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21st Century drought-related fires counteract the
decline of Amazon deforestation carbon emissions
Luiz E.O.C. Aragão 1,2, Liana O. Anderson3,4, Marisa G. Fonseca1, Thais M. Rosan1, Laura B. Vedovato1,

Fabien H. Wagner1, Camila V.J. Silva1,5, Celso H.L. Silva Junior 1, Egidio Arai1, Ana P. Aguiar6,7, Jos Barlow 5,

Erika Berenguer4,5, Merritt N. Deeter8, Lucas G. Domingues6,9, Luciana Gatti6,9, Manuel Gloor10,

Yadvinder Malhi 4, Jose A. Marengo3, John B. Miller11, Oliver L. Phillips10 & Sassan Saatchi12

Tropical carbon emissions are largely derived from direct forest clearing processes. Yet,

emissions from drought-induced forest fires are, usually, not included in national-level carbon

emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence

and associated forest fire carbon emissions over the period 2003–2015. We show that

despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased

by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had

the largest ever ratio of active fire counts to deforestation, with active fires occurring over an

area of 799,293 km2. Gross emissions from forest fires (989± 504 Tg CO2 year−1) alone are

more than half as great as those from old-growth forest deforestation during drought years.

We conclude that carbon emission inventories intended for accounting and developing

policies need to take account of substantial forest fire emissions not associated to the

deforestation process.
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Land use and land cover changes (LULCC) in tropical
countries contribute significantly to greenhouse gas emis-
sions and play a major role in changing the global

climate1, 2. Curbing deforestation, defined here as the complete
conversion of old-growth forests into productive lands, is
expected to directly reduce tropical carbon (C) emissions3, 4. In
the Brazilian Amazon, annual deforestation rates have been clo-
sely linked (r2 = 84%, p< 0.004) to annual fire incidence5, with
fires being the main pathway for removing plant biomass and
transferring the associated C from the tropical vegetation to the
atmosphere6. By 2015, Brazil had accomplished a 66% reduction
in Amazonian deforestation rates (6207 km2 year−1) when com-
pared to the 1988–2004 mean (18,439± 5121 km2 year−1)7. This
achievement followed a set of civil society, economic and public
policy actions, most notably the Action Plan for Prevention and
Control of Deforestation in Amazonia (PPCDAm), implemented
in 2004 by the Brazilian government with three phases
(2004–2008, 2009–2011 and 2012–2015) aiming to continuously
reduce illegal deforestation and establish a sustainable develop-
ment model for Amazonia8.

While emissions due to deforestation have fallen, it has been
shown that during drought years, fire incidence and associated C
emissions in human-modified regions have increased6, 9. In 2010,
a drought year, gross C emissions due to fires were 1.7 times
higher (0.51± 0.12 Pg C year−1) than during the subsequent non-
drought year6. This corresponded to 57% of 2010 global emis-
sions from land use change (0.9± 0.7 Pg C)10. Most Earth System
Models (ESMs) predict increasing dry season intensity in Ama-
zonia in the 21st century. This is directly related to radiative
forcing11 and declining Northern Hemisphere aerosol
production12, 13, which tend to cause anomalous variation of sea
surface temperatures (SST) and consequently drive large-scale
swings in precipitation over Amazonia. If this new climatic
configuration is borne out, Amazonia is expected to become an
amplified fire-prone system14, 15, with emissions from drought-
induced fires unrelated to deforestation increasingly playing a
much larger role than those from deforestation15.

We hypothesize that if the influence of drought on fire inci-
dence prevails over that of deforestation, then the reduction in
deforestation rates by 2015 would not lead to a direct reduction of
C emissions. Specifically, we predict that drought will combine
with human activities other than deforestation, including sec-
ondary vegetation slash-and-burn and cyclical fire-based pasture
cleaning. These alone provide sufficient ignition sources for fire to
leak into adjacent forests—many of which are fragmented or
degraded and therefore more likely to burn16–18. Recent drought
events (i.e., 2005, 2010 and 2015) can serve as a model for
assessing how oceanic modes shift the amount and distribution of
Amazonian rainfall, in turn affecting spatio-temporal patterns of
fire-prone regions in future climate conditions. These events,
therefore, provide a unique opportunity to quantify the sensitivity
of drought-fire interaction under the current trend of reduced
deforestation rates in the Brazilian Amazon.

To test the hypothesis, we assess the causes of recent Brazilian
Amazon droughts and quantify their impact on forest fire-
associated C emissions patterns under the current deforestation
reduction trajectory. We analyze 13 years of monthly time series
(2003–2015) of sea surface temperature anomalies (SSTA) indi-
ces19–22 combined with a suite of satellite-derived rainfall23,
active fire detections24, atmospheric carbon monoxide (CO)25,
annual deforestation7 and burned area data for the Brazilian
Amazon.

We show that C emissions from Amazonia are increasingly
dominated by forest fires during extreme droughts, rather than
the prevalence of emissions from fires directly associated with the
deforestation process. Forest fires alone are currently contributing

to a mean annual committed gross emission of 454± 496 Tg CO2

year−1 (2003–2015) or 31± 21% of the estimated emission from
deforestation. We conclude that the Brazilian Amazon may be
entering a new land use and land cover change phase in which a
decoupling between fire-related and deforestation-related carbon
emissions, driven by recurrent 21st century droughts, can
undermine the Brazilian achievement of reducing emissions from
deforestation. Therefore, policy actions must amplify the focus on
new practices of land management prioritizing a reduction of
non-deforestation fire-use and more careful fire management,
while restraining deforestation rates.

Results
Spatio-temporal coherence between active fires and droughts.
Our analysis of SSTA showed that the two strongest droughts in
this century, occurring in 2005 and 2010, were strongly correlated
with the anomalous warming of the Atlantic ocean captured by
the Atlantic Multidecadal Oscillation (AMO)19, 20 index
(Fig. 1a–e). In contrast, the 2015 drought occurred following a
simultaneous development of anomalous warming of the equa-
torial and eastern tropical north Pacific and tropical north
Atlantic oceans, as measured by the Multivariate El Nino Index
(MEI)21, the Pacific Decadal Oscillation (PDO)22 and the
AMO19, 20 indices, respectively (Figs 1a–e and 2a). The positive
MEI, PDO and AMO consistently matched the intensification of
negative rainfall anomalies (see Methods section for details) up to
four standard deviations (σ, p< 0.01) towards the end of 2015
(Fig. 1d). This rainfall shortage caused the largest basin-wide
mean water deficit (−95 mm month−1) observed since 2003
(Fig. 1e), creating a widespread drying condition that escalated
active fire occurrence over the Brazilian Amazon. Active fire
anomalies reached over 2σ (p< 0.05, Fig. 1f), surpassing fire
events of previous 2005 and 2010 drought years towards the end
of 2015 (Supplementary Fig. 1).

By performing a pixel-based correlation between gridded
rainfall anomaly and oceanic indices, we showed that the
influence of SSTA on rainfall reduction in Amazonia is spatially
variable (Figs 1f, 2a–e). While a positive AMO negatively
correlates with rainfall anomalies in south-western Brazilian
Amazon (Fig. 2d), an El Niño (positive MEI) reduces rainfall in
the north, central and southeast flanks of the region (Fig. 2b). The
inverse correlation between PDO and rainfall mostly overlaps the
grid cells influenced by MEI in the northern-central part of the
region (Fig. 2c).

The effect of SSTA-driven differential rainfall shortage is
evident when analyzing the spatial patterns of maximum
cumulative water deficits (MCWD) and consequent enhancement
of active fire incidence during major droughts (Fig. 3a–m). The
MCWD anomaly pattern clearly followed the spatial configura-
tion of the relationship between SSTA and rainfall anomalies,
specifically indicating a dominant influence of the AMO during
the 2005 (Fig. 3a, d) and 2010 (Fig. 3b, e) droughts and of all
three indices during 2015 (Fig. 3c, f).

The 2015 drought (Fig. 3c) was the most extreme of the 21st
century, as an area of 1,832,488 km2 (43% of the Brazilian
Amazon biome and >7 times the area of the United Kingdom)
experienced significant negative MCWD anomalies (number of
grid cells with s.d. (σ) larger than 1.65, p< 0.1), in comparison to
2005 (22%) and 2010 (25%) (Fig. 3a–f). A total of 608,764 km2

experienced MCWD anomalies >3σ (p< 0.003) in 2015,
especially in central and eastern Amazonia, in comparison to
312,902 and 164,970 km2 in 2005 and 2010, respectively
(Fig. 3d–f). Most strikingly, unlike the 2005 and 2010 droughts,
active fire detections associated with the 2015 drought extended
beyond the Arc of Deforestation (Supplementary Fig. 2),
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impacting areas in central Amazonia barely affected by fires in the
past (Fig. 3g–i). In 2015, 19% (799,293 km2) of the grid cells, with
at least one fire detection during the studied period, experienced
significant positive (p< 0.1) active fire anomalies. Moreover, the
area affected by positive active fire anomalies surpassing 2σ (p<
0.05) in 2015 (628,901 km2) was about double of that observed in
2005 and 2010 droughts (363,245 and 388,803 km2, respectively;
Fig. 3j–m).

Impact of droughts on forest fire-associated C emissions. While
annual deforestation rates (2003–2015) had a significant declining
trend of 1796± 271 km2 yr−1 (Fig. 4a; R2 = 80%; p< 0.001), the
active fire counts trend was insignificant (Fig. 4b). Even with the
mean deforestation rate of the third phase of PPCDAm pro-
gramme (2012–2015—5420± 759 km2) being about one-third of
that recorded in the first phase (2004–2008—17,127± 6,571
km2), the number of active fires detected by the MODIS sensor in
2015 (114,558 fires) was 15% higher than the mean number of
fires recorded during the first PPCDAm phase (99,700± 37,940
fires). Despite 78% lower deforestation rates than in 2004 (27,772
km2), 2015 had one of the longest fire seasons (5 months with
over 10,000 fires detected) recorded in the 21st century (Fig. 5).
Deforestation explained 84% of active fire detections5 in the pre-
PPCDAm period, but only 47% during the full 2004–2015
PPCDAm interval (Supplementary Fig. 3).

The drought-induced decoupling of deforestation and active
fires were supported by our analysis of forest fire-associated C

emissions. Estimated Brazilian Amazon CO2 emission levels26

have declined significantly (R2 = 90%; p< 0.001) with a rate of
130.8± 15.24 Tg CO2 year−1 from 2003 to 2012 (Fig. 4c). Despite
responding to fire peaks during recent drought years, MOPITT-
derived CO concentration in the total atmospheric column, a
tracer for fire emission contribution to the atmospheric carbon
burden6, over the Brazilian Amazon did not followed the reported
reduction in CO2 emissions, as no significant temporal trend in
this data set was observed (Fig. 4d). Moreover, the estimated
Brazilian CO2 net emissions was strongly dependent (R2 = 0.99;
p< 0.001) on the annual area deforested, while MOPITT-derived
CO concentration was not (Fig. 4e).

Further analysis reinforces these results: by calculating the
number of active fires per square kilometre deforested, we found
that from 2003 to 2015 an increased number of fires were
detected per km2 of area deforested (R2 = 63%; p< 0.01);
similarly, the concentration of CO in the total atmospheric
column per km2 of area deforested (R2 = 86%; p< 0.001)
increased for the same time period; finally, no significant
temporal trend was observed for the concentration of CO in
the total atmospheric column per active fire count (Supplemen-
tary Fig. 4).

By analyzing burned area data from 2008 to 2012 (Fig. 6a), we
further verified, that there was no evidence of an increase in
pasture area burned in comparison to forest area burned that
could explain the observed weakening of the deforestation-active
fire correlation (Supplementary Fig. 3) or the lack of correlation
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between MOPITT-derived CO concentration and deforestation
rates (Fig. 4e). In fact, 95% (p> 0.01) of the variance of the
MOPITT-derived CO concentration was explained by log
transformed area of burned forest (Fig. 6b, d). We estimated
that mean gross emissions from forest fires (old-growth plus
secondary forests) alone (454± 496 Tg CO2 year−1) from 2003 to
2015 were not statistically different (two-tailed Student's t-test, t-
value = −0.01, degrees of freedom = 9) from deforestation gross
emissions (702± 403 Tg CO2 year−1) (Fig. 6e). Forest fires
contributed on average with 31± 21% of the emission values
from deforestation, with contributions beyond 50% for 2005,
2007, 2010 and 2015.

Lastly, using both active fire and burned area data, we carried
out an analysis demonstrating that areas with high fire activity are
not always related to high deforestation activity (Fig. 7a, b). While
high levels of active fire incidence were concentrated in grid cells
presenting maximum observed values of deforestation rate
(excepting 2010, 2011 and 2013), following the expected pattern
(Fig. 7a), positive fire anomalies have gradually increased from
11% in 2003 to 25% in 2015 in grid cells with no deforestation.

An increased trend of positive fire anomalies was also observed
for grid cells with deforestation rate values below the median
(1.43 km2 of deforestation). Since 2009, positive fire anomalies
were recurrently recorded in over 36% of grid cells with
deforestation rates below 0.26 km2. This pattern was neither
observed during the Pre-PPCDAm period nor during the first
phase of the programme. At the end of the third PPCDAm phase,
corresponding to the 2015 drought, positive fire anomalies were
observed in over 50% of grid cells in almost all classes of
deforestation. Assessing both 2010 and 2015 droughts, we
observed that all deforestation classes had more than 38% of
the grid cells with positive fire anomalies, indicating an increased
number of ignition sources and potential fire leakage to adjacent
forest edges. The increased extent of forest fires is confirmed by
the burned area map information of secondary and old-growth
forests classes, showing that even in grid cells without any
recorded deforestation, we still find an increase in forest area
burned from 2008 (150–200 km2) to 2012 (300–350 km2;
Fig. 7b). Finally, during the drought year of 2010, 90.5%
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of all deforestation classes had burned more than during all other
years.

Discussion
Our results corroborate previous findings demonstrating sig-
nificant relationships between the AMO and the 2005 and 2010

drought-mediated rainfall shortage27, 28, which led to consequent
increases of fire incidence in Amazonia. Interestingly, the 2015
drought emerged from a more complex combination of positive
anomalies in the three main oceanic modes analyzed here. The
temporal and spatial pattern of rainfall anomalies in Amazonia
during 2015 was a result of a simultaneous development of
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(l). Red and blue bars indicate respectively positive and negative anomalies for fires and the opposite for the MCWD. All units are standard deviation
values calculated as the departure of annual values from the 2003–2015 annual averages, excluding drought years (2005, 2010 and 2015)
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Fig. 4 Annual trends in deforestation and forest fire-associated carbon emissions in the Brazilian Amazon. Linear trends (2003–2015) of annual a
deforestation rates, b active fires counts, c reported Brazilian net land use and land cover change-related CO2 emission estimates4 (Net LULCC emissions)
and dMeasurements of Pollution in the Troposphere (MOPITT) CO total column data. Red circles indicate the analyzed drought years. Linear trends (black
lines) are shown for statistically significant data. In a–d R2 is the coefficient of determination, p is the probability calculated at 95% confidence level and NS
indicate non-significant trends. The relationship between the Net LULCC emissions and MOPITT CO total column with deforestation rates are shown in e.
Symbols are grouped with different colours to separate the years according to four PPCDAm periods

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02771-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:536 |DOI: 10.1038/s41467-017-02771-y |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


anomalous warming of the equatorial and eastern tropical north
Pacific and tropical north Atlantic oceans, as measured by MEI21,
PDO22 and AMO19, 20 indices. This configuration was respon-
sible for changes in large-scale atmospheric circulation patterns
associated to the Hadley Cell and Walker Circulation29, with
subsidence over Amazonia resulting in below-average rainfall
during the summer-fall season of 2015.

According to our analysis of the three major Amazonian
droughts, the 2015 event was the most extreme of the 21st cen-
tury30. Most strikingly, unlike the 2005 and 2010 droughts, fires
associated with the 2015 drought extended beyond the Arc of
Deforestation (Supplementary Fig. 2), impacting areas in central
Amazonia barely affected by fires in the past. Our results
emphasize the fact that in a hotter and drier future, large swaths
of the Amazon, distant from the main deforestation epicentres,
may burn.

Currently, peaks in active fire detection are more strongly
related to extreme drought events than to deforestation, as used to
be the case5. This is confirmed by the progressive temporal
decoupling between fire occurrence and deforestation activities31.
Deforestation is clearly losing its explanatory power over the
variance of the absolute number of fire detections, with this

relationship gradually degrading from the first to the third
PPCDAm phase (Supplementary Fig. 3).

The observed disassociation between deforestation and active
fire incidence can be related to increased fire incidence in either
(i) already deforested land covered by pastures (with no net
impact on the atmospheric C burden) or (ii) forested areas
dominated by woody vegetation. Our analysis showing that the
amount of CO emitted per fire count is temporally stable indi-
cates that it is unlikely that C emissions are primarily related to
fires in pastures. This is supported by the fact that a shift in
dominance from deforestation fires to pasture fires, through time,
would lead to a reduction in the CO concentration per fire count.
This is expected because emissions from the combustion of
pasture grasses produces 10 times less C per burned area than the
combustion of woody material32.

Using an independent data set of burned area mapped during
2008–2012, we further show that 95% of the variance in the
MOPITT-derived CO concentration was explained by the total
area of understory old-growth plus secondary forest fires (F =
56.4, p = 0.005), while a non-significant relationship was found
between MOPITT-derived CO concentration and PRODES-
derived deforested area. These results support our expectation
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that areas other than monitored deforested land by PRODES are
increasingly burning during extreme droughts.

We suggest that the Brazilian Amazon may be entering a new
land use and land cover change phase in which a decoupling
between fire-related and deforestation carbon emissions, driven
by recurrent 21st century droughts, can undermine the Brazilian
achievement of reducing emissions from deforestation. If this new
arrangement persists through time, reported national CO2

emission levels26 to the United Nations Framework Convention
on Climate Change (UNFCCC) is expected to be underrated if
CO2 emission estimates do not account for non-deforestation
fires, especially the forest fires examined in this study.

It is important to note that C emission estimates based
exclusively on the deforestation process, not only exclude emis-
sions from forest fires, as reported here, but also ignore emissions
from other neglected processes. For instance, repeated clearing
and burning of secondary vegetation, which is estimated to have
suppressed 25% (38,000 km2) of the total secondary vegetation
area from 2008 to 201233, is not quantified by the PRODES
system. This loss of secondary forest would only affect the net
annual emission calculations, with negligible long-term effect on
atmospheric CO2 concentrations, because of continuous regen-
eration of these forests. Additionally, the deforestation of areas
smaller than the detection limit of PRODES (6.5 ha)7, while
highly uncertain in magnitude, could have omitted around 9000
km2 of deforested land from 2008 to 201234. The effect of this
component on the Brazilian Amazon emission estimates does not
surpass the influence of forest fire-associated emissions, as the
area of this missing process is only 15% of that from old-growth

and secondary forests burned in the same period. Our analyses,
hence, confirm the hypothesis that C emissions from the Brazilian
Amazon are increasingly dominated by forest fires during
extreme droughts, rather than emissions from fires directly
associated with the deforestation process15.

The processes constraining drought and fires in Amazonia and
the potential feedbacks leading to the strengthening or weakening
of this association can be summarized as follow (Fig. 8): The
predicted augmentation of dry season intensity in Amazonia
during the 21st century tends to drive changes in large-scale
atmospheric circulation patterns29, resulting in below-average
rainfall over Amazonia (Pathway 1). Consequently, rainfall
shortage generates high water deficits. In pathway 2, drought-
induced water stress on forests acts negatively on the overall
photosynthetic capacity of the system, causing widespread tree
mortality35, leaf shedding and thus increasing fuel
availability16, 36, 37. As a consequence, forest canopies become
more open, boosting incident radiation levels within the canopy
and producing rising temperatures38. The increased fuel avail-
ability exposed to a drier and hotter microclimate pushes natural
forests towards a fire-prone system. Droughts can also double the
average rate of fire incidence in Amazonia associated with
increased persistence of pasture management and deforestation
fires5. These factors increase the probability of fires to leak from
open areas into adjacent human-modified forests (forest edges,
fragments, burned, logged and secondary forests), all of which
tend to be more susceptible to fire than large blocks of undis-
turbed primary forests39, 40 (Pathway 3). Although previous
Amazonian-scale quantification (1992–1999) demonstrated that

Fires in undisturbed forest

Deforestation

Forest edges

Pasture management

Secondary forests

Burned forests

Logged forests

DroughtClimate change

Forest fragments

Ignition sources

Increased area of human-modified forests

Result of after deforestation
land use

Direct result of deforestation
process

Local actions

Law enforcement,

support for

alternative fire

usage,

sustainable

development

planning,

education

Global initiatives
UNFCCC

IPCC

National policies

- National plan on
climate change

- PPCDAm

- REDD+

- Forestry code

Mechanisms for fire
emission reduction

7

6

5

21

3

9

10

11

12

4

8

Land use

Forests

Climate
Complex environmental systemPolitical sphere

Probability of
fire occurrence

Fire impact on
C emissions

High Low

Feedbacks on Amazon
fires or policies

Positive

Negative

Fig. 8 Conceptual model of feedbacks between climate, land use, forests and policies and their expected impacts on fire emissions. The system is divided in
two large components: the political sphere (purple box) and the complex environmental system. In the political sphere, the mechanisms for fire emission
reduction are divided into three levels of organization from global to local. The complex environmental system is divided in three components: climate (blue
box), forests (green box) and land use (light brown box). Positive and negative feedbacks among the components are identified by red and blue arrows,
respectively. The resulting effects of these feedbacks are described by coloured diamonds for the expected probability of fire occurrence and circles for the
potential fire impact on C emissions. Numbers are displayed to assist with the description of the processes depicted in the main text

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02771-y

8 NATURE COMMUNICATIONS |  (2018) 9:536 |DOI: 10.1038/s41467-017-02771-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


burned scars from fires were rarely detected in degraded logged
forests41, the observed intensification of 21st century climate
extremes and droughts suggest a potential shift toward the pre-
viously postulated model39, 40. On the basis of this model39, 40, we
suggest that under the new 21st century climate conditions
degraded forests may become increasingly dry and susceptible to
forest fires. In comparison with intact forests, human-modified
forests are characterized by greater canopy opening, larger stocks
of dead material, drier microclimate, and lower wood density
species42, which are more susceptible to mortality during
droughts35. Such characteristics make these forests more flam-
mable and act to increase fire intensity if they do burn, facilitating
fire incursion among the different forest types (Pathway 4) and
also into undisturbed old-growth forests (Pathway 5). Fires
occurring in different land uses and forests have a direct impact
on climate change by increasing C and aerosol loads in the
atmosphere (Pathway 6). The presence of fire-derived aerosols in
the atmosphere can reduce rainfall, by inhibiting surface heating
and evaporation, suppressing the formation of convective clouds
and by affecting cloud’s microphysics by reducing droplet size in
comparison to clean air, which in turn inhibits the onset of
precipitation43. Understanding these processes improves the
efficacy of environmental policies for counteracting the observed
negative impacts and positive feedbacks driving this complex
system (Pathway 7). Information gathered from monitoring the
process facilitates global initiatives for developing standardized
reporting guidelines and planning financial incentives (Pathway
8), which can positively feedback into national policies, pro-
moting effective local actions (Pathway 9). A well-informed
political sphere is able to locally reduce the impacts of land use on
fires (Pathway 10) and consequent fire impacts on forests, local
economies and human populations (Pathway 11). Finally, struc-
tured environmental policies can assist managing the drivers of
climate change and land use, alleviating their consequent impacts
on tropical countries (Pathway 12).

While extensive advances were made to report emissions from
direct land cover conversion26, 44, 45, such as those from defor-
estation, efforts still must be made to incorporate into estimates,
CO2 losses associated with fires unrelated to the deforestation
process, as proposed by the Intergovernmental Panel on Climate
Change (IPCC) guidelines for National Greenhouse Gas Inven-
tories46. Explicitly accounting for drought-induced forest fire
emissions as an additional component of C emissions from
deforestation is critical for accurately quantifying the overall
Amazonian net C budget.

Even if Brazil achieves the end of Amazonian deforestation47,
pervasive land use activities and the intensification of extreme
droughts are likely to increase fire emissions unrelated to the
deforestation, risking the stability of forest carbon stocks and
undermining the biodiversity co-benefits achievable in carbon
conservation schemes, such as reducing emissions from defor-
estation and forest degradation (REDD+)48. The decoupling
between PRODES deforestation estimates and other land cover
fires, especially forest fires, suggests that CO2 emissions from
these processes must be independently quantified for effectively
reporting national emissions from LULCC. If the decoupling
between drought-induced fires and deforestation emissions is
sustained, we urge that policy actions must amplify the focus on
new practices of land management prioritizing non-deforestation
fire reduction. It is critical to note that if the observed decline
trend in deforestation rates is reverted, the additive characteristic
of emissions from deforestation-related and non-deforestation
fires, could promote a rise in carbon emissions to an unforeseen
rate. Governmental intervention to maintain low deforestation
levels, manage farming activities and combat fires in very dry

years, therefore, is of upmost importance for reducing future C
emissions from the Brazilian Amazon.

Methods
Sea surface temperature anomalies. Time series of sea surface temperature
anomalies (SSTA) for the Pacific and Atlantic Oceans were obtained from the
National Oceanic and Atmospheric Administration (NOAA), Earth System
Research Laboratory portal. The Atlantic Multidecadal Oscillation index (AMO)20,
which describes average anomalies of sea surface temperatures (SST) in the North
Atlantic basin, typically over 0–70N (https://www.esrl.noaa.gov/psd/data/
timeseries/AMO/), is calculated from the Kaplan SST V2 data set as a departure
from 1951 to 1980 time period49. The Multivariate El Niño Index (MEI)21 inte-
grates six variables that describe the status of the coupled ocean-atmosphere system
over the tropical Pacific from 30N to 30S. The variables integrated into MEI are: (1)
sea-level pressure, (2) zonal and (3) meridional components of the surface wind,
(4) sea surface temperature, (5) surface air temperature, and (6) total cloudiness
fraction of the sky. All seasonal values are standardized with respect to each season
and to the 1950–1993 reference period (https://www.esrl.noaa.gov/psd/enso/mei/
table.html). The Pacific Decadal Oscillation index (PDO), calculated for the North
Pacific Ocean, poleward of 20N, represents the leading principal component of
North Pacific monthly sea surface temperature variability for the 1900–93 period22.
NOAA’s National Centers for Environmental Information (NCEI) PDO index,
used in this study, is based on NOAA’s extended reconstruction of SSTs version 4
(https://www.ncdc.noaa.gov/teleconnections/pdo/).

Global gridded SSTA map for September 2015 (Fig. 1f) was produced using the
monthly SSTA NOAA NCEP (National Centers for Environmental Prediction)
EMC (Environmental Modeling Center) CMB (Climate Modeling Branch) Global
Reyn_SmithOIv2 product (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.
NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/). Anomalies are calculated as
the departure from the 1971 to 2000 climatology50. Details of the geographical
locations in which the calculations of oceanic indices are based on (Fig. 1f) follow
Enfield et al.20 for AMO, Wolter and Timlin51 for MEI and Mantua et al.22 for
PDO.

Rainfall and maximun cumulative water deficit. We quantified the intensity and
duration of the drought across Amazonia by calculating annual rainfall and
maximum cumulative water deficit (MCWD) anomalies (z-scores) for 2005, 2010
and 2015 as the departure from the 2003–2014 mean, normalized by the s.d. (σ),
using TRMM 3B43 7A product from 2003 to 2015 (https://disc.gsfc.nasa.gov/
datacollection/TRMM_3B43_7.html)23. We have excluded from the long-term
mean all the analyzed drought years. We calculated monthly values for both
variables based on a average rainfall and MCWD for the whole basin. We also
produced pixel-by-pixel mean and standard deviations of monthly precipitation at
0.25° spatial resolution for the Amazon Biome. The cumulative monthly pre-
cipitation was estimated in mm month−1 considering a 30-day month for all the
data sets. The p-values associated with the z-scores (anomalies) calculated in this
study were analized statistically considering the standard normal distribution,
where positive or negative anomalies (σ) between: 1.65 ≤ σ< 1.96 are significant at
90% confidence level, 1.96 ≤ σ< 2.58 are significant at 95% confidence level and
>2.58 are significant at 99% confidence level.

The pixel-based calculation of the annual maximum cumulative water deficit
(MCWD) from 1998 to 2015, correponded to the maximum value of the monthly
accumulated water deficit (WD) reached for each pixel within each year17. The WD
considers the mean evapotranspiration value obtained by ground measurements in
different locations and seasons in Amazonia17. Hence, based on the approximation
that a moist tropical canopy transpires ~100 mm month−1, when monthly
rainfall (P) is less than this value the forest enters into water deficit. The following
rule was applied to calculate the WD for each month (n) on a pixel-by-pixel basis
(each located at i column and j line), with evapotranspiration (E), fixed at 100 mm
month−1:

If WDn�1ði;jÞ � Eði;jÞ þ Pnði;jÞ< 0;

thenWDnði;jÞ ¼ WDn�1ði;jÞ � Eði;jÞ þ Pnði;jÞ;
elseWDnði;jÞ ¼ 0

The MCWD was obtained for each pixel as the negative of the minimum value
of WD among all the months in each one of the years. The MCWD is a useful
indicator of meteorologically induced water stress without taking into account local
soil conditions and plant adaptations, which are poorly understood in Amazonia.

Active fire incidence. The intensity of fire incidence across the Amazon biome
within the limits of the Brazilian Amazon was calculated using active fire pixels or
hot pixels data, available from the INPE’s Center for Weather Forecasting and
Climate studies (CPTEC) fire monitoring system (http://www.inpe.br/queimadas).
This data is derived from the MODIS (Moderate Resolution Imaging Spectro-
radiometer) sensor on board the polar orbiting Aqua satellite, based on its after-
noon overpasses24. The monthly and annual number of fires was quantified as
active fire density (accumulated number of monthly active fire counts) by summing
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the daily observations with a nominal 1 km spatial resolution within each grid cell
with 0.25° spatial resolution. The thermal anomalies (z-scores) were calculated
similarly to the previous data sets.

Burned area mapping by land cover. We produced burned area maps from
2008 to 2012, centered in 2010. This period accounted for one year prior and
one year after PPCDAm phase 2 (2009–2011). The analysis using burned area
information was designed to capture the constant decrease in deforestation
rates (−1773 ± 507 km2 year−1), including a drought year (2010). This 2nd
phase consolidated the PPCDAm programme focusing mainly on environ-
mental monitoring and control.

For mapping burn scars we follow the methodology described by Anderson
et al9. We used daily surface reflectance products MOD09GA and MOD09GQ
as well as 8 day surface reflectance products, MOD09Q1 and MOD09A1,
collection 5 from the MODIS data set. The dates of the cloud-free images were
selected based on the latest day of the month with nadir view covering the
Brazilian Legal Amazon. The burned area maps were based on the linear
spectral mixing model (LSMM) applied on three spectral bands9: red (band 1,
620–670 nm) and near-infrared (NIR; band 2, 841–876 nm) reflectance bands
from MOD09GQ product and the shortwave infrared (SWIR; band 6,
1628–1652 nm) from the MOD09GA product. From the outputs of the LSMM
we used the shade fraction image, which contains the relevant information for
mapping burnt areas. We first applied a segmentation procedure using a
minimum area threshold of 4 pixels (~25 ha). Subsequently, an unsupervised
classification was performed followed by a post classification image edition. The
post classification image edition was carried out by a skilled human interpreter
using the natural colour composites of the corresponding images for
comparison, aiming to minimize omission and commission errors normally
produced by any automatic classification algorithm.

Subsequently, burn scar maps were combined with the INPE-TerraClass33 land
cover maps (http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php) to
divide burned scars by land cover classes. For this study we focused on three
classes: First, old-growth forest, second, secondary forest and third, pasture. All
burn scars occuring in areas mapped as deforested or non-forests in the INPE-
TerraClass33 data set were excluded from the analysis.

Our burnt area estimate is likely to be conservative as the use of MODIS data at
250 m spatial resolution can underestimate the area burned by approximately 25%
in relation to manually digitized burn scars based on 30 m spatial resolution
Landsat images52, 53.

Deforestation rates. The annual cumulative deforested area from 2003 to 2015
was obtained from INPE’s PRODES data set (http://www.obt.inpe.br/prodes/index.
php)7. These values are Brazilian Government’s official estimates of annual
deforestation in Amazonia. PRODES uses Landsat-like satellites, with 20–30 m
spatial resolution, to quantify the complete conversion of old-growth forests into
agricultural uses. PRODES only maps polygons with an area greater than 6.25 ha
and does not account for deforestation of secondary regenerating forests. Images
from Landsat-5 Thematic Mapper sensor are the most used in the programme. To
overcome commonly encountered cloud cover problems, however, other sensors
such as the CCD from CBERS-2 and CBERS-2B, LISS-3 onboard Resourcesat-1,
and UK-DMC2 images can also be utilized.

MOPITT data. The interannual variability of Amazonian biomass burning
emissions was analyzed using the record of carbon monoxide (CO) measure-
ments from the MOPITT (Measurements of Pollution in the Troposphere)
satellite instrument. The MOPITT instrument incorporates gas-filter correla-
tion radiometers operating in both TIR (thermal-infrared) and NIR (near-
infrared) spectral bands54. MOPITT began operations in 2000. Results pre-
sented in this manuscript are based on the MOPITT Version 6 Level 3 (gridded)
monthly mean data set exploiting both TIR and NIR observations25. This
product has been thoroughly validated using in situ CO measurements acquired
from aircraft in diverse locations, including four stations in Amazonia25, 55. For
each month of the MOPITT mission, a basin-wide CO average was obtained by
averaging V6 Level 3 CO total column values over all valid one-degree grid cells
within the Amazon Basin boundaries. Monthly mean values were then used to
calculate annual means.

CO2 emissions from deforestation and forest fires. Reported data on net CO2

emissions for the Brazilian Amazon biome from 2003 to 2012 was acquired
from the report on annual estimates of greenhouse gas emissions (http://sirene.
mcti.gov.br/documents/1686653/1706227/Estimativas+2ed.pdf/0abe2683-e0a8-
4563-b2cb-4c5cc536c336) developed by Brazilian’s Ministry of Science, Tech-
nology and Inovation26. The estimates of Brazilian reference levels of CO2

emissions for the Land Use and Land Cover Change (LULCC) sector follows the
IPCC Guidelines for National Greenhouse Gas Inventories46, the Good Practice
Guidance and Uncertainty Management in National Greenhouse Gas Inven-
tories56 and the Good Practice Guidance for Land Use, Land Use Change and
Forestry57.

To analyze the 13 years contribution of gross CO2 emissions from forest fires,
studied here, in relation to deforestation gross emissions estimates26, we first
performed an ordinary least square regression between MOPITT CO total column
and burned forest gross CO2 emissions. First, we carried out a first-order estimate
of burned forest committed gross CO2 emissions (Femission) for the mapped years
(2008–2012) based on the following equation 1:

Femission ¼ AO;S ´BO;S ´ α ´ 3:6667 ð1Þ

Where AO,S is the total area burned (km2) for old-growth forests (O) and
secondary forests (S) mapped in this study, B is the mean biomass C content of
Amazon terra firme forests (BO = 16,000Mg km−2 and BS = 8000Mg km−2)58, α is
the emission factor for forests affected by fires (α = 0.4)59 and 3.6667 is the
conversion factor from C to CO2. For this parameterization we did not considered
the biomass from selectively logged forests that may have burned. Aboveground
carbon in logged forests are estimated to be 35% lower than in undisturbed
forests59. However, the mean biomass value used in our study58 includes selectively
logged areas from 2000–2004, minimizing the impact of potential biomass
overestimation in the calculation of CO2 emissions. Moreover, the underestimation
of burned area by our method, described above, can further couterbalance the
overall biomass overestimation effect in the final CO2 emissions estimates from
forest fires.

To estimate gross CO2 emissions from forest fires for the whole 2003–2015
period, we then performed a least square regression between MOPITT CO total
column (independent variable) and log10 transformed burned forest committed
gross CO2 emissions (dependent variable). The resulting equation 2 (n = 5, R2 =
0.95, F = 56.4, p = 0.005), with associated standard error values in parentheses, was
used to extrapolate the values for the whole period.

log10 Femission ¼ �5:55 ± 1:02ð Þ þ 3:91 ± 0:52ð Þ ´MOPPITCO ð2Þ

Subsequently, to estimate gross CO2 emissions from deforestation for the whole
2003–2015 period, we regressed the reported deforestation gross CO2 emissions
(Demission) values from 2003–201226 against deforestation rates (D)7, and used the
resulting equation 3 (n = 10, R2 = 0.99, F = 2307.1, p ≤ 0.001) to extrapolate the
values.

Demission ¼ 93:56 ± 16:79ð Þ þ 0:05 ± 0:001ð Þ ´D ð3Þ

We expect that the risk of double counting deforestation emissions as forest fire
emissions is negligible, because just minimum fractions of the forest area that have
burned are later deforested. Results from a previous analysis60 demonstrated that
only 2.6% of all burned forests between 1999 and 2008 were deforested by 2010.

Data analysis. To test our hypothesis on the prevalence of the influence of drought
over that from deforestation on fire incidence, consequently impeding a direct
reduction of Amazonian C emissions from reducing deforestation rates, we first
evaluated the spatial and temporal patterns and trends of rainfall, fires and
deforestation using the raw values and anomalies. We then evaluated if the pre-
viously attested strong correlation between fire and deforestation15 was stable
during the three phases of the PPCDAm programme. To corroborate this analysis,
we removed the influence of annual deforestation rates on total active fire inci-
dence, by calculating the number of active fires divided by the deforested area, and
quantified the significance of the relationship between number of active fires per
km2 deforested and time. This analysis was based on the logic that if deforestation
is the main driver of fire incidence, the number of active fires per km2 deforested
must be kept constant through time, even with the known deforestation decline
trend.

Furthermore, we repeated this analysis with the independent MOPITT
atmospheric CO data set following the same procedure. We also tested the
temporal shifts in the atmospheric CO data normalized by active fires. This analysis
followed the logic that if the source of CO2 emission was not related to
deforestation but was instead related to management fires from pastures, which has
no net impact on the atmospheric CO2 concentration, the amount of CO released
per fire event should have decreased through time. This is expected as burning in
pastures release much less carbon than burning in old-growth forests or forests
being converted (deforested).

To disentangle the potential sources of fires (old-growth forests, secondary
forests, pastures and deforestation) and validate previous analyses carried out in
this study we analyzed burned area data stratified by land cover classes33 to show
changes in the area affected forest fires during droughts and how this information
on burned area relates with the atmospheric CO data.

Finally, to demonstrate that areas with high fire activity and forest area burned
are not always related to regions with high deforestation activity, we analyzed the
temporal patterns of positive active fire anomalies (number of grid cells with
positive anomalies) and forest plus secondary forest area burned (total area
burned) across the deforestation continuum. Deforestation categories were
classified in 20 percentiles corresponding to the area deforested each year, in
addition to one class where deforestation was not observed (no deforestation). For

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02771-y

10 NATURE COMMUNICATIONS |  (2018) 9:536 |DOI: 10.1038/s41467-017-02771-y |www.nature.com/naturecommunications

http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php
http://www.obt.inpe.br/prodes/index.php
http://www.obt.inpe.br/prodes/index.php
http://sirene.mcti.gov.br/documents/1686653/1706227/Estimativasd.pdf/0abe2683-e0a8-4563-b2cb-4c5cc536c336
http://sirene.mcti.gov.br/documents/1686653/1706227/Estimativasd.pdf/0abe2683-e0a8-4563-b2cb-4c5cc536c336
http://sirene.mcti.gov.br/documents/1686653/1706227/Estimativasd.pdf/0abe2683-e0a8-4563-b2cb-4c5cc536c336
www.nature.com/naturecommunications


each grid cell, we extracted information on the direction of the active fire anomaly
and the burned area. For each deforestation class we then counted the number of
grid cell with positive fire anomalies and summed the total area burned.

All maps produced in this study were based on publically available data7, 23, 50

using ArcGIS 10.

Data availability. The data that support the findings of this study are all publicly
available from their sources. Processed data, products and code produced in this
study are available from the corresponding author upon reasonable request.
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