
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

How Double-Fetch Situations turn into Double-
Fetch Vulnerabilities: A Study of Double Fetches

in the Linux Kernel
Pengfei Wang, National University of Defense Technology; Jens Krinke, University College

London; Kai Lu and Gen Li, National University of Defense Technology;
Steve Dodier-Lazaro, University College London

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/132225793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

How Double-Fetch Situations turn into Double-Fetch Vulnerabilities:
A Study of Double Fetches in the Linux Kernel

Pengfei Wang
National University of Defense Technology

Jens Krinke
University College London

Kai Lu
National University of Defense Technology

Gen Li
National University of Defense Technology

Steve Dodier-Lazaro
University College London

Abstract

We present the first static approach that systematically
detects potential double-fetch vulnerabilities in the Linux
kernel. Using a pattern-based analysis, we identified 90
double fetches in the Linux kernel. 57 of these occur
in drivers, which previous dynamic approaches were un-
able to detect without access to the corresponding hard-
ware. We manually investigated the 90 occurrences, and
inferred three typical scenarios in which double fetches
occur. We discuss each of them in detail. We further de-
veloped a static analysis, based on the Coccinelle match-
ing engine, that detects double-fetch situations which can
cause kernel vulnerabilities. When applied to the Linux,
FreeBSD, and Android kernels, our approach found six
previously unknown double-fetch bugs, four of them in
drivers, three of which are exploitable double-fetch vul-
nerabilities. All of the identified bugs and vulnerabilities
have been confirmed and patched by maintainers. Our
approach has been adopted by the Coccinelle team and
is currently being integrated into the Linux kernel patch
vetting. Based on our study, we also provide practical so-
lutions for anticipating double-fetch bugs and vulnerabil-
ities. We also provide a solution to automatically patch
detected double-fetch bugs.

1 Introduction

The wide use of multi-core hardware is making concur-
rent programs increasingly pervasive, especially in oper-
ating systems, real-time systems and computing inten-
sive systems. However, concurrent programs are also
notorious for difficult to detect concurrency bugs. Real-
world concurrency bugs can be categorized into three
types: atomicity-violation bugs, order-violation bugs,
and deadlocks [20].

A data race is another common situation in concurrent
programs. It occurs when two threads are accessing one
shared memory location, at least one of the two accesses

is a write, and the relative ordering of the two accesses is
not enforced by any synchronization primitives [30, 15].
Data races usually lead to concurrency bugs because
they can cause atomicity-violations [22, 21, 23] or order-
violations [33, 40]. In addition to occurring between two
threads, data races can also happen across the kernel and
user space. Serna [32] was the first to use the term “dou-
ble fetch” to describe a Windows kernel vulnerability
due to a race condition in which the kernel fetches the
same user space data twice. A double-fetch bug occurs
when the kernel reads and uses the same value that re-
sides in the user space twice (expecting it to be identi-
cal both times), while a concurrently running user thread
can modify the value in the time window between the
two kernel reads. Double-fetch bugs introduce data in-
consistencies in the kernel code, leading to exploitable
vulnerabilities such as buffer overflows [1, 32, 14, 37].

Jurczyk and Coldwind [14] were the first to study dou-
ble fetches systematically. Their dynamic approach de-
tected double fetches by tracing memory accesses and
they discovered a series of double-fetch vulnerabilities in
the Windows kernel. However, their dynamic approach
can achieve only limited coverage. In particular, it can-
not be applied to code that needs corresponding hard-
ware to be executed, so device drivers cannot be analyzed
without access to the device or a simulation of it. Thus,
their analysis cannot cover the entirety of the kernel. In
fact, their approach has not discovered any double-fetch
vulnerability in Linux, FreeBSD or OpenBSD [13]. Be-
sides, Jurczyk and Coldwind have brought attention to
not only on how to find but also on how to exploit double-
fetch vulnerabilities. Instructions on how to exploit dou-
ble fetches have recently become publicly available [11].
Thus, auditing kernels, in particular drivers, for double-
fetch vulnerabilities has become urgent.

Device drivers are critical kernel-level programs that
bridge hardware and software by providing interfaces be-
tween the operating system and the devices attached to
the system. Drivers are a large part of current operat-

USENIX Association 26th USENIX Security Symposium 1

ing systems, e.g., 44% of the Linux 4.5 source files be-
long to drivers. Drivers were found to be particularly
bug-prone kernel components. Chou et al. [7] empiri-
cally showed that the error-rate in device drivers is about
ten times higher than in any other parts of the kernel.
Swift et al. [34] also found that 85% of system crashes
in Windows XP can be blamed on driver errors. Further-
more, Ryzhyk et al. [29] found that 19% of the bugs in
drivers were concurrency bugs, and most of them were
data races or deadlocks.

Because drivers are such a critical point of failure in
kernels, they must be analyzed for security vulnerabili-
ties even when their corresponding hardware is not avail-
able. Indeed, 26% of the Linux kernel source files belong
to hardware architectures other than x86 which cannot be
analyzed with Jurczyk and Coldwind’s x86-based tech-
nique. Thus, dynamic analysis is not a viable, affordable
approach. Therefore, we developed a static pattern-based
approach to identify double fetches in the Linux kernel,
including the complete space of drivers. We identified 90
double fetches which we then investigated and catego-
rized into three typical scenarios in which double fetches
occur. We found that most double fetches are not double-
fetch bugs because although the kernel fetches the same
data twice, it only uses the data from one of the two
fetches. We therefore refined the static pattern-based ap-
proach to detect actual double-fetch bugs and vulnera-
bilities, and analyzed Linux, Android and FreeBSD with
it.

We found that most of the double fetches in Linux 4.5
occur in drivers (57/90) and so do most of the identified
double-fetch bugs (4/5). This means dynamic analysis
methods fail to detect a majority of double fetch bugs,
unless researchers have access to the complete range of
hardware compatible with the kernel they analyze. This
is confirmed by a comparison with Bochspwn, a dynamic
analysis approach, which was unable to find any double-
fetch bug in Linux 3.5.0 [13] where our approach finds
three. In summary, we make the following contributions
in this paper:

(1) First systematic study of double fetches in the
Linux kernel. We present the first (to the best of our
knowledge) study of double fetches in the complete
Linux kernel, including an analysis of how and why a
double fetch occurs. We used pattern matching to auto-
matically identify 90 double-fetch situations in the Linux
kernel, and investigated those candidates by manually
reviewing the kernel source. We categorize the identi-
fied double fetches into three typical scenarios (type se-
lection, size checking, shallow copy) in which double
fetches are prone to occur, and illustrate each scenario
with a detailed double fetch case analysis. Most (57/90)
of the identified double fetches occur in drivers.

(2) A pattern-based double-fetch bug detection ap-
proach. We developed a static pattern-based approach to
detect double-fetch bugs1. The approach has been imple-
mented on the Coccinelle program matching and trans-
formation engine [17] and has been adapted for check-
ing the Linux, FreeBSD, and Android kernels. It is the
first approach able to detect double-fetch vulnerabilities
in the complete kernel including all drivers and all hard-
ware architectures. Our approach has been adopted by
the Coccinelle team and is currently being integrated into
the Linux kernel patch vetting through Coccinelle.

(3) Identification of six double-fetch bugs. In total, we
found six real double-fetch bugs. Four are in the drivers
of Linux 4.5 and three of them are exploitable vulner-
abilities. Moreover, all four driver-related double-fetch
bugs belong to the same size checking scenario. The bugs
have been confirmed by the Linux maintainers and have
been fixed in new versions as a result of our reports. One
double-fetch vulnerability has been found in the Android
6.0.1 kernel, which was already fixed in newer Linux ker-
nels.

(4) Strategies for double-fetch bug prevention. Based
on our study, we propose five solutions to anticipate
double-fetch bugs and we implemented one of the strate-
gies in a tool that automatically patches double-fetch
bugs.

The rest of the paper is organized as follows: Sec-
tion 2 presents relevant background on memory access in
Linux, specifically in Linux drivers, and on how double-
fetch bugs occur. Section 3 introduces our approach to
double fetch detection, including our analysis process,
the categorization of the identified double fetches into
three scenarios, and what we learned from the identi-
fied double-fetch bugs. Section 4 presents the evaluation
of our work, including statistics on the manual analysis
and the results of applying our approach to the Linux,
FreeBSD, and Android kernels. Section 5 discusses the
detected bugs, implications of double-fetch bug preven-
tion, an interpretation of our findings, as well as limi-
tations of our approach. Related work is discussed in
Section 6, followed by conclusions.

2 Background

We provide readers with a reminder of how data is ex-
changed between the Linux kernel and its drivers and the
user space, and of how race conditions and double-fetch
bugs can occur within this framework.

1Our analysis is available at https://github.com/UCL-CREST/
doublefetch

2 26th USENIX Security Symposium USENIX Association

2.1 Kernel/User Space Protection
In modern computer systems, memory is divided into
kernel space and user space. The kernel space is where
the kernel code executes and where its internal data is
stored, while the user space is where normal user pro-
cesses run. Each user space process resides in its own
address space, and can only address memory within that
space. Those virtual address spaces are mapped onto
physical memory by the kernel in such a way that iso-
lation between separate spaces is guaranteed. The kernel
also has its own independent address space.

Special schemes are provided by the operating sys-
tem to exchange data between kernel and user space.
In Windows, we can use the device input and output
control (IOCTL) method, or a shared memory object
method to exchange data between kernel and user space2

which is very similar to shared memory regions. In
Linux and FreeBSD, functions are provided to safely
transfer data between kernel space and user space which
we call transfer functions. For instance, Linux has
four often used transfer functions, copy_from_user(),
copy_to_user(), get_user(), and put_user(), that
copy single values or an arbitrary amount of data to
and from user space in a safe way. Transfer functions
not only exchange data between kernel and user space
but also provide a protection mechanism against invalid
memory access, such as illegal addresses or page faults.
Therefore, any double fetch in Linux will involve multi-
ple invocations of transfer functions.

2.2 Memory Access in Drivers
Device drivers are kernel components responsible for en-
abling the kernel to communicate with and make use of
hardware devices connected to the system. Drivers have
typical characteristics, such as support for synchronous
and asynchronous operations and the ability to be opened
multiple times [8]. Drivers are critical to security be-
cause faults in them can result in vulnerabilities that
grant control of the whole system. Finally, drivers of-
ten have to copy messages of variable type or variable
length from the user space to the hardware, and, as we
will see later, this often leads to double-fetch situations
that cause vulnerabilities.

In Linux, all devices have a file representation which
can be accessed from user space to interact with the hard-
ware’s driver. The kernel creates a file in the /dev di-
rectory for each driver, with which user space processes
can interact using file input/output system calls. The
driver provides implementations of all file related op-
erations, including read() and write() functions. In
such functions, the driver needs to fetch the data from

2https://support.microsoft.com/en-us/kb/191840

prepare
data clone

syscall

malicious
update

1st fetch
(check)

2nd fetch
(real use)entryKernel Space

User Space
user data

time

Figure 1: Principal Double Fetch Race Condition

the user space (in write) or copy data to the user space
(in read). The driver uses the transfer functions to do so,
and again, any double fetch will involve multiple invoca-
tions of transfer functions.

2.3 Double Fetch
A double fetch is a special case of a race condition
that occurs in memory access between the kernel and
user space. The first vulnerability of this type was pre-
sented by Serna [32] in a report on Windows double-
fetch vulnerabilities. Technically, a double fetch takes
place within a kernel function, such as a syscall, which
is invoked by a user application from user mode. As il-
lustrated in Figure 1, the kernel function fetches a value
twice from the same memory location in the user space,
the first time to check and verify it and the second time to
use it (note that the events are on a timeline from left to
right, but the user data is the same object all the time).
Meanwhile, within the time window between the two
kernel fetches, a concurrently running user thread modi-
fies the value. Then, when the kernel function fetches the
value a second time to use, it gets a different value, which
will not only result in a different computation outcome,
but may cause a buffer overflow, a null-pointer crash or
even worse consequences.

To avoid confusion, we use the term double fetch or
double-fetch situation in this paper to represent all the
situations in which the kernel fetches the same user data
more than once, and a so-called double fetch can be fur-
ther divided into the following cases:

Benign double fetch: A benign double fetch is a case
that will not cause harm, owing to additional protection
schemes or because the double-fetched value is not used
twice (details will be discussed in Section 5.3).

Harmful double fetch: A harmful double fetch or
a double-fetch bug is a double fetch that could actually
cause failures in the kernel in specific situations, e.g., a
race condition that could be triggered by a user process.

Double-fetch vulnerability: A double-fetch bug can
also turn into a double-fetch vulnerability once the conse-
quence caused by the race condition is exploitable, such

USENIX Association 26th USENIX Security Symposium 3

140 int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg,
141 unsigned char *stackbuf, int stackbuf_size)
142 {
143 struct compat_cmsghdr __user *ucmsg;
144 struct cmsghdr *kcmsg, *kcmsg_base;
145 compat_size_t ucmlen;
...
149 kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
150 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);
151 while(ucmsg != NULL) {
152 if(get_user(ucmlen, &ucmsg->cmsg_len))
153 return -EFAULT;
...
156 if(CMSG_COMPAT_ALIGN(ucmlen) <
157 CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))
158 return -EINVAL;
159 if((...)(((char __user *)ucmsg - (char __user*)...
160 + ucmlen) > kmsg->msg_controllen)
161 return -EINVAL;
...
166 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);
167 }
168 if(kcmlen == 0)
169 return -EINVAL;
...
183 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);
184 while(ucmsg != NULL) {
185 __get_user(ucmlen, &ucmsg->cmsg_len);
186 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
187 CMSG_ALIGN(sizeof(struct cmsghdr)));
188 kcmsg->cmsg_len = tmp;
...
193 if(copy_from_user(CMSG_DATA(kcmsg),
194 CMSG_COMPAT_DATA(ucmsg),
195 (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))
...
212 }

Figure 2: Double-Fetch Vulnerability in Linux 2.6.9

as through a buffer overflow, causing privilege escala-
tion, information leakage or kernel crash.

In this paper, we investigate both harmful double
fetches and benign double fetches. Even though be-
nign double fetches are currently not vulnerable, some
of them can turn into harmful ones when the code is
changed or updated in the future (when the double-
fetched data is reused). Moreover, some benign double
fetches them can cause performance degradation when
one of the fetches is redundant (discussed in Section 5).

Double-fetch vulnerabilities occur not only in the
Windows kernel [14], but also in the Linux kernel. Fig-
ure 2 shows a double-fetch bug in Linux 2.6.9, which
was reported as CVE-2005-2490. In file compat.c,
when the user-controlled content is copied to the ker-
nel by sendmsg(), the same user data is accessed
twice without a sanity check at the second time.
This can cause a kernel buffer overflow and there-
fore could lead to a privilege escalation. The func-
tion cmsghdr_from_user_compat_to_kern() works
in two steps: it first examines the parameters in the first
loop (line 151) and copies the data in the second loop
(line 184). However, only the first fetch (line 152) of
ucmlen is checked (lines 156–161) before use, whereas
after the second fetch (line 185) there are no checks be-

prepare
data clone

syscall

1st fetch
(copy)

1st use
(check)

2nd fetch
(copy)

2nd use
(real use)entryKernel Space

User Space

kernel copy #1 kernel copy #2

malicious
update

user data

time

Figure 3: Double Fetch with Transfer Functions

fore use, which may cause an overflow in the copy oper-
ation (line 195) that can be exploited to execute arbitrary
code by modifying the message.

Plenty of approaches have been proposed for data race
detection at memory access level. Static approaches ana-
lyze the program without running it [35, 28, 12, 6, 10, 19,
38]. However, their major disadvantage is that they gen-
erate a large number of false reports due to lack the full
execution context of the program. Dynamic approaches
execute the program to verify data races [31, 16, 15],
checking whether a race could cause a program failure
in executions. Dynamic approaches usually control the
active thread scheduler to trigger specific interleavings
to increase the probability of a bug manifestation [41].
Nevertheless, the runtime overhead is a severe problem
and testing of driver code requires the support of specific
hardware or a dedicated simulation. Unfortunately, none
of the existing data race detection approaches (whether
static or dynamic) can be applied to double-fetch bug de-
tection directly, for the following reasons:

(1) A double-fetch bug is caused by a race condition
between kernel and user space, which is different from
a common data race because the race condition is sepa-
rated by the kernel and user space. For a data race, the
read and write operations exist in the same address space,
and most of the previous approaches detect data races by
identifying all read and write operations accessing the
same memory location. However, things are different for
a double-fetch bug. The kernel only contains two reads
while the write resides in the user thread. Moreover, the
double-fetch bug exists if there is a possibility that the
kernel fetches and uses the same memory location twice,
as a malicious user process can specifically be designed
to write between the first and second fetch.

(2) The involvement of the kernel makes a double-
fetch bug different from a data race in the way of
accessing data. In Linux, fetching data from user
space to kernel space relies on the specific parameters
passed to transfer functions (e.g., copy_from_user()
and get_user()) rather than dereferencing the user
pointer directly, which means the regular data race de-
tection approaches based on pointer dereference are not
applicable anymore.

4 26th USENIX Security Symposium USENIX Association

(3) Moreover, a double-fetch bug in Linux is more
complicated than a common data race or a double-fetch
bug in Windows. As shown in Figure 3, a double-fetch
bug in Linux requires a first fetch that copies the data,
usually followed by a first check or use of the copied
data, then a second fetch that copies the same data again,
and a second use of the same data. Although the dou-
ble fetch can be located by matching the patterns of fetch
operations, the use of the fetched data varies a lot. For
example, in addition to being used for validation, the first
fetched value can be possibly copied to somewhere else
for later use, which means the first use (or check) could
be temporally absent. Besides, the fetched value can be
passed as an argument to other functions for further use.
Therefore, in this paper, we define the use in a double
fetch to be a conditional check (read data for compar-
ison), an assignment to other variables, a function call
argument pass, or a computation using the fetched data.
We need to take into consideration these double fetch
characteristics.

For these reasons, identifying double-fetch bugs re-
quires a dedicated analysis and previous approaches are
either not applicable or not effective.

2.4 Coccinelle
Coccinelle [17] is a program matching and transforma-
tion engine with a dedicated language SmPL (Seman-
tic Patch Language) for specifying desired matches and
transformations in C code. Coccinelle was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.

Coccinelle’s strategy for traversing control-flow
graphs is based on temporal logic CTL (Computational
Tree Logic) [3], and the pattern matching implemented
on Coccinelle is path-sensitive, which achieves better
code coverage. Coccinelle is highly optimized to im-
prove performance when exhaustively traversing all the
execution paths. Besides, Coccinelle is insensitive to
newlines, spaces, comments, etc. Moreover, the pattern-
based analysis is applied directly to the source code,
therefore operations that are defined as macros, such as
get_user() or __get_user(), will not be expanded
during the matching, which facilitates the detection of
double fetches based on the identification of transfer
functions. Therefore, Coccinelle is a suitable tool for us
to carry out our study of double fetches based on pattern
matching.

3 Double Fetches in the Linux Kernel

In this paper, our study of double fetches in the Linux
kernel is divided into two phases. As shown in Figure 4,
in the first phase, we analyze the Linux kernel with the

Source

FilesSource

Files

Coccinelle

Matching

Engine

Source

FilesCandidate

Files

void function_name(*src)

{

copy_from_user(dst1, src, len1)

...

copy_from_user(dst2, src, len2)

}

Manual

Analysis

Rule 0 : Basic pattern

Rule 1 : No pointer change

Rule 2 : Pointer aliasing

Rule 3 : Explicit type conversion

Rule 4 : Combination of element

fetch and pointer fetch

Rule 5 : Loop involvement

Bug Details

Categorization

Phase 1: Basic Pattern

Phase 2: Refined Pattern
Source

FilesDouble

Fetch

Context

Information

Trigger &

Consequence

Figure 4: Overview of our Two-Phase Coccinelle-Based
Double-Fetch Situation Detection Process

Coccinelle engine using a basic double-fetch pattern that
identifies when a function has multiple invocations of a
transfer function. Then we manually investigate the can-
didate files found by the pattern matching, to categorize
the scenarios in which a double fetch occurs and when
a double-fetch bug or vulnerability is prone to happen
based on the context information that is relevant to the
bug. In the second phase, based on the knowledge gained
from the manual analysis, we developed a more precise
analysis using the Coccinelle engine to systematically
detect double-fetch bugs and vulnerabilities throughout
the kernel, which we also used to additionally analyze
FreeBSD and Android.

3.1 Basic Pattern Matching Analysis

There are situations in which a double fetch is hard to
avoid, and there exist a large number of functions in the
Linux kernel that fetch the same data twice. According
to the definition, a double fetch can occur in the kernel
when the same user data is fetched twice within a short
interval. Therefore we can conclude a basic pattern that
we will use to match all the potential double-fetch sit-
uations. The pattern matches the situation in which a
kernel function is using transfer functions to fetch data
from same user memory region at least twice. In the
case of the Linux kernel, the transfer functions to match
are mainly get_user() and copy_from_user() in all
their variants. The pattern allows the target of the copy
and the size of the copied data to be different, but the
source of copy (the address in user space) must be the
same. As shown in Figure 4, we implemented the basic
pattern matching in the Coccinelle engine.

Our approach examines all source code files of the
Linux kernel and checks whether a kernel function con-
tains two or more invocations of transfer functions that
fetch data from the same user pointer. From the 39,906
Linux source files, 17,532 files belong to drivers (44%),
and 10,398 files belong to non-x86 hardware architec-

USENIX Association 26th USENIX Security Symposium 5

tures (26%) which cannot be analyzed with Jurczyk and
Coldwind’s x86-based technique. We manually analyzed
the matched kernel functions to infer knowledge on the
characteristics of double fetches, i.e., how the user data
is transferred to and used in the kernel, which helped us
to carry out a categorization of double-fetch situations,
as we discuss in Section 3.2. The manual analysis also
helped us refine our pattern matching approach and more
precisely detect actual double-fetch bugs, as explained in
Section 3.3.

During the investigation, we noticed that there are
plenty of cases where the transfer functions fetch data
from different addresses or from the same address but
with different offsets. For example, a kernel function
may fetch the elements of a specific structure separately
instead of copying the whole structure to the kernel. By
adding different offsets to the start address of that struc-
ture, the kernel fetches different elements of the struc-
ture separately, which results in multiple fetches. An-
other common situation is adding a fixed offset to the
source pointer, so as to process a long message sepa-
rately, or just using self-increment (++) to process a mes-
sage automatically in a loop. All these cases are false
positives caused by the basic pattern matching, and 226
cases of our initial reports were identified as false posi-
tives, which have been automatically removed in our re-
fined phase since they are not considered as double-fetch
situations and cannot cause a double-fetch bug because
every single piece of the message is only fetched once.

The first phase of our study concentrates on the un-
derstanding of the contexts in which double fetches are
prone to happen, rather than on exhaustively finding po-
tential double-fetch bugs. Even though the analysis and
characterization is not fully automated, it only resulted
in 90 candidates that needed manual investigation, which
took only a few days to analyze them, making the needed
manual effort of our approach acceptable.

3.2 Double Fetch Categorization

As we manually inspected the double fetch candidates,
we noticed that there are three common scenarios in
which double fetches are prone to happen, which we
categorized as type selection, size checking and shallow
copy. We now discuss these in detail.

Most of the time, copying data from the user space to
the kernel space is straightforward via a single invocation
of a transfer function. However, things get complicated
when the data has a variable type or a variable length,
depending on the data itself. Such data usually starts with
a header, followed by the data’s body. In the following,
we consider such data to be messages, as we empirically
found that variable data was often used by drivers to pass
messages to the hardware from user space.

Header

struct header(*ptr)

{

unsigned int size;

unsigned type;

...

}hdr;

User

Msg content

*ptr

copy_from_user(hdr, ptr, sizeof(header));

...

buf = kalloc(hdr.size)

...

copy_from_user(buf, ptr, hdr.size);

...

Size

Checking

copy_from_user(hdr, ptr, sizeof(header));

switch(hdr.type){

case 1:

copy_from_user()

...

case 2:

copy_from_user()

...

default:

...

}

Type

Selection

Figure 5: How Message Structure Leads to Double
Fetches

Figure 5 illustrates the scenario: A message copied
from the user space to the kernel (driver) space usually
consists of two parts, the header and the body. The
header contains some meta information about the mes-
sage, such as an indicator of the message type or the
size of the message body. Since messages have differ-
ent types and the message lengths may also vary, the
kernel usually fetches (copies) the header first to decide
which buffer type needs to be created or how much space
needs to be allocated for the complete message. A sec-
ond fetch then copies the complete message into the al-
located buffer of the specified type or size. The sec-
ond fetch not only copies the body, but also copies the
complete message including the header which has been
fetched already. Because the header of the message is
fetched (copied) twice, a double-fetch situation arises.
The double-fetch situation turns into a double-fetch bug
when the size or type information from the second fetch
is used as the user may have changed the size or type
information between the two fetches. If, for example,
the size information is used to control buffer access, the
double-fetch bug turns into a vulnerability.

The double-fetch situations where a message header is
copied twice could easily be avoided by only copying the
message body in the second fetch and then joining the
header with the body. However, copying the complete
message in the second step is more convenient, and there-
fore such a double-fetch situation occurs very often in the
Linux kernel. Moreover, large parts of the Linux kernel
are old, i.e., they have been developed before double-
fetch bugs were known or understood. Therefore, we
will discuss such double-fetch situations in the kernel in

6 26th USENIX Security Symposium USENIX Association

more detail and also highlight three cases we have found
during the manual analysis.

3.2.1 Type Selection

A common scenario in which double fetches occur is
when the message header is used for type selection. In
other words, the header of the message is fetched first
to recognize the message type and then the whole mes-
sage is fetched and processed dependent on the identi-
fied type. We have observed that it is very common in
the Linux kernel that one single function in a driver is
designed to handle multiple types of messages by using
a switch statement structure, in which each particular
message type is fetched and then processed. The result
of the first fetch (the message type) is used in the switch
statement’s condition and in every case of the switch,
the message is then copied by a second fetch to a local
buffer of a specific type (and then processed).

Figure 6 shows an example of a double-fetch situ-
ation due to type selection in the file cxgb3_main.c,
part of a network driver. The function cxgb_exten-
sion_ioctl() first fetches the type of the message
(a command for the attached hardware) into cmd from
the pointer into user space useraddr at line 2136. It
then decides based on cmd which type the message
has (e.g., CHELSIP_SET_QSET_PARAMS, CHELSIP_-
SET_QSET_NUM or CHELSIO_SETMTUTAB) and copies the
complete message into the corresponding structure (of
type ch_qset_params, ch_reg, ch_mtus, ...). The type
of the message will be fetched a second time as part
of the whole message (lines 2149, 2292, 2355 respec-
tively). As long as the header part of the message is not
used again, the double fetch in this situation does not
cause a double-fetch bug. However, if the header part
(the type/command) of the second fetch would be used
again, problems could occur as a malicious user could
have changed the header between the two fetches. In the
case of cxgb_extension_ioctl(), a manual investi-
gation revealed no use of the type part in the buffers t,
edata, m, ... and the double-fetch situation here does not
cause a double-fetch vulnerability.

We found 11 occurrences of this double-fetch cate-
gory, 9 of them in drivers. None of the 11 occurrences
used the header part of the second fetch and therefore,
they were not causing double-fetch bugs.

3.2.2 Size Checking

Another common scenario occurs when the actual length
of the message can vary. In this scenario, the message
header is used to identify the size of the complete mes-
sage. The message header is copied to the kernel first to
get the message size (first fetch), check it for validity, and

2129 static int cxgb_extension_ioctl(struct net_device *dev,
void __user *useraddr)

2130 {
...
2133 u32 cmd;
...
2136 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2137 return -EFAULT;
2138
2139 switch (cmd) {
2140 case CHELSIO_SET_QSET_PARAMS:{
...
2143 struct ch_qset_params t;
...
2149 if (copy_from_user(&t, useraddr, sizeof(t)))
2150 return -EFAULT;
2151 if (t.qset_idx >= SGE_QSETS)
2152 return -EINVAL;
...
2238 break;
2239 }
...
2284 case CHELSIO_SET_QSET_NUM:{
2285 struct ch_reg edata;
...
2292 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2293 return -EFAULT;
2294 if (edata.val < 1 ||
2295 (edata.val > 1 && !(...)))
2296 return -EINVAL;
...
2313 break;
2314 }
...
2345 case CHELSIO_SETMTUTAB:{
2346 struct ch_mtus m;
...
2355 if (copy_from_user(&m, useraddr, sizeof(m)))
2356 return -EFAULT;
2357 if (m.nmtus != NMTUS)
2358 return -EINVAL;
2359 if (m.mtus[0] < 81)
2360 return -EINVAL;
...
2369 break;
2370 }
...
2499 }

Figure 6: A Double-Fetch Situation Belonging to the
Type Selection Category in cxgb3 main.c

allocate a local buffer of the necessary size, then a sec-
ond fetch follows to copy the whole message, which also
includes the header, into the allocated buffer. As long as
only the size of the first fetch is used and not retrieved
from the header of the second fetch, the double fetch in
this situation does not cause a double-fetch vulnerability
or bug. However, if the size is retrieved from the header
of the second fetch and used, the kernel becomes vul-
nerable as a malicious user could have changed the size
element of the header.

One such double-fetch bug (CVE-2016-6480) was
found in file commctrl.c in the Adaptec RAID con-
troller driver of the Linux 4.5. Figure 7 shows the re-
sponsible function ioctl_send_fib() which fetches
data from user space pointed by pointer arg via
copy_from_user() twice in line 81 and line 116. The

USENIX Association 26th USENIX Security Symposium 7

60 static int ioctl_send_fib(struct aac_dev* dev,
void __user *arg)

61 {
62 struct hw_fib * kfib;
...
81 if (copy_from_user((void *)kfib, arg, sizeof(...))) {
82 aac_fib_free(fibptr);
83 return -EFAULT;
84 }
...
90 size = le16_to_cpu(kfib->header.Size) + sizeof(...);
91 if (size < le16_to_cpu(kfib->header.SenderSize))
92 size = le16_to_cpu(kfib->header.SenderSize);
93 if (size > dev->max_fib_size) {
...
101 kfib = pci_alloc_consistent(dev->pdev, size, &daddr);
...
114 }
115
116 if (copy_from_user(kfib, arg, size)) {
117 retval = -EFAULT;
118 goto cleanup;
119 }
120
121 if (kfib->header.Command == cpu_to_le16(...)) {
...
128 } else {
129 retval =

aac_fib_send(le16_to_cpu(kfib->header.Command),...
130 le16_to_cpu(kfib->header.Size) , FsaNormal,
131 1, 1, NULL, NULL);
...
139 }
...
160 }

Figure 7: A Double-Fetch Vulnerability in commctrl.c
(CVE-2016-6480)

first fetched value is used to calculate a buffer size (line
90), to check the validity of the size (line 93), and to al-
locate a buffer of the calculated size (line 101), while the
second copy (line 116) fetches the whole message with
the calculated size. Note that the variable kfib pointing
to the kernel buffer storing the message is reused in line
101. The header of the message is large and various ele-
ments of the header are used after the message has been
fetched the second time (e.g., kfib->header.Command
in line 121 and 129). The function also uses the size el-
ement of the header a second time in line 130, causing a
double-fetch vulnerability as a malicious user could have
changed the Size field of the header between the two
fetches.

We observed 30 occurrences of such size checking
double-fetch situations, 22 of which occur in drivers, and
four of them (all in drivers) are vulnerable.

3.2.3 Shallow Copy

The last special case of double-fetch scenario we identi-
fied is what we call shallow copy issues. A shallow copy
between user and kernel space happens when a buffer
(the first buffer) in the user space is copied to the ker-
nel space, and the buffer contains a pointer to another

55 static int sclp_ctl_ioctl_sccb(void __user *user_area)
56 {
57 struct sclp_ctl_sccb ctl_sccb;
58 struct sccb_header *sccb;
59 int rc;
60
61 if (copy_from_user(&ctl_sccb, user_area,

sizeof(ctl_sccb)))
62 return -EFAULT;
...
65 sccb = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
66 if (!sccb)
67 return -ENOMEM;
68 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb),

sizeof(*sccb))) {
69 rc = -EFAULT;
70 goto out_free;
71 }
72 if (sccb->length > PAGE_SIZE || sccb->length < 8)
73 return -EINVAL;
74 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb),

sccb->length)) {
75 rc = -EFAULT;
76 goto out_free;
77 }
...
81 if (copy_to_user(u64_to_uptr(ctl_sccb.sccb), sccb,

sccb->length))
82 rc = -EFAULT;
...
86 }

Figure 8: A Double-Fetch Bug in sclp ctl.c (CVE-
2016-6130)

buffer in user space (the second buffer). A transfer func-
tion only copies the first buffer (a shallow copy) and the
second buffer has to be copied by the second invocation
of a transfer function (to perform a deep copy). Some-
times it is necessary to copy data from user space into
kernel space, act on the data, and copy the data back into
user space. Such data is usually contained in the second
buffer in user space and pointed to by a pointer in the
first buffer in user space containing additional data. The
transfer functions perform shallow copies and therefore
data pointed to in the buffer copied by a transfer func-
tion must be explicitly copied as well, so as to perform
a deep copy. Such deep copies will cause multiple in-
vocations of transfer functions which are not necessarily
double fetches as each transfer function is invoked with
a different buffer to be copied. We observed 31 of such
situations, 19 of them in drivers.

The complexity of performing a deep copy with
transfer functions that only do shallow copies can
cause programmers to introduce bugs, and we found
one such bug in file sclp_ctl.c of the IBM S/390
SCLP console driver, where the bug is caused by a
shallow copy issue (CVE-2016-6130). The function
sclp_ctl_ioctl_sccb in Figure 8 performs a shallow
copy of a data structure from user space pointed to by
user_area into ctl_sccb (line 61). To do a deep copy,
it then has to copy another data structure from user space
pointed to by ctl_sccb.sccb. However, the size of the

8 26th USENIX Security Symposium USENIX Association

Source

Code Files

Double-

Fetch Bug

trans_func(dst1, src)

...

trans_func(dst2, src)

Rule 0 Rule 2

Rule 1

Rule 4

Rule 3

for(i=0; i<c; i++){

trans_func(dst1, src[i])

...

trans_func(dst2, src[i])

}

trans_func(dst1, src)

...

when != src = src+ offset

when != src += offset

when != src ++

when != src = ptr

...

trans_func(dst2, src)

trans_func(dst1, src)

...

trans_func(dst2, (T)src)

trans_func(dst1, (T1)src)

...

trans_func(dst2, (T2)src)

trans_func(dst1, src)

...

p = src

...

trans_func(dst2, p)

Refined Rule-based Pattern Matching

Rule 5

trans_func(dst1, ptr->len)

...

trans_func(dst2, ptr)

trans_func(dst1, msg.len)

...

trans_func(dst2, &msg)

Figure 9: Refined Coccinelle-Based Double-Fetch Bug
Detection

data structure is variable, causing a size checking sce-
nario. In order to copy the data, it first fetches the header
of the data structure into the newly created kernel space
pointed to by sccb (line 68) to get the data length in
sccb->length which is checked for validity in line 72.
Then, based on sccb->length, it copies the whole con-
tent with a second fetch in line 74. Finally at line 81,
the data is copied back to the user space. While it looks
like both invocations of the transfer functions in lines 74
and 81 use the same length sccb->length, line 81 actu-
ally uses the value as copied in line 74 (the second fetch)
while line 74 uses the value from the first fetch.

Again, this is a double-fetch bug as a user may have
changed the value between the two fetches in lines 68
and 74. However, this double-fetch bug is not causing a
vulnerability because neither can the kernel be crashed
by an invalid size given to a transfer function, nor can
information leakage occur when the kernel copies back
data beyond the size that it received earlier because the
copied buffer is located in its own memory page. An
attempt to trigger the bug will simply end in termination
of the system call with an error code in line 82. The
double-fetch bug has been eliminated in Linux 4.6.

3.3 Refined Double-Fetch Bug Detection

In this section, we present the second phase of our study
which uses a refined double-fetch bug detection approach
that is again based on the Coccinelle matching engine.
While the first phase of our study was to identify and cat-
egorize scenarios in which double fetches occur, the sec-
ond phase exploited the gained knowledge from the first
phase to design an improved analysis targeted at specifi-
cally identifying double-fetch bugs and vulnerabilities.

As shown in Figure 9, in addition to the basic double-
fetch pattern matching rule (Rule 0), which is trig-

gered when two reads fetch data from the same source
location, we added the following five additional rules
to improve precision as well as discover corner cases.
The Coccinelle engine applies these rules one by one
when analyzing the source files. A double-fetch bug
could involve different transfer functions, therefore,
we have to take the four transfer functions that copy
data from user space (get_user(), __get_user(),
copy_from_user(), __copy_from_user()) into con-
sideration. We use trans_func() in Figure 9 to repre-
sent any possible transfer functions in the Linux kernel.

Rule 1: No pointer change. The most critical rule in
detecting double-fetch bugs is keeping the user pointer
unchanged between two fetches. Otherwise, different
data is fetched each time instead of the same data being
double-fetched, and false positives can be caused. As
can be seen from Rule 1 in Figure 9, this change might
include cases of self-increment (++), adding an offset, or
assignment of another value, and the corresponding sub-
traction situations.

Rule 2: Pointer aliasing. Pointer aliasing is com-
mon in double-fetch situations. In some cases, the user
pointer is assigned to another pointer, because the origi-
nal pointer might be changed (e.g., processing long mes-
sages section by section within a loop), while using two
pointers is more convenient, one for checking the data,
and the other for using the data. As can be seen from
Rule 2 in Figure 9, this kind of assignment might appear
at the beginning of a function or in the middle between
the two fetches. Missing aliasing situation could cause
false negatives.

Rule 3: Explicit type conversion. Explicit pointer
type conversion is widely used when the kernel is fetch-
ing data from user space. For instance, in the size check-
ing scenario, a message pointer would be converted to a
header pointer to get the header in the first fetch, then
used again as a message pointer in the second fetch. As
can be seen from Rule 3 in Figure 9, any of the two
source pointers could involve type conversion. Missing
type conversion situations could cause false negatives.
In addition, explicit pointer type conversions are usually
combined with pointer aliasing, causing the same mem-
ory region to be manipulated by two types of pointers.

Rue 4: Combination of element fetch and pointer
fetch. In some cases, a user pointer is used to both
fetch the whole data structure as well as fetching only
a part by dereferencing the pointer to an element of
the data structure. For instance, in the size check-
ing scenario, a user pointer is first used to fetch the
message length by get_user(len, ptr->len), then
to copy the whole message in the second fetch by
copy_from_user(msg, ptr, len), which means the
two fetches are not using exactly the same pointer as
the transfer function arguments, but they cover the same

USENIX Association 26th USENIX Security Symposium 9

value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation may use a user pointer or the address
of the data structure as the argument of the transfer func-
tions. This situation usually appears with explicit pointer
type conversion, and false negatives could be caused if
this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in a loop,
the second fetch of the last iteration and the first fetch of
the next iteration will be matched as a double fetch. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-
ations and these two fetches are getting different values.
Moreover, cases that use an array to copy different values
inside a loop also cause false positives.

4 Evaluation

In this section, we present the evaluation of our study,
which includes two parts: the statistics of the manual
analysis, and the results of the refined approach when
applied to three open source kernels: Linux, Android,
and FreeBSD. We obtained the most up-to-date versions
available at the time of the analysis.

4.1 Statistics and Analysis
In Linux 4.5, there are 52,881 files in total and 39,906 of
them are source files (with a file extension of .c or .h),
which are our analysis targets (other files are ignored).
17,532 source files belong to drivers (44%). After the
basic pattern matching of the source files and the man-
ual inspection to remove false positives, we obtained 90
double-fetch candidate files for further inspection. We
categorized the candidates into the three double-fetch
scenarios Size Checking, Type Selection and Shallow
Copy. They are the most common cases on how a double
fetch occurs while user space data is copied to the kernel
space and how the data is then used in the kernel. We
have discussed these scenarios in detail with real double-
fetch bug examples in the previous section. As shown
in Table 1, of the 90 candidates we found, 30 were re-
lated to the size checking scenario, 11 were related to the
type selection scenario, and 31 were related to the shal-
low copy scenario, accounting for 33%, 12%, and 34%
respectively. 18 candidates did not fit into one of the
three scenarios.

Furthermore, 57 out of the 90 candidates were part of
Linux drivers and among them, 22 were size checking re-
lated, 9 were type selection related and 19 were shallow
copy related.

Table 1: Basic Double Fetch Analysis Results

Category Occurrences In Drivers

Size Checking 30 33% 22 73%
Type Selection 11 12% 9 82%
Shallow Copy 31 34% 19 61%
Other 18 20% 7 39%
Total 90 100% 57 63%

True Bugs 5 6% 4 80%

Table 2: Refined Double-Fetch Bug Detection Results

Kernel
Total
Files

Reported
Files

True
Bugs

Size
Check.

Type
Sel.

Linux 4.5 39,906 53 5 23 6
Android 6.0.1 35,313 48 3 18 6
FreeBSD 32,830 16 0 8 3

Most importantly, we found five previously unknown
double-fetch bugs which include four size checking sce-
narios and one shallow copy scenario which also be-
longs to the size checking scenario. Three of them are
exploitable vulnerabilities. The five bugs have been re-
ported and they all have been confirmed by the develop-
ers and have meanwhile been fixed. From the statistical
result, we can observe the following:

1. 57 out of 90 (63%) of the candidates were driver
related and 22 out of 30 (73%) of the size checking
cases, 9 out of 11 (82%) of the type selection cases
and 19 out of 31 (61%) of the shallow copy cases
occur in drivers.

2. 4 out of 5 (80%) of the double-fetch bugs we found
inside drivers and belong to the size checking cate-
gory.

Overall, this leads to the conclusion that most double
fetches do not cause double-fetch bugs and that double
fetches are more likely to occur in drivers. However, as
soon as a double fetch is due to size checking, developers
have to be careful: Four out of 22 size checking scenarios
in drivers turned out to be double-fetch bugs.

4.2 Analysis of Three Open Source Kernels
Based on the double fetch basic pattern matching and
manual analysis, we refined our double fetch pattern
and developed a new double-fetch bug detection analysis
based on the Coccinelle engine. In order to fully evalu-
ate our approach, we analyzed three popular open source
kernels, namely Linux, Android, and FreeBSD. Results
are shown in Table 2.

10 26th USENIX Security Symposium USENIX Association

For the Linux kernel, the experiment was conducted
on version 4.5, which was the newest version when the
experiment was conducted. The analysis took about 10
minutes and reported 53 candidate files. An investigation
of the 53 candidates revealed five true double-fetch bugs,
which were also found by the previous manual analysis.
Among the reported files, 23 were size checking related,
and 6 were type selection related.

For Android, even though it uses Linux as its ker-
nel as well, we analyzed version 6.0.1 which is based
on Linux 3.18. There are still differences between the
Android kernel and original Linux kernel: A kernel for
Android is a mainstream Linux kernel, with additional
drivers for the specific Android device, and other ad-
ditional functionality, such as enhanced power manage-
ment or faster graphics support. Our analysis took about
9 minutes and reported 48 candidate files, including
seven files that were not included in the original Linux
kernel reports. Among the reported candidates, three
were true double-fetch bugs, including two that were
shared with the Linux 4.5 report above, and one that was
only reported for Android. Among the results, 18 candi-
dates were size checking related, and six candidates were
type selection related.

For FreeBSD, we needed to change the transfer func-
tions copy_from_user() and __copy_from_user()
to the corresponding ones in FreeBSD, copyin() and
copyin_nofault(). We obtained the source code from
the master branch3. This analysis took about 2 minutes
and only 16 files were reported, but none of them turned
out to be a vulnerable double-fetch bug. Among the re-
ported candidates, eight were size checking related, and
three were type selection related. It is interesting to note
that 5 out of these 16 files were benign double fetches,
which would have been double-fetch bugs but were pre-
vented by additional checking schemes. The develop-
ers of FreeBSD seem to be more aware of double-fetch
bugs and try to actively prevent them. In comparison,
for Linux, only 5 out of the 53 reports were protected by
additional checking schemes.

In this experiment, we only counted the size check-
ing and type selection cases because the refined pattern
matching approach discards shallow copy cases that are
not able to cause a double-fetch bug. Our approach
matches the double fetch pattern that fetches data from
the same memory region, which ignores the first buffer
fetches in the case of a shallow copy and only considers
multiple fetches to the same second buffer. Such shallow
copy cases usually combine with other scenarios such as
size checking and type selection. In Table 2, the size
checking cases of the Linux kernel also includes one case
that occurred in a shallow copy scenario.

3From GitHub as of July 2016 (https://github.com/freebsd/freebsd)

5 Discussion

In this section, we discuss the discovered double-fetch
bugs and vulnerabilities in Linux 4.5 and how double-
fetch bugs can be prevented in the presence of double-
fetch situations. We also interpret our findings and the
limitations of our approach.

5.1 Detected Bugs and Vulnerabilities
Based on our approach, we found six double-fetch bugs
in total. Five of them are previously unknown bugs that
have not been reported before (CVE-2016-5728, -6130, -
6136, -6156, -6480), and the sixth one (CVE-2015-1420)
is a double-fetch bug present in the newest Android (ver-
sion 6.0.1) which is based on an older Linux kernel (ver-
sion 3.18) containing the bug, which has been fixed in
the mainline Linux kernel since Linux 4.1. Three of the
five new bugs are exploitable double-fetch vulnerabili-
ties (CVE-2016-5728, -6136, -6480). Four of the five
are in drivers (CVE-2016-5728, -6130, -6156, -6480).
All bugs have been reported to the Linux kernel main-
tainers who have confirmed them. All of these reported
bugs are fixed as of Linux 4.8. We did not find any new
double-fetch bugs in FreeBSD. Details on the detected
bugs are shown in Table 3.

The presented approach identifies a large number of
double-fetch situations for which only a small number
are double-fetch bugs (or even vulnerabilities). How-
ever, even though the cases we call benign double-fetch
situations are not currently faulty, they could easily turn
into a double-fetch bug or vulnerability when the code is
updated without paying special attention to the double-
fetch situation. We observed an occurrence of such
a situation when investigating the patch history of the
double-fetch bug CVE-2016-5728. A reuse of the sec-
ond fetched value was introduced when the developer
moved functionality from the MIC host driver into the
Virtio Over PCIe (VOP) driver, therefore introducing a
double-fetch bug. A major part of our future work will
be preventing such benign double fetch situations from
turning into harmful ones.

We did not find any false negatives while manually
checking random samples of Linux kernel source code
files.

5.2 Comparison
Only a few systematic studies have been conducted on
double fetches. Bochspwn [14, 13] is the only approach
similar enough to warrant a comparison with. An anal-
ysis of Linux 3.5.0 with Bochspwn did not find any
double-fetch bug, while producing up to 200KB of dou-
ble fetch logs. In the same kernel, our approach identi-

USENIX Association 26th USENIX Security Symposium 11

Table 3: Description of Identified Double Fetch Bugs and Vulnerabilities (*)

IDs File Description

CVE-
2016-
5728*

mic_virtio.c

MIC architecture VOP
(Virtual I/O Over PCIe)
driver
Linux 4.5

Race condition in the vop_ioctl function allows local users to obtain sensitive
information from kernel memory or cause a denial of service (memory cor-
ruption and system crash) by changing a certain header, aka a “double fetch”
vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6130

sclp_ctl.c

IBM S/390 SCLP console
driver
Linux 4.5

Race condition in the sclp_ctl_ioctl_sccb function allows local users to
obtain sensitive information from kernel memory by changing a certain length
value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6136*

auditsc.c

Linux auditing subsystem
Linux 4.5

Race condition in the audit_log_single_ execve_arg function allows local
users to bypass intended character-set restrictions or disrupt system-call audit-
ing by changing a certain string, aka a “double fetch” vulnerability.

CVE-
2016-
6156

cros_ec_dev.c

Chrome OS Embedded
Controller driver
Linux 4.5

Race condition in the ec_device_ioctl_xcmd function allows local users to
cause a denial of service (out-of-bounds array access) by changing a certain size
value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6480*

commctrl.c

Adaptec RAID controller
driver
Linux 4.5

Race condition in the ioctl_send_fib function allows local users to cause a
denial of service (out-of-bounds access or system crash) by changing a certain
size value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2015-
1420*

fhandle.c

File System
Android 6.0.1, (Linux 3.18)

Race condition in the handle_to_path function allows local users to cause a
denial of service (out-of-bounds array access) by changing a certain size value,
aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

fied 3 out of the above discussed 6 double-fetch bugs (the
other 3 bugs we found are in files that were not present
in Linux 3.5.0).

It is likely that Bochspwn could not find these bugs
because they were present in drivers. Indeed, dynamic
approaches cannot support drivers without correspond-
ing hardware or simulations of hardware. Bochspwn re-
ported an instruction coverage of only 28% for the ker-
nel, while our approach statically analyses the complete
source code.

As for efficiency, our approach takes only a few min-
utes to conduct a path-sensitive exploration of the source
code of the whole Linux kernel. In contrast, Bochspwn
introduces a severe runtime overhead. For instance, their
simulator needs 15 hours to boot the Windows kernel.

While it only took a few days to investigate the 90
double-fetch situations, Jurczyk and Coldwind did not
report the time they needed to investigate the 200KB of
double fetch logs generated by their simulator.

5.3 Double-Fetch Bug Prevention
Even though we provide an analysis to detect double-
fetch bugs, developers must still be aware of how they
occur and preemptively prevent double-fetch bugs. Hu-
man mistakes are to be expected in driver development
when dealing with variable messages leading to new
double-fetch situations.
(1) Don’t Copy the Header Twice. Double-fetch situa-
tions can be completely avoided if the second fetch only
copies the message body and not the complete message
which copies the header a second time. For example, the
double-fetch vulnerability in Android 6.0.1 (Linux 3.18)
is resolved in Linux 4.1 by only copying the body in the
second fetch.
(2) Use the Same Value. A double-fetch situation turns
into a bug when there is a use of the “same” data from
both fetch operations because a (malicious) user can
change the data between the two fetches. If develop-
ers only use the data from one of the fetches, problems
are avoided. According to our investigation, most of the
double-fetch situations are benign because they only use
the first fetched value.

12 26th USENIX Security Symposium USENIX Association

(3) Overwrite Data. There are also situations in which
the data has to be fetched and used twice, for exam-
ple, the complete message is passed to a different func-
tion for processing. One way to resolve the situation
and eliminate the double-fetch bug is to overwrite the
header from the second fetch with the header that has
been fetched first. Even if a malicious user changed
the header between the two fetches, the change would
have no impact. This approach is widely adopted in
FreeBSD code, such as in sys/dev/aac/aac.c and
sys/dev/aacraid/aacraid.c.
(4) Compare Data. Another way to resolve a double-
fetch bug is to compare the data from the first fetch to
the data of the second fetch before using it. If the data is
not the same, the operation must be aborted.
(5) Synchronize Fetches. The last way to prevent a
double-fetch bug is to use synchronization approaches
to guarantee the atomicity of two inseparable operations,
such as locks or critical sections. As long as we guaran-
tee that the fetched value cannot be changed between the
two fetches, then nothing wrong will come out of fetch-
ing multiple times. However, this approach will incur
performance penalties for the kernel, as synchronization
is introduced on a critical section.

Since the Compare Data approach does not need to
modify very much of the source code, most of the identi-
fied double-fetch bugs we found have been patched in
this way by the Linux developers (CVE-2016-5728, -
6130, -6156, -6480). If the overlapped data sections from
the two fetches are not the same, the kernel will now re-
turn an error. One can argue that it would have been
better to avoid the double fetch of the headers with any
of the other first three recommendations. However, com-
paring the data has two advantages: it not only allow de-
tecting attacks by malicious users but also protects from
situation in which the data is changed without malicious
intent (e.g., by some bug in user space code).

We have implemented the Compare Data approach
in Coccinelle as an automatic patch that injects code to
compare the data from the first fetch with the data from
the second fetch at places where a double-fetch bug has
been found. It is able to automatically patch all size
checking double-fetch bugs, which accounts for most of
the identified bugs (5/6).

5.4 Interpretation of Results

Double fetches are a fundamental problem for kernel de-
velopment. Popular operating systems like Windows,
Linux, Android, and FreeBSD all had double-fetch bugs
and vulnerabilities in the past. Double-fetch issues have
a long history, and one bug we identified (CVE-2016-
6480) has existed for over ten years.

Double fetches are prevalent and sometimes inevitable
in kernels. We categorized three typical double fetch
scenarios from the occurrences we detected. 63% of
these double fetches occur in drivers, which implies that
drivers are the hard-hit area. Four out of the five new
bugs belong to size checking scenarios, indicating that
variable length message processing needs vetting for
double-fetch bugs.

In the Linux kernel, double-fetch bugs are more com-
plex than in Windows because transfer functions separate
the fetches from the uses in a double-fetch bug, mak-
ing it harder to separate benign from vulnerable double
fetches. A previous dynamic approach has not found
any double-fetch bug in Linux, where our static approach
found some, demonstrating the power of a simple static
analysis.

Our approach requires manual inspection, however,
the manual inspection does not have to be repeated
for the full kernel as future analyses can be limited to
changed files. Moreover, developing a static analysis that
automatically identifies double-fetch bugs with higher
accuracy would have cost much more time than develop-
ing our current approach, running it on different kernels,
and the manual investigating the results together. Also,
before our analysis and categorization, it was not known
in which situations double-fetch bugs occur in the Linux
kernel—knowledge that was needed in order to design a
more precise static double-fetch bug analysis. With the
refined approach, one would only have had to look at the
53 potential double-fetch bugs, not at all 90 double-fetch
situations. Therefore, the manual analysis part of our ap-
proach is inevitable but highly beneficial.

As for prevention, all of the four size checking bugs
are patched by the Compare Data method, indicating the
double fetches are not avoided completely as the patched
situations still abort the client program by returning an
error. Moreover, even benign double-fetch situations are
not safe because they can turn into harmful ones easily.
One such bug (CVE-2016-5728) was introduced from
a benign double-fetch situation by a code update. How-
ever, most of these potential cases are not fixed as they
are currently not vulnerable.

Even if a double fetch is benign, i.e., is not vulnera-
ble, it can be considered a performance issue since one
of the fetches (invocations of the transfer functions) is
redundant.

5.5 Limitations

We focused on analyzing situations in which double
fetches occur in Linux with a pattern-based analysis of
the source code. However, the nature of the analysis
prevents the detection of double fetches that occur on a
lower level, e.g., in preprocessed or compiled code.

USENIX Association 26th USENIX Security Symposium 13

Double-fetch bugs can even occur in macros. In one
such case [24], the macro fetches a pointer twice, the
first time to test for NULL and the second time to use it.
However, due to the potential pointer change between the
two fetches, a null-pointer crash may be caused.

A double-fetch bug can also be introduced through
compiler optimization. It then occurs in the compiled
binary but not in the source code. Wilhelm [37] recently
found such a compiler-generated double-fetch bug in the
Xen Hypervisor, which is because the pointers to shared
memory regions are not labeled as volatile, allowing the
compiler to turn a single memory access into multiple ac-
cesses at the binary level, since it assumes that the mem-
ory will not be changed.

6 Related Work

So far, research conducted on double-fetch analysis has
exclusively focused on dynamic analysis, whereas we
proposed a static analysis approach. In addition to the
already discussed work on Bochspwn [14, 13], there are
also a few related studies as follows.

Wilhelm [37] used a similar approach to Bochspwn
to analyze memory access pattern of para-virtualized de-
vices’ backend components. His analysis identified 39
potential double fetch issues and discovered three novel
security vulnerabilities in security-critical backend com-
ponents. One of the discovered vulnerabilities does not
exist in the source code but is introduced through com-
piler optimization (see the discussion in Section 5.5).
Moreover, another discovered vulnerability in the source
code is usually not exploitable because the compiler opti-
mizes the code in a way that the second fetch is replaced
with a reuse of the value of the first fetch.

Double-fetch race conditions are very similar to Time-
Of-Check to Time-Of-Use (TOCTOU) race conditions
caused by changes occurring between checking a con-
dition and the use of the check’s result (by which the
condition no longer holds). The data inconsistency in
TOCTOU is usually caused by a race condition that re-
sults from improper synchronized concurrent accesses to
a shared object. There are varieties of shared objects in
any computer system, such as files [2], sockets [36] and
memory locations [39], therefore, a TOCTOU can exist
in different layers throughout the system. TOCTOU race
conditions often occur in file systems and numerous ap-
proaches [5, 9, 18, 4, 27] have been proposed to solve
these problems, but there is still no general, secure way
for applications to access file systems in a race-free way.

Watson [36] worked on exploiting wrapper concur-
rency vulnerabilities that come from system call inter-
position. He focused on the wrapper vulnerabilities
that will lead to security issues such as privilege esca-
lation and audit bypass. By identifying resources rel-

evant to access control, audit, or other security func-
tionality that are accessed concurrently across a trust
boundary, he found vulnerabilities from the wrappers and
demonstrated the exploit techniques with examples. He
also categorized the Time-Of-Audit to Time-Of-Use and
Time-Of-Replacement to Time-Of-Use issues in addition
to the Time-Of-Check to Time-Of-Use issue. However,
he focused on the system call interposition security ex-
tensions rather than the kernel as we do. He did not pro-
vide details of how he found these vulnerabilities either.

Yang et al. [39] cataloged concurrency attacks in the
wild by studying 46 different types of exploits and pre-
sented their characteristics. They pointed out that the risk
of concurrency attacks was proportional to the duration
of the vulnerability window. Moreover, they found that
previous TOCTOU detection and prevention techniques
are too specific and cannot detect or prevent general con-
currency attacks.

Coccinelle [17], the program matching and transfor-
mation engine we use in our approach, was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.
With Coccinelle, Nicolas et al. [26, 25] performed a
study of all the versions of Linux released between 2003
and 2011, ten years after the work of Chou et al. [7], who
gave the first thorough study on faults found in Linux.
Nicolas et al. pointed out that the kind of faults con-
sidered ten years ago were still relevant, and were still
present in both new and existing files. They also found
that the rate of the considered kinds of faults were falling
in the driver directory, which supported Chou et al.

7 Conclusion

This work provides the first (to the best of our knowl-
edge) static analysis of double fetches in the Linux
kernel. It is the first approach able to detect double-
fetch vulnerabilities in the complete kernel including all
drivers and all hardware architectures (which was impos-
sible using dynamic approaches). Based on our pattern-
based static analysis, we categorized three typical sce-
narios in which double fetches are prone to occur. We
also provide recommended solutions, specific to typical
double-fetch scenarios we found in our study, to prevent
double-fetch bugs and vulnerabilities. One solution is
used to automatically patch double-fetch bugs, which is
able to automatically patch all discovered bugs occurring
in the size-checking scenario.

Where a known dynamic analysis of the Linux,
FreeBSD, and OpenBSD kernels found no double-fetch
bug, our static analysis discovered six real double-fetch
bugs, five of which are previously unknown bugs, and
three of which are exploitable double-fetch vulnerabili-
ties. All of the reported bugs have been confirmed and

14 26th USENIX Security Symposium USENIX Association

fixed by the maintainers. Our approach has been adopted
by the Coccinelle team and is currently being integrated
into the Linux kernel patch vetting.

Acknowledgments

The authors would like to sincerely thank all the re-
viewers for your time and expertise on this paper.
Your insightful comments help us improve this work.
This work is partially supported by the The National
Key Research and Development Program of China
(2016YFB0200401), by the program for New Century
Excellent Talents in University, by the National Sci-
ence Foundation (NSF) China 61402492, 61402486,
61379146, 61472437,and by the laboratory pre-research
fund (9140C810106150C81001).

References
[1] Bug 166248 – CAN-2005-2490 sendmsg compat stack over-

flow. https://bugzilla.redhat.com/show bug.cgi?id=

166248.

[2] Bishop, M., Dilger, M., et al. Checking for race conditions in
file accesses. Computing systems 2, 2 (1996), 131–152.

[3] Brunel, J., Doligez, D., Hansen, R. R., Lawall, J. L., and
Muller, G. A foundation for flow-based program matching: Us-
ing temporal logic and model checking. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL) (2009).

[4] Cai, X., Gui, Y., and Johnson, R. Exploiting UNIX file-system
races via algorithmic complexity attacks. In 30th IEEE Sympo-
sium on Security and Privacy (2009), pp. 27–41.

[5] Chen, H., andWagner, D. MOPS: an infrastructure for examining
security properties of software. In Proceedings of the 9th ACM
conference on Computer and communications security (2002),
pp. 235–244.

[6] Chen, J., and MacDonald, S. Towards a better collaboration of
static and dynamic analyses for testing concurrent programs. In
Proceedings of the 6th workshop on Parallel and distributed sys-
tems: testing, analysis, and debugging (2008), p. 8.

[7] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. An
empirical study of operating systems errors. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP) (2001).

[8] Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux Device
Drivers. O’Reilly Media, Inc., 2005.

[9] Cowan, C., Beattie, S., Wright, C., and Kroah-Hartman, G.
RaceGuard: Kernel protection from temporary file race vulner-
abilities. In USENIX Security Symposium (2001), pp. 165–176.

[10] Engler, D., and Ashcraft, K. RacerX: effective, static detection
of race conditions and deadlocks. In Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles (SOSP
’03) (2003), ACM, pp. 237–252.

[11] Hammou, S. Exploiting Windows drivers: Double-fetch
race condition vulnerability, 2016. http://resources.

infosecinstitute.com/exploiting-windows-drivers-

double-fetch-race-condition-vulnerability/.

[12] Huang, J., and Zhang, C. Persuasive prediction of concurrency
access anomalies. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis (2011), pp. 144–154.

[13] Jurczyk, M., and Coldwind, G. Bochspwn: Identify-
ing 0-days via system-wide memory access pattern analy-
sis. Black Hat 2013, 2013. http://vexillium.org/dl.

php?BH2013 Mateusz Jurczyk Gynvael Coldwind.pdf.

[14] Jurczyk, M., and Coldwind, G. Identifying and exploiting win-
dows kernel race conditions via memory access patterns. Tech.
rep., Google Research, 2013. http://research.google.com/
pubs/archive/42189.pdf.

[15] Kasikci, B., Zamfir, C., and Candea, G. Data races vs. data race
bugs: telling the difference with portend. In Proceedings of the
Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2012), pp. 185–198.

[16] Kasikci, B., Zamfir, C., andCandea, G. RaceMob: crowdsourced
data race detection. In Proceedings of the twenty-fourth ACM
symposium on operating systems principles (2013), pp. 406–422.

[17] Lawall, J., Laurie, B., Hansen, R. R., Palix, N., andMuller, G.
Finding error handling bugs in OpenSSL using Coccinelle. In
European Dependable Computing Conference (EDCC) (2010),
pp. 191–196.

[18] Lhee, K.-S., and Chapin, S. J. Detection of file-based race con-
ditions. International Journal of Information Security 4, 1-2
(2005), 105–119.

[19] Lu, K., Wu, Z., Wang, X., Chen, C., and Zhou, X. RaceChecker:
efficient identification of harmful data races. In 2015 23rd Eu-
romicro International Conference on Parallel, Distributed, and
Network-Based Processing (2015), pp. 78–85.

[20] Lu, S., Park, S., Seo, E., and Zhou, Y. Learning from mistakes:
a comprehensive study on real world concurrency bug character-
istics. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (2008), pp. 329–339.

[21] Lu, S., Park, S., and Zhou, Y. Finding atomicity-violation bugs
through unserializable interleaving testing. IEEE Transactions on
Software Engineering 38, 4 (2012), 844–860.

[22] Lu, S., Tucek, J., Qin, F., and Zhou, Y. AVIO: detecting atomicity
violations via access interleaving invariants. In ACM SIGARCH
Computer Architecture News (2006), vol. 34, pp. 37–48.

[23] Lucia, B., Ceze, L., and Strauss, K. Colorsafe: architectural
support for debugging and dynamically avoiding multi-variable
atomicity violations. ACM SIGARCH computer architecture
news 38, 3 (2010), 222–233.

[24] McKenney, P. E. list: Fix double fetch of pointer in
hlist entry safe(), 2013. https://lists.linuxfoundation.
org/pipermail/containers/2013-March/031996.html.

[25] Palix, N., Thomas, G., Saha, S., Calvès, C., Lawall, J., and
Muller, G. Faults in Linux: Ten years later. In Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2011).

[26] Palix, N., Thomas, G., Saha, S., Calves, C., Muller, G., and
Lawall, J. Faults in Linux 2.6. ACM Transactions on Computer
Systems (TOCS) 32, 2 (2014), 4.

[27] Payer, M., and Gross, T. R. Protecting applications against
TOCTTOU races by user-space caching of file metadata. In Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Vir-
tual Execution Environments (2012), pp. 215–226.

[28] Pratikakis, P., Foster, J. S., and Hicks, M. LOCKSMITH: Prac-
tical static race detection for C. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 33, 1 (2011), 3.

[29] Ryzhyk, L., Chubb, P., Kuz, I., andHeiser, G. Dingo: Taming de-
vice drivers. In Proceedings of the 4th ACM European conference
on Computer systems (2009), pp. 275–288.

USENIX Association 26th USENIX Security Symposium 15

[30] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., andAnder-
son, T. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS) 15,
4 (1997), 391–411.

[31] Sen, K. Race directed random testing of concurrent programs.
ACM SIGPLAN Notices 43, 6 (2008), 11–21.

[32] Serna, F. J. MS08-061: the case of the kernel mode double-
fetch, 2008. https://blogs.technet.microsoft.com/

srd/2008/10/14/ms08-061-the-case-of-the-kernel-

mode-double-fetch/.

[33] Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., and Zheng,
W. Do i use the wrong definition?: Defuse: definition-use in-
variants for detecting concurrency and sequential bugs. In ACM
Sigplan Notices (2010), vol. 45, ACM, pp. 160–174.

[34] Swift, M. M., Bershad, B. N., and Levy, H. M. Improving the
reliability of commodity operating systems. ACM Trans. Comput.
Syst. 23, 1 (Feb. 2005), 77–110.

[35] Voung, J. W., Jhala, R., and Lerner, S. RELAY: static race de-
tection on millions of lines of code. In Proceedings of the the
6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of
software engineering (2007), pp. 205–214.

[36] Watson, R. N. Exploiting concurrency vulnerabilities in system
call wrappers. In First USENIX Workshop on Offensive Technolo-
gies (WOOT) (2007).

[37] Wilhelm, F. Tracing privileged memory accesses to discover soft-
ware vulnerabilities. Master’s thesis, Karlsruher Institut für Tech-
nologie, 2015.

[38] Wu, Z., Lu, K., Wang, X., and Zhou, X. Collaborative technique
for concurrency bug detection. International Journal of Parallel
Programming 43, 2 (2015), 260–285.

[39] Yang, J., Cui, A., Stolfo, S., and Sethumadhavan, S. Concurrency
attacks. In Proceedings of the 4th USENIX Conference on Hot
Topics in Parallelism (2012).

[40] Zhang, M., Wu, Y., Lu, S., Qi, S., Ren, J., and Zheng, W. Ai:
a lightweight system for tolerating concurrency bugs. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (2014), ACM, pp. 330–
340.

[41] Zhang, W., Sun, C., and Lu, S. ConMem: detecting severe con-
currency bugs through an effect-oriented approach. In Proceed-
ings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
XV) (2010), pp. 179–192.

16 26th USENIX Security Symposium USENIX Association

