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Graphene subjected to chiral-symmetric disorder is believed to host zero energy modes (ZEMs) resilient

to localization, as suggested by the renormalization group analysis of the underlying nonlinear sigma

model. We report accurate quantum transport calculations in honeycomb lattices with in excess of 109 sites

and fine meV resolutions. The Kubo dc conductivity of ZEMs induced by vacancy defects (chiral BDI

class) is found to match 4e2=πh within 1% accuracy, over a parametrically wide window of energy level

broadenings and vacancy concentrations. Our results disclose an unprecedentedly robust metallic regime in

graphene, providing strong evidence that the early field-theoretical picture for the BDI class is valid well

beyond its controlled weak-coupling regime.

DOI: 10.1103/PhysRevLett.115.106601 PACS numbers: 72.80.Vp, 73.22.Pr, 73.23.-b, 73.63.-b

After more than half a century, Anderson localization

remains a central concept in condensed matter physics,

with its many ramifications providing new insights into the

behavior of disordered electrons [1]. The discovery of the

“tenfold” symmetry classes of disordered metals [2,3]—

beyond the standard threefold Wigner-Dyson classification

scheme—has revealed a surprisingly rich diagram of

Anderson localization transitions, including multifractality

and critical delocalization in low dimensions [4].

The interest in critical quantum transport in two-

dimensional (2D) systems has been greatly amplified with

the discovery of graphene, a one-atom-thick crystal

endowed with massless Dirac fermions [5]. The internal

pseudospin of the Dirac fermions—stemming from the

honeycomb lattice structure with two sublattices—enables

a rich variety of quantum transport phenomena [6,7],

including minimum conductivity in the clean limit [8],

and crossover from weak-localization—orthogonal class—

to weak-antilocalization—symplectic class—with increas-

ing impurity potential range [9].

Recently, disordered graphene in the chiral symmetry

class has been the focus of much attention [10–13]. In

chiral models defined on bipartite lattices, disordered wave

functions come in electron-hole pairs with energies !E

linked by a unitary matrix diagonal in the sublattice space,

i.e., jϕ!i ¼ σ̂zjϕ∓i. A remarkable feature of the chiral class

is the existence of critical states at the band center—zero-

energy modes (ZEMs)—possessing multifractal statistics

and an absence of weak localization corrections at all orders

in perturbation theory [2]. In graphene, the simplest

realization of critical ZEMs is provided by randomly

distributed vacancies. A vacancy is a topological defect

obtained by cutting out all adjacent bonds to a given carbon

site. Vacancies drastically affect the spectrum near the

Dirac point, leading to the appearance of ZEMs with

enhanced density of states (DOS) and quasilocalized

character [14,15], which can be detected by scanning

tunneling microscopy [16]. Other examples of chiral-

symmetric disorder in graphene include random non-

Abelian gauge fields (ripples) [17], and resonant scatterers

(e.g., adsorbed hydrogen) [18]. Whether quantum critical-

ity induced by chiral disorder could explain the resilience

of the minimum conductivity of graphene to Anderson

localization is an outstanding question.

The focus of this Letter is on vacancy-induced ZEMs,

recently implicated in a controversy regarding the exact

nature of the quantum transport at the Dirac point [19–22].

Vacancy-defective graphene belongs to the chiral orthogo-

nal ensemble (class BDI in the Altland-Zirnbauer classi-

fication of random fermion models [3]). The vanishing of

the β function of the effective nonlinear sigma model

(NLσM) led Ostrovsky et al. to conjecture a line of

fixed points with nonuniversal metallic conductivity of

the order of the conductance quantum σð0Þ ≈ e2=h

[22–24]. However, the validity of the NLσM of the BDI

class has been questioned, as vacancies are infinitely strong

scatterers, not amenable to perturbative analysis [12]. On

the other hand, numerical evaluations of the conductivity

using wave-packet propagation methods show localization

of all states σðEÞ → 0, including the ZEMs [19–21]. The

Gade singularity in the DOS approaching E → 0 [12],

however, raises questions on the validity of the extraction of

the conductivity using wave-packet propagation methods.

In this Letter we report on accurate calculations of the

longitudinal dc conductivity in macroscopic large disor-

dered graphene. By employing an exact representation of

the Kubo formula in terms of Chebyshev polynomials, we

were able to extract the behavior of σðEÞ at the Dirac point
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with unprecedented resolution. Our results univocally show

that vacancy-induced ZEMs display critical delocalization,

as suggested by perturbative calculations based on the

NLσM [22–24] and numerical studies of the two-terminal

conductance in nanoribbons with resonant scalar impurities

[22,23]. We find a constant conductivity over a wide range

of vacancy concentrations,

σð0Þ ¼ σZEMð1.00! 0.01Þ; σZEM ≡
4e2

πh
:

Strikingly, the ZEM conductivity is found to be robust

with respect to variations in the inelastic broadening

parameter η entering in the disordered Green functions

down to η ¼ 2.5 meV. This result is very surprising as

vacancies are the ultimate case of a strong short-range

disorder in graphene mixing K and K0 valleys [6,7].

The model.—Chiral disordered graphene is modeled by

the standard tight-binding Hamiltonian of π electrons

defined on a honeycomb lattice

Ĥ ¼ −t
X

hi;ji

ðâ†i b̂j þ b̂†j âiÞ; ð1Þ

where hi; ji denotes nearest-neighbor pairs of carbon atoms

and t ¼ 2.7 eV is the corresponding hopping integral [5].

Periodic boundary conditions along zigzag and armchair

directions are employed. The vacancies—obtained by

removing the corresponding pz orbitals—are distributed

randomly on both sublattices with overall concentration ni.
In what follows, we briefly outline the Chebyshev-

polynomial Green function (CPGF) method used to accu-

rately evaluate spectral properties and response functions of

real size systems.

The CPGF approach.—The numerical evaluation of

the lattice resolvent operator ĜðzÞ ¼ ðz − ĤÞ−1 requires a

nonzero broadening (resolution) parameter η ¼ Im z≳ δE,
where δE is the mean level spacing. We are interested in the

limit of small δE, where strong quantum interference

effects associated with ZEMs can be fully appreciated

[4]. Numerical evaluations of disordered lattice Green

functions in the presence of critical states are computa-

tionally highly demanding. In Ref. [12] a time-domain

stochastic method has been employed to extract the DOS

with high resolution. Here, we evaluate target functions

directly in the energy domain by expressing Green func-

tions in terms of an exact polynomial expansion. Our

approach turns out to be particularly advantageous in the

calculation of the conductivity (see below). First-kind

Chebyshev polynomials fTnðxÞgn∈N0
are employed due

to their superior convergence properties [25,26]. The use of

Chebyshev polynomials as a basis set requires rescaling the

spectrum of Ĥ into the interval ½−1∶1'. To this end, we

scale both operators and energy variables, Ĥ → ĥ ¼ Ĥ=W,

ϵ ¼ E=W, and λ ¼ η=W, where W is the half-bandwidth.

With this notation the Green function admits the following

representation:

ĜðEþ iηÞ ¼
1

W

X∞

n¼0

gnðϵ; λÞT nðĥÞ; ð2Þ

where fT nðĥÞg are defined through the Chebyshev recur-

sion relations: T 0ðĥÞ ¼ Î, T 1ðĥÞ ¼ ĥ, and T nþ1ðĥÞ ¼ 2ĥ·

T nðĥÞ − T n−1ðĥÞ. The coefficients fgnðϵ; λÞgn∈N0
are sys-

tem independent and possess a simple closed form [27].

The CPGF expansion [Eq. (2)] is the starting point of the

accurate calculations reported in this work.

Density of states.—We start with a brief discussion of

the DOS. Formally,

νðEÞ ¼ −
gs

πD
Tr Im Ĝ ðEþ iηÞ; ð3Þ

where gs ¼ 2 accounts for spin degeneracy and the bar

means disorder averaging. According to Eqs. (2) and (3),

the information about the DOS is contained in the

Chebyshev moments νn ¼ Tr T nðĥÞ of individual disorder
realizations. To probe features induced by chiral ZEMs

with meV resolution, we consider a honeycomb lattice with

D ¼ 60000 × 60000 sites (≈ 94 μm2). This system has

δE ≈ 0.3 meV at the Dirac point in the absence of

vacancies. The DOS for a dilute vacancy concentration

ni ¼ 0.4% is shown in Fig. 1. Given the large size of the

system simulated, one disorder configuration is sufficient to

obtain very precise results. The expected enhancement of

the DOS associated with ZEMs near E ¼ 0 [14,15] is seen

to dramatically depend on the resolution. Extracting the

exact scaling as E → 0 is a demanding task as the number

of Chebyshev moments required to converge the DOS, i.e.,

N ∝ W=η, can be of the order of several tens of thousands

even for meV resolution; here, N ¼ 15 × 103. (Similar

technical challenges were encountered in Ref. [12].) The

analysis of the data suggests that the singularity is stronger

than that predicted by Gade and Wegner [2] in full

consistency with the detailed numerical study of
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FIG. 1 (color online). Density of states of disordered graphene

as a function of Fermi energy. The Gade singularity of ZEMs is

apparent as the energy levels are probed with increasing reso-

lution η → 0. The pristine DOS is shown (black line) as a guide to

the eye.
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Ref. [12] and the analytical results in Ref. [13]; see

Supplemental Material for full details [27].

Conductivity.—The finite-size Kubo formula reads

σðEÞ ¼
2ℏe2

πΩ
Tr

!

Im Ĝ ðEþ iηÞ v̂∥ Im Ĝ ðEþ iηÞ v̂∥

"

;

ð4Þ

where v̂∥ ¼ ½r̂∥; Ĥ'=iℏ is the velocity operator (taken along

the zigzag direction) and Ω is the area. Here, the broad-

ening η mimics the effect of uncorrelated inelastic scatter-

ing processes, thus defining a time scale τi ¼ ℏ=η for phase
coherence in the system [32,33].

The calculation of σðEÞ follows identical steps as out-

lined for the DOS. The presence of two Green functions in

Eq. (4) requires a double polynomial expansion, rendering

the calculation computationally extremely demanding.

Analogously to the kernel polynomial method [18,25],

the full spectral information is now contained in the

Chebyshev moments σnm ¼ Tr ½T n ðĥÞ v̂∥ T m ðĥÞ v̂∥'. The
number of moments required (≡N2) depends on the desired

resolution. Typically, N ≈ 10 × ðW=ηÞ converges the con-

ductivity to two decimal places. From the knowledge of

fσnmg the dc conductivity σðEÞ is quickly reconstructed.

See Ref. [27] for details.

Full spectral results.—We first provide a bird’s-eye view

of σðEÞ before specializing to the case of ZEMs. For

modest resolutions, η≳ 10 meV, the physically meaning-

ful limit σΩ→∞ðEÞ is achievable in relatively small systems

with D ≈ 107. The fully converged dc conductivity for a

dilute vacancy concentration ni ¼ 0.4% is shown in Fig. 2.

The behavior of σΩ→∞ðEÞ with decreasing η (i.e., increas-

ing τi) provides direct information on the quantum

transport regime [e.g., limη→0 σΩ→∞ðEÞ ¼ 0ð> 0Þ in the

insulating (metallic) phase] [33]. The limit Ω → ∞ is

implicit hereafter. In an energy window≃! 0.2 eV around

E ¼ 0—excluding the Dirac point itself—σðEÞ decreases
as η is lowered, showing that localization effects become

increasingly more important as the thermodynamic limit

η → δE → 0 is approached. The effect is notably stronger

in the vicinity of the Dirac point, where strong localization

(σ ≲ e2=h) takes place already for η ≈ 10 meV. This

indicates that the a priori unknown simulated inelastic

lengths Li ¼ LiðE; τiÞ are sufficiently large that charge

carriers can effectively experience localization. In contrast,

at energies jEj ≳ 0.2 eV an increase of σðEÞ with increas-

ing τi is observed. This suggests that at such energies the

simulated Li is not yet sufficiently large to observe

localization effects. This interpretation is further confirmed

below. At the Dirac point, on the other hand, σðEÞ seems

insensitive to the inelastic broadening parameter, matching

σZEM with 1% precision in the entire range (see inset to

Fig. 2). The anomalous robustness of the dc conductivity as

E → 0 is highly suggestive of a quantum critical point, in

agreement with field-theoretical predictions [24].

High resolution results.—To probe the extension of

delocalization effects at the Dirac point, we devise a

scheme to enable the computation of σðEÞ with meV

resolution. First, we recursively construct the vectors

jφ!ðEÞi ¼
1

W

X∞

n¼0

Im ½gnðϵ; λÞ'Ô
n
!jφi; ð5Þ

where jφi ¼
P

D
i¼1

χijii is a real random vector, Ô
n
þ ¼

T nðĥÞv̂∥, and Ô
n
- ¼ v̂∥T nðĥÞ. The random variables fχig

are uncorrelated and taken from a uniform distribution with

⟪χi⟫ ¼ 0. The series is truncated at n < N when con-

vergence to the desired precision is achieved. Finally, the

Kubo dc conductivity is obtained from

σφðEÞ ¼
2ℏe2

πΩ
hφ−ðEÞjφþðEÞi; ð6Þ

by averaging with respect to both disorder and random

vector realizations, i.e., σðEÞ ¼ ⟪σφðEÞ⟫ [27]. We note

that for ZEMs, Eq. (5) acquires a particular simple form,

jφ!ð0Þi ¼ W−1
P

nIm½g2nð0; λÞ'Ô
2n
! jφi. The advantage of

Eqs. (5) and (6) is that they do not require calculation

of individual Chebyshev moments fσnmg (cost ∝ N2). In

practice, this allows us to reach fine resolution (higher N)

and also much larger systems containing up to a few billion

lattice sites [34].

The high-resolution conductivity data across the various

transport regimes identified earlier are given in Fig. 3. For

convenience, we define an effective system size L( ≡

ℏπvF=η as the length of a pristine graphene system having

δϵ ¼ η at the Dirac point. The largest simulation has
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FIG. 2 (color online). Fully converged Kubo dc conductivity

for a 0.4% vacancy concentration as a function of Fermi energy at

selected values of η. The calculation required N2 ¼ 6.4 × 107

Chebyshev moments. The inset shows a zoom of the peak at the

Dirac point. Statistical fluctuations of the data are within ≃1%.
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L( ≃ 0.7 μm, corresponding to a broadening of only

2.5 meV. The state vectors in Eq. (5) were calculated with

N ¼ 12000 Chebyshev iterations. The ZEM conductivity

shows no sign of localization, being numerically very close

to σZEM ¼ 4e2=ðπhÞ through a parametrically wide range

of inelastic broadenings in the range [2.5,60] meV. This is

to be contrasted with the behavior of σðEÞ away from the

band center. For instance, at energies E ¼ f50; 100g meV

there is a strong suppression towards σ → 0 as L( increases.

The localization is stronger in the neighborhood of the

critical point at zero energy, with states with E ¼ 50 meV

localizing first than those having E ¼ 100 meV. This

behavior can also be inferred from Fig. 2, which shows

that the tendency as η → 0 (L( → ∞) is for states to

localize first in the vicinity of the ZEMs. In the inset to

Fig. 3 the behavior for an energy far away from the Dirac

point is shown. A transition from ballistic to localized

regime is observed as L( increases. Eventually, as L( → ∞,

all states with E ≠ 0 become localized. The latter is

consistent with the behavior expected for random fermions

in the BDI class [1,4]. Crucially, however, our accurate

numerical treatment shows that the chiral symmetry at

E ¼ 0 protects ZEMs from localization up to L( ≈ 1 μm.

This exotic 2D metallic regime had been predicted by the

renormalization group (RG) analysis of the NLσM for the

BDI class [24], although a fully nonperturbative calculation

of the microscopic conductivity able to capture strong

quantum interference effects at the Dirac point was lacking

until now.

Universal ZEM conductivity.—We finally investigate the

robustness of the ZEMs metallic conductivity against

changes in vacancy concentration. According to the per-

turbative RG analysis for white-noise disorder in the BDI

class, σð0Þ should depend weakly on the disorder strength

[24]. The actual picture for vacancies—being infinitely

strong scatterers—is difficult to predict based solely on

field-theoretical methods [12,35]. The little sensitivity of

σð0Þ to the effective length L( intuitively suggests a small

dependence with the defect concentration too. Interestingly,

numerical results for transport across narrow graphene

strips show σð0Þ ≈ σZEM with weak dependence on ni
[23], demonstrating that, although evanescent modes are

strongly affected by scattering from vacancy defects, the

large number of modes available (large DOS) counteracts

perfectly to restore graphene’s clean ballistic conductivity

[8]. To investigate the possibility of a disorder-induced

universal metallic regime in graphene, we perform accurate

Kubo calculations over 2 orders of magnitude in ni. We

take a fine broadening η ¼ 2.5 meV so as to guarantee that

L( is sufficiently large to capture any marked localization

trend near the Dirac point. Our results are summarized in

Fig. 4. Away from the band center the conductivity is

strongly decaying with ni as expected. For instance, at

E ¼ 0.1 eV—a typical Fermi energy in experiments—the

conductivity swiftly enters in the strong localized regime

already for dilute concentrations ni ≈ 0.2%. The depend-

ence of σðEÞ with L( is well fitted by an exponential law

σ ∝ e−L(=ξ( ; see top panel. (The dependence of ξ( with the

defect concentration is shown in the inset to the bottom

panel.) However, at the band center ZEMs show no signs of

localization even beyond the very dilute limit up to

concentrations n ¼ 1%. For completeness we provide
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FIG. 3 (color online). Fully converged Kubo dc conductivity

for a 0.4% vacancy concentration as a function of L(=limp at

selected energies. Here limp ≃ 2.24 nm is the average distance

between vacancies. A large honeycomb lattice with 3.6 × 109

sites was simulated to obtain good precision at large L(.

Statistical fluctuations of the data are within ≃1%.
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the results for E ¼ 0.4 eV where transport is ballistic in the

simulated range of L( up to n ≈ 0.8% (see also Fig. 3).

We briefly comment on previous wave-packet propaga-

tion calculations reporting on σð0Þ → 0 [19–21]. The

strong singularity of the DOS at E ¼ 0 makes the numeri-

cal extraction of the conductivity from the Einstein relation

for diffusive transport σðEÞ ∝ νðEÞDðEÞ very challenging.

Additionally, the level broadening inserted as the inverse of

the time cutoff in the wave packet propagation may not be

equivalent to the broadening employed in the finite-size

Kubo formula [Eq. (4)]. Although computationally much

more demanding, our approach has the advantage of

assessing directly the microscopic conductivity with no

further assumptions.

In summary, we have demonstrated critical delocalization

of zero energy modes in graphene by means of accurate

numerical evaluations of the Kubo conductivity in real size

disordered systems containing billions of carbon atoms.

Rather remarkably, the absence of localization in the BDI

class at the Dirac point is consistent with nonlinear sigma

model predictions [24] and numerical studies of the Dirac

equation [22,23], suggesting an unprecedentedly robust

metallic state in two dimensions. We hope that our work

encourages further use of accurate large-scale polynomial

methods in the study of Anderson localization transitions.
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