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The groups of automorphisms of the Lie algebras of

polynomial vector fields with zero or constant divergence

V. V. Bavula (Aut-Div.tex )

Abstract

Let Pn = K[x1, . . . , xn] be a polynomial algebra over a field K of characteristic zero
and div0n (respectively, divcn) be the Lie algebra of derivations of Pn with zero (respec-
tively, constant) divergence. We prove that AutLie(div

0
n) ≃ AutK−alg(Pn) (n ≥ 2) and

AutLie(div
c

n) ≃ AutK−alg(Pn). The Lie algebra divcn is a maximal Lie subalgebra of DerK(Pn).
Minimal finite sets of generators are found for the Lie algebras div0n and divcn.

Key Words: Group of automorphisms, derivation, the divergence, Lie algebra, automor-

phism, locally nilpotent derivation, the Lie algebras of polynomial vector fields with zero or

constant divergence.

Mathematics subject classification 2010: 17B40, 17B20, 17B66, 17B65, 17B30.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero and K∗ is its group
of units, and the following notation is fixed:

• Pn := K[x1, . . . , xn] =
⊕

α∈Nn Kxα is a polynomial algebra over K where xα := xα1

1 · · ·xαn
n

and Qn := K(x1, . . . , xn) is its field of fractions,

• Gn := AutK−alg(Pn) is the group of automorphisms of the polynomial algebra Pn,

• ∂1 := ∂
∂x1

, . . . , ∂n := ∂
∂xn

are the partial derivatives (K-linear derivations) of Pn,

• Dn := DerK(Pn) =
⊕n

i=1 Pn∂i is the Lie algebra of K-derivations of Pn where [∂, δ] :=
∂δ − δ∂,

• Gn := AutLie(Dn) is the group of automorphisms of the Lie algebra Dn,

• δ1 := ad(∂1), . . . , δn := ad(∂n) are the inner derivations of the Lie algebra Dn determined
by ∂1, . . . , ∂n (where ad(a)(b) := [a, b]),

• Dn :=
⊕n

i=1 K∂i,

• Hn :=
⊕n

i=1 KHi where H1 := x1∂1, . . . , Hn := xn∂n,

• D′
n :=

⊕n
i=1 PnHi =

⊕
α∈Nn xαHn,

• h :=
⊕n

i=1 Khi where h1 := ∂1x1, . . . , hn := ∂nxn ∈ EndK(Pn),

• for a derivation ∂ =
∑n

i=1 ai∂i ∈ Dn, div(∂) :=
∑n

i=1
∂ai

∂xi
is the divergence of ∂,

• div
0
n := {∂ ∈ Dn | div(∂) = 0} is the Lie algebra of polynomial vector fields (derivations)

with zero divergence,

• Gn := AutLie(div
0
n),

• H′
n :=

⊕n−1
i=1 KHi,i+1 where Hij := Hi −Hj for i 6= j,
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• div
c
n := {∂ ∈ Dn | div(∂) ∈ K} is the Lie algebra of polynomial vector fields (derivations)

with constant divergence,

• Gc
n := AutLie(div

c
n),

• An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 =
⊕

α,β∈Nn Kxα∂β is the n’th Weyl algebra,

The groups of automorphisms of the Lie algebras div
0
n and div

c
n. The aim of the paper

is to prove the following two theorems.
16Mar13

Theorem 1.1 Gn =

{
G1/Sh1 ≃ K∗ if n = 1,

Gn if n ≥ 2.

Structure of the proof. The case n = 1 is trivial (see Section 2 where the group Sh1 is defined in
(1)). So, let n ≥ 2.

(i) Gn ⊆ Gn via the group monomorphism (Lemma 2.9.(3))

Gn → Gn, σ 7→ σ : ∂ 7→ σ(∂) := σ∂σ−1.

(ii) Let σ ∈ Gn. Then ∂′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n) are commuting, locally nilpotent deriva-

tions of the polynomial algebra Pn (Lemma 2.14.(1)).

(iii)
⋂n

i=1 kerPn
(∂′

i) = K (Lemma 2.14.(2)).

(iv) There exists a polynomial automorphism τ ∈ Gn such that τσ ∈ FixGn
(∂1, . . . , ∂n) (Corol-

lary 2.16).

(v) FixGn
(∂1, . . . , ∂n) = Shn (Proposition 2.13.(3)) where Shndef

Shn := {sλ ∈ Gn | sλ(x1) = x1 + λ1, . . . , sλ(xn) = xn + λn} (1)

is the shift group of automorphisms of the polynomial algebra Pn and λ = (λ1, . . . , λn) ∈ Kn.

(vi) By (iv) and (v), σ ∈ Gn, i.e. Gn = Gn. �
A16Mar13

Theorem 1.2 Gc
n = Gn.

Structure of the proof. The case n = 1 is trivial (see Section 2). So, let n ≥ 2.

(i) Gn ⊆ Gc
n via the group monomorphism (Lemma 2.9.(4))

Gn → Gc
n, σ 7→ σ : ∂ 7→ σ(∂) := σ∂σ−1.

(ii) div0n = [divcn, div
c
n] (Lemma 2.10).

(iii) The short exact sequence of group homomorphisms

1 → F := FixGc
n
(div0n) → Gc

n
res
→ Gn → 1

is exact (by (i) and Theorem 1.1) where res : σ 7→ σ|div0
n
is the restriction map, see (ii).

(iv) Since Gn = Gn (Theorem 1.1) and Gn ⊆ Gc
n (by (i)), the short exact sequence splits G=GF

Gc
n ≃ Gn ⋉ F. (2)

(v) F = {e} (Lemma 2.17). Therefore, Gc
n = Gn. �
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Theorem 1.1 was announced in [8] where a sketch of the proof is given based on a study of
certain Lie subalgebras of div0n of finite codimension. Our proof is based on completely different
ideas. The groups of automorphisms of infinite dimensional Lie algebras were considered in [2]-[10].

A subalgebra M of a Lie algebra G is called a maximal Lie subalgebra if M 6= G and G is the
only Lie subalgebra of G properly containing M.

• (Proposition 2.21) For n ≥ 2, divcn is a maximal Lie subalgebra of Dn which is also a Gn-
invariant/Gn-invariant Lie subalgebra.

• (Proposition 2.22) For n ≥ 2, the Gn-module Dn/div
c
n is simple and infinite dimensional

with EndGn
(Dn/div

c
n) ≃ K.

6Oct13
Theorem 1.3 For n ≥ 2, the set of elements ∂1, x

2
2∂1, x

2
3∂1, . . . , x

2
n∂1, x

2
1∂2, x

2
1∂3, . . . , x

2
1∂n is a

minimal set of generators for the Lie algebra div
0
n.

A6Oct13
Theorem 1.4 For n ≥ 2, the set of elements in Theorem 1.3 together with H1 is a minimal set
of generators for the Lie algebra div

c
n.

2 Proof of Theorems 1.1 and 1.2
P16AAA

In this section, proofs of Theorems 1.1 and 1.2 are given. In the first part of the section some
useful results are proved that are used throughout the paper. The second part of the section can
be seen as proofs of Theorem 1.1 and 1.2. The proofs are split into several statements that reflect
‘Structure of the proofs of Theorems 1.1 and and 1.2’ given in the Introduction. As we have seen
in the Introduction, Theorem 1.1 is the key point in the proof of Theorem 1.2.

The Lie algebra Dn is Zn-graded. The Lie algebra xadbd

Dn =
⊕

α∈Nn

n⊕

i=1

Kxα∂i (3)

is a Zn-graded Lie algebra

Dn =
⊕

β∈Zn

Dn,β where Dn,β =
⊕

α−ei=β

Kxα∂i,

i.e. [Dn,α, Dn,β ] ⊆ Dn,α+β for all α, β ∈ Nn where e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) is the
canonical free basis for the free abelian group Zn. This follows from the commutation relations xadbd1

[xα∂i, x
β∂j ] = βix

α+β−ei∂j − αjx
α+β−ej∂i. (4)

Clearly, for all i, j = 1, . . . , n and α ∈ Nn, xadbd2

[Hj , x
α∂i] =

{
αjx

α∂i if j 6= i,

(αi − 1)xα∂i if j = i,
(5)

xadbd3
[∂j , x

α∂i] = αjx
α−ej∂i. (6)

The support Supp(Dn) := {β ∈ Zn |Dn,β 6= 0} is a submonoid of Zn. Let us find the support
Supp(Dn), the graded components Dn,β and their dimensions dimK Dn,β . For each i = 1, . . . , n,
let Nn,i := {α ∈ Nn |αi = 0} and P ∂i

n := kerPn
(∂i). It follows from the decompositions Pn =

P ∂i
n ⊕ Pnxi for i = 1, . . . , n that Dnb2
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Dn =
n⊕

i=1

(P ∂i
n ⊕ Pnxi)∂i =

n⊕

i=1

P ∂i
n ∂i ⊕

n⊕

i=1

PnHi =
n⊕

i=1

P ∂i
n ∂i ⊕

⊕

α∈Nn

xαHn, (7)

Therefore, any derivation ∂ =
∑n

i=1 ai∂i ∈ Dn is the unique sum (where ai = bixi + ci, bi ∈ Pn

and ci ∈ P ∂i
n ) dus

∂ =

n∑

i=1

biHi +

n∑

i=1

ci∂i. (8)

Hence, Dnb

Supp(Dn) =

n∐

i=1

(Nn,i − ei)
∐

Nn. (9)

Dnb1

Dn,β =

{
Kxα∂i if β = α− ei ∈ Nn,i − ei,

xβHn if β ∈ Nn.
(10)

dimK Dn,β =

{
1 if β = α− ei ∈ Nn,i − ei,

n if β ∈ Nn.

Let G be an abelian Lie algebra and G∗ := HomK(G,K). A G-module M is called a weight
module if

M =
⊕

λ∈G∗

Mλ where Mλ := {m ∈ M | gm = λ(g)m for all g ∈ G}.

The set W (M) := {λ ∈ G∗ |Mλ 6= 0} is called the set of weights of M .

The direct sum div
0
n = di

0
n ⊕ iv

0
n. Recall that D

′
n =

⊕
α∈Nn xαHn. By (7), dus2

div
0
n = di

0
n ⊕ iv

0
n where di

0
n := div

0
n ∩D′

n and iv
0
n :=

n⊕

i=1

P ∂i
n ∂i. (11)

We will see that di
0
n is a Lie subalgebra of div0n but iv

0
n is not for n ≥ 2. Clearly, di01 = 0 and

div
0
1 = iv

0
1 = K∂1. There are inclusions

div
0
1 ⊂ div

0
2 ⊂ · · · ⊂ div

0
n ⊂ · · · ,

di
0
1 ⊂ di

0
2 ⊂ · · · ⊂ di

0
n ⊂ · · · ,

iv
0
1 ⊂ iv

0
2 ⊂ · · · ⊂ iv

0
n ⊂ · · · .

The K-linear maps hi = ∂1x1, . . . , hn = ∂nxn ∈ EndK(Pn) are bijections since for all α ∈ Nn

and i = 1, . . . , n, dus3
hi(x

α) = (αi + 1)xα. (12)

The elements h1, . . . , hn commute, the polynomial algebra Pn is a weight h-module where h :=
⊕n

i=1Khi is an abelian Lie subalgebra of the Lie algebra EndK(Pn) (where [f, g] := fg − gf) and
the set W (Pn) of weights of the h-module Pn is equal to (1, . . . , 1) + Nn, i.e. W (Pn) = {λ =
(λ1, . . . , λn) |λ ∈ (1, . . . , 1)+Nn} where λ(hi) = λi for all i. For each derivation ∂ =

∑n
i=1 aiHi ∈

D′
n, dus4

div(∂) =

n∑

i=1

hi(ai). (13)

K-bases for div
0
n and div

c
n. For each pair i 6= j, the K-linear map dus5

φij : Pn → di
0
n, a 7→ hj(a)Hi − hi(a)Hj , (14)
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is a (well-defined) injection: By (13), div(φij(a)) = (hihj − hjhi)(a) = 0, and if φij(a) = 0 then
hj(a)Hi = hi(a)Hj , and so a = 0 since the maps hi and hj are bijections. For all α ∈ Nn and
i 6= j, let phiij

θαij := φij(x
α) = xα((αj + 1)Hi − (αi + 1)Hj). (15)

In particular, θ0ij = Hi −Hj . Then xaaH

[xα−αieixj∂i, x
αi+1
i ∂j ] = φji(x

α). (16)

It is obvious that div01 = K∂1 and div
c
1 = K∂1 +KH1.

a17Mar13
Lemma 2.1 Let n ≥ 2. Then

1. di
0
n =

⊕n−1
i=1 φi,i+1(Pn).

2. The set of elements θαi := φi,i+1(x
α) = xα((αi+1+1)Hi−(αi+1)Hi+1), where i = 1, . . . , n−1

and α ∈ Nn, is a K-basis for di
0
n.

3. The set of elements θαi in statement 2 and xβ∂j, where xβ ∈ P
∂j
n and j = 1, . . . , n, is a

K-basis for div
0
n.

4. The set of elements in statement 3 and Hi, where i is any fixed index in the set {1, . . . , n},
is a K-basis for div

c
n.

Proof. 1. It is obvious that R :=
∑n−1

i=1 φi,i+1(Pn) ⊆ div
0
n, see (14). Recall that di

0
n = div

0
n∩D′

n

and D′
n = ⊕α∈NnxαHn. By (14) and the fact that the K-linear maps h1, . . . , hn are invertible,

di
0
n = R+ di

0
n ∩ PnHn.

By (13), di0n ∩ PnHn = 0. Therefore, di0n = R.
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2 and (11).
4. Statement 4 follows from statement 3 and the fact that divcn = div

0
n ⊕KHi, i = 1, . . . , n. �

Let θ := x1 · · ·xn ∈ Pn. Then Cn :=
⊕

i∈N
θiH′

n is an abelian Lie subalgebra of div0n that

contains H′
n. We will see that Cn is a Cartan subalgebra of the Lie algebras div0n and div

c
n(Lemma

2.3.(3,5)).
By Lemma 2.1.(2,3), for n ≥ 2, divPH

Cn =

n−1⊕

i=1

⊕

m∈N

Kφi,i+1(θ
m), (17)

divPH1

div
0
n =

n⊕

i=1

⊕

α∈Nn,i

Kxα∂i ⊕ Cn ⊕
n−1⊕

i=1

⊕

m∈N

⊕

α∈Nn
d
\{0}

Kφi,i+1(θ
mxα), (18)

where Nn
d := ∪n

i=1N
n,i = {(α1, . . . , αn) ∈ Nn |αi = 0 for some i}. We identify the vector space

H′
n = {

∑n
i=1 λiHi |

∑n
i=1 λi = 0} with its image in Kn under the K-linear injection H′

n → Kn,∑n
i=1 λiHi 7→ (λ1, . . . , λn). So,

H′
n = {λ ∈ Kn | (λ, 1) =

n∑

i=1

λi = 0}

where 1 := (1, 1, . . . , 1) and (λ, µ) :=
∑n

i=1 λiµi is the standard inner product on Kn. The dual
space H′∗

n := HomK(H′
n,K) can be identified with the factor space

Kn/K1 = {[µ] := µ+K1 | µ ∈ Kn},
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i.e. [µ](
∑n

i=1 λiHi) = [µ](λ) := (µ, λ) =
∑n

i=1 µiλi. By (18), the H′
n-module div

0
n is a weight

module and the summands in (18) are the (nonzero) weight vectors under the adjoint action of
H′

n on div
0
n,

div
0
n =

⊕

[µ]∈W (div0
n)

div
0
n,[µ]

where div
0
n,[µ] := {∂ ∈ div

0
n | [H, ∂] = [µ](H)∂ for all H ∈ H′

n} is the weight subspace of div0n that

corresponds to the weight [µ] and W = W (div0n) is the set of weights for div
0
n. To simplify the

notation we identify the set Nn
d with its isomorphic copy in the factor vector space Kn/K1 via

the map Kn → Kn/K1, λ 7→ K1. So, WDnb

W (div0n) = Nn
d . (19)

Dnb1

div
0
n,[µ] =





Kxα∂i ⊕
⊕n−1

i=1

⊕
m∈N

φi,i+1(θ
mxα−ei+1) if [µ] = [α− ei], α ∈ Nn,i,

Cn if [µ] = 0,⊕n−1
i=1

⊕
m∈N

φi,i+1(θ
mxα) otherwise.

(20)

dimK div
0
n,[µ] = ∞ for all [µ] ∈ W (div0n).

The Lie algebra div
0
n = iv

0
n ⊕ di

0
n is the direct sum of its weight H′

n-submodules with Wiv

W (iv0n) =

n∐

i=1

(Nn,i − ei), W (di0n) = Nn
d . (21)

For H =
∑n

i=1 λiHi ∈ Hn and α ∈ Kn, let

(H,α) = (α,H) =

n∑

i=1

αiλi.

Then, for all α ∈ Nn, div(xαH) = (α + 1, H). If, in addition, H ∈ H′
n, that is (H, 1) = 0, then,

for all α ∈ Nn, div(xαH) = (α + 1, H) = (α,H). It follows that di
0
n is the direct sum of vector

spaces Wiv1

di
0
n =

⊕

α∈Nn

{KxαH | (H,α+ 1) = 0, H ∈ Hn}. (22)

Let Wiv2

di
′0
n :=

⊕

α∈Nn

{KxαH | (H,α) = 0, H ∈ H′
n} =

⊕

α∈Nn
d

{K[θ]xαH | (H,α) = 0, H ∈ H′
n}. (23)

Clearly, for n ≥ 2, di′0n ⊂ di
0
n and the vector space di′0n is a leftK[θ]-module. We will see shortly that

di
′0
n is a non-Noetherian Lie algebra (Lemma 2.2). Notice that di′0n = C2 = ⊕i≥0Kθi(H1 −H2) =

K[θ](H1 −H2) where θ = x1x2.

The commutation relations of the weight vectors in div
0
n. By (18) and (19), there are

three types of commutation relations of elements from the weight spaces of the Lie algebra div
0
n,

see (24), (25) and (26). For all xα∂i ∈ P ∂i
n ∂i and xβ∂j ∈ P

∂j
n ∂j , xadxbd

[xα∂i, x
β∂j ] =





φji(x
α+β−ei−ej ) if βi 6= 0, αj 6= 0

βix
α+β−ei∂j if βi 6= 0, αj = 0

−αjx
α+β−ej∂i if βi = 0, αj 6= 0

0 if βi = 0, αj = 0

(24)

where φji(x
α+β−ei−ej ) = xα+β−ei−ej (βiHj − αjHi) (since αi = 0 and βj = 0).
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For all elements xαH,xα′

H ′ ∈ di
0
n, xadxbd1

[xαH,xα′

H ′] = xα+α′

((H,α′)H ′ − (H ′, α)H) ∈ di
0
n (25)

since ((H,α′)H ′ − (H ′, α)H,α+ α′ + 1) = (H,α′)(H ′, α′ + 1)− (H ′, α)(H,α+ 1) = 0.
For all xβ ∈ P ∂i

n ∂i and xαH ∈ di
0
n, xadxbd2

[xβ∂i, x
αH] = αix

α+β−eiH − (H,β − ei)x
α+β∂i. (26)

If, in addition αi 6= 0, then the equality (26) takes the form xadxbd3

[xβ∂i, x
αH] = xα+β−ei(αiH − (H,β − ei)Hi) ∈ di

0
n (27)

since (αiH − (H,β − ei)Hi, α+ β − ei + 1) = −(H,β − ei)(Hi, β − ei + 1) = −(H,β − ei) · 0 = 0.
By (22) and (25), di0n is a Lie subalgebra of div0n which is not an ideal, by(26). By (24), iv0n is not
a Lie algebra for n ≥ 2.

The Lie algebra di
′0
n is not Noetherian, n ≥ 2. Let n ≥ 2. The Lie algebra di

′0
n is a

K[θ]-module, K[θ]di′0n ⊆ di
′0
n , and the Lie bracket on di

′0
n is a k[θ]-bilinear: for all p, p′ ∈ K[θ] and

xαH,xα′

H ′ ∈ di
′0
n , ppHa

[pxαH, p′xα′

H ′] = pp′[xαH,xα′

H ′]. (28)

So, the Lie algebra di
′0
n is not simple: θidi′0n , i ∈ N are distinct ideals of di′0n .

a3Apr13
Lemma 2.2 For n ≥ 2, the Lie algebras di

0
n and di

′0
n are not Noetherian.

Proof. If n = 2 then di
′0
2 = C2 is an infinite dimensional abelian Lie algebra, hence, non-

Noetherian. Let n ≥ 3. Let I be an ideal of the additive monoid Nn (I + Nn ⊆ I). Then
a′(I) :=

⊕
α∈I{x

αH | (α,H) = 0, H ∈ H′
n} is an ideal of the Lie algebra di

′0
n , by (25). The map

I 7→ a′(I) from the set I(Nn) of ideals of Nn to the set I(di′0n ) of ideals of the Lie algebra di
′0
n is

an inclusion preserving injection (I1 & I2 implies a′(I1) & a′(I2). The set I(Nn) is not Noetherian
(with respect to ⊆) hence di

′0
n is not a Noetherian Lie algebra.

Similarly, by (25), for n ≥ 2, the map I 7→ a(I) :=
⊕

α∈I{x
αH | (α+1, H) = 0, H ∈ Hn} from

the set I(Nn) to the set I(di0n) of ideals of the Lie algebra di
0
n is an inclusion preserving injection.

Therefore, the Lie algebra di
0
n is non-Noetherian. �

Let G be a Lie algebra and H be its Lie subalgebra. The centralizer CG(H) := {x ∈ G | [x,H] =
0} of H in G is a Lie subalgebra of G. In particular, Z(G) := CG(G) is the centre of the Lie algebra
G. The normalizer NG(H) := {x ∈ G | [x,H] ⊆ H} of H in G is a Lie subalgebra of G, it is the
largest Lie subalgebra of G that contains H as an ideal.

Let V be a vector space over K. A K-linear map δ : V → V is called a locally nilpotent map
if V =

⋃
i≥1 ker(δ

i) or, equivalently, for every v ∈ V , δi(v) = 0 for all i ≫ 1. When δ is a locally
nilpotent map in V we also say that δ acts locally nilpotently on V . Every nilpotent linear map
δ, that is δn = 0 for some n ≥ 1, is a locally nilpotent map but not vice versa, in general. Let G
be a Lie algebra. Each element a ∈ G determines the derivation of the Lie algebra G by the rule
ad(a) : G → G, b 7→ [a, b], which is called the inner derivation associated with a. The set Inn(G) of
all the inner derivations of the Lie algebra G is a Lie subalgebra of the Lie algebra (EndK(G), [·, ·])
where [f, g] := fg − gf . There is the short exact sequence of Lie algebras

0 → Z(G) → G
ad
→ Inn(G) → 0,

that is Inn(G) ≃ G/Z(G) where Z(G) is the centre of the Lie algebra G and ad([a, b]) = [ad(a), ad(b)]
for all elements a, b ∈ G. An element a ∈ G is called a locally nilpotent element (respectively, a
nilpotent element) if so is the inner derivation ad(a) of the Lie algebra G.
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The Cartan subalgebra Cn of div0n. A nilpotent Lie subalgebra C of a Lie algebra G such
that C = NG(C) is called a Cartan subalgebra of G. We use often the following obvious observation:
An abelian Lie subalgebra that coincides with its centralizer is a maximal abelian Lie subalgebra.

Example. Hn is a Cartan subalgebra of Dn and Hn = CDn
(Hn) is a maximal abelian Lie

subalgebra of Dn.
da11Mar13

Lemma 2.3 Let n ≥ 2. Recall that Cn =
⊕

i∈N
θiH′

n and θ = x1x2 · · ·xn. Then

1. H′
n = Hn ∩ div

0
n.

2. Cn = Cdiv0
n
(H′

n) and Cn = Cdiv0
n
(Cn) is a maximal abelian Lie subalgebra of div0n.

3. Cn is a Cartan subalgebra of div0n.

4. Cn +Hn = Cdivc
n
(H′

n) and Cn = Cdivc
n
(Cn) is a maximal abelian Lie subalgebra of divcn.

5. Ndivc
n
(Cn) = Cn +Hn = Ndivc

n
(Cn +Hn) is a solvable but not nilpotent Lie algebra, and so

Cn +Hn and Cn are not a Cartan subalgebra of divcn.

6. Hn is a Cartan subalgebra of divcn and Hn = Cdivc
n
(Hn) is a maximal abelian Lie subalgebra

of divcn.

Proof. 1. Let H =
∑n

i=1 λiHi ∈ Hn. Then H ∈ Hn ∩ div
0
n iff

∑n
i=1 λi = 0 iff H ∈ H′

n.
2. The fact that Cn = Cdiv0

n
(H′

n) follows from (20). By (25), Cn is an abelian Lie subalgebra

of div0n. Then the inclusion H′
n ⊆ Cn = Cdiv0

n
(H′

n) implies the inclusions

Cn = Cdiv0
n
(H′

n) ⊇ Cdiv0
n
(Cn) ⊇ Cn.

Therefore, Cn = Cdiv0
n
(Cn) is a maximal abelian Lie subalgebra of div0n.

3. Let N := Ndiv0
n
(Cn). By statement 2, Cn ⊆ N . The H′

n-module div
0
n is weight and

Cn = Cdiv0
n
(H′

n) is the zero weight component of div
0
n. The inclusion [N,H′

n] ⊆ Cn implies
N ⊆ Cn, and so N = Cn.

4. Notice that divcn = div
0
n ⊕KH1, H1 ∈ Cdivc

n
(H′

n) and H′
n ⊆ div

0
n. By statement 2,

Cdivc
n
(H′

n) = Cdiv0
n
(H′

n)⊕KH1 = Cn ⊕KH1 = Cn +Hn.

Now, the inclusion H′
n ⊆ Cn implies the inclusions

Cn ⊕KH1 = Cdivc
n
(H′

n) ⊇ Cdivc
n
(Cn) ⊇ Cn.

Hence Cdivc
n
(Cn) = Cn ⊕ Cdivc

n
(Cn) ∩KH1 = Cn and so Cn is a maximal abelian Lie subalgebra

of divcn.
5. Let N c := Ndivc

n
(Cn). By statement 4, Cn ⊆ N c. The H′

n-module div
c
n = div

0
n ⊕ KH1

is weight and Cn ⊕ KH1 = Cdivc
n
(H′

n) is the zero weight component of div
c
n. The inclusion

[N c,H′
n] ⊆ Cn implies the inclusion [N c,H′

n] ⊆ Cn ⊕KH1 = Cdivc
n
(H′

n), and so N c ⊆ Cn ⊕KH1.
Since Cn ⊆ N c, it follows that N c = Cn ⊕ N c ∩ KH1 = Cn + KH1, i.e. Cn is not a Cartan
subalgebra of divcn.

Clearly, Cn + Hn ⊆ N := Ndivc
n
(Cn + Hn). Since H′

n ⊆ Cn + Hn, [H
′
n,N ] ⊆ Cn + Hn =

Cdivc
n
(H′

n), hence N ⊆ Cn + Hn (as Cn + Hn is the zero weight component of the weight H′
n-

module div
c
n), i.e. N = Cn +Hn. The Lie algebra Cn +Hn is solvable but not nilpotent, and so

Cn +Hn is not a Cartan subalgebra of divcn.
6. Statement 6 follows from the Example above. �

The Lie algebra div0n is a weightH′
n-module with respect to the adjoint action. In particular, the

action of H′
n on div

0
n is locally finite dimensional, i.e. for any ∂ ∈ div

0
n, dimK(

∑
i∈N

ad(H′
n)

i(∂)) <

∞. We can easily verify that the action of the Cartan subalgebra Cn of div0n on div
0
n is not locally

finite dimensional, see (25) and (26).
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Pn is a Dn-module. The polynomial algebra Pn is a (left) Dn-module: Dn × Pn → Pn,
(∂, p) 7→ ∂ ∗ p. In more detail, if ∂ =

∑n
i=1 ai∂i where ai ∈ Pn then

∂ ∗ p =
n∑

i=1

ai
∂p

∂xi
.

The field K is a Dn-submodule of Pn and IkerdiK

PDn
n :=

n⋂

i=1

kerPn
(∂i) = K. (29)

xa11Mar13
Lemma 2.4 [2] The Dn-module Pn/K is simple with EndDn

(Pn/K) = Kid where id is the
identity map.

The Gn-module Dn. The Lie algebra Dn is a Gn-module,

Gn ×Dn → Dn, (σ, ∂) 7→ σ(∂) := σ∂σ−1.

Every automorphism σ ∈ Gn is uniquely determined by the elements

x′
1 := σ(x1), . . . , x

′
n := σ(xn).

Let Mn(Pn) be the algebra of n × n matrices over Pn. The matrix J(σ) := (J(σ)ij) ∈ Mn(Pn),

where J(σ)ij =
∂x′

j

∂xi
, is called the Jacobian matrix of the automorphism (endomorphism) σ and

its determinant J (σ) := det J(σ) is called the Jacobian of σ. So, the j’th column of J(σ) is the

gradient gradx′
j := (

∂x′

j

∂x1
, . . . ,

∂x′

j

∂xn
)T of the polynomial x′

j where T stands for the transposition.
Then the derivations

∂′
1 := σ∂1σ

−1, . . . , ∂′
n := σ∂nσ

−1

are the partial derivatives of Pn with respect to the variables x′
1, . . . , x

′
n, ddp=dxi

∂′
1 =

∂

∂x′
1

, . . . , ∂′
n =

∂

∂x′
n

. (30)

Every derivation ∂ ∈ Dn is a unique sum ∂ =
∑n

i=1 ai∂i where ai = ∂ ∗ xi ∈ Pn. Let ∂ :=
(∂1, . . . , ∂n)

T and ∂′ := (∂′
1, . . . , ∂

′
n)

T . Then dp=Jnd

∂′ = J(σ)−1∂, i.e. ∂′
i =

n∑

j=1

(J(σ)−1)ij∂j for i = 1, . . . , n. (31)

In more detail, if ∂′ = A∂ where A = (aij) ∈ Mn(Pn), i.e. ∂′
i =

∑n
j=1 aij∂j . Then for all

i, j = 1, . . . , n,

δij = ∂′
i ∗ x

′
j =

n∑

k=1

aik
∂x′

j

∂xk

where δij is the Kronecker delta function. The equalities above can be written in the matrix form
as AJ(σ) = 1 where 1 is the identity matrix. Therefore, A = J(σ)−1.

For all σ, τ ∈ Gn, Jst=JsJ
J(στ) = J(σ) · σ(J(τ)). (32)

By taking the determinants of both sides of (32), we have a similar equality of the Jacobians:
for all σ, τ ∈ Gn. Jst=JsJ1

J (στ) = J (σ) · σ(J (τ)). (33)
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Properties of the divergence. Recall some of the properties of the divergence map

div : Dn → Pn, ∂ =
n∑

i=1

ai∂i 7→ div(∂) =
n∑

i=1

∂ai
∂xi

.

(div-i) div is a K-linear map which is a surjection.

(div-ii) For all a ∈ Pn and ∂ ∈ Dn, div(a∂) = adiv(∂) + ∂(a).

(div-iii) For all ∂, δ ∈ Dn, div([∂, δ]) = ∂(div(δ))− δ(div(∂)).

(div-iv) Let a1, . . . , an ∈ Pn; σ : Pn → Pn, xi 7→ ai, i = 1, . . . , n and J (a1, . . . , an) := J (σ) be
the Jacobian of σ. Then (Proposition 2.3.2, [6])

∂ ∗ J (a1, . . . , an) = −J (a1, . . . , an)div(∂) +

n∑

i=1

J (a1, . . . , ∂ ∗ ai, . . . , an).

(div-v) (Theorem 2.5.5, [6]) If Dn =
⊕n

i=1 Pn∂
′
i and ∂′

1, . . . , ∂
′
n commute then

div(∂′
1) = · · · = div(∂′

n) = 0.

(div-vi) Let σ : Pn → Pn, xi 7→ x′
i, i = 1, . . . , n, be an automorphism of Pn. Then ∂′

1 :=
σ∂1σ

−1, . . . , ∂′
n := σ∂nσ

−1 are commuting derivations of Pn such that Dn =
⊕n

i=1 Pn∂
′
i (by (31)

and since J(σ)−1 ∈ GLn(Pn)). By (31), ∂i =
∑n

i=1(J(σ)
−1)ij∂j . By (div-v),

n∑

j=1

∂j ∗ (J(σ)
−1)ij = 0 for i = 1, . . . , n.

The divergence commutes with polynomial automorphisms. The following known
theorem shows that the divergence commutes with automorphisms, i.e. the divergence map div :
Dn → Pn is a Gn-module homomorphism. We give a short proof.

B16Mar13
Theorem 2.5 For all σ ∈ Gn and ∂ ∈ Dn,

div(σ(∂)) = σ(div(∂)).

Proof. Let ∂ =
∑n

i=1 ai∂i where ai ∈ Pn. Then ∂′ = σ∂σ−1 =
∑n

i=1 σ(ai)∂
′
i where, by (31),

∂′
i =

∑n
j=1(J(σ)

−1)ij∂j . Now, by (div-vi),

div(∂′) =

n∑

i,j=1

∂j ∗ ((J(σ)
−1)ijσ(ai)) =

n∑

i=1

(

n∑

j=1

∂j ∗ (J(σ)
−1)ij) · σ(ai)) +

n∑

i=1

n∑

j=1

(J(σ)−1)ij∂j ∗ σ(ai)

=
n∑

i=1

∂′
i ∗ σ(ai) =

n∑

i=1

σ∂iσ
−1σ(ai) = σ(

n∑

i=1

∂i(ai)) = σ(div(∂)). �

11Mar13
Theorem 2.6 Gn = Gn.

The above theorem was announced in [8] where a sketch of a proof is given, it can also be
deduced from [10]. A proof of the above theorem is given in [9] and in ([7], Theorem 3.6), a
different approach and a short proof is given in [2]. Some generalizations are given in [4], [3] and
[5].

a20Mar13
Corollary 2.7 For all σ ∈ Gn and ∂ ∈ Dn, div(σ(∂)) = σ(div(∂)).
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Proof. The statement follows from Theorem 2.6 and Theorem 2.5. �

By (div-iii), div0n and div
c
n are Lie subalgebras of Dn, div

0
n is an ideal of divcn.

aB16Mar13
Corollary 2.8 The Lie subalgebras div

0
n and div

c
n of Dn are also Gn-submodules of Dn.

Proof. This follows from Theorem 2.5. �

By (div-iii), divDnPn

0 → div
0
n → Dn

div
→ Pn → 0 (34)

is the short exact sequence of (left) div0n-modules and div
c
n-modules, i.e. divcom

div([∂, δ]) = ∂ ∗ div(δ) (35)

for all ∂ ∈ div
c
n and δ ∈ Dn. So, divDnPn1

0 → div
0
n → div

c
n

div
→ K → 0 (36)

is the short exact sequence of (left) div0n-modules/divcn-modules, and so divDnPn2

div
c
n = div

0
n ⊕KHi for i = 1, . . . , n, (37)

since div(Hi) = 1 for all i = 1, . . . , n.

The maximal abelian Lie subalgebra Dn of div0n and div
c
n.

db11Mar13
Lemma 2.9 1. Cdiv0

n
(Dn) = Cdivc

n
(Dn) = Dn and so Dn is a maximal abelian Lie subalgebra

of div0n and div
c
n.

2. ([2]) FixGn
(Dn) = Shn.

3. For n ≥ 2, div
0
n is a faithful Gn-module, i.e. the group homomorphism Gn → Gn, σ 7→

σ : ∂ 7→ σ∂σ−1, is a monomorphism. For n = 1, the group Sh1 is the kernel of the group
homomorphism G1 → G1.

4. div
c
n is a faithful Gn-module, i.e. the group homomorphism Gn → Gc

n, σ 7→ σ : ∂ 7→ σ∂σ−1,
is a monomorphism.

5. FixGn
(Dn ⊕H′

n) = {e} for n ≥ 2.

Proof. 1. Since CDn
(Dn) = Dn, [2], we must have Cdiv0

n
(Dn) = Cdivc

n
(Dn) = Dn, and so Dn is

a maximal abelian Lie subalgebra of div0n and div
c
n.

3 and 5. By Corollary 2.8, div0n is a Gn-submodule of Dn. So, the group homomorphism in
statement 3 is well-defined. The case n = 1 is obvious since G1 = {x 7→ λx+ µ |λ ∈ K∗, µ ∈ K}
and div

0
1 = K∂.

So, let n ≥ 2, and σ ∈ FixGn
(Dn ⊕ H′

n). Then σ ∈ FixGn
(Dn) = Shn, by statement 2. So,

σ(x1) = x1 + λ1, . . . , σ(xn) = xn + λn where λi ∈ K. Then for all i 6= j,

Hi −Hj = σ(Hi −Hj) = (xi + λi)∂i − (xj + λj)∂j = Hi −Hj + λi∂i − λj∂j .

So, λ1 = · · · = λn = 0. This means that σ = e. So, FixGn
(Dn ⊕H′

n) = {e} and div
0
n is a faithful

Gn-module.
4. By Corollary 2.8, divcn is a Gn-submodule of Dn. So, the group homomorphism in statement

4 is well-defined. Now, statement 4 follows from statement 3 for n ≥ 2. For n = 1, statement 4 is
obvious as divc1 = K∂1 +KH1 and G1 = {x 7→ λx+ µ |λ ∈ K∗, µ ∈ K}. �

a16Mar13
Lemma 2.10 [divcn, div

c
n] = div

0
n.
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Proof. The statement is obvious for n = 1 as divc1 = K∂1+KH1 and div
0
1 = K∂1. So, let n ≥ 2.

By (div-iii), div([divcn, div
c
n]) = 0, and so [divcn, div

c
n] ⊆ div

0
n. Recall that div

0
n = iv

0
n+di

0
n (see (11)),

iv
0
n = ⊕n

i=1P
∂i∂i, [x

α∂i, Hi] = xα∂i for all x
α ∈ P ∂i

n and i = 1, . . . , n. Hence iv
0
n ⊆ [divcn, div

c
n].

Finally, for all a ∈ Pn and i 6= j,

[Hk, hj(a)Hi − hi(a)Hj ] = hj(Hk ∗ a)Hi − hi(Hk ∗ a)Hj .

Hence, {hj(x
α)Hi −hi(x

α)Hj | 0 6= α ∈ Nn, i 6= j} ⊆ [divcn, div
c
n]. Finally, Hi −Hj = [xi∂j , xj∂i] ∈

[divcn, div
c
n] for all i 6= j. Now, by Lemma 2.1.(3), [divcn, div

c
n] = div

0
n. �

The following lemma is well-known and easy to prove.
c11Mar13

Lemma 2.11 1. Dn is a simple Lie algebra.

2. Z(Dn) = {0}.

3. [Dn, Dn] = Dn.

The next lemma is also known but we give a short elementary proof.
dc11Mar13

Lemma 2.12 1. div
0
n is a simple Lie algebra.

2. Z(div0n) =

{
div

0
n if n = 1,

0 if n ≥ 2.

3. [div0n, div
0
n] =

{
0 if n = 1,

div
0
n if n ≥ 2.

Proof. All three statements are obvious if n = 1 since div
0
1 = K∂. So, we assume that n ≥ 2.

1. Let 0 6= a ∈ div
0
n and a = (a) be the ideal of the Lie algebra div

0
n generated by the element

a. We have to show that a = div
0
n. Using the inner derivations δ1, . . . , δn and ad(Hi −Hj) (where

i 6= j) of the Lie algebra div
0
n we see that ∂i ∈ a for some i. Then Dn ⊆ a since ∂j = [∂i, xi∂j ] for

all i 6= j. Then iv
0
n ⊆ a since xα∂i = [∂j , (αj + 1)−1xα+ej∂i] for all i 6= j and xα ∈ P ∂i

n . Then
H′

n ⊆ a since [xi∂j , xj∂i] = Hi −Hj for all i 6= j. Using the commutation relations Hsthj

[Hs −Ht, hj(x
α)Hi − hi(x

α)Hj ] = (αs − αt)(hj(x
α)Hi − hj(x

α)Hj) (38)

we see that {hj(x
α)Hi − hj(x

α)Hj | i 6= j, α ∈ Nn, α 6= (p, p, . . . , p), p = 1, 2, . . .} ⊆ a. Let
θ = x1 · · ·xn. Finally, by Lemma 2.1.(3), a = div

0
n since for all p = 1, 2, . . . and i 6= j, Hsthj1

[xj∂i, hj(xix
−1
j θp)Hi − hi(xix

−1
j θp)Hj ] = (p+ 2)(hj(θ

p)Hi − hi(θ
p)Hj). (39)

In more detail,

LHS = [xj∂i, pxix
−1
j θpHi − (p+ 2)xix

−1
j θpHj ] = p(p+ 2)θpHi − (p+ 2)(p+ 1)θpHj

+ (p+ 2)θpHi = (p+ 2)(p+ 1)(θpHi − θpHj)

= (p+ 2)(hj(θ
p)Hi − hi(θ

p)Hj).

2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 1. �

For any α = (α1, . . . , αn) ∈ Nn and any i 6= j, we have α = αiei +αjej +β where β ∈ Nn with
βi = βj = 0. Then taijx

θαij = [xαi+1
i ∂j , x

α−αiei+ej∂i]. (40)

Indeed, let c be the commutator. Then

c = xβ [xαi+1
i ∂j , x

αj+1
j ∂i] = xβθ

αiei+αjej
ij = θαij .
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By (40), taijx1
di

0
n ⊆ [iv0n, iv

0
n]. (41)

The inner derivations δ1 = ad(∂1), . . . , dn = ad(∂n) of the Lie algebra Dn are commuting and
locally nilpotent. The Lie algebra Dn is a union of vector spaces

Dn =
⋃

i≥o

Dn,i where Dn,i := {∂ ∈ Dn | δ
α(∂) = 0 for all α ∈ Nn such that |α| = i+ 1}

where δα =
∏n

i=1 δ
αi

i . Clearly, Dn,i = ⊕n
j=1Pn,i∂j where Pn,i := {p ∈ Pn | deg(p) ≤ i} and

[Dn,i, Dn,j ] ⊆ Dn,i+j−1 for all i, j ≥ 0 where Dn,−1 := 0. The inner derivations δ1, . . . , δn are also
commuting locally nilpotent derivations of the Lie algebras div

0
n and div

c
n. For each i ∈ N, let

div
0
n,i := div

0
n ∩Dn,i and div

c
n,i := div

c
n ∩Dn,i. Then, for all α ∈ Nn and i = 1, . . . , n− 1, tiadi

θαi ∈ div
0
n,|α|+1\div

0
n,|α|. (42)

The automorphisms si,i+1, i = 1, . . . , n − 1 (n ≥ 2). The automorphism s = si,i+1 of
the polynomial algebra Pn that swaps the variables xi and xi+1 leaving the rest of the variables
untouched (s(xi) = xi+1 and s(xi+1) = xi) extends uniquely to an automorphism of the Lie
algebra Dn. Clearly, s is also an automorphism of the Lie algebras div0n and div

c
n (Theorem 2.5).

In particular,
s(∂i) = ∂i+1, s(∂i+1) = ∂i, s(Hi) = Hi+1 and s(Hi+1) = Hi.

Therefore, for all α ∈ Nn, siia

si,i+1(θ
α
i ) = −θ

si,i+1(α)
i (43)

where, for α = (α1, . . . , αn), si,i+1(α) = (α1, . . . , αi−1, αi+1, αi, αi+2, . . . , αn). For i = 1, . . . , n−1;
j ∈ N and α ∈ Nn with αi ≥ 1, ditai

[xj
i+1∂i, θ

α
i ] = (αi + 1)θ

α−ei+jei+1

i . (44)

Proof. By (27),

LHS = [xj
i+1∂i, x

α((αi+1 + 1)Hi − (αi + 1)Hi+1]

= xα−ei+jei+1(αi((αi+1 + 1)Hi − (αi + 1)Hi+1)− ((αi+1 + 1)Hi − (αi + 1)Hi+1, jei+1 − ei)Hi)

= (αi + 1)xα−ei+jei+1((αi+1 + 1 + j)Hi − αiHi+1)

= (αi + 1)θ
α−ei+jei+1

i . �

For i = 1, . . . , n− 1; j ∈ N and α ∈ Nn with αi+1 ≥ 1, ditai1

[xj
i∂i+1, θ

α
i ] = (αi+1 + 1)θ

α+jei−ei+1

i . (45)

Proof. By applying the automorphism s = si,i+1 to the equality (44) and using (43) we obtain
(45):

[xj
i∂i+1, θ

α
i ] = −s([xj

i+1∂i, θ
s(α)
i ] = −s((αi+1 + 1)θ

s(α)−ei+jei+1

i

= (αi+1 + 1)θ
s(s(α)−ei+jei+1)
i

= (αi+1 + 1)θ
α+jei−ei+1

i . �

By (44) and (45), for i = 1, . . . , n− 1; j = 1, . . . , n and α ∈ Nn. ditai4

[∂j , θ
α
i ] =





(αj + 1)θ
α−ej
i if j = i, i+ 1 and αj ≥ 1,

(αi+1 + 1)xα∂i if j = i, αi = 0,

−(αi + 1)xα∂i+1 if j = i+ 1, αi+1 = 0,

αjθ
α−ej
i otherwise.

(46)
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Proposition 2.13 Let n ≥ 2. Then

1. FixGn
(Dn ⊕H′

n) = {e}.

2. Let σ, τ ∈ Gn. Then σ = τ iff σ(∂i) = τ(∂i) for i = 1, . . . , n and σ(Hj − Hj+1) =
τ(Hj −Hj+1) for j = 1, . . . , n− 1.

3. FixGn
(∂1, . . . , ∂n) = Shn.

Proof. 1. Let σ ∈ F := FixGn
(Dn⊕H′

n). We have to show that σ = e. Let F := Fixdiv0
n
(σ) :=

{∂ ∈ div
0
n |σ(∂) = ∂}. We have to show that F = div

0
n.

(i) Dn +H′
n ⊆ F : Obvious.

(ii) iv
0
n ⊆ F : We have to show that P ∂i

n ∂i ⊆ F for all i = 1, . . . , n. Fix i and xα∂i ∈ P ∂i
n ∂i.

If α = 0 then ∂i ∈ Dn ⊆ F , by (i). We use induction on |α| =
∑n

i=1 αi to prove the statement.
The case |α| = 0 is obvious. So, let |α| ≥ 1. The element xα∂i has weight [α − ei]. The weight

subspace div
0
n,[α−ei] is σ-invariant (σ(div0n,[α−ei]) = div

0
n,[α−ei]) and the set {xα∂i, θ

α−ei+k1
j | j =

1, . . . , n − 1; k = 1, 2, . . .} is its K-basis, by (20). The element xα∂i belongs to the σ-invariant
subspace N|α| := div

0
n,|α|(= div

0
n ∩Dn,|α|). By (42) and (46),

V := N|α| ∩ div
0
n,[α−ei] = Kxα∂i

is a σ-invariant subspace. Therefore, σ(xα∂i) = λα,ix
α∂i for all x

α∂i ∈ P ∂i
n ∂i and i = 1, . . . , n for

some λα,i ∈ K. Clearly, λ0,i = 1 for all i = 1, . . . , n since σ(∂i) = ∂i. Applying the automorphism
σ to the relations [∂j , x

α∂i] = αjx
α−ej∂i yields the equalities αj(λα,i − λα−ej ,i) = 0. If αj 6= 0

then λα,i = λα−ej ,i = 1 (by induction). Hence, iv0n ⊆ F .

(iii) di0n ⊆ F : By (ii) and (41).
Therefore, div0n = di

0
n + iv

0
n ⊆ F , and so div

0
n = F , as required.

2. Statement 2 follows from statement 1.
3. Clearly, Shn ⊆ F := FixGn

(∂1, . . . , ∂n). Let σ ∈ F and H ′
i,j := σ(Hi,j) where Hi,j :=

Hi −Hj for i 6= j. Then

[∂k, H
′
i,j −Hi,j ] = σ([∂k, Hi,j ])− [∂k, Hi,j ] = [∂k, Hi,j ]− [∂k, Hi,j ] = 0

since [Dn,H
′
n] ⊆ Dn. Then dij := H ′

i,j − Hi,j ∈ Cdiv0
n
(Dn) = Dn, and so dij =

∑n
k=1 λ

k
ij∂k for

some λk
ij ∈ K.

If n = 2 then H ′
1,2 = H1−H2+λ1∂1−λ2∂2 = (x1+λ1)∂1− (x2+λ2)∂2 = sλ(H1−H2) where

sλ ∈ Sh2 and λ = (λ1, λ2). Hence, s−1
λ σ(H1−H2) = H1−H2, i.e. s

−1
λ σ ∈ FixG2

(D2+H′
2) = {e},

and so σ = sλ ∈ Sh2.
Suppose that n > 2. If n = 3 then up to action of Sh3, we may assume that H ′

1,2 = H1,2 +λ∂3
and H ′

2,3 = H2,3 +µ∂1 + ν∂2 for some λ, µ, ν ∈ K. Then 0 = [H ′
1,2, H

′
2,3] = −µ∂1 + ν∂2 +λ∂3 and

so λ = µ = ν = 0.
If n ≥ 4 then for any four distinct numbers i, j, k, l ∈ {1, 2, . . . , n} we have the equality

0 = [H ′
i,j , H

′
k,l] = [Hi,j , dkl]− [Hk,l, dij ] = −λi

kl∂i + λj
kl∂j + λk

ij∂k − λl
ij∂l.

Therefore, λi
kl = 0 for all distinct i, j and k. Then using Shn, we may assume that

H ′
1,2 = H1,2, H ′

2,3 = H2,3 + λ2
23∂2, H ′

3,4 = H3,4 + λ3
34∂3, . . . , H

′
n−1,n = Hn−1,n + λn−1

n−1,n∂n−1.

Then, for i = 2, . . . , n−1, 0 = [H ′
i−1,i, H

′
i,i+1] = λi

i,i+1∂i, i.e. λ
i
i,i+1 = 0 and H ′

i,i+1 = Hi,i+1. This

means that sλσ ∈ FixGn
(Dn+H′

n) = {e} (statement 2) for some sλ ∈ Shn, and so σ = s−1
λ ∈ Shn.

�
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Lemma 2.14 Let σ ∈ Gn, ∂

′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n); δ

′
1 := ad(∂′

1), . . . , δ
′
n := ad(∂′

n) and D′

be the subalgebra of EndK(Pn) generated by the linear maps ∂′
1, . . . , ∂

′
n. Then
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1. ∂′
1, . . . , ∂

′
n are commuting, locally nilpotent derivations of Pn.

2.
⋂n

i=1 kerPn
(∂′

i) = K.

3. (Embedding trick) For n ≥ 2, the short sequence of D′-modules 0 → K → Pn
∆′

→ div
0
n
(n2) is

exact where ∆′(p) :=
∏

i<j(∂
′
i(p)∂

′
j − ∂′

j(p)∂
′
i). In particular, for all p ∈ Pn and α ∈ Nn,

∆′∂′α(p) = δ′α∆′(p)

where ∂′α :=
∏n

i=1 ∂
′αi

i and δ′α :=
∏n

i=1 δ
′αi

i .

4. Let ∆′ : Pn → D
(n2)
n , p 7→

∏
i<j(∂

′
i(p)∂

′
j − ∂′

j(p)∂
′
i). Then ∆′ ∈ DerD′(Pn, D

(n2)
n ).

Proof. 2. Let λ ∈
⋂n

i=1 kerPn
(∂′

i). Then div(λ∂′
1) = λdiv(∂′

1) + ∂′
1 ∗ λ = 0, i.e. λ∂′

1 ∈ div
0
n and

λ∂′
1 ∈ Cdiv0

n
(∂′

1, . . . , ∂
′
n) = σ(Cdiv0

n
(∂1, . . . , ∂n)) = σ(Cdiv0

n
(Dn)) = σ(Dn) = σ(

n⊕

i=1

K∂i) =
n⊕

i=1

K∂′
i,

since Cdiv0
n
(Dn) = Dn, Lemma 2.9.(1). Then λ ∈ K since otherwise the infinite dimensional space⊕

i≥0 Kλi∂′
1 would be a subspace of the finite dimensional space σ(Dn).

3. The derivations ∂′
1, . . . , ∂

′
n commute since ∂1, . . . , ∂n do. So, D′ is a commutative algebra.

For all p ∈ Pn and ∂ ∈ div
0
n,

div(a∂) = adiv(∂) + ∂(a) = ∂(a).

So, the map ∆′ is well-defined: div(∂′
i(p)∂

′
j − ∂′

j(p)∂
′
i) = (∂′

j∂
′
i − ∂′

i∂
′
j)(a) = 0. Recall that

the vector spaces Pn and div
0
n are left div

0
n-modules hence they are also left D′-modules since

∂′
1, . . . , ∂

′
n ∈ div

0
n. The map ∆′ is a D′-homomorphism since, for all p ∈ Pn,

∆′∂′
i(p) = [∂′

i,∆
′(p)], i = 1, . . . , n.

It remains to show that ker(∆′) = K. The inclusion K ⊆ ker(∆′) is obvious.

(i) ker(∆′) = {p ∈ Pn | ∂
′
i(p)∂

′
j = ∂′

j(p)∂
′
i for all i 6= j}: This is obvious. Let P

∂′

i
n := kerPn

(∂′
i).

(ii) ker(∆′) ∩ P
∂′

i
n = K for i = 1, . . . , n: Given p ∈ Pn. By (i), p ∈ ker(∆′) ∩ P

∂′

i
n iff p ∈

ker(∆′) ∩ P
∂′

j
n for j = 1, . . . , n (0 = ∂′

i(p)∂
′
j = ∂′

j(p)∂
′
i ⇒ ∂′

j(p) = 0) iff

p ∈ ker(∆′) ∩ P
∂′

1,...,∂
′

n
n = ker(∆′) ∩K = K,

by statement 2. Suppose that K ′ := ker(∆′)\K 6= ∅, we seek a contradiction.
(iii) If p ∈ K ′ then ∂′

1(p) 6= 0, . . . , ∂′
n(p) 6= 0: This follows from (ii) (K ′ = ker(∆′)\K =

ker(∆′)\ker(∆′) ∩ P
∂′

i
n = ker(∆′)\P

∂′

i
n ).

(iv) P
∂′

1
n = · · · = P

∂′

n
n : Fix p ∈ K ′. By (iii), ∂′

1(p) 6= 0, . . . , ∂′
n(p) 6= 0. By (i),

∂′
i(p)∂

′
j = ∂′

j(p)∂
′
i for all i 6= j,

and so P
∂′

1
n = · · · = P

∂′

n
n .

(v) P
∂′

1
n = · · · = P

∂′

n
n = K: This statement follows from (iv) and statement 2.

Suppose that ker(∆′) 6= K, we seek a contradiction. Fix an element p ∈ ker(∆′)\K. By
statement 2, ∂′

j(p) 6= 0 for some j. For all i 6= j, ∂′
i(p)∂

′
j = ∂′

j(p)∂
′
i (since p ∈ ker(∆′)). Hence,

∂′
i(p) 6= 0 for all i. Therefore, for i = 1, . . . , n, ∂′

i = fi∂ for some fi ∈ Pn and a derivation
∂ =

∑n
s=1 ps∂s ∈ Dn with gcd(p1, . . . , pn) = 1. For all elements ci ∈ C ′

i := Cdiv0
n
(∂′

i), 0 =
[ci, ∂

′
i] = ci(fi)∂ + fi[ci, ∂], and so [ci, ∂] ∈ Pn∂, by the choice of ∂. By Theorem 1.3, the Lie

algebra div
0
n is generated by the set C =

∑n
i=1 Cdiv0

n
(∂i) and also by the set σ(C) =

∑n
i=1 C

′
i.
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Hence, [div0n, ∂] ⊆ Pn∂. In particular, for all i, [∂i, ∂] =
∑n

j=1 ∂i(pj)∂j ∈ Pn∂. Hence, ∂ ∈ Dn, by

degree argument. Then P ∂
n 6= K, and so P

∂′

i
n = P ∂

n 6= K. This contradicts to (v).
4. The map ∆′ can be seen as the map DpPb

∆′ : Pn → D
(n2)
n , p 7→

∏

i<j

(∂′
i(p)∂

′
j − ∂′

j(p)∂
′
i). (47)

Notice that Pn and D
(n2)
n are left Pn-modules.

∆′ ∈ DerD′(Pn, D
(n2)
n ), i.e. the map ∆′ is a D′-derivation from the polynomial algebra Pn to

the left Pn-module D
(n2)
n , i.e. for all p, q ∈ Pn,

∆′(pq) = q∆′(p) + p∆′(q) :

∆′(pq) =
∏

i<j

((q∂′
i(p) + p∂′

i(q))∂
′
j − (q∂′

j(p) + p∂′
j(q))∂

′
i)

= q
∏

i<j

(∂′
i(p)∂

′
j − ∂′

j(p)∂
′
i) + p

∏

i<j

(∂′
i(q)∂

′
j − ∂′

j(q)∂
′
i)

= q∆′(p) + p∆′(q).

1. The inner derivations δ1, . . . , δn of the Lie algebra div
0
n are commuting and locally nilpotent.

Hence so are the inner derivations δ1, . . . , δ
′
n, by statements 2 and 3. �
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Theorem 2.15 [2] Let ∂′

1, . . . , ∂
′
n be commuting, locally nilpotent derivations of the polynomial

algebra Pn such that
⋂n

i=1 kerPn
(∂′

i) = K. Then there exist polynomials x′
1, . . . , x

′
n ∈ Pn such that

con*
∂′
i ∗ x

′
j = δij for i, j = 1, . . . , n. (48)

Moreover, the algebra homomorphism

σ : Pn → Pn, x1 7→ x′
1, . . . , xn 7→ x′

n

is an automorphism such that ∂′
i = σ∂iσ

−1 = ∂
∂x′

i

for i = 1, . . . , n.
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Corollary 2.16 Let σ ∈ Gn. Then τσ ∈ FixGn

(∂1, . . . , ∂n) for some τ ∈ Gn.

Proof. By Lemma 2.14, the elements ∂′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n) satisfy the assumptions of

Theorem 2.15. By Theorem 2.15, ∂′
1 := τ−1(∂1), . . . , ∂

′
n := τ−1(∂n) for some τ ∈ Gn. Therefore,

τσ ∈ FixGn
(∂1, . . . , ∂n). �

Proof of Theorem 1.1. If n = 1 then div
0
1 = K∂1, G1 = T1 ≃ G1/Sh1 since G1 = T1 ⋉ Sh1.

So, let n ≥ 2. Let σ ∈ Gn. By Corollary 2.16, τσ ∈ FixGn
(∂1, . . . , ∂n) = Shn (Proposition

2.13.(3)). Therefore, σ ∈ Gn, i.e. Gn = Gn. �
a18Mar13

Lemma 2.17 FixGc
n
(div0n) =

{
Sh1 if n = 1,

{e} if n ≥ 2.

Proof. If n = 1, σ(∂) = ∂ for some σ ∈ Gc
1 then applying σ to the equality [∂1, H1] = ∂1

yields σ(H1) = H1 + λ∂1 = (x1 + λ)∂1 = tλ(H1) for some λ ∈ K where tλ ∈ Sh1. Hence
FixGc

1
(div01) = Sh1.

So, let n ≥ 2. Let σ ∈ F := FixGc
n
(div0n), H ′

1 := σ(H1), . . . , H
′
n := σ(Hn). By (37), it

suffices to show that σ(Hi) = Hi for i = 1, . . . , n. For i 6= j, σ(Hi − Hj) = Hi − Hj , and so
d := H ′

i −Hi = H ′
j −Hj . For all i = 1, . . . , n,

[∂i, d] = σ([∂i, Hi])− [∂i, Hi] = σ(∂i)− ∂i = ∂i − ∂i = 0.
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So, d ∈ Cdivc
n
(Dn) = Dn (Lemma 2.9.(1)) and d =

∑n
i=1 λi∂i for some λi ∈ K. The elements

H ′
1 = H1 + d, . . . ,H ′

n = Hn + d commute hence d = 0. Therefore, σ = e. �

Proof of Theorem 1.2. If n = 1 then Gc
1 ≃ T1 ⋉ Sh1. So, let n ≥ 2. By (2) and Lemma

2.17, Gc
n = Gn. �
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Theorem 2.18 For all σ ∈ Gn,

div(σ(Hi)−Hi) = 0 for i = 1, . . . , n.

Proof. For each i = 1, . . . , n, by (37), σ(Hi) = λi(σ)Hi + di(σ) for some elements λi(σ) ∈ K
and di(σ) ∈ div

0
n. By Theorem 2.5,

1 = div(Hi) = σ(div(Hi)) = div(σ(Hi)) = div(λi(σ)Hi + di(σ)) = λi(σ). �

The automorphisms of the Lie algebra div
c
n preserve divergence.
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Corollary 2.19 1. For all σ ∈ Gc

n and ∂ ∈ div
c
n, div(σ(∂)) = div(∂).

2. Every automorphism of the Lie algebra div
0
n is extendable to an automorphism of the Lie

algebra div
c
n, and the extension is unique if n ≥ 2.

Proof. 1. The result follows from Theorem 1.2 and Theorem 2.5.
2. Statement 2 follows from Theorem 1.1 and Theorem 1.2. �

b2Apr13
Lemma 2.20 For all n ≥ 2, Pn/K is a simple div

0
n-module/divcn-module; Enddiv0

n
(Pn/K) =

Enddivc
n
(Pn/K) = Kid where id is the identity map. For n = 1, P1/K is neither a simple div

0
1-

module nor a simple div
c
1-module.

Proof. If n = 1 then div
0
1 = K∂1, div

c
1 = K∂1 + KH1 and

∑
i≤m Kxi

1∂1 where m ∈ N are

distinct div
0
1/div

c
1-submodules of P1. Suppose that n ≥ 2. It suffices to prove the statement for

div
0
n. Let M be a nonzero div

0
n-submodule of Pn/K and 0 6= m ∈ M . Using the actions of

∂1, . . . , ∂n ∈ div
0
n on m we obtain an element of M of the form λxi +K for some λ ∈ K∗. Hence,

xi +K ∈ M . Then xj +K = xj∂i ∗ (xi +K) ∈ M for all j 6= i. So, xα +K ∈ M for all α ∈ Nn

with |α| = 1. We use induction on |α| to show that all xα +K ∈ M . Suppose that m := |α| > 1.
If xα + k = xm

i +K for some m ≥ 2 and i then xm
i +K = (m− 1)−1xi(Hi − 2Hj) ∗ (x

m−1
i +K).

Then, by applying elements of the type xj∂i where j 6= i to the element xm
i +K we obtain all the

elements xα +K with |α| = m. Therefore, Pn/K is a simple div
0
n-module/divcn-module.

Let f ∈ Enddiv0
n
(Pn/K). Then applying f to the equalities ∂i ∗ (x1+K) = δi1 for i = 1, . . . , n,

we obtain the equalities
∂i ∗ f(x1 +K) = δi1 for i = 1, . . . , n.

Hence, f(x1 +K) ∈
⋂n

i=2 kerPn/K(∂i) ∩ kerPn/K(∂2
1) = (K[x1]/K) ∩ kerPn/K(∂2

1) = K(x1 +K).

So, f(x1+K) = λ(x1+K) and so f = λ id, by the simplicity of the div0n-module Pn/K. Therefore,
Enddiv0

n
(Pn/K) = Enddivc

n
(Pn/K) = Kid. �

a2Apr13
Proposition 2.21 For n ≥ 2, divcn is a maximal Lie subalgebra of Dn. For n = 1, divc1 is not a
maximal Lie subalgebra of D1. For each n ≥ 1, divcn is a Gn-invariant/Gn-invariant Lie subalgebra
of Dn.

Proof. For n = 1, divc1 = K∂1 +KH1 is contained in the Lie subalgebra K∂1 +KH1 +Kx1H1

of D1. Suppose that n ≥ 2. By (34) and (36), divDnPn3

0 → div
c
n → Dn

div
→ Pn/K → 0 (49)

is the short exact sequence of divcn-module. By Lemma 2.20, the div
c
n-module Pn/K is simple.

Then, divcn is a maximal Lie subalgebra of Dn.
By Theorem 1.2, Theorem 2.6 and Theorem 2.5, divcn is a Gn-invariant/Gn-invariant Lie sub-

algebra of Dn. �
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Lemma 2.22 Let n ≥ 2. Then

1. Pn/K is a simple Gn-module with EndGn
(Pn/K) ≃ K.

2. Dn/div
c
n

div
≃ Pn/K, an isomorphism of Gn-modules.

3. Dn/div
c
n is a simple Gn-module with EndGn

(Pn/K) ≃ K.

Proof. 1. Let M be a Gn-submodule of Pn properly containing K. We have to show that
M = Pn, i.e. xα ∈ M for all α ∈ Nn. The polynomial algebra Pn = ⊕α∈NnKxα is the direct
sum of 1-dimensional non-isomorphic Tn-modules. Hence M is a homogeneous submodule of Pn.
Hence xβ ∈ M for some β 6= 0. If βi 6= 0 then using the automorphism si : xi 7→ xi + 1, xj 7→ xj ,
j 6= i, we see that M ∋ si(x

β) − xβ and degxi
(si(x

β) − xβ) = βi − 1. The module M is closed
under the maps si − 1 for i = 1, . . . , n. Hence, xγ ∈ M for all γ ≤ β where γ ≤ β iff γi ≤ βi for
all i. In particular, all x1, . . . , xn ∈ M . Then applying the automorphism σm : x1 7→ xi + xm

2 ,
xi 7→ xi for i 6= 1, to the element x1, we see that M ∋ (σm − 1)(x1) = xm

2 for all m ≥ 1. Then
applying the automorphism x2 7→

∑n
i=1 xi, xi 7→ xi for i 6= 2, we have (x1+ · · ·+xn)

m ∈ M . This
implies that all xα ∈ M , by the homogeneity of M .

Let f ∈ EndGn
(Pn/K). Since f commutes with the action of the subgroup Tn of Gn, we must

have f(xα + K) = λα(x
α + K) for all α ∈ Nn and some λα ∈ K. In particular, f(x1 + K) =

λ(x1 + K) for some λ ∈ K. Since f commutes with the action of the symmetric group Sn

(which is obviously a subgroup of Gn), f(xi +K) = λ(xi +K) for all i = 1, . . . , n. Now, we use
induction on |α| show that f(xα +K) = λ(xα +K). The initial case when |α| = 1 has just been
established. So, let |α| > 1. Then αi > 0 for some i, and deg((si−1)xα+K) < |α|. By induction,
f((si − 1)xα +K) = λ((si − 1)xα +K). Now, it follows from the equality

f(si(x
α) +K)− f(xα +K) = f((si − 1)xα +K) = λ(si − 1)xα +K

that λα = λ, and so f = λ id. Therefore, EndGn
(Pn/K) = Kid.

2. Statement 2 follows from (49) and Theorem 2.5.
3. Statement 3 follows from statements 1 and 2. �

a14Apr13
Lemma 2.23 The Lie algebra div

0
n is a Gn-invariant/Gn-invariant Lie subalgebra of Dn.

Proof. The statement follows from Theorem 1.1, Theorem 2.6 and Theorem 2.5. �

Conjecture: Every nonzero homomorphism of the Lie algebra div
0
n is an automorphism.

3 Minimal set of generators for the Lie algebras div0n and

divcn
TMMSG

In this section, the proofs of Theorem 1.3 and Theorem 1.4 are given. ditai2

[x2
i ∂i+1, xi+1∂i] = θeii . (50)

In more detail, LHS= x2
i ∂i − 2xixi+1∂i+1 = xi(Hi − 2Hi+1) = θeii . ditai3

[x2
i+1∂i, xi∂i+1] = −θ

ei+1

i . (51)

Similarly, LHS= x2
i+1∂i+1 − 2xixi+1∂i = −xi+1(2Hi −Hi+1) = −θ

ei+1

i .

Proof of Theorem 1.3. The elements in Theorem 1.3 belong to div
0
n and let G be the Lie

subalgebra of div0n they generate.
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(i) G = div
0
n: To prove that the equality holds we use induction on n. Let n = 2. So,

G = 〈∂1, x
2
2∂1, x

2
1∂2〉. Then ∂2, x1∂2, x2∂1 ∈ G:

x1∂2 =
1

2
[∂1, x

2
1∂2], ∂2 = [∂1, x1∂2], x2∂1 =

1

2
[∂2, x

2
2∂1].

By Lemma 2.1.(3), we have to show that the elements xi
2∂1, x

i
1∂2 and θα1 = xα((α2+1)H2− (α1+

1)H2) belong to G where i ∈ N and α ∈ N2. By (50) and (51),

θe11 = [x2
1∂2, x2∂1] ∈ G, θe21 = −[x2

2∂1, x1∂2] ∈ G.

Then using (44) and (45), we see that θα1 ∈ G for all 0 6= α ∈ N2. For α = 0, θ01 = H1 − H2 =
[x1∂2, x2∂1] ∈ G. By (26), for j ≥ 1,

G ∋ [x2∂1, θ
je2
1 ] = −((j + 1)H1 −H2,−e1 + e2)x

j+1
2 ∂1 = (j + 2)xj+1

2 ∂1.

By symmetry, G ∋ (j + 2)xj+1
1 ∂2, i.e. G = div

0
n.

Suppose that n ≥ 3, and that the equality G = div
0
n′ holds for all n′ such that 2 ≤ n′ < n.

Step 1. {∂i, x
ν
j ∂k | i, j, k = 1, . . . , n; j 6= k; ν = 1, 2} ⊆ G: For i = 2, . . . , n, ∂i =

1
2 [∂1, [∂1, x

2
1∂i]] ∈

G and x1∂i =
1
2 [∂1, x

2
1∂i] ∈ G. Then xi∂1 = 1

2 [∂i, x
2
i ∂1] ∈ G for i = 2, . . . , n. For all i 6= j such

that i 6= 1 and j 6= 1, xi∂j = [xi∂1, x1∂j ] ∈ G and x2
i ∂j = [x2

i ∂1, x1∂j ] ∈ G. For i = 2, . . . , n, fix an
index j such that j 6= 1, i. Then xi∂1 = [xi∂j , xj∂1] ∈ G and x2

i ∂1 = [x2
i ∂j , xj∂1] ∈ G. The proof

of Step 1 is complete.
For i = 2, . . . , n, let div0n,i be the Lie algebra div

0
n−1 for the polynomial algebraK[x1, . . . , x̂i, . . . , xn]

(xi is missed).
Step 2. For i = 1, . . . , n, div0n,i ⊆ G: This follows from Step 1 and induction.

Step 3. di0n ⊆ G: This follows from (25) and Step 2.
Step 4. iv0n ⊆ G: This follows from (26) (where αi = 0) and Step 3.
(ii) Minimality:
(a) The element ∂1 cannot be dropped: By Lemma 2.1.(3), div0n is a Z-graded Lie algebra which

is determined by the degree deg in the following way, for xα∂i ∈ P ∂i
n ∂i, deg(x

α∂i) = |α| − 1 and
deg(θαi ) = |α| for all α ∈ Nn and i = 1, . . . , n − 1. Clearly, deg(∂1) = −1 (negative) and the
degrees the rest of the generators are equal to 1 (positive). Therefore, the ∂1 cannot be dropped.

(b) The element x2
i ∂1 (i = 2, . . . , n) cannot be dropped: Since otherwise the Lie algebra gen-

erated by the remaining elements would belong to ⊕n
j=1K[x1, . . . , x̂i, . . . , xn]∂j (xi is missed), a

contradiction (see (i)).
(c) The element x2

1∂i (i = 2, . . . , n) cannot be dropped: Since otherwise the Lie algebra gener-
ated by the remaining elements would belong to ⊕n

j 6=iPn∂j , a contradiction (see (i)). �

Proof of Theorem 1.4. By Theorem 1.3, the elements in Theorem 1.4 generate the Lie
algebra div

c
n = div

0
n ⊕KH1 and the element H1 cannot be dropped (by Theorem 1.3).

(a) The element ∂1 cannot be dropped by the same reason as in the proof of Theorem 1.3 as
deg(H1) = 0.

(b) The element x2
i ∂1 (i = 2, . . . , n) cannot be dropped by the same reason as in the proof of

Theorem 1.3.
(c) The element x2

1∂i (i = 2, . . . , n) cannot be dropped by the same reason as in the proof of
Theorem 1.3. �
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