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Enriching existing predictive models with new biomolecular mark-
ers is an important task in the new multi-omic era. Clinical studies
increasingly include new sets of omic measurements which may prove
their added value in terms of predictive performance. We introduce
a two-step approach for the assessment of the added predictive abil-
ity of omic predictors, based on sequential double cross-validation
and regularized regression models. We propose several performance
indices to summarize the two-stage prediction procedure and a per-
mutation test to formally assess the added predictive value of a sec-
ond omic set of predictors over a primary omic source. The perfor-
mance of the test is investigated through simulations. We illustrate
the new method through the systematic assessment and comparison
of the performance of transcriptomics and metabolomics sources in
the prediction of body mass index (BMI) using longitudinal data
from the Dietary, Lifestyle, and Genetic determinants of Obesity and
Metabolic syndrome (DILGOM) study, a population-based cohort
from Finland.

1. Introduction. During the past decade, much attention has been
devoted to accommodate single high-dimensional sources of molecular data
(omics) in the calibration of prediction models for health traits. For example,
microarray-based transcriptome profiling and mass spectometry proteomics
have been established as promising omic predictors in oncology [1, 2, 3]
and, to lesser extent, in metabolic health [4, 5]. Nowadays, due to technical
advances in the field and evolving biological knowledge, novel omic mea-
sures, such as NMR proteomics and metabolomics [6, 7] or nano-LCMS and
UPLC glycomics [8, 9] are emerging as potentially powerful new biomolecu-
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lar marker sets. As a result, it is increasingly common for studies to collect
a range of omic measurements in the same set of individuals, using differ-
ent measurement platforms and covering different aspects of human biology.
This causes new statistical challenges, including the evaluation of the ability
of novel biomolecular markers to improve predictions based on previously
established predictive omic sources, often referred as their added or incre-
mental predictive ability [10, 11, 12].

An illustrative example of these new methodological challenges is given
by our motivating problem. We have access to data from 248 individuals
sampled from the Helsinki area, Finland, within the Dietary, Lifestyle, and
Genetic determinants of Obesity and Metabolic syndrome (DILGOM) study
[6]. One-hundred-thirty-seven highly correlated NMR serum metabolites and
7380 beads from array-based transcriptional profiling from blood leukocytes
were measured at baseline in 2007, together with a large number of clinical
and demographic factors which were also measured in 2014, after seven years
of follow-up. Our primary goal is the prediction of future body mass index
(BMI), using biomolecular markers measured at baseline. More specifically,
we would like to compare the predictive ability of the available metabolomics
and transcriptomics, and to determine if both data source should be retained
in order to improve single-omic source predictions of BMI at seven years of
follow-up.

In our setting, it is necessary to both calibrate the predictive model based
on each source of omic predictors and assess the incremental predictive abil-
ity of a secondary one relative to the first set, using the same set of observa-
tions. Hence, in order to avoid overoptimism and provide realistic estimates
of performance, it is necessary to control for the re-use of the data, which
has already been employed for model fitting within the same observations
[13, 14, 15]. This is a very important issue in omic research, where external
validation data are hard to obtain. It is well known that biased estimation of
model performance due to re-use of the data increases with large number of
predictors [16] and omic sets are typically high-dimensional (n < p, n sample
size and p the number of predictors). Extra difficulties in our setting are the
different dimensions (number of features), scales and correlation structure
of each omic source, and possible correlation between omic sources induced
by shared underlying biological factors.

Evaluating the added predictive ability of new biomarkers regarding clas-
sical, low dimensional, settings has been a topic of intense debate in the bio-
statistical literature in the last years (see, for example, [11, 12, 18, 19] and
references therein). Getting meaningful summary measures and valid sta-
tistical procedures for testing the added predictive value are difficult tasks,
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even when considering the addition of a single additional biomarker in the
classical regression context. In particular, widely used testing procedures for
improvement in discrimination based on area under the ROC curve (AUC)
differences [17] and net reclassification index (NRI) [10] have shown unac-
ceptable false positive rates in recent simulation studies [18, 19]. Overfitting
is a big problem when comparing estimated predictions coming from nested
regression models fitted to the same dataset. Moreover, the distributional
assumptions of the proposed tests seem inappropriate, translating into poor
performance of the aforementioned tests even when using independent vali-
dation sets [19].

To date, little attention has been paid to the evaluation of the added
predictive ability in high-dimensional settings, where the aforementioned
problems are larger and new ones appear, such as the simultaneous inclu-
sion in a unique prediction model of predictors sets of very different nature.
Tibshirani and Efron [20] have shown that overfitting may dramatically in-
flate the estimated added predictive ability of omic sources with respect to
a low-dimensional set of clinical parameters. To solve this issue, they have
proposed to first create a univariate ‘pre-validated’ omic predictor based on
cross-validation techniques [13, 14, 21, 22, 23] and incorporate it as a new
covariate to the regression with low-dimensional clinical parameters. In a
subsequent publication, Hoefling and Tibshirani [24] have shown that stan-
dard tests in regression models are biased for pre-validated predictors. As
a solution, the authors suggest a permutation test which seems to perform
well under independence of clinical and omic sets. Boulesteix and Hothorn
[25] have proposed an alternative method for the same setting of enrich-
ing clinical models with a high-dimensional set of predictors. In contrast to
[20, 24], they first obtain a clinical prediction based on traditional regres-
sion techniques. In a second step, the clinical predictor is incorporated as an
offset term in a boosting algorithm based on the omic source of predictors.
Previous calibration of the clinical prediction is not addressed in the sec-
ond step and the same permutation strategy as developed by Hoefling and
Tibshirani [24] is used to derive p-values.

In this paper, we propose a two-step procedure for the assessment of
additive predictive ability regarding two high-dimensional and correlated
sources of omic predictors. To the best of our knowledge, no previous work
has addressed this problem before. Our approach combines double cross-
validation sequential prediction based on regularized regression models and
a permutation test to formally assess the added predictive value of a second
omic set of predictors over a primary omic source.
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2. Methods. Let the observed data be given by (y,X1,X2), where
y = (y1, . . . , yn)ᵀ is the continuous outcome measured in n independent
individuals and X1 and X2 are two matrices of dimension n× p and n× q,
respectively, representing two high-dimensional omic predictor sources with
p and q features (p, q > n). The main goal is to evaluate the incremental
or added value of X2 beyond X1 in order to predict y in new observations.
Our approach is based on comparing the performance of a primary model
based only on X1 with an extended model based on X2 and adjusted by the
primary fit based on X1.

2.1. Sequential estimation with two sources of predictors. We propose a
two-step procedure based on the replacement of the original (high-dimensional)
sources of predictors by their corresponding estimated values of y based on
a single-source-specific prediction model.

In the first step, we build a prediction model for y based on X1 and a
given model specification f . Based on the fitted model, the fitted values
p1 = f̂(X1) = (p11, . . . , p1n)ᵀ are estimated. Then, for each individual i, we
take the residual ri = yi−p1i. We consider r = (r1, . . . , rn)ᵀ as new response
and construct a second prediction model based on X2 as predictor source:

(1) p2 = E(r|X2) = f(X2)

This is equivalent to including p1 as an offset term (fixed) in the model
based on X2 for the prediction of the initial outcome y:

(2) p2 = E(y|X2,p1) = f(X2) + p1

Several statistical methods are available to derive prediction models of
continuous outcomes in high-dimensional settings. In this work, we focus
on regularized linear regression models [16], where f(X) = Xβ and the
estimation of β is conducted by solving minβ(Xβ−Y)ᵀ(Xβ−Y)+λpen(β),
where pen(β) = 1−α

2 ||β||
2
2 + α||β||1. The penalty parameter λ regularizes

the β coefficients, by shrinking large coefficients in order to control the bias-
variance trade-off. The pre-fixed parameter α determines the type of imposed
penalization. We consider two widely used penalization types: α = 0 (ridge,
i.e., `2 type penalty [26]) and α = 1 (lasso, i.e., `1 penalty [27]). Note that
other model building strategies for prediction of continuous outcomes could
have been used in this framework, such as the elastic net penalization [28]
by setting α = 0.5, or boosting methods [40, 29, 41], among others.

2.2. Double cross-validation prediction. The use of a previously esti-
mated quantity (p1) in the calibration of a prediction model based on X2
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(expressions (1) and (2)) requires, in absence of external validation data, the
use of resampling techniques to avoid bias in the assessment of the role of
p1 and p2. We use double cross-validation algorithms [20, 22, 23, 24], con-
sisting of two nested loops. In the inner loop a cross-validated grid-selection
is used to determine the optimal prediction rule, i.e., for model selection,
while the outer loop is used to estimate the prediction performance. In our
setting, the outer loop allows obtaining ‘predictive’-deletion residuals which
fully account for the inherent uncertainty of model fitting on the primary
source (X1), before assessing the added predictive ability of X2, given by
p2. In this manner, we avoid bias in estimates of predictive ability which
would result from use of a single-cross-validatory approach only. The ba-
sic structure of the double cross-validation procedure to estimate unbiased
versions of p1 and p2 is as follows:

Step 1
Input: y, X1

Output: p1 = (p11, . . . , p1n)ᵀ

1. Randomly split sample S in J mutually exclusive and exhaustive
sub-samples of approximately equal size S[1], . . . , S[J ]

2. for j ← 1 to J , do

a. S[−j] = S − S[j]
b. Randomly split sample S[−j] inK sub-samples S[−j;1], . . . , S[−j;K]

c. for k ← 1 to K , do

i. S[−j;−k] = S[−j] − S[−j;k]
ii. Fit regression model y = f̂

[−j;−k]
λl

(X1) + ε for a grid of
values of shrinkage parameters λl, l = 1, . . . , L to S[−j,−k]

iii. Evaluate f̂
[−j,−k]
λl

,l = 1, . . . , L in the k-th held-out sub-

sample S[−j,k] by calculating ê
[k]
λl

=
∑

(y,X1)∈S[−j,k]
(y −

f̂
[−j,−k]
λl

(X1))
2

iv. end for

c. Compute overall cross-validation error: ê
[−j]
λl

= 1
K

∑K
k=1 ê

[k]
λl

,
l = 1, . . . , L

d. Choose λopt = minl=1,...,L(ê
[−j]
λl

) and calculate predictions of

y in the j-th held-out sub-sample S[j], p
[j]
1 = f̂

[−j;−k]
λopt

(X1),

(y,X1) ∈ S[j]
e. end for
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3. The vector of predictions of y, p1 = (p11, . . . , p1n)ᵀ is obtained

by concatenating the J p
[j]
1 , j = 1, . . . , J vectors, i.e., p1 =

(p
[1]
1 , . . . ,p

[J ]
1 )ᵀ

Step 2
Input: y, p1, X2

Output: p2 = (p21, . . . , p2n)ᵀ

4. Compute double cross-validated residuals r = (y1 − p11, . . . , yn −
p1n)

5. Repeat Step 1 considering r as outcome and X2 as set of predic-
tors. Note that this is equivalent to obtaining the double cross-
validation predictions of y based on X2 considering p1 as offset
variable in the J fits in 2.c.ii.

2.3. Summary measures of predictive accuracy based on double cross-
validation. In order to evaluate the performance of the sequential procedure
introduced in Subsection 2.1., we propose three measures of predictive accu-
racy, denoted by Q2

X1
, Q2

X2|X1
, and Q2

X1,X2
, based on sum of squares of the

double cross-validated predictions p1 and p2, obtained following the proce-
dure described in Subsection 2.2. These summary measures can be regarded
as high-dimensional equivalents of calibration measurements for continuous
outcomes in low-dimensional settings [30, 31], and an extension of previously
discussed proposals in the cross-validation literature [14].

Denote by PRESS(y,p) =
∑n

i=1(yi − pi)2 the prediction sum of squares
based on a vector of predictions p, obtained according to some arbitrary
model f , p = (p1, . . . , pn)ᵀ = E(y|X) and by CVSS(p1,p2) =

∑n
i=1(p1i −

p2i)
2 the sum of squared differences between two cross-validated vectors of

predictions, e.g., p1 = Ef1(y|X1), p2 = Ef2(y|X2). Let p0 be the simplest
cross-validated predictor of y, based on an intercept-only model. The first
step of the sequential procedure can be summarized by:

(3) Q2
X1

=
CVSS(p1,p0)

PRESS(y,p0)
=

∑J
j=1

∑
j∈S[j]

(
p1j − y[−j]

)2∑J
j=1

∑
j∈S[j]

(
yj − ȳ[−j]

)2 .
Intuitively, Q2

X1
represents the proportion of the variation of the response

y that is expected to be explained by f(X1) in new individuals , re-scaled by
the total amount of prediction variation in the response y. When p1 = p0

(X1 as predictive as a null model based on the mean of y) Q2
X1

= 0 and
Q2

X1
= 1 if p1 = y.
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Assuming that Q2
X1

> 0, the contribution of the second omic source, X2,
in the prediction of y can be summarized by

(4)

Q2
X2|X1

=
CVSS(p2,y − p1)

PRESS(y − p1,y − p1)
=

∑J
j=1

∑
j∈S[j]

(
p2j − (yj − p1j)

[−j])2
∑J

j=1

∑
j∈S[j]

(
yj − p1j − (yj − p1j)

[−j])2 .
Q2

X2|X1
accounts for the predictive capacity of f(X2), after removing the

part of variation in y that can be attributed to the first source of predictors
X1. Its computation relies on the squared difference between p2 (the double
cross-validated predictions resulting from the second step of the proposed
procedure in Subsection 2.2.) and the corresponding residual from the step 1
(r = y−p1) based on X1, re-scaled by the remaining predicted variation on
y after the first step of the procedure. As a result, Q2

X2|X1
can be regarded

as the expected ability of X2 to predict the part of y, after adjusting for
the predictive capacity of f(X1) and accounting for all model fitting in the
first stage of the assessment. Note that in Step 1 of the sequential procedure
J models are fitted, each based on S[−j], providing residuals with expected

zero mean (given specification (1)), i.e., (y − p1)
[−j] ≈ 0, j = 1, . . . , J . Hence,∑J

j=1

∑
j∈S[j]

(
yj − p1j − (y − p1)

[−j])2 ≈∑n
i=1 (yi − p1i)2 and thus

(5) Q2
X2|X1

≈
∑n

i=1 p
2
2i∑n

i=1 (yi − p1i)2
.

Finally, we derive a third summarizing measurement of the overall sequential
process, Q2

X1,X2
, defined as follows:

(6) Q2
X1,X2

=
CVSS(p1 + p2,p0)

PRESS(y,p0)
=

∑J
j=1

∑
j∈S[j]

(
p1j + p2j − ȳ[−j]

)2∑J
j=1

∑
j∈S[j]

(
yj − ȳ[−j]

)2 .

Q2
X1,X2

represents the total predictive capacity of the overall sequential pro-
cedure based on X1 and X2, i.e., the combined predictive ability of X1 and
X2 given by p1 + p2.

The three introduced measures jointly summarize the performance of the
two omic sources under study and their interplay in order to predict the
outcome y. The three measurements vary between 0 (null predictive ability)
and the maximal value of 1. The interpretation of Q2

X1
is straightforward,

as it simply captures the predictive capacity of the firstly evaluated omic
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source. Note that the difference between Q2
X2|X1

and Q2
X1,X2

relies on the
denominator. In general, if X1 is informative, the denominator in expression
(4) will be smaller than in expression (6). Thus, the residual variation after
Step 1 will be smaller than the total initial variation.

The three summary measures are related by the following expression:

(7) (1−Q2
X1

)(1−Q2
X2|X1

) ≈ (1−Q2
X1,X2

).

Consequently, we can rewrite Q2
X2|X1

as follows:

(8) Q2
X2|X1

≈
Q2

X1,X2
−Q2

X1

(1−Q2
X1

)
.

In cases in which Q2
X2|X1

= 0, we get that Q2
X1,X2

− Q2
X1

= 0, and vice

versa. However, Q2
X2|X1

and Q2
X1,X2

− Q2
X1

differ when not zero. Specif-

ically, from expression (8), we obtain that Q2
X2|X1

≥ Q2
X1,X2

− Q2
X1

. In

short, Q2
X2|X1

may be regarded as the conditional contribution of X2 for
the prediction of y with respect to what may be predicted using X1 alone.
Q2

X1,X2
−Q2

X1
measures the absolute gain in predictive ability from adding

X2 to X1. Note that a given source X2 may present a large conditional
Q2

X2|X1
but a small absolute Q2

X1,X2
− Q2

X1
(if, for example, X1 presents

high predictive ability itself). Moreover, due to the relation between p1 and
the resulting vector of predictions after combining X1 and X2, p1 + p2,
expression (8) implies that Q2

X1,X2
≥ Q2

X1
. This desirable property may not

be fulfilled using alternative combination strategies.
In practice, our sequential procedure relies on the realistic assumption of

positive predictive ability of the first source of predictors, X1 (one would only
be interested in assessing additional or incremental information on top of an
informative source itself). Accordingly, we advise to conduct our sequential
procedure using X1 as primary source only ifQ2

X1
> 0, which is, furthermore,

required to derive expression (8).

2.4. Permutation test for assessment of added predictive ability. We in-
troduce a formal test for assessing the added or augmented predictive value
of X2 over X1 to predict y. We propose a permutation procedure to test
the null hypothesis H0 : Q2

X2|X1
= 0 against the alternative hypothesis

H1 : Q2
X2|X1

> 0. The test is based on permuting the residuals obtained
after applying the first step of our two-stage procedure with the data at
hand. Our goal is to remove the potential association between X2 and y
while preserving the original association between y and X1. Explicitly, we
propose the following algorithm:
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Step 1 Calculate the residuals r = y − p1 based on the predictions p1 of
y based on X1, obtained in the first step of the procedure presented
in Section 2.1.

Step 2 Permute the values of r, obtaining rπ and generate values of the
response y under the null hypothesis: y∗ = p1 + rπ.

Step 3 Repeat the two-stage procedure from Section 2.1. for predicting y∗

and obtain the corresponding Q2∗
X2|X1

.

The procedure is repeated M times and the resulting permutation p-
values are obtained as follows:

p-value =
1

M

M∑
i=1

I(Q2∗i
X2|X1

> Q2
X2|X1

),

where M is the number of permutations, and Q2
X2|X1

is the actual observed
value with the data at hand. Note that in Step 2, we generate a ‘null’
version of the original response y and then we repeat the overall two-stage
procedure, which implies that the ‘null’ residuals used in Step 3 are not fixed
and are, in general, different from rπ. This is necessary in order to capture all
the variability of the two-stage procedure and to correctly generate the null
hypothesis of interest. Moreover, the cross-validation nature of the procedure
protects against systematic bias of the residuals obtained in Step 3 based
on y∗ [see Chapter 7 of 16].

Given the aforementioned relations between Q2
X1

, Q2
X2|X1

, and Q2
X1,X2

specified by expression (6) , note that H0 : Q2
X2|X1

= 0 is equivalent to

H̃0 : Q2
X1,X2

− Q2
X1

= 0. This result immediately follows from expression

(6), given that Q2
X2|X1

= 0 if and only if 1−Q2
X2|X1

= 1 (assuming Q2
X1
6= 1).

Hence, both tests are equivalent provided that the distribution under the null
hypothesis is generated by the aforementioned permutation procedure, i.e.,
the p-values, resulting from using Q2

X2|X1
as test statistic or Q2

X1,X2
−Q2

X1

are approximately the same.

2.5. Software implementation. The proposed method has been imple-
mented in R. Our implementation relies on the R package glmnet [32], based
on an efficient coordinate descent algorithm which allows to quickly perform
Step 1 and Step 2 of the double cross-validation prediction introduced in
Subsection 2.1. Unfortunately, due to its reliance on resampling, the permu-
tation test proposed in Subsection 2.4 is computational demanding (each
permutation iteration takes around 15 seconds for n = 100, p = 1000,
q = 100 in a high-end laptop i7 3740 2.7 GHz). Nevertheless, since the
permutation procedure is easy to split in M independent realizations of the
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same computational procedure, we can use parallel computing to speed up
the procedure [33].

3. Simulation study.

3.1. Simulation setup. We use matrix singular value decomposition (svd,
[34]) of each of the two omic sources to generate common ‘latent’ factors
associated with X1, X2, and y. Common eigenvectors in the svd of X1

and X2 introduce correlation among the omic sources. We consider different
patterns in terms of the conditional association between X2 and y (see
Figure 1).

X1

X2

LC

L1

L2

y X1

X2

LC

L1

L2

y

Fig 1: Simulation study. X1 and X2 are two omic predictors sources and y
is the outcome to be predicted. L1, L2 and LC are three independent non-
observed matrices used to generate X1 and X2. Correlation between X1 and
X2 is induced by LC . Left: Null case. No independent (of X1) association
between X2 and y (y generated as a linear combination of columns of LC
plus independent noise). Right: Alternative case. Independent (of X1) asso-
ciation between X2 and y (y generated as a linear combination of L1 and
L2 plus independent noise).

The details of the data generation procedure are as follows:
Step 1 Generate L ∼ N(0, IR), a matrix of r = 1, . . . , R i.i.d. latent

factors of X1 and X2.
Step 2 Define Σ1 (p × p) and Σ2 (q × q), the correlation matrices of

X1 and X2, respectively. Following the recent literature on pathway and
network analysis of omics data [35], we generated Σi, i = 1, 2 according to
a hub observation model [36, see Figure 2].

Step 3 Draw X∗i ∼ N(0,Σi), i = 1, 2, and obtain the svd for each of the
independent matrices X∗1 and X∗2: X∗i = U∗iDiV

T
i , i = 1, 2.
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Step 4 Generate the final correlated X1 and X2 by manipulation of U∗1
and U∗2, the left eigenvectors matrices from X∗1 and X∗2, respectively.
Specifically, for a certain number (C) of predefined columns C1 and C2,
the original submatrices U∗1C1 and U∗2C2 (independent) are replaced by
C common independent latent factors Lc, c = 1, . . . , C generated in Step
1. In this manner, correlation between X1 and X2 is induced, while the
within-omic source correlation structures Σ1 and Σ2 are preserved.

Step 5 Simulate the outcome y = X1β1 + X2β2 + ε, where β1 and
β2 are vectors of regression coefficients of length p and q, respectively and
ε ∼ N(0, 1). Since Xi = UiDiV

T
i , i = 1, 2, we can rewrite Xiβi = UiDiβ

∗
i

and thus βi = Viβ
∗
i , where β∗i represents the association between Xi and

the outcome y through the orthogonal directions given by Ui. Consequently,
we first generate β∗i and we then transform it to the predictor space by using
βi = Viβ

∗
i .

X2

20

40

60

80

20 40 60 80

−1.0

−0.5

0.0

0.5

1.0

Fig 2: Simulation study. Left: Correlation matrix of X1 (p = 1000), four
groups of 250 features each. Right: Correlation matrix of X2 (q = 100), two
groups of 50 features each.

Simulation 1 (‘Null’ scenarios): The second omic X2 source is non-
informative, i.e., β∗2 = 0, but it is strongly correlated to X1, by imposing
common first columns of U1 and U2 (U11 = U21, the correlation between
omic sources is driven through the maximal variance subspace). We con-
sidered different assumptions regarding the regression dependence of y on
X1 which has an impact on the ability to calibrate prediction rules based
on X1 for y. We consider two situations in which the association with y is
unifactorial, in the sense that only one latent factor (one column of U1) is
associated with y, and two multi-factorial situations. One of our objectives
is to illustrate how changing the complexity of the calibration of a prediction
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rule based on X1 (by formulating the problem through regression on either
larger or smaller variance latent factors) may affect the results. We consider
the following ‘null’ scenarios:
(Scenario 1a): β∗1m = 0.01, m = 1; β∗1m = 0, m 6= 1. y is associated to
high-variance subspace of U1, corresponding to the largest eigenvalue of X1.
(Scenario 1b): β∗1m = 0.01, m = 6, β∗1m = 0, m 6= 6. The association with
y relies on a low-variance subspace of U1. Hence, we expect lower values of
Q2

X1
, compared to Scenario 1a. (Scenario 1c): β∗1m = 0.01, m = 1, 2,

β∗1m = 0 otherwise. In this setting we consider a bifactorial regression, as
association with y is a combination of the effect of the two first eigenvectors
of X1. (Scenario 1d): β∗1m = 0.01, m = 1, . . . , 4, β∗1m = 0 otherwise. In
this setting we consider a multifactorial regression, as association with y is
a combination of the effect of the four first eigenvectors of X1.
Simulation 2 (‘Alternative’ scenarios): X2 is associated with y through
latent factors non-shared with X1. The following ‘alternative’ scenarios are
investigated:
(Scenario 2a): β∗1m = β∗2m = 0.01, m = 1, β∗1m = β∗2m = 0, m 6= 1.
The eigenvector related to the largest eigenvalue of each source is associated
to y and the association between X1 and X2 is generated by sharing the
second eigenvectors, i.e., by setting U12 = U22. (Scenario 2b): β∗1m = 0.01,
m = 1, β∗1m = 0, m 6= 1 and β∗2m = 0.01, m = 3, β∗2m = 0, m 6= 3, and
the association between X1 and X2 is generated by setting U11 = U21.
(Scenario 2c): β∗1m = 0.01, m = 6, β∗1m = 0, m 6= 1 and β∗2m = 0.01,
m = 3, β∗2m = 0, m 6= 3, and the association between X1 and X2 is generated
by setting U11 = U21.

Figure 3 shows a Monte Carlo approximation based on a sample of n =
10, 000 observations of the regression coefficients β1 and β2 in the studied
simulated scenarios.

In our basic setting, we considered n = 100 observations, p = 1000 fea-
tures in X1, and q = 100 features in X2. For each scenario, we provide the
mean values and standard deviations of Q2

X1
, Q2

X2|X1
, and Q2

X1,X2
, based

on 5-folds double cross-validation, jointly with the rejection proportions for
testing H0 : Q2

X2|X1
along M = 500 Monte Carlo trials. We evaluated the

permutation test introduced in Subsection 2.3. using nperm = 200 permuta-
tions. We complemented our empirical evaluations of the proposed sequential
double cross-validation procedure by extending our basic simulation setting
in two directions. We checked the impact on modifying sample size (n = 50)
and the complexity of the problem by varying the number of variables con-
sidered in the first stage (p = 4000).

Additionally, we compared the performance of our procedure based on

imsart-aap ver. 2014/10/16 file: AugmentedPredOmics_AAS_accepted.tex date: November 20, 2017
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Fig 3: Simulation study. (a)-(d): regression coefficients (elements of β1,
y-axis) corresponding to each of the p predictors of X1 (x-axis). (c)-(d):
regression coefficients (elements of β2, y-axis) corresponding to each of
the q predictors of X2 (x-axis). The outcome variable is generated as
y = X1β1 + X2β2 + ε, ε ∼ N(0, 1).(e)-(f) provide information about asso-
ciation between y and X1 and (e) and (f) corresponds to the independent
association between y and X2 in the alternative scenarios (for the null sce-
narios 1a-1d the independent association between y and X2 is null). (a)
corresponds to scenarios 1a, 2a and 2b, (b) correspond to scenarios 1b and
2c respectively, while (c) and (d) correspond to scenario 1c and 1d. (e) shows
the association (β2) between X2 and y in scenario 2a and (e) shows β2 for
scenarios 2b and 2c.
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double-cross validation with two alternative strategies. On the one hand, we
provide results based on a two-stage procedure using a single cross-validation
loop (cross-validation is used for model choice but predictions and, therefore,
the residuals used as outcome in the second stage are directly computed on
the complete sample). On the other hand, we check the impact on the results
of over-penalization. Specifically, instead of taking λopt as defined in the inner
loop of the double cross-validation procedure presented in Subsection 2.1.,
we choose a larger value for λ, namely λopt+1s.e.(λopt). The results of these
alternative strategies are provided as Supplemental Material but discussed
in the main text.

3.2. Simulation results. The results for the sequential double cross-validation
procedure (labeled as ‘CV type= CVD, λopt’) are summarized in Tables 1
(ridge regression) and 2 (lasso penalty type).

3.2.1. Ridge regression. For the four ‘null’ scenarios 1a-1d, we expect
Q2

X2|X1
= 0 and rejection proportions of H0 about 0.05. The results of the

sequential double cross-validation procedure based on ridge regression are
satisfactory in this regard. The top part of Table 1 shows that the estimated
Q2

X1
for scenarios 1a, 1c, and 1d are large and very similar (Q2

X1
∼ 0.90). As

it was expected, the estimated predictive ability of X1 is lower in scenario
1b and presents a larger variability, since the association between y and
X1 relies on a small variance subspace. In general, for 1a-1d scenarios the
estimated Q2

X2|X1
is close to zero. However, we observe that the sample size

influences the estimated Q2
X1

and hence, due to the correlation between X1

and X2, also affects the estimation of Q2
X2|X1

. We observe systematically
lower values of QX1 for n = 50 than for n = 100 in all the studied ‘null’
scenarios. This feature translates to systematically larger values of Q2

X2|X1

for n = 50 than for n = 100. However, the permutation test is able to
account for this issue and the level of the test is respected independently of
the sample size. Analogously, increasing the number of features of the first
source X1 (from p = 1000 to p = 4000) while keeping fixed the number of
features of X2 (q = 100) also affects the estimation of QX1 and Q2

X2|X1
. In

this case, the values of QX1 are larger and hence, the values of Q2
X2|X1

tend
to be closer to zero. Worth noting is that the level of the test is also well
respected in this case.

The bottom part of Table 1 shows the results for the alternative scenarios.
As desirable, the power increases with sample size for all the three studied
alternative scenarios. As it was the case for the ‘null’ scenarios, increasing
the sample size tends to lead to better predictive ability of X1. An exception
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to this is scenario 2c, where our double cross-validation procedure seems to
overfit with n = 50. Scenario 2c, unlike scenarios 2a and 2b, is characterized
as a ‘difficult’ prediction problem when considering X1 (association with y
is driven by a low-variance subspace of X1). The greatest power is reached
in scenario 2a, in which the independent association between X2 and y
is driven through the subspace of maximum variation and the first step
of the procedure relies on a relatively ‘easy’ prediction problem. Even if
scenarios 2b and 2c are based on the same independent association between
X2 and y, the impact of the first source on the power of the test is large.
Scenario 2b, in which Q2

X1
= 0.87 for n = 100 reaches a power of 71 %,

while the rejection rate reduces to 19% in scenario 2c, corresponding to a
more ‘difficult’ prediction problem in the first stage, reflected in a low and
unstable Q2

X1
(Q2

X1
= 0.28 for n = 50 and Q2

X1
= 0.09 for n = 100).

3.2.2. Lasso regression. With regard to the ‘null’ scenarios (top part of
Table 2), we observe a good performance for scenarios 1a and 1b, with re-
jection proportions close to the nominal level. Interestingly, the rejection
proportion of the permutation test increases with sample size and the num-
ber of features in the first source in scenarios 1c and 1d, which indicates
a bad performance of the procedure based on lasso regression in these set-
tings. The reason behind this difference with the ridge-based results is the
mis-specification of the lasso with respect to the underlying data-generating
mechanism. Lasso regression assumes that the true model is sparse, while
scenario 1c and, specially, 1d correspond to non-sparse solutions. These find-
ings illustrate how model mis-specification may result in an improvement of
predictions by adding a second source of predictors, not because of indepen-
dent association to the outcome, but just because of the correlation with
the first source of predictors.

The bottom part of Table 2 shows the results for the alternative scenarios.
The conclusions are similar to those observed for ridge regression. The power
increases with the sample size, and the rejection proportions differ across the
three scenarios. However, we observe that ridge outperforms lasso in terms
of power, especially for scenarios 2a and 2b.

3.2.3. Alternative procedures. Tables S3 and S4 summarize the results for
the two aforementioned alternative strategies in the basic setting (p = 1000,
q = 100) and two sample sizes (n = 50, n = 100): ‘CVD, λ1se’ corresponds to
the strategy in which the sequential double cross-validation is over-shrunk
(by taking λopt+1s.e.(λopt) instead of λopt in the inner cross-validation loop)
and ‘CVS , λopt’ represents the sequential procedure based on one single cross-
validation loop (standard residuals as opposed to deletion-based residuals).
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Table 1
Ridge. Mean estimates (and standard deviation in brackets) of Q2

X1
, Q2

X2|X1
, Q2

X1,X2

and rejection proportions of the permutation test based on Q2
X2|X1

along 500 Monte
Carlo trials.

Scenario n Q2
X1

(Step 1) Q2
X2|X1

(Step 2) Q2
X1,X2

(Global) Rej. Prop.

50 0.85 (0.03) 0.07 (0.09) 0.89 (0.05) 0.058
1a 100 0.88 (0.02) 0.03 (0.04) 0.91 (0.03) 0.068

100, p = 4000 0.94 (0.02) 0.03 (0.04) 0.99 (0.01) 0.056

50 0.31 (0.07) 0.04 (0.07) 0.34 (0.09) 0.044
1b 100 0.41 (0.07) 0.01 (0.02) 0.42 (0.07) 0.047

100, p = 4000 0.50 (0.09) 0.01 (0.03) 0.72 (0.13) 0.060

50 0.86 (0.03) 0.06 (0.08) 0.86 (0.04) 0.060
1c 100 0.91 (0.02) 0.02 (0.03) 0.92 (0.02) 0.050

100, p = 4000 0.92 (0.05) 0.02 (0.04) 0.97 (0.05) 0.064

50 0.83 (0.03) 0.05 (0.08) 0.84 (0.04) 0.046
1d 100 0.86 (0.02) 0.00 (0.00) 0.97 (0.01) 0.062

100, p = 4000 0.88 (0.05) 0.00 (0.00) 0.97 (0.05) 0.044

50 0.64 (0.13) 0.50 (0.15) 0.76 (0.16) 0.936
2a 100 0.68 (0.10) 0.60 (0.12) 0.91 (0.11) 0.997

100, p = 4000 0.89 (0.05) 0.59 (0.08) 0.93 (0.06) 0.996

50 0.84 (0.04) 0.16 (0.11) 0.93 (0.04) 0.236
2b 100 0.87 (0.03) 0.11 (0.06) 0.95 (0.01) 0.712

100, p = 4000 0.88 (0.02) 0.10 (0.06) 0.94 (0.03) 0.652

50 0.28 (0.07) 0.11 (0.11) 0.36 (0.11) 0.184
2c 100 0.09 (0.08) 0.01 (0.00) 0.13 (0.16) 0.186

100, p = 4000 0.16 (0.09) 0.08 (0.06) 0.52 (0.09) 0.526
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Table 2
Lasso. Mean estimates (and standard deviation in brackets) of Q2

X1
, Q2

X2|X1
, Q2

X1,X2

and rejection proportions of the permutation test based on Q2
X2|X1

along 500 Monte
Carlo trials.

Scenario n Q2
X1

(Step 1) Q2
X2|X1

(Step 2) Q2
X1,X2

(Global) Rej. Prop.

50 0.79 (0.06) 0.15 (0.14) 0.88 (0.05) 0.058
1a 100 0.86 (0.03) 0.05 (0.06) 0.91 (0.03) 0.054

100, p = 4000 0.89 (0.02) 0.10 (0.06) 0.95 (0.01) 0.140

50 0.18 (0.11) 0.08 (0.12) 0.27 (0.16) 0.056
1b 100 0.33 (0.09) 0.02 (0.04) 0.35 (0.09) 0.056

100, p = 4000 0.44(0.07) 0.03 (0.05) 0.45 (0.07) 0.058

50 0.80 (0.05) 0.12 (0.13) 0.84 (0.05) 0.054
1c 100 0.89 (0.02) 0.04 (0.05) 0.90 (0.03) 0.068

100, p = 4000 0.85 (0.28) 0.13 (0.09) 0.90 (0.03) 0.352

50 0.67 (0.06) 0.14 (0.12) 0.72 (0.07) 0.070
1d 100 0.83 (0.03) 0.05 (0.05) 0.85 (0.03) 0.094

100, p = 4000 0.73 (0.04) 0.12 (0.09) 0.78 (0.04) 0.360

50 0.58 (0.09) 0.44 (0.14) 0.69 (0.13) 0.768
2a 100 0.67 (0.07) 0.53 (0.09) 0.90 (0.03) 1.000

100, p = 4000 0.84 (0.04) 0.47 (0.09) 0.84 (0.06) 1.000

50 0.77 (0.07) 0.21 (0.15) 0.89 (0.06) 0.106
2b 100 0.84 (0.04) 0.12 (0.09) 0.92 (0.02) 0.481

100, p = 4000 0.83 (0.02) 0.18 (0.09) 0.96 (0.02) 0.506

50 0.15 (0.10) 0.12 (0.13) 0.28 (0.17) 0.086
2c 100 0.27 (0.09) 0.09 (0.07) 0.33 (0.11) 0.351

100, p = 4000 0.07 (0.07) 0.06 (0.06) 0.43 (0.07) 0.227
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In general, these two alternative strategies provide different estimates
for the predictive ability of the two studied sources of predictors. Taking
the double-cross validation approach as gold-standard, we observe that the
over-shrinkage of the predictions in the first step of the ‘CVD, λ1se’ method
provokes an under-estimation of Q2

X1
, while the ‘CVS , λopt’ provides an

over-estimation, specially when the association between outcome and first
source of predictors is driven through a low-variance space. Moreover, we
observe that the effect of re-using the data is larger for small sample sizes,
with systematically larger Q2

X1
for n = 50 than for n = 100. However,

under the null hypothesis, the introduced bias on the first step for both
alternatives does not translate in an inflated type I error. The method ‘CVD,
λ1se’ controls the false discovery rate under the null hypothesis in similar
fashion than the procedure introduce in Subsection 2.1. With regard to the
method based on single cross-validation (‘CVS , λopt’), its behavior is slightly
conservative under the null hypothesis.

For the alternative scenarios, as Q2
X1

, Q2
X2|X1

and Q2
X1,X2

, are underesti-
mated by ‘CVD, λ1se’, while ‘CVS , λopt’ overfits both. Even if power increases
with sample size, both methods are systematically less powerful than our
proposal,‘CVD, λopt, which makes it the preferable method from both an
estimation and testing point of view.

4. Application: DILGOM data. To illustrate the performance of the
proposed sequential double cross-validation procedure, and to compare it to
the alternative strategies discussed in Section 3, we analyzed data from the
DILGOM study, introduced in Section 1. The metabolomic predictor data
consists of quantitative information on 137 metabolic measures, mainly com-
posed of measures on different lipid subclasses, but also amino acids, and
creatine. The gene expression profiles were derived from Illumina 610-Quad
SNParrays (Illumina Inc., San Diego, CA, USA). Initially, 35,419 expression
probes were available after quality filtering. In addition to the pre-processing
steps described by [6], we conducted a prior filtering approach and removed
from our analyses probes with extremely low variation (see [37] for details on
the conducted pre-processing). As a result, we retained measures from 7,380
beads for our analyses. The analyzed sample contained n = 248 individuals
for which both types of omic measurements and the BMI after 7 years of
follow-up (mean=26 kg/m2, sd=5 kg/m2) were available. We carried out two
distinct analyses using the added predictive value assessment approach de-
scribed in this paper. As a first analysis, we considered the metabolic profile
as primary omic source for the prediction of the log-transformed BMI and we
evaluated the added predictive value of blood transcriptomics profiles. This
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approach is the most relevant in practice, because of both biological and
economical reasons. On the one hand, metabolome (which contains, among
other, cholesterol measures) is presumably more predictive of BMI than
gene expression in blood. On the other hand, NMR technology is typically
more affordable [38] than available technologies for transcriptomic profil-
ing, so favoring the NMR source seems a sensible approach in our setting.
Nevertheless, to illustrate the properties of our method, we also considered
a second analysis in which we reversed the roles of the omic sources, first
fitting a model based on gene expression and then evaluating the added pre-
dictive value of the metabolome. As in the simulation study, we considered
ridge and lasso regression as prediction models, using the same alternative
strategies to the sequential double cross-validation procedure presented in
section 3 (‘CVD, λopt’): ‘CVD, λ1se’, and ‘CVS , λopt’. The main findings are
summarized in Table 3. To check stability of the results, we artificially re-
duced the sample size of the available DILGOM data and checked the impact
on the estimation of the added predictive ability with our sequential double
cross-validation approach and its corresponding p-value. We also compared
our method with a naive approach, consisting in stacking both metabolites
and transcriptomics, and hence ignoring their different origin. The results
of these two additional analyses are given as Supplemental Materials.

Table 3
Application to DILGOM data. Alternative cross-validation strategies. P-values based on

1000 permutations.

Method CV type Q2
Metab Q2

GE|Metab Q2
Metab,GE p-value

Ridge CVD,λopt 0.305 0.071 0.415 < 0.001
Ridge CVD,λ1se 0.090 0.006 0.102 < 0.001
Ridge CVS ,λopt 0.291 0.137 0.447 0.001

Lasso CVD,λopt 0.343 0.090 0.458 0.004
Lasso CVD,λ1se 0.073 0.004 0.083 0.018
Lasso CVS ,λopt 0.374 0.060 0.457 0.035

Method CV type Q2
GE Q2

Metab|GE Q2
GE,Metab p-value

Ridge CVD,λopt 0.092 0.194 0.327 < 0.001
Ridge CVD,λ1se 0.019 0.091 0.117 < 0.001
Ridge CVS ,λopt 0.153 0.191 0.380 0.003

Lasso CVD,λopt 0.277 0.102 0.453 < 0.001
Lasso CVD,λ1se 0.043 0.122 0.204 < 0.001
Lasso CVS ,λopt 0.372 0.012 0.409 0.490

The upper part of Table 3 shows the results from our primary analy-

imsart-aap ver. 2014/10/16 file: AugmentedPredOmics_AAS_accepted.tex date: November 20, 2017



20

sis, focused on evaluating the added predictive ability of gene expression
with respect to our primary omic set, NMR-metabolomics, in the context
of prediction of future BMI. We observe that NMR-metabolomics itself
presents a moderately large predictive ability. Both ridge and lasso regres-
sion provide very similar Q2

Metab values which are slightly larger than 30%
(Q2

Metab = 0.305 for ridge regression, Q2
Metab = 0.343 for lasso regression).

According to the results shown in the third and forth columns of Table
3, we observe a highly significant positive added predictive ability of gene
expression with regard to log-transformed BMI after 7 years of follow-up.
The size of such added predictive ability (summarized by Q2

GE|Metab) in-
dicates a modest incremental contribution of gene expression, very similar
for the two considered regularization methods (Q2

GE|Metab = 0.071 accord-

ing to ridge regression, Q2
GE|Metab = 0.090 for lasso regression). The final

estimated combined predictive ability of metabolites and transcriptomics
is slightly larger than 40 % (Q2

Metab,GE = 0.415 according to ridge regres-

sion, Q2
Metab,GE = 0.458 for lasso regression). In summary, our main anal-

ysis suggests that adding gene expression to an existing model based on
NMR-metabolome will potentially lead to a significant improvement in the
prediction of BMI at 7 years of follow-up.

The lower part of Table 3 contains the results of our secondary analysis,
in which we consider gene expression as primary source and we evaluate the
addition of metabolomics. As expected, we observe a better performance
of NMR-metabolome than transcriptomics to predict future BMI, for both
ridge and lasso regression. In contrast to metabolites, for which the estimated
value of Q2

Metab was only marginally affected by the two considered regular-
ization methods, the type of shrinkage plays a more important role when con-
sidering gene expression (Q2

GE = 0.092 with ridge regression, Q2
GE = 0.277

with lasso regression). Accordingly, the estimated added predictive value of
metabolites with respect to a primary model based on gene expression is
strongly affected by shrinkage type. Namely, metabolome explains around
19% of the remaining variation of the outcome after accounting for the ridge-
regression-based prediction calibration using gene expression data, while the
equivalent added predictive ability of metabolome drops to 10% if we model
gene expression with a lasso penalty in the first step. Interestingly, when
considering lasso regression, the impact of the considering transcriptomics
or metabolomics as primary source is small, and in fact, the resulting pre-
dictive ability after the overall process is similar for both sequential models
(Q2

Metab,GE = 0.458, Q2
GE,Metab = 0.453).

The results are supported by our first supplementary analysis consisting
of artificially reducing the sample size of the available DILGOM data to
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check the stability of the estimated added predictive ability of the consid-
ered omic sources, measured through Q2

Metab|GE and Q2
GE|Metab. In Table

S1 we observe that the results based on a random subsample of the data of
n = 100 individuals are similar to those obtained with the actual sample,
which indicates that the estimated added predictive values shown in Table
3 are reflecting the independent contribution of the secondary source in the
prediction of BMI and not the effect of recalibrating the primary source
through the second one due to scarcity of data in the first stage. That seems
to be the case if we consider a random subsample of the DILGOM data of
n = 50, when the added predictive ability of the secondary source is pre-
sumably overestimated due to the underestimation of the predictive ability
of the primary source in the first stage of the procedure.

Our second supplementary analysis also supports our sequential approach.
Table S2 shows the estimated values of Q2

Metab,GE for two models in which
we simultaneously model both sources of predictors (without and with scal-
ing). These results show that stacking both omic sources is a bad strat-
egy, even with previous scaling of the two sources of predictors to avoid
the impact of the different scale of metabolomics and transcriptomics. For
both ridge and lasso specifications, we observe that the joint models based
on stacking transcriptomics and metabolomics provide lower Q2

Metab,GE =

Q2
GE,Metab values than the initial Q2

Metab.
With regard to the alternative strategies, Table 3 shows that the use

of a single cross-validation approach overestimates the role of gene expres-
sion when considered alone (‘CVS , λopt’ approach provides a considerably
larger Q2

GE than ‘CVD, λopt’), while the impact on Q2
Metab is lower (due

to its smaller number of features, 139 metabolites versus more than 7,000
gene expression features). Accordingly, we also observe that the impact of
overfitting the residuals is larger when the first source is gene expression.
Especially for lasso regression (for which we observe the absolute largest
difference between ‘CVS , λopt’ and ‘CVD, λopt’ in the first step), we see how
the added predictive value of metabolome is obscured by the overfitting of
the first source (Q2

Metab|GE = 0.012 clearly not significantly different from

0). With respect to the over-shrinkage of the penalty parameter in the inner
loop of the double cross-validation (‘2CV, λ1se’), it leads to a more pes-
simistic estimation of the summary measures in each of the steps of the
procedure, particularly when using ridge regression and the case where the
gene expression is the second source to be considered (Q2

GE|Metab = 0.014).

5. Summary and discussion. In this paper, we addressed the prob-
lem of evaluating the added predictive ability of a high-dimensional omic
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dataset for prediction of continuous outcomes in the context of multiple and
possibly correlated omic datasets.

This problem is increasingly relevant in clinical practice. With the emer-
gence of new omic technologies, researchers would like to compare the pre-
dictive ability of a primary source of predictors with a secondary source,
typically more expensive and noisy, to determine if both sources should
be retained in order to improve single-omic predictions, and if that is the
case, to provide a predictive rule based on both sources. To achieve this,
we proposed a sequential method which consists of considering the vector of
residuals based on the primary source of predictors as outcome when fitting
a prediction model based on the secondary source of omic predictors. This is
equivalent to introducing the vector of individual predictions based on the
primary source as an extra covariate with fixed coefficient when fitting a pre-
diction model for the original outcome based on the secondary source of omic
predictors. The use of a vector of predictions (which are fitted themselves)
in a subsequent prediction model requires cross-validation to account for the
uncertainty of calibrating the first source of predictors in the procedure. We
have proposed several summary measures, based on double cross-validation
predictions. Moreover, we have introduced a permutation test to formally
test for added predictive ability of the secondary source.

We have focused on the case in which external validation datasets are
not available and, hence, researchers have to fit and compare the predic-
tive performance of different models using the same set of patients (internal
validation). This is a common situation in practice. Epidemiological studies,
such as the Finrisk (DILGOM), expand their clinical databases by including
sequences of novel (omic) biomarker measure sets, which cover different bio-
logical processes and which are obtained using different technologies. Access
to equivalent data from other studies is typically hard to obtain. Moreover,
due to technical and economical reasons, these new sets of markers are typ-
ically evaluated on a reduced number of individuals of the study, leading to
n < p situations.

Closely connected to the difference between the internal and external val-
idation, is the issue of choice between standard classic (lack-of-fit) residuals
and the deletion-prediction residuals employed in this paper. Use of standard
residuals may suffice when adding novel predictor data to an established and
known (external) risk score, but in general greater caution should be applied.
Nevertheless, use of standard residuals from previous model fitting when as-
sessing added-value still seems to be the norm in most analyses. This applies
not only to biostatistics [25], but also to related fields such as chemometrics
[39]. We have shown through simulations and the analysis of the DILGOM
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data that use of deletion-residuals is essential to avoid substantial bias in
the assessment of the added value of a secondary predictor set, when added
to a primary set using the same patient data.

Another feature of our method is that it does not only account for the pre-
dictive capacity of the first predictor set, but also depends on model choice.
Hence, our added prediction assessment is not just evaluating the predictive
impact of a secondary set of measurements in its own right, but rather the
joint impact of choice of predictors, model, and estimation approach.

Our application to real data shows that better predictions can be obtained
by adding transcriptomics to a model based on NMR-metabolomics, outper-
forming single-omic predictions. We have also illustrated the impact of model
misspecification in our approach and shown that naive approaches which ig-
nore the different nature, size and scale of the considered source of predictors
fail, providing worse results than model based on NMR-metabolomics only.

In our approach, the first source of predictors is prioritized. Several rea-
sons may motivate such an asymmetric approach to combination. On the
one hand, available omic sources typically differ in cost and interpretabil-
ity, and hence researchers may be interested in prioritizing more economic
and interpretable sources. This was the case in our real data application
based on the DILGOM study. NMR metabolomics measurements are more
affordable than transcriptomic profiling, and also more interpretable in the
context of BMI prediction. Hence, favoring NMR measurements seems logi-
cal in our setting. Similar reasons are typically used to favor classical clinical
parameters when evaluating the addition of omic sources to clinical mod-
els. One could, for instance, add a novel (biomolecular) marker set, e.g.,
metabolome, to a set of clinical features such as glucose, blood pressure, and
serum cholestrol, which may potentially be correlated to the metabolome
markers [20, 24, 25]. On the other hand, our two-stage approach, by fixing
the predictive ability of the first source of omic predictors, is robust to dif-
ferences in scaling and dimensionality between the two sources of predictors.

However, a potential drawback of our sequential approach is its reliance
on the order of adding predictors to the model. Alternative non-sequential
models (beyond the naive stacking of omic sources) based on simultaneous,
but omic-specific, penalization parameters could be used to overcome this
limitation. For example, group penalization approaches, based on group lasso
[43], sparse group lasso [44], or the recently proposed group ridge [45] could
be interesting alternatives to our two-stage approach. Further research is
needed to determine how to adapt these methods to our setting in order to
correctly deal with differences in scales and dimensionality.

In this work, we have focused on continuous outcome, but our method may
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also be immediately extended to other outcome types, particularly to the
classification context (binary outcome) and to time-to-event data, for which
generalizations of linear regularized regression in high-dimensional settings
are available. Summary performance measures as Q2

X1
and Q2

X1,X2
can be

still derived in the binary outcome context. However, given its reliance on
the residuals, the extension of the conditional Q2

X2|X1
to the binary and

survival contexts is not straightforward. Also, the proposed testing proce-
dure requires major modification when considering more complex responses.
Moreover, alternative prediction rules could also be used, beyond linear reg-
ularized regression considered here. Boosting algorithms might be an in-
teresting choice worthy of further study in the high-dimensional augmented
predictive framework, as an extension of [25], including more complex model
specifications, such as non-linear and interaction terms [40, 41, 42]. All these
topics require substantial new methodological research and are left as inter-
esting lines of future investigation.
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[29] Bühlmann, P., and Hothorn, T. Boosting algorithms: regularization, prediction and

model fitting. Statistical Science 2007; 22: 477-505.
[30] Schemper, M. Predictive accuracy and explained variation. Statistics in Medicine

2003; 22: 2299–2308.
[31] Westerhuis, J.A., Hoefsloot, H.C.J., Smit, S., Vis, D.J., Smilde, A.K., van Velzen,

E.J.J., van Duijnhoven, J.P.M., and van Dorsten, F.A. Assessment of PLSDA cross
validation. Metabolomics 2008; 4: 81–89.

[32] Friedman, J., Hastie, T., and Tibshirani, R. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software 2010; 33:1–22.

[33] Herlihy, M., and Shavit, N.. The Art of Multiprocessor Programming (revised edition).
Elsevier, 2012.

[34] Jolliffe, I.T. (2008) Principal component analysis. Springer-Verlag, New York, second
edition.

[35] Zhang, B. and Horvath, S. A general framework for weighted gene co-expression
network analysis. Statistical Applications in Genetics and Molecular Biology 2005; 4:
Art. 17, 45pp (electronic).
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