This is a repository copy of The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124640/

Version: Accepted Version

Article:

Bavula, V.V. (2017) The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence. Communications in Algebra, 45 (3). pp. 1114-1133. ISSN 0092-7872
https://doi.org/10.1080/00927872.2016.1175596

Abstract

Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence

V. V. Bavula (Aut-Div.tex)

Abstract

Let $P_{n}=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial algebra over a field K of characteristic zero and $\mathfrak{J i v}_{n}^{0}$ (respectively, $\mathfrak{J i v}_{n}^{c}$) be the Lie algebra of derivations of P_{n} with zero (respectively, constant) divergence. We prove that $\operatorname{Aut}_{\text {Lie }}\left(\mathfrak{d i v}_{n}^{0}\right) \simeq \operatorname{Aut}_{K-a l g}\left(P_{n}\right)(n \geq 2)$ and $\operatorname{Aut}_{\text {Lie }}\left(\mathfrak{d i v}_{n}^{c}\right) \simeq \operatorname{Aut}_{K-\operatorname{alg}}\left(P_{n}\right)$. The Lie algebra $\mathfrak{d i v}_{n}^{c}$ is a maximal Lie subalgebra of $\operatorname{Der}_{K}\left(P_{n}\right)$. Minimal finite sets of generators are found for the Lie algebras $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}$.

Key Words: Group of automorphisms, derivation, the divergence, Lie algebra, automorphism, locally nilpotent derivation, the Lie algebras of polynomial vector fields with zero or constant divergence.

Mathematics subject classification 2010: 17B40, 17B20, 17B66, 17B65, 17B30.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero and K^{*} is its group of units, and the following notation is fixed:

- $P_{n}:=K\left[x_{1}, \ldots, x_{n}\right]=\bigoplus_{\alpha \in \mathbb{N}^{n}} K x^{\alpha}$ is a polynomial algebra over K where $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $Q_{n}:=K\left(x_{1}, \ldots, x_{n}\right)$ is its field of fractions,
- $G_{n}:=\operatorname{Aut}_{\mathrm{K}-\mathrm{alg}}\left(P_{n}\right)$ is the group of automorphisms of the polynomial algebra P_{n},
- $\partial_{1}:=\frac{\partial}{\partial x_{1}}, \ldots, \partial_{n}:=\frac{\partial}{\partial x_{n}}$ are the partial derivatives (K-linear derivations) of P_{n},
- $D_{n}:=\operatorname{Der}_{K}\left(P_{n}\right)=\bigoplus_{i=1}^{n} P_{n} \partial_{i}$ is the Lie algebra of K-derivations of P_{n} where $[\partial, \delta]:=$ $\partial \delta-\delta \partial$,
- $\mathbb{G}_{n}:=\operatorname{Aut}_{\text {Lie }}\left(D_{n}\right)$ is the group of automorphisms of the Lie algebra D_{n},
- $\delta_{1}:=\operatorname{ad}\left(\partial_{1}\right), \ldots, \delta_{n}:=\operatorname{ad}\left(\partial_{n}\right)$ are the inner derivations of the Lie algebra D_{n} determined by $\partial_{1}, \ldots, \partial_{n}($ where $\operatorname{ad}(a)(b):=[a, b])$,
- $\mathcal{D}_{n}:=\bigoplus_{i=1}^{n} K \partial_{i}$,
- $\mathcal{H}_{n}:=\bigoplus_{i=1}^{n} K H_{i}$ where $H_{1}:=x_{1} \partial_{1}, \ldots, H_{n}:=x_{n} \partial_{n}$,
- $D_{n}^{\prime}:=\bigoplus_{i=1}^{n} P_{n} H_{i}=\bigoplus_{\alpha \in \mathbb{N}^{n}} x^{\alpha} \mathcal{H}_{n}$,
- $\mathfrak{h}:=\bigoplus_{i=1}^{n} K h_{i}$ where $h_{1}:=\partial_{1} x_{1}, \ldots, h_{n}:=\partial_{n} x_{n} \in \operatorname{End}_{K}\left(P_{n}\right)$,
- for a derivation $\partial=\sum_{i=1}^{n} a_{i} \partial_{i} \in D_{n}, \operatorname{div}(\partial):=\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial x_{i}}$ is the divergence of ∂,
- $\mathfrak{d i v}{ }_{n}^{0}:=\left\{\partial \in D_{n} \mid \operatorname{div}(\partial)=0\right\}$ is the Lie algebra of polynomial vector fields (derivations) with zero divergence,
- $\mathbf{G}_{n}:=\operatorname{Aut}_{\text {Lie }}\left(\mathfrak{d i v}_{n}^{0}\right)$,
- $\mathcal{H}_{n}^{\prime}:=\bigoplus_{i=1}^{n-1} K H_{i, i+1}$ where $H_{i j}:=H_{i}-H_{j}$ for $i \neq j$,
- $\mathfrak{d i v}_{n}^{c}:=\left\{\partial \in D_{n} \mid \operatorname{div}(\partial) \in K\right\}$ is the Lie algebra of polynomial vector fields (derivations) with constant divergence,
- $\mathbf{G}_{n}^{c}:=\operatorname{Aut}_{\text {Lie }}\left(\mathfrak{d i v}_{n}^{c}\right)$,
- $A_{n}:=K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle=\bigoplus_{\alpha, \beta \in \mathbb{N}^{n}} K x^{\alpha} \partial^{\beta}$ is the n 'th Weyl algebra,

The groups of automorphisms of the Lie algebras $\mathfrak{d i v}{ }_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}$. The aim of the paper is to prove the following two theorems.

Theorem 1.1 $\mathbf{G}_{n}= \begin{cases}G_{1} / \mathrm{Sh}_{1} \simeq K^{*} & \text { if } n=1, \\ G_{n} & \text { if } n \geq 2 .\end{cases}$
Structure of the proof. The case $n=1$ is trivial (see Section 2 where the group Sh_{1} is defined in (1)). So, let $n \geq 2$.
(i) $G_{n} \subseteq \mathbf{G}_{n}$ via the group monomorphism (Lemma 2.9.(3))

$$
G_{n} \rightarrow \mathbf{G}_{n}, \quad \sigma \mapsto \sigma: \partial \mapsto \sigma(\partial):=\sigma \partial \sigma^{-1} .
$$

(ii) Let $\sigma \in \mathbf{G}_{n}$. Then $\partial_{1}^{\prime}:=\sigma\left(\partial_{1}\right), \ldots, \partial_{n}^{\prime}:=\sigma\left(\partial_{n}\right)$ are commuting, locally nilpotent derivations of the polynomial algebra P_{n} (Lemma 2.14.(1)).
(iii) $\bigcap_{i=1}^{n} \operatorname{ker}_{P_{n}}\left(\partial_{i}^{\prime}\right)=K$ (Lemma 2.14.(2)).
(iv) There exists a polynomial automorphism $\tau \in G_{n}$ such that $\tau \sigma \in \operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)$ (Corollary 2.16).
(v) $\operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)=\operatorname{Sh}_{n}$ (Proposition 2.13.(3)) where
is the shift group of automorphisms of the polynomial algebra P_{n} and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in K^{n}$.
(vi) By (iv) and (v), $\sigma \in G_{n}$, i.e. $\mathbf{G}_{n}=G_{n}$.

Theorem 1.2 $\mathrm{G}_{n}^{c}=G_{n}$.
Structure of the proof. The case $n=1$ is trivial (see Section 2). So, let $n \geq 2$.
(i) $G_{n} \subseteq \mathbf{G}_{n}^{c}$ via the group monomorphism (Lemma 2.9.(4))

$$
G_{n} \rightarrow \mathbf{G}_{n}^{c}, \quad \sigma \mapsto \sigma: \partial \mapsto \sigma(\partial):=\sigma \partial \sigma^{-1}
$$

(ii) $\mathfrak{d i v}_{n}^{0}=\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right] \quad$ (Lemma 2.10).
(iii) The short exact sequence of group homomorphisms

$$
1 \rightarrow F:=\operatorname{Fix}_{\mathbf{G}_{n}^{c}}\left(\mathfrak{d i v}_{n}^{0}\right) \rightarrow \mathbf{G}_{n}^{c} \xrightarrow{\text { res }} \mathbf{G}_{n} \rightarrow 1
$$

is exact (by (i) and Theorem 1.1) where res : $\left.\sigma \mapsto \sigma\right|_{\mathfrak{D i v}_{n}^{0}}$ is the restriction map, see (ii).
(iv) Since $\mathbf{G}_{n}=G_{n}$ (Theorem 1.1) and $G_{n} \subseteq \mathbf{G}_{n}^{c}$ (by (i)), the short exact sequence splits

$$
\begin{equation*}
\mathbf{G}_{n}^{c} \simeq G_{n} \ltimes F \tag{2}
\end{equation*}
$$

(v) $F=\{e\}$ (Lemma 2.17). Therefore, $\mathbf{G}_{n}^{c}=G_{n}$.

Theorem 1.1 was announced in [8] where a sketch of the proof is given based on a study of certain Lie subalgebras of $\mathfrak{d i v}_{n}^{0}$ of finite codimension. Our proof is based on completely different ideas. The groups of automorphisms of infinite dimensional Lie algebras were considered in [2]-[10].

A subalgebra \mathcal{M} of a Lie algebra \mathcal{G} is called a maximal Lie subalgebra if $\mathcal{M} \neq \mathcal{G}$ and \mathcal{G} is the only Lie subalgebra of \mathcal{G} properly containing \mathcal{M}.

- (Proposition 2.21) For $n \geq 2, \mathfrak{d i v}_{n}^{c}$ is a maximal Lie subalgebra of D_{n} which is also a $\mathbb{G}_{n^{-}}$ invariant $/ G_{n}$-invariant Lie subalgebra.
- (Proposition 2.22) For $n \geq 2$, the G_{n}-module $D_{n} / \mathfrak{d i v}_{n}^{c}$ is simple and infinite dimensional with $\operatorname{End}_{G_{n}}\left(D_{n} / \mathfrak{d i v} v_{n}^{c}\right) \simeq K$.

Theorem 1.3 For $n \geq 2$, the set of elements $\partial_{1}, x_{2}^{2} \partial_{1}, x_{3}^{2} \partial_{1}, \ldots, x_{n}^{2} \partial_{1}, x_{1}^{2} \partial_{2}, x_{1}^{2} \partial_{3}, \ldots, x_{1}^{2} \partial_{n}$ is a minimal set of generators for the Lie algebra $\mathfrak{d i v}_{n}^{0}$.

Theorem 1.4 For $n \geq 2$, the set of elements in Theorem 1.3 together with H_{1} is a minimal set of generators for the Lie algebra $\mathfrak{d i v}_{n}^{c}$.

2 Proof of Theorems 1.1 and 1.2

In this section, proofs of Theorems 1.1 and 1.2 are given. In the first part of the section some useful results are proved that are used throughout the paper. The second part of the section can be seen as proofs of Theorem 1.1 and 1.2. The proofs are split into several statements that reflect 'Structure of the proofs of Theorems 1.1 and and 1.2 ' given in the Introduction. As we have seen in the Introduction, Theorem 1.1 is the key point in the proof of Theorem 1.2.

The Lie algebra D_{n} is \mathbb{Z}^{n}-graded. The Lie algebra

$$
\begin{equation*}
D_{n}=\bigoplus_{\alpha \in \mathbb{N}^{n}} \bigoplus_{i=1}^{n} K x^{\alpha} \partial_{i} \tag{3}
\end{equation*}
$$

is a \mathbb{Z}^{n}-graded Lie algebra

$$
D_{n}=\bigoplus_{\beta \in \mathbb{Z}^{n}} D_{n, \beta} \text { where } D_{n, \beta}=\bigoplus_{\alpha-e_{i}=\beta} K x^{\alpha} \partial_{i}
$$

i.e. $\left[D_{n, \alpha}, D_{n, \beta}\right] \subseteq D_{n, \alpha+\beta}$ for all $\alpha, \beta \in \mathbb{N}^{n}$ where $e_{1}:=(1,0, \ldots, 0), \ldots, e_{n}:=(0, \ldots, 0,1)$ is the canonical free basis for the free abelian group \mathbb{Z}^{n}. This follows from the commutation relations

$$
\begin{equation*}
\left[x^{\alpha} \partial_{i}, x^{\beta} \partial_{j}\right]=\beta_{i} x^{\alpha+\beta-e_{i}} \partial_{j}-\alpha_{j} x^{\alpha+\beta-e_{j}} \partial_{i} \tag{4}
\end{equation*}
$$

Clearly, for all $i, j=1, \ldots, n$ and $\alpha \in \mathbb{N}^{n}$,

$$
\begin{gather*}
{\left[H_{j}, x^{\alpha} \partial_{i}\right]= \begin{cases}\alpha_{j} x^{\alpha} \partial_{i} & \text { if } j \neq i, \\
\left(\alpha_{i}-1\right) x^{\alpha} \partial_{i} & \text { if } j=i,\end{cases} } \tag{5}\\
{\left[\partial_{j}, x^{\alpha} \partial_{i}\right]=\alpha_{j} x^{\alpha-e_{j}} \partial_{i} .} \tag{6}
\end{gather*}
$$

The support $\operatorname{Supp}\left(D_{n}\right):=\left\{\beta \in \mathbb{Z}^{n} \mid D_{n, \beta} \neq 0\right\}$ is a submonoid of \mathbb{Z}^{n}. Let us find the support $\operatorname{Supp}\left(D_{n}\right)$, the graded components $D_{n, \beta}$ and their dimensions $\operatorname{dim}_{K} D_{n, \beta}$. For each $i=1, \ldots, n$, let $\mathbb{N}^{n, i}:=\left\{\alpha \in \mathbb{N}^{n} \mid \alpha_{i}=0\right\}$ and $P_{n}^{\partial_{i}}:=\operatorname{ker}_{P_{n}}\left(\partial_{i}\right)$. It follows from the decompositions $P_{n}=$ $P_{n}^{\partial_{i}} \oplus P_{n} x_{i}$ for $i=1, \ldots, n$ that

$$
\begin{equation*}
D_{n}=\bigoplus_{i=1}^{n}\left(P_{n}^{\partial_{i}} \oplus P_{n} x_{i}\right) \partial_{i}=\bigoplus_{i=1}^{n} P_{n}^{\partial_{i}} \partial_{i} \oplus \bigoplus_{i=1}^{n} P_{n} H_{i}=\bigoplus_{i=1}^{n} P_{n}^{\partial_{i}} \partial_{i} \oplus \bigoplus_{\alpha \in \mathbb{N}^{n}} x^{\alpha} \mathcal{H}_{n} \tag{7}
\end{equation*}
$$

Therefore, any derivation $\partial=\sum_{i=1}^{n} a_{i} \partial_{i} \in D_{n}$ is the unique sum (where $a_{i}=b_{i} x_{i}+c_{i}, b_{i} \in P_{n}$ and $\left.c_{i} \in P_{n}^{\partial_{i}}\right)$

$$
\begin{equation*}
\partial=\sum_{i=1}^{n} b_{i} H_{i}+\sum_{i=1}^{n} c_{i} \partial_{i} . \tag{8}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
\operatorname{Supp}\left(D_{n}\right)=\coprod_{i=1}^{n}\left(\mathbb{N}^{n, i}-e_{i}\right) \coprod \mathbb{N}^{n} . \tag{9}\\
D_{n, \beta}= \begin{cases}K x^{\alpha} \partial_{i} & \text { if } \beta=\alpha-e_{i} \in \mathbb{N}^{n, i}-e_{i}, \\
x^{\beta} \mathcal{H}_{n} & \text { if } \beta \in \mathbb{N}^{n} .\end{cases} \tag{10}\\
\operatorname{dim}_{K} D_{n, \beta}= \begin{cases}1 & \text { if } \beta=\alpha-e_{i} \in \mathbb{N}^{n, i}-e_{i}, \\
n & \text { if } \beta \in \mathbb{N}^{n} .\end{cases}
\end{gather*}
$$

Let \mathcal{G} be an abelian Lie algebra and $\mathcal{G}^{*}:=\operatorname{Hom}_{K}(\mathcal{G}, K)$. A \mathcal{G}-module M is called a weight module if

$$
M=\bigoplus_{\lambda \in \mathcal{G}^{*}} M_{\lambda} \text { where } M_{\lambda}:=\{m \in M \mid g m=\lambda(g) m \text { for all } g \in \mathcal{G}\}
$$

The set $W(M):=\left\{\lambda \in \mathcal{G}^{*} \mid M_{\lambda} \neq 0\right\}$ is called the set of weights of M.
The direct sum $\mathfrak{d i v}{ }_{n}^{0}=\mathfrak{d i}{ }_{n}^{0} \oplus \mathfrak{i v}_{n}^{0}$. Recall that $D_{n}^{\prime}=\bigoplus_{\alpha \in \mathbb{N}^{n}} x^{\alpha} \mathcal{H}_{n}$. By (7),

$$
\begin{equation*}
\mathfrak{d i v}{ }_{n}^{0}=\mathfrak{d} \mathfrak{i}_{n}^{0} \oplus \mathfrak{i v}_{n}^{0} \text { where } \mathfrak{d} \mathfrak{i}_{n}^{0}:=\mathfrak{d i v}_{n}^{0} \cap D_{n}^{\prime} \text { and } \mathfrak{i v}_{n}^{0}:=\bigoplus_{i=1}^{n} P_{n}^{\partial_{i}} \partial_{i} \tag{11}
\end{equation*}
$$

We will see that $\mathfrak{d i}_{n}^{0}$ is a Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$ but $\mathfrak{i v}{ }_{n}^{0}$ is not for $n \geq 2$. Clearly, $\mathfrak{d i}{ }_{1}^{0}=0$ and $\mathfrak{d i v}_{1}^{0}=\mathfrak{i v}{ }_{1}^{0}=K \partial_{1}$. There are inclusions

$$
\begin{aligned}
& \mathfrak{d i v}_{1}^{0} \subset \\
& \mathfrak{d i v}_{2}^{0} \subset \cdots \subset \mathfrak{d i v}_{n}^{0} \subset \cdots, \\
& \mathfrak{i}_{1}^{0} \subset \\
& \mathfrak{d} \mathfrak{i}_{2}^{0} \subset \cdots \subset \mathfrak{d i}_{n}^{0} \subset \cdots, \subset \mathfrak{i v}_{2}^{0} \subset \cdots \subset \mathfrak{i v} 0 \\
& n
\end{aligned}, \cdots,
$$

The K-linear maps $h_{i}=\partial_{1} x_{1}, \ldots, h_{n}=\partial_{n} x_{n} \in \operatorname{End}_{K}\left(P_{n}\right)$ are bijections since for all $\alpha \in \mathbb{N}^{n}$ and $i=1, \ldots, n$,

$$
\begin{equation*}
h_{i}\left(x^{\alpha}\right)=\left(\alpha_{i}+1\right) x^{\alpha} . \tag{12}
\end{equation*}
$$

The elements h_{1}, \ldots, h_{n} commute, the polynomial algebra P_{n} is a weight \mathfrak{h}-module where $\mathfrak{h}:=$ $\oplus_{i=1}^{n} K h_{i}$ is an abelian Lie subalgebra of the Lie algebra $\operatorname{End}_{K}\left(P_{n}\right)$ (where $[f, g]:=f g-g f$) and the set $W\left(P_{n}\right)$ of weights of the \mathfrak{h}-module P_{n} is equal to $(1, \ldots, 1)+\mathbb{N}^{n}$, i.e. $W\left(P_{n}\right)=\{\lambda=$ $\left.\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda \in(1, \ldots, 1)+\mathbb{N}^{n}\right\}$ where $\lambda\left(h_{i}\right)=\lambda_{i}$ for all i. For each derivation $\partial=\sum_{i=1}^{n} a_{i} H_{i} \in$ D_{n}^{\prime},

$$
\begin{equation*}
\operatorname{div}(\partial)=\sum_{i=1}^{n} h_{i}\left(a_{i}\right) \tag{13}
\end{equation*}
$$

K-bases for $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}$. For each pair $i \neq j$, the K-linear map

$$
\begin{equation*}
\phi_{i j}: P_{n} \rightarrow \mathfrak{d i}_{n}^{0}, \quad a \mapsto h_{j}(a) H_{i}-h_{i}(a) H_{j} \tag{14}
\end{equation*}
$$

is a (well-defined) injection: By (13), $\operatorname{div}\left(\phi_{i j}(a)\right)=\left(h_{i} h_{j}-h_{j} h_{i}\right)(a)=0$, and if $\phi_{i j}(a)=0$ then $h_{j}(a) H_{i}=h_{i}(a) H_{j}$, and so $a=0$ since the maps h_{i} and h_{j} are bijections. For all $\alpha \in \mathbb{N}^{n}$ and $i \neq j$, let

$$
\begin{equation*}
\theta_{i j}^{\alpha}:=\phi_{i j}\left(x^{\alpha}\right)=x^{\alpha}\left(\left(\alpha_{j}+1\right) H_{i}-\left(\alpha_{i}+1\right) H_{j}\right) . \tag{15}
\end{equation*}
$$

In particular, $\theta_{i j}^{0}=H_{i}-H_{j}$. Then

$$
\begin{equation*}
\left[x^{\alpha-\alpha_{i} e_{i}} x_{j} \partial_{i}, x_{i}^{\alpha_{i}+1} \partial_{j}\right]=\phi_{j i}\left(x^{\alpha}\right) . \tag{16}
\end{equation*}
$$

It is obvious that $\mathfrak{d i v}_{1}^{0}=K \partial_{1}$ and $\mathfrak{d i v}{ }_{1}^{c}=K \partial_{1}+K H_{1}$.
Lemma 2.1 Let $n \geq 2$. Then

1. $\mathfrak{j i}_{n}^{0}=\bigoplus_{i=1}^{n-1} \phi_{i, i+1}\left(P_{n}\right)$.
2. The set of elements $\theta_{i}^{\alpha}:=\phi_{i, i+1}\left(x^{\alpha}\right)=x^{\alpha}\left(\left(\alpha_{i+1}+1\right) H_{i}-\left(\alpha_{i}+1\right) H_{i+1}\right)$, where $i=1, \ldots, n-1$ and $\alpha \in \mathbb{N}^{n}$, is a K-basis for \mathfrak{d}_{n}^{0}.
3. The set of elements θ_{i}^{α} in statement 2 and $x^{\beta} \partial_{j}$, where $x^{\beta} \in P_{n}^{\partial_{j}}$ and $j=1, \ldots, n$, is a K-basis for $\mathfrak{d i v}_{n}^{0}$.
4. The set of elements in statement 3 and H_{i}, where i is any fixed index in the set $\{1, \ldots, n\}$, is a K-basis for $\mathfrak{d i v}_{n}^{c}$.
Proof. 1. It is obvious that $R:=\sum_{i=1}^{n-1} \phi_{i, i+1}\left(P_{n}\right) \subseteq \mathfrak{d i v}_{n}^{0}$, see (14). Recall that $\mathfrak{d i}{ }_{n}^{0}=\mathfrak{d i v}_{n}^{0} \cap D_{n}^{\prime}$ and $D_{n}^{\prime}=\oplus_{\alpha \in \mathbb{N}^{n}} x^{\alpha} \mathcal{H}_{n}$. By (14) and the fact that the K-linear maps h_{1}, \ldots, h_{n} are invertible,

$$
\mathfrak{d} \mathfrak{i}_{n}^{0}=R+\mathfrak{d i}_{n}^{0} \cap P_{n} H_{n} .
$$

By (13), $\mathfrak{j i}_{n}^{0} \cap P_{n} H_{n}=0$. Therefore, $\mathfrak{d i}_{n}^{0}=R$.
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2 and (11).
4. Statement 4 follows from statement 3 and the fact that $\mathfrak{d i v}_{n}^{c}=\mathfrak{d i v}_{n}^{0} \oplus K H_{i}, i=1, \ldots, n$.

Let $\theta:=x_{1} \cdots x_{n} \in P_{n}$. Then $C_{n}:=\bigoplus_{i \in \mathbb{N}} \theta^{i} \mathcal{H}_{n}^{\prime}$ is an abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$ that contains \mathcal{H}_{n}^{\prime}. We will see that C_{n} is a Cartan subalgebra of the Lie algebras $\mathfrak{d i v}{ }_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}($ Lemma 2.3. $(3,5)$).

By Lemma 2.1.(2,3), for $n \geq 2$,

$$
\begin{gather*}
C_{n}=\bigoplus_{i=1}^{n-1} \bigoplus_{m \in \mathbb{N}} K \phi_{i, i+1}\left(\theta^{m}\right) \tag{17}\\
\mathfrak{d i v}_{n}^{0}=\bigoplus_{i=1}^{n} \bigoplus_{\alpha \in \mathbb{N}^{n}, i} K x^{\alpha} \partial_{i} \oplus C_{n} \oplus \bigoplus_{i=1}^{n-1} \bigoplus_{m \in \mathbb{N}} \bigoplus_{\alpha \in \mathbb{N}_{d}^{n} \backslash\{0\}} K \phi_{i, i+1}\left(\theta^{m} x^{\alpha}\right), \tag{18}
\end{gather*}
$$

where $\mathbb{N}_{d}^{n}:=\cup_{i=1}^{n} \mathbb{N}^{n, i}=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n} \mid \alpha_{i}=0\right.$ for some $\left.i\right\}$. We identify the vector space $\mathcal{H}_{n}^{\prime}=\left\{\sum_{i=1}^{n} \lambda_{i} H_{i} \mid \sum_{i=1}^{n} \lambda_{i}=0\right\}$ with its image in K^{n} under the K-linear injection $\mathcal{H}_{n}^{\prime} \rightarrow K^{n}$, $\sum_{i=1}^{n} \lambda_{i} H_{i} \mapsto\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. So,

$$
\mathcal{H}_{n}^{\prime}=\left\{\lambda \in K^{n} \mid(\lambda, \overline{1})=\sum_{i=1}^{n} \lambda_{i}=0\right\}
$$

where $\overline{1}:=(1,1, \ldots, 1)$ and $(\lambda, \mu):=\sum_{i=1}^{n} \lambda_{i} \mu_{i}$ is the standard inner product on K^{n}. The dual space $\mathcal{H}_{n}^{\prime *}:=\operatorname{Hom}_{K}\left(\mathcal{H}_{n}^{\prime}, K\right)$ can be identified with the factor space

$$
K^{n} / K \overline{1}=\left\{[\mu]:=\mu+K \overline{1} \mid \mu \in K^{n}\right\}
$$

i.e. $[\mu]\left(\sum_{i=1}^{n} \lambda_{i} H_{i}\right)=[\mu](\lambda):=(\mu, \lambda)=\sum_{i=1}^{n} \mu_{i} \lambda_{i}$. By (18), the \mathcal{H}_{n}^{\prime}-module $\mathfrak{d i v}_{n}^{0}$ is a weight module and the summands in (18) are the (nonzero) weight vectors under the adjoint action of \mathcal{H}_{n}^{\prime} on $\mathfrak{d i v}{ }_{n}$,

$$
\mathfrak{d i v}_{n}^{0}=\bigoplus_{[\mu] \in W\left(\mathfrak{d i v}_{n}^{0}\right)} \mathfrak{d i v} \mathfrak{v}_{n,[\mu]}^{0}
$$

where $\mathfrak{d i v}{ }_{n,[\mu]}^{0}:=\left\{\partial \in \mathfrak{d i v}_{n}^{0} \mid[H, \partial]=[\mu](H) \partial\right.$ for all $\left.H \in \mathcal{H}_{n}^{\prime}\right\}$ is the weight subspace of $\mathfrak{d i v}{ }_{n}^{0}$ that corresponds to the weight $[\mu]$ and $W=W\left(\mathfrak{d i v}_{n}^{0}\right)$ is the set of weights for $\mathfrak{d i v}{ }_{n}^{0}$. To simplify the notation we identify the set \mathbb{N}_{d}^{n} with its isomorphic copy in the factor vector space $K^{n} / K \overline{1}$ via the map $K^{n} \rightarrow K^{n} / K \overline{1}, \lambda \mapsto K \overline{1}$. So,

$$
\begin{equation*}
W\left(\mathfrak{d i v}_{n}^{0}\right)=N_{d}^{n} \tag{19}
\end{equation*}
$$

$$
\mathfrak{d i v}_{n,[\mu]}^{0}= \begin{cases}K x^{\alpha} \partial_{i} \oplus \bigoplus_{i=1}^{n-1} \bigoplus_{m \in \mathbb{N}} \phi_{i, i+1}\left(\theta^{m} x^{\alpha-e_{i}+\overline{1}}\right) & \text { if }[\mu]=\left[\alpha-e_{i}\right], \alpha \in \mathbb{N}^{n, i} \\ C_{n} & \text { if }[\mu]=0 \\ \bigoplus_{i=1}^{n-1} \bigoplus_{m \in \mathbb{N}} \phi_{i, i+1}\left(\theta^{m} x^{\alpha}\right) & \text { otherwise }\end{cases}
$$

The Lie algebra $\mathfrak{d i v}{ }_{n}^{0}=\mathfrak{i v}_{n}^{0} \oplus \mathfrak{d i}_{n}^{0}$ is the direct sum of its weight \mathcal{H}_{n}^{\prime}-submodules with

$$
\begin{equation*}
W\left(\mathfrak{i v}_{n}^{0}\right)=\coprod_{i=1}^{n}\left(\mathbb{N}^{n, i}-e_{i}\right), \quad W\left(\mathfrak{d i}_{n}^{0}\right)=\mathbb{N}_{d}^{n} \tag{21}
\end{equation*}
$$

For $H=\sum_{i=1}^{n} \lambda_{i} H_{i} \in \mathcal{H}_{n}$ and $\alpha \in K^{n}$, let

$$
(H, \alpha)=(\alpha, H)=\sum_{i=1}^{n} \alpha_{i} \lambda_{i} .
$$

Then, for all $\alpha \in \mathbb{N}^{n}, \operatorname{div}\left(x^{\alpha} H\right)=(\alpha+\overline{1}, H)$. If, in addition, $H \in \mathcal{H}_{n}^{\prime}$, that is $(H, \overline{1})=0$, then, for all $\alpha \in \mathbb{N}^{n}, \operatorname{div}\left(x^{\alpha} H\right)=(\alpha+\overline{1}, H)=(\alpha, H)$. It follows that $\mathfrak{d i}_{n}^{0}$ is the direct sum of vector spaces

$$
\begin{equation*}
\mathfrak{d} \mathfrak{i}_{n}^{0}=\bigoplus_{\alpha \in \mathbb{N}^{n}}\left\{K x^{\alpha} H \mid(H, \alpha+\overline{1})=0, H \in \mathcal{H}_{n}\right\} . \tag{22}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathfrak{d} \mathfrak{i}_{n}^{\prime 0}:=\bigoplus_{\alpha \in \mathbb{N}^{n}}\left\{K x^{\alpha} H \mid(H, \alpha)=0, H \in \mathcal{H}_{n}^{\prime}\right\}=\bigoplus_{\alpha \in \mathbb{N}_{d}^{n}}\left\{K[\theta] x^{\alpha} H \mid(H, \alpha)=0, H \in \mathcal{H}_{n}^{\prime}\right\} . \tag{23}
\end{equation*}
$$

Clearly, for $n \geq 2, \mathfrak{d i}_{n}^{\prime 0} \subset \mathfrak{d} \mathfrak{i}_{n}^{0}$ and the vector space $\mathfrak{d i}{ }_{n}^{\prime 0}$ is a left $K[\theta]$-module. We will see shortly that $\mathfrak{d i}_{n}^{\prime 0}$ is a non-Noetherian Lie algebra (Lemma 2.2). Notice that $\mathfrak{d i}_{n}^{\prime 0}=C_{2}=\oplus_{i \geq 0} K \theta^{i}\left(H_{1}-H_{2}\right)=$ $K[\theta]\left(H_{1}-H_{2}\right)$ where $\theta=x_{1} x_{2}$.

The commutation relations of the weight vectors in $\mathfrak{d i v}_{n}^{0}$. By (18) and (19), there are three types of commutation relations of elements from the weight spaces of the Lie algebra $\mathfrak{d} \mathfrak{v}_{n}^{0}$, see (24), (25) and (26). For all $x^{\alpha} \partial_{i} \in P_{n}^{\partial_{i}} \partial_{i}$ and $x^{\beta} \partial_{j} \in P_{n}^{\partial_{j}} \partial_{j}$,

$$
\left[x^{\alpha} \partial_{i}, x^{\beta} \partial_{j}\right]= \begin{cases}\phi_{j i}\left(x^{\alpha+\beta-e_{i}-e_{j}}\right) & \text { if } \beta_{i} \neq 0, \alpha_{j} \neq 0 \tag{24}\\ \beta_{i} x^{\alpha+\beta-e_{i}} \partial_{j} & \text { if } \beta_{i} \neq 0, \alpha_{j}=0 \\ -\alpha_{j} x^{\alpha+\beta-e_{j}} \partial_{i} & \text { if } \beta_{i}=0, \alpha_{j} \neq 0 \\ 0 & \text { if } \beta_{i}=0, \alpha_{j}=0\end{cases}
$$

where $\phi_{j i}\left(x^{\alpha+\beta-e_{i}-e_{j}}\right)=x^{\alpha+\beta-e_{i}-e_{j}}\left(\beta_{i} H_{j}-\alpha_{j} H_{i}\right)\left(\right.$ since $\alpha_{i}=0$ and $\left.\beta_{j}=0\right)$.

For all elements $x^{\alpha} H, x^{\alpha^{\prime}} H^{\prime} \in \mathfrak{d i}_{n}^{0}$,

$$
\begin{equation*}
\left[x^{\alpha} H, x^{\alpha^{\prime}} H^{\prime}\right]=x^{\alpha+\alpha^{\prime}}\left(\left(H, \alpha^{\prime}\right) H^{\prime}-\left(H^{\prime}, \alpha\right) H\right) \in \mathfrak{d} \mathfrak{i}_{n}^{0} \tag{25}
\end{equation*}
$$

since $\left(\left(H, \alpha^{\prime}\right) H^{\prime}-\left(H^{\prime}, \alpha\right) H, \alpha+\alpha^{\prime}+\overline{1}\right)=\left(H, \alpha^{\prime}\right)\left(H^{\prime}, \alpha^{\prime}+\overline{1}\right)-\left(H^{\prime}, \alpha\right)(H, \alpha+\overline{1})=0$.
For all $x^{\beta} \in P_{n}^{\partial_{i}} \partial_{i}$ and $x^{\alpha} H \in \mathfrak{d i}_{n}^{0}$,

$$
\begin{equation*}
\left[x^{\beta} \partial_{i}, x^{\alpha} H\right]=\alpha_{i} x^{\alpha+\beta-e_{i}} H-\left(H, \beta-e_{i}\right) x^{\alpha+\beta} \partial_{i} \tag{26}
\end{equation*}
$$

If, in addition $\alpha_{i} \neq 0$, then the equality (26) takes the form

$$
\begin{equation*}
\left[x^{\beta} \partial_{i}, x^{\alpha} H\right]=x^{\alpha+\beta-e_{i}}\left(\alpha_{i} H-\left(H, \beta-e_{i}\right) H_{i}\right) \in \mathfrak{d i}_{n}^{0} \tag{27}
\end{equation*}
$$

since $\left(\alpha_{i} H-\left(H, \beta-e_{i}\right) H_{i}, \alpha+\beta-e_{i}+\overline{1}\right)=-\left(H, \beta-e_{i}\right)\left(H_{i}, \beta-e_{i}+\overline{1}\right)=-\left(H, \beta-e_{i}\right) \cdot 0=0$. By (22) and (25), $\mathfrak{d} \mathfrak{i}_{n}^{0}$ is a Lie subalgebra of $\mathfrak{d i v}_{n}^{0}$ which is not an ideal, by(26). By (24), \mathfrak{v}_{n}^{0} is not a Lie algebra for $n \geq 2$.

The Lie algebra $\mathfrak{d i}_{n}^{\prime 0}$ is not Noetherian, $n \geq 2$. Let $n \geq 2$. The Lie algebra $\mathfrak{d i}_{n}^{\prime 0}$ is a $K[\theta]$-module, $K[\theta] \mathfrak{d i}_{n}^{\prime 0} \subseteq \mathfrak{d i}_{n}^{\prime 0}$, and the Lie bracket on $\mathfrak{d i}{ }_{n}^{\prime 0}$ is a $k[\theta]$-bilinear: for all $p, p^{\prime} \in K[\theta]$ and $x^{\alpha} H, x^{\alpha^{\prime}} H^{\prime} \in \mathfrak{d i}_{n}^{\prime 0}$,

$$
\begin{equation*}
\left[p x^{\alpha} H, p^{\prime} x^{\alpha^{\prime}} H^{\prime}\right]=p p^{\prime}\left[x^{\alpha} H, x^{\alpha^{\prime}} H^{\prime}\right] \tag{28}
\end{equation*}
$$

So, the Lie algebra $\mathfrak{d i}_{n}^{\prime 0}$ is not simple: $\theta^{i} \mathfrak{d i}_{n}^{\prime 0}, i \in \mathbb{N}$ are distinct ideals of $\mathfrak{d i}_{n}^{\prime 0}$.
Lemma 2.2 For $n \geq 2$, the Lie algebras $\mathfrak{d i}_{n}^{0}$ and $\mathfrak{d i}_{n}^{\prime 0}$ are not Noetherian.
Proof. If $n=2$ then $\mathfrak{d i}_{2}^{\prime 0}=C_{2}$ is an infinite dimensional abelian Lie algebra, hence, nonNoetherian. Let $n \geq 3$. Let I be an ideal of the additive monoid $\mathbb{N}^{n}\left(I+\mathbb{N}^{n} \subseteq I\right)$. Then $\mathfrak{a}^{\prime}(I):=\bigoplus_{\alpha \in I}\left\{x^{\alpha} H \mid(\alpha, H)=0, H \in \mathcal{H}_{n}^{\prime}\right\}$ is an ideal of the Lie algebra $\mathfrak{d i}_{n}^{\prime 0}$, by (25). The map $I \mapsto \mathfrak{a}^{\prime}(I)$ from the set $\mathcal{I}\left(\mathbb{N}^{n}\right)$ of ideals of \mathbb{N}^{n} to the set $\mathcal{I}\left(\mathfrak{d i} i_{n}^{\prime 0}\right)$ of ideals of the Lie algebra $\mathfrak{d i}_{n}^{\prime 0}$ is an inclusion preserving injection $\left(I_{1} \varsubsetneqq I_{2}\right.$ implies $\mathfrak{a}^{\prime}\left(I_{1}\right) \varsubsetneqq \mathfrak{a}^{\prime}\left(I_{2}\right)$. The set $\mathcal{I}\left(\mathbb{N}^{n}\right)$ is not Noetherian (with respect to \subseteq) hence $\mathfrak{d i}_{n}^{\prime 0}$ is not a Noetherian Lie algebra.

Similarly, by (25), for $n \geq 2$, the map $I \mapsto \mathfrak{a}(I):=\bigoplus_{\alpha \in I}\left\{x^{\alpha} H \mid(\alpha+\overline{1}, H)=0, H \in \mathcal{H}_{n}\right\}$ from the set $\mathcal{I}\left(\mathbb{N}^{n}\right)$ to the set $\mathcal{I}\left(\mathfrak{d i}_{n}^{0}\right)$ of ideals of the Lie algebra $\mathfrak{d} i_{n}^{0}$ is an inclusion preserving injection. Therefore, the Lie algebra $\mathfrak{d}{ }_{n}^{0}$ is non-Noetherian.

Let \mathcal{G} be a Lie algebra and \mathcal{H} be its Lie subalgebra. The centralizer $C_{\mathcal{G}}(\mathcal{H}):=\{x \in \mathcal{G} \mid[x, \mathcal{H}]=$ $0\}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G}. In particular, $Z(\mathcal{G}):=C_{\mathcal{G}}(\mathcal{G})$ is the centre of the Lie algebra \mathcal{G}. The normalizer $N_{\mathcal{G}}(\mathcal{H}):=\{x \in \mathcal{G} \mid[x, \mathcal{H}] \subseteq \mathcal{H}\}$ of \mathcal{H} in \mathcal{G} is a Lie subalgebra of \mathcal{G}, it is the largest Lie subalgebra of \mathcal{G} that contains \mathcal{H} as an ideal.

Let V be a vector space over K. A K-linear map $\delta: V \rightarrow V$ is called a locally nilpotent map if $V=\bigcup_{i \geq 1} \operatorname{ker}\left(\delta^{i}\right)$ or, equivalently, for every $v \in V, \delta^{i}(v)=0$ for all $i \gg 1$. When δ is a locally nilpotent map in V we also say that δ acts locally nilpotently on V. Every nilpotent linear map δ, that is $\delta^{n}=0$ for some $n \geq 1$, is a locally nilpotent map but not vice versa, in general. Let \mathcal{G} be a Lie algebra. Each element $a \in \mathcal{G}$ determines the derivation of the Lie algebra \mathcal{G} by the rule $\operatorname{ad}(a): \mathcal{G} \rightarrow \mathcal{G}, b \mapsto[a, b]$, which is called the inner derivation associated with a. The set $\operatorname{Inn}(\mathcal{G})$ of all the inner derivations of the Lie algebra \mathcal{G} is a Lie subalgebra of the Lie algebra $\left(\operatorname{End}_{K}(\mathcal{G}),[\cdot, \cdot]\right)$ where $[f, g]:=f g-g f$. There is the short exact sequence of Lie algebras

$$
0 \rightarrow Z(\mathcal{G}) \rightarrow \mathcal{G} \xrightarrow{\text { ad }} \operatorname{Inn}(\mathcal{G}) \rightarrow 0
$$

that is $\operatorname{Inn}(\mathcal{G}) \simeq \mathcal{G} / Z(\mathcal{G})$ where $Z(\mathcal{G})$ is the centre of the Lie algebra \mathcal{G} and $\operatorname{ad}([a, b])=[\operatorname{ad}(a), \operatorname{ad}(b)]$ for all elements $a, b \in \mathcal{G}$. An element $a \in \mathcal{G}$ is called a locally nilpotent element (respectively, a nilpotent element) if so is the inner derivation $\operatorname{ad}(a)$ of the Lie algebra \mathcal{G}.

The Cartan subalgebra C_{n} of $\mathfrak{d i v}_{n}^{0}$. A nilpotent Lie subalgebra C of a Lie algebra \mathcal{G} such that $C=N_{\mathcal{G}}(C)$ is called a Cartan subalgebra of \mathcal{G}. We use often the following obvious observation: An abelian Lie subalgebra that coincides with its centralizer is a maximal abelian Lie subalgebra.

Example. \mathcal{H}_{n} is a Cartan subalgebra of D_{n} and $\mathcal{H}_{n}=C_{D_{n}}\left(\mathcal{H}_{n}\right)$ is a maximal abelian Lie subalgebra of D_{n}.

Lemma 2.3 Let $n \geq 2$. Recall that $C_{n}=\bigoplus_{i \in \mathbb{N}} \theta^{i} \mathcal{H}_{n}^{\prime}$ and $\theta=x_{1} x_{2} \cdots x_{n}$. Then

1. $\mathcal{H}_{n}^{\prime}=\mathcal{H}_{n} \cap \mathfrak{d i v}_{n}^{0}$.
2. $C_{n}=C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right)$ and $C_{n}=C_{\mathfrak{d i v}_{n}^{0}}\left(C_{n}\right)$ is a maximal abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$.
3. C_{n} is a Cartan subalgebra of $\mathfrak{d i v}_{n}^{0}$.
4. $C_{n}+\mathcal{H}_{n}=C_{\mathfrak{d i v}_{n}^{c}}\left(\mathcal{H}_{n}^{\prime}\right)$ and $C_{n}=C_{\mathfrak{d i v}_{n}^{c}}\left(C_{n}\right)$ is a maximal abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{c}$.
5. $N_{\mathfrak{D i v}_{n}^{c}}\left(C_{n}\right)=C_{n}+\mathcal{H}_{n}=N_{\mathfrak{D i v}_{n}^{c}}\left(C_{n}+\mathcal{H}_{n}\right)$ is a solvable but not nilpotent Lie algebra, and so $C_{n}+\mathcal{H}_{n}$ and C_{n} are not a Cartan subalgebra of $\mathfrak{d i v}{ }_{n}^{c}$.
6. \mathcal{H}_{n} is a Cartan subalgebra of $\mathfrak{d v}_{n}^{c}$ and $\mathcal{H}_{n}=C_{\mathfrak{D} \mathfrak{v}_{n}^{c}}\left(\mathcal{H}_{n}\right)$ is a maximal abelian Lie subalgebra of $\mathfrak{d i v}_{n}^{c}$.

Proof. 1. Let $H=\sum_{i=1}^{n} \lambda_{i} H_{i} \in \mathcal{H}_{n}$. Then $H \in \mathcal{H}_{n} \cap \mathfrak{d i v}_{n}^{0}$ iff $\sum_{i=1}^{n} \lambda_{i}=0$ iff $H \in \mathcal{H}_{n}^{\prime}$.
2. The fact that $C_{n}=C_{\mathfrak{D i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right)$ follows from (20). By (25), C_{n} is an abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$. Then the inclusion $\mathcal{H}_{n}^{\prime} \subseteq C_{n}=C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right)$ implies the inclusions

$$
C_{n}=C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right) \supseteq C_{\mathfrak{d i v}_{n}^{0}}\left(C_{n}\right) \supseteq C_{n} .
$$

Therefore, $C_{n}=C_{\mathfrak{D i v}_{n}^{0}}\left(C_{n}\right)$ is a maximal abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$.
3. Let $N:=N_{\mathfrak{d i v}_{n}^{0}}\left(C_{n}\right)$. By statement $2, C_{n} \subseteq N$. The \mathcal{H}_{n}^{\prime}-module $\mathfrak{d i v}{ }_{n}^{0}$ is weight and $C_{n}=C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right)$ is the zero weight component of $\mathfrak{d i v}{ }_{n}^{0}$. The inclusion $\left[N, \mathcal{H}_{n}^{\prime}\right] \subseteq C_{n}$ implies $N \subseteq C_{n}$, and so $N=C_{n}$.
4. Notice that $\mathfrak{d i v}{ }_{n}^{c}=\mathfrak{d i v}_{n}^{0} \oplus K H_{1}, H_{1} \in C_{\mathfrak{d i v}_{n}^{c}}\left(\mathcal{H}_{n}^{\prime}\right)$ and $\mathcal{H}_{n}^{\prime} \subseteq \mathfrak{d i v}_{n}^{0}$. By statement 2,

$$
C_{\mathfrak{d i v}}^{c}\left(\mathcal{H}_{n}^{\prime}\right)=C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{H}_{n}^{\prime}\right) \oplus K H_{1}=C_{n} \oplus K H_{1}=C_{n}+\mathcal{H}_{n}
$$

Now, the inclusion $\mathcal{H}_{n}^{\prime} \subseteq C_{n}$ implies the inclusions

$$
C_{n} \oplus K H_{1}=C_{\mathfrak{d i v}}^{c}\left(\mathcal{H}_{n}^{\prime}\right) \supseteq C_{\mathfrak{d i v}}^{c}\left(C_{n}\right) \supseteq C_{n}
$$

Hence $C_{\mathfrak{d i v}_{n}^{c}}\left(C_{n}\right)=C_{n} \oplus C_{\mathfrak{d i v}_{n}^{c}}\left(C_{n}\right) \cap K H_{1}=C_{n}$ and so C_{n} is a maximal abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{c}$.
5. Let $N^{c}:=N_{\mathfrak{d i v}_{n}^{c}}\left(C_{n}\right)$. By statement $4, C_{n} \subseteq N^{c}$. The \mathcal{H}_{n}^{\prime}-module $\mathfrak{d i v}{ }_{n}^{c}=\mathfrak{d i v}_{n}^{0} \oplus K H_{1}$ is weight and $C_{n} \oplus K H_{1}=C_{\mathfrak{d} \mathfrak{v i}_{n}^{c}}\left(\mathcal{H}_{n}^{\prime}\right)$ is the zero weight component of $\mathfrak{d i v}{ }_{n}^{c}$. The inclusion $\left[N^{c}, \mathcal{H}_{n}^{\prime}\right] \subseteq C_{n}$ implies the inclusion $\left[N^{c}, \mathcal{H}_{n}^{\prime}\right] \subseteq C_{n} \oplus K H_{1}=C_{\mathfrak{d i v}}^{c}\left(\mathcal{H}_{n}^{\prime}\right)$, and so $N^{c} \subseteq C_{n} \oplus K H_{1}$. Since $C_{n} \subseteq N^{c}$, it follows that $N^{c}=C_{n} \oplus N^{c} \cap K H_{1}=C_{n}+K H_{1}$, i.e. C_{n} is not a Cartan subalgebra of $\mathfrak{d i v}{ }_{n}^{c}$.

Clearly, $C_{n}+\mathcal{H}_{n} \subseteq \mathcal{N}:=N_{\mathfrak{D i v}_{n}^{c}}\left(C_{n}+\mathcal{H}_{n}\right)$. Since $\mathcal{H}_{n}^{\prime} \subseteq C_{n}+\mathcal{H}_{n},\left[\mathcal{H}_{n}^{\prime}, \mathcal{N}\right] \subseteq C_{n}+\mathcal{H}_{n}=$ $C_{\mathfrak{D i v}_{n}^{c}}\left(\mathcal{H}_{n}^{\prime}\right)$, hence $\mathcal{N} \subseteq C_{n}+\mathcal{H}_{n}$ (as $C_{n}+\mathcal{H}_{n}$ is the zero weight component of the weight $\mathcal{H}_{n}^{\prime}{ }^{-}$ module $\mathfrak{d i v}{ }_{n}^{c}$), i.e. $\mathcal{N}=C_{n}+\mathcal{H}_{n}$. The Lie algebra $C_{n}+\mathcal{H}_{n}$ is solvable but not nilpotent, and so $C_{n}+\mathcal{H}_{n}$ is not a Cartan subalgebra of $\mathfrak{d i v}{ }_{n}^{c}$.
6. Statement 6 follows from the Example above.

The Lie algebra $\mathfrak{d i v}{ }_{n}^{0}$ is a weight \mathcal{H}_{n}^{\prime}-module with respect to the adjoint action. In particular, the action of \mathcal{H}_{n}^{\prime} on $\mathfrak{d i v}_{n}^{0}$ is locally finite dimensional, i.e. for any $\partial \in \mathfrak{d i v}_{n}^{0}, \operatorname{dim}_{K}\left(\sum_{i \in \mathbb{N}} \operatorname{ad}\left(\mathcal{H}_{n}^{\prime}\right)^{i}(\partial)\right)<$ ∞. We can easily verify that the action of the Cartan subalgebra C_{n} of $\mathfrak{d i v}{ }_{n}^{0}$ on $\mathfrak{d i v}{ }_{n}^{0}$ is not locally finite dimensional, see (25) and (26).
P_{n} is a D_{n}-module. The polynomial algebra P_{n} is a (left) D_{n}-module: $D_{n} \times P_{n} \rightarrow P_{n}$, $(\partial, p) \mapsto \partial * p$. In more detail, if $\partial=\sum_{i=1}^{n} a_{i} \partial_{i}$ where $a_{i} \in P_{n}$ then

$$
\partial * p=\sum_{i=1}^{n} a_{i} \frac{\partial p}{\partial x_{i}}
$$

The field K is a D_{n}-submodule of P_{n} and

$$
\begin{equation*}
P_{n}^{\mathcal{D}_{n}}:=\bigcap_{i=1}^{n} \operatorname{ker}_{P_{n}}\left(\partial_{i}\right)=K \tag{29}
\end{equation*}
$$

Lemma 2.4 [2] The D_{n}-module P_{n} / K is simple with $\operatorname{End}_{D_{n}}\left(P_{n} / K\right)=K$ id where id is the identity map.

The G_{n}-module D_{n}. The Lie algebra D_{n} is a G_{n}-module,

$$
G_{n} \times D_{n} \rightarrow D_{n}, \quad(\sigma, \partial) \mapsto \sigma(\partial):=\sigma \partial \sigma^{-1}
$$

Every automorphism $\sigma \in G_{n}$ is uniquely determined by the elements

$$
x_{1}^{\prime}:=\sigma\left(x_{1}\right), \ldots, x_{n}^{\prime}:=\sigma\left(x_{n}\right) .
$$

Let $M_{n}\left(P_{n}\right)$ be the algebra of $n \times n$ matrices over P_{n}. The matrix $J(\sigma):=\left(J(\sigma)_{i j}\right) \in M_{n}\left(P_{n}\right)$, where $J(\sigma)_{i j}=\frac{\partial x_{j}^{\prime}}{\partial x_{i}}$, is called the Jacobian matrix of the automorphism (endomorphism) σ and its determinant $\mathcal{J}(\sigma):=\operatorname{det} J(\sigma)$ is called the Jacobian of σ. So, the j^{\prime} 'th column of $J(\sigma)$ is the gradient $\operatorname{grad} x_{j}^{\prime}:=\left(\frac{\partial x_{j}^{\prime}}{\partial x_{1}}, \ldots, \frac{\partial x_{j}^{\prime}}{\partial x_{n}}\right)^{T}$ of the polynomial x_{j}^{\prime} where T stands for the transposition. Then the derivations

$$
\partial_{1}^{\prime}:=\sigma \partial_{1} \sigma^{-1}, \ldots, \partial_{n}^{\prime}:=\sigma \partial_{n} \sigma^{-1}
$$

are the partial derivatives of P_{n} with respect to the variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$,

$$
\begin{equation*}
\partial_{1}^{\prime}=\frac{\partial}{\partial x_{1}^{\prime}}, \ldots, \partial_{n}^{\prime}=\frac{\partial}{\partial x_{n}^{\prime}} \tag{30}
\end{equation*}
$$

Every derivation $\partial \in D_{n}$ is a unique sum $\partial=\sum_{i=1}^{n} a_{i} \partial_{i}$ where $a_{i}=\partial * x_{i} \in P_{n}$. Let $\partial:=$ $\left(\partial_{1}, \ldots, \partial_{n}\right)^{T}$ and $\partial^{\prime}:=\left(\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}\right)^{T}$. Then

$$
\begin{equation*}
\partial^{\prime}=J(\sigma)^{-1} \partial \text {, i.e. } \partial_{i}^{\prime}=\sum_{j=1}^{n}\left(J(\sigma)^{-1}\right)_{i j} \partial_{j} \text { for } i=1, \ldots, n \tag{31}
\end{equation*}
$$

In more detail, if $\partial^{\prime}=A \partial$ where $A=\left(a_{i j}\right) \in M_{n}\left(P_{n}\right)$, i.e. $\partial_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} \partial_{j}$. Then for all $i, j=1, \ldots, n$,

$$
\delta_{i j}=\partial_{i}^{\prime} * x_{j}^{\prime}=\sum_{k=1}^{n} a_{i k} \frac{\partial x_{j}^{\prime}}{\partial x_{k}}
$$

where $\delta_{i j}$ is the Kronecker delta function. The equalities above can be written in the matrix form as $A J(\sigma)=1$ where 1 is the identity matrix. Therefore, $A=J(\sigma)^{-1}$.

For all $\sigma, \tau \in G_{n}$,

$$
\begin{equation*}
J(\sigma \tau)=J(\sigma) \cdot \sigma(J(\tau)) \tag{32}
\end{equation*}
$$

By taking the determinants of both sides of (32), we have a similar equality of the Jacobians: for all $\sigma, \tau \in G_{n}$.

$$
\begin{equation*}
\mathcal{J}(\sigma \tau)=\mathcal{J}(\sigma) \cdot \sigma(\mathcal{J}(\tau)) \tag{33}
\end{equation*}
$$

ddp=dxi
dp=Jnd
$\mathrm{Jst}=\mathrm{Js} \mathrm{J}$

Jst=JsJ1

Properties of the divergence. Recall some of the properties of the divergence map

$$
\operatorname{div}: D_{n} \rightarrow P_{n}, \quad \partial=\sum_{i=1}^{n} a_{i} \partial_{i} \mapsto \operatorname{div}(\partial)=\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial x_{i}}
$$

(div-i) div is a K-linear map which is a surjection.
(div-ii) For all $a \in P_{n}$ and $\partial \in D_{n}, \operatorname{div}(a \partial)=a \operatorname{div}(\partial)+\partial(a)$.
(div-iii) For all $\partial, \delta \in D_{n}, \operatorname{div}([\partial, \delta])=\partial(\operatorname{div}(\delta))-\delta(\operatorname{div}(\partial))$.
(div-iv) Let $a_{1}, \ldots, a_{n} \in P_{n} ; \sigma: P_{n} \rightarrow P_{n}, x_{i} \mapsto a_{i}, i=1, \ldots, n$ and $\mathcal{J}\left(a_{1}, \ldots, a_{n}\right):=\mathcal{J}(\sigma)$ be the Jacobian of σ. Then (Proposition 2.3.2, [6])

$$
\partial * \mathcal{J}\left(a_{1}, \ldots, a_{n}\right)=-\mathcal{J}\left(a_{1}, \ldots, a_{n}\right) \operatorname{div}(\partial)+\sum_{i=1}^{n} \mathcal{J}\left(a_{1}, \ldots, \partial * a_{i}, \ldots, a_{n}\right)
$$

(div-v) (Theorem 2.5.5, [6]) If $D_{n}=\bigoplus_{i=1}^{n} P_{n} \partial_{i}^{\prime}$ and $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}$ commute then

$$
\operatorname{div}\left(\partial_{1}^{\prime}\right)=\cdots=\operatorname{div}\left(\partial_{n}^{\prime}\right)=0
$$

(div-vi) Let $\sigma: P_{n} \rightarrow P_{n}, x_{i} \mapsto x_{i}^{\prime}, i=1, \ldots, n$, be an automorphism of P_{n}. Then $\partial_{1}^{\prime}:=$ $\sigma \partial_{1} \sigma^{-1}, \ldots, \partial_{n}^{\prime}:=\sigma \partial_{n} \sigma^{-1}$ are commuting derivations of P_{n} such that $D_{n}=\bigoplus_{i=1}^{n} P_{n} \partial_{i}^{\prime}$ (by (31) and since $\left.J(\sigma)^{-1} \in \mathrm{GL}_{n}\left(P_{n}\right)\right)$. By (31), $\partial_{i}=\sum_{i=1}^{n}\left(J(\sigma)^{-1}\right)_{i j} \partial_{j}$. By (div-v),

$$
\sum_{j=1}^{n} \partial_{j} *\left(J(\sigma)^{-1}\right)_{i j}=0 \text { for } i=1, \ldots, n
$$

The divergence commutes with polynomial automorphisms. The following known theorem shows that the divergence commutes with automorphisms, i.e. the divergence map div : $D_{n} \rightarrow P_{n}$ is a G_{n}-module homomorphism. We give a short proof.

Theorem 2.5 For all $\sigma \in G_{n}$ and $\partial \in D_{n}$,

$$
\operatorname{div}(\sigma(\partial))=\sigma(\operatorname{div}(\partial))
$$

Proof. Let $\partial=\sum_{i=1}^{n} a_{i} \partial_{i}$ where $a_{i} \in P_{n}$. Then $\partial^{\prime}=\sigma \partial \sigma^{-1}=\sum_{i=1}^{n} \sigma\left(a_{i}\right) \partial_{i}^{\prime}$ where, by (31), $\partial_{i}^{\prime}=\sum_{j=1}^{n}\left(J(\sigma)^{-1}\right)_{i j} \partial_{j}$. Now, by (div-vi),

$$
\begin{aligned}
\operatorname{div}\left(\partial^{\prime}\right) & \left.=\sum_{i, j=1}^{n} \partial_{j} *\left(\left(J(\sigma)^{-1}\right)_{i j} \sigma\left(a_{i}\right)\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \partial_{j} *\left(J(\sigma)^{-1}\right)_{i j}\right) \cdot \sigma\left(a_{i}\right)\right)+\sum_{i=1}^{n} \sum_{j=1}^{n}\left(J(\sigma)^{-1}\right)_{i j} \partial_{j} * \sigma\left(a_{i}\right) \\
& =\sum_{i=1}^{n} \partial_{i}^{\prime} * \sigma\left(a_{i}\right)=\sum_{i=1}^{n} \sigma \partial_{i} \sigma^{-1} \sigma\left(a_{i}\right)=\sigma\left(\sum_{i=1}^{n} \partial_{i}\left(a_{i}\right)\right)=\sigma(\operatorname{div}(\partial)) .
\end{aligned}
$$

Theorem 2.6 $\mathbb{G}_{n}=G_{n}$.
The above theorem was announced in [8] where a sketch of a proof is given, it can also be deduced from [10]. A proof of the above theorem is given in [9] and in ([7], Theorem 3.6), a different approach and a short proof is given in [2]. Some generalizations are given in [4], [3] and [5].

Corollary 2.7 For all $\sigma \in \mathbb{G}_{n}$ and $\partial \in D_{n}, \operatorname{div}(\sigma(\partial))=\sigma(\operatorname{div}(\partial))$.

Proof. The statement follows from Theorem 2.6 and Theorem 2.5.
By (div-iii), $\mathfrak{d i v}{ }_{n}^{0}$ and $\mathfrak{d i v}_{n}^{c}$ are Lie subalgebras of $D_{n}, \mathfrak{d i v}_{n}^{0}$ is an ideal of $\mathfrak{d i v}{ }_{n}^{c}$.
Corollary 2.8 The Lie subalgebras $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}_{n}^{c}$ of D_{n} are also G_{n}-submodules of D_{n}.
Proof. This follows from Theorem 2.5.
By (div-iii),

$$
\begin{equation*}
0 \rightarrow \mathfrak{d i v}_{n}^{0} \rightarrow D_{n} \xrightarrow{\text { div }} P_{n} \rightarrow 0 \tag{34}
\end{equation*}
$$

is the short exact sequence of (left) $\mathfrak{d i v}_{n}^{0}$-modules and $\mathfrak{d i v}_{n}^{c}$-modules, i.e.

$$
\begin{equation*}
\operatorname{div}([\partial, \delta])=\partial * \operatorname{div}(\delta) \tag{35}
\end{equation*}
$$

for all $\partial \in \mathfrak{d i v}_{n}^{c}$ and $\delta \in D_{n}$. So,

$$
\begin{equation*}
0 \rightarrow \mathfrak{d i v}_{n}^{0} \rightarrow \mathfrak{d i v}_{n}^{c} \xrightarrow{\text { div }} K \rightarrow 0 \tag{36}
\end{equation*}
$$

is the short exact sequence of (left) $\mathfrak{d i v}_{n}^{0}$-modules $/ \mathfrak{d i v}_{n}^{c}$-modules, and so

$$
\begin{equation*}
\mathfrak{d i v}_{n}^{c}=\mathfrak{d i v}_{n}^{0} \oplus K H_{i} \text { for } i=1, \ldots, n \tag{37}
\end{equation*}
$$

since $\operatorname{div}\left(H_{i}\right)=1$ for all $i=1, \ldots, n$.
The maximal abelian Lie subalgebra \mathcal{D}_{n} of $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}_{n}^{c}$.
$\operatorname{div} \mathrm{DnPn}$
divcom
$\operatorname{div} \mathrm{DnPn} 1$
divDnPn2
db11Mar13
Lemma 2.9 1. $C_{\mathfrak{D i v}_{n}^{0}}\left(\mathcal{D}_{n}\right)=C_{\mathfrak{D i v}_{n}^{c}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$ and so \mathcal{D}_{n} is a maximal abelian Lie subalgebra of $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}_{n}^{c}$.
2. ([2]) $\mathrm{Fix}_{G_{n}}\left(\mathcal{D}_{n}\right)=\mathrm{Sh}_{n}$.
3. For $n \geq 2, \mathfrak{d i v}_{n}^{0}$ is a faithful G_{n}-module, i.e. the group homomorphism $G_{n} \rightarrow \mathbf{G}_{n}, \sigma \mapsto$ $\sigma: \partial \mapsto \sigma \partial \sigma^{-1}$, is a monomorphism. For $n=1$, the group Sh_{1} is the kernel of the group homomorphism $G_{1} \rightarrow \mathbf{G}_{1}$.
4. $\mathfrak{d i v}_{n}^{c}$ is a faithful G_{n}-module, i.e. the group homomorphism $G_{n} \rightarrow \mathbf{G}_{n}^{c}, \sigma \mapsto \sigma: \partial \mapsto \sigma \partial \sigma^{-1}$, is a monomorphism.
5. $\operatorname{Fix}_{G_{n}}\left(\mathcal{D}_{n} \oplus \mathcal{H}_{n}^{\prime}\right)=\{e\}$ for $n \geq 2$.

Proof. 1. Since $C_{D_{n}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$, [2], we must have $C_{\mathfrak{d i v}_{n}^{0}}\left(\mathcal{D}_{n}\right)=C_{\mathfrak{D i v}_{n}^{c}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$, and so \mathcal{D}_{n} is a maximal abelian Lie subalgebra of $\mathfrak{d i v}{ }_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}$.

3 and 5. By Corollary 2.8, $\mathfrak{d i v}_{n}^{0}$ is a G_{n}-submodule of \mathcal{D}_{n}. So, the group homomorphism in statement 3 is well-defined. The case $n=1$ is obvious since $G_{1}=\left\{x \mapsto \lambda x+\mu \mid \lambda \in K^{*}, \mu \in K\right\}$ and $\mathfrak{d i v}_{1}^{0}=K \partial$.

So, let $n \geq 2$, and $\sigma \in \operatorname{Fix}_{G_{n}}\left(\mathcal{D}_{n} \oplus \mathcal{H}_{n}^{\prime}\right)$. Then $\sigma \in \operatorname{Fix}_{G_{n}}\left(\mathcal{D}_{n}\right)=\operatorname{Sh}_{n}$, by statement 2. So, $\sigma\left(x_{1}\right)=x_{1}+\lambda_{1}, \ldots, \sigma\left(x_{n}\right)=x_{n}+\lambda_{n}$ where $\lambda_{i} \in K$. Then for all $i \neq j$,

$$
H_{i}-H_{j}=\sigma\left(H_{i}-H_{j}\right)=\left(x_{i}+\lambda_{i}\right) \partial_{i}-\left(x_{j}+\lambda_{j}\right) \partial_{j}=H_{i}-H_{j}+\lambda_{i} \partial_{i}-\lambda_{j} \partial_{j} .
$$

So, $\lambda_{1}=\cdots=\lambda_{n}=0$. This means that $\sigma=e . \operatorname{So}, \operatorname{Fix}_{G_{n}}\left(\mathcal{D}_{n} \oplus \mathcal{H}_{n}^{\prime}\right)=\{e\}$ and $\mathfrak{d i v}_{n}^{0}$ is a faithful G_{n}-module.
4. By Corollary 2.8, $\mathfrak{d i v}_{n}^{c}$ is a G_{n}-submodule of D_{n}. So, the group homomorphism in statement 4 is well-defined. Now, statement 4 follows from statement 3 for $n \geq 2$. For $n=1$, statement 4 is obvious as $\mathfrak{d i v}{ }_{1}^{c}=K \partial_{1}+K H_{1}$ and $G_{1}=\left\{x \mapsto \lambda x+\mu \mid \lambda \in K^{*}, \mu \in K\right\}$.

Lemma $2.10\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right]=\mathfrak{d i v}_{n}^{0}$.

Proof. The statement is obvious for $n=1$ as $\mathfrak{d i v}{ }_{1}^{c}=K \partial_{1}+K H_{1}$ and $\mathfrak{d i v}{ }_{1}^{0}=K \partial_{1}$. So, let $n \geq 2$. By $(\operatorname{div}-\mathrm{iii}), \operatorname{div}\left(\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right]\right)=0$, and so $\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right] \subseteq \mathfrak{d i v}_{n}^{0}$. Recall that $\mathfrak{d i v}{ }_{n}^{0}=\mathfrak{i v}_{n}^{0}+\mathfrak{d i}_{n}^{0}$ (see (11)), $\mathfrak{i v}_{n}^{0}=\oplus_{i=1}^{n} P^{\partial_{i}} \partial_{i},\left[x^{\alpha} \partial_{i}, H_{i}\right]=x^{\alpha} \partial_{i}$ for all $x^{\alpha} \in P_{n}^{\partial_{i}}$ and $i=1, \ldots, n$. Hence $\mathfrak{i v}{ }_{n}^{0} \subseteq\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}{ }_{n}^{c}\right]$.

Finally, for all $a \in P_{n}$ and $i \neq j$,

$$
\left[H_{k}, h_{j}(a) H_{i}-h_{i}(a) H_{j}\right]=h_{j}\left(H_{k} * a\right) H_{i}-h_{i}\left(H_{k} * a\right) H_{j}
$$

Hence, $\left\{h_{j}\left(x^{\alpha}\right) H_{i}-h_{i}\left(x^{\alpha}\right) H_{j} \mid 0 \neq \alpha \in \mathbb{N}^{n}, i \neq j\right\} \subseteq\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right]$. Finally, $H_{i}-H_{j}=\left[x_{i} \partial_{j}, x_{j} \partial_{i}\right] \in$ $\left[\mathfrak{d i v}{ }_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right]$ for all $i \neq j$. Now, by Lemma 2.1.(3), $\left[\mathfrak{d i v}_{n}^{c}, \mathfrak{d i v}_{n}^{c}\right]=\mathfrak{d i v}_{n}^{0}$.

The following lemma is well-known and easy to prove.
Lemma 2.11 1. D_{n} is a simple Lie algebra.
2. $Z\left(D_{n}\right)=\{0\}$.
3. $\left[D_{n}, D_{n}\right]=D_{n}$.

The next lemma is also known but we give a short elementary proof.
Lemma $2.12 \quad$ 1. $\mathfrak{d i v}_{n}^{0}$ is a simple Lie algebra.
2. $Z\left(\mathfrak{d i v}_{n}^{0}\right)= \begin{cases}\mathfrak{d i v}_{n}^{0} & \text { if } n=1, \\ 0 & \text { if } n \geq 2 .\end{cases}$
3. $\left[\mathfrak{d i v}_{n}^{0}, \mathfrak{d i v}_{n}^{0}\right]= \begin{cases}0 & \text { if } n=1, \\ \mathfrak{d i v}_{n}^{0} & \text { if } n \geq 2 .\end{cases}$

Proof. All three statements are obvious if $n=1$ since $\mathfrak{d i v}_{1}^{0}=K \partial$. So, we assume that $n \geq 2$.

1. Let $0 \neq a \in \mathfrak{d i v}_{n}^{0}$ and $\mathfrak{a}=(a)$ be the ideal of the Lie algebra $\mathfrak{d i v}{ }_{n}^{0}$ generated by the element a. We have to show that $\mathfrak{a}=\mathfrak{d i v}_{n}^{0}$. Using the inner derivations $\delta_{1}, \ldots, \delta_{n}$ and $\operatorname{ad}\left(H_{i}-H_{j}\right)$ (where $i \neq j$) of the Lie algebra $\mathfrak{d i v}{ }_{n}^{0}$ we see that $\partial_{i} \in \mathfrak{a}$ for some i. Then $\mathcal{D}_{n} \subseteq \mathfrak{a}$ since $\partial_{j}=\left[\partial_{i}, x_{i} \partial_{j}\right]$ for all $i \neq j$. Then $\mathfrak{i v}_{n}^{0} \subseteq \mathfrak{a}$ since $x^{\alpha} \partial_{i}=\left[\partial_{j},\left(\alpha_{j}+1\right)^{-1} x^{\alpha+e_{j}} \partial_{i}\right]$ for all $i \neq j$ and $x^{\alpha} \in P_{n}^{\partial_{i}}$. Then $\mathcal{H}_{n}^{\prime} \subseteq \mathfrak{a}$ since $\left[x_{i} \partial_{j}, x_{j} \partial_{i}\right]=H_{i}-H_{j}$ for all $i \neq j$. Using the commutation relations

$$
\begin{equation*}
\left[H_{s}-H_{t}, h_{j}\left(x^{\alpha}\right) H_{i}-h_{i}\left(x^{\alpha}\right) H_{j}\right]=\left(\alpha_{s}-\alpha_{t}\right)\left(h_{j}\left(x^{\alpha}\right) H_{i}-h_{j}\left(x^{\alpha}\right) H_{j}\right) \tag{38}
\end{equation*}
$$

we see that $\left\{h_{j}\left(x^{\alpha}\right) H_{i}-h_{j}\left(x^{\alpha}\right) H_{j} \mid i \neq j, \alpha \in \mathbb{N}^{n}, \alpha \neq(p, p, \ldots, p), p=1,2, \ldots\right\} \subseteq \mathfrak{a}$. Let $\theta=x_{1} \cdots x_{n}$. Finally, by Lemma 2.1.(3), $\mathfrak{a}=\mathfrak{d i v}_{n}^{0}$ since for all $p=1,2, \ldots$ and $i \neq j$,

$$
\begin{equation*}
\left[x_{j} \partial_{i}, h_{j}\left(x_{i} x_{j}^{-1} \theta^{p}\right) H_{i}-h_{i}\left(x_{i} x_{j}^{-1} \theta^{p}\right) H_{j}\right]=(p+2)\left(h_{j}\left(\theta^{p}\right) H_{i}-h_{i}\left(\theta^{p}\right) H_{j}\right) \tag{39}
\end{equation*}
$$

In more detail,

$$
\begin{aligned}
\text { LHS } & =\left[x_{j} \partial_{i}, p x_{i} x_{j}^{-1} \theta^{p} H_{i}-(p+2) x_{i} x_{j}^{-1} \theta^{p} H_{j}\right]=p(p+2) \theta^{p} H_{i}-(p+2)(p+1) \theta^{p} H_{j} \\
& +(p+2) \theta^{p} H_{i}=(p+2)(p+1)\left(\theta^{p} H_{i}-\theta^{p} H_{j}\right) \\
& =(p+2)\left(h_{j}\left(\theta^{p}\right) H_{i}-h_{i}\left(\theta^{p}\right) H_{j}\right) .
\end{aligned}
$$

2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 1 .

For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and any $i \neq j$, we have $\alpha=\alpha_{i} e_{i}+\alpha_{j} e_{j}+\beta$ where $\beta \in \mathbb{N}^{n}$ with $\beta_{i}=\beta_{j}=0$. Then

$$
\begin{equation*}
\theta_{i j}^{\alpha}=\left[x_{i}^{\alpha_{i}+1} \partial_{j}, x^{\alpha-\alpha_{i} e_{i}+e_{j}} \partial_{i}\right] . \tag{40}
\end{equation*}
$$

Indeed, let c be the commutator. Then

$$
c=x^{\beta}\left[x_{i}^{\alpha_{i}+1} \partial_{j}, x_{j}^{\alpha_{j}+1} \partial_{i}\right]=x^{\beta} \theta_{i j}^{\alpha_{i} e_{i}+\alpha_{j} e_{j}}=\theta_{i j}^{\alpha}
$$

By (40),

$$
\mathfrak{d}{ }_{n}^{0} \subseteq\left[\mathfrak{i v} \mathfrak{v}_{n}^{0}, \mathfrak{v o}_{n}^{0}\right] .
$$

The inner derivations $\delta_{1}=\operatorname{ad}\left(\partial_{1}\right), \ldots, d_{n}=\operatorname{ad}\left(\partial_{n}\right)$ of the Lie algebra D_{n} are commuting and locally nilpotent. The Lie algebra D_{n} is a union of vector spaces

$$
D_{n}=\bigcup_{i \geq o} D_{n, i} \text { where } D_{n, i}:=\left\{\partial \in D_{n} \mid \delta^{\alpha}(\partial)=0 \text { for all } \alpha \in \mathbb{N}^{n} \text { such that }|\alpha|=i+1\right\}
$$

where $\delta^{\alpha}=\prod_{i=1}^{n} \delta_{i}^{\alpha_{i}}$. Clearly, $D_{n, i}=\oplus_{j=1}^{n} P_{n, i} \partial_{j}$ where $P_{n, i}:=\left\{p \in P_{n} \mid \operatorname{deg}(p) \leq i\right\}$ and $\left[D_{n, i}, D_{n, j}\right] \subseteq D_{n, i+j-1}$ for all $i, j \geq 0$ where $D_{n,-1}:=0$. The inner derivations $\delta_{1}, \ldots, \delta_{n}$ are also commuting locally nilpotent derivations of the Lie algebras $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v} v_{n}^{c}$. For each $i \in \mathbb{N}$, let $\mathfrak{d i v}_{n, i}^{0}:=\mathfrak{d i v}_{n}^{0} \cap D_{n, i}$ and $\mathfrak{d i v} v_{n, i}^{c}:=\mathfrak{d i v}_{n}^{c} \cap D_{n, i}$. Then, for all $\alpha \in \mathbb{N}^{n}$ and $i=1, \ldots, n-1$,

$$
\begin{equation*}
\theta_{i}^{\alpha} \in \mathfrak{d i v}_{n,|\alpha|+1}^{0} \backslash \mathfrak{d i v}_{n,|\alpha|}^{0} . \tag{42}
\end{equation*}
$$

The automorphisms $s_{i, i+1}, i=1, \ldots, n-1(n \geq 2)$. The automorphism $s=s_{i, i+1}$ of the polynomial algebra P_{n} that swaps the variables x_{i} and x_{i+1} leaving the rest of the variables untouched $\left(s\left(x_{i}\right)=x_{i+1}\right.$ and $\left.s\left(x_{i+1}\right)=x_{i}\right)$ extends uniquely to an automorphism of the Lie algebra D_{n}. Clearly, s is also an automorphism of the Lie algebras $\mathfrak{d i v}{ }_{n}^{0}$ and $\mathfrak{d i v}{ }_{n}^{c}$ (Theorem 2.5). In particular,

$$
s\left(\partial_{i}\right)=\partial_{i+1}, s\left(\partial_{i+1}\right)=\partial_{i}, s\left(H_{i}\right)=H_{i+1} \text { and } s\left(H_{i+1}\right)=H_{i} .
$$

Therefore, for all $\alpha \in \mathbb{N}^{n}$,

$$
\begin{equation*}
s_{i, i+1}\left(\theta_{i}^{\alpha}\right)=-\theta_{i}^{s_{i, i+1}(\alpha)} \tag{43}
\end{equation*}
$$

where, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), s_{i, i+1}(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \alpha_{i}, \alpha_{i+2}, \ldots, \alpha_{n}\right)$. For $i=1, \ldots, n-1$; $j \in \mathbb{N}$ and $\alpha \in \mathbb{N}^{n}$ with $\alpha_{i} \geq 1$,

$$
\begin{equation*}
\left[x_{i+1}^{j} \partial_{i}, \theta_{i}^{\alpha}\right]=\left(\alpha_{i}+1\right) \theta_{i}^{\alpha-e_{i}+j e_{i+1}} . \tag{44}
\end{equation*}
$$

Proof. By (27),

$$
\begin{aligned}
\mathrm{LHS} & =\left[x_{i+1}^{j} \partial_{i}, x^{\alpha}\left(\left(\alpha_{i+1}+1\right) H_{i}-\left(\alpha_{i}+1\right) H_{i+1}\right]\right. \\
& =x^{\alpha-e_{i}+j e_{i+1}\left(\alpha_{i}\left(\left(\alpha_{i+1}+1\right) H_{i}-\left(\alpha_{i}+1\right) H_{i+1}\right)-\left(\left(\alpha_{i+1}+1\right) H_{i}-\left(\alpha_{i}+1\right) H_{i+1}, j e_{i+1}-e_{i}\right) H_{i}\right)} \\
& =\left(\alpha_{i}+1\right) x^{\alpha-e_{i}+j e_{i+1}}\left(\left(\alpha_{i+1}+1+j\right) H_{i}-\alpha_{i} H_{i+1}\right) \\
& =\left(\alpha_{i}+1\right) \theta_{i}^{\alpha-e_{i}+j e_{i+1}} .
\end{aligned}
$$

For $i=1, \ldots, n-1 ; j \in \mathbb{N}$ and $\alpha \in \mathbb{N}^{n}$ with $\alpha_{i+1} \geq 1$,

$$
\begin{equation*}
\left[x_{i}^{j} \partial_{i+1}, \theta_{i}^{\alpha}\right]=\left(\alpha_{i+1}+1\right) \theta_{i}^{\alpha+j e_{i}-e_{i+1}} . \tag{45}
\end{equation*}
$$

Proof. By applying the automorphism $s=s_{i, i+1}$ to the equality (44) and using (43) we obtain (45):

$$
\begin{aligned}
{\left[x_{i}^{j} \partial_{i+1}, \theta_{i}^{\alpha}\right] } & =-s\left(\left[x_{i+1}^{j} \partial_{i}, \theta_{i}^{s(\alpha)}\right]=-s\left(\left(\alpha_{i+1}+1\right) \theta_{i}^{s(\alpha)-e_{i}+j e_{i+1}}\right.\right. \\
& =\left(\alpha_{i+1}+1\right) \theta_{i}^{s\left(s(\alpha)-e_{i}+j e_{i+1}\right)} \\
& =\left(\alpha_{i+1}+1\right) \theta_{i}^{\alpha+j e_{i}-e_{i+1}} .
\end{aligned}
$$

By (44) and (45), for $i=1, \ldots, n-1 ; j=1, \ldots, n$ and $\alpha \in \mathbb{N}^{n}$.

$$
\left[\partial_{j}, \theta_{i}^{\alpha}\right]= \begin{cases}\left(\alpha_{j}+1\right) \theta_{i}^{\alpha-e_{j}} & \text { if } j=i, i+1 \text { and } \alpha_{j} \geq 1 \tag{46}\\ \left(\alpha_{i+1}+1\right) x^{\alpha} \partial_{i} & \text { if } j=i, \alpha_{i}=0 \\ -\left(\alpha_{i}+1\right) x^{\alpha} \partial_{i+1} & \text { if } j=i+1, \alpha_{i+1}=0 \\ \alpha_{j} \theta_{i}^{\alpha-e_{j}} & \text { otherwise. }\end{cases}
$$

Proposition 2.13 Let $n \geq 2$. Then

1. $\operatorname{Fix}_{\mathbf{G}_{n}}\left(\mathcal{D}_{n} \oplus \mathcal{H}_{n}^{\prime}\right)=\{e\}$.
2. Let $\sigma, \tau \in \mathbf{G}_{n}$. Then $\sigma=\tau$ iff $\sigma\left(\partial_{i}\right)=\tau\left(\partial_{i}\right)$ for $i=1, \ldots, n$ and $\sigma\left(H_{j}-H_{j+1}\right)=$ $\tau\left(H_{j}-H_{j+1}\right)$ for $j=1, \ldots, n-1$.
3. $\operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)=\operatorname{Sh}_{n}$.

Proof. 1. Let $\sigma \in F:=\operatorname{Fix}_{\mathbf{G}_{n}}\left(\mathcal{D}_{n} \oplus \mathcal{H}_{n}^{\prime}\right)$. We have to show that $\sigma=e$. Let $\mathcal{F}:=\operatorname{Fix}_{\mathfrak{d i v}_{n}^{0}}(\sigma):=$ $\left\{\partial \in \mathfrak{d i v}_{n}^{0} \mid \sigma(\partial)=\partial\right\}$. We have to show that $\mathcal{F}=\mathfrak{d i v}_{n}^{0}$.
(i) $\mathcal{D}_{n}+\mathcal{H}_{n}^{\prime} \subseteq \mathcal{F}$: Obvious.
(ii) $\mathfrak{v}_{n}^{0} \subseteq \mathcal{F}$: We have to show that $P_{n}^{\partial_{i}} \partial_{i} \subseteq \mathcal{F}$ for all $i=1, \ldots, n$. Fix i and $x^{\alpha} \partial_{i} \in P_{n}^{\partial_{i}} \partial_{i}$. If $\alpha=0$ then $\partial_{i} \in \mathcal{D}_{n} \subseteq \mathcal{F}$, by (i). We use induction on $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$ to prove the statement. The case $|\alpha|=0$ is obvious. So, let $|\alpha| \geq 1$. The element $x^{\alpha} \partial_{i}$ has weight $\left[\alpha-e_{i}\right]$. The weight subspace $\mathfrak{d i v}_{n,\left[\alpha-e_{i}\right]}^{0}$ is σ-invariant $\left(\sigma\left(\mathfrak{d i v}_{n,\left[\alpha-e_{i}\right]}^{0}\right)=\mathfrak{d i v}_{n,\left[\alpha-e_{i}\right]}^{0}\right)$ and the set $\left\{x^{\alpha} \partial_{i}, \theta_{j}^{\alpha-e_{i}+k \overline{1}} \mid j=\right.$ $1, \ldots, n-1 ; k=1,2, \ldots\}$ is its K-basis, by (20). The element $x^{\alpha} \partial_{i}$ belongs to the σ-invariant subspace $N_{|\alpha|}:=\mathfrak{d i v}_{n,|\alpha|}^{0}\left(=\mathfrak{d i v}_{n}^{0} \cap D_{n,|\alpha|}\right)$. By (42) and (46),

$$
V:=N_{|\alpha|} \cap \mathfrak{d} \mathfrak{v}_{n,\left[\alpha-e_{i}\right]}^{0}=K x^{\alpha} \partial_{i}
$$

is a σ-invariant subspace. Therefore, $\sigma\left(x^{\alpha} \partial_{i}\right)=\lambda_{\alpha, i} x^{\alpha} \partial_{i}$ for all $x^{\alpha} \partial_{i} \in P_{n}^{\partial_{i}} \partial_{i}$ and $i=1, \ldots, n$ for some $\lambda_{\alpha, i} \in K$. Clearly, $\lambda_{0, i}=1$ for all $i=1, \ldots, n$ since $\sigma\left(\partial_{i}\right)=\partial_{i}$. Applying the automorphism σ to the relations $\left[\partial_{j}, x^{\alpha} \partial_{i}\right]=\alpha_{j} x^{\alpha-e_{j}} \partial_{i}$ yields the equalities $\alpha_{j}\left(\lambda_{\alpha, i}-\lambda_{\alpha-e_{j}, i}\right)=0$. If $\alpha_{j} \neq 0$ then $\lambda_{\alpha, i}=\lambda_{\alpha-e_{j}, i}=1$ (by induction). Hence, $\mathfrak{i v}_{n}^{0} \subseteq \mathcal{F}$.
(iii) $\mathfrak{d i}_{n}^{0} \subseteq \mathcal{F}:$ By (ii) and (41).

Therefore, $\mathfrak{d i v}{ }_{n}^{0}=\mathfrak{d} \mathfrak{i}_{n}^{0}+\mathfrak{i v}{ }_{n}^{0} \subseteq \mathcal{F}$, and so $\mathfrak{d i v}_{n}^{0}=\mathcal{F}$, as required.
2. Statement 2 follows from statement 1.
3. Clearly, $\operatorname{Sh}_{n} \subseteq F:=\operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)$. Let $\sigma \in F$ and $H_{i, j}^{\prime}:=\sigma\left(H_{i, j}\right)$ where $H_{i, j}:=$ $H_{i}-H_{j}$ for $i \neq j$. Then

$$
\left[\partial_{k}, H_{i, j}^{\prime}-H_{i, j}\right]=\sigma\left(\left[\partial_{k}, H_{i, j}\right]\right)-\left[\partial_{k}, H_{i, j}\right]=\left[\partial_{k}, H_{i, j}\right]-\left[\partial_{k}, H_{i, j}\right]=0
$$

since $\left[\mathcal{D}_{n}, \mathcal{H}_{n}^{\prime}\right] \subseteq \mathcal{D}_{n}$. Then $d_{i j}:=H_{i, j}^{\prime}-H_{i, j} \in C_{\mathfrak{D i v}_{n}^{0}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$, and so $d_{i j}=\sum_{k=1}^{n} \lambda_{i j}^{k} \partial_{k}$ for some $\lambda_{i j}^{k} \in K$.

If $n=2$ then $H_{1,2}^{\prime}=H_{1}-H_{2}+\lambda_{1} \partial_{1}-\lambda_{2} \partial_{2}=\left(x_{1}+\lambda_{1}\right) \partial_{1}-\left(x_{2}+\lambda_{2}\right) \partial_{2}=s_{\lambda}\left(H_{1}-H_{2}\right)$ where $s_{\lambda} \in \operatorname{Sh}_{2}$ and $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$. Hence, $s_{\lambda}^{-1} \sigma\left(H_{1}-H_{2}\right)=H_{1}-H_{2}$, i.e. $s_{\lambda}^{-1} \sigma \in \operatorname{Fix}_{\mathbf{G}_{2}}\left(\mathcal{D}_{2}+\mathcal{H}_{2}^{\prime}\right)=\{e\}$, and so $\sigma=s_{\lambda} \in \mathrm{Sh}_{2}$.

Suppose that $n>2$. If $n=3$ then up to action of Sh_{3}, we may assume that $H_{1,2}^{\prime}=H_{1,2}+\lambda \partial_{3}$ and $H_{2,3}^{\prime}=H_{2,3}+\mu \partial_{1}+\nu \partial_{2}$ for some $\lambda, \mu, \nu \in K$. Then $0=\left[H_{1,2}^{\prime}, H_{2,3}^{\prime}\right]=-\mu \partial_{1}+\nu \partial_{2}+\lambda \partial_{3}$ and so $\lambda=\mu=\nu=0$.

If $n \geq 4$ then for any four distinct numbers $i, j, k, l \in\{1,2, \ldots, n\}$ we have the equality

$$
0=\left[H_{i, j}^{\prime}, H_{k, l}^{\prime}\right]=\left[H_{i, j}, d_{k l}\right]-\left[H_{k, l}, d_{i j}\right]=-\lambda_{k l}^{i} \partial_{i}+\lambda_{k l}^{j} \partial_{j}+\lambda_{i j}^{k} \partial_{k}-\lambda_{i j}^{l} \partial_{l} .
$$

Therefore, $\lambda_{k l}^{i}=0$ for all distinct i, j and k. Then using Sh_{n}, we may assume that

$$
H_{1,2}^{\prime}=H_{1,2}, \quad H_{2,3}^{\prime}=H_{2,3}+\lambda_{23}^{2} \partial_{2}, \quad H_{3,4}^{\prime}=H_{3,4}+\lambda_{34}^{3} \partial_{3}, \ldots, H_{n-1, n}^{\prime}=H_{n-1, n}+\lambda_{n-1, n}^{n-1} \partial_{n-1} .
$$

Then, for $i=2, \ldots, n-1,0=\left[H_{i-1, i}^{\prime}, H_{i, i+1}^{\prime}\right]=\lambda_{i, i+1}^{i} \partial_{i}$, i.e. $\lambda_{i, i+1}^{i}=0$ and $H_{i, i+1}^{\prime}=H_{i, i+1}$. This means that $s_{\lambda} \sigma \in \operatorname{Fix}_{\mathbf{G}_{n}}\left(\mathcal{D}_{n}+\mathcal{H}_{n}^{\prime}\right)=\{e\}$ (statement 2) for some $s_{\lambda} \in \mathrm{Sh}_{n}$, and so $\sigma=s_{\lambda}^{-1} \in \mathrm{Sh}_{n}$.

Lemma 2.14 Let $\sigma \in \mathbf{G}_{n}, \partial_{1}^{\prime}:=\sigma\left(\partial_{1}\right), \ldots, \partial_{n}^{\prime}:=\sigma\left(\partial_{n}\right) ; \delta_{1}^{\prime}:=\operatorname{ad}\left(\partial_{1}^{\prime}\right), \ldots, \delta_{n}^{\prime}:=\operatorname{ad}\left(\partial_{n}^{\prime}\right)$ and \mathcal{D}^{\prime} be the subalgebra of $\operatorname{End}_{K}\left(P_{n}\right)$ generated by the linear maps $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}$. Then

1. $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}$ are commuting, locally nilpotent derivations of P_{n}.
2. $\bigcap_{i=1}^{n} \operatorname{ker}_{P_{n}}\left(\partial_{i}^{\prime}\right)=K$.
3. (Embedding trick) For $n \geq 2$, the short sequence of \mathcal{D}^{\prime}-modules $0 \rightarrow K \rightarrow P_{n} \xrightarrow{\Delta^{\prime}} \mathfrak{d i v}_{n}^{0\binom{n}{2}}$ is exact where $\Delta^{\prime}(p):=\prod_{i<j}\left(\partial_{i}^{\prime}(p) \partial_{j}^{\prime}-\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right)$. In particular, for all $p \in P_{n}$ and $\alpha \in \mathbb{N}^{n}$,

$$
\Delta^{\prime} \partial^{\prime \alpha}(p)=\delta^{\prime \alpha} \Delta^{\prime}(p)
$$

where $\partial^{\prime \alpha}:=\prod_{i=1}^{n} \partial_{i}^{\prime \alpha_{i}}$ and $\delta^{\prime \alpha}:=\prod_{i=1}^{n} \delta_{i}^{\prime \alpha_{i}}$.
4. Let $\Delta^{\prime}: P_{n} \rightarrow D_{n}^{\binom{n}{2}}, p \mapsto \prod_{i<j}\left(\partial_{i}^{\prime}(p) \partial_{j}^{\prime}-\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right)$. Then $\Delta^{\prime} \in \operatorname{Der}_{\mathcal{D}^{\prime}}\left(P_{n}, D_{n}^{\binom{n}{2}}\right)$.

Proof. 2. Let $\lambda \in \bigcap_{i=1}^{n} \operatorname{ker}_{P_{n}}\left(\partial_{i}^{\prime}\right)$. Then $\operatorname{div}\left(\lambda \partial_{1}^{\prime}\right)=\lambda \operatorname{div}\left(\partial_{1}^{\prime}\right)+\partial_{1}^{\prime} * \lambda=0$, i.e. $\lambda \partial_{1}^{\prime} \in \mathfrak{d i v}{ }_{n}^{0}$ and

since $C_{\mathfrak{D i v i o}_{n}^{\mathbf{o}}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$, Lemma 2.9.(1). Then $\lambda \in K$ since otherwise the infinite dimensional space $\oplus_{i>0} K \lambda^{i} \partial_{1}^{\prime}$ would be a subspace of the finite dimensional space $\sigma\left(\mathcal{D}_{n}\right)$.
$\overline{3}$. The derivations $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}$ commute since $\partial_{1}, \ldots, \partial_{n}$ do. So, \mathcal{D}^{\prime} is a commutative algebra. For all $p \in P_{n}$ and $\partial \in \mathfrak{D i v}_{n}^{0}$,

$$
\operatorname{div}(a \partial)=a \operatorname{div}(\partial)+\partial(a)=\partial(a)
$$

So, the map Δ^{\prime} is well-defined: $\operatorname{div}\left(\partial_{i}^{\prime}(p) \partial_{j}^{\prime}-\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right)=\left(\partial_{j}^{\prime} \partial_{i}^{\prime}-\partial_{i}^{\prime} \partial_{j}^{\prime}\right)(a)=0$. Recall that the vector spaces P_{n} and $\mathfrak{d i v}_{n}^{0}$ are left $\mathfrak{d i o}_{n}^{0}$-modules hence they are also left \mathcal{D}^{\prime}-modules since $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime} \in \mathfrak{D i v}_{n}^{0}$. The map Δ^{\prime} is a \mathcal{D}^{\prime}-homomorphism since, for all $p \in P_{n}$,

$$
\Delta^{\prime} \partial_{i}^{\prime}(p)=\left[\partial_{i}^{\prime}, \Delta^{\prime}(p)\right], \quad i=1, \ldots, n .
$$

It remains to show that $\operatorname{ker}\left(\Delta^{\prime}\right)=K$. The inclusion $K \subseteq \operatorname{ker}\left(\Delta^{\prime}\right)$ is obvious.
(i) $\operatorname{ker}\left(\Delta^{\prime}\right)=\left\{p \in P_{n} \mid \partial_{i}^{\prime}(p) \partial_{j}^{\prime}=\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right.$ for all $\left.i \neq j\right\}$: This is obvious. Let $P_{n}^{\partial_{i}^{\prime}}:=\operatorname{ker}_{P_{n}}\left(\partial_{i}^{\prime}\right)$.
(ii) $\operatorname{ker}\left(\Delta^{\prime}\right) \cap P_{n}^{\partial_{i}^{\prime}}=K$ for $i=1, \ldots, n$: Given $p \in P_{n}$. By (i), $p \in \operatorname{ker}\left(\Delta^{\prime}\right) \cap P_{n}^{\partial_{i}^{\prime}}$ iff $p \in$ $\operatorname{ker}\left(\Delta^{\prime}\right) \cap P_{n}^{\partial_{j}^{\prime}}$ for $j=1, \ldots, n\left(0=\partial_{i}^{\prime}(p) \partial_{j}^{\prime}=\partial_{j}^{\prime}(p) \partial_{i}^{\prime} \Rightarrow \partial_{j}^{\prime}(p)=0\right)$ iff

$$
p \in \operatorname{ker}\left(\Delta^{\prime}\right) \cap P_{n}^{\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}}=\operatorname{ker}\left(\Delta^{\prime}\right) \cap K=K,
$$

by statement 2 . Suppose that $K^{\prime}:=\operatorname{ker}\left(\Delta^{\prime}\right) \backslash K \neq \emptyset$, we seek a contradiction.
(iii) If $p \in K^{\prime}$ then $\partial_{1}^{\prime}(p) \neq 0, \ldots, \partial_{n}^{\prime}(p) \neq 0$: This follows from (ii) $\left(K^{\prime}=\operatorname{ker}\left(\Delta^{\prime}\right) \backslash K=\right.$ $\left.\operatorname{ker}\left(\Delta^{\prime}\right) \backslash \operatorname{ker}\left(\Delta^{\prime}\right) \cap P_{n}^{\partial_{i}^{\prime}}=\operatorname{ker}\left(\Delta^{\prime}\right) \backslash P_{n}^{\partial_{i}^{\prime}}\right)$.
(iv) $P_{n}^{\partial_{1}^{\prime}}=\cdots=P_{n}^{\partial_{n}^{\prime}}$: Fix $p \in K^{\prime}$. By (iii), $\partial_{1}^{\prime}(p) \neq 0, \ldots, \partial_{n}^{\prime}(p) \neq 0$. By (i),

$$
\partial_{i}^{\prime}(p) \partial_{j}^{\prime}=\partial_{j}^{\prime}(p) \partial_{i}^{\prime} \text { for all } i \neq j,
$$

and so $P_{n}^{\partial_{1}^{\prime}}=\cdots=P_{n}^{\partial_{n}^{\prime}}$.
(v) $P_{n}^{\partial_{1}^{\prime}}=\cdots=P_{n}^{\partial_{n}^{\prime}}=K$: This statement follows from (iv) and statement 2 .

Suppose that $\operatorname{ker}\left(\Delta^{\prime}\right) \neq K$, we seek a contradiction. Fix an element $p \in \operatorname{ker}\left(\Delta^{\prime}\right) \backslash K$. By statement 2, $\partial_{j}^{\prime}(p) \neq 0$ for some j. For all $i \neq j, \partial_{i}^{\prime}(p) \partial_{j}^{\prime}=\partial_{j}^{\prime}(p) \partial_{i}^{\prime}$ (since $\left.p \in \operatorname{ker}\left(\Delta^{\prime}\right)\right)$. Hence, $\partial_{i}^{\prime}(p) \neq 0$ for all i. Therefore, for $i=1, \ldots, n, \partial_{i}^{\prime}=f_{i} \partial$ for some $f_{i} \in P_{n}$ and a derivation $\partial=\sum_{s=1}^{n} p_{s} \partial_{s} \in D_{n}$ with $\operatorname{gcd}\left(p_{1}, \ldots, p_{n}\right)=1$. For all elements $c_{i} \in C_{i}^{\prime \prime}:=C_{\mathfrak{o i v}_{n}^{0}}\left(\partial_{i}^{\prime}\right), 0=$ $\left[c_{i}, \partial_{i}^{\prime}\right]=c_{i}\left(f_{i}\right) \partial+f_{i}\left[c_{i}, \partial\right]$, and so $\left[c_{i}, \partial\right] \in P_{n} \partial$, by the choice of ∂. By Theorem 1.3, the Lie algebra $\mathfrak{d i v}_{n}^{0}$ is generated by the set $C=\sum_{i=1}^{n} C_{\boldsymbol{d i v}_{n}^{0}}\left(\partial_{i}\right)$ and also by the set $\sigma(C)=\sum_{i=1}^{n} C_{i}^{\prime}$.

Hence, $\left[\mathfrak{d i v}{ }_{n}^{0}, \partial\right] \subseteq P_{n} \partial$. In particular, for all $i,\left[\partial_{i}, \partial\right]=\sum_{j=1}^{n} \partial_{i}\left(p_{j}\right) \partial_{j} \in P_{n} \partial$. Hence, $\partial \in \mathcal{D}_{n}$, by degree argument. Then $P_{n}^{\partial} \neq K$, and so $P_{n}^{\partial_{i}^{\prime}}=P_{n}^{\partial} \neq K$. This contradicts to (v).
4. The map Δ^{\prime} can be seen as the map

$$
\begin{equation*}
\Delta^{\prime}: P_{n} \rightarrow D_{n}^{\binom{n}{2}}, \quad p \mapsto \prod_{i<j}\left(\partial_{i}^{\prime}(p) \partial_{j}^{\prime}-\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right) \tag{47}
\end{equation*}
$$

Notice that P_{n} and $D_{n}^{\binom{n}{2}}$ are left P_{n}-modules.
$\Delta^{\prime} \in \operatorname{Der}_{\mathcal{D}^{\prime}}\left(P_{n}, D_{n}^{\binom{n}{2}}\right.$), i.e. the map Δ^{\prime} is a \mathcal{D}^{\prime}-derivation from the polynomial algebra P_{n} to the left P_{n}-module $D_{n}^{\binom{n}{2}}$, i.e. for all $p, q \in P_{n}$,

$$
\begin{aligned}
& \Delta^{\prime}(p q)=q \Delta^{\prime}(p)+p \Delta^{\prime}(q): \\
& \Delta^{\prime}(p q)= \prod_{i<j}\left(\left(q \partial_{i}^{\prime}(p)+p \partial_{i}^{\prime}(q)\right) \partial_{j}^{\prime}-\left(q \partial_{j}^{\prime}(p)+p \partial_{j}^{\prime}(q)\right) \partial_{i}^{\prime}\right) \\
&= q \prod_{i<j}\left(\partial_{i}^{\prime}(p) \partial_{j}^{\prime}-\partial_{j}^{\prime}(p) \partial_{i}^{\prime}\right)+p \prod_{i<j}\left(\partial_{i}^{\prime}(q) \partial_{j}^{\prime}-\partial_{j}^{\prime}(q) \partial_{i}^{\prime}\right) \\
&= q \Delta^{\prime}(p)+p \Delta^{\prime}(q) .
\end{aligned}
$$

1. The inner derivations $\delta_{1}, \ldots, \delta_{n}$ of the Lie algebra $\mathfrak{d i v}_{n}^{0}$ are commuting and locally nilpotent. Hence so are the inner derivations $\delta_{1}, \ldots, \delta_{n}^{\prime}$, by statements 2 and 3 .

Theorem 2.15 [2] Let $\partial_{1}^{\prime}, \ldots, \partial_{n}^{\prime}$ be commuting, locally nilpotent derivations of the polynomial algebra P_{n} such that $\bigcap_{i=1}^{n} \operatorname{ker}_{P_{n}}\left(\partial_{i}^{\prime}\right)=K$. Then there exist polynomials $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \in P_{n}$ such that

$$
\begin{equation*}
\partial_{i}^{\prime} * x_{j}^{\prime}=\delta_{i j} \text { for } i, j=1, \ldots, n \tag{48}
\end{equation*}
$$

Moreover, the algebra homomorphism

$$
\sigma: P_{n} \rightarrow P_{n}, \quad x_{1} \mapsto x_{1}^{\prime}, \ldots, x_{n} \mapsto x_{n}^{\prime}
$$

is an automorphism such that $\partial_{i}^{\prime}=\sigma \partial_{i} \sigma^{-1}=\frac{\partial}{\partial x_{i}^{\prime}}$ for $i=1, \ldots, n$.
Corollary 2.16 Let $\sigma \in \mathbf{G}_{n}$. Then $\tau \sigma \in \operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)$ for some $\tau \in G_{n}$.
Proof. By Lemma 2.14, the elements $\partial_{1}^{\prime}:=\sigma\left(\partial_{1}\right), \ldots, \partial_{n}^{\prime}:=\sigma\left(\partial_{n}\right)$ satisfy the assumptions of Theorem 2.15. By Theorem 2.15, $\partial_{1}^{\prime}:=\tau^{-1}\left(\partial_{1}\right), \ldots, \partial_{n}^{\prime}:=\tau^{-1}\left(\partial_{n}\right)$ for some $\tau \in G_{n}$. Therefore, $\tau \sigma \in \operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)$.

Proof of Theorem 1.1. If $n=1$ then $\mathfrak{d i v}{ }_{1}^{0}=K \partial_{1}, \mathbf{G}_{1}=\mathbb{T}^{1} \simeq G_{1} / \operatorname{Sh}_{1}$ since $G_{1}=\mathbb{T}^{1} \ltimes \operatorname{Sh}_{1}$.
So, let $n \geq 2$. Let $\sigma \in \mathbf{G}_{n}$. By Corollary 2.16, $\tau \sigma \in \operatorname{Fix}_{\mathbf{G}_{n}}\left(\partial_{1}, \ldots, \partial_{n}\right)=\operatorname{Sh}_{n}$ (Proposition 2.13.(3)). Therefore, $\sigma \in G_{n}$, i.e. $\mathbf{G}_{n}=G_{n}$.

Lemma 2.17 $\operatorname{Fix}_{\mathbf{G}_{n}^{c}}\left(\mathfrak{d i v}_{n}^{0}\right)= \begin{cases}\mathrm{Sh}_{1} & \text { if } n=1, \\ \{e\} & \text { if } n \geq 2 .\end{cases}$
Proof. If $n=1, \sigma(\partial)=\partial$ for some $\sigma \in \mathbf{G}_{1}^{c}$ then applying σ to the equality [∂_{1}, H_{1}] $=\partial_{1}$ yields $\sigma\left(H_{1}\right)=H_{1}+\lambda \partial_{1}=\left(x_{1}+\lambda\right) \partial_{1}=t_{\lambda}\left(H_{1}\right)$ for some $\lambda \in K$ where $t_{\lambda} \in \operatorname{Sh}_{1}$. Hence $\operatorname{Fix}_{\mathbf{G}_{1}^{c}}\left(\mathfrak{d} \mathfrak{v}_{1}^{0}\right)=\operatorname{Sh}_{1}$.

So, let $n \geq 2$. Let $\sigma \in F:=\operatorname{Fix}_{\mathbf{G}_{n}^{c}}\left(\mathfrak{d i v}_{n}^{0}\right), H_{1}^{\prime}:=\sigma\left(H_{1}\right), \ldots, H_{n}^{\prime}:=\sigma\left(H_{n}\right)$. By (37), it suffices to show that $\sigma\left(H_{i}\right)=H_{i}$ for $i=1, \ldots, n$. For $i \neq j, \sigma\left(H_{i}-H_{j}\right)=H_{i}-H_{j}$, and so $d:=H_{i}^{\prime}-H_{i}=H_{j}^{\prime}-H_{j}$. For all $i=1, \ldots, n$,

$$
\left[\partial_{i}, d\right]=\sigma\left(\left[\partial_{i}, H_{i}\right]\right)-\left[\partial_{i}, H_{i}\right]=\sigma\left(\partial_{i}\right)-\partial_{i}=\partial_{i}-\partial_{i}=0
$$

So, $d \in C_{\mathfrak{D i v}_{n}^{c}}\left(\mathcal{D}_{n}\right)=\mathcal{D}_{n}$ (Lemma 2.9.(1)) and $d=\sum_{i=1}^{n} \lambda_{i} \partial_{i}$ for some $\lambda_{i} \in K$. The elements $H_{1}^{\prime}=H_{1}+d, \ldots, H_{n}^{\prime}=H_{n}+d$ commute hence $d=0$. Therefore, $\sigma=e$.

Proof of Theorem 1.2. If $n=1$ then $\mathbf{G}_{1}^{c} \simeq \mathbb{T}^{1} \ltimes \operatorname{Sh}_{1}$. So, let $n \geq 2$. By (2) and Lemma 2.17, $\mathbf{G}_{n}^{c}=G_{n}$.

Theorem 2.18 For all $\sigma \in G_{n}$,

$$
\operatorname{div}\left(\sigma\left(H_{i}\right)-H_{i}\right)=0 \text { for } i=1, \ldots, n
$$

Proof. For each $i=1, \ldots, n$, by (37), $\sigma\left(H_{i}\right)=\lambda_{i}(\sigma) H_{i}+d_{i}(\sigma)$ for some elements $\lambda_{i}(\sigma) \in K$ and $d_{i}(\sigma) \in \mathfrak{d i v}_{n}^{0}$. By Theorem 2.5,

$$
1=\operatorname{div}\left(H_{i}\right)=\sigma\left(\operatorname{div}\left(H_{i}\right)\right)=\operatorname{div}\left(\sigma\left(H_{i}\right)\right)=\operatorname{div}\left(\lambda_{i}(\sigma) H_{i}+d_{i}(\sigma)\right)=\lambda_{i}(\sigma)
$$

The automorphisms of the Lie algebra $\mathfrak{d i v}_{n}^{c}$ preserve divergence.
Corollary 2.19 1. For all $\sigma \in \mathbf{G}_{n}^{c}$ and $\partial \in \mathfrak{d i v}_{n}^{c}, \operatorname{div}(\sigma(\partial))=\operatorname{div}(\partial)$.
2. Every automorphism of the Lie algebra $\mathfrak{d i v}_{n}^{0}$ is extendable to an automorphism of the Lie algebra $\mathfrak{D i v}_{n}^{c}$, and the extension is unique if $n \geq 2$.
Proof. 1. The result follows from Theorem 1.2 and Theorem 2.5.
2. Statement 2 follows from Theorem 1.1 and Theorem 1.2.
Lemma 2.20 For all $n \geq 2, P_{n} / K$ is a simple $\mathfrak{d i v}_{n}^{0}$-module $/ \mathfrak{d i v}_{n}^{c}$-module; $\operatorname{End}_{\mathfrak{d i v}_{n}^{0}}\left(P_{n} / K\right)=$ $\operatorname{End}_{\mathfrak{d i v}_{n}^{c}}\left(P_{n} / K\right)=K$ id where id is the identity map. For $n=1, P_{1} / K$ is neither a simple $\mathfrak{d i v}{ }_{1}^{0}$ module nor a simple $\mathfrak{d i v}_{1}^{c}$-module.

Proof. If $n=1$ then $\mathfrak{d i v}{ }_{1}^{0}=K \partial_{1}, \mathfrak{d i v}_{1}^{c}=K \partial_{1}+K H_{1}$ and $\sum_{i \leq m} K x_{1}^{i} \partial_{1}$ where $m \in \mathbb{N}$ are distinct $\mathfrak{d i v}_{1}^{0} / \mathfrak{d i v}_{1}^{c}$-submodules of P_{1}. Suppose that $n \geq 2$. It suffices to prove the statement for $\mathfrak{d i v}_{n}^{0}$. Let M be a nonzero $\mathfrak{d i v}_{n}^{0}$-submodule of P_{n} / K and $0 \neq m \in M$. Using the actions of $\partial_{1}, \ldots, \partial_{n} \in \mathfrak{d i v}_{n}^{0}$ on m we obtain an element of M of the form $\lambda x_{i}+K$ for some $\lambda \in K^{*}$. Hence, $x_{i}+K \in M$. Then $x_{j}+K=x_{j} \partial_{i} *\left(x_{i}+K\right) \in M$ for all $j \neq i$. So, $x^{\alpha}+K \in M$ for all $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=1$. We use induction on $|\alpha|$ to show that all $x^{\alpha}+K \in M$. Suppose that $m:=|\alpha|>1$. If $x^{\alpha}+k=x_{i}^{m}+K$ for some $m \geq 2$ and i then $x_{i}^{m}+K=(m-1)^{-1} x_{i}\left(H_{i}-2 H_{j}\right) *\left(x_{i}^{m-1}+K\right)$. Then, by applying elements of the type $x_{j} \partial_{i}$ where $j \neq i$ to the element $x_{i}^{m}+K$ we obtain all the elements $x^{\alpha}+K$ with $|\alpha|=m$. Therefore, P_{n} / K is a simple $\mathfrak{d i v}{ }_{n}^{0}$-module $/ \mathfrak{d i v}{ }_{n}^{c}$-module.

Let $f \in \operatorname{End}_{\mathfrak{d i v}_{n}^{0}}\left(P_{n} / K\right)$. Then applying f to the equalities $\partial_{i} *\left(x_{1}+K\right)=\delta_{i 1}$ for $i=1, \ldots, n$, we obtain the equalities

$$
\partial_{i} * f\left(x_{1}+K\right)=\delta_{i 1} \text { for } i=1, \ldots, n
$$

Hence, $f\left(x_{1}+K\right) \in \bigcap_{i=2}^{n} \operatorname{ker}_{P_{n} / K}\left(\partial_{i}\right) \cap \operatorname{ker}_{P_{n} / K}\left(\partial_{1}^{2}\right)=\left(K\left[x_{1}\right] / K\right) \cap \operatorname{ker}_{P_{n} / K}\left(\partial_{1}^{2}\right)=K\left(x_{1}+K\right)$. So, $f\left(x_{1}+K\right)=\lambda\left(x_{1}+K\right)$ and so $f=\lambda$ id, by the simplicity of the $\mathfrak{d i v}{ }_{n}^{0}$-module P_{n} / K. Therefore, $\operatorname{End}_{\mathfrak{d i v}_{n}^{0}}\left(P_{n} / K\right)=\operatorname{End}_{\mathfrak{d} \mathfrak{i v}_{n}^{c}}\left(P_{n} / K\right)=K \mathrm{id}$.
Proposition 2.21 For $n \geq 2, \mathfrak{d i v}_{n}^{c}$ is a maximal Lie subalgebra of D_{n}. For $n=1$, $\mathfrak{d i v}_{1}^{c}$ is not a maximal Lie subalgebra of \bar{D}_{1}. For each $n \geq 1, \mathfrak{d i v}{ }_{n}^{c}$ is a \mathbb{G}_{n}-invariant $/ G_{n}$-invariant Lie subalgebra of D_{n}.

Proof. For $n=1, \mathfrak{d i v}{ }_{1}^{c}=K \partial_{1}+K H_{1}$ is contained in the Lie subalgebra $K \partial_{1}+K H_{1}+K x_{1} H_{1}$ of D_{1}. Suppose that $n \geq 2$. By (34) and (36),

$$
\begin{equation*}
0 \rightarrow \mathfrak{d i v}_{n}^{c} \rightarrow D_{n} \xrightarrow{\text { div }} P_{n} / K \rightarrow 0 \tag{49}
\end{equation*}
$$

is the short exact sequence of $\mathfrak{d i v}_{n}^{c}$-module. By Lemma 2.20 , the $\mathfrak{d i v}{ }_{n}^{c}$-module P_{n} / K is simple. Then, $\mathfrak{d i v}_{n}^{c}$ is a maximal Lie subalgebra of D_{n}.

By Theorem 1.2, Theorem 2.6 and Theorem 2.5, $\mathfrak{d i v}{ }_{n}^{c}$ is a \mathbb{G}_{n}-invariant/ G_{n}-invariant Lie subalgebra of D_{n}.

Lemma 2.22 Let $n \geq 2$. Then

1. P_{n} / K is a simple G_{n}-module with $\operatorname{End}_{G_{n}}\left(P_{n} / K\right) \simeq K$.
2. $D_{n} / \mathfrak{d i v}_{n}^{c} \stackrel{\text { div }}{\sim} P_{n} / K$, an isomorphism of G_{n}-modules.
3. $D_{n} / \mathfrak{d i v}_{n}^{c}$ is a simple G_{n}-module with $\operatorname{End}_{G_{n}}\left(P_{n} / K\right) \simeq K$.

Proof. 1. Let M be a G_{n}-submodule of P_{n} properly containing K. We have to show that $M=P_{n}$, i.e. $x^{\alpha} \in M$ for all $\alpha \in \mathbb{N}^{n}$. The polynomial algebra $P_{n}=\oplus_{\alpha \in \mathbb{N}^{n}} K x^{\alpha}$ is the direct sum of 1-dimensional non-isomorphic \mathbb{T}^{n}-modules. Hence M is a homogeneous submodule of P_{n}. Hence $x^{\beta} \in M$ for some $\beta \neq 0$. If $\beta_{i} \neq 0$ then using the automorphism $s_{i}: x_{i} \mapsto x_{i}+1, x_{j} \mapsto x_{j}$, $j \neq i$, we see that $M \ni s_{i}\left(x^{\beta}\right)-x^{\beta}$ and $\operatorname{deg}_{x_{i}}\left(s_{i}\left(x^{\beta}\right)-x^{\beta}\right)=\beta_{i}-1$. The module M is closed under the maps $s_{i}-1$ for $i=1, \ldots, n$. Hence, $x^{\gamma} \in M$ for all $\gamma \leq \beta$ where $\gamma \leq \beta$ iff $\gamma_{i} \leq \beta_{i}$ for all i. In particular, all $x_{1}, \ldots, x_{n} \in M$. Then applying the automorphism $\sigma_{m}: x_{1} \mapsto x_{i}+x_{2}^{m}$, $x_{i} \mapsto x_{i}$ for $i \neq 1$, to the element x_{1}, we see that $M \ni\left(\sigma_{m}-1\right)\left(x_{1}\right)=x_{2}^{m}$ for all $m \geq 1$. Then applying the automorphism $x_{2} \mapsto \sum_{i=1}^{n} x_{i}, x_{i} \mapsto x_{i}$ for $i \neq 2$, we have $\left(x_{1}+\cdots+x_{n}\right)^{m} \in M$. This implies that all $x^{\alpha} \in M$, by the homogeneity of M.

Let $f \in \operatorname{End}_{G_{n}}\left(P_{n} / K\right)$. Since f commutes with the action of the subgroup \mathbb{T}^{n} of G_{n}, we must have $f\left(x^{\alpha}+K\right)=\lambda_{\alpha}\left(x^{\alpha}+K\right)$ for all $\alpha \in \mathbb{N}^{n}$ and some $\lambda_{\alpha} \in K$. In particular, $f\left(x_{1}+K\right)=$ $\lambda\left(x_{1}+K\right)$ for some $\lambda \in K$. Since f commutes with the action of the symmetric group S_{n} (which is obviously a subgroup of $\left.G_{n}\right), f\left(x_{i}+K\right)=\lambda\left(x_{i}+K\right)$ for all $i=1, \ldots, n$. Now, we use induction on $|\alpha|$ show that $f\left(x^{\alpha}+K\right)=\lambda\left(x^{\alpha}+K\right)$. The initial case when $|\alpha|=1$ has just been established. So, let $|\alpha|>1$. Then $\alpha_{i}>0$ for some i, and $\operatorname{deg}\left(\left(s_{i}-1\right) x^{\alpha}+K\right)<|\alpha|$. By induction, $f\left(\left(s_{i}-1\right) x^{\alpha}+K\right)=\lambda\left(\left(s_{i}-1\right) x^{\alpha}+K\right)$. Now, it follows from the equality

$$
f\left(s_{i}\left(x^{\alpha}\right)+K\right)-f\left(x^{\alpha}+K\right)=f\left(\left(s_{i}-1\right) x^{\alpha}+K\right)=\lambda\left(s_{i}-1\right) x^{\alpha}+K
$$

that $\lambda_{\alpha}=\lambda$, and so $f=\lambda \mathrm{id}$. Therefore, $\operatorname{End}_{G_{n}}\left(P_{n} / K\right)=K \mathrm{id}$.
2. Statement 2 follows from (49) and Theorem 2.5.
3. Statement 3 follows from statements 1 and 2 .

Lemma 2.23 The Lie algebra $\mathfrak{d i v}_{n}^{0}$ is a \mathbb{G}_{n}-invariant/ G_{n}-invariant Lie subalgebra of D_{n}.
Proof. The statement follows from Theorem 1.1, Theorem 2.6 and Theorem 2.5.
Conjecture: Every nonzero homomorphism of the Lie algebra $\mathfrak{d i v}_{n}^{0}$ is an automorphism.

3 Minimal set of generators for the Lie algebras $\mathfrak{d i v}_{n}^{0}$ and $\mathfrak{d i v}_{n}^{c}$

In this section, the proofs of Theorem 1.3 and Theorem 1.4 are given.

$$
\begin{equation*}
\left[x_{i}^{2} \partial_{i+1}, x_{i+1} \partial_{i}\right]=\theta_{i}^{e_{i}} \tag{50}
\end{equation*}
$$

In more detail, $\mathrm{LHS}=x_{i}^{2} \partial_{i}-2 x_{i} x_{i+1} \partial_{i+1}=x_{i}\left(H_{i}-2 H_{i+1}\right)=\theta_{i}^{e_{i}}$.

$$
\begin{equation*}
\left[x_{i+1}^{2} \partial_{i}, x_{i} \partial_{i+1}\right]=-\theta_{i}^{e_{i+1}} \tag{51}
\end{equation*}
$$

Similarly, LHS $=x_{i+1}^{2} \partial_{i+1}-2 x_{i} x_{i+1} \partial_{i}=-x_{i+1}\left(2 H_{i}-H_{i+1}\right)=-\theta_{i}^{e_{i+1}}$.
Proof of Theorem 1.3. The elements in Theorem 1.3 belong to $\mathfrak{d i v}_{n}^{0}$ and let \mathcal{G} be the Lie subalgebra of $\mathfrak{d i v}_{n}^{0}$ they generate.
(i) $\mathcal{G}=\mathfrak{d i v}_{n}^{0}$: To prove that the equality holds we use induction on n. Let $n=2$. So, $\mathcal{G}=\left\langle\partial_{1}, x_{2}^{2} \partial_{1}, x_{1}^{2} \partial_{2}\right\rangle$. Then $\partial_{2}, x_{1} \partial_{2}, x_{2} \partial_{1} \in \mathcal{G}$:

$$
x_{1} \partial_{2}=\frac{1}{2}\left[\partial_{1}, x_{1}^{2} \partial_{2}\right], \quad \partial_{2}=\left[\partial_{1}, x_{1} \partial_{2}\right], \quad x_{2} \partial_{1}=\frac{1}{2}\left[\partial_{2}, x_{2}^{2} \partial_{1}\right] .
$$

By Lemma 2.1.(3), we have to show that the elements $x_{2}^{i} \partial_{1}, x_{1}^{i} \partial_{2}$ and $\theta_{1}^{\alpha}=x^{\alpha}\left(\left(\alpha_{2}+1\right) H_{2}-\left(\alpha_{1}+\right.\right.$ 1) H_{2}) belong to \mathcal{G} where $i \in \mathbb{N}$ and $\alpha \in \mathbb{N}^{2}$. By (50) and (51),

$$
\theta_{1}^{e_{1}}=\left[x_{1}^{2} \partial_{2}, x_{2} \partial_{1}\right] \in \mathcal{G}, \quad \theta_{1}^{e_{2}}=-\left[x_{2}^{2} \partial_{1}, x_{1} \partial_{2}\right] \in \mathcal{G} .
$$

Then using (44) and (45), we see that $\theta_{1}^{\alpha} \in \mathcal{G}$ for all $0 \neq \alpha \in \mathbb{N}^{2}$. For $\alpha=0, \theta_{1}^{0}=H_{1}-H_{2}=$ $\left[x_{1} \partial_{2}, x_{2} \partial_{1}\right] \in \mathcal{G}$. By (26), for $j \geq 1$,

$$
\mathcal{G} \ni\left[x_{2} \partial_{1}, \theta_{1}^{j e_{2}}\right]=-\left((j+1) H_{1}-H_{2},-e_{1}+e_{2}\right) x_{2}^{j+1} \partial_{1}=(j+2) x_{2}^{j+1} \partial_{1} .
$$

By symmetry, $\mathcal{G} \ni(j+2) x_{1}^{j+1} \partial_{2}$, i.e. $\mathcal{G}=\mathfrak{d i v}{ }_{n}^{0}$.
Suppose that $n \geq 3$, and that the equality $\mathcal{G}=\mathfrak{d i v}_{n^{\prime}}^{0}$ holds for all n^{\prime} such that $2 \leq n^{\prime}<n$.
Step 1. $\left\{\partial_{i}, x_{j}^{\nu} \partial_{k} \mid i, j, k=1, \ldots, n ; j \neq k ; \nu=1,2\right\} \subseteq \mathcal{G}$: For $i=2, \ldots, n, \partial_{i}=\frac{1}{2}\left[\partial_{1},\left[\partial_{1}, x_{1}^{2} \partial_{i}\right]\right] \in$ \mathcal{G} and $x_{1} \partial_{i}=\frac{1}{2}\left[\partial_{1}, x_{1}^{2} \partial_{i}\right] \in \mathcal{G}$. Then $x_{i} \partial_{1}=\frac{1}{2}\left[\partial_{i}, x_{i}^{2} \partial_{1}\right] \in \mathcal{G}$ for $i=2, \ldots, n$. For all $i \neq j$ such that $i \neq 1$ and $j \neq 1, x_{i} \partial_{j}=\left[x_{i} \partial_{1}, x_{1} \partial_{j}\right] \in \mathcal{G}$ and $x_{i}^{2} \partial_{j}=\left[x_{i}^{2} \partial_{1}, x_{1} \partial_{j}\right] \in \mathcal{G}$. For $i=2, \ldots, n$, fix an index j such that $j \neq 1, i$. Then $x_{i} \partial_{1}=\left[x_{i} \partial_{j}, x_{j} \partial_{1}\right] \in \mathcal{G}$ and $x_{i}^{2} \partial_{1}=\left[x_{i}^{2} \partial_{j}, x_{j} \partial_{1}\right] \in \mathcal{G}$. The proof of Step 1 is complete.

For $i=2, \ldots, n$, let $\mathfrak{d i v}{ }_{n, i}^{0}$ be the Lie algebra $\mathfrak{d i v}{ }_{n-1}^{0}$ for the polynomial algebra $K\left[x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right]$ (x_{i} is missed).

Step 2. For $i=1, \ldots, n, \mathfrak{d i v}_{n, i}^{0} \subseteq \mathcal{G}$: This follows from Step 1 and induction.
Step 3. $\mathfrak{d i}_{n}^{0} \subseteq \mathcal{G}$: This follows from (25) and Step 2.
Step 4. $\mathfrak{v o}_{n}^{0} \subseteq \mathcal{G}$: This follows from (26) (where $\alpha_{i}=0$) and Step 3.
(ii) Minimality:
(a) The element ∂_{1} cannot be dropped: By Lemma 2.1.(3), $\mathfrak{d i v}_{n}^{0}$ is a \mathbb{Z}-graded Lie algebra which is determined by the degree deg in the following way, for $x^{\alpha} \partial_{i} \in P_{n}^{\partial_{i}} \partial_{i}, \operatorname{deg}\left(x^{\alpha} \partial_{i}\right)=|\alpha|-1$ and $\operatorname{deg}\left(\theta_{i}^{\alpha}\right)=|\alpha|$ for all $\alpha \in \mathbb{N}^{n}$ and $i=1, \ldots, n-1$. Clearly, $\operatorname{deg}\left(\partial_{1}\right)=-1$ (negative) and the degrees the rest of the generators are equal to 1 (positive). Therefore, the ∂_{1} cannot be dropped.
(b) The element $x_{i}^{2} \partial_{1}(i=2, \ldots, n)$ cannot be dropped: Since otherwise the Lie algebra generated by the remaining elements would belong to $\oplus_{j=1}^{n} K\left[x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right] \partial_{j}$ (x_{i} is missed), a contradiction (see (i)).
(c) The element $x_{1}^{2} \partial_{i}(i=2, \ldots, n)$ cannot be dropped: Since otherwise the Lie algebra generated by the remaining elements would belong to $\oplus_{j \neq i}^{n} P_{n} \partial_{j}$, a contradiction (see (i)).

Proof of Theorem 1.4. By Theorem 1.3, the elements in Theorem 1.4 generate the Lie algebra $\mathfrak{d i v}{ }_{n}^{c}=\mathfrak{d i v}{ }_{n}^{0} \oplus K H_{1}$ and the element H_{1} cannot be dropped (by Theorem 1.3).
(a) The element ∂_{1} cannot be dropped by the same reason as in the proof of Theorem 1.3 as $\operatorname{deg}\left(H_{1}\right)=0$.
(b) The element $x_{i}^{2} \partial_{1}(i=2, \ldots, n)$ cannot be dropped by the same reason as in the proof of Theorem 1.3.
(c) The element $x_{1}^{2} \partial_{i}(i=2, \ldots, n)$ cannot be dropped by the same reason as in the proof of Theorem 1.3.

Acknowledgements

The work is partly supported by the Royal Society and EPSRC.

References

[1] V. V. Bavula, The inversion formula for automorphisms of the Weyl algebras and polynomial algebras, J. Pure Appl. Algebra 210 (2007) 147-159; arXiv:math.RA/0512215.
[2] V. V. Bavula, The group of automorphisms of the Lie algebra of derivations of a polynomial algebra. Arxiv:math.RA:1304.3836.
[3] D. Z. Dokovic and K. Zhao, Generalized Cartan type S Lie algebras in characteristic zero. J. Algebra 193 (1997) no. 1, 144-179.
[4] J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math. 50 (1978/1979), no. 1, 13-33.
[5] J. Grabowski and N. Poncin, Automorphisms of quantum and classical Poisson algebras. Compos. Math. 140 (2004), no. 2, 511-527.
[6] A. Nowicki, Polynomial derivations and their rings of constants, Torun, 1994.
[7] J. M. Osborn, Automorphisms of the Lie algebras W^{*} in characteristic zero, Canad. J. Math. 49 (1997) no. 1, 119-132.
[8] A. N. Rudakov, Subalgebras and automorphisms of Lie algebras of Cartan type. Funktsional. Anal. i Prilozhen. 20 (1986) no. 1, 83-84.
[9] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0 , Math. Ann. 305 (1996) 271-286.
[10] S. M. Skryabin, Regular Lie rings of derivations. Moscow Univ. Math. Bull. 43 (1988) no. 3, 56-58.
Department of Pure Mathematics
University of Sheffield
Hicks Building
Sheffield S3 7RH
UK
email: v.bavula@sheffield.ac.uk

