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Abstract 

 

The human population displays wide variety in demographic history, ancestry, content of DNA 

derived from hominins or ancient populations, adaptation, traits, copy number variation (CNVs), 

drug response, and more. These polymorphisms are of broad interest to population geneticists, 

forensics investigators, and medical professionals. Historically, much of that knowledge was 

gained from population survey projects. While many commercial arrays exist for genome-wide 

single-nucleotide polymorphism (SNP) genotyping, their design specifications are limited and 

they do not allow a full exploration of biodiversity. We thereby aimed to design the Diversity of 

REcent and Ancient huMan (DREAM) – an all-inclusive microarray that would allow both 

identification of known associations and exploration of standing questions in genetic 

anthropology, forensics, and personalized medicine. DREAM includes probes to interrogate 

ancestry informative markers obtained from over 450 human populations, over 200 ancient 

genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and 

mitochondrial haplogroups, respectively and was vetted to avoid interrogation of clinically 

relevant markers. To demonstrate its capabilities, we compared its FST distributions with those of 

the 1000 Genomes Project and commercial arrays. Although all arrays yielded similarly shaped 

(inverse J) FST distributions, DREAM’s autosomal and X-chromosomal distributions had the 

highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are 

further illustrated in biogeographical, identical by descent (IBD), and CNV analyses. In 

summary, with approximately 800,000 markers spanning nearly 2,000 genes, DREAM is a 

useful tool for genetic anthropology, forensic, and personalized medicine studies. 
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Background 

 

The field of population genetics experienced astonishing changes over the past 50 years, 

generating new understanding of variability at the molecular level that has allowed for the 

exploration of new biological paradigms. Over the past decade, this turmoil was driven by the 

wide availability of single-nucleotide polymorphism (SNP) microarray and next generation 

sequencing (NGS) data, which raised major questions concerning human early origins, 

interbreeding with archaic hominins, and the processes that shaped inter- and intra-population 

variability.  

 

Such questions are also the core components of forensic DNA phenotyping. Common forensic 

and mass disaster scenarios alongside accumulated criticism of eyewitness testimonies 

necessitated the development of more accurate and reliable DNA-based forensics tools based on 

STRs (short tandem repeats) extracted from minute DNA amounts (Kayser 2015). The a growing 

demand for accurate profile reconstructions from DNA evidence, beyond STR, dubbed ‘DNA 

intelligence,’ led to the development of the Forensics Chip and ‘calculators’ for skin and eye 

colors (Kayser 2015), yet an updated microarray that incorporates recently found forensic 

markers does not exist. 

 

Interest in human ancestry is not limited to genetic anthropologists, genealogists, and forensic 

experts. The relatedness of adaptations to diseases is instrumental to identify targets for drug 

treatment (Sheridan 2015). The appreciation that demographic histories, geographical origins, 

and migration patterns shaped the genetic risk to disorders and treatment response (Yusuf and 

Wittes 2016) underlies personalized medicine allowing purporters of personalized medicine 

vouch for a more comprehensive molecular information on patients through genomics and other 

‘omics’ data.  

 

Since NGS technologies remain prohibitively expensive, microarray SNP technology became the 

‘workhorse’ for geneticists, although they are limited in a number of ways. First, genotyping data 

are susceptible to ascertainment bias due to the choice of SNPs (Albrechtsen, Nielsen, and 

Nielsen 2010). Although there has been an increase in the numbers of genotyped indigenous 

populations, estimated at 5,000–6,000 groups (Fardon 2012), commercial microarrays still rely 

on the four HapMap populations (illumina 2010). More recent arrays use some or all the 26 1000 

Genomes Project (GP) populations (Thermo Fisher Scientific), but representing the complete 

human biodiversity continues to be a challenge. This has several negative effects in limiting the 

phylogeographic resolution of the findings, and maintaining health disparities (Popejoy and 

Fullerton 2016). Second, microarray content is typically reflective of data known or considered 

at the time of the design of the array. Finally, most microarrays were not designed to allow 

inference of copy number variations (CNVs), which are useful in studying various phenotypes 

and depicting population structure. 
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Motivated by progress in the studies of modern and ancient genetic diversity, adaptation 

mechanics, forensic phenotypes, and drug response, we aimed to design an affordable and all-

inclusive microarray. Our goals were to: 1) design The Diversity of REcent and Ancient huMan 

(DREAM) – a state of the art SNP microarray dedicated to genetic anthropology and genealogy, 

forensics, and personalized medicine; 2) validate its accuracy; 3) evaluate its abilities to discern 

populations compared with alternative arrays; and 4) assess its performances on worldwide 

populations. 
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Methods 

 

Genetic data retrieval 

AIMs were obtained from the same 15 studies as listed in Elhaik et al. (2013). Anonymous 

genotype data of 606 unrelated individuals from 35 populations genotyped on the GenoChip 

microarray as part of the Genographic Project and their sampling sites were obtained from Elhaik 

et al. (2014).  

 

Ancient DNA genomic data were obtained from 11 publications depicting 207 ancient genomes 

(Keller et al. 2012; Raghavan et al. 2013; Fu et al. 2014; Gamba et al. 2014; Lazaridis et al. 

2014; Olalde et al. 2014; Seguin-Orlando et al. 2014; Skoglund et al. 2014; Allentoft et al. 2015; 

Haak et al. 2015; Llorente et al. 2015; Schiffels et al. 2016). In the case of sequence data, 

sequence reads were aligned to the human reference assembly (UCSC hg19 - 

http://genome.ucsc.edu/) using the Burrows Wheeler Aligner (BWA version 0.7.15) (Li and 

Durbin 2009), allowing two mismatches in the 30-base seed. Alignments were then imported to 

binary (bam) format, sorted, and indexed using SAMtools (version 1.3.1) (Li et al. 2009). Picard 

(version 2.1.1) (http://picard.sourceforge.net/) was then used for MarkDuplicates to remove reads 

with identical outer mapping coordinates (which are likely PCR artifacts). The Genome Analysis 

Toolkit RealignerTargetCreator module (GATK version 3.6) (McKenna et al. 2010; DePristo et 

al. 2011) was used to generate SNP and small InDel calls for the data within the targeted regions 

only. GATK InDelRealigner/BaseRecalibrator was then used for local read realignment around 

known InDels and for base quality score recalibration of predicted variant sites based on dbSNP 

138 and 1000 Genomes known sites, resulting in corrections for base reported quality. The 

recalibration was followed by SNP/InDel calling with the GATK HaplotypeCaller. Variants were 

filtered for a minimum confidence score of 30 and minimum mapping quality of 40. At the 

genotype level, all genotypes that had a genotype depth less than 4 (GD < 4) or a genotype 

quality score less than 10 (GQ < 10) were removed from the dataset by setting them to missing in 

the VCF. GATK DepthofCoverage was then used to re-examine coverage following the 

realignment. VCFtools (version 0.1.14) (Danecek et al. 2011) were used to convert the VCF file 

to PLINK format (Purcell et al. 2007). We used Haak et al.’s (2015) chronology. We obtained 

the low- and high-coverage sequences data for Neanderthal (Green et al. 2010) and Denisovan 

genomes (Meyer et al. 2012; Sawyer et al. 2015). 

 

SNP and haplogroup validation 

To cross-validate DREAM’s genotypes, we genotyped 139 individuals from 17 worldwide 1000 

GP populations including: Americans of Mexican ancestry (Los Angeles, USA), Bengali 

(Bangladesh), British (England and Scotland), Caribbean Africans (Barbados), Colombians 

(Medellin, Colombia), Esan (Nigeria), Finnish (Finland), Gambian (Western Division, The 

Gambia), Han Chinese (Bejing, China), Iberian (Spain), Indian Telugu (UK), Italians (Tuscany, 

Italy), Kinh (Ho Chi Minh City, Vietnam), Mende (Sierra Leone), Peruvians (Lima, Peru), 
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Punjabi (Lahore, Pakistan), and Yoruba (Ibadan, Nigeria). Genotypes were produced following 

the Axiom Best Practices Genotyping Analysis Workflow (Thermo Fisher Scientific 2017), 

which executes sample and marker QC. The concordance between DREAM and 1000 GP (phase 

1) genotypes was calculated as the proportion of the genotypes (AA, AB, and BB) that were 

identical between the two data sets. The marker call rate was calculated as the proportion of 

genotypes that were not set to No Calls out of the total genotype calls attempted.  

 

Maternal and Paternal haplogroup calling was done using an internal haplogroup calling 

algorithm developed by the Genographic Project, as in (Elhaik et al. 2013). 

 

Comparing summary statistics between genotyping arrays 

DREAM’s autosomal and X-chromosomal SNPs ability to differentiate populations was 

compared against alternative platforms. For each platform, we calculated the alternative allele 

frequency (AF) and FST based on 1000 GP phase 3 data (Durbin et al. 2010) provided by the 

Ensembl Variant Effect Predictor (McLaren et al. 2016). Calculations were based on unrelated 

Europeans (CEU), Africans (YRI), and Han Chinese (CHB). Aside DREAM, the compared 

platforms include the complete 1000 GP dataset (87,829,960 SNPs), a reduced subset of 1000 

GP without rare SNPs (MAF<0.01) (14,426,697 SNPs), and four microarrays: HumanOmni5 

(illumina 2015) (4,156,080 SNPs), HumanOmni2.5 (illumina 2013) (2,226,048 SNPs), Infinium 

Multi-Ethnic Global (illumina 2016) (1,486,126 SNPs), and Human Origins (Lu et al. 2011) 

(627,981 SNPs).  

 

Due to the large number of FST values in each dataset, their length distributions are very noisy. 

We thus adopted a simple smoothing approach in which FST values are sorted and divided into 

1,000 equally sized subsets. The distribution of the mean FST value is then calculated using a 

histogram with 40 equally-sized bins ranging from 0 to 1. To test whether two such FST 

distributions obtained by different arrays are different, we applied the Kolmogorov-Smirnov 

goodness-of-fit test and the false discovery rate (FDR) correction for multiple tests (Benjamini 

and Hochberg 1995). Because the differences between the distributions were highly significant 

due to the large sample sizes, we also calculated the effect size, first by using the non-

overlapping percentage of the two distributions, and then by using Hedges' g estimator of 

Cohen’s d (Hedges 1981). If the area overlap is larger than 98% and Cohen’s d is smaller than 

0.05, we considered the magnitude of the difference between the two distributions to be too 

small to be biologically meaningful. 

 

Next, we compared the identical by descent (IBD) coverage obtained by each microarray. IBD 

varies by individual, population, proportion of rare alleles, and number of SNPs. For that, we 

assembled an autosomal dataset by randomly selecting 30 individuals from 3 1000 GP 

populations (phase 3) that have the same proportion of rare alleles (MAF<0.5%) (Genomes 

Project et al. 2015). Analyses were carried out using only the autosomal SNPs of each 
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microarray. For each individual, we retained the average IBD with all individual of the same 

population. We then calculated the mean and standard deviation per population and divided them 

by the number of SNPs of the microarray.  

 

Finally, we compared the linkage disequilibrium (LD) patterns between the microarrays. For 

that, we used the 1000 GP (phase 3) dataset. We randomly selected 30 individuals from four 

populations: Yoruba (Ibadan, Nigeria), Finnish (Finland), Japanese (Tokyo, Japan), and Puerto 

Ricans (Puerto Rico). We then analyzed the SNPs sequenced in those populations that were 

included in each of the five genotyping arrays: DREAM (688,320) HumanOmni5 (3,845,760 

SNPs), HumanOmni2.5 (2,155,999 SNPs), Infinium Multi-Ethnic Global (1,319,453 SNPs), and 

Human Origins (564,019 SNPs). Lastly, we calculated the LD statistic (r2) using the PLINK 

(Purcell et al. 2007) command: --ld-window-r2 0 --r2 --ld-window 2, which calculated r2 for 

each variant pair with 2 variants between them at most (ld-window=2) without filtering low r2 

values (window-r2=0).  

 

Identical by descent (IBD) analysis with archaic hominins 

We assembled an autosomal dataset by randomly selecting 30 individuals from 15 1000 GP 

populations (phase 3). Using BCFtools (Li 2011), we merged this dataset with genotypes of the 

Denisovan, Neanderthal, and the chimpanzee reference genome panTro4 (Feb. 2011) obtained 

from the UCSC genome browser. We filtered low quality positions (marked as LowQual), 

InDels and uncalled genotypes with VCFtools (version 0.1.14) (Danecek et al. 2011). We also 

removed positions that did not differ from the reference allele for all samples using “--non-ref-

ac-any 1”. The final dataset contained 36,375,129 SNPs. A subset of this dataset contained 

669,954 autosomal DREAM SNPs.  

 

We applied Refined IBD implemented in Beagle version 4.1 (21Jan17.6cc) with the reference 

human genome (Browning and Browning 2013) to both datasets. To improve the small segments 

detection ability we used ibdtrim=0 and ibdcm=0.001. 

 

Biogeographical origins of worldwide individuals 

Biogeographical predictions were obtained with the geographical population structure (GPS) 

following Elhaik et al. (2014). GPS accepts the DNA of an unmixed individual and estimates its 

admixture components in respect to nine admixture components corresponding to putative 

ancestral populations. It then matches the admixture proportions of the individual to those of 

reference populations known to have resided in a certain geographical region for a substantial 

period of time. GPS then converts the genetic distances between that individual and the nearest 

M=10 reference populations into geographic distances. The reference populations can be thought 

of as “pulling” the individual toward their location in a strength proportional to the similarity of 

their admixture components until a “consensus” is reached (Das et al. 2017).  
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DREAM’s biogeographical ability was assessed using the Genographic dataset. The 23,731 

autosomal SNPs overlapped between the GenoChip and DREAM were used to infer nine 

admixture components (Figure S1), which were provided as input for GPS. Individuals were 

grouped into their populations, and subpopulations were computationally determined by 

employing MATLAB’s k-means clustering and multiple pairwise F-tests on populations with 

Np>4, where Np is the number of individuals within a population. For k=2 to k=Np/2, we used k-

means to identify k clusters and then the ANOVA F-test to test whether cluster pairs are 

significantly different (p<0.05). If the hypothesis is verified for all the pairs at iteration i then 

another iteration follows until at least one pair violates the hypothesis and ki-1 is the optimal 

number of clusters. Populations and subpopulations displaying only one individual were 

discarded from the dataset. The final dataset consisted of 584 individuals grouped into 122 

subpopulations from 33 countries (Tables S8, S9). These subpopulations were considered 

reference populations. The admixture components of the reference populations were determined 

by their average. 

 

We localized the 584 individuals using the full reference population dataset, the leave-one-out 

individual, and leave-one-out subpopulation approaches. Two measures were used to assess the 

biolocalization accuracy: first, a binary index indicated whether an individual is predicted within 

200 Km from the border of his true country. Second, the distance between the predicted and true 

location was calculated with the Haversine formula. 

 

Genetic similarity between the worldwide individuals 

To calculate the genetic similarity between individuals, we first created a minimum connectivity 

k-nearest neighbors (k-NN) graph G based on the nine-dimensional admixture components 

(Figure S1). We then clustered G by applying the novel graph-theoretic node-based resilience 

clustering framework NBR-Clust (Matta et al. 2016). The various node-based resilience 

measures such as vertex attack tolerance, integrity, tenacity, and toughness, compute a relatively 

sparse critical attack set of nodes, whose removal causes severe disruption to the network 

connectivity, outputting the result of an optimization function representing the difficulty of 

disrupting the network as a specific measure of the network resilience. NBR-Clust takes any 

node-based resilience measure r as a parameter, and performs noise-robust clustering on G 

primarily by outputting the connected components resulting from the removal of the critical 

attack set computed by r(G) as the basic clusters. If noise or overlap exist, outlier nodes are 

computed as a subset of the critical attack nodes which form the cluster boundaries in G. We 

used integrity as the node-based resilience measure to cluster G due to its noted robustness when 

the number of ground truth clusters are not known a priori. Our integrity-based graph clustering 

results in 8 clusters, each corresponding to a different color in the figure. The graphs are 

visualized using the Gephi 0.9.1 graph visualization program (Bastian, Heymann, and Jacomy 

2009). 
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The different sizes of the nodes (and node labels) were created using the betweenness centralities 

property BC(v): BC(v) of a node v is the sum over all pairs of other nodes x, y, of the ratio of the 

number of x-y shortest paths that go through node v to the total number of x-y shortest paths. As 

BC(v) measures the extent to which v lies between other nodes (as well as between multiple 

clusters), larger nodes are intermediate to more pairs of graph nodes than smaller nodes in the 

visualization. Thus, the highest betweenness, larger nodes tend to lie on the boundaries between 

clusters in the NBR-Clust framework, representing outliers in terms of cluster overlap or noise. 

As such, we hypothesize that the largest, i.e., highest betweenness centrality, nodes represent 

individuals with higher levels of admixture with respect to the clusters to which they are 

adjacent. 

 

CNV analysis 

To infer CNVs, we applied the Axiom CNV Summary Tool (Thermo Fisher Scientific 2015) to 

the 139 1000 GP populations genotyped in DREAM. The tool uses signal intensity and 

genotypes to calculate log2 ratios and B allele frequencies (BAFs) from normalized probeset 

signal data. Since the CNVs inferred for the 1000 GP individuals cannot be directly validated, 

we aimed to replicate the population structure patterns reported by Sudmant et al. (2015).  

 

A CNV was considered valid if a change in the signal intensity was identified in at least 40% of 

the markers that covered it. To reduce biases in PCA, we selected 11 random individuals from 

Africa, America, Europe, and East Asia. Since many of the CNVs were not included in DREAM 

due to their ability to discern populations, we narrowed our analyses to CNVs covered by at least 

15 markers that were unique to one regional population and to individuals that harbored at least 

15 CNVs. We carried out a PCA analysis on the remaining 132 deletions and 97 duplications. 

The PlotGenome script (Elhaik and Graur 2013) was used to draw the chromosomal view. 

 

Results and Discussion 

Designing the DREAM SNP microarray  

 

The DREAM array (Axiom_DDCGPS01) was designed as an Applied Biosystems™ Axiom™ 

custom array. The Axiom genotyping platform utilizes a two-color ligation-based assay using 

30-mer Oligonucleotide probes synthesized in situ onto a microarray substrate. There are ~1.38 

million features (or cells) with each SNP feature containing a unique 30mer oligonucleotide 

sequence complementary to the sequence flanking the polymorphic site on either the forward or 

the reverse strand. Depending on the 3' (SNP-site) base (A or T, versus C or G), solution probes 

bearing attachment sites for one of two dyes are hybridized to the target complex, followed by 

ligation for specificity. DREAM was designed with 809,781 oligonucleotide sequences 
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complementary to the forward or reverse strands (probesets) that interrogate 799,120 markers 

(SNPs or InDels). The following sections detail how markers were selected to enable ancestry, 

genealogy, forensics, and personalized medicine applications.  

 

Ancestry Informative Markers (AIMs)  

AIMs are invaluable tools in population genetics and genetic anthropology as they allow the 

identification of populations that vary in substructure, quantification of the degree of admixture, 

and detection of subtle population subdivisions using a limited number of markers (Enoch et al. 

2006). We collected 50,504 AIMs (49,555 autosomal and 949 X-chromosomal): one third 

(15,591) were culled from the literature that encompassed over 450 populations (Figure 1) and 

the remaining AIMs were selected randomly and uniformly from the GenoChip’s autosomal, and 

X chromosomal AIMs were obtained from over 300 populations (Elhaik et al. 2013).  

 

Ancient DNA markers 

Ancient DNA from sequence or genotype data allows direct observations of past admixture and 

migration events and is often the only evidence that allows the examination of historical 

hypotheses. As such, ancient DNA studies have provided insights into human evolution and 

migration (Morozova et al., 2016). We curated genetic data from over 200 ancient genomes 

(Table S1). Due to the data sparsity, we strived to select markers shared across as many genomes 

as possible to minimize the overall number of SNPs while retaining sufficient data 

(approximated at 1,000 SNPs) from each genome. For that, a greedy algorithm applied to all the 

genomes iteratively selected the SNPs with the maximal number of alleles available for most of 

the genomes. Each SNP at a time was marked for inclusion, omitted from the dataset, and the 

process of SNP selection repeated until each genome was sufficiently covered by at least 1000 

SNPs. SNPs from genomes consisting of only a few hundred SNPs were manually added to 

provide effective coverage. 

To facilitate studies on the extent of gene flow from Neanderthal and Denisovan populations to 

modern humans, we included SNPs from multiple low-coverage genomes while restricting the 

selection to markers validated by the 1000 GP. As such, we randomly selected 1,000 and 3,000 

SNPs for Denisovans 4 and 8 respectively, and 5,000 SNPs from six Neanderthals (Feld1, 

Mezmaiskaya, Sid1253, Vi33_25, and Vi33_26). Overall, we selected 78,724 markers (73,107 

autosomal and 5,617 X-chromosomal), 12,550 of which were culled from archaic hominin 

genomes. 

Adaptation markers 

Adaptive responses to selective pressures in particular geographic regions have become 

increasingly important in understanding human history (Jobling, Hurles, and Tyler-Smith 2013; 

Racimo, Marnetto, and Huerta-Sanchez 2017). Populations experiencing selective pressures were 

instrumental in identifying the genetic variants that confer these adaptive qualities. For example, 

the modulation fatty-acids and growth hormone in Greenland Inuits was found to be influenced 
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by two markers located in FADS1 and FADS2 (Fumagalli et al., 2015). Following previous 

mapping efforts and based on the literature published over the past five years, we constructed a 

comprehensive list of adaptive traits, and curated variants and genes that are significantly 

associated with those traits. Genes significantly associated with adaptations of interest were 

recorded and included in the design (Figure 2, Table S2).  

 

Forensic informative markers (FIMs) and other traits 

To facilitate forensic studies, we aimed to infer FIMs for DNA phenotyping. Following previous 

studies (e.g., Kayser 2015) and based on academic publications made over the past five years we 

developed a panel of forensic-relevant traits and curated FIMs and genes that are significantly 

associated with those traits. We also included in the design markers and genes associated with 

popular traits such as memory, language, circadian cycle, immune system, and endurance (Figure 

3, Table S3). 

 

Enabling copy number variation (CNV) analyses 

CNVs have contributed significantly to hominid evolution (Sudmant et al. 2013), biodiversity 

(Freeman et al. 2006), adaptations, traits, and disease (Sudmant et al. 2015; Zarrei et al. 2015). 

CNVs may also be useful tools in forensics, similar to that played by STRs. The ability to detect 

SNPs and CNVs in the same genome screen is thereby advantageous to genetic anthropology, 

forensics, and epidemiology.  

 

Applied Biosystems™ Axiom™ arrays from Thermo Fisher Scientific can be designed to detect 

both SNPs and CNVs. Applied to whole-genome data from a set of human cell lines with large 

chromosomal aberrations, Webster et al. (2013) showed that in regions with sufficient probe 

density, both copy number gains and losses can be detected with high overall sensitivity and high 

breakpoint accuracy. We selected 351 genomic regions of varying lengths (�̅�=125,452; �̃�= 

23,647 bp) that were sufficiently large (L>10,000 bp) or shown to differentiate populations 

(Sudmant et al. 2015). These regions were covered by 29,195 probesets, designed by Thermo 

Fisher Scientific at an average spacing of ~1,500 bp. A majority of the regions (306) were 

covered by 25 probesets or more to ensure detection accuracy (Figure S2, Table S4). 

 

Personalized medicine markers 

To enable precision medicine applications, we selected pharmacogenetic SNPs from public 

repositories and the literature. SNPs were culled from the Pharmacogenomics Knowledgebase 

(PharmGKB), whose data are associated with human genetic variation in drug responses (Whirl-

Carrillo et al. 2012) (~75% of 3,476 SNPs annotated by PharmGKB were collected), and from 

the Applied Biosystems Drug Metabolizing Enzymes and Transporters DMET™) microarray 

(Sissung et al. 2010), whose genes are related to drug absorption, distribution, metabolism 

(~60% of 1,924 SNPs were collected). Genes and SNPs implied by the eMERGE network to be 

associated with phenotypic outcome like pain (e.g., SCN10A), Hypothyroidism (e.g., FOXE1), 
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cholesterol (e.g., CETP and LIPC), platelets, and red and white blood cells (Crawford et al. 

2014) were also included. We further included SNPs and genes associated with Warfarin 

response like VKORC1, CYP2C9, ADRB1, ADRA2C, and BEST (Johnson 2008; Scott et al. 

2008; Daneshjou et al. 2014) and nearly all the cytochrome P450 genes associated with drug 

metabolism. Lastly, we included genes associated with aging (Shadyab and LaCroix 2015). 

 

All other genome-wide markers 

Studies of sex bias in human admixture, migrations, and kinship analyses typically require a high 

coverage of the X chromosome. We thereby enriched the X chromosomes with SNPs selected 

uniformly throughout the genome. We prioritized SNPs that had Applied Biosystems Axiom 

confirmed probes and those that are targeted by Illumina’s HumanOmni5 array. Overall, 50,265 

SNPs were selected.  

 

Of particular importance is the major histocompatibility complex (MHC) locus involved in 

autoimmune and infectious diseases. The MHC region is the most gene-dense region in the 

human genome. However, the high density in polymorphisms and linkage disequilibrium have 

limited our understanding of its role. To facilitate further research of this locus, we included 

SNPs for which Applied Biosystems Axiom had confirmed probesets and that reside within the 

4M bp of the MHC. Overall 16,434 SNPs were selected. 

 

To enable further research into traits of interests, we targeted SNPs that reside within or in the 

100 kilobases flanking regions of the genes of interest. We used STRING to find genes 

associated with the genes of interest (Figures 2 and 3). In some cases, the entire gene families of 

genes (e.g., keratin and cytochrome P450) strongly associated with the phenotypes of interest 

were included in the design.  

 

To enable cross-platform kinship analyses, we selected ~230,000 SNPs distributed uniformly 

throughout the genome that had Applied Biosystems Axiom confirmed probesets. 

 

Finally, we interrogating over nearly 14,000 markers to identify SNPs defining Y and mtDNA 

haplogroups (Supplementary Text S1). 

 

Vetting the array  

We excluded most of the SNPs that required four probesets or more unless they were vital to call 

haplogroups. To improve coverage, we prioritized SNPs that required a single preset over those 

that required two. To protect user privacy, we filtered out all the markers that were recorded in 

the ClinVar database (Landrum et al. 2016) (as of 2/23/2016). We thus designed a multipurpose 

genotyping array dedicated for genetic anthropology and genealogy, forensics, and personalized 

medicine.  
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Validating the DREAM microarray results 

 

After excluding unreliable Y and mitochondrial markers, the final DREAM array targets 794,302 

markers: 730,581 autosomal and pseudoautosomal, 48,973 non-pseudoautosomal (nonPAR) X, 

13,576 Y-chromosomal, and 1,172 mitochondrial markers without clinical relevance. The design 

spans over 1,903 genes (Table S5) enriched with members of the collagen (46), keratin (155), 

cytochrome P450 (68), FOX (22), POLR (34), solute carrier (38), and interleukin (22) gene 

families. Of DREAM’s autosomal, nonPAR X, Y and mtDNA SNPs, 95.8%, 98.6%, 57.0%, 

73.3% are found in the 1000 GP (phase 3), respectively. Coincidently, DREAM also shares a 

significant number of SNPs with other commercial arrays, but never more than 40% with each 

one. 

 

Genotype accuracy was assessed by genotyping 139 individuals from 17 worldwide populations 

found in the 1000 GP data (Altshuler, Lander and Ambrogio, 2010) and cross-validating them 

with the 1000 GP data. 100% (139/139) of the samples passed sample QC, and 97.5% (774,648 / 

794,302) of the markers passed marker QC. For autosomes that passed marker QC, the 

concordance rate was 99.70% (88,753,010 genotypes agree / 89,019,543 total genotypes) and the 

total marker call rate was 99.70% (102,164,485AA+AB+BB genotypes / 102,468,039 

AA+AB+BB+ No calls). For the nonPAR X markers, the concordance between the genotypes 

from the 46,020 markers (included, passed markerQC, and part of the 1000 GP phase 3) and the 

1000 GP phase 3 genotypes was calculated as 99.76% (5,955,934 / 5,970,139). For the Y 

chromosome, the concordance between the genotypes from the 7,745 markers (part of the 1000 

GP phase 3) and the 1000 GP phase 3 genotypes was 99.59 % (448,458 / 450,297). For the 

mtDNA markers, the concordance between the genotypes from the 859 markers (included and 

part of the 1000 GP phase 3) and the 1000 GP phase 3 genotypes was calculated as 99.84% 

(108,343 / 108,515). Overall, we confirmed that nearly all the genotypes captured by the 

DREAM array are accurate. 

 

The SNP density across all chromosomes is shown in Figure 4. 94% of the genome has a mean 

SNP density of 24.36, 33.34, 39.32 SNPs per 100 kilobases for the autosomes, X, and Y 

chromosomes. The remaining 6% correspond to the known gaps in the assembly of 

chromosomes 13, 14, 15, and 22. The short arm of chromosome 6 has the highest SNP density 

(56.41 SNPs per 100 kilobases) followed by the short arm of chromosome Y (50.53 SNPs per 

100 kilobases). 

 

DREAM’s potential to assist in ancient DNA studies was evaluated by calculating the number of 

ancient DNA genotypes for each ancient genome (Figure S3). Of the 207 ancient human 

genomes used in the design, 201 genomes were well captured (�̅�=22,641 SNPs) with 150 

genomes having more than 100 SNPs. The captured genomes represented 12 out of 14 countries, 
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excluding Montenegro (two genomes) and Lithuania (one genome), from time periods spanning 

40,000 BC to 700 AD.  

 

DREAM’s ability to infer uniparental haplogroups was computationally assessed against the 

respective trees. DREAM markers identified 94% and 61% parental and maternal haplogroups, 

respectively (Figure 5). All the primary and secondary maternal haplogroups were detected.  

Assessing DREAM’s abilities to discern population structure 

 

Comparing the alternate allele frequency distribution of various microarrays 

Compared to whole genome data, allele frequencies (AF) in microarrays are typically shifted 

toward intermediate frequency levels (Elhaik et al. 2013), which led to the exploration of 

correction methods (Lachance and Tishkoff 2013). This is expected, provided that the majority 

of SNPs are private and that 1Mbp arrays that cover only 1% of the SNPs typically aim to 

capture mainly common SNPs. None of the arrays we examined exhibited AF distribution 

similar to the 1000 GP, though they all roughly followed its trajectory (Figure S4). Considering 

autosomal markers, DREAM had the highest proportion (70%) of common markers (AF>0.05), 

after the Human Origins (77%) and its AF distribution resembled that of the HumanOmni2.5 

array. Interestingly, despite its small size (1,443,399), the AF distribution of the Multi ethnic 

global array resembled that of the HumanOmni5 array for common markers. DREAM’s AF 

distribution in the X chromosome resembled the 1000 GP’s AF distribution after excluding rare 

variants (AF<0.01), likely due to its enrichment with random markers. DREAM’s proportion of 

common markers (60%) was second only to the HumanOmni2.5 array (66%).  

 

Comparing the genome-wide FST distribution of various microarrays 

The extent to which microarray technology is able to discern and identify sub-populations is of 

principal interest. FST is a measure of differentiation whereby the genetic variation of the sub-

population is measured relative to the total population (Wright 1951). Here, we employed data 

from the 1000 GP CEU, YRI, and CHB to calculate FST in DREAM and comparative arrays as in 

(Elhaik 2012). DREAM produced the highest proportion of high-FST autosomal and X 

chromosomal alleles compared to other arrays (Figure S5). The Multi ethnic global array had the 

second lowest FST values after the HumanOmni 5, which can be explained by the high proportion 

of rare SNPs they shared. The autosomes and X-chromosomal SNPs of the comparative arrays 

had significantly lower FST values (Kolmogorov–Smirnov goodness-of-fit test, P<0.001) than 

DREAM’s due to the high fraction of rare SNPs in these arrays. The magnitude of the 

differences between the FST values of these arrays was also large for autosomal (area overlap 69–

77%, Cohen’s d 0.23–0.3) and X-chromosomal SNPs (area overlap 74-84%, Cohen’s d 0.17–

0.26). These results suggest a reduced ability of the competing arrays to elucidate ancient 

demographic processes (Kimura and Ota 1973; Watterson and Guess 1977).  
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Comparing the Identical by descent (IBD) of various microarrays 

IBD and haplotype-based methods are widely used in population genetic studies. Since, IBD 

coverage depends on the choice of population, proportion of rare alleles, and the number of 

SNPs we compared the ratio of the total IBD coverage of three populations, which exhibit 

similar proportion of rare alleles, to the number of SNPs of each microarray. A high ratio 

indicates higher IBD coverage per SNP (Figure S6). DREAM has the highest ratio for all 

populations compared to other arrays, excepting the Human Origins array (FIN). HumanOmni5 

has the lowest ratio suggesting that the choice of SNPs is suboptimal. This is evidenced by the 

mean IBD coverage of FINs, which is 295.4M using HumanOmni5, 321.7M using 

HumanOmni2.5, and 214.8M using DREAM. All arrays have similar standard deviations, but 

after normalizing for their size both DREAM and the Human Origins array exhibit the highest 

standard deviations for all populations.  

 

Comparing the Linkage disequilibrium patterns of various microarrays 

Optimizing microarray coverage can be done by including a core SNP panel with essential 

markers and selecting the remaining SNPs strategically to optimize imputation efforts. Such 

microarray design would consist of a fewer SNPs in high LD, whereas a wasteful or robust 

design (depending on one’s point of view) would consist of a large number of SNPs in high LD. 

A comparison of the LD patterns of SNPs from the four 1000 GP populations, which overlapped 

with each of the five microarrays showed, that the Human Origins microarray had the smallest 

fraction of high LD markers followed closely by DREAM (Figure S7). This is expected as the 

Human Origins largely consists of sparse ancient DNA SNPs, whereas DREAM consists of a 

high fraction of genic markers. The LD cumulative probability distributions of the remaining 

microarrays generally clustered together with markers of the multi ethnic global microarray 

exhibiting the highest LD. 

 

Detecting interbreeding with Neanderthal and Denisovan  

DREAM’s ability to infer IBD with archaic hominins was evaluated by comparing the total IBD 

between worldwide individuals, Neanderthal, and Denisovan calculated using the complete 36 

million SNPs (1000 GP dataset) and DREAM SNPs, representing 1.86% of the complete dataset 

(Table S6). Total IBD region sizes were highly correlated (NNeanderthal=450, rNeanderthal=0.75, 

NDenisovan=450, rDenisovan=0.91) and exhibit similar between-population patterns in the two 

datasets. 

 

Biogeographical origins of worldwide populations 

Prediction of biogeographical origins is obtained by converting genomic information into 

geographical coordinates. All biogeographical inferences were carried out using the geographic 

population structure (GPS) tool, which matches the admixture proportions of a test individual 

with those of reference populations known to have resided in a certain geographical region for a 

substantial period of time (Elhaik et al. 2014; Das et al. 2017). The efficacy of DREAM’s 
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biogeographical predictions was assessed on 584 worldwide individuals from 33 countries 

(Figure 6, Table S7). DREAM placed the majority of individuals (85%) within less than 200km 

away from their country’s political borders, in line with Elhaik et al.’s (2014) report. For 30% of 

the countries, all the individuals were predicted within these extended boundaries. The average 

prediction distance from the true borders was 157km, an improvement compared to previous 

studies (Das et al. 2016; Marshall et al. 2016). As expected, the accuracy decreased to 73% and 

51% in the leave-one-out individual and -subpopulation analyses, respectively. There, 15% of 

the individuals were predicted within the extended country’s boundaries in both cases and the 

average distances from the true borders were 293km and 551km, respectively. These findings are 

similar or better than those reported by Elhaik et al. (2014) and reflect the choice of AIMs and 

the improvement made in the assembly of the reference populations. 

 

Individual clustering by admixture proportions is an effective way to describe population 

structure (Marshall et al. 2016) and evaluate the ascertainment bias and the AIMs choice. An 

application of the graph-theoretical clustering technique NBR-Clust (Matta et al. 2016) to the 

admixture proportions of the Genographic individuals (Figure S1) constructed a graph G (Figure 

S8) with eight clusters, corresponding to the geographical regions that harbored the people. To 

examine whether individuals with higher betweenness centrality represent genetic mixtures with 

populations graphically adjacent to them, we created a population graph GP (Figure S9) by 

merging individuals into their populations in graph G. Here too, nodes with notably high 

betweenness are the Bermudian, Tatarstan-Russian, Puerto Rican, Lima-Peruvian, North-

Northeast Indian, and Antananarivo-Madagascan populations. These enlarged nodes lie on 

cluster boundaries. For example, the Madagascan node with high betweenness is adjacent to the 

Oceanic, East Asian, and his own African cluster, in support of recent reports of shared ancestry 

(Poetsch et al. 2013). North Indians are also adjacent to three clusters representing the Near East, 

East Asia, and their own Indian population, in agreement with recent studies that depicted these 

genomes as two-way mixture between West Eurasians and indigenous Andaman Islanders 

(Moorjani et al. 2013). Our findings are therefore consistent with the known history and 

demographics of the admixed populations and support the utility of the NBR-Clust framework to 

represent population structure. Further insights can be made by applying adjacency and graph 

distance information. We note that graph theoretic representation retains high dimensional 

information that may be lost in performing two or three dimensional PCA for visualization. 

 

Analysis of CNVs in worldwide populations 

Sudmant et al. (2015) reported that the CNV distribution in human population can be used to 

reconstruct population structure. For example, the authors found that for deletions, the first two 

principal components distinguished Africans, West Eurasians, East Asians, and Oceanian 

populations with many other populations clustering with their continental populations. Similar 

trends were found for duplications, albeit with far less clarity. They also reported that African 

populations are broadly distinguished from non-African for either deletions or duplications. Our 
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results reflect Sudmant et al.’s findings in that deletions largely allowed distinguishing regional 

populations, deletions identified a more coherent population structure than duplications (Figure 

S10), and finally that Africans were largely separated from non-Africans for both CNV types. 

 

Conclusions 

 

We designed, developed, validated, and assessed the DREAM array, an all-inclusive SNP 

genotyping chip dedicated to genetic anthropology and genealogy, forensics, and personalized 

medicine. DREAM can be used to study the genetic relationships between ancient humans, 

archaic hominins, and modern humans as well as to improve our understanding of human 

migratory history, adaptations, and the molecular mechanisms that regulate forensic-relevant 

traits. By comparing the MAF and FST distributions of the DREAM array to those of the 1000 

GP and commercially available arrays, we demonstrated DREAM’s ability to differentiate 

populations within global datasets. Lastly, we demonstrated the biogeographical accuracy of 

DREAM and its potential ability to infer CNVs. We expect that the expanded use of the 

DREAM in genealogy and research will expand our knowledge of our species. 
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Figure legend 

 

Figure 1 

Worldwide distribution of population from which AIMs were obtained. AIMs from over 450 

world populations were harvested from the literature (green) or calculated based on genotyped 

data from public collections (red). 

 

Figure 2 

Local human adaptations. Following Fan et al. (2016), each adaptation is labeled by the 

phenotype and/or selection pressure. The genetic loci under selection and the studied population 

are shown.  

 

Figure 3 

Human traits and their associated genetic loci.  

 

Figure 4 

SNP density in the DREAM. The average numbers of DREAM SNPs per 100,000 nucleotides 

across the genome are color coded. Gaps in the assembly are shown in gray. 

 

Figure 5 

Success rate in identifying Y-chromosomal (left) and mtDNA (right) haplogroups. The plots 

depict all known basal haplogroups (columns), the number of known subgroups in each 

haplogroup (top of each column), and the proportion of computationally validated subgroups. 

 

Figure 6 

GPS predictions of biogeographical affinities for worldwide 33 populations. The x axis 

represents populations represented by a vertical stacked column indicating the proportion of 

individuals predicted within 200km of their country’s political borders (blue) and the remaining 

individuals (green). The average distance from the predicted location and true country of origin 

is indicated in red balls. 
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