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Abstract 

 

Two novel and exciting avenues of neuroscientific research involve the study 

of task-driven dynamic reconfigurations of functional connectivity networks and 

the study of functional connectivity in real-time. While the former is a well-

established field within neuroscience and has received considerable attention in 

recent years, the latter remains in its infancy. To date, the vast majority of real-

time fMRI studies have focused on a single brain region at a time. This is due in 

part to the many challenges faced when estimating dynamic functional 

connectivity networks in real-time. In this work we propose a novel methodology 

with which to accurately track changes in time-varying functional connectivity 

networks in real-time. The proposed method is shown to perform competitively 

when compared to state-of-the-art offline algorithms using both synthetic as well 

as real-time fMRI data. The proposed method is applied to motor task data from 

the Human Connectome Project as well as to data obtained from a visuospatial 

attention task. We demonstrate that the algorithm is able to accurately estimate 

task-related changes in network structure in real-time. 
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1  Introduction 

The notion that the brain is a network consisting of spatially distributed and functionally connected regions 

is well established in neuroimaging (Bullmore and Sporns, 2009). Until recently, the vast majority of studies 

involving functional connectivity assumed the underlying networks were static. As a result, a single 

underlying network was typically estimated and assumed to summarize the connectivity structure.While 

such an approach reliably recovers intrinsic functional connectivity networks that exhibit satisfactory intra-

indiviudal stability across scans (Song et al, 2012; Pinter et al, 2016), such a simplified assumption has 

been strongly contested in recent years (Chang and Glover, 2010; Sakoğlu et al., 2010). There is a growing 

body of evidence to suggest that functional connectivity networks are in fact time-varying (see Hutchison 

et al. (2013) and references therein). The study of so called dynamic functional connectivity therefore 

constitutes a rapidly emerging and novel avenue of neuroscience research. Since its inception, the study of 

dynamic connectivity has lead to crucial insights into the functional organization of the human connectome 

both during rest (Allen et al., 2012) as well as during cognitive tasks (Fornito et al., 2012; Elton and Gao, 

2014; Monti et al., 2015). From a technical perspective, a wide range of statistical methodologies have been 

employed to study dynamic connectivity. These range from the use of change point detection (Robinson 

et al., 2010; Cribben et al., 2012) to regularized likelihood methods (Allen et al., 2012; Monti et al., 2014), 

state-space models (Robinson et al., 2015), projection based methods such as principal component analysis 

(Leonardi et al., 2013) and linear discriminant analysis (Monti et al., 2015). However, all of the 

aforementioned methods have focused on studying connectivity in an offline setting; that is to say that 

networks are only estimated once all data has been collected and preprocessed. In this work we focus on 

the related but fundamentally different challenge of accurately estimating functional connectivity networks 

in real-time.  

 

The study of fMRI in real-time is another rapidly expanding avenue of neuroscience research. A dominant 

application of real-time (rt) fMRI has been centered around neurofeedback (deCharms, 2008; Weiskopf, 

2012) in which participants learn to modulate blood-oxygen-level dependent (BOLD) activity within a 

specified brain region. However, such region of interest (ROI) based neurofeedback does no take into 

consideration the above mentioned notion of the brain as functionally connected network (Sporns et al., 

2004; Bressler and Menon, 2010; Ruiz et al., 2014). Another pertinent application of rt-fMRI is in real-

time brain decoding (LaConte, 2011). Such methods employ multivariate classification techniques to 

predict brain states ‘on the fly’ based on BOLD measurements across a large number of nodes (voxels or 

regions). To date, techniques such as support vector machines (LaConte et al., 2007) and neural nets 

(Eklund et al., 2009) have been employed. It is reasonable to suggest that the performance of these 

classification algorithms could be further boosted by providing them with additional information relating 

to functional connectivity. It therefore follows that the next frontier for rt-fMRI studies involves accurately 

estimating brain connectivity in real-time. So far there have been only a limited number of studies focusing 

on estimating functional connectivity in real-time and their primary focus has been on neurofeedback (Ruiz 

et al, 2014; Zilverstand et al,2014; Koush et al 2013; Koush et al 2016; Liew el al, 2015). A limitation of 

those studies however is that it only provides real-time neurofeedback based on changes in connectivity 

between a very small number of ROIs. Methods that would allow instanteous neurofeedback based on entire 

networks could drastically boost the relevance of such an approach by providing a far richer description of 

the brain state as can be achieved with state-of-the-art offline methods.  

 

Developing novel methdologies to estimate functional connectivity between many ROIs in real-time 

though presents considerable theoretical and practical challenges. Firstly, due to the nature of 

neurofeedback the resulting time series are expected to vary signficantly over time. The accurate estimation 

of dynamic functional connectivity networks in an offline setting is a difficult problem in its own right and 

has recently received considerable attention (Allen et al., 2012; Monti et al., 2014; Monti et al., 2016; 

Davison et al., 2015). In this work we look to address this issue by extending recently proposed methods 

from the offline domain to the real-time domain. Second, due to potentially rapid changes that may occur 

in a subjects’ functional connectivity the proposed method must be both computationally efficient as well 

as highly adaptive to change. In order to satisfy the latter, the proposed method must be capable of 

accurately estimating functional connectivity networks using only a reduced (and adequately re-weighted) 

subset of current and past observations. 
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To address these challenges, we first propose the use of exponentially weighted moving average (EWMA) 

models (Lindquist et al., 2014) as well as more general adaptive forgetting techniques. This decision is 

motivated by the superior statistical properties of such approaches as well as the need to ensure that the 

proposed methods are as adaptive as possible. Through several simulations, we provide exhaustive evidence 

to suggest such methods should be preferred to sliding windows. We then extend the recently proposed 

Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm (Monti et al., 2014) to the real-time 

scenario. Here functional relationships between pairs of nodes are estimated using partial correlations (as 

opposed to Pearson’s correlation) as they have been shown to be better suited to detecting changes in 

network structure (Smith et al., 2011; Marrelec et al., 2009). The rt-SINGLE algorithm encourages two 

desirable properties in estimated functional connectivity networks: sparsity and temporal homogenity. We 

are able to re-cast the estimation of a new functional connectivity network as a convex optimization problem 

which can be quickly and efficiently solved in real-time. In addition to an extensive set of simuations, we 

also apply the proposed method to two different fMRI data sets: motor task data from the Human 

Connectome Projects as well as data obtained from a visuospatial attention task. We demonstrate that the 

algorithm is able to accurately estimate task-related changes in network structure in real-time and discuss 

important applications. To our knowledge, this is the first work to propose and validate estimating 

functional connectivity networks consisting of a high number of ROIs in real-time. 
 

 

2  Methods 
In this section we introduce and describe the proposed method. We begin by defining notation in Section 

2.1, then a high-level overview of the proposed method is provided in Section 2.2 followed by a detailed 

description of the proposed method in Sections 2.3 and 2.4. Finally, the selection of relevant parameters is 

discussed in Section 2.5. 

2.1 Notation  

We assume we have access to a stream of multivariate fMRI measurements across p nodes where each node 

represents a region of interest (ROI). We write 𝑋𝑡 ∈ ℝ1 ×𝑝 to denote the BOLD measurements at the 𝑡𝑡ℎ 

time point across p ROIs; thus 𝑋𝑡,𝑖 corresponds to the BOLD measurement of the ith node at time t. In this 

work we are interested in sequentially using all observations up to and including 𝑋𝑡 to recursively learn 

the underlying functional connectivity networks. At time t+1 it is assumed we receive a new observation 

𝑋𝑡+1 , which we use to update our network estimates accordingly. Throughout the remainder of this 

manuscript it is assumed that each 𝑋𝑡 follows a multivariate Gaussian distribution, 𝑋𝑡~𝑁(𝜇𝑡 , ∑𝑡), where 

both the mean and covariance structure are assumed to vary over time.  

The functional connectivity network at time t can be estimated by learning the corresponding precision 

(inverse covariance) matrix, ∑𝑡
−1 = 𝐾𝑡. Such approaches have been employed extensively in neuroimaging 

applications (Varoquaux et al., 2010; Smith et al., 2011; Ryali et al., 2012) and have also recently been 

proposed to estimate time-varying estimates of functional connectivity networks (Allen et al., 2012; 

Cribben et al., 2012; Monti et al., 2014). Here 𝐾𝑡 encodes the partial correlations as well as the conditional 

independence structure at time t. We then encode 𝐾𝑡 as a graph, 𝐺𝑡, where the presence of an edge implies 

a non-zero entry in the corresponding entry of the precision matrix (Lauritzen, 1996).  

Therefore, our aim is to estimate an increasing sequence of functional connectivity networks, {𝐺} =
{𝐺1, … , 𝐺𝑡 , … } where each 𝐺𝑡 captures the functional connectivity structure at the tth observation. 

 

2.2 Overview of proposed method 

  

The objective of this work is to obtain estimates of functional connectivity networks which display the 

following properties:  

1. Real-time: first and foremost, the primary objective of this work is to estimate functional 

connectivity networks in real-time. It follows that in any rt-fMRI application it is crucial that 

estimated functional connectivity networks are available in a timely manner. 

2. Adaptivity: we are particularly interested in the changes caused by the direct interaction with 

subjects while they are in the scanner. As such, it is crucial to be able to rapidly quantify changes 



4 

in functional connectivity structure once these have occurred. The need for highly adaptive 

estimation methodologies is further exacerbated by the lagged nature of the hemodynamic 

response function, where changes in functional measurements typically occur six seconds after 

performing a task (LaConte et al., 2007).  

3. Accuracy: we also wish to accurately estimate network structure over time. This involves both the 

accurate estimation of network connectivity at each time point as well as the temporal evolution of 

pairwise relationships between nodes over time. That is to say, estimated networks should provide 

accurate representations of the true underlying functional connectivity structure at any point in 

time as well as accurately describing how networks evolve over time.  

 

The task of estimating 𝐾𝑡 in real time can be broken into two independent steps. First, an updated 

estimate of the sample covariance, 𝑆𝑡, is calculated. We propose two methods with which an adaptive and 

accurate estimate of 𝑆𝑡 can be obtained: EWMA models and adaptive forgetting (discussed in Section 

2.3). In a second step, the corresponding precision matrix, 𝐾𝑡, is estimated given the sample covariance. 

This is achieved by extending the recently proposed Smooth Incremental Graphical Lasso Estimation 

(SINGLE) algorithm (Monti et al., 2014) from the offline to the real-time domain (discussed in Section 

2.4).  

 

2.3  First step: Real-time, adaptive covariance estimation 

The estimation of functional connectivity networks is fundamentally a statistical challenge which is often 

studied by quantifying the pairwise correlations across various ROIs (Friston, 1994). Such approaches 

correspond directly to estimating and studying the covariance structure. When the functional time series is 

assumed to be stationary, this coincides with studying the sample covariance matrix for the entire dataset. 

However, in the case of rt-fMRI studies we are faced with data that is inherently non-stationary. Moreover, 

we have the additional constraint that data arrives sequentially over time, implying that information from 

new observations must be efficiently incorporated to update network estimates. 

 

In this section we describe how adaptive estimates of the sample covariance can be obtained in real-time 

via the use of EWMA models or adaptive forgetting techniques. 

 

2.3.1 Sliding windows and EWMA models 

 

Arguably the dominant approach used to obtain adaptive functional connectivity estimates involves the 

use of sliding windows (Hutchison et al., 2013) and this also holds true in the rt-fMRI setting (Gembris 

et al., 2000; Esposito et al., 2003; Ruiz et al., 2014; Zilverstand et al., 2014). Such methods are able to 

obtain adaptive functional connectivity estimates in real-time by only considering a fixed number of past 

observations, defined as the window. Using only the observations within the predefined window, a local 

(i.e., adaptive) estimate of functional connectivity is obtained. A sliding window may be used to obtain a 

local estimate of the sample covariance, 𝑆𝑡, at time t as follows:  

 

𝑆𝑡 =  
1

ℎ
 ∑ (𝑋𝑡−𝑖 − 𝑥̅𝑡)𝑇(𝑋𝑡−𝑖 −  𝑥̅𝑡)ℎ−1

𝑖=0  (1) 

 

where 𝑥̅𝑡 is the mean of all observations falling within the sliding window and parameter h is the length 

of the sliding window. 

 

A natural extension of sliding windows is the use of an exponentially weighted moving averages 

(EWMA), first introduced by Roberts (1959). Here observations are re-weighted according to their 

chronological proximity. The rate at which past information is discarded is determined by a fixed forgetting 

factor, 𝑟 ∈ (0,1] . In this way, EWMA models are able to give greater importance to more recent 

observations thus increasing the adaptivity of the resulting algorithm. Moreover, as described in Lindquist 

et al. (2014), these methods enjoy superior statistical properties when compared to sliding window 

algorithms. EWMA models thereby provide a conceptually simple and robust method with which to handle 
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a wide range of non-stationary processes. They are also particularly well suited to the real-time setting as 

we discuss below. 

 

For a given forgetting factor, 𝑟 ∈ (0,1], the estimated mean at time t can be recursively defined as:  

 

𝑥̅𝑡 = (1 −  
1

𝜔𝑡
) 𝑥̅𝑡−1 + 

1

𝜔𝑡
𝑋𝑡  (2) 

 

where 𝜔𝑡 is a normalizing constant which is calculated as: 

  

𝜔𝑡 =  ∑ 𝑟𝑡−𝑖 = 𝑟 𝜔𝑡−1 + 1𝑡
𝑖=1 .  (3) 

 

The sample covariance at time t is subsequently defined as1:  

∏𝑡 =  (1 − 
1

𝜔𝑡
) ∏𝑡−1 +

1

𝜔𝑡
𝑋𝑡𝑋𝑡

𝑇  (4) 

𝑆𝑡 =  ∏𝑡 − 𝑥̅𝑡  𝑥̅𝑡
𝑇   (5) 

 

From equations (2) and (4) we note that past observations gradually receive less importance. This is a 

contrast to sliding windows, where all observations within the window receive equal weighting. It follows 

that the choice of parameter r determines the rate at which information from previous observations is 

discarded and is directly related to the adaptivity of the proposed method. This can be seen by considering 

the extreme cases where r=1. Here we have that 𝜔𝑡 = 𝑡 and consequently that 𝑥̅𝑡 and 𝑆𝑡  correspond to 

the sample mean and covariance estimated in an offline setting (using all observations up to time t). As a 

result equal importance is given to all observations, leading to reduced adaptivity to changes. As the value 

of r is reduced, greater importance is given to more recent observations resulting in an increasingly adaptive 

estimate. Of course, as the value of r decreases the estimated mean and covariance become increasingly 

susceptible to outliers and noise. The choice of r therefore constitutes a trade-off between adaptivity and 

stability. Much like the length of the sliding window, h, the choice of r essentially determines the effective 

sample size used to estimate both 𝑥̅𝑡 and 𝑆𝑡 . Therefore the same logic applies when choosing both r and 

h: the value must be sufficiently large so as to allow robust estimation of the sample covariance without 

becoming too large (Sakoglu et al., 2010).  

2.3.2  Adaptive forgetting models 

It is important to note that for any non-stationary data the optimal choice of both r and h may depend 

on the location within the dataset. By this we mean that in the proximity to a change-point it would clearly 

be desirable to have smaller choice of h and r; thereby reducing the influence of old, irrelevant observations. 

Whereas within a locally stationary region we wish to have a larger choices of h and r in order to effectively 

learn from a wide range of pertinent observations. This concept is demonstrated pictorially in the top panel 

of Figure [1]. In the case of real-time fMRI we inherently expect the statistical properties of a subject’s 

functional connectivity networks to vary depending on a wide range of factors (e.g., varying task demands). 

Therefore, the choice of a fixed window length, h, or forgetting factor, r, may be inappropriate.  

[Figure 1 about here] 

 

In order to address this issue we propose the use of an adaptive forgetting methodology (Haykin, 2008). 

This corresponds to a selection of methods where the magnitude of the forgetting factor is adjusted directly 

from the data in real-time. This is achieved by approximating the derivative of the likelihood for every new 

observation with respect to the forgetting factor. We are therefore able to update the forgetting factor in a 

stochastic gradient descent framework (Bottou, 2004). As a result, the value of the forgetting factor has a 

direct dependence on the time index, t. To make this relationship explicit we write 𝑟𝑡 to denote the adaptive 

forgetting factor at time t. The bottom panel of Figure [1] provides an illustration of desirable behavior for 

an adaptive forgetting factor. We note that immediately after a change occurs the forgetting factor drops. 

This helps discard past information which is no longer relevant and gives additional weighting to new 

                                                           
1  We note that equations (4) and (5) are equivalent to estimating the sample covariance in the more intuitive manner 

 𝑆𝑡 = (1 −  
1

𝜔𝑡
) 𝑆𝑡−1 +   

1

𝜔𝑡
(𝑋𝑡 − 𝑥̅𝑡)(𝑋𝑡 − 𝑥̅𝑡)𝑇, however we choose to follow this parameterization in order to simplify future discussion. 
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observations. Moreover, it is also important to note that in the presence of piece-wise stationary data the 

value of the adaptive forgetting factor increases, allowing for a larger number of observations to be 

leveraged and yielding more accurate and stable estimates.  

 

Moreover, the use of adaptive forgetting also provides an additional monitoring mechanism. By 

considering the estimated value of the forgetting factor 𝑟𝑡  at any given point in time we can gain an 

understanding as to the current degree of non-stationarity in the data (Anagnostopoulos et al., 2012). This 

follows from the fact that the estimated forgetting factor quantifies the influence of recent observations on 

the sample mean and covariance. Therefore, large values of 𝑟𝑡 are indicative of piece-wise stationarity 

whereas small values of 𝑟𝑡 provide evidence for changes in the network structure. 

 

In order to effectively learn the forgetting factor in real-time we require a data-driven approach. One 

popular solution is to empirically measure performance of current estimates by calculating the likelihood 

of incoming observations. In this way we are able to measure the performance of an estimated mean, 𝑥̅𝑡, 

and sample covariance, 𝑆𝑡 , when provided with unseen data. This provides the basis on which to update 

our choice of forgetting factor. Under the assumption that all observations follow a multivariate Gaussian 

distribution, this likelihood of a new observation 𝑋𝑡+1 is given by:  

 

ℒ𝑡+1 =  ℒ(𝑋𝑡;  𝑥̅𝑡 , 𝑆𝑡 ) =  −
1

2
log det 𝑆𝑡 −  

1

2
 (𝑋𝑡+1 − 𝑥̅𝑡)𝑇𝑆𝑡

−1(𝑋𝑡+1 − 𝑥̅𝑡). (6) 

 

While it would be possible to maximize ℒ𝑡+1 using a cross-validation framework in an offline setting, 

such an approach is challenging in a real-time setting. Cross-validation approaches typically consider 

general performance over many subsets of past observations; therefore incurring a high computational cost. 

Moreover due to the highly autocorrelated nature of fMRI time series, splitting past observations into 

subsets is itself non-trivial. Here we build on the work of Anagnostopoulos et al. (2012) and employ 

adaptive forgetting methods to maximize this quantity in a computationally efficient manner. This is 

achieved by approximating the derivative of ℒ𝑡+1 with respect to 𝑟𝑡. This derivative can subsequently be 

used to update 𝑟𝑡 in a stochastic gradient ascent framework (Bottou, 2004). 

From equations (2), (4) and (5) we can see the direct dependence of estimates 𝑥̅𝑡 and 𝑆𝑡  on a fixed 

forgetting factor r. This suggests that the likelihood is itself a function of the forgetting factor, allowing us 

to calculate its derivative with respect to r as follows:  

 

ℒ𝑡+1
′ =  

𝜕ℒ𝑡+1

𝜕𝑟
=

1

2
 (𝑋𝑡+1 − 𝑥̅𝑡)𝑇 (2𝑆𝑡

−1𝑥̅𝑡
′ − 𝑆𝑡

−1𝑆𝑡
′𝑆𝑡

−1(𝑋𝑡+1 − 𝑥̅𝑡  )) −
1

2
 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑡

−1𝑆𝑡
′)   (7) 

 

where have written A' to denote the derivative of A with respect to r (i.e., 
𝜕𝐴

𝜕𝑟
). Full details are provided in 

the Supplementary material A.  

 

Given the derivative, ℒ𝑡+1
′ , we can subsequently update our choice of forgetting factor using gradient 

ascent:  

𝑟𝑡+1 = 𝑟𝑡 +  𝜂ℒ𝑡+1
′ , (8) 

 

where η is a small step-size parameter. Equation (8) serves to highlight the strengths of adaptive forgetting; 

by calculating ℒ𝑡+1
′  we are able to learn the direction along 𝑟𝑡 which maximizes the log-likelihood of 

unseen observations. It follows that if ℒ𝑡+1
′  is positive, 𝑟𝑡 should be increased, while the converse is true 

if ℒ𝑡+1
′  is negative. Moreover, in calculating ℒ𝑡+1

′  we also learn a magnitude. This implies that all updates 

in equation (8) will be of a different order of magnitude. This is fundamental as it allows for rapid 

adjustments in the presence of abrupt changes together with small adjustments in the presence of gradual 

drifts.  

Finally, once 𝑟𝑡+1  has been calculated, we are able to learn estimates 𝑥̅𝑡  and 𝑆𝑡  using the same 

recursive equations (2) - (5) with the minor amendment that the effective sample size, 𝜔𝑡 is calculated as:  

𝜔𝑡 = 𝑟𝑡−1𝜔𝑡−1 + 1.     (9)  



7 

2.4  Second step: Real-time network estimation 

In order to ensure estimated networks provide an accurate representation of true functional connectivity 

networks we encourage two properties in estimated functional connectivity networks: sparsity and temporal 

homogenity. 

 

2.4.1 Sparsity and temporal homogenity  

 

While functional connectivity networks are theorized to have evolved to achieve high efficiency of 

information transfer at a low connection cost (Bullmore and Sporns, 2009), the main motivation behind the 

introduction of sparsity here is based on statistical considerations. Formally, the introduction of sparsity 

ensures the estimation problem remains feasible when the number of relevant observations falls below the 

number of parameters to estimate (Michel et al., 2011; Ryali et al., 2012). In the presence of rapid changes 

the number of relevant observations falls drastically. In such a scenario, sparse methods are able to 

guarantee the accurate estimation of functional connectivity networks without compromising the adaptivity 

of the proposed method.  

 

The second property we wish to encourage is temporal homogeneity; from a neuroscientific perspective 

we expect changes in functional connectivity structure to occur predominantly when paradigm changes 

occur (e.g., a subject begins performing a different task). Thus we expect network structure to remain 

constant within a neighbourhood of any observation but to vary over a longer period of time. We therefore 

encourage sparse innovations in network structure over time, ensuring that a change in connectivity is only 

reported when strongly substantiated by evidence in the data. Finally, real-time performance is achieved by 

casting the estimation 𝐺𝑡 as a convex optimization problem which can be efficiently solved.  

 

2.4.2 Algorithmic details of real-time SINGLE 

In this section, we describe how we can extend the SINGLE algorithm (Monti et al. 2014) in such a manner 

that we can obtain an estimated precision matrix that is both sparse and temporally homogeneous in real 

time. 

 

Given a sequence of estimated sample covariance matrices {𝑆𝑡 } = {𝑆1 , … , 𝑆𝑇 }, the SINGLE algorithm is 

able to estimate corresponding precision matrices, {𝐾𝑡 } = {𝐾1 , … , 𝐾𝑇 }, by solving the following convex 

optimization problem:  

{𝐾𝑡 } = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐾𝑡 }{ ∑ − log det 𝐾𝑖
𝑇
𝑖=1 + 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑖𝐾𝑖) +  𝜆1 ∑ ||𝐾𝑖||

1
+ 𝜆2 ∑ ||𝐾𝑖 − 𝐾𝑖−1||

1
 𝑇

𝑖=2
𝑇
𝑖=1 }. (10) 

The first sum in equation (10) corresponds to a likelihood term while the remaining terms, parameterized 

by 𝜆1 and 𝜆2 respectively, enforce sparsity and temporal homogeneity constraints. Estimated precision 

matrices, {𝐾𝑡 }, therefore balance a trade-off between adequately describing observed data and satisfying 

sparsity and temporal homogeneity constraints. 

However, in the real-time setting, a new 𝑆𝑡 is constantly obtained implying that the dimension of the 

solution to equation (10) grows over time. It follows that iteratively re-solving equation (10) is both 

wasteful and computationally expensive. In particular, valuable computational resources will be spent 

estimating past networks which are no longer of interest. In order to address this issue the following 

objective function is proposed to estimate the functional connectivity network at time t:  

𝑓(𝐾) =  − log det 𝐾 + 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑡𝐾) +  𝜆1||𝐾||
1

+  𝜆2||𝐾 − 𝐾𝑡−1||
1
  (11) 

where 𝐾𝑡−1 corresponds to the estimate of the precision matrix at time t−1 and is assumed to be fixed. The 

proposed real-time SINGLE (rt-SINGLE) algorithm is thus able to accurately estimate 𝐾𝑡 by minimizing 

equation (11) — in doing so the proposed method must find a balance between goodness-of-fit and 

satisfying the regularization constraints. The former is captured by the likelihood term:  

ℓ(𝐾) =  − log det 𝐾 + 𝑡𝑟𝑎𝑐𝑒 (𝑆𝑡𝐾), (12) 

and provides a measure of how precisely 𝐾𝑡 describes the current estimate of the sample covariance, 𝑆𝑡. 

The latter two terms of the objective correspond to regularization penalty terms:  

𝑔𝜆1,𝜆2
(𝐾) =  𝜆1||𝐾||

1
+  𝜆2||𝐾 − 𝐾𝑡−1||

1
 (13) 



8 

The first of these, parameterized by 𝜆1 , encourages sparsity while the second, parameterized by 𝜆2 , 

determines the extent of temporal homogeneity. By penalizing changes in functional connectivity networks, 

the second penalty encourages sparse innovations in edge structure over time. As a result, network changes 

are only reported when heavily substantiated by evidence in the data. Moreover, the addition of 

regularization of this form serves to vastly reduce the number of parameters. Such an approach is often 

advocated in neuroimaging studies (Varoquaux et al., 2013, Ryali et al., 2012). Further details of the 

proposed optimization algorithm are discussed in Supplementary material B.  

2.5  Parameter tuning 

Parameter estimation is challenging in the real-time setting. Approaches such as cross-validation, which 

are inherently difficult to implement due to the non-stationarity of the data, are further hampered by the 

limited computational resources. As an alternative, information theoretic approaches such as minimizing 

the AIC or BIC may be taken but these too may incur a high computational burden. In this section we 

discuss the three parameters required in the proposed method and provide a clear interpretation as well as 

a general overview on how each should be set.  

 

In this work we advocate the use adaptive forgetting factors which provide a more elegant and flexible 

solution when compared to sliding window approaches or EMWA with fixed forgetting. These methods 

designate the choice of 𝑟𝑡 to the data. As a result, only the stepsize parameter, η, must be specified. The 

choice of η in this context can be interpreted as a step-size parameter for tuning the forgetting factor in a 

stochastic gradient descent paradigm (Bottou, 2004). As a result, the effect of parameter η can be intuitively 

understood. Selecting η to be too large will result in estimates of 𝑟𝑡 which are volatile and potentially 

dominated by noise. Conversely, selecting small η may lead to slow convergence. In practice, we find that 

selecting η between 0.001 and 0.05 is adequate.  

 

Parameters λ1  and λ2  enforce sparsity and temporal homogeneity respectively. The choice of these 

parameters affects the degrees of freedom of estimated networks, suggesting the use of information 

theoretic approaches such as AIC. However, in a real-time setting, choosing λ1 and λ2 in such a manner 

presents a computational burden. As a result, we propose two heuristics for choosing appropriate values of 

λ1  and λ2  respectively. One potential approach involves studying a previous scan of the subject in 

question. If this is available then the regularization parameters may be chosen by minimizing AIC over this 

scan. Alternatively, the burn-in phase may be used to choose adequate parameters. Such an approach would 

involve choosing λ1 and λ2 which minimized AIC over the burn in period. Moreover, it is worth noting 

that tuning λ1  and λ2  adaptively in a similar manner to the forgetting factor presents theoretical and 

computational challenges due to the non-differentiable nature of the regularization penalties. 

3  Simulation study 
In this section we evaluate the performance of the rt-SINGLE algorithm through a series of simulation 

studies. The purpose of our simulation is two-fold. First, we look to demonstrate the properties of adaptive 

forgetting methods. As such, throughout this section we compare results for the rt-SINGLE algorithm for 

which either sliding windows, fixed forgetting factors (corresponding to an EWMA model) or adaptive 

forgetting techniques are employed. Second, we also look to quantify the ability of the rt-SINGLE 

algorithm to accurately estimate time-varying networks in real-time. For this purpose, we consider the 

performance of the offline SINGLE algorithm as a benchmark. Naturally we expect the rt-SINGLE 

algorithms to generally perform below its offline counterpart, however, the difference in performance will 

be indicative of how well the proposed methods work. We provide extensive details of the exact simulation 

settings as well as performance measures in Supplementary material C. 

 

In Simulation 1 we study the quality of estimated covariance matrices over time. This simulation serves as 

a clear example of the advantages obtained via the use of adaptive filtering methods. In Simulations 2 and 

3 we consider the overall performance of the proposed method by generating connectivity structures 

according to scale-free and small-world networks respectively. Finally, in Simulation 4 we look to quantify 

the computational cost of the proposed method as the number of nodes, p, increases; a crucial aspect to 

study given the objectives of this work. 
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3.1  Simulation 1 — Covariance tracking 

In this simulation we look to assess how accurately we are able to track changes in covariance structure via 

the use of sliding windows, fixed (i.e., EWMA models) and adaptive forgetting factors.  

 

Datasets were simulated as follows: each dataset consisted of five segments each of length 100 (i.e., overall 

duration of 500). The network structure within each segment was simulated according to either the Barabási 

and Albert (1999) preferential attachment model or using the Watts and Strogatz (1998) model. The use of 

each of these models was motivated by the fact that they are able to generate scale-free and small-world 

networks respectively; two classes of networks which are frequently encountered in the analysis of fMRI 

data (Eguiluz et al., 2005; Bassett and Bullmore, 2006; Sporns et al., 2004).In this simulation the estimated 

sample covariances from the proposed methods were compared to the results when using a symmetric 

Gaussian kernel, as in the offline SINGLE algorithm.  

 

Figure [2] shows results when scale-free (top) and small-world (bottom) network structures are simulated 

over 500 independent simulations. We note that the quality of the estimated covariances drops in the 

proximity of a change-point for all three real-time algorithms. In the case of the offline SINGLE algorithm 

this drop is symmetric due to the symmetric nature of the Gaussian kernel employed. However, in the case 

of the real-time algorithms the drop is highly asymmetric and occurs directly after the change-point, as is 

to be expected. Due to the sudden change in covariance structure, these methods suffer immediately after 

abrupt changes in covariance structure, but are able to quickly recover. It is important to note the difference 

in behaviour of each of the algorithms directly after a change-point occurs. The use of fixed and adaptive 

forgetting factors results in rapid improvement compared to sliding windows. This is to be expected as 

sliding windows do not down-weight past observations. Studying changes in covariance structure directly 

after a change occurs is of fundamental importance in neuroscientific research. In this context, the use of 

fixed and adaptive forgetting yields significant advantages. This is especially true for adaptive forgetting 

methods as highlighted in Figure [2].   

For both scale-free and small-world networks, adaptive forgetting outperforms both fixed forgetting 

factors and sliding windows. These results therefore serve to clearly advocate the use of adaptive forgetting 

methods. Moreover, from Figure [2] we note that the covariance tracking capabilities of the proposed 

methods are not adversely affected by the choice of underlying network structure.  

[Figure 2 about here] 

3.2  Simulation 2 — Scale-free networks 

In this simulation we look to empirically quantify the capability of the proposed method to recover sparse 

covariance structure. As a benchmark, we compare the results of the rt-SINGLE algorithm with the offline 

algorithm.  

 

Datasets were simulated as described in Simulation 1, using the Barabási and Albert (1999) preferential 

attachment model. This generated scale-free networks, implying that the degree distribution follows a 

power law. This implies the presence of a reduced number of hub nodes which have access to many other 

regions, while the remaining majority of nodes have a small number of edges (Eguiluz et al., 2005). In this 

simulation the entire dataset was simulated a priori. In the case of the rt-SINGLE algorithms, one 

observation was provided at time, thereby treating the dataset as if it was a stream arriving in real-time. The 

offline SINGLE algorithm was provided with the entire dataset and this was treated as an offline task. 

 

In the left panel of Figure [3] we see the average 𝐹𝑡 scores for each of the real-time algorithms as well 

as the offline algorithm over 500 simulations. We note that all algorithms experience a drop in F-score in 

the proximity of change-points. The offline SINGLE algorithm is based on a symmetric Gaussian kernel, 

as a result, we note that there it has a symmetric drop in performance in the vicinity of a change-point before 

quickly recovering. Alternatively, the drop in performance of the rt-SINGLE algorithms is asymmetric. 

This is due to the real-time nature of these algorithms. In line with the results provided in Simulation 1, we 
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note that when either the adaptive and fixed forgetting factor is employed the performance of the algorithm 

after a change point increases rapidly. In contrast, when a sliding window is employed a larger number of 

observations are required before an accurate estimate of the sample covariance can be obtained, resulting 

in poor recovery of the covariance structure. 

Furthermore, we note that while the rt-SINGLE algorithm performs worse than its offline counterpart 

directly after change-points, it is able to quickly recover to the level of the offline SINGLE algorithm. 

Specifically, in the case where adaptive forgetting is used, the real-time algorithm is able to outperform its 

offline counterpart in sections where the data remains piece-wise stationary for long periods of time. This 

is because it is able to increase the value of the adaptive forgetting factor accordingly. This allows the 

algorithm to exploit a larger pool of relevant information compared to its offline counterpart. This is 

demonstrated on the right panel of Figure [3] where the mean value of the adaptive forgetting factor is 

plotted. We see there is a drop directly after changes occur; this allows the algorithm to quickly forget past 

information which is no longer relevant. We also note that the estimated value of the forgetting factor 

increases quickly after changes occur.  

[Figure 3 about here] 

3.3  Simulation 3 — Small-world networks 

While in Simulation 2 scale-free networks were studied, it has been reported that brain networks follow a 

small-world topology (Bassett and Bullmore, 2006). Such networks are characterized by their high 

clustering coefficients which has been reported in both anatomical as well as functional brain networks 

(Sporns et al., 2004).  

 

Datasets were simulated as described in Simulations 1 and 2, with the difference that individual networks 

were generated according to the Watts and Strogatz (1998) model. The Watts and Strogatz (1998) model 

works as follows: starting with a regular lattice, the model is parameterized by 𝛽 ∈ [0,1] which quantifies 

the probability of randomly rewiring an edge. It follows that setting β=0 results in a regular lattice, while 

setting 𝛽 = 1 results in an Erdős-Rényi (i.e., completely random) network structure. Throughout this 

simulation we set 𝛽 =
3

4
 as this yielded networks with sufficient variability but which still displayed the 

desired small-world properties.  

 

In the left panel of Figure [4] we see the average 𝐹𝑡 scores for each of the real-time algorithms as well 

as the offline SINGLE algorithm over 500 simulations. Due to the increased complexity of small-world 

networks, we note that the performance drops compared to scale-free networks considered in Simulation 2. 

We further note that the rate at which the real-time networks recover after a change-point is reduced. As 

with Simulation 2, we note that the real-time algorithms are able to reach the same level of performance as 

their offline counterpart if given sufficient time (that is, if covariance structure is piecewise constant for 

sufficiently long periods of time). Moreover, in the case where adaptive forgetting is employed we once 

again find that the performance of the real-time algorithm exceeds that of the offline algorithm when the 

data remains piece-wise stationary for a sufficiently long period of time. In the right panel of Figure [4] we 

see the estimated adaptive forgetting factor over each of the 500 simulations. Again, we see the drop in the 

value of the forgetting factor directly after change-points; allowing past information to be efficiently 

discarded. 

[Figure 4 about here] 

3.4  Simulation 4 — Computational cost 

A fundamental aspect of real-time algorithms is that they must be computationally efficient in order to be 

able to update parameter estimates in the limited time provided. The main computational cost of the rt-

SINGLE algorithm is related to the eigendecomposition of the 𝐾  update, which has a complexity of 

𝑂(𝑝3) (Monti et al., 2014). 

In this simulation we look to empirically study the computational cost. In this manner, we are able to 

provide a rough guide as to the number of ROIs which can be employed in a real-time neurofeedback study 
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while still reporting network estimates at every point in time. This was achieved by measuring the mean 

running time of each update iteration of the rt-SINGLE algorithm for various numbers of ROIs, p. 

Here each dataset was simulated as in Simulation 2; that is the underlying correlation was randomly 

generated according to a scale-free network. However, here we choose to only simulate three segments, 

each of length 50, resulting in a dataset consisting of 150 observations. For increasing values of p, the time 

taken to estimate a new precision matrix was calculated. Figure [5] shows the mean running time for the rt-

SINGLE algorithm where either a sliding window, a fixed forgetting factor (i.e., an EWMA model) or 

adaptive forgetting was used. We note that the difference in computational cost between each of the 

algorithms is virtually indistinguishable. 

Finally, we note that when the number of nodes is below 20 it is possible to estimate functional 

connectivity networks in under two seconds, making the proposed method practically feasible in real-time 

studies. This simulation was run on a computer with an INTEL CORE I5 CPU at 2.8 GHz. 

[Figure 5 about here] 

4  Application 
In this section we present two applications of the proposed method. First, the proposed method is applied 

to motor-task data taken from the Human Connectome Project (HCP). Here subjects were asked to perform 

a range of motor tasks. While this data was not acquired and analyzed in real-time, it may be treated as such 

by only considering a single observation at a time. In this manner, we are able to compare the performance 

of the rt-SINGLE algorithm to its offline counterpart using fMRI data as opposed to simulated examples, 

as was the case in Section 3. The second application presented consits of a real-time experiment where 

subjects were asked to perform a visuospatial search task. While the quality of the HCP data is arguable 

state-of-the-art, the data generated in this experiment is of reduced quality. It therefore serves to 

demonstrate the capabilities of the rt-SINGLE algorithm on a dataset that is more representative of typical 

fMRI data used in practice.  

4.1  HCP motor-task 

Twenty of the 500 available task-based fMRI datasets provided by the Human Connectome Project were 

selected at random. Here subjects were asked to perform a simple motor task adapted from those developed 

by Buckner et al. (2011) and Yeo et al. (2011). This involved the presentation of visual cues asking subjects 

to either tap their fingers (left or right), squeeze their toes (left or right) or move their tongue. Each 

movement type was blocked, lasting 12 seconds, and was preceded by a three second visual cue. Each task 

was performed twice together with an additional three fixation blocks (each of length 15 seconds). This 

resulted in a total of 13 blocks per run2.  

While this data is not intrinsically real-time — in that the preprocessing was conducted after data 

acquisition — it is included as a proof-of-concept study. The data was preprocessed offline as the focus lies 

on the comparison between the real-time and offline network estimation approaches rather than different 

preprocessing pipelines. Preprocessing involved regression of Friston’s 24 motion parameters and high-

pass filtering using a cut-off frequency of 
1

130
 Hz.  

Eleven bilateral cortical ROIs were defined based on the Desikan-Killiany atlas (Desikan et al., 2006) 

covering occipital, parietal and temporal lobe (see Supplementary Table 1 and Supplementary Figure 1). 

These regions were selected based on the hypothesis that changes would occur in the sensory-motor and 

higher-level visual areas. The extracted time courses from these regions were subsequently used for the 

analysis. By treating the extracted time course data as if it was arriving in real-time (i.e., considering one 

observation at a time) we can compare the results of the proposed real-time method to offline algorithms 

while using the same underlying preprocessed data. 

                                                           
2 for further details please see http://www.humanconnectome.org/documentation/Q1/task-fMRI-protocol-details.html 
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4.1.1  Results 

Both the SINGLE as well as the rt-SINGLE algorithms where applied to the motor-task fMRI dataset. Our 

primary interest here is to report task-driven changes in functional connectivity. In this way, we are able to 

examine if the rt-SINGLE algorithm is capable of reporting the changes functional connectivity induced by 

the motor task.  

The functional relationships that were modulated by the motor task were studied; this corresponds to 

studying the edges in the estimated networks which are significantly correlated with task onset. This was 

achieved by first estimating time-varying functional connectivity networks using both the offline SINGLE 

algorithm as well as the proposed real-time algorithm. In the case of the SINGLE algorithm, parameters 

where chosen as described in Monti et al. (2014). This involved estimating the width of the Gaussian kernel 

via leave-one-out cross validation and estimating regularization parameters via minimizing AIC. In the case 

of the real-time algorithm, adaptive forgetting was employed with η=0.005. The sparsity and temporal 

homogeneity parameters where set to the same values as the offline SINGLE algorithm as the focus here 

was to study differences induced by estimating networks in real-time as opposed to differences resulting 

from different parameterizations. 

   In order to determine which edges where modulated by task a non-parametric statistical test was 

performed. Formally, Spearman’s rank correlation coefficient was estimated between the time-varying 

estimated partial correlation values for each edge and the task-evoked HRF function. It follows that edges 

which are modulated by the task will display strong correlations with the task HRF, thus allowing us to 

network of edges which are modulated by the motor task. Each estimated correlation coefficient was 

subsequently tested to determine if the correlation was statistically significant. The resulting p-values (one 

for each edge) were then corrected for multiple comparisons via the Holm-Bonferroni method (Holm, 

1979). This allowed us to obtain an activation network, summarizing which edges are statistically activated 

by the motor task for each algorithm. 

 

Figure [6] shows task activation networks for both the SINGLE and rt-SINGLE algorithms. Edges are 

only present if they were reported as being significantly correlated with task-evoked HRF function. Red 

edges indicated the strength of the edge increase during task while blue edges indicate the strength of the 

edge decrease during task (i.e., a negative correlation). Further, edge thickness is indicative of the 

magnitude of the correlation. Figure [6] shows clear similarities across each of the algorithms, with 84% of 

edges reported by both the rt-SINGLE and SINGLE algorithms. This would suggest that the rt-SINGLE 

algorithm is accurately detecting task-modulated changes in functional connectivity. In particular, we 

observe increased functional coupling between the motor-sensory and visual regions in the occipital cortex 

as well as inferior and middle temporal heteromodal regions. These results are plausible with regard to the 

task that involved high-level visual and heteromodal processing of the preceding visual cues and the 

execution of the actual movement and have been previously reported (Hein and Knight, 2008; Zilverstand 

et al., 2014).  

[Figure 6 about here] 

 

While Figure [6] serves to visually demonstrate that the rt-SINGLE algorithm is accurately detecting task-

modulated changes in connectivity, we also studied graph theoretic properties to quantify if there are 

significant differences in the graph structure of networks estiamted using offline SINGLE and rt-SINGLE 

algorithms. While there are many candidate graph statistics which can be studied, in this work we look to 

study the three key properties; the mean degree centrality across nodes3, the mean betweenness centrality 

over edges in the network4 and the transitivity of the network5. Furthermore, the changes in network 

statistics where studied in the context of task positive and task negative modulation, thereby allowing us to 

study in detail if significant differences occurred in the estimated network structure. As such, graph 

statistics were calculated for the network of positively and negatively task-modulated edges respectively 

(that is the networks corresponding to the red and blue edges in Figure [6] respectively). The results of this 

supporting analysis are provided in Supplementary Table 2. We note we found no significant differences 

                                                           
3 The degree centrality of a node is defined as the sum of its weighted edges. 
4 Betweenness centrality of an edge is a measure of the importance of the edge. Briefly, it measures the proportion of shortest 

paths between any two nodes which include the edge. 
5 The transitivity of a network is a measure of the clustering of the network which studies how likely it is that nodes in the 

network will cluster together. 



13 

between each of the two algorithms in each of the selected graph statistics. These results serve as evidence 

that the proposed method can perform comparably with offline methods despite facing the additional 

challenge of estimating networks ’on-the-fly’.  

Moreover, in a rt-fMRI study it is also crucial to be able to accurately estimate functional connectivity 

networks for individual subjects. While the true underlying functional connectivity networks are unknown 

(and may vary for each subject), we are able to quantify how closely the networks estimated in real-time 

recreate the results of an offline analysis. As a result, the correlation was studied between the estimated 

edges using both the rt-SINGLE and the offline SINGLE algorithms. This was performed on a subject-by-

subject basis. For each edge the correlation between the estimated edge values using each of the two 

algorithms was quantified using Spearman’s rank correlation coefficient and the corresponding p-values 

were corrected for multiple comparisons. Figure [7] shows the subject-specific networks containing only 

edges that were significantly correlated across both algorithms. As before, red edges indicate a positive 

correlation with task while blue edges are indicative of negative correlations and the thickness of the edges 

is proportional to the strength of the correlation. We note the resulting networks are dense across all subjects 

and the vast majority of edges indicate positive correlations. In particular, an average of 74% of edges were 

positively correlated across all subjects6.  

[Figure 7 about here] 

 

As noted previously, it is also important to study graph theoretic properties of the estimated networks to 

quantitatively study wethere there are signficant differences in the network structure across subjects. As a 

result, we computed the three aforementioned graph statistics over the subject-specific estimated networks 

shown in Figure [7]. Furthermore, as discussed previously, the graph statistics were considered for the task 

positive and task negative networks (that is the networks corresponding to the red and blue edges in Figure 

[7] respectively) . In this manner, we were able to study if significant differences occured across subjects 

in a detailed fashion. The results, provided in Supplementary Table 3, show that the estimated graph 

statistics are stable and consistent across the cohort of subjects. This serves as an indication that graph 

statistics such as the betweenness centrality are robust across a cohort of subjects and therefore suitable 

candidates for neurofeedback applications.   

4.2  Real-time visuospatial attention task 

While the HCP dataset introduced in Section 4.1 serves to demonstrate the reliability of the real-time 

network estimates, our proposed method was also tested using data that was processed and studied 

alongside data acquisition. The data employed here corresponds to fMRI data acquired over 20 subjects 

during the visuospatial attention task described in Braga et al. (2013). Briefly, the task corresponded to a 

visual attention task explicitly designed to engage subjects with continuous top-down visual monitoring of 

stimuli. Subjects where shown complex and naturalistic moving scenes and where required to detect a 1 

second change in color of the target stimuli (from red to green) (Braga et al., 2013). The target consisted of 

a red rectangle which appeared in two possible locations of the screen (top-left or bottom-right). The task 

therefore consisted of a pre-target phase where subjects were attentively viewing the color video footage 

as well as a post-target phase, where subjects had reported the target change and were no longer required 

to attentively watch the video. A total of twenty trials were performed for each subject, however in selected 

trials no target stimuli was presented. Note that the stimuli that subjects perceived in the two conditions 

(pre- and post-target) were exactly identical; the only difference consisted in the attentional state of the 

subject. 

In terms of data quality, the HCP dataset employed in Section 4.1 was acquired using state-of-the-art 

parallel imaging which resulted in higher temporal resolution (TR=0.72 seconds) and increased signal-to-

noise ratio (Elam and Van Essen, 2014). In contrast, the data used here is of far lower quality; having a TR 

                                                           
6 Under the null hypothesis that the edges of dynamic networks estimated using the rt-SINGLE and SINGLE algorithms 

respectively are uncorrelated we would expect zero edges to be present (i.e., an empty graph) with 95% probability. This is 

because by implementing the Holm-Bonferroni method we have controlled the family wise error rate at the 𝛼 = 5% level. 
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of three seconds. Furthermore, unlike the HCP dataset, preprocessing was not performed offline here, 

posing further limitations on the quality of the data. 

While the entire dataset was collected and studied in Braga et al. (2013), in this work it was treated in 

a real-time fashion. The rt-fMRI pipeline employed is described in Section 4.2.1 below. Given that we are 

trying to capture differences in hidden attentional states (in contrast to overt motor movements as in the 

case of the HCP data), this data corresponds to a far more complicated cognitive task. This therefore serves 

to validate the capabilities of the proposed method with a dataset that is representative of data typically 

used in rt-fMRI studies.  

As we look to corroborate previous results relating to the top-down visuospatial attention networks, we 

created spheres of 10 mm radius positioned at the center of gravity of 11 activation clusters derived from a 

spatially constrained independent component analysis (ICA) on the data (as reported in Braga et al. (2013)) 

in addition to three subregions of the dorsal attention network (DAN) obtained from Capotosto et al. (2009) 

and Dosenbach et al. (2007) (also reported in Braga et al. (2013)). The regions, summarized in 

Supplementary Table 4, showed significant differences between pre- and post-target phase in the original 

study and where therefore used to study the reliability of the proposed rt-SINGLE algorithm.  

4.2.1  Simulated real-time fMRI pipeline 

Whole-brain coverage images were acquired by a Philips Intera 3.0 T MRI system with an 8-element phased 

array head coil and sensitivity encoding using an echoplanar imaging (EPI) sequence (T2*: 

FOV=220×143×190 mm, time repetition (TR) / time echo (TE): 3000 / 45 ms, 44 axial slices with slice 

thickness of 3.5 mm). A total of 335 EPI images were acquired for each subject. In addition, a high-

resolution (1 mm × 1 mm × 1 mm) T1-weighted whole-brain structural image (reference anatomical image, 

RAI) was obtained for each participant. Prior to the simulated online preprocessing of the data, the first EPI 

volume (reference functional image, RFI) was used for spatial co-registration. The first step comprised the 

brain extraction of the RAI and RFI using BET (Smith, 2002), followed by an affine co-registration of the 

RFI to RAI and subsequent nonlinear registration to a standard brain atlas (MNI) using FNIRT (Andersson 

et al., 2007). The resulting transformation matrix was used to register the 14 ROIs (as described in Section 

4.2 and Supplementary Table 4) from MNI to the functional space of the respective subject. For simulated 

online processing, incoming raw EPI images were motion corrected in simulated real-time using MCFLIRT 

(Jenkinson et al., 2002) with the previously obtained RFI acting as reference. In addition, images were 

spatially smoothed using a 5 mm FWHM Gaussian kernel. ROI means for each TR were simultaneously 

extracted using a general linear model (GLM) approach and written into a text file that was accessed by the 

rt-SINGLE algorithm. Based on these timecourses, rt-SINGLE estimated time-varying functional 

connectivity networks for each TR. In total, the full processing of the data in simulated real-time took under 

one second per observation, leaving considerable time for the optimization required of the rt-SINGLE 

algorithm.  

4.2.2  Results 

The rt-SINGLE algorithm was applied to fMRI data corresponding to the visuospatial task. As in Section 

4.1, our primary interest here was to demonstrate that the proposed real-time algorithm was able to 

accurately report changes in functional connectivity.  

The real-time pipeline described in Section 4.2.1 was employed to estimate time-varying functional 

connectivity networks for each subject independently. A burn-in period of 10 observations was employed. 

This allowed the sparsity and temporal homogeneity parameters to be selected by minimizing AIC over 

this burn-in period. Finally, adaptive filtering was employed to estimate subject covariance matrices with 

tuning parameter η=0.005. 

In order to report the functional networks (i.e., edges) modulated by the task we report the edges which 

are significantly correlated with task HRF function. For each edge, the correlation between the mean 

estimated partial correlation across subjects and the HRF was computed using Spearman’s rank correlation 

coefficient. As with the HCP task, resulting p-values where corrected for multiple comparisons, resulting 

in a network containing only statistically significant edges.  

Figure [8] shows the task activation network as estimated by the rt-SINGLE algorithm. Edges are only 

present if they were reported as being statistically correlated with the task HRF function. The edge color is 

indicative of the behavior of a particular edge: red edges are up-regulated during the pre-attention phase 
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(attentive visual search) while blue edges are up-regulated during the post-attention phase (passive 

viewing). 

[Figure 8 about here] 

We note there is stronger coupling for the visual top-down attention condition between the right superior 

parietal lobe (SPL) and the right frontal eye fields (FEF), the right occipital fusiform as well as the right 

middle temporal gyrus (MTG). In addition, for the same condition we observe stronger coupling between 

the right occipital fusiform and the right FEF as well as the left SPL. Further, functional connectivity 

between the right inferior temporal gyrus (IFG) and right middle frontal gyrus (MFG) is increased for the 

top-down attention. These results are in line with a previous, non real-time analysis of this data (Braga 

et al., 2013), as well as accounts of visual top-down attention regulation in the literature. Typically, during 

visual top-down attention the visual cortices become functionally connected with higher-order 

frontoparietal regions the SPL and FEF, making up what is known as the DAN (Corbetta and Shulman, 

2002; Corbetta et al., 2008).  

Finally, we also study functional connectivity networks estimated on a subject-by-subject basis. As in 

Section 4.1, we study some of the graph theoretic properties obtained across subjects in order to verify if 

the estimated networks are robust across subjects. Subject-specfic functional connectivity networks were 

estimated as described above and three measures of graph structure where collected; the mean degree 

centrality across nodes, the mean betweenness centrality across edges and the transitivity (i.e., clustering 

coefficient) of the network. Moreover, as discussed in Section 4.1, the graph statistics were estimated for 

the network of up-regulated edges associated with attentive visual search (red edges in Figure [8]) as well 

as the network of up-regulated edges associated with passive viewing (blue edges in Figure [8]). The results, 

provided in Supplementary Table 5, indicate that networks estimated across subjects show robust and 

reproducible properties for both the attentive visual search and the passive viewing network. Thes results 

are reassuring in the context of real-time fMRI neurofeedback as they validate the potential use of graph 

statistics.  

5  Discussion 
In this work we introduce a novel methodology with which to estimate dynamic functional connectivity 

networks in real-time. The contributions of the proposed method can be summarized as follows. First, we 

propose the use of adaptive forgetting methods in order to obtain highly adaptive estimates of the sample 

covariance over time. Such methods designate that choice of the forgetting factor to the data, making them 

highly adaptive as well as flexible. The latter point is of particular importance in the rt-fMRI setting; since 

changes in functional connectivity may occur abruptly and at varying intervals the assumptions behind the 

use of fixed forgetting factors or sliding windows do not necessarily hold true. Second, by extending the 

recently proposed SINGLE algorithm we are able to accurately estimate functional connectivity networks 

based on precision matrices in real-time.  

The proposed method enforces constraints on both the sparsity as well as the temporal homogeneity of 

estimated functional connectivity networks. The former is required in order to ensure the estimation 

problem remains well-posed when the number of relevant observations drops, as is bound to occur when 

adaptive forgetting is employed. On the other hand, the temporal homogeneity constraint ensures changes 

in functional connectivity are only reported when heavily substantiated by evidence in the data. As we 

demonstrate through a series of simulation studies, the rt-SINGLE algorithm is able to both obtain accurate 

estimates of functional connectivity networks at each point in time as well as accurately describe the 

evolution of networks over time. 

 

The rt-SINGLE algorithm is closely related to sliding window methods which have been employed 

extensively in the real-time setting (Gembris et al., 2000; Esposito et al., 2003; Ruiz et al., 2014; 

Zilverstand et al., 2014). Extensions of sliding window methods, such as EWMA models, have been 

successfully applied to offline fMRI studies (Lindquist et al., 2007) and have been shown to be better suited 

to estimating dynamic functional connectivity (Lindquist et al., 2014). In this work we considered both 

sliding windows and EWMA models alongside adaptive forgetting. We presented an extensive simulation 
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study comparing these three methods which demonstrates the advantages of adaptive filtering methods. 

However, the proposed method is flexible and can be implemented using either sliding windows, fixed 

forgetting factors (corresponding to an EWMA model) or adaptive forgetting.  

 

The proposed method requires the input of three parameters. The first of these parameters, stepsize η, 

governs the rate at which an adaptive forgetting factor, 𝑟𝑡, varies and can be interpreted as the stepsize in 

a stochastic gradient descent scheme (Bottou, 2004). The final two parameters enforce sparsity and 

temporal homogeneity respectively. These parameters remain fixed throughout in a similar manner to the 

fixed forgetting factor and two heuristic approaches are proposed to tune these parameters. A future 

improvement for the proposed algorithm would involve adaptive regularization penalties. However, such 

approaches are computationally and theoretically challenging due to the non-differentiable nature of the 

penalty terms. 

 

Two applications of the proposed method were provided. The first involved motor-task data from the 

HCP. The results demonstrate that the rt-SINGLE algorithm was able to accurately detect functional 

networks which are modulated by motor task. The second application corresponds to a more complex 

visuospatial attention task. While the quality of the HCP data employed is arguably state-of-the-art, this 

dataset was used to demonstrate the capabilities of the rt-SINGLE algorithm using fMRI data as opposed 

to simulated examples. In contrast the quality of the second dataset studied is of similar quality than would 

be expected in a typical rt-fMRI study; as it corresponds to a low temporal resolution (three seconds) and 

a complex cognitive task. Both datasets were analyzed in real-time and provide compelling evidence that 

the proposed method is able to accurately track functional connectivity ’on-the-fly’. Moreover, throughout 

these two applications networks were estimated every TR. However, depending on the nature of the 

experiment, it would be possible to only obtain an updated estimate of the functional connectivity networks 

every several TRs. 

 

It is well known in the neuroimaging field that the choice of pre-processing strategy has a significant 

effect on connectivity estimates  (Gavrilescu et al., 2008 and Weissenbacher et al., 2009).This aspect 

receives even more importance for dynamic FC methods as time-varying connectivity estimates are based 

on relatively few TRs (Hutchison et al., 2013). Therefore, when conducting dynamic FC analysis, it is 

suggested to perform typical pre-processing steps applied to resting-state fMRI data (such as motion 

correction, spatial filtering, nuisance regression and high-pass filtering) in addition to recording respiration 

and cardiac events for further de-noising of the data (Hutchison et al., 2013). However, these 

recommendations have been worked out for dynamic FC analysis on resting-state data. When looking at 

task-induced changes in FC, standard pre-processing strategies have predominantly been employed in the 

field (Monti et al., 2014) and high reproducibility of results has been reported when comparing minimally 

pre-processed with highly pre-processed ROI time-courses (Allen et al., 2012). So, in case equally 

distributed noise can be expected for blocks of task and blocks of no task performance, dynamic FC 

methods will be able to capture the task-induced difference in FC. As reported above, the HCP data can be 

considered as an extensively and (offline) pre-processed dataset while the other dataset more closely 

matches the description of a minimally pre-processed dataset. For both datasets we obtained results that are 

highly consistent with previous findings. Importantly though, more exhaustive pre-processing could 

hypothetically be performed in real-time (such as nuisance regression, de-spiking etc.), thus not precluding 

the use of rt-SINGLE for resting-state data. 

 

Besides the impact of different pre-processing strategies on time-varying FC results, the ad hoc ROI 

selection is crucial for the success of the method and interpretation of the findings. Contrary to offline 

analyses, in which the ROI selection itself can be an explorative process (although this might not be 

considered as conservative scientific approach), the real-time nature of our proposed method requires an 

adequate consideration of the most suitable ROIs a priori to the experiment. For our work presented here, 

we have selected the respective nodes in a strictly hypothesis-driven manner. While for the motor task, we 

have included nodes within sensory-motor and higher-level visual areas, for the visuospatial attention task 

we based on our node selection on activation clusters derived from a previous analysis of the same dataset 

that consisted of core regions of the top-down visuospatial attention network. We therefore strongly 

hypothesized these nodes to be modulated by the respective tasks. Besides such a hypothesis-driven ROI-

based approach, another popular and more data-driven strategy is to parcellate the brain into large-scale 
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functional brain network (Smith et al., 2009) and compute time-varying connectivity estimates based on 

the extracted network time-courses (Calhoun et al., 2014 and Allen et al., 2012). Although the most 

common approach is to measure dynamic FC by looking at changes in correlation over time whilst assuming 

fixed ROIs or networks (Calhoun et al., 2014), recent approaches also take the spatio-temporal nature of 

fMRI data into account by studying how the spatial patterns of regions/network changes over time (Ma et 

al., 2011 and Karahanoglu and Van de Ville, 2015 and Scott et al., 2015). However to date, none of these 

approached would be suitable for a real-time application. 

 

In conclusion, the rt-SINGLE algorithm provides a novel method for estimating functional connectivity 

networks in real-time. We present two applications demonstrating that the rt-SINGLE algorithm is capable 

of reporting changes in motor execution as well as internal attentional state of subjects. In future, the 

proposed method could be incorporated into rt-fMRI studies, potentially providing neurofeedback based 

on functional connectivity. De Bettencourt et al. (2015) convincingly demonstrated that closed-loop 

neurofeedback can be used to improve sustained attention abilities and reduce the frequency of lapses in 

attention. The authors used multivariate pattern analysis and found that behavioral improvement was the 

largest when feedback carried information from a frontoparietal attention network. Especially with regard 

to our second example we demonstrate that rt-SINGLE is able to capture moment-to-moment fluctuations 

in the attentional state of subjects and could potentially be used to boost brain state decoding accuracy by 

providing additional information relating to functional connectivity. Finally, there is great potential to 

integrate this work with the recently proposed Automatic Neuroscientist framework of Lorenz et al. (2016). 

Lorenz et al. (2016) combined real-time fMRI with machine learning techniques to optimize experimental 

conditions to maximize a given target brain state (Lorenz et al., 2015, 2016). While the target brain state in 

their proof-of-principle study was simply based on BOLD differences, our proposed method can be utilized 

to extend the Automatic Neuroscientist to target entire functional connectivity networks. This could be of 

paramount importance for the framework to be pulled through the translational pathway as various 

neurological and psychiatric disorders are characterized by disruption of functional networks such as 

attention deficit disorder (Stins et al, 2005), traumatic brain injury (Whyte et al, 1995), or bipolar disorder 

(Clark et al, 2002). 
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Figure 1 

Top: Measurements of a non-stationarity univariate random variable, 𝑿𝒕, are shown in grey together with 

the true mean in blue. This figure serves to highlight how the optimal choice of a forgetting factor or 

window length may depend on location within a dataset. It follows that in the proximity of the change-

point we wish 𝒓 to be small in order for it to adapt to change quickly. However, when the data is itself 

piece-wise stationary, we wish for 𝒓 to be large in order to be able to fully exploit all relevant data. 

Bottom: An illustration of how an ideal adaptive forgetting factor would behave; decreasing directly after 

a change occurs and quickly recovering thereafter. 
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Figure 2 

In this simulation we study the capability of the proposed algorithm to accurately track changes to 

covariance structure over time. In order to quantify this we consider the distance defined by the trace 

inner product, given in equation (17). We note that the symmetric Gaussian kernel employed for the 

offline SINGLE algorithm outperforms the online algorithms as expected. However, when the covariance 

structure remains piece-stationary for extended periods of time the online algorithms are able to 

outperform their offline counterparts. Moreover, the results demonstrate that adaptive filtering methods 

outperform both fixed forgetting factors as well as sliding windows.  

Top: Covariance tracking results when underlying network structure is simulated according to the scale-

free preferential attachment model of (Barabási and Albert, 1999). A change occurred every 100 

observations.  

Bottom: Covariance tracking results when the underlying network structure was simulated using small-

world random networks according to the model of Watts and Strogatz (1998). 
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Figure 3 

Left: Mean F scores for the offline SINGLE algorithm and the real-time algorithms employing either a 

sliding window (rt-SW), a fixed forgetting factor (rt-FF) or adaptive forgetting respectively (rt-AF). Here 

the underlying network structure was simulated using scale-free random networks according to the 

preferential attachment model of Barabási and Albert (1999). A change occurred every 100 time points. 

We note that all three algorithms experience a drop in performance in the vicinity of these change-points, 

however in the case of the real-time algorithms the drop is asymmetric. Moreover, we further note that 

when adaptive forgetting is employed the real-time algorithm is able to outperform its offline counterpart 

in sections where the data remains piece-wise stationary for long periods of time. 

Right: mean values for the estimated adaptive forgetting factor, 𝑟𝑡, over time. We note there is a sudden 

drop directly after changes occurs allowing the algorithm to adequately discard irrelevant information. 
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Figure 4 

Left: Mean F scores for the offline SINGLE algorithm and the real-time algorithms employing either a 

sliding window (rt-SW),  fixed forgetting factor (rt-FF) or adaptive forgetting respectively (rt-AF). Here 

the underlying network structure was simulated using small-world random networks according to the 

model of Watts and Strogatz (1998). A change occurred every 100 time points. We note that all three 

algorithms experience a drop in performance in the vicinity of these change-points, however in the case 

of the rt-SINGLE algorithms the drop is asymmetric. Moreover, we further note that when adaptive 

forgetting is employed the real-time algorithm is able to outperform its offline counterpart in sections 

where the data remains piece-wise stationary for long periods of time. 

Right: mean values for the estimated adaptive forgetting factor, 𝑟𝑡, over time. We note there is a sudden 

drop directly after changes occurs allowing the algorithm to adequately discard irrelevant information.  
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Figure 5 

Mean running time (seconds) per update iteration of the rt-SINGLE algorithm when either a sliding 

window (rt-SW), a fixed forgetting factor (rt-FF) or adaptive forgetting (rt-AF) was employed.  
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Figure 6 
Task activation networks for rt-SINGLE (top) and SINGLE (bottom) algorithms respectively. Present edges 

had statistically significant correlations with task HRF after correction for multiple comparisons. Red edges 

indicate edge strength increased during task while blue edges indicate edge strength decreased during task. 

Eleven bilateral regions where used as described in Table [1]. In order to facilitate interpretation of the plot 

only the right-hemispheric coordinates are shown here. We note there is consistent activation pattern across 

both algorithms, particularly across nodes nodes corresponding to the motorsensory areas. Associated 

summary graph statistics of the task positive and task negative networks estimated with rt-SINGLE and 

SINGLE are provided in Supplementary Table 2.  
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Figure 7 

Subject specific networks visualizing edges that were significantly correlated across both the rt-SINGLE 

algorithm and its offline counterpart. Red edges indicate positive correlations while blue edges indicate 

negative correlations. We note that networks are dense across all subjects, indicating that the rt-SINGLE 

algorithm is able to accurately recover network structures similar to an offline study. Associated summary 

graph statistics of the task positive and task negative networks across all subjects are provided in 

Supplementary Table 3. 
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Figure 8 

Task activation networks for rt-SINGLE algorithm shown on the left panel. Present edges had statistically 

significant correlations with task HRF after correction for multiple comparisons. Red edges were up-

regulated during attentive visual searching while blue edges were up-regulated during the passive viewing 

phase. For clarity, edges corresponding to attentive visual search and passive viewing are plotted separately 

in the middle and right panels. Associated summary graph statistics of the networks associated with 

attentive visual search as well as passive viewing are provided in Supplementary Table 5. 


