

∆(xi = 0)− k1
c

∏
i∈c

∆(xi = 1) (2.32)

where ∆ is the Dirac function, k0
c and k1

c are defined as:

k0
c = γc,max − γc,0
k1
c = γc,max − γc,1

(2.33)

By introducing an auxiliary variable z0, we have:

−
∏
i∈c

∆(xi = 0) = min
z0

(
z0 +

∑
i∈c

xi(1− z0)− 1

)
(2.34)

Similarly,

−
∏
i∈c

∆(xi = 1) = min
z1

(
−z1 +

∑
i∈c

(1− xi)z1

)
(2.35)

Putting all these results together, from equations 2.32, 2.34 and 2.35, ψc(xc)

can be rewritten as:

ψc(xc) = min
z0,z1

(
k0
cz0 +

∑
i∈c

k0
cxi(1− z0) + k1

c (1− z1) +
∑
i∈c

k1
c (1− xi)z1

)
+ C

(2.36)

where C = γc,max−k0
c−k1

c is a constant value that doesn’t influence the solution

of the energy minimization problem. Formula 2.36 has a similar form as 2.29,

and the corresponding graph can be constructed straightforwardly, as shown in

Figure 2.6(a).

The Robust P n Model

The robust P n model was later introduced by Kohli et al. [67] as a robustified
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extension of the P n model. Instead of having the same energy for any inho-

mogeneous labelling of the clique variables, this new cost increases with the

amount of labelling inconsistency. For each label, the energy increases linearly

with the number of different labelled points, and is then truncated with a fixed

threshold. The cost of the clique is defined as the minimum over all the labels:

ψc(xc) = min

(
γc,max,min

l∈L
(γc,l + klc

∑
i∈c

∆(xi 6= l))

)

= min
l∈L

(
min(γc,max, γc,l + klc

∑
i∈c

∆(xi 6= l))

)
= min

l∈L
(f lc(xc))

(2.37)

where klc is defined as:

klc =
γc,max − γc,l

Q
(2.38)

Here Q is a truncation parameter of the potential and satisfies the constraint

2Q < |c|, i.e. the size of the clique. For each label l ∈ L, we have:

f lc(xc) = min

(
γc,max, k

l
c

∑
i∈c

∆(xi 6= l) + γc,l

)

=

klc
∑

i∈c ∆(xi 6= l) + γc,l if
∑

i∈c ∆(xi 6= l) < Q

γc,max otherwise

(2.39)

In the binary labelling case, by introducing auxiliary variables, we have:

f 0
c (xc) = min

z0

(
(γc,max − γc,0)z0 + k0

c

∑
i∈c

xi(1− z0) + γc,0

)

f 1
c (xc) = min

z1

(
(γc,max − γc,1)(1− z1) + k1

c

∑
i∈c

(1− xi)z1 + γc,1

) (2.40)

Therefore, ψc(xc) can be rewritten as:

ψc(xc) = min(f 0
c (xc), f

1
c (xc)) = f 0

c (xc) + f 1
c (xc)− γc,max

The second equation is based on the constraint 2Q < |c|, which indicates that

f 0
c (xc) and f 1

c (xc) cannot be smaller than γc,max at the same time. Plugging in
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Figure 2.6: From left to right: graph construction results for P n potential, robust
P n potential and label cost terms. The three figures show the corresponding
graphs for binary pairwise energies 2.36, 2.41, 2.44 respectively.

f 0
c (xc) and f 1

c (xc), and ignoring constant value, we have

min
z0,z1

(
λ0
cz0 + k0

c

∑
i∈c

xi(1− z0) + λ1
c(1− z1) + k1

c

∑
i∈c

(1− xi)z1

)
(2.41)

where λ0
c = γc,max − γc,0 and λ1

c = γc,max − γc,1. The graph construction for the

robust P n potential term is shown in Figure 2.6(b).

Label Costs

Label costs follows the principle of parsimony and encourages the data to be

explained by as few models as possible. If two solutions are equally likely, then

the simpler one, i.e. the one with fewer labels, is preferred. Specifically, we

define label costs as the sum of the cost klc over each used label l:

ψc(xc) =
∑
l∈L

(
klc(1−

∏
i∈c

∆(xi 6= l))

)
(2.42)

In binary cases, the above equation can be written as:

ψc(xc) = k0
c + k1

c − k0
c

∏
i∈c

∆(xi = 1)− k1
c

∏
i∈c

∆(xi = 0) (2.43)
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Figure 2.7: Graph construction for an α-expansion step of label costs term.
(a): Currently used labels are α, β, γ. (b): Currently used labels are β, γ.
Red, green, blue and pink nodes are variables with label β, γ, α and auxiliary
variables respectively.

Based on the results from equations 2.34 and 2.35:

ψc(xc) = min
z0,z1

(
k1
cz0 +

∑
i∈c

k1
cxi(1− z0) + k0

c (1− z1) +
∑
i∈c

k0
c (1− xi)z1

)
(2.44)

Note that the above equation is very similar to 2.36, and the only difference is

the coefficients. The graph construction for label costs is shown in Figure 2.6(c).

Alpha-Expansion for Label Costs

We now show how to construct the graph for one α-expansion step of label

costs. Assuming the set of currently used labels for clique c is L0 and α ∈ Lo,
the cost of move variables tc is:

ψc(tc) =
∑
l∈L0
l 6=α

(
klc − klc

∏
i∈Sl

∆(ti = 1)

)
(2.45)

where Sl = {i : xi = l} is the set of variables currently labelled as l.
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Using the same trick as above, ψc(tc) can be written as:

ψc(tc) =
∑
l∈L0
l 6=α

(
min
zl

[
klc(1− zl) +

∑
i∈Sl

klc(1− ti)zl

])
(2.46)

Similarly, if label α 6∈ L0, we have:

ψc(tc) = kαc +
∑
l∈L0

klc −
∑
l∈L0

klc
∏
i∈Sl

∆(ti = 1)− kαc
∏
i∈c

∆(ti = 0)

= min
zl,zα
l∈L0

(∑
l∈L0

klc(1− zl) +
∑
l∈L0

∑
i∈Sl

klc(1− ti)zl + kαc zα +
∑
i∈c

kαc ti(1− zα)

)

Figure 2.7 shows the α-expansion move graph construction for label costs.

Therefore, higher order label costs can be efficiently minimized with the α-

expansion algorithm. As shown in section 2.2, these label costs have been

used in PEARL for geometric multi-model fitting applications. Interestingly, a

more general case of label costs, co-occurrence statistics cost, was proposed in

parallel by Ladicky et al. [71], and successfully used in semantic segmentation.

Overlapping Models

Russell et al. [103] proposed the use of overlapping models as a way to enforce

the constraint that adjacent points at the boundary of a model should be

explained by both models, instead of just one (see figure 2.8). In the paper,

this constraint is used as an alternative to pairwise smoothness to encourage

smooth model transition between neighbouring points.

Assuming a set of models M, in contrast to standard labelling problem

where each point is assigned only to one model, when using overlapping models

each point p can be assigned to a subset of models xp. This assignment has to

satisfy two constraints: (i) Each point has to belong to at least one model. (ii)

Adjacent models must overlap, i.e. they must explain some of the same points.

To formulate these overlapping constraints, the concept of interior points is

introduced. A point p is an interior point of model α if and only if all the

neighbours of p also belong to model α, but not necessarily as interior points.

We use I to denote the interior model labelling for all the points, and we define

Iα, the interior of model α, as the set of all points whose neighbours also belong

to model α. With a slight abuse of notation we use Ip to refer to the interior

label assigned to point p. Figure 2.8 gives an illustration of interior points.
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The problem of seeking the best solution can be formulated as:

argmin
x∈(2M)P

C(x) =
∑
p∈P

∑
α∈xp

Up(α)

 (2.47)

subject to the constraints

∀p ∈ P ∃α : p ∈ Iα (2.48)

and

∀q ∈ Np ∧ q ∈ Iα =⇒ α ∈ xp (2.49)

where Up(α) is the unary cost of assigning point p to model α. Russell et

al. [103] proved that the above optimization problem can be reformulated as an

optimization over the interior labelling I. Moreover, for a minimal cost solution

x, the interior label assigned to each point (Ip) is unique. This leads to the

following unconstrained minimization problem:

argmin
I∈MP

C(I) =
∑
p∈P

 ∑
⋃
q∈Np{α:q∈Iα}

Up(α)

 =
∑
p∈P

ψp(I) (2.50)

where ψp(I) is the cost of interior labellings I over Np and can be rewritten as:

ψp(I) =
∑

⋃
q∈Np{α:q∈Iα}

Up(α) =
∑
α∈L

Up(α)

1−
∏
q∈Np

∆(Iq 6= α)

 (2.51)

Note that the higher order cost ψp(I) is a label cost over the neighbourhood

Np. Unlike the label costs introduced in the last section, this cost is local, i.e.

depends only on the interior labellings of the neighbourhood Np. For each label

α present in the neighbourhood, we pay a cost Up(α). It should be pointed out

that the neighbourhood Np defined here also includes point p itself.

The graph construction for an α-expansion step of this overlap cost is also

straightforward. It is very similar to the case of label costs, as shown in 2.7,

and the only difference is that ψp(I) is defined within a local neighbourhood

Np, with model fitting cost Up(α) as label cost for label α. Figure 2.9 shows

the graph for an α-expansion step of the cost term ψp(I).
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Figure 2.8: An illustration of model assignments that satisfies overlapping
constraints 2.48 and 2.49. Figure from [103].
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Up(β)
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(a) Label α is present in local neighbourhood
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Up(α)
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Up(β) Up(γ)

Up(β)

Up(γ)

(b) Label α not present

Figure 2.9: Graph construction of an α-expansion step of the cost term ψp(I).
(a): Currently used labels within the neighbourhood Np are α, β, γ. (b):
Currently used labels within the neighbourhood Np are β, γ. Note the similarity
with the graph for label costs 2.7. The only difference is the weights of the
edges of the graph.
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Figure 2.10: An comparison between feature-based and direct methods. Figure
from [37].

2.4 Direct Dense Tracking

2.4.1 Direct Methods or Indirect Methods

Direct methods [57, 87, 88, 144, 37, 86, 36] refer to the approach of inferring

unknown model parameters directly from raw image intensity measurements

without any intermediate steps, while indirect methods [124, 114, 30, 63, 45, 84]

usually decompose the problem into two separate steps, first solving an inter-

mediate correspondence problem and then computing model parameters with

the established correspondences. Note that for indirect methods the original

input data is usually discarded in the second step and all the computation is

based on pre-computed correspondences only.

Both of these two methods have been widely used by the computer vision

community. Indirect methods typically involve extracting and matching a

set of sparse feature points [84], and then working on these sparse feature

correspondences while direct methods are often based on the minimization of a

dense per-pixel cost function. However, other options exist and one could use

dense correspondences within indirect methods [45] or use direct methods only

on sparse points [36]. A comparison between feature-based and direct methods
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is shown in Figure 2.10.

There has been a debate as to which of these two methods is better,

dense direct methods or sparse feature-based methods. We refer readers

to [57, 124, 126] for excellent discussions about this topic. Both methods have

their own advantages and the answer will typically depend on the specific

application. The main arguments favouring feature-based methods include:

(i) invariant features are robust to illumination and viewpoint changes and

therefore could be matched across a wide range of conditions; (ii) computation

based on sparse features is often much more efficient than minimizing a dense

per-pixel cost; (iii) no need for an appropriate initialization as the problem can

be solved linearly in a lot of cases.

In contrast, dense direct methods are preferred because: (i) dense methods

utilize all the input information and should be able to generate more accurate

results; (ii) direct methods solve the model parameters and correspondences

simultaneously instead of dividing them into two separate steps; (iii) the

method still works when there are not enough feature points, for example when

the image is less textured, and degrades gracefully under deteriorating visual

conditions, such as blurring due to motion or out of focus.

However, there are two main criticisms to direct approaches. First, the

common assumptions made about the model, such as the frequently used

brightness constancy assumption, are not accurate. Second, the resulting

minimization is non-convex and difficult to optimize. This optimization problem

is usually solved with an iterative linearization strategy where the linearization

is based on local gradient information. As such, the convergence radius of

this problem is small and the method will often need a decent initialization

for the algorithm to converge. This explains the fact that although direct

methods have been widely used for tracking and real time SLAM systems

recently, applications to unstructured image collection, such as structure from

motion from web images, are still dominated by feature-based methods.

In fact, the advantages of these two approaches can be combined together

by first computing an initial estimate using feature-based approaches and then

refining the solution with more accurate direct methods.

In this section we are interested in describing the fundamentals of dense

direct methods for monocular camera tracking by minimizing a photometric

cost. In particular, we assume that a 3D model of the scene is available and

the goal is to track the motion of the camera as it moves across the scene.
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2.4.2 Dense Visual Tracking

Assuming a pre-computed 3D template mesh with vertices V̂ = {Vi} and

colours Î = {Ii}, we would like to track the camera motion in an input video

sequence. For simplicity, we assume that the mesh is rigid and there is no

non-rigid deformation over the whole sequence.

Direct methods formulate the problem of camera tracking as an energy

minimization, where the energy is given by the sum of the squared differences

between the colour of the template mesh vertex and the corresponding point in

the input image, the so called photometric cost. In other words, we assume

that the brightness constancy constraint is satisfied and minimize the colour

discrepancy between the 3D model and the input image.

Let us denote Ṽi = [VT
i , 1]T as the homogeneous representation of vertex

Vi = [xi, yi, zi]
T and Tcr as the transformation matrix between the reference

frame and current frame, i.e.

Tcr =

[
R t

0 1

]
(2.52)

First, for each frame, a visibility mask is computed for all the vertices

by rendering the mesh using the tracking result from the previous frame.

Only visible vertices are then considered to estimate the current camera pose.

Assuming the set of visible vertices is V , the dense photometric cost can then

be written as:

E(Tcr) =
∑
i∈V

ρ(‖I(π(KTcrṼi))− Ii‖2
2) (2.53)

where K is the camera intrinsic matrix (a 3 × 4 matrix with an added zero

fourth column), π(·) is a 3D to 2D projection operator such that:

π


uv
w


 =

[
u
w
v
w

]
(2.54)

and ρ(·) is a robust loss function for handling outliers. For simplicity reasons,

we assume that ρ(·) is an identity loss function in this section. We refer readers

to Zach [140] for detailed discussions on handling different robust functions.

We utilize the commonly used axis-angle representation w for rotation

R. Then the relationship between w and R is described by the exponential
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mapping:

R = exp(ŵ) = eŵ (2.55)

where ŵ is the skew-symmetric matrix of vector w:

ŵ = [w]× =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (2.56)

Similarly, the rigid transformation Tcr can be described using the expo-

nential mapping from rotation w and translation t:

Tcr = exp(

[
ŵ t

0 0

]
) = eξ̂ (2.57)

where ξ and ξ̂ are defined as:

ξ =

[
w

t

]
ξ̂ =

[
ŵ t

0 0

]
(2.58)

With a slight abuse of notation, we also use exp(ξ), which should be understood

as exp(ξ̂) when necessary.

Nonlinear Least-Squares Optimization

Minimization of the photometric cost, as shown in 2.53, is a standard

nonlinear least-squares problem and is usually solved with the widely used

Levenberg-Marquardt (LM) algorithm.

The LM algorithm is a popular approach for solving nonlinear least-squares

problems. It employs an iterative minimization scheme and instead of solving

the difficult original problem, it solves a sequence of approximate but easier

problems. At each step, it linearizes the cost function based on the jacobian

information at the current estimate and solves for the optimal incremental

parameter update ∆ξ by solving a least-squares problem. LM can be seen as

an interpolation between the gradient descent and Gauss-Newton optimization

methods. When the parameters are far from the optimal value, it behaves like

gradient descent methods. However, when the estimate is close to the solution,

it acts like Gauss-Newton methods and converges quickly.

LM is used to minimize costs of the form:

E(ξ) = ‖f(ξ)− y‖2
2 = ‖r‖2

2 (2.59)
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where r denotes the residual vector between the prediction f(ξ) and the

measurement y. At each iteration, the non-linear function f(·) is linearized

at the current estimate ξ using f(ξ + ∆ξ) = f(ξ) + J∆ξ. This leads to the

following approximate objective:

argmin
∆ξ

‖y − f(ξ) + J∆ξ‖2
2 = ‖J∆ξ − r‖2

2 (2.60)

where J and r are the Jacobian matrix and the residual vector at the current

estimation respectively. This minimization problem is essentially a least-squares

problem and can be solved via the so-called normal equations:

JTJ∆ξ = JT r (2.61)

Solving the normal equations is referred to as a Gauss-Newton iteration. How-

ever, the linear approximation may not be accurate when the estimate is far

from the optimal solution and the iteration may not decrease the energy. To

make the approach better behaved, the LM algorithm uses a trust region

strategy to control the size of the update ∆ξ, or equivalently adds a damping

factor into JTJ matrix. In each step, LM method solves a damped normal

equation:

(JTJ + λD)∆ξ = JT r (2.62)

Where, λ is a coefficient adapted to the quality of current solution and D is

the damping matrix, which is usually an identity matrix or the diagonal of the

JTJ matrix.

In practice, the algorithm will terminate when there is no significant

decrease in the cost or the number of iterations is larger than a specified

number. In general, LM has a fast convergence and the method will terminate

after a few iterations.

Jacobian Computation

We now discuss how to compute the jacobian J for the introduced photo-

metric cost E(Tcr), as shown in 2.53. Given the current estimate ξ, we write

the cost explicitly in terms of the update ∆ξ:

E(∆ξ) =
∑
i∈V

‖I(π(K exp(ξ) exp(∆ξ)Ṽi))− Ii‖2
2 =

∑
i∈V

‖ri‖2
2 (2.63)

Let us denote Pi = K exp(ξ) exp(∆ξ)Ṽi and ui = π(Pi). The jacobian for ith
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point can be computed based on chain rule:

Ji =
∂ri
∂∆ξ

∣∣∣
∆ξ=0

=
∂I(ui)

∂ui

∣∣∣
ui=π(K exp(ξ)Ṽi

∂ui
∂Pi

∣∣∣
Pi=K exp(ξ)Ṽi

∂Pi

∂∆ξ

∣∣∣
∆ξ=0

(2.64)

The first term is the jacobian of image colour with respect to 2D projections of

3D points. In general, the projections are not necessarily integers, so bilinear

interpolation is used to obtain image intensity values for arbitrary positions.

Given a 2D projection ui = [ui, vi]
T , the corresponding image value at channel

c is retrieved as:

Ic(ui) =
H∑
m=1

W∑
n=1

Icmn max(0, 1− |ui − n|) max(0, 1− |vi −m|) (2.65)

where H and W are the image height and width respectively. Icmn is the cth

channel image value at integer pixel location (m,n). Differentiating Ic(ui) with

respect to ui and vi, we have:

∂Ic(ui)

∂ui
=

H∑
m=1

W∑
n=1

Icmn max(0, 1− |vi −m|)


0 if |ui − n| > 1

1 if (n− 1) ≤ ui ≤ n

−1 if n < ui ≤ (n+ 1)

(2.66)

∂Ic(ui)

∂vi
=

H∑
m=1

W∑
n=1

Icmn max(0, 1− |ui− n|)


0 if |vi −m| > 1

1 if (m− 1) ≤ vi ≤ m

−1 if m < vi ≤ (m+ 1)

(2.67)

The second term is just the jacobian of projection operator π(·). From equa-

tion 2.54, it is straightforward to compute ∂ui
∂Pi

:

∂ui
∂Pi

∣∣∣
Pi=[u,v,w]T

=

[
1
w

0 − u
w2

0 1
w
− v
w2

]
(2.68)

The last term can be derived as:

∂Pi

∂∆ξ

∣∣∣
∆ξ=0

=
∂K exp(ξ) exp(∆ξ)Ṽi

∂∆ξ

∣∣∣
∆ξ=0

= K exp(ξ)
∂ exp(∆ξ)

∂∆ξ

∣∣∣
∆ξ=0

Ṽi

= K exp(ξ)[G1Ṽi G2Ṽi G3Ṽi G4Ṽi G5Ṽi G6Ṽi]

(2.69)
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where Gi, i = 1, · · · , 6 are the generators of the exponential map, defined as:

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 G2 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


(2.70)

Assuming point Ṽi = [xi, yi, zi, 1]T , the multiplication between generators and

Ṽi can be simply written as:

[G1Ṽi G2Ṽi G3Ṽi G4Ṽi G5Ṽi G6Ṽi] =


0 zi −yi 1 0 0

−zi 0 xi 0 1 0

yi −xi 0 0 0 1

0 0 0 0 0 0

 (2.71)

Having computed the jacobian Ji for all the P visible points, the jacobian J is

simply a stack of all the Ji, i.e J = [JT1 ,J
T
2 , · · · ,JTP ]T .

Parameter Update

After obtaining optimal incremental update ∆ξ by solving the linear

equation 2.62, we could update current parameter ξ. It is important to note

that this update should be computed by compositional exponential mapping

and not simple addition, in other words we have:

exp(ξ)← exp(ξ) exp(∆ξ) or ξ ← ln(exp(ξ) exp(∆ξ)) (2.72)



Chapter 3

Literature Review

In this chapter we review the literature about 3D reconstruction of dynamic

scenes in computer vision. We classify non-rigid capturing approaches into

three different categories based on the amount of input information (single

camera, RGB-D camera or multiple cameras) and prior knowledge (an offline

trained class specific model or a 3D template shape) of the dynamic scene: (i)

Non-rigid structure from motion (nrsfm) methods where the reconstruction is

based on monocular sequence only, without assuming any scene-specific priors.

(ii) Shape-from-template methods where a template shape of the scene to be

reconstructed is available; (iii) Model-based methods where the reconstruction

is based on a model tailored and trained for a specific class of objects.

3.1 Non-rigid Structure from Motion
3D reconstruction of dynamic scenes from monocular sequence is an extremely

challenging problem in computer vision. Imagine a scene containing an unknown

number of moving and possibly deforming objects, a successful reconstruction

of this dynamic scene would need to first correctly segment the objects and then

reconstruct the 3D shape of each object. This simultaneous segmentation and

reconstruction problem can be naturally formulated as a multi-model fitting

problem. However, accurately modelling the deformation of generic objects is

very difficult. In this section, we review some of the state-of-the-art methods

in nrsfm. In particular, we introduce video and motion segmentation methods

first, then discuss methods for reconstructing a pre-segmented articulated or

non-rigid object and methods that can deal with multiple objects or general

scenes.
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3.1.1 Motion Segmentation

Providing robust solutions to video and motion segmentation is a fundamental

problem in computer vision and often a preliminary step towards 3D recon-

struction. Most works in dynamic scene reconstruction [25, 41, 111, 91] follow a

pipeline approach where feature point tracks or dense optical flow is estimated,

followed by a motion segmentation step that clusters trajectories into different

independent motions before reconstructing each of the objects independently

in 3D.

As is the case with simultaneous segmentation and reconstruction, motion

segmentation can also be formulated as a multi-model fitting problem. However,

for the purpose of motion segmentation, we only consider segmenting the scene

into different motion coherent objects, which can be done without estimating

the 3D shape. In fact, most motion segmentation methods only use motion

cues rather than the 3D shape of the object. Specifically, most widely used cues

in motion segmentation include spatial proximity, motion similarity, motion

subspace constraints, etc. Different motion segmentation methods tend to use

different cues and the way how these cues are exploited may also differ.

As discussed in the multi-model fitting section 2.2 in previous chapter,

multi-model fitting approaches can be broadly classified into four main cate-

gories. Motion segmentation methods also fall into these four categories. In

this section we focus on the two categories that are most widely used in prac-

tice: spectral clustering based methods and energy based multi-model fitting

methods. We now review the methods in each category.

Spectral Clustering based Methods

Spectral clustering is a widely used approach for clustering. It first computes

the similarity between each pair of points and builds an affinity matrix, and

then performs clustering based on the spectrum (eigenvalues and eigenvectors)

of the affinity matrix.

One of the first motion segmentation methods for multi-rigid scenes was

proposed by Costeira et al. [25]. They introduced the concept of Shape In-

teraction Matrix (SIM) Q by decomposing the measurement matrix W using

SVD:

W = UΛVT and Q = VVT (3.1)

Importantly, they found that the element of Q has the property that Qij = 0

if point i and point j belong to two different objects. In other words, matrix

Q encodes the motion membership of each point and can be used as affinity
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matrix for spectral clustering. However, to construct the SIM matrix Q we

need to know the number of objects a priori. Moreover, equation Qij = 0 is

very sensitive to noise and is only valid for independent motions. Recently, this

method has been revisited and a more robust solution has been proposed by

Pan et al. [60].

Generalized Principal Component Analysis (GPCA) [132] is an algebraic

framework for modelling and segmenting data lying in different subspaces. It

can be seen as a generalisation of Principal Component Analysis (PCA) to

the case of multiple linear subspaces. The main idea behind GPCA is that a

collection of n subspaces can be fit with a set of n polynomials, whose derivatives

at a particular point encode the normal vector to the subspace containing that

point. Therefore, by clustering these normal vectors we could segment the data

into different subspaces. Specifically, one can define similarity measures between

points using the normal vector or subspace principal angles and perform spectral

clustering on the affinity matrix. However, although GPCA is computationally

cheap when the number of points is small, its complexity increases exponentially

with the number of subspaces and the method does not scale to large number

of points.

Sparse subspace clustering (SSC) [35] is a method based on the idea that

points lying in a subspace can be represented as a sparse linear combination of

other points in the same subspace. By enforcing the sparsity constraint on the

self-representation coefficient matrix, one could obtain a sparse representation

where each point is represented as a linear combination of the points in the

same subspace. This sparse representation matrix can then be used to build

an affinity matrix for spectral clustering. This method is originally used for

affine motion segmentation [99] and has later been extended to the perspective

case [74].

Low rank representation (LRR) is a method very similar to SSC, except

that it seeks a low rank representation rather than a sparse representation.

Interestingly, it can be shown [131] that LRR provides a theoretical justification

for the Costeira and Kanade algorithm [25].

Unlike previous methods which cast motion segmentation as a motion

subspace clustering problem, approaches such as Brox and Malik’s work [18]

exploit the consistency of point trajectories over time and can deal with non-

rigid motion. In particular, they define distance between trajectories as the

maximum difference of their motion over time, build an affinity matrix from

these pairwise distances and then run spectral clustering on this matrix. Note
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that the problem of occlusion or missing data is naturally handled in this

approach. Moreover, this kind of method is far more general than methods

based on subspace clustering which can only handle rigid motions in theory.

Energy based Multi-model Fitting Methods

In contrast to spectral clustering based methods, energy based multi-model

fitting methods formulate motion segmentation as an energy minimization

problem. These methods seek the best solution by minimizing an energy which

objectively encodes the “goodness” of a solution. The goal of these methods is

to find the best motion model parameters and the assignment of points to these

models. For motion segmentation applications, commonly used motion models

include homography, fundamental matrix, linear subspace, etc. Particularly,

homography and fundamental matrix are usually used for two frame motion

segmentation, while motion subspace is often used for multi-frame case.

Two popular energy based methods for mixture models, Expectation

Minimization (EM) and K-means, have also been used in geometric multi-

model fitting problems in computer vision. However, these kinds of methods

have some limitations. In general, they are sensitive to initializations and

not robust to outliers. Moreover, EM methods are based on probabilistic

model representations, which are not always well-suited for geometric problems.

For instance, EM algorithm allow points to be softly assigned to multiple

distributions simultaneously, while in the real-world geometric vision problems

points typically are exclusively assigned to a single model. Also EM and K-

means type methods deal with each point independently and do not exploit

spatial smoothness priors during clustering. Furthermore, EM and K-means

methods need the number of models to be known in advance.

Recently, PEARL [58] was proposed as a principled framework for geometric

multi-model fitting problems. As discussed in section 2.2 in the previous chapter,

this method has been successfully used in many geometric multi-model fitting

problems, such as line fitting, homography estimation, motion segmentation, etc.

It provides a powerful framework for multi-model fitting problems by combining

data sampling and simultaneous model fitting and point assignment. In contrast

with EM and K-means, PEARL naturally models geometric spatial regularity

and encodes MDL (minimum description length) prior that encourages the

number of used models to be small. Besides, by generating a large number of

initial proposals using local sampling in the first step, PEARL is insensitive to

initialization and can converge to a good solution quickly and reliably.

More recently, Ranftl et al. [98] introduced an efficient convex formulation
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for two frame motion segmentation problem. Their method is closely related

with PEARL, but relaxes the discrete segmentation problem to a soft assignment

and formulates it as a continuous convex optimization problem. Another

important difference is that their convex formulation does not have label costs

and as such their results are often over-segmented. Nonetheless, with an efficient

GPU-based implementation, their method is much faster than PEARL and has

been successfully used for segmenting dense optical flow.

3.1.2 NRSFM for a Single Object

Two main successful approaches dominate the modelling of deformable shapes in

nrsfm literature: low-rank based methods and piecewise modelling. Low-rank

based methods assume that the global deformation of an object can be well

modelled by deformations of low rank. This prior is often used in two different

ways, either the deformed shape at each frame is explicitly represented as a

linear combination of basis shapes or by forcing the concatenation of shapes

over all the frames to be a low-rank matrix. In constrast, piecewise methods

model local deformation directly and assume that by dividing an object into

smaller enough pieces, each part can be well approximated with a simple model,

such as planes or rigid objects.

Low-Rank Based Methods

The idea of using linear basis shape model for nrsfm was first introduced

by Bregler et al. [17]. In their seminal paper, they proposed to represent the

3D deforming shape of the object over each frame as a linear combination of

K basis shapes. In other words, we have:

Sf =
K∑
k=1

lfkBk (3.2)

where the 3× P matrix Sf is the 3D shape of the deforming object at frame

f , Bk, k = 1, · · · , K are the shape bases and lfk are the linear combination

coefficients. Based on this assumption, we could rewrite the rigid factorisation

equation 2.11 as:
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(3.3)



3.1. Non-rigid Structure from Motion 56

Figure 3.1: Proposed pipeline for dense nrsfm [45]. The pipeline consists of two
steps: first dense long-term 2D trajectories are computed via a multi-frame opti-
cal flow method [46], then based on pre-computed dense trajectories, deforming
dense 3D shape can be recovered by minimizing a continuous variational energy.
Figure from [43].

Therefore, the 2F × P measurement matrix W can be decomposed as

the product of a 2F × 3K matrix M and a 3K × P matrix B. In addition,

the matrix M is constructed from rotation matrices Rf , f = 1, · · · , F and has

a repetitive structure. These observations form the basis of low-rank based

methods for nrsfm. Similar to rigid case, non-rigid factorisation methods also

consist of two steps. First, the measurement matrix W is decomposed into

two low-rank matrices, a 2F × 3K matrix M̂ and a 3K × P matrix B̂. Note

that this decomposition is not unique, since for any invertible matrix Q, we

have W = M̂B̂ = M̂QQ−1B̂. In the second step, matrix M̂ is then upgraded

to M = M̂Q by finding the correction matrix Q that gives the correct form

of M. This second step is usually referred to as metric upgrade step, as the

affine ambiguity in the decomposition is resolved by enforcing the constraints

on matrix M.

Let 3K × 3 matrix Qk be the kth triad of columns of the correction matrix

Q, i.e. Qk = Q:,3k−2:3k. From equation 3.3, the constraints on matrix M can
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(a) (b) (c)

Figure 3.2: Algorithm pipeline. (a) Image patches are reconstructed indepen-
dently up to a scale ambiguity. (b) Based on shared points between overlapping
patches (blue points), they recover globally consistent scales for all patches and
stitch all the patch reconstructions into a single globally consistent shape. (c)
Finally, a triangulated mesh is fitted to the resulting 3D point cloud. Figure
from [129].

be written as:
M̂2f−1:2fQkQ

T
k M̂T

2f−1:2f = (lfk)2I2×2

M̂2f−1:2fQiQ
T
j M̂T

2f−1:2f = lfi l
f
j I2×2

(3.4)

for any f ∈ {1, 2, · · · , F} and i, j, k ∈ {1, 2, · · · , K}, i 6= j.

Many methods [15, 137, 16, 28] for finding the rectification matrix Q

satisfying above constraints have been proposed during the last decade. In

particular, Dai et al. [28] proposed a convex formulation for estimating the

Gram matrix Gk = QkQ
T
k by relaxing the rank 3 constraint of Gk using its

trace norm approximation. However, this method requires the number of basis

shapes to be known in advance, and does not scale to large number of points.

Later Garg et al. [45] proposed a novel energy minimization framework for

nrsfm. Instead of representing the deforming shape as a linear combination

of fixed number of basis shapes explicitly, their method encodes the low-rank

prior implicitly as a trace norm term in the energy. Moreover, their variational

formulation is able to incorporate an edge-preserving spatial smoothness prior

into the low-rank framework and they are able to reconstruct a dense 3D shape

with an efficient GPU implementation of their algorithm. Figure 3.1 shows

the pipeline of Garg et al.’s dense non-rigid reconstruction method and the

deforming mesh results obtained by this method.

Piecewise Modelling Methods

Low-rank based methods have been successfully used for modelling de-

forming objects, such as faces, moving backs, beating hearts, etc. However,
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Images and Segmentation(1) Neighbourhood(2) Reconstruction(3) Skeleton(4)

Figure 3.3: Reconstruction results of the ‘dance’ dataset [138]. From left to right
(1) Original image and segmentation results. (2) Generated neighbourhood
structure. (3) Segmentation results and estimated 3D reconstructions. (4)
Estimated skeletal structure, and model assignment. Figure from [39].

the modelling power of these models is restricted by the global low-rank shape

prior (either explicitly represented as a linear shape basis model or implicitly

encoded as a soft constraint), and cannot deal with strong local deformations.

To overcome this limitation, a new trend of deformation modelling methods,

i.e. piecewise modelling methods, has emerged recently.

Varol et al. [129] proposed a piecewise planar method for reconstructing

deforming meshes. In this work, they successfully reconstructed deforming

planar objects, such as a piece of paper. They first manually divided the paper

into rectangular overlapping regions, then reconstructed each individual patch

independently and stitched them together into a complete object based on the

common points between overlapping patches. Figure 3.2 shows the algorithm

workflow of this method.

Later, Taylor et al. [120] introduced a locally rigid formulation for non-rigid

reconstruction. Specifically, they first reconstructed every neighbouring triple

of non-collinear points, so called ’triangle soup’ and then glued these triangles

together by solving depth and reflection ambiguities. Although locally rigid

reconstruction based on triangle soups do not require manual patch division,

this method suffers from computation complexity issues with increasing number

of triangles. In particular, resolving the flip ambiguity is NP-hard with respect

to the number of triangles.

In recent work by Russell et al. [103], deformable shape was modelled

as overlapping piecewise quadratic models and the problem of non-rigid re-

construction was formulated as a multi-model fitting problem, where points
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need to be assigned to local rigid models, whose parameters in turn need to

be updated based on the assignment result. Unlike previous methods where

points were manually divided into different patches, Russell et al.’s method

provided a principled solution for the patch division problem. Moreover, this

multi-model fitting problem is solved within an energy minimization framework,

where the energy could conveniently incorporate spatial smoothness prior of the

assignment and also an MDL prior. Later the idea of overlapping models was

also used for articulated reconstruction [39] and dense nrsfm problems [105].

Figure 3.3 shows articulated reconstruction results [39] on the ‘dance’ dataset.

3.1.3 NRSFM for Multiple Objects

Reconstructing general dynamic scenes with an unknown number of objects, is

a challenging simultaneous segmentation and reconstruction problem. When

the scene contains many moving objects, a successful reconstruction would

need to segment the scene into different independently moving objects and

reconstruct them at the same time.

Most [15, 137, 16, 28, 45, 103] nrsfm methods assume that each deforming

object has been pre-segmented before reconstruction, either manually or using

a motion segmentation method. This pipeline approach has the drawback that

motion segmentation and reconstruction tasks are separated and thus errors in

the first segmentation step cannot be recovered from, leading to reconstruction

failure.

In contrast, methods like [135, 101, 70] perform segmentation and 3D

reconstruction simultaneously. Wang et al. [135] proposed a multibody recon-

struction method for reconstructing dynamic scenes of rigid moving objects

from pairs of images. They first established feature correspondences between

the two images, and then used a energy minimization framework to optimize the

assignment of points to different motion models, motion model parameters and

3D points simultaneously. Roussos et al. [101], introduced a similar framework

for reconstructing multiple rigid objects from monocular sequences. In their

framework, they formulated the problem of simultaneous segmentation, motion

estimation and dense 3D reconstruction of dynamic scenes as the optimization

of a single unified objective function. They showed that their method was able

to produce detailed and accurate 3D reconstructions for Augmented Reality.

Recently, Kumar et al. [70] extended classic nrsfm methods to multiple de-

forming objects. By minimizing an energy function that combines reprojection

error, sparse self representation prior and a low-rank deformable shape prior,
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their method could deal with multiple deforming objects at the same time.

Note that reconstructing each object in the scene independently does

not guarantee a globally consistent scene reconstruction, as the inherent scale

ambiguity of each object still remains unsolved. To put every object in the right

scale, relation cues between neighbouring objects are often used. In particular,

Ranftl et al. [98] proposed a monocular dense depth estimation method for

reconstructing dynamic scenes by optimizing a global objective function that

integrates reprojection error, spatial smoothness prior and occlusion cues

between background and foreground objects. In this way, their method is able

to obtain a consistent dense depth map for complex dynamic scenes.

3.2 Shape-from-template Methods
Unlike the generic reconstruction methods of nrsfm that assume no specific

information about the scene being reconstructed, shape-from-template methods

require that a template shape of the object is given and the goal is to track the

deformation of the template mesh over a monocular sequence.

Most template-based methods [106, 108, 109, 107, 7] use an indirect ap-

proach to reconstruct the non-rigid shape. First either 2D-2D or 3D-2D

correspondences are established via sparse feature matching or optical flow

methods, then the template shape is deformed accordingly based on these

correspondences. However, correspondence constraints only are not sufficient

to constrain the 3D deformations and without additional priors the non-rigid

tracking problem is ill-posed.

To make the problem well behaved, priors of the deformation of the

object to be reconstructed need to be assumed. The most commonly used

deformation priors for non-rigid objects are isometric constraint (distances

between neighbouring mesh vertices remain constant during the deformation),

smoothness prior (deformation of neighbouring vertices should be similar) and

as rigid as possible prior (deformation can be approximated by local rigid body

motion). For instance, Salzmann et al. [109] proposed a closed-form solution for

template-based non-rigid tracking. Specifically, they assume that a reference

image, i.e. the image of the template shape, is given and the 2D correspondences

between reference image and current image have been computed. Based on these

correspondences and inextensibility constraint (relaxed isometric constraint),

they formulate the tracking problem as a set of quadratic equations, which

could then be solved by Extended Linearization [26].

Recently, Bartoli et al. [7] introduced first-order methods by using both
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Figure 3.4: Overview of method [119]. Given a video sequence they first
estimate 3D global pose, then compute dense 3D flow between the average
model and the input expression, followed by high frequency details refinement
using shading cues. Figure from [119].

image point locations and their first-order differential structure which can be

computed from the warping between the template and input image. They

formulated the problem of non-rigid tracking of isometric and conformal surfaces

as a system of PDEs that they can solve analytically.

While most template approaches are feature-based and only reconstruct a

small number of points, Malti et al . [78] proposed a direct pixel-based variational

framework that exploits visibility constraints. However, their method was only

demonstrated on flat isometric surfaces.

The recent work of Suwajanakorn et al . [119] reconstructs faces of celebrities

from RGB-only videos. First they build a person-specific average face shape

from a large collection of images of the same person. Then given a new video

sequence, they could track the non-rigid deformation of the face by estimating

dense 3D flow of the average model to match the input expression. After 3D

flow computation, they recover high frequency details of facial expressions

using shading cues. They formulate template-based non-rigid reconstruction
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as a frame-to-frame energy minimization that optimizes a direct photometric

cost. However, their method is limited to reconstructing human faces as their

template reconstruction approach is specifically tailored to them.

3.3 Model-based Methods
Much like low-rank based nrsfm methods, model-based non-rigid reconstruction

methods assume that the deformation of shapes lie on a low-dimensional

manifold. However, there are two important differences here. First, in nrsfm,

low-rank assumption is a generic assumption for arbitrary deforming shapes.

Second, the linear shape bases are not fixed, but estimated together with the

coefficients for every sequence during reconstruction. In contrast, for model-

based methods, the low-dimensional manifold is built specifically for a particular

class of objects from a large set of training examples. Moreover, the manifold

is built offline and usually fixed during reconstruction.

Model-based methods have been successfully used for non-rigid recon-

struction of deforming shapes, such as faces, human bodies, etc. For instance,

Cootes et al. [24] proposed a 2D morphable face model, active shape models

(ASM), for locating 2D feature points on human faces. This model was then

extended to active appearance models (AAM) [34] by introducing appearance

information into the ASM framework. As a linear shape and appearance model,

AAM model is obtained by performing PCA on manually labelled 2D meshes

and their corresponding images. During test time, the model parameters (the

coefficients of the linear bases) are optimized by fitting AAM to input images,

i.e. maximizing the match between the predicted image and input image. This

fitting problem is a non-linear optimization problem, and usually solved with

iterative optimization techniques [23, 34]. The AAM model was later revisited

by Matthews et al. [82]. They proposed an efficient inverse compositional

image alignment algorithm for AAM fitting, which outperformed previous

approaches in terms of computational cost, convergence speed, and frequency

of convergence.

3D morphable models (3DMM) were first used for face modelling by Blanz

and Vetter [9]. In their seminal work, they built a 3D linear shape and apperance

model by performing PCA on high resolution laser scans of 200 subjects, 100

male and 100 female. Based on a set of manually labelled scan examples, they

learnt the mapping from facial attributes to morphable model parameters, i.e.

shape and texture coefficients, and showed that by tuning these coefficients

they could deform the face to exhibit certain attributes. They also showed
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Figure 3.5: Proposed online reenactment setup for Face2Face [121] system: a
monocular target video sequence (e.g., from Youtube) is reenacted based on the
expressions of a source actor who is recorded live with a commodity webcam.
Figure from [121].

how to perform 3D reconstruction from a single input image and registration

between a given 3D scan and an existing model.

Matthews et al. [83] compared 2D and 3D face models in detail. In partic-

ular, they compared the representation power of 2D AAM and 3DMM. They

proved that under scale orthographic camera model, these two are equivalent.

However, 2D models require 6 times more parameters to represent the same

3D model. In general, 2D models are over expressive and can generate model

instances that are impossible to generate with the corresponding 3D model.

Recently, Chen et al. [21] proposed a real-time facial tracking and animation

system with a single video camera. By using a generic regressor learned from a

set of public images with labelled landmarks, they could accurately infer 2D

facial landmarks as well as the 3D facial shape from the input video frame.

These inferred 2D landmarks were then used to update the camera matrix

and the user blendshapes for next frame. The main novelty of this work was

that they introduced a DDE (Displaced Dynamic Expression) model that, by

combining a 3D parametric model with 2D landmark displacements, allowing

them to track a face without knowing the user identity beforehand, and to

update the estimated user identity on the fly.

More recently, Thies et al. [121] proposed an impressive real-time monocular

face capture and reenactment system – Face2Face. Given a source video and a

target video, the system could animate the facial expressions of the target video

according to the source actor and re-render the synthetic video in a realistic

fashion. The key of this system is the facial identity and expression recovery

step performed by fitting a multi-linear PCA model to the input video, of which

the first two dimensions represent facial identity (geometric shape and skin
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Figure 3.6: 3D pose and shape estimation results on two example images from
the Leeds Sports Pose Dataset [61]. From left to right: the input image, fitted
model and the 3D shape rendered from a new viewpoint. Figure from [11].

reflectance) and the third dimension controls the facial expression. Specifically,

all the unknown model parameters, including the face model, the illumination

parameters, the rigid transformation and the camera parameters are optimized

by minimizing a dense photometric energy. Then a novel expression transfer

and mouth synthesis approach was used to generate realistic reenactment of

target video. Although this system was completely based on RGB videos, they

showed that the tracking accuracy was on par with the state-of-the-art, even

for online tracking methods using depth data.

As well as faces, model-based methods were also used for capturing the

deformation of human bodies [5, 75]. Loper et al. [75] introduced a Skinned

Multi-Person Linear model (SMPL) for modelling the deformation of body

shapes across a wide variety of subjects as well as different human poses. The

parameters of the model, including template shape, pose-dependent blend

shapes, identity-dependent blend shapes, a joint regressor and blend weights,

are learned from thousands of aligned 3D high-resolution meshes of different

people with different poses. They showed that the new model was more accurate

than the state-of-the-art methods. Moreover, SMPL is compatible with existing

rendering engines and is available for use in various animation softwares, such

as Maya, Blender, Unreal Engine and Unity.

Based on SMPL, Bogo et al. [11] proposed a method for automatically

recovering human pose and shape from a single RGB image. Given an input

image, they first extract 2D body joint locations using DeepCut [95], and

then fit a SMPL model to these extracted 2D joints by minimizing a cost that

penalizes the difference between the projected 3D model joints and 2D joints.



Chapter 4

Video Pop-up: Monocular 3D

Reconstruction of Dynamic

Scenes

4.1 Introduction
Substantial progress has been made in multibody sfm and non-rigid structure

from motion (nrsfm) for dealing with dynamic scenes [91, 100] or creating

vivid life-like reconstructions of deformable objects [45]. However, dynamic

scene reconstruction still remains a significant challenging problem and is

far from solved. On the one hand, multibody sfm approaches can segment

the scene into multiple rigid moving objects, but they cannot deal with the

presence of deformable or articulated objects in the scene. On the other hand,

although nrsfm algorithms can reconstruct a single pre-segmented deformable

surface moving in front of a camera [45, 129], they require segmentation of

the scene into background and foreground objects. To be able to deal with

complex dynamic scenes, which may contain a mixture of rigid objects, non-

rigid motion and articulated objects, a powerful framework is needed which

combines the advantages of both multibody sfm and nrsfm. In other words, a

framework is needed that can segment the scene into different moving objects

and reconstruct them separately, in a unified way, regardless of whether objects

are rigid, non-rigid or articulated.

Recently, piecewise methods have emerged as a promising technique for

seamlessly handling general dynamic scenes by modelling all objects (rigid,

non-rigid or articulated) in the scene as a combination of rigid parts. Piecewise

approaches to non-rigid and articulated reconstruction have been successfully

applied to explain the complex motion of 2D tracks on a single non-rigid
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part− segmentation object− segmentation 3D − reconstruction

Figure 4.1: Segmentation and 3D reconstruction results of three dynamic
sequences of the Youtube-Objects Dataset [96] and a football sequence down-
loaded from YouTube. Left: segmentation into parts (rigid models). Centre:
segmentation into objects. Right: densified 3D video pop-up from a novel
viewpoint. The bird and cat sequence are non-rigid sequences occluding a static
background. The motorbike sequence, acquired with a moving camera, shows
articulated motion. Bottom row shows a reconstruction of football footage.

surface or an articulated object as a network of overlapping parts [39, 103, 129].

However, if naively applied to an entire scene with foreground/background

objects occluding one another, depth boundaries between objects would not be

respected and neighbouring models in the image would be forced to overlap

irrespective of whether or not they belong to the same physical object.

The main contribution of the work we described in this chapter is to

offer a solution to the problem of scene reconstruction for real-world dynamic

monocular videos that deals seamlessly with the presence of multiple non-rigid,

articulated or pure rigid motion. In an entirely unsupervised approach, we

reorganise/segment the scene into a constellation of object parts, recognise

which parts are likely to constitute objects, join them together, and reconstruct

the scene. We offer solutions to some of the problems of previous approaches to

dynamic scene reconstruction: (i) Our approach is able to adapt the topology

of the neighbourhood graph by breaking edges where necessary to preserve
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boundaries between objects. In this way our approach can deal with an entire

scene where objects might occlude one another and not just pre-segmented

objects; (ii) Our work results in a hierarchical approach to dynamic scene

analysis. At the higher level of the hierarchy the scene is explained as a set of

objects that are detached from the background and from each other. At the

lower level of the hierarchy, each object can be explained as a set of overlapping

parts that can model more complex motion. Figure 4.1 shows our part, object

segmentation and 3D reconstruction results for four different sequences.

Our approach is closely related to the paradigm of multiple model fitting

where feature tracks, that might contain outliers, belong to an unknown number

of models. The assignment of tracks to models and the estimation of model

parameters are optimized simultaneously [58, 103] to minimize a geometric cost

subject to the constraint that neighbouring tracks must belong to the same

model. The energy also incorporates a minimum description length (MDL)

cost that prefers sparse solutions. The cost function is optimized by alternating

between a discrete graph-cuts algorithm to solve the labelling problem and

a continuous optimization to update the model parameters. This approach

has previously been applied to computer vision problems such as stereo [10];

motion segmentation [58]; 3D reconstruction of non-rigid [103] and articulated

objects [39]; and multi-body reconstruction [100].

Our approach departs from previous work in geometric multiple model

fitting in multiple ways: (i) Our model offers segmentation at two granularities:

object-level and part-level. At the object-level, we segment the scene into a

small number of disjoint objects. At the part-level, objects are further divided

into a set of overlapping parts; (ii) Our model uses a combination of appearance

and geometry cues for segmentation which encourages salient foreground objects

to be separated accurately from the background even when the motion is not

distinctive enough; (iii) Our geometric cost uses a perspective camera model

and is able to deal with perspective effects and incomplete tracks.

4.2 Problem Formulation
We consider a monocular video sequence, possibly downloaded from the web,

captured by a single camera observing a complex dynamic scene that contains

an unknown mixture of multiple moving and possibly deforming objects. First,

we extract a set T = [1, . . . , T ] of feature point tracks using Sundaram et al.’s

publicly available code [118]. Although the tracker aims to provide long-term

video correspondences, the length of tracks is variable and not all points tracked
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Interior M1 Interior M3

OBJECT 1

OBJECT 2
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Points assigned to interior and 
boundary of sample parts

Figure 4.2: Left: Conceptual illustration of our approach to 3D reconstruction
of complex dynamic scenes. The image shows a person occluding a car. In the
original neighbourhood graph, some point-tracks on the car are path connected
with tracks on the person. Our approach reasons about object boundaries by
adapting the neighbourhood, and breaking edges where necessary to detach
parts from other occluding objects. Top Right: Illustration of the concept
of overlapping models and interior points [103]. A tracked point belongs to
the interior of a model (points with the same colour) if all its neighbours also
belong to that model (though not necessarily as interior points). Bottom
right: real-world example of segmentation into parts (left) and two objects
and background (right).

are visible in all the frames. We make no assumptions about the number of

objects or their motions which could be rigid, articulated or non-rigid. Our

goal is to estimate the 3D coordinates for all feature points in every frame.

4.2.1 Piecewise Overlapping Models

The works [103, 39] proposed a novel piecewise approach to the problem of

3D reconstruction of non-rigid objects. Rather than attempting to reconstruct

objects by fitting a global low-rank shape model [125, 92] that is sufficiently

expressive to capture deformations, but also sufficiently low-rank to discourage

overfitting, they automatically segmented the object to be reconstructed into a

set of parts, each of which could be expressed by a simple model – either local

rigid reconstructions [39] or local quadratic deformations [103]. By forcing these

parts to overlap, and to agree about the reconstruction of the region of overlap,

per part depth/scale and sign-flip ambiguities can be resolved. Figure 4.2 shows

an illustration of the segmentation of an articulated object into overlapping

rigid parts.

The problem was formulated as a labelling one where the assignment of

tracks to models and the fitting of models to tracks were jointly optimized
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to minimize a geometric fitting cost subject to the spatial constraint that

neighbouring tracks should also belong to the same model.

4.2.1.1 Assignment of point tracks to models

Let T refer to a set of point tracks andM a set of models. We use the notation

x = {x1,x2, . . .xT} to refer to a labelling, where xi is the set of models

assigned to track i. Assuming a known topology, or graph, which connects

tracks together in a neighbourhood structure N , the following objective was

proposed by [39, 103]

C(x) =
∑
i∈T

∑
m∈xi

Ui(m) + MDL(x) (4.1)

where tracks are allowed to belong to multiple models in M. The unary term

Ui(m) is the cost of assigning track i to model m and the term MDL(x) is

a label cost that encourages sparse solutions. In [39] local rigid models were

used where each model was parameterized with the rotation and translation

associated with a rigid motion and the unary cost Ui(m) was defined as the

image reprojection error under orthographic projection for that point given the

model parameters. The optimization of 4.1 was subject to the constraint that

each track must be an interior point of some model, i.e. that for every track

there is a model such that that track and all its neighbours belong to that

model (Figure 4.2 illustrates the concept of interior point), or more formally:

∀i, ∃α : α = Ii and Ii = α→ ∀j ∈ Ni, α ∈ xj (4.2)

where I = {I1, I2 . . . IT} refers to the assignment of each track i to the interior

of one model Ii and Ni is the neighbourhood of track i. Russell et al. [103]

showed how this problem could be formulated as a labelling problem over the

assignment of tracks to the interior of models and efficiently solved using a novel

variant of α-expansion. Starting from an excess of models the optimization

followed a hill climbing approach that alternates between assigning tracks

to models, and refitting the models to minimize the geometric error (image

reprojection error).

4.2.2 Obstacles to reconstruction in the wild

Although these multiple model fitting approaches based on overlapping models

do provide a robust approach to non-rigid [103] and articulated [39] recon-

struction, they have shortcomings. First, they cannot deal with whole scenes
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in which the neighbourhood graph maintains connections between tracks of

different objects (see Figure 4.2) – the constraints 4.2 combined with a bad

neighbourhood structure can force parts to straddle multiple objects, leading to

an error that can not be recovered from. Secondly, the unary terms of [39, 103]

minimize a geometric cost based on multiview affine factorization. Therefore,

they have difficulty dealing with incomplete tracks. In real-world videos, tracks

are likely not to persist for a large number of frames. Finally, a further limita-

tion of the above approaches comes from the fact that only motion cues are

used for the segmentation. Combining motion and appearance cues is useful to

encourage object boundaries to be respected. Besides, these cues complement

each other particularly if there are frames in the sequence with small motion.

The main contribution of our work is to offer solutions to these three

limitations: (i) Our approach adapts the topology of the neighbourhood graph

by breaking edges where necessary to preserve boundaries between objects.

This allows our approach to deal with complete video footage where objects

might occlude one another and not just single pre-segmented objects. (ii) Our

geometric unary cost is based on frame-to-frame fundamental matrices, an

approach than can naturally handle incomplete tracks. (iii) Our data term

combines geometric and appearance costs. We use the saliency score provided

by [113] to encourage parts of similar saliency to belong to the same object.

4.3 Scene Reconstruction

We propose a novel cost that allows us to modify the topology of the original

neighbourhood by deleting edges between point tracks that belong to different

physical objects, and should not overlap. Our new cost has four terms

C(x) =Edata + Ebreak + Esparse + Emdl (4.3)

=
∑
i∈T

∑
m∈xi

Ui(m) +
∑
i∈T

∑
j∈Ni

di,j∆(j 6∈ N ′i) (4.4)

+
∑

m 6=n∈M

∆(∃i : Ii = m,n ∈ xi) + MDL(x) (4.5)

where as before xi is the set of models that point i belongs to; ∆(·) is the

indicator function, taking value 1 if the statement is true and 0 otherwise; and

N ′i the modified neighbourhood of track i. This optimization is subject to the

constraints that neighbouring tracks also belong to the interior model, or more
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formally

∀i, Ii = α→ ∀j ∈ N ′i , α ∈ xj (4.6)

We now describe in detail each term of our cost function.

4.3.1 Unary Costs (Edata)

Our unary term is the sum of two costs i.e. Ui(m) = Gi(m) + Pi(m), that

encourage tracks that both move consistently as a rigid object and have similar

saliency scores, to belong to the same model. The geometric term Gi(m)

evaluates the cost of assigning track i to a rigid model m as the deviation from

the epipolar geometry across all pairs of consecutive frames. The second term

Pi(m) computes a saliency score for each pixel in every frame and encourages

tracks with similar saliency scores, to belong to the same model.

4.3.1.1 Rigidity term Gi

Given a set of point tracks assigned to the same rigid part, we parameterize

the rigid model m associated with them as a set of F − 1 fundamental matrices

Fm = {F1,2
m , . . . ,Ff,f+1

m , . . . ,FF−1,F
m } for every pair of consecutive frames in the

sequence f = {1, . . . , F − 1}. The cost of associating track i to a specific rigid

model m is the Sampson error [51] added over all pairs of fundamental matrices

Gi(m) =
∑
f<F

γ−1(uf+1
i

T
Ff,f+1
m ufi )

2 (4.7)

where ufi encodes the homogeneous image coordinates of track i in frame f and

uf+1
i its corresponding position in frame f + 1 and γ is the Sampson weight [51].

This cost is summed over all frames in which the track is visible. To estimate

the fundamental matrices, we use the eight-point algorithm embedded in a

RANSAC scheme followed by non-linear refinement of 4.7. This fitting cost has

several clear advantages over the affine factorization cost used by [39]. First, it

allows to model perspective effects which are often present in unconstrained

videos and to perform perspective reconstruction given an estimate of the

camera calibration matrix. Second, it behaves better in the presence of missing

data or short tracks, as it computes frame-to-frame geometric costs only for

the frames where the track is visible rather than the multiframe factorization

cost of [39].
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4.3.1.2 Saliency Term

The work [113] provides a fully unsupervised method for object detection in an

image I, using a novel saliency map SI . The main idea of this paper is that

as the appearance of salient object is less frequent than background, therefore

by sampling from images, salient regions should be less probable. While [113]

made use of both the statistics taken from a large corpus of unlabelled images,

and from the image itself, we only make use of the statistics of the single image

(this measure is termed within image saliency in [113]). We compute saliency

maps SIf for each frame f in the video sequence and define the saliency cost

Pi(m) of point i belonging to model m as the distance from the mean saliency

of model m

Pi(m) = λs
∑
f≤F

(SIf (i)− S̄m)2 (4.8)

where S̄m is the mean saliency of all tracks that currently belong to model

m, SIf (i) is the saliency score of point i in frame f and λs a weight on the

importance of this term.

The second row of figure 4.5 shows the saliency detection results on our

synthetic dancer sequence, where brighter means more salient. It can be seen

that the saliency maps are very discriminative between the lower part of the

person and the background. By incorporating saliency term 4.8 into our unary

cost, we are able to successfully separate the moving person and the static

background, which is challenging for just motion cues as the left foot of the

person is on the ground plane and does not leave the ground during the whole

sequence. As shown in figure 4.5, without saliency cues the algorithm is not

able to segment the dancer from the background.

4.3.2 Topologically Adaptive Neighbourhood (Ebreak)

The cost 4.1 proposed in [103] was internally represented as a local MDL prior

defined over the set of interior labels present in a local neighbourhood, and

took the form ∑
i∈T

∑
m:∃j∈Ni∩m=Ij

Ui(m) (4.9)

As discussed, in order to separate connected objects from one another, we wish

to discard edges from the neighbourhood Ni with a per edge cost di,j . As such,

the new cost will be of the form∑
i∈T

∑
m:∃j∈Ni∩m=Ij

min
( ∑
j:Ij=m

di,j, Ui(m)
)

(4.10)
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where di,j is a varying cost modulated by a sigmoid function of the form

di,j = Mc

1+e
Mij−

Ma
Mb

(4.11)

Here Mij is computed as the pairwise neighbourhood distance between points i

and j in the image and velocity spaces. Ma, Mb and Mc are parameters of the

sigmoid function.

4.3.3 Overlap Sparsity Term (Esparse)

By itself, discarding edges from the neighbourhood graph improves the quality

of the parts found, and allows more objects to be found. However, it does not

correctly separate objects from the background. In almost all sequences, we find

that one or two ambiguous tracks exist that could be easily explained as either

object or background parts. These ambiguous tracks act as junctions, or regions

of overlap between foreground and background objects, connecting the two and

making it impossible to distinguish between foreground and background.

To eliminate this leaking, we introduce a novel sparsity term that penalizes

the total number of models that overlap and encourages regions with limited

overlap to disconnect. We formulate this penalty as a count of the number of

pairs of models (m,n) such that there exists a track belonging to the interior

of model m and also to model n, i.e.∑
m 6=n∈M

∆(∃i : Ii = m,n ∈ xi) (4.12)

As this cost does not depend on the number of tracks in the region of overlap,

it dominates in small regions of overlap or where the cost of discarding edges is

small, and is ignored elsewhere.

4.4 Efficient Optimization

As with other multiple model fitting approaches [39, 58, 103], we initialize with

an excess of models which are generated by sampling randomly neighbouring

groups of ten feature tracks and computing the frame-to-frame fundamental

matrices using the eight-point algorithm [51]. We then optimize the cost 4.3

using a hill-climbing approach alternating between: (i) fixing the parameters of

Fm and optimizing the labelling that assigns tracks to a set of parts (models)

x = {x1,x2, . . .xT} and (ii) fixing the labelling and optimizing Fm for all

models.
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Figure 4.3: Comparison of graph constructs between overlapping cost [103]
and our new edge breaking cost 4.10. Left figure shows the graph construct
for overlapping cost over the neighbourhood of point b (a, b and c, taking
label β, β and γ respectively). Transparent nodes indicate the contribution of
overlapping neighbourhoods. Right figure shows the modified graph construct
for edge breaking cost, allowing point a to be dropped from Nb with cost
db,a. The top row contains auxiliary variables indicating if tracks, a, b or c
belong to model α. The middle row contains the standard expansion variables
which govern whether or not a variable transitions to the interior of model α,
while the bottom row shows auxiliary variables indicating if a variable belongs
to model β or γ. Here we show the case when label α is not present in the
neighbourhood. To understand the differences between these two figures, we
could have a look at the point a from neighbourhood Nb. In particular, there
are two edge connections, Mα

b → Aa and Aa → Mβ
b . In the left figure, these

two edges cannot be broken (with connection weights ∞), indicating that α
is not a model of point b (Mα

b = 0) while α is an interior model of point a
(Aa = 1) cannot happen, and similarly β is not a model of point b (Mβ

b = 1)
while β is an interior model of point a (Aa = 0) cannot happen as well, both
due to the overlapping constraint. In the right, we allow both these two cases
to happen, each with a penalty db,a.
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Figure 4.4: Graph construct for overlap sparsity term. Transparent graph shows
the graph construction result of edge breaking cost, as shown in Figure 4.3.
Here we show the cost over the neighbourhood of point b (a, b and c, taking
label β, β and γ respectively). We assume the edge between point b and c is
currently broken, so Mβ

last = {a, b} and Mγ
last = {c}.

Alpha expansion [14] finds a local optimum of a difficult to optimize cost

function by iteratively moving from a current labelling to the lowest-cost

solution obtained by relabelling some of the variables as α. Finding an optimal

move is formulated as a pseudo Boolean optimization [12] and solved using

graph-cuts [13]. We follow work [103] in considering expansion moves over the

interior of labels. We use A ∈ 2T to refer the found expansion move, with Ai

taking value 1 if variable Ii transitions to label α in the move, and 0 otherwise.

Unlike [103] we will need to explicitly keep track of whether or not tracks belong

to models at all (either as interior or boundary tracks) and for a particular

expansion move on label α this will be done by means of binary variables

Mα
i = 1 if α ∈ xi and a complementary set of variables Mβ

i , such that β 6= α

and Mβ
i = 0 if β ∈ xi.

Optimization of the costs Edata and Emdl can be done using the techniques
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of [103]. We now deal with the modifications to the optimization required by

the terms Ebreak and Esparse. Although exact optimization of either of these

costs is straightforward, optimizing both together is challenging, and we make

use of the convex-concave procedure (CCP) [139, 85], and find an optimizable

cost that is tight at the current location, but an over-estimate elsewhere.

4.4.1 Exactly Optimizing Ebreak

We can rewrite cost 4.10 in terms of the auxiliary variables∑
i∈T

∑
β∈M
β 6=α

min
Mβ
i

( ∑
j∈Ni
j:Ij=β

((1− Aj)di,jMβ
i ) + Ui(β)(1−Mβ

i )
)

(4.13)

+
∑
i∈T

min
Mα
i

(∑
j∈Ni
Ij 6=α

(Ajdi,j(1−Mα
i )) +

∑
j∈Ni
Ij=α

(di,j(1−Mα
i )) + Ui(α)Mα

i

)
(4.14)

This change can been seen as a robustification of the local co-occurrence

potentials of [103] analogous to the robust P n model [66]. As with the P n

potentials, it can be formulated as a graph-cuts problem simply by adjusting the

used edge weights. Note that dij is defined as ∞ when j = i. Figure 4.3 shows

an example when no track in the neighbourhood takes label α. Please see the

caption of the figure for a detailed explanation of the graph construction and

differences between overlapping cost and edge breaking cost. For neighbourhood

containing α, the graph construction is similar. Note that we always assume

that di,i =∞, indicating that the interior model of a track is always a model

for itself.

4.4.2 Approximately Minimising Esparse

For the following section it is more convenient to use sets to describe which

points belong to which models. We use Mβ to refer to the set of points

belonging to model β, Iβ for the interior of model β, Mβ
last for the region (fixed

throughout the move) that was assigned to model β by the previous move, and

Iβlast for points previously belonging to the interior of model β. Performing

an expansion move on label α, we have three cases to consider: (i) the cost

is a direct function of the interior labels Iα; (ii) the cost depends on tracks

belonging to the boundary of α: Mα \ Iα; (iii) the cost is not a function of α

and depends on: Iβ ∩Mγ, where β, γ 6= α.

For an expansion move on label α, Iα is monotone increasing while Iβ is

monotone decreasing. If one of either the sparsity costs, or the edge breaking
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of the previous subsection was not used, the labelling of Mα and Mβ would

also be guaranteed to be monotone increasing/decreasing, but together the

situation is more complex. In the following discussion, we artificially constrain

the set of possible moves of Mβ to be monotone decreasing, and allow Mα to

change arbitrarily. Let us deal with these costs by turn:

Interior of α cost: We consider the localised MDL costs

∆(Mβ
last ∩ Iα 6= ∅) + ∆(Iβ 6= ∅)− 1 (4.15)

This cost is 1 if Iα expands into Mβ
last without completely removing model β

(which can only be done by making sure no tracks belong to the interior of

model β) and 0 otherwise. Clearly this is an over-estimate as the true Mβ in

the set of all moves considered is always smaller than Mβ
last, and tight at the

current location. As this cost is simply two MDL costs defined over subregions

of the graph, it can be optimized using the techniques of [71]. As these move

costs satisfy the CCP criteria, they reduces the original cost function.

Boundary of α cost: A similar argument can be made for the above cost.

Instead of directly optimizing it, we solve the over-approximation

∆(Mα ∩ Iβlast 6= ∅) + ∆(Iβ 6= ∅)− 1 (4.16)

This can be formulated as a local MDL prior over the auxiliary variable of the

previous section and an MDL cost over label β.

Costs not dependent on α: The local co-occurrence potentials considered

here, fall into the class of potentials that can not be exactly optimized by

an expansion move over label α. Instead we follow the strategy of [71] and

optimize the cost

0.5∆(Iγ ∩Mβ
last 6= ∅) + 0.5∆(Iγlast ∩Mβ 6= ∅) (4.17)

4.4.3 Merging Parts into Objects

The final result of our scene segmentation algorithm is the labelling x which

assigns each feature track to a set of rigid parts. Figure 4.6 shows some

results of the part segmentation (second row) for five videos of the Berkeley

Motion Segmentation Dataset [18]. To segment the scene into objects we label

connected components of overlapping parts as object detections.
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Figure 4.5: Comparison of part and object segmentation results on dancer
sequence with and without using saliency. The first two rows are the input
sequence and saliency results respectively. The third and fourth rows show
the part and object segmentation results without using saliency, while the
last two rows show corresponding results with saliency. It can be seen that
as saliency cues are discriminative between the person and the background,
adding a saliency term into unary cost can help break the connections between
the left foot and the ground floor, resulting in a correct object segmentation.
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cars1 marple1 marple3 marple7 marple8

Figure 4.6: Motion segmentation results on five sample sequences of the Berkeley
Motion Segmentation Dataset [18]. Second row: Part segmentation. Third
row: Object segmentation.

Figure 4.7: Reconstruction results for a cat sequence of the Youtube-Objects
Dataset [96]. Second row and third row are reconstruction results.

4.5 3D Reconstruction

The optimization of our cost function results in the labelling of rigid models

or parts. Using the information about the regions of overlap, we also have a

decomposition of the scene into different objects.

The 3D reconstruction of each object is then carried out using a piecewise

rigid reconstruction approach. For each object we have a list of its constituent

parts and a rigid model (set of fundamental matrices) for each part.
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Figure 4.8: Two ambiguities of orthographic reconstruction for each patch. (a)
Reconstruction of shared points in different patches differ by a translation in
the depth direction. (b) Representation of the ambiguity on the sign of the Z
coordinate of the reconstructions. Figure from [38].

4.5.1 Piecewise Rigid Orthographic Reconstruction

When the average depth of an object is much larger than its depth relief, the

2D projections of the object can be well approximated with an orthographic

camera model. In general, scenes captured with large focal length and small

field of view tend to satisfy these conditions. In our case, the bird, cat, bike

and messi sequences all belong to this category.

For these sequences, given the part and object segmentation results, we

reconstruct each part independently with an orthographic factorization ap-

proach [80]. Then parts belonging to the same object are stitched together to

obtain a consistent object reconstruction result.

In general, there are two ambiguities that cannot be resolved when perform-

ing orthographic reconstruction for each patch, the depth and flip ambiguities.

Please see section 2.1.4 for a detailed discussion. In this section, we assume

that temporal flip ambiguity has been resolved for each patch independently

and we focus on solving the depth and flip ambiguity.

Figure 4.8 illustrates the two ambiguities for orthographic reconstruction.

As patches are reconstructed separately, the ambiguities of overlapping patches

do not necessarily agree with each other. To register these patches together

to form a consistent object reconstruction, we need to solve the ambiguities

between all overlapping patches.

Note that there is always a global depth and flip ambiguity that cannot

be resolved, which is equivalent to picking one of the patches as reference and

fixing its depth and flip. Although depth ambiguity can be resolved trivially

given the solution to the flip, the problem of solving the flip ambiguity is



4.5. 3D Reconstruction 81

NP-hard. Fortunately, in most cases, as the number of patches within an object

is relative small we can afford a brute-force search over all possibilities.

In particular, we create a graph G = {V , E} for overlapping patches where

each node denotes a patch, and each edge denotes the overlap between a pair

of patches. We fix a patch as reference and pre-compute the cost for each edge.

Assuming an edge eij between patch i and patch j, we compute two costs, c1
ij

and c2
ij, associated with this edge:

c1
ij = ‖di − dj − di − dj‖2

2

c2
ij = ‖di + dj − di + dj‖2

2

(4.18)

where di and dj are the F × P depth value matrices for all the common points

over all frames of patch i and patch j respectively, di − dj is the per frame

average of the difference between these two depth matrices. Therefore c1
ij

represents the alignment cost when two overlapping patches have the same flip,

while c2
ij denotes the cost when the two patches take different flips.

We then search over all possible flips and find the configuration f̂ with the

lowest overall cost:

f̂ = argmin
f

∑
(i,j)∈E

(
c1
ij ·∆(fi = fj) + c2

ij ·∆(fi 6= fj)
)

(4.19)

where the flip value fi takes 1 if patch i is flipped, otherwise 0.

When there is enough overlap between neighbouring patches and the points

of the overlapping area have enough curvature to differentiate between flipped

and non-flipped shapes, this depth-alignment based stitching approach works

robustly. However, when the overlapping region is not discriminative enough,

this method fails. In practice, we also use an alternative stitching strategy

based on spatial rotation similarity, assuming that the rotations of neighbouring

patches on the same object are similar. The only difference between these

two methods is in the way we compute edge costs. Instead of computing edge

costs using the depth-alignment error, we compute the rotation difference cost,

between two neighbouring rotations for both values of fi.

After solving the flips, we then use a greedy strategy to compute the depth

of each patch and align all the overlapping pieces together. Specifically, we

greedily select the pair with most common points and merge these two patches

keeping the larger patch fixed until we have only one patch left.
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Table 4.1: Evaluation results on the Berkeley Motion Segmentation Dataset
using the metrics of [18]. Fayad et al. shows performance without discarding
edges, using the same optimization as in [39, 103].

Density overall error average error over-segmentation extracted objects
First 10 frames(26 sequences)

Brox Malik 3.34% 7.75% 25.01% 0.54 24
Fayad et al. 3.28% 15.23% 51.89% 0.23 7
Our method 3.28% 8.00% 25.46% 1.00 22

First 50 frames(15 sequences)
Brox Malik 3.27% 7.13% 34.76% 0.53 9
Fayad et al. 3.25% 24.95% 63.67% 0.20 0
Our method 3.25% 5.93% 27.84% 3.70 13

First 200 frames(7 sequences)
Brox Malik 3.43% 7.64% 31.14% 3.14 7
Fayad et al. 3.42% 28.81% 66.78% 0.29 0
Our method 3.42% 13.28% 39.86% 8.60 4

4.5.2 Piecewise Rigid Perspective Reconstruction

When the depth range of the scene is not negligible compared to the average

depth (for instance, sequences from KITTI dataset [49]), we use a perspective

camera model and perform piecewise perspective reconstruction. Similar to

orthographic case, we do rigid perspective reconstruction on each individual

part and then stitch connected parts into different objects. For our piecewise

rigid reconstruction, we assume the calibration is known, and the only existing

ambiguity between parts is the depth/scale ambiguity, which can then be

resolved by enforcing the constraint that tracks belonging to two or more parts

should be reconstructed at the same depth by each part model.

We use an incremental method to reconstruct the 3D shape of each rigid

part. First we initialize from two frames using the five-point algorithm [116],

and then keep adding new frames into the process, triangulating new points

and doing incremental bundle adjustment until all the frames are reconstructed.

4.5.3 Depth-map Densification

Our reconstruction algorithm is based on sparse feature tracks. To densify

the 3D reconstruction, we apply Gaussian filtering on the sparse 3D tracks

in xy-RGB image space using the fast implementation of [3] that performs

filtering using the permutohedral lattice. Regions of the video far from any

tracks in the xy-RGB space are assigned to a flat background billboard.
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4.6 Experimental Results

Since we recover both a segmentation of the scene into multiple moving objects

and a 3D model for each object, we evaluate both of these steps independently.

4.6.1 Evaluation of the Motion Segmentation Step

We evaluate the results of our object-level segmentation on the Berkeley Motion

Segmentation Dataset using the tracks and evaluation tool proposed in [18].

Table 4.1 shows a comparison between the scores of our approach and the

results from Brox and Malik’s motion segmentation algorithm [18]. The results

show that our method exhibits comparable performance to [18]. While our

over-segmentation error is higher than [18], the overall error and average error

are very close, and in some cases lower. Although our algorithm can be used

for motion segmentation exclusively, it is geared towards 3D reconstruction of

complex dynamic scenes. Providing object boundaries are respected, our 3D

reconstruction method is unharmed by a slight over-segmentation given that

we perform piecewise reconstruction. The same set of parameters was used for

all the experiments. The results of Fayad et al. [39] show how our algorithm

would perform without the novel edge breaking and sparsity terms. Objects

are never discovered in sequences longer than 10 frames, and in the majority of

the 10 frame long sequences no objects are discovered.

4.6.2 Evaluation of Orthographic Reconstruction

We demonstrate our approach on videos from the Youtube-Objects Dataset [96].

These are unconstrained real-world videos downloaded from YouTube, with the

purpose of object detection in video [96]. Figure 4.1 shows reconstructions of

a bird, a cat, a motorbike and a footballer. We show the decomposition into

parts, objects and a 3D model of the objects from a novel viewpoint for one

frame. Figures 4.7 and 4.10 show 3D reconstructions for further frames of the

four sequences. Our algorithm shows a good segmentation of the scenes and a

convincing 3D reconstruction of these challenging videos.

However, our approach also has some limitations. As our method is purely

geometric, to achieve an accurate 3D reconstruction, there needs to be enough

3D information to be exploited in the sequence. In other words, for each object,

the parts should have non-planar 3D shapes, not be degenerate and have enough

out of plane rotations within the sequence. Figure 4.9 shows a failure example

of our algorithm. In this dancer sequence, we perform reconstruction on the

segmentation results with saliency cues, as shown in Figure 4.5. This sequence
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input viewpoint 1 viewpoint 2 viewpoint 3

Figure 4.9: Failure orthographic reconstruction results on dancer sequence.
From left to right, we show input image and reconstruction results from
three different viewpoints. Results are generated by performing orthographic
reconstruction on the segmentation results with saliency cues, as shown in
Figure 4.5. This sequence is very challenging as the rigid parts are small, and
our method fails to resolve the flip ambiguities of small and nearly planar parts,
such as the arms and legs.

is very challenging as the rigid parts are small and some of them are nearly

planar and degenerate. Our method has difficulties resolving both the temporal

flip ambiguity (the flip of a single part across different frames) and spatial flip

ambiguity (the flip between overlapping parts). For instance, as shown in the

figure, the flip of both arms and legs are wrong, despite that the 2D projections

on the input image (viewpoint 1 shows the result from camera viewpoint) look

good.
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Figure 4.10: Top: and Middle: Reconstruction results for a bird sequence and
a motorbike sequence from Youtube-Objects Dataset [96]. Bottom: Reconstruc-
tion results of a football footage. For all three sequences, we show registered
sparse reconstruction of rigid parts and the dense results after densification.
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4.6.3 Evaluation of Perspective Reconstruction

We evaluate our perspective reconstruction method on sequences from the

KITTI dataset [49] both quantitatively and qualitatively. As sequences from

KITTI mainly consist of static background and moving rigid objects, mostly

cars, we turn off the overlapping between different parts since each rigid part

readily corresponds to an individual object.

We show two different use cases of our approach, dense monocular depth

estimation using two consecutive frames and monocular 3D sparse point cloud

reconstruction using multiple frames.

4.6.3.1 Monocular Depth Map Estimation using Two Frames

In this experiment, we reconstruct a dense depth map from two consecutive

frames taken from a monocular sequence of KITTI. First we obtain a sparse

reconstruction of the background (we assume that the object with most points

is the background) and of each moving object separately (by triangulating

segmented sparse point tracks). Scale ambiguities between individual recon-

structions are then resolved based on the assumption that all dynamic objects

are always located on the background and occlude the static environment. We

fix the scale of the background, and reconstruct the entire scene up to this fixed

scale. For evaluation purposes, the unknown global scale will be estimated by

registering the estimated depth values to the ground truth depth map. The

final dense depth map is computed by linearly interpolating the sparse depth

values of point tracks. In Figure 4.12, we show the obtained dense depth map

after linear interpolation.

In order to compute the relative scales between foreground moving objects

and the static environment, we first obtain a dense motion segmentation result

based on superpixels and then enforce the constraint that the depth values

of the boundary superpixels between dynamic objects and the static scene

should be close. For dense segmentation, we simply divide the input image into

superpixels [2], and assign all the pixels inside each superpixel segment the label

with most support from the point tracks within the superpixel. Figure 4.11

shows an example of our sparse and dense segmentation results.

To compare with other state-of-the-art approaches, we implement the

reconstruction algorithm recently proposed by Ranftl et al. [97]. In their

paper, they focus on estimating dense depth maps of dynamic scenes from two

consecutive monocular frames. Similarly to our approach, theirs also consists of

two steps, motion segmentation and 3D reconstruction. For a fair comparison
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(a) (b)

(c) (d)

Figure 4.11: Motion segmentation results on two consecutive images from the
KITTI dataset. (a)-(b) two consecutive images. (c) sparse motion segmentation
result on point tracks. (d) dense segmentation result.

Ours Ranftl et al.
Mean relative error (MRE) 0.196 0.148

Table 4.2: Quantitative comparison between our method and Ranftl et al. [97]
on the KITTI odometry set [49]. Our result is the mean error over 427 randomly
sampled frames out of 43552.

between both reconstruction methods, we use our dense segmentation result

as input for both 3D reconstruction approaches. In their 3D reconstruction

step, they first estimate an initial reconstruction result by triangulation and

then they perform a global optimization to obtain the final result. In fact,

our method can be thought of as an initialization for their global optimization

step. Figure 4.12 shows a qualitative comparison between our method and the

approach from Ranftl et al.. For quantitative evaluation, we compute the mean

relative error (MRE) with regard to the sparse laser scan ground truth, as used

in Ranftl et al. [97]. As shown in table 4.2, our approach has an error of 0.196,

compared with 0.148 from Ranftl et al..

4.6.3.2 3D Point Cloud Reconstruction using Multiple Frames

To further evaluate our approach, we show multi-frame piecewise rigid perspec-

tive reconstruction results on sequences from the KITTI dataset [49] and from

Zhang et al.’s [141] dataset. In this experiment, we first use an incremental

method to reconstruct each rigid part separately and then assemble them

together to achieve dynamic scene reconstruction results. We initialize from

two frames with wide baseline and then perform incremental reconstruction.
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Figure 4.12: Depth map reconstruction results on two frames from the KITTI
dataset. From top to bottom, we show input images, our dense reconstruction
results (linear interpolation results from sparse reconstruction), our implemen-
tation of the reconstruction method from Ranftl et al. [97], and the ground
truth (linear interpolation from sparse values). Note that the value of upper
part is missing from the ground truth.

Specifically, in our implementation, we use the open source structure from

motion library OpenSfM [47] for rigid perspective reconstruction. As each

object is reconstructed independently, we need to solve the scale ambiguity to

put everything together to create a dynamic scene reconstruction. To make

it easier to register everything together, we create a graphical user interface

where one could adjust the scale of each object manually. Examples shown in

figure 4.13 and figure 4.14 are our scene reconstruction results after manual

scaling.

Figure 4.13 shows our 3D reconstruction results for a short sequence with

15 consecutive frames, taken from KITTI. As shown in the figure, our method

successfully segments the scene into the moving car and the static environment

and reconstructs them accordingly. Figure 4.14 shows our reconstruction on

the two-men sequence from Zhang et al. [141]. In this 30 frame long sequence,

the two men move rigidly towards each other. From our result, the two people

and the static background are correctly segmented and reconstructed.
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Figure 4.13: Multi-frame dynamic scene reconstruction results on a 15 frame
short sequence from the KITTI dataset. From left to right, we show input images
overlaid with segmented sparse point tracks, and corresponding reconstruction
results (both the moving car and the static environment).

4.7 Conclusion
In this work we propose a fully unsupervised approach to the challenging

problem of simultaneously segmenting a dynamic scene into its constituent

objects and reconstructing a 3D model of the scene. We focus on the reconstruc-

tion of real-world videos downloaded from the web or acquired with a single

camera observing a complex dynamic scene containing an unknown mixture of

multiple moving and possibly deforming objects. Our method consists of two

steps, motion segmentation and 3D reconstruction. The motion segmentation

step segments the dynamic scene into rigid parts and combines overlapping

parts into objects. In the subsequent 3D reconstruction step, we reconstruct

each rigid part separately and stitch these part reconstruction results into a

consistent whole scene reconstruction. Our results show examples of successful

orthographic reconstruction on videos from the Youtube Objects dataset and

perspective reconstruction on KITTI sequences, etc.
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Figure 4.14: Segmentation and reconstruction results on two-men sequence
from Zhang et al. [141]. We successfully segment the scene into three rigid
components, the static background and two moving person. Last row shows
the corresponding reconstruction results.



Chapter 5

Dense, Direct, Deformable:

Template-Based Non-Rigid 3D

Reconstruction from RGB

Video

5.1 Introduction

Two common limitations remain with most nrsfm and shape-from-template

formulations: (i) they are typically feature-based which leads to sparse re-

constructions or failure with low-textured surfaces and (ii) estimation of 2D

correspondences and 3D shape inference are decoupled and not solved simultane-

ously in a direct approach. So far the problem of jointly estimating dense point

correspondences and non-rigid 3D geometry from monocular video has received

very little attention. Garg et al . [45] demonstrated a dense per-pixel nrsfm

approach but it required dense 2D correspondences to be pre-computed using

a multi-frame optical flow method. Pixel-based approaches to template-based

reconstruction have been proposed by Malti et al . [78] and Suwajanakorn et

al . [119] but they were only demonstrated on planar surfaces (cloth or paper) [78]

or worked exclusively for faces [119].

In this chapter we describe a template-based direct approach to deformable

shape reconstruction from monocular sequences. Our contribution is an end-to-

end system that builds a dense template from an initial rigid subsequence and

subsequently estimates the deformations of the mesh with respect to the 3D

template by minimizing a robust photometric cost. Unlike previous template-

based direct methods [78, 119] we demonstrate our approach on a variety of
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Template-free 7 7 7 X X X 7

Direct X X X 7 X X X
RGB-only 7 X X X 7 7 X
Monocular 7 X X X X 7 X

Perspective camera X X 7 7 X X X
Frame-to-frame X X X 7 X X X
Generic shapes X 7 7 X X X X

Closed mesh with
self-occlusion handling

X 7 7 7 X X X

Table 5.1: Comparison of our approach with other dense competitors for
reconstructing deformable shapes. Ours is the only template-based dense
approach that only uses monocular RGB data; is frame-to-frame; direct; and
suitable for reconstructing generic shapes.

generic complex non-planar meshes. While our algorithm is not real-time, it

is sequential and relatively fast, typically requiring 2 seconds per frame on

a standard desktop machine to optimize a mesh with approximately 25,000

vertices. Table 5.1 shows a comparison between our approach and state of the

art methods. Ours is the only template-based approach that satisfies all the

properties listed in the table.

5.2 Related Work
Very few methods attempt dense and direct reconstruction of non-rigid shapes

from monocular sequences. There are three areas of research that have inspired

and influenced our work: non-rigid structure from motion, shape-from-template

and RGB-D based non-rigid capture. We now describe the most related ap-

proaches from each of these fields.

Although clearly inspired by the advances in non-rigid structure from

motion methods [28, 92, 125], which can typically reconstruct non-rigid surfaces

of generic shapes from monocular video while learning a low rank model that

explains the deformations, our approach departs from them significantly. In
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particular, nrsfm formulations are batch and require (usually a small number

of) point correspondences to be given as input. In contrast, the distinguishing

features of our approach are that it is direct, dense, and frame-to-frame.

The most related nrsfm method to ours is the dense monocular non-

rigid reconstruction algorithm by Garg et al . [45]. Although their algorithm

reconstructs dense per-pixel models, noticeably, it is a batch process that

requires multi-frame optic flow over the entire sequence as an input. No attempt

was made to solve the dense correspondence and reconstruction problems

simultaneously. As such, if the flow generation fails, a good reconstruction is

not possible.

Our method also shares strong similarities with work in the area of shape

from template [6, 108, 90, 110]. Many approaches have been proposed mostly

taking advantage of the constraints imposed by isometric or conformal deforma-

tions [6, 79, 109]. While most template approaches are feature-based and only

reconstruct a small number of points, Malti et al . [78] departs by proposing

a direct pixel-based variational framework that exploits visibility constraints.

However, their method was only demonstrated on flat isometric surfaces. The

recent work of Suwajanakorn et al . [119] reconstructs RGB-only videos of faces

of celebrities. Similarly to our method, they formulate template-based non-rigid

reconstruction as a frame-to-frame energy minimization that optimizes a direct

photometric cost. However, their method is limited to reconstructing human

faces as their template reconstruction approach is specifically tailored to them.

In contrast, our template reconstruction step uses a dense volumetric multiview

stereo formulation that is generic and can be used for any type of shape. In

addition, our energy makes use of robust norms for the data and regularization

terms; explores more sophisticated smoothness priors, such as local rigidity

(as-rigid-as-possible [115]); and imposes temporal smoothness. Also related is

the monocular face capture system of Garrido et al . [48]. While their work also

minimizes a photometric cost and the deformations with respect to a template

model, theirs is a sophisticated blend-shape model specifically built to capture

the deformations of human faces.

Our work has been largely inspired by recent advances in non-rigid tracking

using depth cameras [33, 86, 144]. Zollhofer et al .’s [144] is the most related

approach since their setup is directly comparable to ours — a multi-scale

template is built first from a rigid sub-sequence, followed by dense non-rigid

monocular tracking. However, while their method uses both the depth and the

RGB channels, ours only uses RGB images as input and can be seen as its
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RGB-only equivalent. More recently, DynamicFusion [86] takes only the depth

point cloud from a Kinect as input and estimates a warp back into a canonical

reference scene, where a model is progressively denoised and completed. While

[144] makes use of image data to help with frame-to-frame alignment [86]

makes no use of any image data. However, since DynamicFusion system uses a

fixed reference frame where the volumetric model is incrementally updated, it

cannot deal with fast motion, major shape deformation or topology changes. To

overcome these limitations, Dou et al . [33] proposed a new multi-view real time

performance capture system for challenging scenes. By periodically resetting

the reference frame to adapt to shape changes over time and robustly fusing

data and reference volumes based on correspondence estimation and alignment

error, their new Fusion4D system can robustly handle large frame-to-frame

motion and topology changes.

While our work is related to and certainly inspired by these depth-based

formulations, the underlying estimation problems are fundamentally different.

The availability of a depth image for each frame turns the problem of 3D

estimation of non-rigid geometry into one of denoising or fusion, while our

monocular RGB-only reconstruction problem must infer the 3D deformations

of a template purely from 2D image motion data.

Table 5.1 summarizes our main contributions and the differences with

respect to the six most closely related approaches, namely the dense nrsfm

approach of Garg et al . [45], the direct template-based monocular reconstruc-

tion approach of Malti et al . [78], the total face reconstruction system of

Suwajanakorn et al . [119], real-time RGB-D non-rigid reconstruction system of

Zollhofer et al . [144], DynamicFusion system of Newcombe et al . [86] and the

multi-view Fusion4D system of Dou et al . [33].

In summary, ours is the only RGB-only, template-based, monocular, dense

and direct approach to non-rigid reconstruction that is sequential and suitable

for generic shapes and closed meshes.

5.3 Problem Formulation
We consider a perspective RGB camera with known internal calibration ob-

serving a non-rigid mesh deforming over time. The goal of our algorithm is to

estimate, at each time-step t, the current 3D coordinates of the N vertices of

the dense non-rigid mesh St = [. . . sti . . . ], i = 1..N , as well as the overall rigid

rotation and translation (Rt, tt) that align the deformed shape and a reference

3D template.
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Figure 5.1: Template acquisition step. Left: A volumetric representation is
generated from stereo depth maps taken over a rigid subsequence. This is then
transformed into a coloured mesh. Right: The three scales of the template
used to robustly estimate deformations.

The only inputs to our algorithm are the current RGB image I t(x, y)

observed at time t and a template shape S̃ = [. . . ŝi . . . ], i = 1..N , which is

acquired automatically in a preliminary template acquisition step using the

multi-view stereo dense volumetric approach of [19]. Typically the user acquires

a short rigid sequence to capture the 3D coordinates of the template mesh

which is then subsampled to create a multi-resolution hierarchy of coarse-to-

fine templates. This template acquisition step is described in more details in

section 5.4. The template is then converted to a triangular mesh, consisting of

N vertices and M edges.

Once the template has been acquired, our system turns to perform frame-

to-frame non-rigid alignment of the 3D shape given only the current frame as

input. Although optimization is initialized using the shape from the previous

frame St−1, once the template has been generated, the optimization objective

does not depend on any other frames. As such, unlike most approaches to

non-rigid structure from motion [28, 45, 92, 125], it scales to the streaming of

long sequences, with the complexity of optimization guaranteed to grow linearly

to the number of frames.

5.4 Step 1: Template Shape Acquisition

The first stage in our process is to obtain a rigid template mesh of the shape.

We denote the whole shape as a 3×N matrix Ŝ, and ŝi as the ith vertex on

the mesh. We require a set of M images (we used M ∼ 30) of the shape under

a rigid transformation. These are obtained by subsampling a set of frames

from a short video where either the object is static and the camera moves

or the camera is static and the object is moved under a rigid transformation.
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Figure 5.1 provides an example of the output of this process. As shown in the

figure, this step takes sampled images as input and generates a set of coloured

coarse-to-fine meshes.

The process of the template acquisition is an application of an existing

multi-view stereo (MVS) technique [19]; consequently we provide only an

overview of the process with appropriate references to the methods used.

Extrinsic Calibration The collection of frames from the video were cali-

brated automatically using an implementation (VisualSFM [136]) of standard

rigid structure-from-motion (sfm). This was observed to be robust to some

incompatible motion in the background. If there is too much background

clutter in the image then an automatic segmentation of the foreground can be

attempted using a fixation condition (that the center of the image fixates on

the object of interest) [20].

Depth-Map Extraction Once we have a calibrated set of frames, we extract

a depth-map using the stereo method of [19]. For each (reference) image,

we take the two closest viewpoints as neighbouring images and extract the

best K = 9 normalized cross-correlation (NCC) scores matching with 13× 13

pixel windows. These are then filtered to provide a single depth estimate (or

unknown label) using the default filtering parameters as specified in [19].

Mesh Estimation The last stage is to extract the template mesh by combining

all the individual depth-maps in a single global optimization. As suggested

in [19], we combine the depth-maps to recover a single watertight mesh S̃

using the volumetric fusion technique of [133] combined with the probabilistic

visibility approach of [55].

Template Hierarchy The output of the fusion stage is a watertight mesh

S̃. From this we build a multi-scale representation of the mesh as shown

in Figure 5.1 (right). This is achieved by iteratively down-sampling and

refining the template mesh using the isotropic surface remeshing method (and

implementation) of Fuhrmann et al . [42]. Finally, a colour Îi is associated

to each vertex i; this is the median colour over all the frames in the rigid

subsequence in which the projected vertex is visible.

To avoid aliasing when colouring the low resolution meshes, we blur each

of the input images with a length-scale given by the median mesh edge length

projected into the corresponding camera view. Figure 5.2 shows a triangulated

example of the multi-scale coloured mesh representation.
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Figure 5.2: An example of our multi-scale template meshes generated by
iterative mesh down-sampling and refinement. Top: From left to right the
meshes contain approximately 5, 10, and 25 thousand vertices respectively.
Bottom: The highest levels of the templates for the dog and ball sequences.

5.5 Step 2: Non-Rigid Model Tracking

5.5.1 Our Energy

Our objective is made of a balanced combination of five terms: (i) a photometric

error which captures the expected colour of each visible vertex in the template;

(ii) a total variation term on the gradient of the 3D displacements with respect

to the template; (iii) as rigid as possible local regularization – this term allows

the mesh to rotate locally without imposing a penalty; (iv) a rotation total

variation term on the gradient of the local 3D rotations of each vertex with

respect to the template and (v) a temporal smoothness term that penalizes

strong frame-to-frame deformations.
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The per-frame objective takes the form:

E(S, {Ai},R, t) = Edata(S,R, t) + λrEreg(S, {Ai})

+ λaEarap(S) + λrrEreg rot{Ai}

+ λtEtemp(S).

(5.1)

where λr, λa , λrr and λt denote the relative weights between the terms.

These terms are all required. The first term guarantees that the deformations

of the template follow the image; the second term encourages locally smooth

deformations while allowing sharp discontinuities which are needed to transition

from parts of the object that deform strongly to those that do not; the third

term approximates elastic deformation and encourages the deformation to

be locally rigid; the fourth term encourages large articulation changes in the

template shape. Finally, temporal smoothness is needed to avoid flickering.

For simplicity’s sake, we drop temporal super-scripts where appropriate as

much of the formulation does not depend on any other frames. We now define

each of the terms of the energy in detail.

5.5.1.1 Photometric Data Term Edata

The data term Edata encourages a shape such that projection of the vertices

into the current image has similar appearance to the template shape. In other

words, minimization of this photometric cost encourages brightness constancy

with respect to the colours Î={Îi} of the mesh, built by back-projecting the

images used to build the reference template Ŝ={ŝi} onto the vertices of the

template. As we directly reconstruct closed meshes where much of the object

is self-occluded, we first make an initial pass where we estimate the visibility

of each vertex in the mesh. For additional robustness, we use a Huber loss.

Edata(S,R, t) =
∑
i∈V

|̂Ii − I(π(R(si) + t))|ε (5.2)

where Îi is the colour of vertex ŝi on the template mesh, I is the current image

frame, V is the set of estimated visible vertices in the frame1, {ŝi}N1 are the 3D

vertices of the template, {si}N1 are the 3D vertices of the shape in the current

frame, π(·) is again the projection from 3D points to image coordinates, known

1This is generated by realigning the deformed mesh of the previous frame to minimize
photometric error (see section 5.5.2.1), and z-buffering.
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Figure 5.3: Direct deformable reconstruction from our algorithm on face1
sequence. Each column corresponds to different views of the same frame.

from camera calibration, and | · |ε denotes the Huber loss, which takes the form

|x|ε =

x2/(2ε) if x2 ≤ ε

|x| − ε/2 otherwise.
(5.3)

5.5.1.2 Spatial Regularization Term Ereg

The regularization term Ereg is a pairwise term that encourages spatially

smooth deformations of the shape S with respect to the template Ŝ.

Ereg(S) =
N∑
i=1

∑
j∈Ni

‖(si − sj)− (ŝi − ŝj)‖ε (5.4)

Here Ni is the neighbourhood of i, and ‖ ·‖ε is the vector analogue of the Huber

loss formed by summing the standard Huber loss over all dimensions.
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5.5.1.3 As Rigid as Possible Deformation Term Earap

This cost was first proposed in [115] to allow deformable tracking of an initial

mesh against a depth map. It takes the form

Earap(S, {Ai}) =
N∑
i=1

∑
j∈Ni

‖(si − sj)−Ai(ŝi − ŝj)‖2
2 (5.5)

where the variables Ai are per-point local rotations. Essentially this cost allows

for local rotations to take place in the mesh without penalty so long as the

relative locations between points in the neighbourhood of i remain constant. It

can be interpreted as a prior that allows for elastic style deformations of meshes.

This cost has been widely used in non-rigid motion modelling [144, 86, 33].

5.5.1.4 Spatial Rotation Regularization Term Ereg rot

As Ereg penalizes the gradient of 3D displacements, in the case of large articu-

lation motion, this cost will be relatively large due to the fact that the gradient

of 3D displacements will be approximately constant in the whole articulated

region. Therefore this term will penalize strong articulated motions. To allow

large articulations, we introduce a new regularization term Ereg rot on local

rotations in addition to the 3D displacements.

Ereg rot({Ai}) =
N∑
i=1

∑
j∈Ni

‖(Ai −Aj)− (Âi − Âj)‖ε (5.6)

where Ai is the local arap rotation of vertex i. Unlike Ereg, Ereg rot will be

small in the articulated region, only taking nonzero values around the joints,

and therefore encouraging large articulated motion.

5.5.1.5 Temporal Smoothness Etemp

The temporal regularization encourages smooth deformations from frame to

frame and can be formulated as

Etemp(S, t) = ‖S − St−1‖2
F + ‖t− tt−1‖2

2 (5.7)

where St−1 and tt−1 are the shape and the translation in the previous frame and

‖ · ‖F denotes the Frobenius norm of a matrix. The need for this term is most

apparent when viewing a video of the reconstruction. Although a small amount

of temporal regularization only alters the shape a little, it substantially reduces

frame-to-frame flickering, while the temporal smoothness in the translation
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prevents explaining deformations as perspective effects.

5.5.2 Energy Optimization

For reasons of robustness and efficiency, optimization is performed in a two

step form over rotation and translation first, and shape secondly, and using a

3-layer spatial pyramid.

5.5.2.1 Initialization

We optimize this objective in a two step form: first the rotation and translation

are estimated using the shape from the previous frame.

E(R, t) =
N∑
i=1

|̂Ii − I(π(R(st−1
i ) + t))|ε (5.8)

Then, holding the global rotation and translation constant, st is estimated.

R, t, and St (at the coarsest level of the pyramid) are initialized using the

solution taken from the previous frame, and optimization is performed using

the conjugate gradient based solver from Ceres [4].

5.5.2.2 Coarse-to-fine optimization and Deformation Graph

Both the rotation and translation cost 5.8, and the shape cost 5.1 are optimized

over a set of 3-level coarse-to-fine images and shape templates, with each layer

of the pyramid being two times larger than the coarser layer directly above

it. As we move down the pyramid from coarse to fine, the 3D vertices are

propagated to the next level of the hierarchy using a prolongation step as

described in Sumner et al . [117]. The weights are pre-computed when the

template mesh is created.

wk(i) = exp(−‖ŝi − ŝk‖2
2/2σ

2) (5.9)

where ŝi is the 3D position of vertex i on the finest level template mesh, while

ŝk is the position of vertex k on the coarse mesh. σ is given by the largest

distance between all the K nearest nodes in the coarse mesh and vertex i, and

the weights wk(i) are then normalized to sum up to 1.

Based on the coarse level mesh {sk}, local rotations {Ak} and weights

wk(i), we estimate the location of the vertices on the fine level mesh with:

si =
K∑
k=1

wk(i)(Ak(ŝi − ŝk) + sk) (5.10)
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Figure 5.4: Direct deformable reconstruction on the pig sequence. Notice that
our method is able to capture the motion of the right hand, the deformation of
the head and the large articulation between the body and legs.

Prolongation is also applied to the arap rotations {Ai} by estimating the best

local rotations between the fine template mesh and the current mesh.

In our energy formulation 5.1, the number of variables of the optimization

problem is 6N + 6, where N is the total number of vertices in the mesh. In

our experiments, we use a 3-level mesh pyramid with 5k, 10k and 25k vertices,

which gives rise to 30k, 60k and 150k variables respectively. To compute the

mesh deformations more efficiently, we could use upper level mesh vertices

(not necessarily the one directly above) as deformation nodes and compute

the vertex position si of the fine level mesh via prolongation 5.10. Notice that

in this case, K is the number of neighbouring deformation nodes of vertex i,

wk(i) is the interpolation weight of node k on vertex i. Assuming there are M

deformation nodes, the number of variables of the energy will be 6M + 6 and

therefore the algorithm will be much more efficient when M is much smaller

than N .

These deformation nodes could be introduced in both data term and other

regularization terms. Furthermore, we could use different deformation nodes

for the data term and regularization terms. To induce long range regularization

over the deformation nodes, we could use a hierarchical deformation graph.
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Figure 5.5: Direct deformable reconstruction on the dog sequence. Despite the
large deformation created by the person’s hand, our method successfully tracks
the motion of the dog’s head and the deformation of the neck.

Figure 5.6: Direct deformable reconstruction on the ball sequence. Our method
is able to track the motion of the ball as well as the deformation induced by
hand pressing.
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Figure 5.7: Input image, dense SIFT feature image, colour mesh and SIFT
feature mesh of 5 different sequences. To show SIFT feature image and mesh,
we use the first 3 principal components of 128 dimensional SIFT features as
RGB values.

5.6 Robust Data Term

The photometric data term Edata from section 5.5.1 is based on the brightness

constancy assumption, i.e. the corresponding point in the image should have

similar colour and brightness as the template mesh vertex. In our scenario,

this assumption will be violated when there are either illumination changes

or shading effects caused by strong local mesh deformations. As shown in

Figure 5.8, there is significant intensity change around the eye and mouth

region when the face deforms over the whole sequence and intensity based

tracking fails to capture the mesh deformation. In this section, we introduce

two new data terms to robustly deal with appearance changes in the tracking.
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5.6.1 SIFT Data Term

Feature descriptors, such as SIFT [76], SURF [8] and ORB [102], have been

shown to be robust to large illumination and viewpoint changes. In order to

overcome the shortcomings of intensity based tracking, we propose to use the

SIFT feature descriptor image for tracking instead of the RGB values.

Specifically, we compute dense SIFT feature images offline using the

VLFeat library [130]. Due to memory limitations, we perform PCA (Principal

Component Analysis) on the 128 dimensional SIFT features and only keep

the first 3 principal dimensions. We compute feature images for the rigid

and non-rigid parts of the sequences. The rigid frames are used for template

building while the non-rigid one for online tracking. In the template creation

stage, instead of attaching RGB colours to mesh vertex, we attach 3-channel

SIFT features.

Figure 5.7 shows the input image, dense SIFT feature image, colour mesh

and SIFT feature template mesh for face1, face2, dog, pig and ball sequences.

5.6.2 NCC Data Term

Normalized Cross-Correlation(NCC) is a widely used distance measure in

template matching due to its simplicity and robustness to lighting changes. It

is a distance metric between two image patches. Specifically, for two patches

Ip and Iq, the NCC score is defined as follows:

NCC(Ip, Iq) =
Ip − Ip

‖Ip − Ip‖
· Iq − Iq

‖Iq − Iq‖
(5.11)

where Ip and Ip are the mean values of patch Ip and Iq respectively. NCC

measures the similarity of intensities in two neighbourhood regions, and is

invariant to the change in average value or intensity range in the regions.

As an alternative to the intensity based photometric data term Edata, we

compute the NCC score between local template mesh region and corresponding

2D projections on the input image.

5.7 Frame-to-frame data term
The formulation we introduced in section 5.5.1 is a frame-to-model tracking

method, where the data term is based on the matching between a fixed template

and an input frame. However, using a fixed template could fail to handle

appearance changes, for example, sudden changes in the environment lighting

or shading changes due to local deformations, which might be critical as our
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goal is to track mesh deformation accurately. In order to adapt to possible

changes in the intensity over time, we compute the data term based on the

difference between the intensities of projections on the previous frame and the

current frame. In other words, we update the colours of template mesh vertices

for each frame:

Îi = I t−1(π(Rt−1(st−1
i ) + tt−1)) (5.12)

Similarly, we could compute frame-to-frame data terms using NCC and SIFT

features by updating the intensities or features based on the projections of

tracking results from the previous frame.

5.8 Experimental Results

In this section we show qualitative results of our method on a variety of non-

planar 3D meshes; a qualitative comparison between the results with different

combinations of regularization terms and a quantitative evaluation on the face2

sequence from Valgaerts et al . [128]. Our results can be best viewed in the

video.2

Qualitative results on non-planar meshes We show results on some new

sequences acquired with a handheld camera. Example sequences include a face

(Figure 5.3) , two soft toys – a pig (Figure 5.4) and a dog (Figure 5.5), and a

ball being squeezed by a hand (Figure 5.6). These sequences show a wide range

of deformations of a varying set of shapes, with different degrees of elasticity.

The reconstructions and deformations generated are convincing.

Qualitative results of using different regularization terms To justify

the effectiveness of each regularization term, we compared with different com-

binations of regularizers. Figure 5.10 and Figure 5.11 show the tracking results

with and without the arap term Earap, spatial rotation regularization Ereg rot

term and temporal smoothness term Etemp.

As shown in the left of figure 5.10, using only the spatial regularization

term Ereg does not allow large deformations from the template and cannot

capture the large articulation movement when the dog turns sideways its head.

While the arap term Earap allows large deformations, it offers too much freedom

that the left ear gets curly when the dog rotates its head, as shown in the

middle. With the right combination of all three regularization terms (Ereg,

Earap and Ereg rot) we show that the energy is able to capture large deformation

while not too flexible to induce unnecessary deformations.

2Please see http://visual.cs.ucl.ac.uk/pubs/ddd/ for video.

http://visual.cs.ucl.ac.uk/pubs/ddd/
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Figure 5.8: Comparison results between intensity, NCC and SIFT feature based
tracking with frame-to-model data term. Left figure shows the reconstruction
results compared with ground truth mesh, right figure shows the error heatmap.
For the error heatmap, blue corresponds to low error while red means high
error.
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Figure 5.9: Comparison results between intensity, NCC and SIFT feature based
tracking with frame-to-frame data term. Left figure shows the reconstruction
results compared with ground truth mesh, right figure shows the error heatmap.
Different from Figure 5.8, for frame-to-frame data term, NCC gives worse result
than intensity based tracking.
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overlaid front view overlaid front view overlaid front view

Ereg Ereg + Earap Ereg + Earap + Ereg rot

Figure 5.10: Comparison results using different combinations of regularization
terms, including spatial regularization Ereg, arap Earap and rotation regulariza-
tion Ereg rot. From left to right, we show the results of using Ereg, Ereg + Earap

and Earap + Earap + Ereg rot respectively. In comparison, the spatial regulariza-
tion term Ereg alone does not allow large deformations from the template and
cannot capture the large articulation movement when the dog turns its head
sideways. While the arap term Earap allows large deformations, it provides too
much freedom. Notice that the dog’s ear bends upwards incorrectly. With the
right combination of all three regularization terms, we show that the energy is
able to capture large deformations while not allowing too much flexibility so as
to induce unnecessary deformations.

Figure 5.11 illustrates the effectiveness of the temporal smoothness term.

Due to the ambiguity in the depth direction, it can be seen that when there is no

temporal smoothness term, the mesh tends to move forwards and backwards(as

shown in the side view images on the left) without changing the 2D projections

much. As shown in the overlaid image in the left, although the 2D projection

of the mesh fits well to the input image, it is clear from the side view that the

3D mesh has moved substantially along the depth direction. In contrast, as

shown in the right figure, when adding temporal smoothness, i.e. penalising

the movement in the depth direction, the mesh tends to stay in place and does

not jump forwards and backwards.

Quantitative evaluation with the face sequence from Valgaerts et

al . [128] We evaluate our results quantitatively by taking the publicly available

accurate stereo reconstruction results from Valgaerts et al . [128] as ground

truth 3D shape.

Figure 5.8 shows the comparison between ground truth and tracking

results as well as the corresponding error heatmaps for intensity, NCC and

SIFT feature data terms. Intensity based tracking has high errors as well as

more artefacts around the mouth and eyes regions. While NCC generates
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Figure 5.11: Comparison results of with and without temporal smoothness
regularization term Etemp. Left: tracking results without using Etemp, including
input image overlaid with mesh projections, front view and side view of mesh
normals. Right: corresponding tracking results with Etemp. Due to the
ambiguity in the depth direction, it can be seen that when there is no temporal
smoothness term, the mesh tends to move forwards and backwards (as shown in
the side view images of in the left) without changing the 2D projections much.
In contrast, in the right we fix this problem by adding temporal smoothness
term, in particular by penalising the movement in the depth direction.

smoother tracking results than using SIFT, it fails to capture the deformation

of the mouth and the details of the deformations. Table 5.2 shows the average

3D tracking errors using different data terms compared with the stereo ground

truth. It is clear that using more robust data terms, such as NCC or SIFT, can

improve the tracking performance. The tracking error decreases from 2.38mm

to 2.31mm(NCC) and 2.22mm(SIFT).

Figure 5.9 shows the comparison between frame-to-frame tracking with

intensity, NCC and SIFT data terms. Compared to frame-to-model tracking

(Figure 5.8), frame-to-frame gives smoother results. However, due to accumu-

lated errors, its performance is worse compared to frame-to-model tracking

results. Table 5.2 shows a comparison of 3D tracking errors. We can see that in

all three cases, the frame-to-frame tracking error is higher than frame-to-model

tracking.
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Intensity NCC SIFT
Model based tracking error(mm) 2.38 2.31 2.22

Frame to frame tracking error(mm) 2.84 2.76 2.53

Table 5.2: Average tracking errors using intensity, NCC and SIFT features
evaluated on the face2 sequence. All the errors are computed with respect to
stereo reconstruction results from Valgaerts et al. [128] as ground truth. In all
cases, frame-to-frame tracking gives higher error due to accumulated errors.

5.9 Conclusion
In this chapter we have presented a novel approach to template driven capture of

dense detailed non-rigid deformations from video sequences. Our method solves

simultaneously 2D dense registration problem and 3D shape inference using

RGB-video and a pre-acquired template as only input. An additional advantage

is that our approach is sequential in nature and can therefore be applied to

arbitrarily long sequences. Unlike many other template based methods, our

approach can deform complex generic meshes and is not restricted to planar

surfaces. We have shown results on real-world novel video sequences captured

with a hand-held camera which demonstrate the validity of our approach; we

study the use of different data terms with frame-to-frame as well as frame-

to-model formulations; and perform a quantitative evaluation against stereo

reconstruction results.
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Chapter 6

Conclusion

This thesis presents two novel pieces of work on capturing dense deformable

shapes from monocular video. In chapter 4, we presented a completely unsu-

pervised solution for reconstructing real-world dynamic scenes. To evaluate the

capability of our method, we have shown successful reconstruction results on

challenging videos from the YouTube Objects dataset and the KITTI dataset [49].

In chapter 5, we presented a template based non-rigid reconstruction approach

for tracking dense, generic and complex deforming meshes. We first compute

a dense 3D template shape of the object, using a short rigid sequence, and

subsequently perform online reconstruction of the non-rigid mesh as it deforms

over time.

In this chapter, we conclude the thesis by summarizing the contributions

of our work, discussing the limitations and pointing out possible directions for

future work.

6.1 Dynamic Scene Reconstruction

In chapter 4, we offered a solution to the problem of scene reconstruction for

real-world dynamic monocular videos that deals seamlessly with the presence

of non-rigid, articulated or pure rigid motion. In an entirely unsupervised

approach, we reorganise/segment the scene into a constellation of object parts,

recognise which parts are likely to constitute objects, join them together, and

reconstruct the scene. We offered solutions to some of the problems of previous

approaches to dynamic scene reconstruction: (i) Our approach is able to adapt

the topology of the neighbourhood graph by breaking edges where necessary

to preserve boundaries between objects. In this way our approach can deal

with an entire scene where objects might occlude one another and not just pre-

segmented objects; (ii) Our work results in a hierarchical approach to dynamic
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scene analysis. At the higher level of the hierarchy the scene is explained as

a set of objects that are detached from the background and from each other.

At the lower level of the hierarchy, each object can be explained as a set of

overlapping parts that can model more complex motion.

However, our work has several limitations. First of all, our method is

an indirect and pipeline approach, i.e. it takes long-term point trajectories

as input, performs motion segmentation first and then uses a piecewise rigid

approach to reconstruct the scene. One of the main limitation of this approach

is that our reconstruction heavily relies on the motion segmentation step for

reconstructing separated objects. Although we have shown that our approach

works on several challenging videos, the object segmentation step will fail in

more complex scenes when there are multiple moving objects and the boundary

connections between these objects become tricky. The second limitation is that

the reconstruction step is not stable as rigid parts of a deformable object are

usually small and the reconstruction of small part is often degenerate and not

well behaved. Either the reconstruction of part will fail or the quality is so bad

that successful stitching is impossible because of the ambiguities.

To improve our system, one may try to use dense trajectories or use a

direct approach and perform simultaneously segmentation and reconstruction.

Here, we discuss some future directions for extending this work.

For object segmentation, we think exploring semantic information would

be very useful as it provides complementary cues for what an object is. Re-

cently, deep learning has proven extremely successful in instance segmenta-

tion [93, 94, 53]. If we could incorporate these semantic information into our

segmentation framework, our object segmentation will benefit from semantic

cues and therefore will be much more robust.

For the reconstruction step, we suggest that, to better deal with the

reconstruction ambiguities, 3D reconstruction of each deforming object should

be formulated as a global optimization problem, i.e. all parts of the object

are optimized simultaneously, with overlapping constraints enforced so that

rigid parts are consistent with each other. Or even better, we could formulate

the whole scene reconstruction problem as a single global optimization, as

proposed in recent work [98]. We could reconstruct the whole scene all at once,

i.e. reconstruct all the objects within it and at the same time make sure the

scales between objects are consistent. In other words, the scales of objects have

to satisfy the usual assumptions of real-world scenes, e.g. objects are supported

by the static environment and therefore they occlude the background.
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6.2 RGB-only Monocular Non-rigid Tracking

In chapter 5, we introduced the first RGB-only, template-based, monocular,

dense and direct approach to non-rigid reconstruction that is sequential and

suitable for generic shapes. In particular, we first build a template shape of the

object via a rigid subsequence and then start tracking the non-rigid motion of

the template mesh. An apparent limitation of this approach is that it needs to

build a rigid template for every sequence, which is an unnecessary requirement

because ideally we would like to build the template shape for the same object

only once. If the object starts in the same configuration (in the same shape

but might have a different pose), we could register the template shape to the

first frame of the non-rigid sequence and start tracking onwards.

We studied the use of robust data terms in our energy minimization

framework, such as using SIFT feature images or NCC terms rather than RGB

images for tracking. We found that using robust features can overcome some of

the limitations of brightness constant assumption and generates better results

than using RGB values.

Although our tracking system is not real-time, it is relatively fast and

takes about 2s for a mesh with about 20k vertices. As current implementation

is based on Ceres Solver [4], which only supports CPU at the moment, we

expect the same system to run in real time when ported to GPU.

Another interesting future direction is to extend the current system to the

template-free case, i.e. without requiring a rigid template to start with. Similar

to DynamicFusion [86], the system should be able to update the reference

mesh on the fly. However, this is much more challenging than DynamicFusion,

as we would need to infer the 3D information of new scenes purely from 2D

image data, without any depth input. This is an exciting research direction

and remains completely open.

6.3 Future Directions: Deep Learning Based

Dynamic Reconstruction

Although this thesis has focused exclusively on optimization-based approaches

to the 3D reconstruction of dynamic scenes from video, the recent prevalence

of deep learning approaches for solving 3D computer vision problems cannot

be ignored. Despite that the use of deep learning techniques for dynamic scene

reconstruction is still at its infancy, in this section we explore possible avenues

that could be explored in the near future to take advantage of deep learning
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techniques in the context of deformable 3D shape reconstruction.

Although traditional geometric computer vision approaches have been very

successful [52], they are difficult to integrate with data-driven priors. Unlike

rigid reconstruction, these priors are essential for non-rigid reconstruction, as

non-rigid problem is usually highly ambiguous and requires powerful priors to

overcome ambiguities in order to guarantee a stable solution.

In contrast, deep learning techniques [69, 112, 54] have proven very powerful

in learning useful 3D priors from large datasets. Recent work from Ummenhofer

et al. [127] has shown that we could learn rigid structure from motion using end-

to-end deep learning techniques. They showed that this learning based approach

outperforms well-established classic SfM methods. The main advantage of this

approach is that it provides a principal way to combine geometry with data-

driven priors. One interesting example they showed in the paper is that with

small baseline images, or even two identical images as input, their network still

generates reasonable result, while traditional SfM will become degenerate. This

clearly shows that their network has not only learnt two frame SfM algorithm,

but also learnt to extract powerful priors from the appearance.

However, deep learning, usually requires large datasets for training. Al-

though deep learning has been very successful in many computer vision ap-

plications, such as, image recognition, object segmentation, object detec-

tion [69, 112, 54], the success in 3D reconstruction is not as significant so

far. The main reason is that 3D data is much more expensive and there has not

been as many large datasets as in 2D areas. To this end, the work in this thesis,

unsupervised learning of 3D shape from monocular video, could be helpful

in at least two ways. First, we could first use the method proposed in the

thesis to perform 3D reconstruction and then use the obtained results as proxy

ground truth to train deep networks. Second, the proposed formulation will

still be relevant when we design neural network architecture and loss function

for non-rigid 3D reconstruction problems. The knowledge about 3D geometric

vision should be embedded into the architecture and be explored to make the

learning process more efficient, requiring less data.

One trend of current research direction is about how we could explore our

domain knowledge to help reduce the amount of data needed for training. In

particular, recent work has shown promising directions by exploiting domain

knowledge to design architectures that are weakly-supervised or self-supervised.

For example, Garg et al. [44] and Godard et al. [50] have proposed methods to

learn depth map from a single image without relying on any depth ground truth.
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More recently, Zhou et al. [143] proposed an unsupervised approach for learning

depth map and ego-motion from monocular video. We believe that combining

deep learning and traditional geometric approaches is a promising direction

and we would need much less labelled data to train deep neural networks.

For instance, the work from Ummenhofer et al. [127] could be extended to

dynamic scenes, i.e. given two consecutive monocular images of dynamic scenes

we could estimate the depth map of the first image and its dynamic motion.

This two-frame result can then be further extended to multiple frames, or the

framework could be reformulated to perform online reconstruction. Another

interesting direction is fusion based reconstruction and tracking on top of the

output of the network, namely the depth map and dynamic motion.
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