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Abstract 

The MOLAND model is a cellular automata (CA) land-use change model that has often 

been applied to simulate urban growth. A more recent alternative model makes the 

simulations more multifunctional by also computing different activities (population and 

employment) for every cell. However, the equation to update population density in time in 

this activity-based CA model could not deal with high population growth rates in some 

existing urban centres. Therefore, we experimented with two alternative equations. A semi-

automated calibration routine was used to compare errors of the different model versions 

at a continuous range of resolutions in two study areas: the Greater Dublin Region, Ireland, 

and Flanders and Brussels, Belgium. The two new population density equations turn out to 

solve the particular problem of fast changes in high-density neighbourhoods and generally 

improve regional errors in the Belgian application, but can unfortunately introduce larger 

errors in low-density areas or in the land-use simulations.  

Keywords: Population density, Cellular automata, Densification, Land-use change, Semi-

automated calibration. 

 

1. Introduction 

Cities and their suburbs grow fast in many regions around the world. This urban growth can be studied 

with a whole range of land-use change models (Koomen and Stillwell, 2007). Cellular automata (CA) 

models are dynamic and spatially explicit (Poelmans and Van Rompaey, 2010; Santé et al., 2010). They 

simulate the influence that different land uses have on each other in their neighbourhood. The 

MOLAND model couples a constrained CA model to a gravity-based model of regional demographics 

and economics and has many applications worldwide (White et al., 1997, 2015; Engelen et al., 2007). 

More recently, an alternative to MOLAND was developed in which the population density and 

employment in different economic sectors are simulated as activities in the CA model in order to omit 

the coupling with the regional model and to enable multifunctional urban growth simulations at the 

level of individual cells (White et al., 2012). This paper presents an update of how this activity-based 

CA model (ACA model) can deal with changing population densities in different urban environments. 

We applied the model both to the Greater Dublin Region for the period 1990-2000, when this region 

experienced a fast monocentric urban growth (Williams and Shiels, 2002), and to the northern regions 

of Belgium (Flanders and the Brussels Capital Region) for the period 2001-2013, when these regions 
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experienced scattered suburban growth together with a large population increase in existing urban 

cores (Crols et al., 2017). 

2. The activity-based cellular automata model 

In the ACA model, activities are associated with active land uses but can also be present in any other 

land use. Influences of activities on each other are taken into account at all distances within the study 

area. To make this computationally feasible, cell values are grouped into super-cell values in a variable 

grid structure: the further away from the focus cell for which the neighbourhood effect is being 

computed, the larger the super-cell (Figure 1) (White, 2006). Variable grid levels are numbered 

upwards from 0 (unit cell resolution).  

 
Figure 1: Structure of the variable grid. 

Crols et al. (2015) updated the variable grid approach and have set up influence rules depending on 

travel time for all distances beyond the local environment (typically from +/- 1 km).  

Transition potentials VKi on a cell i are computed for each activity K for each annual time step:  

VKi = r ZKi SKi XKi NKi      Equation 1 

with r a random perturbation term, ZKi the zoning status, XKi the accessibility to the transport network, 

SKi the physical suitability, and NKi the neighbourhood effect. The neighbourhood rules are a function 

of the Euclidean distance – or travel time for long distances – between the focal cell and a variable 

grid cell that influences the focal cell: 

NKi = J j WJK,dij (TJj / TJ)     Equation 2 

with WJK,dij the weight given by the influence function fJK for the influence of activity J on activity K at 

(time) distance dij, TJj the total activity J on variable grid cell j, and TJ the total activity J in the study 

area. Travel times are computed between the centres of gravity of population of the variable grid cells.  
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The land-use transition potential VTKi for the associated active land use UK on cell i is calculated as:  

VTKi = DKi (VKi)mK + (IK)     Equation 3 

with DKi the diseconomies of agglomeration, representing the effect of high land prices and congestion 

on locational decisions, and mK parameters to be calibrated. Next, IK is the inertia value, which deals 

with the tendency of land uses to remain fixed at a location, with  a parameter to decrease inertia 

outside the associated land use of activities (inside,  = 1 by definition). All cells are ranked by their 

highest potential for a land use. The transition rule gives each cell the land use for which it has the 

highest potential until there is no more demand for that land use. 

Activity values TKi are updated to T’Ki in two steps, followed by a rescaling operation to ensure that 

total demand values are respected. Firstly, the allocation of activity in cells with a changed land-use 

state is in proportion to the relative value of the activity potential VKi within all cells of this land-use 

state. Next, activities should be updated in all cells. The original equation of White et al. (2012) uses 

relative changes in activity potential in comparison with the previous time step:  

T’Ki = [
(𝑉𝐾𝑖)

𝑚𝐾/∑ ((𝑉𝐾𝑖)
𝑚𝐾)𝑖

(𝑉(𝑡−1)𝐾𝑖)
𝑚𝐾/∑ ((𝑉(𝑡−1)𝐾𝑖)

𝑚𝐾)𝑖

]

𝜏𝐾

  TKi    Equation 4 

with V(t – 1)Ki the transition potential for activity K on cell i in the previous time step, mK as in equation 

3, and K parameters to be calibrated.  

In this study, we experimented with two alternative equations to replace equation 4, which turned 

out to have too weak an effect in fast-growing urban environments. Both alternatives increase the 

direct impact of the relative size of the neighbourhood effect on population, the most important factor 

in cities to determine the location of more rapidly densifying areas. The first alternative makes use of 

a densification exponent K to directly modify the activity values of cells with  

Npop,i  > K  𝑁𝑝𝑜𝑝
̅̅ ̅̅ ̅̅  . Then:  

T’Ki = (TKi)K      Equation 5 

with  𝑁𝑝𝑜𝑝
̅̅ ̅̅ ̅̅   the average neighbourhood effect on population in the whole study area, and K and K 

parameters to be calibrated. The second alternative makes activity growth directly dependent on the 

relative neighbourhood effect on population:  

T’Ki = [ (Npop,i / 𝑁𝑝𝑜𝑝
̅̅ ̅̅ ̅̅  )K ] TKi     Equation 6 

with K parameters to be calibrated.  

A detailed model description can be found in White et al. (2012, 2015) and Crols et al. (2015). 

3. Semi-automated calibration and multiple-resolution errors 

The different equations were evaluated with a semi-automated calibration framework under 

development (Crols et al., 2016). Expert-based knowledge has been found important to obtain reliable 

calibrations of the model to avoid non-sensical, over-calibrated combinations of transition rules 

(Engelen and White, 2007). Therefore, a calibration procedure was developed in which the modeller 
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can iteratively define the limits and a best guess of all influence weights and parameters considered. 

The optimisation is carried out with a genetic algorithm (GA), based on NSGA-II in GAUL (Deb et al., 

2002; Adcock, 2005).  

The GA fitness function is the inverse of a weighted sum of error functions. We used multiple-

resolution error functions, based on Costanza (1989) and Pontius et al. (2004, 2008). Specifically, the 

RMSE of all activities and of the number of land-use cells of all active categories, is computed at all 

resolutions of the variable grid, and possibly for administrative regions too, which we did for the 

Dublin application.  

4. Results and discussion 

Using density equation 4, the calibration framework succeeded in lowering the regional population 

error in the Dublin application by 29% compared to the best result of White et al. (2012). The northern 

and central neighbourhoods of Dublin largely had a declining population in the 1990s while population 

grew in the southern neighbourhoods. All simulations have difficulties to generate this spatial pattern 

(Figure 2). Equations 5 and 6 do not cause big changes in Dublin in comparison with equation 4. At the 

local scale, equation 6 generates a slightly higher overestimation of the population in central Dublin, 

but a slightly lower residential land-use error. At the regional scale, scattered residential growth in 

rural areas is overestimated, but the error of population is slightly lower since changes inside smaller 

remote towns are better predicted. Generally, equation 4 still provides the lowest errors in population 

at the regional level and at most resolutions (Table 1).  

An initial manual calibration of the Belgian application indicated that the population growth was 

systematically underestimated in the largest cities (around 30% in Brussels) when equation 4 was 

used. The semi-automated approach was then applied to equations 5 and 6 (Figure 3). Simulations 

with both equations resulted in a lower and spatially balanced regional error pattern, while the same 

local error patterns appeared. Within cities, population growth is somewhat underestimated in high-

density neighbourhoods and overestimated in low-density neighbourhoods, just as in Dublin. 

Residential land-use growth in rural areas is more adjacent to existing built-up cells than in reality. 

Both equations have important disadvantages too. Equation 5 only allocates extra activity to cells that 

exceed the threshold, which only happens in the cores of the largest cities. Hence, too many other 

town cores have an underestimated population because of a strong rescaling effect to get the correct 

population total. Nevertheless, the errors in population at the larger scales are lower (Table 2). 

Alternatively, equation 6 generates even better calibration results for the population in urban cores 

(including smaller towns), which decreases the population errors at local resolutions. Unfortunately, 

the power function is difficult to calibrate and easily leads to unstable behaviour and exaggerated 

residential growth in some parts of the study area.  

To conclude, the best population density equation seems to depend on the study area. The new 

alternatives solve the specific issue with high growth rates in urban cores but introduce 

underestimations elsewhere or worse suburban land-use growth predictions. More research is still 

needed to update the model equations. 
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Figure 2: Evolution of population density (per 200 m cell) in the city of Dublin between 1990 and 

2000 in (a) reality, and (b) a simulation with the activity-based CA model using equation 4. 

 

Density equation R E1 E2 E3 E4 E5 E6 

4 0.0077 1.9124 1.3033 0.7707 0.3621 0.0870 0.0104 

5 0.0103 1.9688 1.2701 0.7638 0.3736 0.0862 0.0100 

6 0.0144 1.9169 1.2857 0.7987 0.3769 0.0838 0.0096 

Table 1: Coefficient of variation of the regional RMSE of the different counties of the Greater Dublin 

Region (R) and errors EL at different resolutions of the variable grid, given by their level number L 

(going upwards from the local scale (600 m) with a factor of 3 per level) for simulations with the 

different population density equations. 

 

Density equation R E1 E2 E3 E4 E5 E6 

5 0.0141 0.4208 0.2329 0.1172 0.0405 0.0107 0.0026 

6 0.0278 0.3665 0.2117 0.1132 0.0518 0.0187 0.0056 

Table 2: Coefficient of variation of the regional RMSE of the different counties of Flanders and the 

Brussels Capital Region (R) and errors EL at different resolutions of the variable grid, given by their 

level number L (going upwards from the local scale (300 m) with a factor of 3 per level) for 

simulations with the different population density equations. 
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Figure 3: Evolution of population density (per 100 m cell) in Flanders and Brussels between 2001 and 

2013 in (a) reality, and simulations with the activity-based CA model with equation (b) 5 or (c) 6. 
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