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ABSTRACT 

In the recent years, Health Technology Assessment (HTA) processes specific to diagnostics and 

prognostic tests have been created as a response to an increasing pressure on health systems to 

decide not only which tests should be used in practice, but also the best way to proceed, clinically, 

from the information they provide. These technologies differ in the way value is accrued to the 

population of users, by depending critically on the value of downstream health care choices. This 

paper defines an analytical framework for establishing the value of diagnostic and prognostic tests for 

HTA in a way that is consistent with methods used for the evaluation of other health care 

technologies. It assumes a linked-evidence approach where modelling is required, and incorporates 

considerations regarding a number of different areas of policy such as personalised medicine. We 

initially focus on diagnostic technologies with dichotomous results, and then extend the framework by 

considering diagnostic tests that provide more complex information, such as continuous measures 

(for example, blood glucose measurements) or multiple categories (such as tumour classification 

systems). We also consider how the methods of assessment differ for prognostic information or for 

diagnostics without a reference standard. Throughout, we propose innovative graphical ways of 

summarising the results of such complex assessments of value. 
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INTRODUCTION 

 

Funding decisions regarding health technologies are increasingly supported by an explicit 

examination of the available evidence, with the aim of determining which technology is expected to 

confer most value for use in clinical practice – a process called Health Technology Assessment 

(HTA). This process is well established for medicinal products such as drugs, and is explicitly used to 

support policy decisions in many jurisdictions(1). However, some jurisdictions have extended their 

scope and defined separate HTA processes for diagnostic (including screening) and prognostic 

technologies, examples being the Diagnostics Assessment Programme in the UK(2) (created in 2010) 

and the HTA of co-dependent technologies in Australia(3) (created in 2011). This responds to the 

increasing pressure on health systems to decide not only which tests should be used in practice, but 

also the best way to proceed, clinically, from the information they provide; HTA provides the ideal 

framework to inform these two interrelated questions.  

 

Diagnostics and prognostics (for simplicity we will refer to these as tests) are clinical investigations 

that provide information on the patient, the patient’s health, or on the (observed or expected) effects 

of treatment. This information may contribute to diagnosis by helping to detect or to exclude disease, 

or to prognosis by predicting the chance of relevant future health outcomes in a particular patient.(4) 

These technologies differ from medicinal products in a crucial way, relating to the indirect mechanism 

of accruing value which has been recognised by HTA agencies: “most outcomes of interest [from 

diagnostic tests] follow from treatments that are either initiated or not initiated based on the results of 

the tests”,(5)  and there is thus “the need to consider the benefits of their joint use [of the diagnostic 

technology and the treatment], as distinct to the benefit of each technology in isolation”(6). Basing 

decisions on these technologies over value to patient outcomes such as Quality Adjusted Life Years 

(QALY) has been increasingly recognised, not just in the policy context(7, 8) but also in the context of 

the design of evaluative research(9-11).  However, while the principles for a distinct HTA process may 

be well justified, there is insufficient guidance on how specifically to adapt the methods of HTA to 

tests, in a way that reflects the features of these technologies and to allow decision makers to clearly 

understand the drivers of value.(8, 12)  A better, and more integrated, evaluation can also align 

interests across stakeholders.(8, 13, 14) 

 

Early work by Phelps and Mushlin(15) set out such an approach to the evaluation of diagnostic tests 

using cost-effectiveness as a basis. The authors focussed on a single dichotomous diagnostic test, 

i.e. one that distinguishes two subgroups such as presence or absence of disease. Also, the authors’ 

viewpoint was from a Research and Development (R&D) context and considered, for example, pricing 

strategies and development priorities. Despite some additional work specific to a particular 

application(16), there has been limited effort to extend such a framework in a comprehensive and 

general fashion.  
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This paper thus aims to define an analytical framework for establishing the value of diagnostic and 

prognostic tests for HTA in a way that is consistent with methods used for the evaluation of other 

health care technologies. It extends the work by Phelps and Mushlin to consider i) the HTA 

perspective, typically focussing on informing funding decisions, ii) the specificities of prognostic, and 

not just of diagnostic tests, and iii) the fact that tests are becoming increasingly complex, with results 

going beyond dichotomous.  We begin by clearly laying-out the specific characteristics of these 

technologies that are of relevance to HTA, notably, the mechanism of accrual of value. Then we 

present a methodological framework for HTA of tests, first by focussing on technologies with 

dichotomous results. We then extend the framework by considering tests that provide more complex 

information, such as continuous measures or multiple categories (such as tumour classification 

systems). Throughout, we suggest graphical ways of summarising the results of such complex 

assessments of value.  

 

  

MECHANISM OF VALUE FOR DIAGNOSTICS AND PROGNOSTICS 

 

Within HTA, technologies can be considered of value if they present health benefits to the patient 

population that will receive them (benefits discounted of any harms, or the ‘health’ impact of the 

technology). Some jurisdictions consider, alongside health impact, the expected health losses to other 

patients from displaced treatments as result of any additional funding needs (a net health benefit 

approach).(17) This paper will consider either case, as long as the metric of value can be represented 

using a single unit, encompassing health or net health. The framework is equally applicable where a 

wider perspective on benefits is taken or where patient preferences are incorporated into metrics of 

benefit. 

 

In terms of the health impact of diagnostic and prognostic technologies, the mechanism of value 

accrual is more complex to that of other health care technologies. Diagnostic and prognostic 

technologies identify the level or magnitude of attributes that determine (diagnostic) or predict 

(prognostic) health outcomes with and without treatment (where treatment refers to a course of action 

which potentially impacts on health, for example, treatment with a drug, undergoing a biopsy, 

adopting a life-style intervention or even watchful waiting). While these technologies may affect health 

directly (e.g. as a result of adverse events from undergoing a test procedure), their main value 

typically lies in identifying patients expected to benefit from distinct treatments (or other regimens of 

health care such as strategies for the prevention of disease, illness or injury).(18) The mechanism by 

which value is generated is not direct, but instead arises from tailoring treatment decisions to patient 

characteristics. It can be structured using three interlinked components(15): 

  

i)   Classification: When a test is applied to individual patients it may return one of a set of possible 

results. In some cases, the test results can be directly used to define the patients being treated, as 

is the case with a test returning a positive or negative result. However, where treatment options are 
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fewer than the number of possible results from the test, there is the need to apply a classification 

rule. The classification rule pools some of the test results to identify the groups of patients who will 

be treated differently – for convenience we refer to these as treatment groups. For example, for a 

test reporting results on a continuous scale, a cut-off may be needed to classify patients into two 

treatment groups (i.e. those above and below the cut-off), one of which may benefit more from 

treatment than the other. It is, however, important to evaluate the use of alternative classification 

rules. For example, we could alternatively choose not to treat patients with extremely high or 

extremely low test results, if that proves more valuable, and use two cut-off values instead of one. 

Patients with low and high test results, not treated, are, according to our definition part of the same 

treatment group. However, given these two subgroups may have different prognosis and resource 

use profiles, they may need to be considered separately in a decision model.  

 

ii)  Choice: When testing, and after knowing the results of the test and classifying patients into 

treatment groups, there are choices to be made about which treatments those treatment groups 

will receive. Such choices are critical as the value of a test often does not depend on the test itself 

but on the capacity to benefit from better therapeutic choices. This component thus relates to 

therapeutic choices made for each treatment group after knowing the classification.  

 

iii) Outcomes: This component involves the quantification of the consequences of treating the 

distinct treatment groups (or subgroups within these if the model is non-linear) in terms of 

(net)health. This is an important component as the value of testing is bound by the outcomes 

associated with each treatment option.  

 

These multiple, interlinked, components make these technologies distinctive from treatments(19). In 

practice, these principles should be used when specifying the decision problem, the clinical pathways 

for modelling and the value proposition of the new test (9, 12).  Where evidence is available 

separately for each of the components of value, (net)health can be determined by mathematical 

models using the relations established above – the generally endorsed linked-evidence approach (5, 

19-21) akin to a decision modelling approach often used in cost effectiveness.(22)   

 

Diagnostics and stratified medicine 

The literature on the value of heterogeneity and stratified decision making directly relates to this 

mechanism of value accrual with diagnostic and prognostic tests.(23-25) Heterogeneity is defined as 

the variation in outcome of a population (variability) that can at least partly be explained by some 

attribute of interest.(26)  Heterogeneity is valuable insofar as it allows treatment decisions to be 

stratified across different subgroups so as to generate gains in (net)health; but, for heterogeneity to 

be identified, tests need to be applied that identify the subgroup an individual patient belongs to. 

However, the body of literature on evaluation of heterogeneity(27, 28) is seldom explicit about the 

need to test, and whilst there may be some consideration for the direct health effects of testing such 

as adverse events and the costs of the tests, it rarely makes explicit the potential for classification 
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errors and the fact that there may be alternative tests. For the purpose of this paper, we will interpret 

the value of heterogeneity as the value of optimal treatment once patients have been correctly 

identified for the heterogeneous attribute of interest (value of the perfect testing). Such value is 

unlikely to ever be realised in practice, but it is important to have an idea of the potential gains from a 

perfect test.  

 

With the recent developments in genetic profiling, another policy area receiving much attention is 

personalised care(8 , 14, 29), which considers treatment stratification to its’ limit of the individual. 

Despite full personalisation still being some way off achievable, it is believed that the identification of 

relevant sources of heterogeneity through pharmacogenetics will allow further targeting of R&D to 

allow for full personalised care.(30) A few such developments have been through HTA processes, 

most comprising of targeted treatment to patients more likely to respond as identified through a 

genomic test: recent examples are trastuzumab (e.g. NICE TA257), imatinib  (e.g. NICE TA209) or 

gefitinib (e.g. NICE TA258). The HTA of co-dependent technologies in Australia was created in 

response to these test/treat strategies.(3) 

 

Identifying relevant options for comparison when establishing value  

Value is in essence relative and can only be determined in comparison to something else. The well-

established HTA process for treatments specifies that all possible alternatives should be included in 

an appraisal so that the value of each can be compared(31). This same principle should also apply to 

tests. Options that do not involve testing should be considered alongside those involving relevant 

tests (including tests focussing on different attributes that can also explain heterogeneity) and the 

possibility of using multiple tests or sequences of tests. For each test, alternative classification options 

from test results should be considered, and alternative treatment decisions should also be evaluated. 

Therefore, all possible combinations of tests, classifications and treatments need to be considered. 

 

 

VALUATION FRAMEWORK  

 

Dichotomous test results 

We start by revisiting the Phelps and Mushlin(15) framework (based on a single dichotomous 

diagnostic test and a single treatment option), taking an evaluative perspective instead of an R&D 

perspective. True ‘disease’ status is assumed known in evaluating the tests through the concomitant 

application of a reference test, a test that is definitive for a particular disease.  

 

Figure 1 (top panel) represents the decision problem using the conventional decision tree diagram. 

Such diagrams are useful to identify the different options for comparison, and to list and structure the 

inputs needed to evaluate the (net)health impact of the alternative options. The first node from the left 

(a decision node) represents the decision of whether or not to use a certain test. Note that, for 

simplicity, the diagram does not include the option of using the reference standard for diagnosis, 
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although this should be considered where relevant. The second node identifies the true status of 

patients with diseased patients identified as D+ and healthy patients as D-; this is a stochastic node 

reflecting the expected likelihood of any single patient being diseased (probability of disease (P[D+], 

or prevalence). The third node available describes the distribution of test results within disease status 

groups. In the case of a dichotomous test result no classification rule is required. Thus, the test 

directly classifies patients into two treatment groups, one where the test is positive, T+, and another 

where the test is negative, T-.  The decision tree in Figure 1 includes the test results conditional on 

the true disease status – i.e. the test performance (its accuracy). To describe performance, two 

quantities are often used: sensitivity, referring to the probability that the test of interest is positive 

when the disease is present (true positives, P[T+|D+]); and specificity, which refers to the probability 

that the test is negative when the patient is not diseased (true negatives, P[T-|D-]).(32) With an 

‘imperfect’ test some of the patients may be incorrectly identified, in which case sensitivity and/or 

specificity will assume values lower than 1.  

 

Figure 1: Decision tree schematic: dichotomous results and two treatments available 

 

Diagnostic with reference standard 

      

 

Prognostic or diagnostic without reference standard 
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Treatment choices follow classification. If the test is not made available, should all or no patients be 

treated? When testing, should only patients who tested positive be treated, or also those who tested 

negative? Setting up such an explicit decision tree allows the exhaustive identification of all options 

for treatment -- if only one treatment is available (as is considered in Figure 1) six alternative decision 

options can be defined for comparison. These are listed in Table 1 with numbers 1 to 6.  

 

Fully structuring the problem using a decision tree also allows the identification of parameter inputs, 

estimates of which are needed for evaluation. Probability parameters inform stochastic nodes, and 

each is formulated as conditional on reaching the previous node on the pathway.  For example, the 

probability of having a positive test is conditioned on disease status being positive, and alternatively, 

negative.  Also, all possible pathways defined by the tree will need to be associated with expected 

health and cost outcomes (outcomes component). By knowing true disease status, the outcomes of 

treatment can be comfortably assumed independent of test results and only conditioned on true 

disease status. For the example in Figure 1, evidence on the outcomes of the following patients would 

be needed: D+ and treated, D+ and not treated, D- and treated and D- and not treated. These 

highlight the population-level trade-offs imposed by the imperfect tests: the gains of treating diseased 

patients compared to not treating them are expected to be valued at 0.8 QALY (1.8 QALY on average 

for diseased patients treated minus 1.0 QALY for diseased patients left untreated), as opposed to the 

0.6 QALYs expected to be lost by treating healthy patients in comparison to not treating them 

(2 QALY for healthy patients untreated minus 1.4 QALYs for those inappropriately treated). Any direct 

(adverse events) and indirect (opportunity costs) effects of the tests should also be considered.  

 

Evaluating total (net)health for each possible decision option consists of rolling-back the decision tree 

using the estimated parameter inputs described above; a detailed explanation of the calculations 

required and the results for the hypothetical example are shown in Table 1.  
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Table 1: Total (net) health associated with alternative strategies: dichotomous test results and single treatment 

strategies Test treat if t+ treat if t- tNH, QALY 

Incremental 

tNH 

strategies not involving testing  

1 No test Yes Yes 1.64 

2 No test No No 1.40 

strategies with  test A alone 

3 Test A Yes Yes 1.63 

4 Test A Yes No 1.666 

5 Test A No No 1.39 

6 Test A No Yes 1.354 

value of test A (4 vs. 1)  0.026 

Strategies  with Reference Standard (RS) 

7 RS Yes No 1.68 

8 Test A followed by RS (on - to A) Yes No 1.734 

9 Test A followed by RS (on + to A) No No 1.602 

value of testing (8 vs. 1)  0.094 

P 
Test without misclassification, without costs or direct health 

effects) 1.88  

value of heterogeneity (P vs. 1) 0.24 

Notes on calculations: The (net)health of option 1 (not testing but treating all) can be calculated by considering the outcomes of 

diseased and healthy patients after treatment (i.e. 1.8*0.6+1.4*0.4), totalling 1.64 QALY. For options that involve testing, 

evaluating the decision tree implies determining the proportion of patients correctly and incorrectly classified according to 

disease status, and attributing the appropriate health outcomes. For option 4 (treating only if test is positive), the outcomes of 

each of four groups of patients are summed: (i) diseased patients that have been treated, P[D+] x P[T+|D+] x NHD+,treat, (ii) 

diseased patients that have not been treated, P[D+] x (1-P[T+|D+]) x NHD+,no treat, (iii) healthy patients that have been treated, (1-

P[D+]) x (1-P[T-|D-]) x NHD-,treat and, finally, (iv) those healthy patients that have not been treated, (1-P[D+]) x P[T-|D-] x NHD-,no 

treat. Additionally, the (net)health associated with the test itself is important, NHtest (here is assumed to be associated with -0.01 

QALY). For option 4, the total (net)health totals 1.666 QALY. 

 

Out of the 6 options (1 to 6), option 4 is the one that confers maximum population value and, as such, 

would be expected to be funded by the health care system. The value of the diagnostic test can be 

determined by comparing option 4 (i.e. the testing strategy associated with the highest value) with 

option 1 (i.e. the option that does not involve testing with the highest value) – and for this example the 

value of the diagnostic test is 0.026 QALY per patient.  

 

It may also be of interest in an evaluation to describe the value of heterogeneity. This entails 

establishing the value of perfectly distinguishing subgroups and treating them appropriately. This can 

be simply done by assuming perfect sensitivity and specificity (both with probability of 1), and no costs 

or adverse events of testing (i.e. NHtest = 0) -- strategy P in Table 1. The value of heterogeneity (value 

of the perfect test) compares the value of P to the value of the best non-testing strategy (strategy 1 in 

our example). For the example in Figure 1, the value of heterogeneity is 0.24 QALY. The value of the 

perfect test provides a necessary condition for establishing the value of any new test (i.e. if the test 

costs more than this it can never be of value). The value of heterogeneity is much larger than the 

0.026 QALY conferred by the imperfect test A, indicating how much is lost from current suboptimal 

strategies  

 

Table 1 includes, for completeness, strategies 3 and 5, where all patients are tested but regardless of 

its results all are treated, or not treated, respectively.  Such strategies are, in this example, always 
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associated with worse (net)health outcomes than strategies 1 and 2, respectively, due to the test’s 

costs or adverse events. These strategies could have been reasonably excluded from consideration a 

priori.  

 

Drivers of value 

Given the mechanism of accrual of value specific to tests, there are three main aspects driving value. 

The first is the prevalence of disease. The higher is the prevalence the more likely it is that ‘treating 

all’ is preferred to testing – ultimately, as prevalence approximates 1, the costs that testing imposes 

may not compensate the ability to distinguish the few existing healthy patients. Conversely, the lower 

the probability of disease the more likely it is that ‘treating none’ is preferred to testing. Figure 2a 

illustrates the implications of varying the prevalence in the example above, ceteris paribus, in terms of 

(net)health for strategies 1, 2 and 4. The (net)health of the strategy that offers best value for each 

prevalence figure is highlighted in black, and shows that it is worth testing for a range of prevalence 

values between 8% and 63% (shaded grey area).  Figure 2b shows an alternative way of presenting 

these results, analogous to the graphical displays Phelps and Mushlin proposed(15): instead of the 

absolute (net)health, it presents the incremental (net)health in relation to the next best non-testing 

strategy.  
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Figure 2: Critical aspects of value: disease prevalence (ceteris paribus in relation to Figure 1). 
 

(a) total (net) health    
 

  

 

 

 

 

Another important driver of value is the performance of the test, i.e. its accuracy. Again using the 

example in Figure 1, sensitivity and specificity can be varied, ceteris paribus, to show their impact on 

results. The boundary of acceptance in Figure 3 can be used to identify the combinations of sensitivity 

and specificity that make testing worthwhile where prevalence is held fixed. The boundary represents 

combinations of sensitivity (x-axis)/specificity (y-axis) for which we should be indifferent between 

testing and treating all based on (net)health. Therefore, combinations to the right side of the line lead 

to recommendations to test, combinations to the left lead to recommendations of treating all.
1
 The 

grey line identifies the sensitivity and specificity values assumed in Figure 1. 

                                                           
1
 Note that testing is compared to treat all because, at the assumed prevalence, this is the best non-testing option. 

Don’t treat 

Test and treat 
Treat all  

: Range of values of probability of disease which support the use of a testing strategy 

(b) incremental total (net) health of testing in relation to next non-testing strategies  -- value of testing 
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Figure 3: Critical aspects of value: test performance (ceteris paribus in relation to Figure 1). 

   

 

 

The other main key driver of value is the value of the available treatments themselves. That is, the 

magnitude of health outcomes with each decision option (including the no-treatment option where 

relevant). For the example in Figure 1, a strategy of testing (strategy 4) is only of value insofar as the 

losses in health imposed by not treating some of the diseased (imperfect sensitivity) and treating 

some of the healthy (imperfect specificity) and additional losses due to costs of direct health effects of 

testing are greater than the losses imposed by treating all of the healthy patients who would be 

treated under strategy 1. This means any changes to the outcomes of treatment may affect the value 

of testing.  

 

Sequences of tests 

Continuing with the dichotomous test example, but now considering the reference standard test as an 

alternative test (here denominated test R), its use in isolation or in sequence with the imperfect test 

(here denominated test A) also become relevant. The reference test is, in this example, associated 

with significant direct health losses (NHR = 0.2 QALY) but, by definition, has perfect sensitivity and 

specificity. In this context, options 7, 8 and 9 were deemed as relevant options for comparison (see 

Table 1). Strategy 7 uses the reference test alone, and strategies 8 and 9 use it only in patients who 

tested negative and positive to test A, respectively.  Note that other options were omitted, for example 

those involving treating patients classified as negative
2
.  The strategy conferring the most (net)health 

is strategy 8, and the value of testing when the options are extended in this way is higher at 0.094. In 

relation to the use of test A in isolation, the sequence represents an almost fourfold improvement in 

(net) health gains. However, it still falls short of the value of heterogeneity, evaluated at 0.24 QALYs 

                                                           
2 

This option can safely be ignored only if outcomes of treating are undoubtedly better in the diseased, and equal or worse in 

the non-diseased 

Treat all  

     : Area for which 

combinations of vales of 

sensitivity and specificity 

provide higher (net) health 

than treating all 

 

-- : Combination of values 

assumed in Fig 1 

Test and treat 
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in this example, indicating that further developments of the tests involved (e.g. aimed at reducing 

adverse events of the RS or reducing misclassification with test A) could be of value.  

 

How do prognostics differ from diagnostics? 

The above principles on the accrual of value hold true for both diagnostics and prognostics(25). 

However, prognostics differ from diagnostics in that they aim to predict uncertain events occurring in 

the future that cannot be known at the stage of testing.(33) The outcomes component cannot be 

assumed independent of test results. An important consequence is that evidence becomes specific to 

the context of the primary research informing outcomes, limiting generalisability.(34) The same is true 

for diagnostic tests without a perfect reference standard. The bottom panel in Figure 1 illustrates how 

the decision tree diagram would change for a prognostic measure (and a diagnostic test without a 

perfect reference standard), and lists the inputs required.  

 

Beyond dichotomous 

Clinical investigations are increasingly complex, with many moving beyond simply detecting the 

presence or absence of a disease. One aspect of this complexity is the format of test results, which 

may range from descriptive information (e.g. signs and symptoms), to continuous results (e.g. 

physiological quantities such as cholesterol or blood pressure), to complex imaging technologies or 

composite measures using a series tests (e.g. TNM Classification of Malignant Tumours). Given that 

clinical policy can only consider as many treatment groups as the number of treatment strategies 

available (including no treatment), more complex test results will require more nuanced classification 

rules. In this section, we will examine how value can be established when tests go beyond reporting 

dichotomous results. For illustrative purposes we will focus on tests reporting continuous results.  

 

Diagnostics for which there is a reference standard 

The first example considered is a test used to restrict the use of a single treatment. The test aims to 

identify two subgroups (healthy and diseased) but does so imperfectly as the distributions of test 

results in the two subgroups may overlap—for certain values of the test one cannot be sure whether 

the patient is diseased or healthy. A hypothetical example is shown in plot (a) in Figure 4.  In this 

case, a single cut-off value may be used as classification rule but, in changing the cut-off, sensitivity 

and specificity will vary. The Receiver Operating Characteristic (ROC) curve(32) depicts the 

relationship between these two quantities as the cut-off changes—plot (b) in Figure 4, with sensitivity 

on the y-axis and 1-specificity on the x-axis. The ROC curve, however, cannot inform which point of 

the curve generates the highest level of (net)health for the population tested. It is more useful to 

present directly the (net)health attained by using alternative cut-off points as illustrated in plot (c) in 

Figure 4. Superimposed in this plot is the boundary of acceptance of the test, which shows that there 

is only value to testing if the cut-off is between 69 and 94 and that the maximum (net)health is 

attained at a cut-off of 85.   
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Figure 4 : Diagnostics: continuous results and two treatments available 

(a) Distribution of test results in the two populations, healthy and diseased   

 
(b) ROC curve 

 
(c) total (net) health associated with relevant test/treat strategies -- acceptance boundary 

 

 

 

Healthy Diseased 

: Range of cut-off values that 

support the use of a testing 

strategy 

 

Vertical grey line indicates the 

cut-off associated with maximum 

expected (net) health  

1.00 

0.01 

1.00 

0.07 

0.96 

0.31 

0.76 

0.69 

0.38 

0.93 

0.10 

0.99 
sens 

spec  

Treat all 

Test and treat 
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The second example extends the previous one to consider three subgroups, three treatment options 

(e.g. two available treatments and no treatment), and two cut-off values for the test results. Plot(a) in 

Figure 5 shows an example of the distribution of test results within each the three subgroups. 

Misclassification exists as the distributions of test results in each subgroup overlap but, given there 

are three subgroups, sensitivity and specificity cannot be used as these are only used for 

dichotomous tests. Instead, analogous measures can be used: probability of a patient in a given 

group j={1,…,3} being identified by the test as belonging to group k={1,…3}. For example, for those in 

group 1 (D=1), two quantities are needed to describe the accuracy of the test:  P[T=1|D=1] (correctly 

identified) and P[T=2|D=1], with the remainder summing to 1 (i.e. P[T=3|D=1] = 1- P[T=2|D=1] - 

P[T=2|D=1]). Additionally, evidence is needed on the outcomes of all three treatment options when 

used in each of the three patient groups. With such evidence, one can identify combinations of the 

cut-offs that return the most health for the population. To display this information, plot (b) in Figure 5 

uses contour lines, where each line represents combinations of cut-offs that lead to equal (net)health 

gains when compared to the next best alternative (which in this example is to treat none). These 

contour lines are only shown for the acceptance region for testing (shaded in the figure), i.e. where 

incremental (net)health as a result of testing is equal to, or above, 0. The plot shows that a lower cut-

off of 73 and an upper cut-off of 90 lead to highest gains. 
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Figure 5: Diagnostics: continuous results and three treatments available  

 

(a) Distribution of test results in the three populations   

 
b) incremental total (net) health of testing in relation to next non-testing strategies  -- contour plot with shaded acceptance 

region. Contour lines represent the combinations of cut-offs that lead to equal net health gain compared to the next best 

alternative. So, the 0.01 line represents the combinations associated with a net health gain of 0.01 QALYs. 
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Prognostics and diagnostics without reference test 

In this subsection we illustrate how a hypothetical prognostic measure with continuous results (risk 

score, for example) can be evaluated within HTA. A possible distribution of test results in the 

population of interest is shown in plot(a) in Figure 6. Panel (b) of Figure 6 shows the (net)health of 

treating versus not treating patients with a given test result—this is no more than a marker-by-

treatment predictiveness curve(34) or a treatment effect pattern plot(35), using (net)health as the 

outcome of interest. This plot can be used directly (i.e. independently of panel a) to define threshold 

scores above which treatment should be recommended—in this example the threshold should be set 

at 139 where the (net)health of treating becomes higher than that of not treating.  

 

Figure 6: Prognostics: two treatments, 1 cut-off value. 

(a) Distribution of the prognostic score in the population 

 

(b) (net) health conditional on test results 

 

(c) population (net) health for a range of cut-off scores 
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However, a cut-off lower than 139 can still prove beneficial in relation to not treating. This is because 

the gains from treating those that benefit the most (at very high risk scores) still compensate for the 

losses imposed on those treated at a lower score than the optimal. Plot (c) in Figure 6 shows the 

average (net)health of the population when treating only those above a cut-off, and varies the cut-off 

values considered. The use of the prognostic test for clinical decision making is worthwhile for cut-off 

values above 134, despite the maximum (net)health still being generated at the cut-off of 139. Note 

that the distribution of test results in the population of interest (panel a) matters for this cut-off.  

 

 

DISCUSSION     

 

This paper lays out a coherent framework for the assessment of diagnostic and prognostic tests for 

HTA using a linked-evidence(5), or decision modelling, approach. It is solidly grounded on the indirect 

mechanism of value accrual for these health technologies that can be summarised using three 

interlinked components: classification (using test results to define treatment groups), choice (in terms 

of treatment) and outcomes. Importantly, this paper proposes a series of innovative graphical displays 

aiming to better inform decision making. 

 

Implications for appraisal processes 

The indirect and complex mechanisms of value for diagnostic and prognostic tests means that 

decisions over the ‘upstream’ tests that are used to restrict treatment to particular groups cannot be 

separated from decisions over ‘downstream’ treatments. It is, however, seldom the case that these 

decisions are considered simultaneously. Diagnostic decisions reached by NICE, for example, cannot 

issue recommendations on treatments. Also, the typical evaluation question ‘which patients to treat’ 

should be broadened to a question of ‘when to treat’ which is closer to clinical practice where 

treatment decisions are reviewed longitudinally over time.(31) 

 

To inform decision making, all possible combinations of whether and when to test, test(s) to use, 

classification rules and treatment choices should be evaluated and compared. This may mean the 

evaluation becomes very complex, with many options to compare, but such complexity is necessary 

to identify the combination generating the most health for the population. It may prove to be 

analytically challenging, and therefore removing some of the options from the analyses may be 

desirable. A first consideration may be relevance, which can be established a priori based on specific 

characteristics of the tests or its purpose/role.(11) For example, if treatment cannot be undertaken 

without a test, e.g. tumor location in breast cancer surgery, a strategy of not testing and treating 

cannot be considered. However, there may still remain a multitude of options left for evaluation. With 

a value-based approach, options that do not retain significant possibility of being effective or cost-

effective (given the existing uncertainties) can also be confidently excluded from the results. For 

example, Colbourn et al(36) in evaluating prenatal testing for group B streptococcal infection, 

alongside antibiotic treatment and vaccination, retained for analysis only combinations of interventions 
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that had more than a 1% probability of being cost effective, and discarded those remaining. Complex 

evaluations involving multiple strategies could also explore the use of operations research 

methods(37), such as optimisation where the number of combinations is large, or Markov decision 

processes for sequential testing [example in (38)].  

 

A final critical implication for policy of the interlinked nature of the components of value is that a 

change in any element generates the need for re-appraisal. For example, if a new treatment emerges, 

or the price of one of the treatments changes, the value of upstream tests should be re-assessed, 

with classification rules and optimal treatment choices reviewed. Within a linked evidence approach 

re-appraisal is, in principle, simple as the evidence on components that are unchanged can still be 

used. 

 

End-to-end studies 

Clinical research on diagnostic tests has recently moved from exclusively focussing on accuracy 

evidence to recently highlighting the need for end-to-end, or outcome, studies(39)– clinical trials 

randomising patients to testing strategies (which may be a testing strategy and one not involving 

testing) to detect differences in health outcomes. Some policy makers in HTA have explicitly stated a 

preference for such end-to-end studies(3). These studies, however, embed pre-specified choices on 

classification and treatment, not allowing for the mechanisms of value to be made explicit and 

compromise on generalisability and adaptability to other settings. Importantly, where a new treatment 

emerges and re-appraisal is necessary, evidence from an original end-to-end study may become 

irrelevant. Additionally, given the aim of detecting overall outcome differences, the sample sizes for 

such studies may need to be unfeasibly high (especially for less prevalent diseases) with the 

associated costs potentially not worth the limited evidence they produce. Perhaps because of their 

costs, the availability of end-to-end trials is as yet very limited.(40) 

 

Uncertainty 

In the context of HTA, uncertainty refers specifically to uncertainty in knowledge that can be resolved 

through further research; uncertainty arises from sampled data, the need for extrapolation or the use 

of judgements. However, in the diagnostics literature, the term uncertainty has, confusingly, also been 

used to reflect imperfect performance of tests in identifying diseased patients. Accuracy cannot be 

improved with further research but only by developing a ‘better’, less imperfect, test (or by using a 

sequence of complementary tests).   

 

It is important that uncertainty in the evidence base is explicitly considered, so that decision makers 

can be confident in making recommendations where a lower level of decision uncertainty presents. 

But, perhaps more importantly, a careful analysis of uncertainty will help determine whether further 

research is worthwhile and whether to condition the use of a particular technology only in the context 

of research.(39, 40) Given that regulatory processes for these technologies do not have as strict 

requirements for clinical evidence to be presented, it is especially important that any implications of 
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uncertainty are scrutinised. Uncertainty can be reflected through using both deterministic and 

probabilistic sensitivity analysis,(43) Careful consideration should be given to the analyses conducted 

with, for example, the use of bivariate distributions for considering uncertainty in test accuracy given 

the clear correlation between sensitivity and specificity.(44) 
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