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The groups of automorphisms of the Lie algebras of
polynomial vector fields with zero or constant divergence

V. V. Bavula (Aut-Div.tex )

Abstract

Let P, = KJz1,...,Zs] be a polynomial algebra over a field K of characteristic zero
and 0ivY (respectively, div$) be the Lie algebra of derivations of P, with zero (respec-
tively, constant) divergence. We prove that Autrie(divh) =~ Autx—_aig(Pn) (n > 2) and
Autrie(div),) ~ Aut ik _alg(Pn). The Lie algebra divg, is a maximal Lie subalgebra of Derg (P,).
Minimal finite sets of generators are found for the Lie algebras 2iv? and din.

Key Words: Group of automorphisms, derivation, the divergence, Lie algebra, automor-
phism, locally nilpotent derivation, the Lie algebras of polynomial vector fields with zero or
constant divergence.

Mathematics subject classification 2010: 17B40, 17B20, 17B66, 17B65, 17B30.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero and K* is its group
of units, and the following notation is fixed:

Qn

o P i=Klzy,..., 2] = P enn Kz is a polynomial algebra over K where 2% := 2" - - - x5}

and @, := K(z1,...,x,) is its field of fractions,
o G, := Autg_aig(P,) is the group of automorphisms of the polynomial algebra P,
e 0 0 .0, = % are the partial derivatives (K-linear derivations) of P,,

1= By

e D, := Derg(P,) = @?:1 P, 0; is the Lie algebra of K-derivations of P, where [0,¢] :=
96 — 060,

e G, := Autpie(D,,) is the group of automorphisms of the Lie algebra D,,,

e 01 := ad(d1),...,0, := ad(0,) are the inner derivations of the Lie algebra D,, determined
by O1,...,0, (where ad(a)(b) := [a,b]),

« D, =@ Ko,

o H, =@, , KH; where Hy := 2101,..., H,, := 2,0y,

o Dl i @, Pull = By Mo

o h:=@! | Kh; where hy := d121,...,hy, := Opx, € Endg(P,),

e for a derivation 0 = Y " | a;0; € D,,, div(9) := >, g;” is the divergence of 0,

e iv) := {0 € D, |div(d) = 0} is the Lie algebra of polynomial vector fields (derivations)
with zero divergence,

e G, = AutLie(Dibg),

° H'In = @;:11 KHi,'H—l where Hij = Hz — Hj for ¢ 7& j,



e div; := {0 € D, |div(9) € K} is the Lie algebra of polynomial vector fields (derivations)
with constant divergence,

o G% = AutLie(DinfL),
o A, :=K(z1,...,2,,01,...,0,) = ®a,ﬁeN" Kz9? is the n’th Weyl algebra,

The groups of automorphisms of the Lie algebras Oing and ?iv;,. The aim of the paper
is to prove the following two theorems.

G1/Sh; ~ K* ifn=1,

Theorem 1.1 G,, =
Gy ifn>2.

Structure of the proof. The case n = 1 is trivial (see Section 2 where the group Sh; is defined in
(1)). So, let n > 2.

(i) G, € G,, via the group monomorphism (Lemma 2.9.(3))
Gn— Gy, 00:0—0(0) =000 .

(ii) Let 0 € G,. Then 9] := 0(01),...,0), := 0(0,) are commuting, locally nilpotent deriva-

r¥n

tions of the polynomial algebra P, (Lemma 2.14.(1)).
(iii) i, kerp, (9)) = K (Lemma 2.14.(2)).

(iv) There exists a polynomial automorphism 7 € G,, such that 7o € Fixg, (01, ...,0,) (Corol-
lary 2.16).

(v) Fixg,, (04, . ..,0,) = Shy, (Proposition 2.13.(3)) where
Shy, :={sx € Gn|sx(z1) =21+ M1,...,8:(Tn) =T + A} (1)
is the shift group of automorphisms of the polynomial algebra P, and A = (A1,...,\,) € K™.
(vi) By (iv) and (v), 0 € G, i.e. G, =G,. O
Theorem 1.2 G¢ = G,.
Structure of the proof. The case n =1 is trivial (see Section 2). So, let n > 2.
(i) G, € G, via the group monomorphism (Lemma 2.9.(4))
Gn—= G, o 0:0 0(0) :=cdo L.
(if) divy, = [divy,,div] (Lemma 2.10).
(iii) The short exact sequence of group homomorphisms
1 — F = Fixg: (iv}) = G5 F G, — 1
is exact (by (i) and Theorem 1.1) where res : 0 = 0|y;,0 is the restriction map, see (ii).
(iv) Since G,, = G,, (Theorem 1.1) and G,, C G, (by (i)), the short exact sequence splits
Gf ~ G, x F. (2)

(v) F ={e} (Lemma 2.17). Therefore, G5, = G,,. O

16Marl3
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Theorem 1.1 was announced in [8] where a sketch of the proof is given based on a study of
certain Lie subalgebras of Ding of finite codimension. Our proof is based on completely different
ideas. The groups of automorphisms of infinite dimensional Lie algebras were considered in [2]-[10].

A subalgebra M of a Lie algebra G is called a mazimal Lie subalgebra if M # G and G is the
only Lie subalgebra of G properly containing M.

e (Proposition 2.21) For n > 2, div;, is a mazimal Lie subalgebra of D, which is also a G,,-
invariant/G,-invariant Lie subalgebra.

e (Proposition 2.22) For n > 2, the G,-module D, /div;, is simple and infinite dimensional
with Endg, (Dy,/oiv;,) ~ K.

Theorem 1.3 For n > 2, the set of elements 01,2301, 2301, ...,2201,2302,2303,...,230, is a
minimal set of generators for the Lie algebra Dit),ol.

Theorem 1.4 For n > 2, the set of elements in Theorem 1.8 together with Hy is a minimal set
of generators for the Lie algebra div;,.

2 Proof of Theorems 1.1 and 1.2

In this section, proofs of Theorems 1.1 and 1.2 are given. In the first part of the section some
useful results are proved that are used throughout the paper. The second part of the section can
be seen as proofs of Theorem 1.1 and 1.2. The proofs are split into several statements that reflect
‘Structure of the proofs of Theorems 1.1 and and 1.2’ given in the Introduction. As we have seen
in the Introduction, Theorem 1.1 is the key point in the proof of Theorem 1.2.

The Lie algebra D,, is Z"-graded. The Lie algebra

D= @ DKo, g

aeN™ =1
is a Z™-graded Lie algebra
D, = @ D, g where D, 3 = @ Kx%0;,
pezr a—e;=f3
ie. [Dn,a;Dngl C Dy otp for all , 8 € N* where e; := (1,0,...,0),...,e, :=(0,...,0,1) is the
canonical free basis for the free abelian group Z™. This follows from the commutation relations
[J?aai,l‘ﬁaj] = ﬁi$a+5_ei6j — Oéj.l?a+ﬁ_ej 61 (4)
Clearly, for all 4,7 =1,...,n and a € N,
Oz]‘l‘aai lf] # i,

)
(O[i - 1)x0‘82- lf] = i, ( )

[Hj, xa@] = {

[@-,xa&-] = O[j.’ﬁa_ejai. (6)

The support Supp(D,,) := {8 € Z"| D, g # 0} is a submonoid of Z". Let us find the support
Supp(Dy,), the graded components D,, g and their dimensions dimg D,, g. For each i = 1,...,n,
let N*# := {a € N"|a; = 0} and P? := kerp, (0;). It follows from the decompositions P, =
PY% @ Pya; fori=1,...,n that

60ct13
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D, = é;(Pf’? ® Pp2:)0; = GL} P20, @ é P,H; = é pPloio @ x*Ma, (7)
1 =1 =1 =1

P . . . aENn

Therefore, any derivation 9 = Z?:l a;0; € D,, is the unique sum (where a; = b;z; + ¢;, b; € P,

and ¢; € PY7)
0= Z b;H; + Z c;0;. (8)
=1 =1

Hence,
n

Supp(Dy) = [J(N™" —e;) [T V™ 9)
i=1
Do K220, ifB=a—e € N —¢;,
BT Y 2K, if B e N

1 ifB=a—e € NV —¢,

Let G be an abelian Lie algebra and G* := Homg (G, K). A G-module M is called a weight
module if
M= @ M, where My :={m € M|gm = A(g)m forall g € G}.
AEG™

The set W (M) := {\ € G* | M), # 0} is called the set of weights of M.

The direct sum 0iv), = 2il, ® iv}). Recall that D/, = @, cyn 2%Hy. By (7),

n

0in? = 0i @iv? where i :=2iv? N D/, and iv! := @Paiai. (11)

n
i=1

We will see that 9i0 is a Lie subalgebra of div? but vl is not for n > 2. Clearly, 2i] = 0 and
2i0? = iv? = K8, There are inclusions

oY < o) c---coind c--

) ¢ djc-ocoilc-.-,

in) ¢ iwyc--cind ..

The K-linear maps h; = d121,...,h, = Opx, € Endg (P,) are bijections since for all o € N"
andi=1,...,n,

hi(l‘a) = (Oéi + 1).Z‘a. (12)

The elements hq,...,h, commute, the polynomial algebra P, is a weight h-module where h :=

@7, Kh; is an abelian Lie subalgebra of the Lie algebra Endg (P,) (where [f, g] := fg — gf) and
the set W(P,) of weights of the h-module P, is equal to (1,...,1) + N" ie. W(P,) = {\ =
(M, An) [N e (1,...,1) + N} where A(h;) = \; for all 4. For each derivation 8 = Y " | a;H; €
D,

n
div(d) = hi(as). (13)
i=1
K-bases for DiU?L and 0iv},. For each pair ¢ # j, the K-linear map

(f)m‘ : Pn — Dlg, a+—r h](a)Hl — hz(a)HJ (14)

dus

Dnb

Dnbl

dus2

dus3

dus4

dusb



is a (well-defined) injection: By (13), div(¢;;(a)) = (h;h; — hjh;)(a) = 0, and if ¢;;(a) = 0 then
hj(a)H; = hi(a)H;, and so a = 0 since the maps h; and h; are bijections. For all @ € N™ and
i# 7, let

05 = ¢ij(x®) = 2%((a; + 1)H; — (a; + 1) Hj). (15)

In particular, 9% = H; — H;. Then
[0y, 2805 = jia®). (16)
It is obvious that Din(l) = K0, and 0iv] = KO, + KH;.
Lemma 2.1 Let n > 2. Then
1.0 =@ biira(Pn).

2. The set of elements 0% := ¢; ;41 (2%) = 2* (i1 +1)H;— (s +1)Hiy1), wherei =1,...,n—1
and a € N", is a K -basis for 0iy.

3. The set of elements 65 in statement 2 and mﬁﬁj, where 2P € P,?j and j =1,...,n, is a
K -basis for div.

4. The set of elements in statement 8 and H;, where i is any fized index in the set {1,...,n},
is a K-basis for oiv;,.

Proof. 1. Tt is obvious that R := E?:_ll biiv1(Py) C 0iv?, see (14). Recall that i = div? N D/,
and D], = ®penn®*H,. By (14) and the fact that the K-linear maps hq, ..., h, are invertible,

i) = R+0i NP, H,.

By (13), i) N P, H,, = 0. Therefore, di = R.
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2 and (11).
4. Statement 4 follows from statement 3 and the fact that div], = Ding ©KH;,i=1,...,n. O

Let 0 := x1---2, € P,. Then C), := @,y 0'H! is an abelian Lie subalgebra of Dit)?L that

contains H/,. We will see that C,, is a Cartan subalgebra of the Lie algebras div" and div’, (Lemma
2.3.(3,5)).
By Lemma 2.1.(2,3), for n > 2,

n—1
Co =P P Kiina (6™, (17)

i=1 meN
n n—1
o) =P P KeoeC.o@P P P Ko 0"z, (18)
=1 aeNni i=1 meN aeN7\ {0}
where N7 := U \N™¢ = {(a1,...,a,) € N"|a; = 0 for some i}. We identify the vector space

H, = {3 NH | Yo, A = 0} with its image in K™ under the K-linear injection M/, — K",
Z?:l /\iHi — (/\17 ceey )\n) SO7

H,={Ae K" (A1) =) _ X\ =0}

i=1

where 1 := (1,1,...,1) and (A, ) := > 1, Aip; is the standard inner product on K™. The dual
space H}* := Homg (H,,, K') can be identified with the factor space

K"/KT={[u] =+ KT | p € K"},

phiij
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e, [0, NMHy) = [W(N\) = (1,0) = S0, widi. By (18), the H/,-module div) is a weight
module and the summands in (18) are the (nonzero) weight vectors under the adjoint action of

;.0
H!, on div,,,
DIU?L = @ Diugﬁ[ﬂ]
[u]EW (2iv))

where Din%y[#] = {0 € 0ol | [H,d] = [u](H)D for all H € H',} is the weight subspace of div" that

corresponds to the weight [u] and W = W (2iv?) is the set of weights for div". To simplify the
notation we identify the set N7 with its isomorphic copy in the factor vector space K" /K1 via

the map K™ — K" /K1, A K1. So,
W(dinl) = N7 (19)
K2%0; & @) @ppen G2 (02 ~5H) i (4] = [0 — e;],a € N™,
0io)) () =14 C if [u] =0, (20)
D1 B,en Piir (0™ ) otherwise.
dimg div;) ;= oo forall [u] € W (div)).
The Lie algebra div? = iv® @ 0i is the direct sum of its weight H/,-submodules with
n .
W(ivy) = [JON™ —e;), W(aip) = Nj. (21)
i=1

For H =3 " \H; € H, and o € K", let
(H7a) = (avH) = ZO%)\Z
i—1

Then, for all « € N*, div(z*H) = (a + 1, H). If, in addition, H € H/,, that is (H,1) = 0, then,
for all @ € N, div(z®H) = (a + 1, H) = (o, H). Tt follows that 9i’ is the direct sum of vector
spaces
i) = P {Ka"H|(H,a+1)=0,H € H,}. (22)
aeNm
Let

o) = P {Ka"H|(H,a)=0,H € H),} = @ {K[0]="H | (H,a) = 0,H € 1, }. (23)

n
aeNn aeN7}

Clearly, for n > 2, 0i/? € 9i0 and the vector space di* is a left K[f]-module. We will see shortly that
01’ is a non-Noetherian Lie algebra (Lemma 2.2). Notice that di)) = Cy = ®;>0K0'(H, — Ha) =
K[0](H; — Hz) where 0 = z1x5.

The commutation relations of the weight vectors in div’. By (18) and (19), there are
three types of commutation relations of elements from the weight spaces of the Lie algebra Ding,

see (24), (25) and (26). For all 229; € P%:0; and 2P0, € P 95,

Gji(z*TPeme) if B #£ 0,05 # 0
Bix"‘+f3‘ei(’)j if 3; 7é 0,0éj =0
—ozjxa+5‘e-7‘6,» if 8; = 0, o #0
0 if Bz == 0, Qj = 0

[{Eaai, .’ﬂ’@aj} =

where ¢;(z2HF=ci=¢) = gatb-ei=ei(B,H; — ajH;) (since a; = 0 and §; = 0).

‘WDnb
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0

n’

For all elements z*H,z* H' € di
[zH,z® H'] = 2+ (H,o/)H' — (H',a)H) € 0i® (25)

since (H,o/)H' — (H',a)H,a+ o' +1) = (H,o/)(H', &/ +1) — (H',a)(H,a + 1) = 0.
For all 2% € P?%9; and z*H € 9,

[2P0;, 2 H] = cz®P=¢ H — (H, B — ¢;)x° 7. (26)
If, in addition «y; # 0, then the equality (26) takes the form
[¢P8;, x°H] = 2P~ (yH — (H, 3 — e;)H;) € i (27)

since (o H — (H,B—e))Hj,a+8—e;+1)=—(H,B —¢;)(H;,f —e;+1)=—(H,B—¢;)-0=0.
By (22) and (25), 0i0 is a Lie subalgebra of div? which is not an ideal, by(26). By (24), iv® is not
a Lie algebra for n > 2.

The Lie algebra 0i)’ is not Noetherian, n > 2. Let n > 2. The Lie algebra i’ is a
K[f]-module, K[0]0i!Y C 0i°, and the Lie bracket on i’ is a k[f]-bilinear: for all p,p’ € K[f] and
cH, 2 H' € i,

[pz®H,p'z™ H'] = pp'[z*H, xO‘/H/}. (28)
So, the Lie algebra Di;? is not simple: Hibi;?, t € N are distinct ideals of Di;LO.

Lemma 2.2 Forn > 2, the Lie algebras 9i% and i are not Noetherian.

Proof. If n = 2 then 01/20 = (5 is an infinite dimensional abelian Lie algebra, hence, non-
Noetherian. Let n > 3. Let I be an ideal of the additive monoid N® (I + N® C ). Then
o(I) =@, {zH| (o, H) = 0, H € H,,} is an ideal of the Lie algebra i), by (25). The map
I — o' (I) from the set Z(N") of ideals of N to the set Z(2i/’) of ideals of the Lie algebra i/ is
an inclusion preserving injection (I7 & I implies a’(1;) & o'(I2). The set Z(N™) is not Noetherian
(with respect to C) hence di/ is not a Noetherian Lie algebra.

Similarly, by (25), for n > 2, the map I — a(I) := @, {z*H| (a+1,H)=0,H € H,} from
the set Z(N™) to the set Z(di?) of ideals of the Lie algebra 9i’ is an inclusion preserving injection.
Therefore, the Lie algebra i) is non-Noetherian. []

Let G be a Lie algebra and H be its Lie subalgebra. The centralizer Cg(H) := {z € G| [z, H] =
0} of H in G is a Lie subalgebra of G. In particular, Z(G) := Cg(G) is the centre of the Lie algebra
G. The normalizer Ng(H) := {z € G|[x,H] C H} of H in G is a Lie subalgebra of G, it is the
largest Lie subalgebra of G that contains H as an ideal.

Let V be a vector space over K. A K-linear map ¢ : V' — V is called a locally nilpotent map
if V = J,;», ker(d") or, equivalently, for every v € V, §°(v) = 0 for all i > 1. When 4 is a locally
nilpotent map in V we also say that & acts locally nilpotently on V. Every nilpotent linear map
0, that is 8™ = 0 for some n > 1, is a locally nilpotent map but not vice versa, in general. Let G
be a Lie algebra. Each element a € G determines the derivation of the Lie algebra G by the rule
ad(a) : G = G, b — [a,b], which is called the inner derivation associated with a. The set Inn(G) of
all the inner derivations of the Lie algebra G is a Lie subalgebra of the Lie algebra (End(G), [, *])
where [f, g] := fg — gf. There is the short exact sequence of Lie algebras

0— Z(G) = ¢ 2 Inn(G) — 0,

that is Inn(G) ~ G/Z(G) where Z(G) is the centre of the Lie algebra G and ad([a, b]) = [ad(a), ad(b)]
for all elements a,b € G. An element a € G is called a locally nilpotent element (respectively, a
nilpotent element) if so is the inner derivation ad(a) of the Lie algebra G.
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The Cartan subalgebra C,, of ain%. A nilpotent Lie subalgebra C' of a Lie algebra G such
that C' = Ng(C) is called a Cartan subalgebra of G. We use often the following obvious observation:
An abelian Lie subalgebra that coincides with its centralizer is a mazximal abelian Lie subalgebra.

Ezample. H, is a Cartan subalgebra of D, and H, = Cp,(H,) is a maximal abelian Lie
subalgebra of D,,.

Lemma 2.3 Let n > 2. Recall that C, = @,y 0'H., and 0 = x129---x,. Then

i€N
1. ", = H, N o).

2. Cp = Chipo (Hy,) and Cy, = Cyi0 (Cr) is a mazimal abelian Lie subalgebra of 2in?.

3. Cy, is a Cartan subalgebra of Diug.

4. Cp 4+ Hn = Coive (H;,) and C,, = Crive (Cr) is a mazimal abelian Lie subalgebra of divy,.

5. Noive (Cpn) = Cn + Hy = Noive (Cr, + Hy) is a solvable but not nilpotent Lie algebra, and so
Cpn + H, and C,, are not a Cartan subalgebra of div,.

6. Hn is a Cartan subalgebra of div;, and H, = Caiu%(Hn) is a maximal abelian Lie subalgebra
of div;,.

Proof. 1. Let H =" \;H; € H,,. Then H € H, Noivl iff 30\, = 0iff H € H.,.
2. The fact that C, = Cyip0 (H7,) follows from (20). By (25), Cy, is an abelian Lie subalgebra
of 9iv?. Then the inclusion H/, C C,, = Chivo (H;,) implies the inclusions

Crn = Cain?L (H;’L) 2 Cainﬁ{ (Cn) 2 Ch.

Therefore, C;, = Cyipo (Crr) is a maximal abelian Lie subalgebra of in?.

3. Let N = Ny (Cp). By statement 2, C, € N. The Hj-module 2iv? is weight and
Cn = Cyipo (Hy,) is the zero weight component of divY. The inclusion [N,H/] C C, implies
N CC(C,,and so N =C,.

4. Notice that divS, = div)) & KHy, Hy € Coipe (H,,) and H,, C div). By statement 2,

Coive (Hy,) = Coipo (M) @ KHy = Cp, @ KHy = Cpy + Ho.
Now, the inclusion H,, C C,, implies the inclusions
Cr ® KHy = Chipe (M7,) 2 Chine (Cr) 2 Ch.

Hence Coipe (Cp) = Cp @ Coipe (Cn) N KHy = C,, and so C), is a maximal abelian Lie subalgebra
of div;,.

5. Let N¢ := Npjpe (Cp). By statement 4, C,, € N¢. The H,-module div}, = div) & KH;
is weight and C,, ® KH; = Coipe (H),) is the zero weight component of div;,. The inclusion
[N¢,H,;] € C, implies the inclusion [N¢, H;, ] € C,, ® KHy = Cyive (H;,), and so N¢ C C,, & K H;.
Since C,, C N¢, it follows that N¢ = C,, ® N°N KH, = C,, + KHy, i.e. (), is not a Cartan
subalgebra of div,.

Clearly, Cp, + Hp € N := Naive (Cpp + Hp). Since H), C Cp + Hp, [H),N] € Cpo + Hp =
Caive (H},), hence N' C Cp, + My, (as Cp + Hy, is the zero weight component of the weight #; -
module ?iv}), i.e. N = C,, + H,. The Lie algebra C,, + H,, is solvable but not nilpotent, and so
Cp + H,, is not a Cartan subalgebra of div;,.

6. Statement 6 follows from the Example above. [

The Lie algebra Ding is a weight H/ -module with respect to the adjoint action. In particular, the
action of H/, on div}), is locally finite dimensional, i.e. for any 0 € div}), dimp (3, ad(H,)!(9)) <
o0o. We can easily verify that the action of the Cartan subalgebra C,, of Ding on Ding is not locally
finite dimensional, see (25) and (26).

dallMarl3



P, is a D,-module. The polynomial algebra P, is a (left) D,-module: D, x P, — P,,
(0,p) — 0 p. In more detail, if 9 = >""" | a;0; where a; € P, then

n Ap
a*p—izzlalai‘ri.

The field K is a D,,-submodule of P,, and
PP = (" kerp, (9;) = K. (29)
i=1
Lemma 2.4 [2] The D,-module P, /K is simple with Endp, (P,/K) = Kid where id is the
identity map.
The G,-module D,,. The Lie algebra D,, is a G,,-module,
Gn x Dy, = Dy, (0,0) = 0(0) := 0o *.
Every automorphism o € G, is uniquely determined by the elements
) i=o(z1), ..., 2, = o(z,).

Let M, (P,) be the algebra of n x n matrices over P,. The matrix J(o) := (J(0)i;) € M,(P,),

where J(0);; = g—z-i, is called the Jacobian matriz of the automorphism (endomorphism) o and
its determinant J (o) := det J(o) is called the Jacobian of o. So, the j’th column of J(o) is the

. oz, oz, . .-
gradient grad x; = (Tziv ey 8? )T of the polynomial x’] where T stands for the transposition.
Then the derivations

0y =000, ..., 0 =000 "
are the partial derivatives of P, with respect to the variables «f,..., /],
0 0
N ==,...,0 = . 30
Lot A (30)

Every derivation 9 € D, is a unique sum 0 = Z?:l a;0; where a; = 0xx; € P,. Let 0 =
(O1,...,0,)" and & = (84,...,0,)T. Then

n

0'=J(0)7'0, ie. 0= (J(0)7)i0; for i=1,...,m. (31)

Jj=1

In more detail, if &' = AJ where A = (ai;) € My(Py), i.e. 9 = 37, a;;0;. Then for all
ii=1,...,n,

i ox’,

/ / 2 : J

(Sij :(’)i*xj: (073 S
b1 8:Ck

where §;; is the Kronecker delta function. The equalities above can be written in the matrix form
as AJ(o) =1 where 1 is the identity matrix. Therefore, A = J (o).
For all o, 7 € G,,,
J(oT) = J(o)-a(J(T)). (32)

By taking the determinants of both sides of (32), we have a similar equality of the Jacobians:
for all o, 7 € G,,.
J(o7) =J(0)-a(T(7)) (33)

TkerdiK

xallMarl3
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dp=Jnd
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Properties of the divergence. Recall some of the properties of the divergence map

~ aai
8$¢ '

div: Dy = P, 0= a;0; — div(d) =

i=1 i=1
(div-i) div is a K-linear map which is a surjection.
(div-ii) For all a € P,, and 9 € D,,, div(ad) = adiv(9) + 9(a).
(div-iii) For all 9,8 € D, div([9,d]) = d(div(d)) — §(div(D)).

(div-iv) Let a1,...,ap € Py 0: Py — Py, 2= a4, i =1,...,n and J(ay,...,ay) := J(0) be
the Jacobian of 0. Then (Proposition 2.3.2, [6])

n

OxJ(ay,...,an) = =T (a1,...,a,)div(0) + > J(as,..., 0% a;,... an).

i=1

(div-v) (Theorem 2.5.5, [6]) If D,, = @;_, P,0. and 91, ..., 8, commute then

div(9)) = --- =div(d),) =
(div-vi) Let o : P, = P, x; — 24, i = 1,...,n, be an automorphism of P,. Then 8] :=
oo ..., 0 = Jana_l are commuting derivations of P, such that D,, = @ _, P,d; (by (31)

and since J(o)~! € GL,(P,)). By (31), 8; = > i, (J(0)71);;0;. By (div-v),
Za* afwaforzfl

The divergence commutes with polynomial automorphisms. The following known
theorem shows that the divergence commutes with automorphisms, i.e. the divergence map div :
D,, — P, is a G,-module homomorphism. We give a short proof.

B16Marl3
Theorem 2.5 For all c € G, and 0 € D,,,

div(c(9)) = o(div(9)).

Proof. Let 0 = Z?Zl a;0; where a; € P,. Then & = c0o~!
9 =71 (J(0)71)i;0;. Now, by (div-vi),

K2

@) = 3 0 (o) Dgolad) = 300« (o) i) - ofas)) + 32 S (o) g+ o)

ij*l i=1 j=1 i=1 j=1

Za xo(a;) Zaa o to(a;) = U(Za (a;)) = o(div(9)). O

i o(a;)0; where, by (31),

11Marl3
Theorem 2.6 G, = G,.
The above theorem was announced in [8] where a sketch of a proof is given, it can also be
deduced from [10]. A proof of the above theorem is given in [9] and in ([7], Theorem 3.6), a
different approach and a short proof is given in [2]. Some generalizations are given in [4], [3] and
[5]-
a20Marl13

Corollary 2.7 For all o € G,, and 0 € D,,, div(c(9)) = o(div(9)).

10



Proof. The statement follows from Theorem 2.6 and Theorem 2.5. [J
By (div-iii), div® and div are Lie subalgebras of D,,, div? is an ideal of div.
Corollary 2.8 The Lie subalgebras Oing and 0iv;, of Dy, are also Gp-submodules of D,,.

Proof. This follows from Theorem 2.5. [
By (div-iii),
000’ > D, B P, -0 (34)
is the short exact sequence of (left) div?-modules and divS-modules, i.e.
div([0,0]) = 9 * div(9) (35)
for all @ € div;, and 0 € D,,. So,
0 — 2iv? — i’ WK — 0 (36)
is the short exact sequence of (left) div’-modules/div®-modules, and so
0in¢ = 0iv’ @ KH; for i=1,...,n, (37)
since div(H;) =1 foralli=1,...,n.
The maximal abelian Lie subalgebra D,, of div, and div®.

Lemma 2.9 1. Caing(Dn) = Chive (D) = Dy, and so Dy, is a mazimal abelian Lie subalgebra
of viv? and dive.

2. ([2]) Fixg, (D) = Shy,.

3. Forn > 2, Dit)?L is a faithful G,,-module, i.e. the group homomorphism G, — G,, ¢ —
0 : 0w 0c0c™ ', is a monomorphism. For n = 1, the group Shy is the kernel of the group
homomorphism G, — Gy.

4. 0ivS is a faithful G, -module, i.e. the group homomorphism G, — G, 0+ 0 : 0+ ddo 1,
is a monomorphism.

5. Fixg, (D, ® H)) = {e} forn > 2.

Proof. 1. Since Cp, (Dy) = Dy, [2], we must have Cyiy0 (Dn) = Coive (D) = Dp, and so D, is
a maximal abelian Lie subalgebra of divl, and divf.

3 and 5. By Corollary 2.8, Dibg is a G,-submodule of D,,. So, the group homomorphism in
statement 3 is well-defined. The case n = 1 is obvious since Gy = {x — Az + pu|A € K*,u € K}
and div) = K0.

So, let n > 2, and o € Fixq, (D, ® H},). Then o € Fixg, (D,) = Sh,, by statement 2. So,
o(x1)) =21+ M\,...,0(zy) =2, + A\, where \; € K. Then for all i # j,

Hl' — Hj = O'(HZ — HJ) = (Iz -+ )\Z)az — (Ij -+ )\j)ﬁj = Hz — Hj -+ )\181 — )\jﬁj.

So, A; = --- = A\, = 0. This means that o = e. So, Fixg, (D, ® H.) = {e} and div? is a faithful
Gp-module.

4. By Corollary 2.8, div;, is a G,,-submodule of D,,. So, the group homomorphism in statement
4 is well-defined. Now, statement 4 follows from statement 3 for n > 2. For n = 1, statement 4 is
obvious as div] = K01 + KHy and Gy = {z— X +pu| e K*,pe K}. O

Lemma 2.10 [0iv%,div’] = div).

11
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Proof. The statement is obvious for n = 1 as div] = K9, + K H; and Din(f = K0,. So, let n > 2.
By (div-iii), div([divS, divS]) = 0, and so [0iv®,divS] C div). Recall that div! = iv? +-2i (see (11)),
0 = @ P%9;, [x°0;, H;] = 2°0; for all 2* € P% and i = 1,...,n. Hence iv? C [0iv,divc].

Finally, for all a € P, and i # j,

[Hk,hj(a)HZ- — hz(a)H]] = hj(Hk * a)Hl — hz(Hk * CL)Hj.
Hence, {h;(z*)H; —h;(x*)H; |0 # a € N", i # j} C [divy,, div,,]. Finally, H; — H; = [2,0;,2;0;] €

[0ivS, divs] for all i # 5. Now, by Lemma 2.1.(3), [0ivS, divS] = divl. O
The following lemma is well-known and easy to prove.

cl1Marl3
Lemma 2.11 1. D, is a simple Lie algebra.
2. Z(D,) = {0}.
3. [Dy, D] = D,,.
The next lemma is also known but we give a short elementary proof.
dcl1Marl3
Lemma 2.12 1. Ding is a simple Lie algebra.
.0 .
=1
2. Z(oinl) = { OO U =1
0 ifn>2.
0 fn=1
9. i, i) =0 Hn=1
oiv,  ifn > 2.
Proof. All three statements are obvious if n = 1 since Din(l) = K0. So, we assume that n > 2.
1. Let 0 # a € 9iv? and a = (a) be the ideal of the Lie algebra div® generated by the element
a. We have to show that a = div). Using the inner derivations 6y, ... ,d, and ad(H; — H;) (where
1 # j) of the Lie algebra Ding we see that 9; € a for some i. Then D,, C a since 9; = [0;, x;0;]| for
all i # j. Then iv) C a since 299; = [9;, (a; + 1)1z 9;] for all i # j and 2 € P%. Then
H!, C asince [z;0;,x;0;] = H; — H; for all i # j. Using the commutation relations Hsthj
[Hs — Hy, hyj(x%)Hi — hi(z®)H;] = (a5 — az) (b (x%)Hi — h;(z*) H;) (38)
we see that {h;(z*)H; — hj(z*)H; |t # j,a € N, a # (p,p,...,p),p = 1,2,...} C a. Let
0 =, ---x,. Finally, by Lemma 2.1.(3), a = div" since for all p=1,2,... and i # 7, Hsthj1
[20i, hj(zixy 0P Hy — hi(wiay ' 07) Hj) = (p+ 2)(hy (07 H; — hi(67) Hy). (39)
In more detail,
LHS = [z;05, prix; 0" H; = (p+ 2wy 0" H;] = p(p + 2)0" Hi — (p +2)(p + 10" H,
+ (p+2)0°H; = (p+2)(p+ 1)(0PH; — 6P H;)
= (p+2)(h;(67)H; — hi(67) H;).
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 1. [
For any o = (ov,...,a,) € N” and any i # j, we have a = a;e; + oje; +  where § € N™ with
Bi = B; = 0. Then taijx
02 =[x 9;, 2 et gy, (40)

Indeed, let ¢ be the commutator. Then

_  Bracitlg aijtlay  Baaieitaje;  pa
=[x} 05,27 0] = 2”0, =07

12



By (40),
oip C [iv)), ivp). (41)

The inner derivations §; = ad(d1),...,d, = ad(d,) of the Lie algebra D,, are commuting and
locally nilpotent. The Lie algebra D,, is a union of vector spaces

D, = U D,,; where D, ;:={8¢€ D, |§*(0) =0 forall @ € N" such that |o| =i+ 1}

i>o0

where §% = [[I_, 67", Clearly, D,,; = @®_1Pni0; where P, ; = {p € P,|deg(p) < i} and
[Dr.i, Dy il € Dy iqj—1 for all 4,5 > 0 where D, _; := 0. The inner derivations ¢i,...,d, are also

commuting locally nilpotent derivations of the Lie algebras div® and div®. For each i € N, let
Dit)?m :=0iv? N D,,; and div;, ; = div; N Dy ;. Then, foralla € N* and i =1,...,n — 1,

.0 .0
9? S len’|a‘+1\bmn’|a‘. (42)

The automorphisms s; 11, ¢ = 1,...,n —1 (n > 2). The automorphism s = s; ;41 of
the polynomial algebra P, that swaps the variables z; and x;;1 leaving the rest of the variables
untouched (s(x;) = ;41 and s(z;41) = ;) extends uniquely to an automorphism of the Lie
algebra D,,. Clearly, s is also an automorphism of the Lie algebras Din% and div;, (Theorem 2.5).
In particular,

5(81) = 81'_._1, s(@iH) = ai, S(Hl) = Hi+1 and S(Hi+1) = Hz

Therefore, for all a € N,

3i,i+1(9?) _ _QZ_Si,iJrl(a) (43)
where, for & = (aq, ..., o), Siit1(a) = (Q1,..., 01,041, @, Qiga, ..., Qp). Fori=1,...,n—1;
j€Nand a € N* with a; > 1,

[0]4105,67] = (aq + 1)87 70, (44)
Proof. By (27),
LHS = $Z+ Oy ((ipr + 1) H; — (o + 1) Higq]

taijx1

tiadi

siia

ditai

= 27 (i (i1 + 1) H; — (0 + 1) Hi) — (g1 + 1) H; — (i + 1) Hiqq, jeiyr — e;)H;)

(Oé ) a— ei+jei+1(( i1 +1 —|—j)H — azHiJrl)
. ( ) a e; +Jel+1 0

Fori=1,...,n—1;j€Nand o € N* with a;41 > 1,
[a:{@iﬂ, ‘91‘ ] (OéH_l + 1)904%*]6776“_1 (45)

Proof. By applying the automorphism s = s; ;41 to the equality (44) and using (43) we obtain
(45):

(@l01,07) = sl 4100,0;) = —s((aigr + DP; T
= (a4 1) Cetde)
= (o + 1T O

By (44) and (45), fori=1,...,n—1;j=1,...,n and « € N™.

(%Jrl)aeJ if j=i,i+1and aj > 1,
. — (o + 1)z 8z‘+1 ifj=i+1,a,41 =0,
a0 otherwise.

13
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Proposition 2.13 Let n > 2. Then
1. Fixg, (D, ® H),) = {e}.

2. Let o,7 € Gy. Then o = 7 iff 0(0;) = 7(0;) for i = 1,...,n and o(H; — Hjy1) =
T(H;j —Hjyq) forj=1,...,n—1.

3. Fixg, (d1,...,0,) = Shy,.

Proof. 1. Let o € F := Fixg, (Dn ®H;,). We have to show that o = e. Let F := Fixyo (0) :=
{0 €0iv?) | 0(d) = d}. We have to show that F = div).

(i) D,, + M), € F: Obvious.

(ii) ib?l C F: We have to show that P,?iﬁi CFforali=1,...,n. Fixi and 2°0; € P;?f‘@i.
If =0 then §; € D,, C F, by (i). We use induction on || = 31" | a; to prove the statement.
The case |a| = 0 is obvious. So, let || > 1. The element x®0; has weight [a — e;]. The weight

subspace bingy[afei] is o-invariant (o(ain‘,{’[a,ei]) = Ding,[afei]) and the set {x"‘@iﬁ?_eﬁﬂ lj =
1,...,n—1;k = 1,2,...} is its K-basis, by (20). The element 2*9; belongs to the o-invariant
subspace N|, = div)) (= 2iv) N D,y |o|)- By (42) and (46),

sle

Vi= Nig N0ivy 1o = Kz®0;
is a o-invariant subspace. Therefore, o(z%0;) = Aq,;2*0; for all z%0; € P,?i O; andi=1,...,n for
some A,,; € K. Clearly, \g; = 1 foralli=1,...,n since 0(9;) = 9;. Applying the automorphism
o to the relations [0;,2%0;] = ;%% 0; yields the equalities aj(Aa,i — Aa—e;i) = 0. If a; # 0
then Ay = Aa—¢; s = 1 (by induction). Hence, ing C F.

(i) 2iY C F: By (ii) and (41).

Therefore, div) = diy) +iv) C F, and so div), = F, as required.

2. Statement 2 follows from statement 1.

3. Clearly, Sh, C F := Fixg,(01,...,0,). Let 0 € F and HZ'J = o(H,; ;) where H; ; =
Hi — Hj for 4 # _] Then

[0k, H} ; — H; j] = 0[Ok, Hi ;1) — [0k, Hij] = [0k, Hi ] — [0k, Hij] =0

since [D,,,H,] € D,. Then d;; := H{,j —-H;; € Cang(Dn) =D,, and so d;j = > p_; )\fjak for
some )\fj € K.

If n = 2 then H{’Q = H; — Hy+ X101 — A0 = (561 +>\1)81 — (.132 + /\2)62 = S)\(H1 — HQ) where
sx € Shy and A = (A1, A\2). Hence, sy 'o(Hy — Hy) = Hy — Ha, i.e. s} '0 € Fixg, (D2 +H}) = {e},
and so 0 = s) € Shs.

Suppose that n > 2. If n = 3 then up to action of Shs, we may assume that H{)Q =Hi 2+ \03
and Hy 3 = Hy 3+ pdy +v0s for some A\, p,v € K. Then 0 = [Hy 5, Hy 3] = —p0y +v0s + A03 and
soA=pu=v=0.

If n > 4 then for any four distinct numbers i, j, &k, € {1,2,...,n} we have the equality

0=[H]

L i) = [Higydu] = [Hig, dig]) = =X + X, 05 + N0, — N0
Therefore, Ai; = 0 for all distinct 4, j and k. Then using Sh,,, we may assume that
Hj,=H o, Hyy=Hsz+ X530y, Hjy=Hsu+ N30, ., H}, 1, =Hy 10+ A1 ,00 1.

Then, fori = 2,...,n—1,0 = [H/_, ;, H} ;] = Ni ;1 ,0;, i.e. Xijpy = 0and H],,, = H; ;4. This
means that syo € Fixg, (D, +H!,) = {e} (statement 2) for some sy € Sh,, and so o = s, € Sh,.
O

Lemma 2.14 Let 0 € G, 0] := 0(01),...,0), := 0(0n); 6} := ad(dy),...,d, = ad(d},) and D’
be the subalgebra of Endg (P,) generated by the linear maps 0y, ...,0.. Then

14
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1. 94,...,0) are commuting, locally nilpotent derivations of P,.

2. N kerp, (9) = K.

3. (Embedding trick) For n > 2, the short sequence of D'-modules 0 - K — P, A Oing(g) 18
ezact where A'(p) := [[,; (8’( )0 — 9%(p)0;). In particular, for allp € P, and o € N",

AN (p) =8N (p)
where &' := [, 0% and &' := [, 6;*.
4o Let &2 Py s DY) i TT,, (010) — 05 (p)0%). Then A' € Derpe(Py, DY),

Proof. 2. Let A € (I_, kerp, (0). Then div(A\d}) = Adiv(d}) + 9} * A = 0, i.e. \; € divY and
A} € Coin0 (B, 83) = 0(Caivo (01, .-, 0n)) = 0(Coio0 (D)) = 0(Dy) = o(EP K) @K 4

since Cyip0 (D) = Dy, Lemma 2.9.(1). Then A € K since otherwise the infinite dimensional space
@,~o KX'0; would be a subspace of the finite dimensional space o(D,,).

3. The derivations 1, ..., 0!, commute since i, ...,d, do. So, D is a commutative algebra.
For all p € P, and 0 € div),

div(ad) = adiv(9) + 9(a) = I(a).

So, the map A’ is well-defined: div(9;(p)9; — 9;(p)d;) = (0;0; — 0;0;)(a) = 0. Recall that
the vector spaces P, and 2iv’ are left div®-modules hence they are also left D’-modules since
d,,...,0 €viv’. The map A’ is a D’'-homomorphism since, for all p € P,,

Alaz'.(p) = [3£,A’(p)]’ i=1,...,n.

It remains to show that ker(A’) = K. The inclusion K C ker(A’) is obvious.
(i) ker(A") ={p 6 P, | 9i(p)0; = 0i(p)0; for all i # j}: This is obvious. Let Pl = kerp, (0f).
(ii) ker(A’) NP = Kk fori=1,...,n: Given p € P,. By (i), p € ker(A’) NP iffp e
ker(A") N P, % for j=1,...,n (0= 0/(p)d; = 0;(p)9; = 9j(p) =0) iff

kaer(A)ﬂP 10 *ker(A’)ﬂK:K,

by statement 2. Suppose that K’ := ker(A’)\K # (b, we seek a contradiction.

(i) If p € K’ then d1(p) # 0,...,0,(p) # 0: This follows from (ii) (K’ = ker(A)\K =
ker(A )\ker(A’) N Pn’ = ke r(A')\P )
(iv) P,?l = —P : Fix p € K'. By (iii), 91(p) #0,...,9,(p) # 0. By (i),

9;(p)d; = 9;(p)0; for all i # j,

and so P;?/{ =... :P,?’:””.

(v) PJ = ... = PP — K: This statement follows from (iv) and statement 2.

Suppose that ker(A’) # K, we seek a contradiction. Fix an element p € ker(A")\K. By
statement 2, 0%(p) # 0 for some j. For all i # j, 9;(p)9; = 0}(p)0; (since p € ker(A")). Hence,
Oi(p) # 0 for all 4. Therefore, for i« = 1,...,n, 0, = f;0 for some f; € P, and a derivation
0 = > psOs € D, with ged(py,...,pn) = 1. For all elements ¢; € C] := Chivo (97), 0 =
[ci,0i] = ¢i(f:)0 + filei, ], and so [¢;, 0] € P,0, by the choice of 9. By Theorem 1.3, the Lie
algebra div) is generated by the set C' = > | Chivo (9;) and also by the set o(C) = >°", C}.
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Hence, [0iv?,d] C P,d. In particular, for all 4, [8“8] Z 1 0i(p;)0; € P,0. Hence, 0 € Dy, by

degree argument. Then P? # K, and so Py = P9 # K. This contradicts to (v).
4. The map A’ can be seen as the map DpPb

APy D) s TT@OU0)0, — 0(9)0)). (47)

i<J

Notice that P,, and D( ) are left P,-modules.
A’ € Derp (Pn,D( )), i.e. the map A’ is a D'-derivation from the polynomial algebra P, to
the left P,-module D( ), i.e. for allp,q € Py,

A'(pq) = qA'(p) + pA'(q) :

N(pg) = [[(adi®) +pdi(2)d; — (a0}(p) + pd}(q))})

i<j
= q][@»)o; p)) +p [ [(9i(0)0; — 95()3})
1<j 1<j
= ¢A'(p) +pA'(9).
1. The inner derivations é1, ..., d, of the Lie algebra Ding are commuting and locally nilpotent.
Hence so are the inner derivations 4y, ..., d/,, by statements 2 and 3. O
Al13Marl3
Theorem 2.15 [2] Let 01,...,0), be commuting, locally nilpotent derivations of the polynomial
algebra P, such that (., kerp, (9]) = K. Then there exist polynomials x, ...,z € P, such that
con*
Oy xaly = by for i,j=1,...,n. (48)
Moreover, the algebra homomorphism
0:Py,— Py, x>, 1T,
is an automorphism such that 8! = 09;0~1 = % fori=1,... n.
db13Marl3
Corollary 2.16 Let o € G,,. Then 7o € Fixg, (01,...,0,) for some T € G,,.
Proof. By Lemma 2.14, the elements 9] := 0(91),...,0,, := 0(d,) satisfy the assumptions of
Theorem 2.15. By Theorem 2.15, 9] := 77%(y),...,0), := 77 1(9,) for some 7 € G,,. Therefore,
7o € Fixg, (01,...,0,). O
Proof of Theorem 1.1. If n = 1 then Din(l) = K0, G; = T ~ G /Sh; since G; = T* x Sh;.
So, let n > 2. Let 0 € G,,. By Corollary 2.16, 70 € Fixg, (01,...,0,) = Sh,, (Proposition
2.13.(3)). Therefore, o € G,, i.e. G, =Gy, O
al8Marl3

Lemma 2.17 Fixg: (0iv)) = {Shl an =L
" {e} ifn>2.

Proof. It n =1, 0(9) = 0 for some o € GY then applying o to the equality [0y, Hi] = 01
yields o(Hy) = Hy + A0y = (x1 + A\)01 = t\(H;) for some A\ € K where t, € Sh;. Hence
Fixge (0iv}) = Shy.

So, let n > 2. Let 0 € F := Fixge (b)), H{ := o(H1),...,H, := o(H,). By (37), it
suffices to show that o(H;) = H, for i = 1,...,n. For i # j, o(H; — H;) = H; — H;, and so
d:=H;—H;=H}—Hj. Foralli=1,...,n,

[8“d] = a([@i,Hi}) — [61,Hl] = 0(61) — 6i = 81 — 81' =0.
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So, d € Chive (Dp) = Dy, (Lemma 2.9.(1)) and d = > | X\;0; for some \; € K. The elements
H{=H,+d,...,H], = H, +d commute hence d = 0. Therefore, 0 = e. [

n

Proof of Theorem 1.2. If n = 1 then G§ ~ T! x Shy. So, let n > 2. By (2) and Lemma
217, G¢ = G,,. O

Theorem 2.18 For all 0 € Gy,
div(e(H;) — H;) =0 for i=1,...,n.

Proof. For each i = 1,...,n, by (37), o(H;) = M\i(0)H; + d;(o) for some elements \;(c) € K
and d;(c) € divY. By Theorem 2.5,

1= le(Hl) = O’(diV(Hi)) = le(G‘(Hl)) = le()\l(O‘)HZ + dl(O‘)) = )\l(a) O
The automorphisms of the Lie algebra div;, preserve divergence.
Corollary 2.19 1. For all o € G§ and 9 € div;,, div(c(9)) = div(9).

2. Every automorphism of the Lie algebra Din?l is extendable to an automorphism of the Lie
algebra 010}, and the extension is unique if n > 2.

n’

Proof. 1. The result follows from Theorem 1.2 and Theorem 2.5.
2. Statement 2 follows from Theorem 1.1 and Theorem 1.2. [J

Lemma 2.20 For all n > 2, P,/K is a simple div’-module/div’,-module; Endyipo (Pn/K) =
Endpipe (P,/K) = Kid where id is the identity map. For n =1, P1/K is neither a simple ind-
module nor a simple div]-module.

Proof. If n = 1 then 2iv? = Koy, 0iv§ = Ko, + KH; and 3.
distinct div /div{-submodules of P;. Suppose that n > 2. It suffices to prove the statement for
%iv?. Let M be a nonzero div’-submodule of P,/K and 0 # m € M. Using the actions of
O1,...,0, € Ding on m we obtain an element of M of the form Az; + K for some A\ € K*. Hence,
z;+K € M. Then z; + K = z,;0; * (x; + K) € M for all j # i. So, 2 + K € M for all o € N”
with |a| = 1. We use induction on |a| to show that all 2 + K € M. Suppose that m := |a| > 1.
If 2% + k = 2 + K for some m > 2 and i then 27" + K = (m — 1)~ a;(H; — 2H;) * (z]"~! + K).
Then, by applying elements of the type x;0; where j # i to the element zj" 4+ K we obtain all the
elements 2 + K with |a| = m. Therefore, P, /K is a simple div?-module/div®-module.

Let f € Endyipo (P,/K). Then applying f to the equalities 0; % (x1 + K) = §;; fori =1,...,n,
we obtain the equ;;lities

i< K401 where m € N are

Oix flx1 + K) =105 for i=1,...,n.

Hence, f(z1 + K) € i ykerp, /i (0;) Nkerp, /i (0F) = (K[z1]/K) Nkerp, /x(87) = K(z1 + K).
So, f(z1+K) = M1+ K) and so f = \id, by the simplicity of the div®-module P, /K. Therefore,
Endyipo (Po/K) = Endosge (Po/K) = Kid. O

Proposition 2.21 Forn > 2, div;, is a mazimal Lie subalgebra of D,,. For n = 1, div] is not a
mazimal Lie subalgebra of Dy. For eachn > 1, div}, is a G, -invariant/G,,-invariant Lie subalgebra
of D,.

Proof. For n =1, div] = K0y + K H; is contained in the Lie subalgebra K0y + K Hy + Kx1H,
of Dy. Suppose that n > 2. By (34) and (36),
0— i > D, WP, /K0 (49)
is the short exact sequence of div,-module. By Lemma 2.20, the div,-module P,/K is simple.
Then, div;, is a maximal Lie subalgebra of D,,.

By Theorem 1.2, Theorem 2.6 and Theorem 2.5, div;, is a G,-invariant/G,-invariant Lie sub-
algebra of D,,. O
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Lemma 2.22 Letn > 2. Then

1. P,/K is a simple Gp-module with Endg, (P,/K) ~ K.

2. D, /oiv} B P, /K, an isomorphism of G,-modules.

3. D, /oiv;, is a simple G,,-module with Endg, (P,/K) ~ K.

Proof. 1. Let M be a G,-submodule of P, properly containing K. We have to show that
M = P,, ie. % € M for all @ € N". The polynomial algebra P, = ®q,ene Kz is the direct
sum of 1-dimensional non-isomorphic T"-modules. Hence M is a homogeneous submodule of P,.
Hence z” € M for some 3 # 0. If 3; # 0 then using the automorphism s; : z; — x; + 1, T — x5,
Jj # i, we see that M > s;(2”) — 27 and deg,, (si(z”) — 27) = B; — 1. The module M is closed
under the maps s; — 1 for ¢ = 1,...,n. Hence, 27 € M for all v < 8 where v < g iff ; < f; for
all 4. In particular, all z;,...,2, € M. Then applying the automorphism o, : 1 — z; + 25,
x; — x; for ¢ # 1, to the element x1, we see that M > (o, — 1)(z1) = z§* for all m > 1. Then
applying the automorphism xo — >_1" | 4, x; — x; for i # 2, we have (1 +---+x,,)™ € M. This
implies that all z® € M, by the homogeneity of M.

Let f € Endg, (P,/K). Since f commutes with the action of the subgroup T" of G,,, we must
have f(z* + K) = Ao (z® + K) for all @ € N” and some A\, € K. In particular, f(z; + K) =
A(z1 + K) for some A € K. Since f commutes with the action of the symmetric group S,
(which is obviously a subgroup of G,,), f(z; + K) = A(z; + K) for all i = 1,...,n. Now, we use
induction on || show that f(z® + K) = A(z® + K). The initial case when |a| = 1 has just been
established. So, let |a| > 1. Then «; > 0 for some 4, and deg((s; — 1)z* + K) < |a|. By induction,
fl(si—Dz*+ K) = A(s; — )z* + K). Now, it follows from the equality

f(si(@®) + K) = f(a® + K) = f((si = 1)z% + K) = A(si —1)z* + K

that A, = A, and so f = Aid. Therefore, Endg, (P,/K) = Kid.
2. Statement 2 follows from (49) and Theorem 2.5.
3. Statement 3 follows from statements 1 and 2. OJ

Lemma 2.23 The Lie algebra Ding is a Gp-invariant/G,,-invariant Lie subalgebra of D,,.

Proof. The statement follows from Theorem 1.1, Theorem 2.6 and Theorem 2.5. [J

Conjecture: Fvery nonzero homomorphism of the Lie algebra Ding is an automorphism.

3 Minimal set of generators for the Lie algebras OiU?L and
oiv;,
In this section, the proofs of Theorem 1.3 and Theorem 1.4 are given.
(22041, 41105] = 0°°. (50)
In more detail, LHS= 220; — 22;2;410;+1 = x;(H; — 2H, 1) = 05°.
(27,105, 2;0i41]) = —0;"F". (51)

Similarly, LHS= 7, ,0;11 — 22;%,410; = —x;11(2H; — H;41) = —0;"".

Proof of Theorem 1.3. The elements in Theorem 1.3 belong to Din% and let G be the Lie
subalgebra of Ding they generate.
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(i) G = div?: To prove that the equality holds we use induction on n. Let n = 2. So,
g= <61,I§81,I%82>. Then 62,1'182,95261 €g:

1 1
.’Elag = 5[81,1%32], 82 = [(91,1'182], £172(91 = 5[82,95%61]

By Lemma 2.1.(3), we have to show that the elements x50;, xi 9y and 09 = x*((ag +1)Ha — (a7 +
1)Hs) belong to G where i € N and o € N2, By (50) and (51),

05! = [2300,2001] € G, 052 = —[2301,2102] €G.

Then using (44) and (45), we see that ¢ € G for all 0 # o € N2, For a = 0, 60 = H; — Hy =
[€102,2201] € G. By (26), for j > 1,

G 3 220,00 = —((j + )Hy — Ha,—e1 + e2)x} 101 = (j + 2)zb o0

By symmetry, G 3 (j 4 2)z] 7' 0y, i.e. G = dinl.

Suppose that n > 3, and that the equality G = ain?ﬂ holds for all n’ such that 2 < n/ < n.

Step 1. {03, %0k | 1,5,k =1,...,n;j # k;v =1,2} CG: Fori =2,...,n,0; = 1101, [01,230;)] €
G and 210; = %[al,x%&-] € G. Then z;0; = %[81-796?81] € G fori=2,...,n. For all i # j such
that i # 1 and j # 1, 2;0; = [1;01,210;] € G and 220; = [2201,210;] € G. For i =2,...,n, fix an
index j such that j # 1,i. Then z;0; = [2;0;,2;01] € G and 2?0, = [220;,x2;01] € G. The proof
of Step 1 is complete.

Fori=2,...,n,let Diugvi be the Lie algebra div® | for the polynomial algebra K[z 1, ..., T, ..., 2]
(z; is missed).

Step 2. Fori=1,...,n, Din?m C G: This follows from Step 1 and induction.

Step 3. i C G: This follows from (25) and Step 2.

Step 4. i) C G: This follows from (26) (where o; = 0) and Step 3.

(ii) Minimality:

(a) The element 8, cannot be dropped: By Lemma 2.1.(3), 0iv" is a Z-graded Lie algebra which
is determined by the degree deg in the following way, for 2%9; € P2:9;, deg(z*9;) = |a| — 1 and
deg(0) = |af for all @ € N* and ¢ = 1,...,n — 1. Clearly, deg(d1) = —1 (negative) and the
degrees the rest of the generators are equal to 1 (positive). Therefore, the d; cannot be dropped.

(b) The element 220, (i = 2,...,n) cannot be dropped: Since otherwise the Lie algebra gen-

erated by the remaining elements would belong to ®7_; K[z1,...,%;,...,7,]0; (z; is missed), a
contradiction (see (i)).
(c) The element x20; (i =2,...,n) cannot be dropped: Since otherwise the Lie algebra gener-

ated by the remaining elements would belong to &}, P,0;, a contradiction (see (i)). U

Proof of Theorem 1.4. By Theorem 1.3, the elements in Theorem 1.4 generate the Lie
algebra div’ = div’ @ K H; and the element H; cannot be dropped (by Theorem 1.3).
(a) The element 01 cannot be dropped by the same reason as in the proof of Theorem 1.3 as

deg(H,) = 0.

(b) The element x30; (i = 2,...,n) cannot be dropped by the same reason as in the proof of
Theorem 1.3.

(c) The element x30; (i = 2,...,n) cannot be dropped by the same reason as in the proof of

Theorem 1.3. O
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