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Summary 

The input value for the maximum spatial scan extent (K) of a prospective space-time scan statistical 
(PSTSS) technique is one important parameter that ensures accurate detection of the predictive 

hotspot of a geographical point events. Currently, there is no general consensus on how to determine 
the optimal value of K that maximises the predictive accuracy, especially in crime hotspot prediction. 

To address this issue, this study proposes a strategy in which different values of K are used to 
generate accuracy profiles that can be compared to determine optimal value of K. A case study 

presented shows that the best accuracy is obtained at K=250m, which is equivalent to the spatial 
aggregation of the crime dataset used. It is contented that this strategy could be extended to other 

geographical surveillance tasks. 
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1. Introduction 

In the use of Prospective space-time scan statistical (PSTSS) technique for crime prediction (Adepeju 
et al. 2016), the maximum spatial scan extent (K) is primarily set to ensure that all possible sizes of 
geographical hotspots are identified to achieve accurate results. The K represents the maximum size 
that any hotspot identified can assume during a prediction task. However, how to determine the best 
value of K that maximises the predictive accuracy has remained an open question. Previous studies 
(Kulldorf et al. 2005) have suggested setting the value of K as half the spatial size of the study area. 
While this suggestion has a number of merits (Neill, 2006), it usually results into an extremely large 
computational time, especially when the number of unique spatial locations to be scanned is very 
large. A different approach is employed in Adepeju et al. (2016) in which a small value of K (i.e. 
750m) was set based on the observed spatial aggregation of the crime data used. While this approach 
allowed faster computation, the predictive accuracy of the PSTSS was observed to be very low as 
compared to other predictive methods. In this study, we suggest that this predictive accuracy can be 
improved by determining the optimal value of K, rather than using any of the afore-mentioned 
suggestions. 

This study proposes a new strategy by which the optimal value of K, that maximises the predictive 
accuracy of a PSTSS technique, can be determined. The strategy entails using different values of K to 
carry out predictions, while the profiles of the predictive accuracy (i.e. mean hit rate) is generated and 
continuously monitored. The profile of mean hit rate will be examined at varying spatial coverages of 
the hotspot, for a more robust analysis. 

The structure of this abstract is as follows: the description of PSTSS technique and how the technique 
is used to generate predictive hotspots of crime. This is followed by the description of the objective 
function, i.e. the mean hit rate to be used. We then present the results of the three study areas. Lastly, 
the discussion and conclusion is presented. 
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2. Prospective space-time scan statistical (PSTSS), and the value of K 

The PSTSS is a surveillance technique that identifies regions (cylinders) of emerging risks of a 
geographical point datasets ܰ, distributed in space and time (Kulldorff et al. 2005). The technique 
works by placing, on every unique point location ሺݔǡ  ሻ, a cylinder whose widths (spatial extents) andݕ
lengths (temporal durations) are varied continuously, until certain maximum values are reached. 
These maximum values, denoted as K and T, are the maximum spatial scan extent and the maximum 
temporal scan duration that the varying cylinders cannot exceed. For the purpose of this study, we 
fixed T as half the temporal length of a prediction set (See Figure 3c), while we focus on how to 
determine the optimal value for K. A prediction set is the dataset used to generate the cylinders from 
which the predictive hotspots are generated. The prediction set is bounded by a start date (to) and an 
end date (tp), with all cylinders having the same end date as tp (See Figure 1).  

Given a cylinder containing n data points, the datapoints are approximated as Poisson distribution 
with the mean ߤ (Kulldorff et al. 2005). The risk value S of the cylinder is estimated by the log value 
of: ܵ ൌ ൬݊ߤ൰௡ ൬ܰ െ ݊ܰ െ ൰ேି௡ߤ

 

(1) 

The cylinders required for generating the predictive hotspot are extracted such that no overlap exist 
between the cylinders (e.g. Figure 1a). The final map representing the predictive hotspot is generated 
by intersecting the top circular area of each cylinder with a system of square grids (Figure 1b). The 
risk level of grid units is assigned in the order of their proximity to the centroids of top circular area 
of their respective intersecting cylinder, where the cylinders are selected in the order of magnitude of 
their S values. The grid units that are ranked first and last are the most ‘risky’ and ‘least’ risky 
locations, respectively. The rest of the grid units that are not intersected by any cylinder are simply 
referred to as the cold spots (i.e. regions of no risk at all). 



 

Figure 1. Producing predictive hotspot of point events using PSTSS technique. (a) shows cylinders, 
identified by PSTSS, representing regions of emerging risk of the point events (b) generated grid-
based predictive hotspot based on the cylinders in (a). C1, C2,….C5 are the centroids of the top 

circular area of the cylinders. Note: the S values shown are assumed.  

If for example, the point events in Figure 1 is a crime dataset, the shaded grid units will represent 
regions at risk of being victimised, imminently. Starting from the most ‘risky’ grid unit (i.e. the 
darkest red shade), one can delineate just an amount of hotspot coverage of interest. For example, in 
Figure 1b, the ranking process is halted partway through filling of the green circle, giving a hotspot 

coverage of 11.9% (i.e. 
୬୭Ǥ  ୭୤ ୱୣ୪ୣୡ୲ୣୢ ୥୰୧ୢ ୳୬୧୲ୱ୲୭୲ୟ୪ ୬୭Ǥ  ୭୤ ୥୰୧ୢ ୳୬୧୲ୱ ൌ ଷହଶଽସ). This flexibility is very important in real 

practical environment, where the police may be interested in a certain hotspot coverage based on their 
resources capacity. 

3. The proposed strategy to determine optimal value of K  

The proposed strategy to determine the optimal value of K involves setting a particular value of K to 
generate predictive hotspot of crime, and evaluate the accuracy of the hotspot at an hotspot coverages, 
using the hit rate measure (Bowers et al. 2004). The hit rate is defined as the proportion of crimes 
accurately captured by the predicted hotspot: 

hit rate = 
௔೎஺ ൈ ͳͲͲΨ (1) 
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Where ܽ௖ is the actual number of future crimes captured by the hotspot at a coverage c, and A, the 
total number of future crimes that can be captured. When this process is repeated over a total nmber 
of time steps ݆, the mean hit rate at c can be calculated as  

௖݁ݐܽݎ ݐ݄݅ ݊ܽ݁ܯ     ൌ ൭σ ൬ೌ೎ǡ೔ಲ೔ ൈଵ଴଴൰ೕ೔సభ ௝ ൱ Ψ 
(2) 

 

Figure 2 is an illustration of a mean hit rate profile generated by calculating the mean hit rate at 
varying hotpsot coverages. 

 

Figure 2. Mean hit rate profile of a number of consecutive predictions, based on a value of K  

The descriptions above constitute an predictive analysis for one value of K. We suggest that by 
running the same analysis, but use different values of K, the resulting mean hit rate profiles can be 
compared to determine the profile with the best (highest) mean hit rate at the increasing spatial 
coverages. This value of K that produces the best mean hit rate will be considered optimal for the 
dataset in question.  

4. Study areas, datasets, and details of analysis 

For this study, crime case data of Camden and South Chicago used in Adepeju et al. (2016) is also 
used here. In addition, a crime case dataset of new study area - District 10 of San Francisco, is added 
(Figure 3a), in which two new crime types, ‘larceny/theft’ and ‘drug/narcotic’, which are not present 
in either of Camden or South Chicago are included. In all, we have six (6) different crime types 
across the three study areas (Figure 3b). A system of 250m by 250m grid is used for aggregating the 
dataset and will also be used as the unit of the predictive hotspot.  



 

Figure 3. Study areas, dataset and details of analysis. 

The temporal range of each crime type is from 1st March 2011 to 6th January 2012. For this analysis, 
the first prediction set is the data range from 1st March 2011 to 28th September 2011 (7 months), 
while the hit rate will be evaluated based on the next one day dataset (i.e. dataset of 29th September 
2011). While the start date of the prediction set will be fixed as 1st March 2011, the end dates will be 
made to increase by 1 day as the analysis progresses, for a given value of K being examined (see 
Figure 3c).  

A 100 daily consecutive predictions will be carried out. The list of values of K to be used is [250m, 
500m, 750m and 1000m].  

5. Results and discussion  

Figure 4 shows the plot of mean hit rate profiles for different values of K, at varying hotspot 
coverage, for different crime types.  
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Figure 4. Profiles of mean hit rate for different values of K, at varying hotspot coverage, for different 

crime types.  

An increase in predictive accuracy (mean hit rate) is observed across all the profiles as the value of K 
decreases. This pattern is observed at all possible spatial coverages attainable bythe hotspots 
generated based on each value of K. Comparing the profiles obtained at K=250m to the profiles at 
K=750m of the earlier study (Adepeju et al. 2016), a significant improvement in the accuracy can be 
seen. For example, not less than 15% improvement in accuracy is gained  at exactly 20% coverage 
level of all predictions in South Chicago. It can be deduced based on this result that the PSTSS 
technique is able to capture the emerging risk of crime more effectively when its scan extent is 
restricted to a much smaller aggregation level of the dataset.   

6. Conclusion 

The goal of this study is to determine the optimal value of spatial scan extent K of PSTSS technique 
that maximises the accuracy of a crime hotspot prediction. The outcomes of this study reveal that the 
accuracy of PSTSS is maximised when K=250 which is equivalent to the spatial aggregation of the 
dataset. Additionally, setting the value of K=250 ensures that the hotspots are detected much faster 
than any other bigger value for K.   



Based on this study, we suggest that the optimal scan extent of other surveillance techniques can be 
determined by first identify the evaluation measure to be maximised and then employ similar strategy 
of varying K value while the evaluation measure is being monitored.  

7. Future work 

Our ongoing work on the PSTSS technique include the development of the network-based version of 
the technique for the purpose of crime prediction. This work will also include the experimentation 
with K values below the spatial aggregation level of the dataset used. 
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