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ABSTRACT: Despite the discovery of cryptotephra layers in over 100 peatlands across northern Europe, Holocene
cryptotephra layers have not previously been reported from Polish peatlands. Here we present the first Holocene
tephra findings from two peatlands in northern Poland. At Bagno Kusowo peatland we identify the most easterly
occurrence of the AD 860 B tephra, recently correlated to the White River Ash (WRAe) derived from Mount
Churchill, Alaska. A shorter core from Linje peatland contains tephra from the Askja 1875 eruption, extending the
spatial distribution and regional importance of this Icelandic tephra in Eastern Europe. Our research indicates the
potential of cryptotephra layers to date and correlate the growing number of palaeoenvironmental studies being
conducted on Polish peatlands and contributes towards the development of a regional Holocene tephrostratigraphy
for Poland. Copyright # 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
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Introduction

Microscopic layers of volcanic ash, ‘cryptotephras’ have been
identified in over 100 peatlands in Northern Europe (e.g. van
den Bogaard and Schmincke, 2002; Dugmore et al., 1995;
see summary in Lawson et al., 2012). The individual shards
which constitute cryptotephra layers can be extracted and
geochemically analysed. When combined with stratigraphic
information, the analysis of glass shard geochemistry can
allow for the assignment of a cryptotephra layer to a given
volcano or eruption. Well-dated cryptotephra layers provide
valuable isochrons for the dating and correlation of palae-
oenvironmental research (e.g. Lowe, 2011).
Intact peatlands provide ideal archives for the examination

of environmental change and human influence over the
Holocene. Polish peatlands are increasingly being exploited
for their palaeoenvironmental records, which span much of
the Holocene and have the potential to provide high-
resolution records of both climatic change and human
influence (Lamentowicz et al., 2015a; Marcisz et al., 2015;
Kajukal /o et al., 2016; Gal /ka et al., 2017). Furthermore,
Polish peatlands span important environmental gradients
providing opportunities to bridge the gap between records in
Western Europe (influenced strongly by oceanic climate) and
those in Boreal Russia (Lamentowicz et al., 2015b).
Despite the discovery of cryptotephra layers in multiple sites

across northern Europe (Lawson et al., 2012), and a report of
the Lateglacial Laacher See tephra (of German origin) in

lake sediments underlying peat in north-west Poland (Juvign�e
et al., 1995), no tephra layers have previously been reported
from Polish peatlands. The discoveries of multiple tephra
layers of Icelandic origin (H€asseldalen, Askja-S, Askja 1875
and two unknown potential Icelandic tephras) in Lake
Czechowskie (northern Poland) (Ott et al., 2016; Wulf et al.,
2016), and the Askja 1875 tephra in Lake _Zabi�nskie, north-
east Poland (Tylmann et al., 2016), indicate that tephra fell
out over Poland during the Lateglacial and Holocene and
may also be present in peatlands. The recent identification
of tephra shards with a geochemistry compatible with the
Askja volcanic system in sand deposits dated to 2.3� 0.1 ka
BP (Housley et al., 2014) provides further evidence for the
long-distance transport of Icelandic tephras towards Poland.
Cryptotephra layers could provide valuable chronological
markers allowing for the correlation of palaeoenvironmental
reconstructions across multiple sites both within and beyond
Poland. Tephra layers which correspond to environmental or
human events may be particularly valuable (Stivrins et al.,
2016). The aim of this study is to evaluate whether historical
cryptotephra layers are preserved in peatlands in north-
central Poland and therewith to add to the tephrostratigra-
phy for this region.

Study sites and methods

Linje mire

Linje mire is a poor fen located near Bydgoszcz city, in northern
Poland (53˚110N, 18˚180E) (Fig. 1). A 2.5-m core was extracted
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from the central part of the mire (Marcisz et al., 2015). The
peatland is located at 91m a.s.l. and lies along the border of
oceanic and continental air masses, with mean annual precipita-
tion of 500–550mm (Hal/as et al., 2008). The vegetation on Linje
mire indicates a poor fen, but areas of ombrotrophic vegetation
are present in the centre of the site (Kucharski and Kloss, 2005).

Bagno Kusowo

Bagno Kusowo (Kusowo) is a Baltic bog in northern Poland
(53˚480N, 16˚350E). A core of 8m, thought to coincide with
the deepest peat at the site, was extracted (Lamentowicz
et al., 2015a). The altitude of the site averages between 150
and 160m a.s.l. (Gal /ka et al., 2017). Kusowo is influenced
much more by the oceanic climate than Linje. Total annual
precipitation is in the region of 650mm.

Methods

A peat monolith was sampled from Linje mire using a
Wardenaar sampler (Wardenaar, 1987), while a long core

from Kusowo was extracted with a 1-m-long, 8-cm-diameter
INSTORF corer. Continuous samples (increments of 1 cm at
Linje and 10 cm at Kusowo) were ashed at 550 ˚C, washed
with 10% HCl, mounted onto slides and examined at a
magnification of 200� (Pilcher and Hall, 1992; Swindles
et al., 2010). Where tephra shards were recognized, new
samples were extracted for geochemical analysis. Extraction
for geochemical analysis followed the acid digestion method
(Dugmore et al., 1992). Samples were treated with hot
concentrated HNO3 and H2SO4 acids, diluted with water and
sieved at 10mm. The coarse residue was rinsed thoroughly
with clean water. Recent work has shown that tephra shards
extracted using the acid digestion method and then analysed
using electron probe microanalysis (EPMA) are geochemically
indistinguishable from shards extracted using density separa-
tion (Roland et al., 2015; Watson et al., 2016).
Samples were mounted onto glass slides using EpoThin

resin (Dugmore et al., 1992) and polished to a 0.25-mm
finish. EPMA was conducted on a Cameca SX100 at the
University of Edinburgh. All analyses were conducted with a

Figure 1. The location of Linje and Bagno Kusowo peatlands within Northern Poland. Globe indicates the location of the source volcanoes for
tephras identified in this study, Mount Churchill in Alaska, and the Askja volcano in Iceland. The locations of sites mentioned in the text are
included as follows: Lake Czechowskie (LC) and Lake _Zabi�nskie (LZ).
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beam diameter of 5mm, 15 kV and beam currents of 2 nA
(Na, Mg, Al, Si, K, Ca, Fe) or 80 nA (P, Ti, Mn) (Hayward,
2012). Secondary glass standards, rhyolite (Lipari) and basalt
(BCR-2G) were analysed before and after EPMA runs of
unknown glass shard analyses. Raw EPMA data are supplied
in the Supplementary Information, Table S1.
Two radiocarbon dates were obtained on above-ground

vegetation macrofossils (Sphagnum leaves and stems) ex-
tracted from peat bounding the tephra layer identified at
Bagno Kusowo. Samples were submitted to Pozna�n Radio-
carbon Laboratory, Pozna�n, Poland, for 14C dating. Samples
were pre-treated using standard acid–alkali–acid treatment
and rinsed thoroughly with de-ionized water between each
acid/alkali stage. All dates were calibrated using OxCal v
4.2.4 (Bronk Ramsey, 2009) and the IntCal13 atmospheric
curve (Reimer et al., 2013). An age model for the Linje
core was developed based on 210Pb and 14C chronologies
and is reported elsewhere (Marcisz et al., 2015).

Results and tephra assignments

Linje mire

The top 70 cm of peat at Linje mire contained only one
tephra layer (Linje-1, 29 shards cm�3) at a depth of 59–
60 cm; no tephra shards were identified elsewhere in the
core. The largest shard identified in the Linje-1 tephra layer
had a length of 190mm, and median shard length was
75mm. The major element geochemistry of glass shards
from Linje-1 is rhyolitic, with a high MgO content typical
of the Askja 1875 tephra (AD 1875) (e.g. Larsen et al.,
1999) (Fig. 2). The assignment of Linje-1 to the eruption of
Askja 1875 is further supported by both the 210Pb and the
14C age–depth models from the same core (Marcisz et al.,

2015), which suggest that the age of the Linje-1 tephra is
ca. AD 1830–1860 (Fig. 3).

Bagno Kusowo

Two tephra layers were identified in 8m of peat at Bagno
Kusowo. Glass shards were detected at a depth of 412–
415 cm (Kusowo-1, peak concentration at 413–414 cm). The
largest shard identified in the Kusowo-1 layer was 95mm,
and median shard length was 35mm. The age of the tephra
layer was calculated based on linear interpolation between
two closely spaced radiocarbon dates to be ca. AD 690–850
(Table S2; Fig. 4). The analyses of major elements of glass
shards from Kusowo-1 indicate geochemical similarity to
glass shards from the AD 860 B tephra (AD 846–848) (Fig. 2).
Given stratigraphic and geochemical constraints we correlate
the Kusowo-1 to the AD 860 B tephra. One glass shard has a
different major element geochemistry to most shards in
Kusowo-1 and shows similarity to shards from the MOR-T4
tephra (ca. AD 1000).
A small concentration of shards (<5 shards cm�3) was

identified at a depth of 670–680 cm in the Kusowo core.
However, due to the small shard size and low concentrations
of shards, tephra from this depth was not viable for geochemi-
cal analysis.

Discussion and conclusions

Tephrostratigraphy of historical times in northern
central Poland

The eruption of the Icelandic volcano, Askja, began on 28
March 1875 and had an estimated volcanic explosivity index
of 5 (Carey et al., 2010). Tephra was dispersed towards the
east and has been identified widely in Scandinavia

Figure 2. Major element bi-plots
indicating the geochemistry of
glass shards from Bagno Kusowo
and Linje peatlands. Reference
data: AD 860 A: Pilcher et al.
(1995), Swindles (2006); AD 860
B: Hall and Pilcher (2002), Swin-
dles (2006); Askja 1875: Larsen
et al. (1999), Oldfield et al.
(1997), Pilcher et al. (2005);
Askja 1875 Latvia: Stivrins et al.
(2016); Askja 1875 Czechowskie
Lake: Wulf et al. (2016); Hekla
1845: Watson et al. (2015); He-
kla 1510: Dugmore et al. (1995),
Larsen et al. (1999), Pilcher et al.
(1996), Swindles (2006); Hekla
1104: Pilcher et al. (2005),
Pilcher et al. (1996), Streeter and
Dugmore (2014); MOR-T4:
Chambers et al. (2004).
€Oræfaj€okull (Or) 1362: Hall and
Pilcher (2002), Larsen et al.
(1999), Pilcher et al. (2005),
Pilcher et al. (1995).
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(Wastegård, 2005), at two sites in Germany (van den Bogaard
and Schmincke, 2002; Wulf et al., 2016) and most recently in
one peatland and two lakes in Latvia (Stivrins et al., 2016).
The identification of Askja 1875 in Linje mire represents the
first identification of this tephra in a Polish peatland, although
it was recently reported in the laminated sediments of two
lakes: Lake Czechowskie, some 80 km due north of Linje
(Wulf et al., 2016) and Lake _Zabi�nskie, north-east Poland
(Tylmann et al., 2016). We did not detect any trace of shards
which might be derived from the Askja 1875 eruption in the
top of the core from Kusowo peatland some 100 km due west
of Lake Czechowskie.
The AD 860 B (AD 846–847: Coulter et al., 2012) tephra

has been identified at 20 sites in Ireland, Great Britain,
Scandinavia and Germany (Pilcher et al., 1995; van den
Bogaard and Schmincke, 2002; Langdon and Barber, 2004).

The tephra has recently been correlated to the White River
Ash east (WRAe) tephra, derived from an eruption of the
Churchill volcano in Alaska (Jensen et al., 2014). The
identification of the AD 860 B tephra at Kusowo represents
the most easterly occurrence of this tephra. Tephra shards
from the AD 860 B layer were transported some 7000 km
across the Atlantic, before fallout onto Kusowo mire. One
shard from the Kusowksie-1 tephra layer showed geochemi-
cal similarity to the MOR-T4 tephra (ca. 1000 AD)
(Chambers et al., 2004). The MOR-T4 tephra has not
previously been recorded outside of Great Britain and
Ireland. Given that only one shard was identified, we are
unable to conclusively say whether the MOR-T4 tephra was
deposited over Poland. However, given that this tephra is
geochemically quite distinct, and fell out around the same
time as AD 860 B, there is a possibility that the fallout

Figure 3. The Askja tephra layer versus 210Pb chronology and the age–depth model based on 14C dates (Marcisz et al., 2015). The model was
calculated using the OxCal 4.2.4 program (Bronk Ramsey, 2008, 2009).
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range for the MOR-T4 tephra is much larger than previously
thought.
Based on the depth at which the AD 860 B tephra was

identified at Kusowo, the estimated age of the sparse
concentration of shards between 670 and 680 cm is ca. AD
250. Therefore, it cannot be discounted that these shards
correspond to one of the ‘Unknown Icelandic tephras’, two
cryptotephra layers (JC09_B2_170-173_T and JC09_BC_155-
158_T) of identical composition with an age of 10 BC�20
(varve years) and AD 60�20 (varve years), which were
reported in Lake Czechowskie by Wulf et al. (2016).
However, given the extremely low concentrations of shards
identified in Lake Czechowskie (2 and 6 shards cm�3) fallout
from these events might have been concentrated into detect-
able levels in some areas of the lake basin, but might be
below detection levels in Polish peatlands (Watson et al.,
2016).

Tephra shard size

The discovery of shards of 190 and 95mm in length at fallout
sites �2500 and 7000 km from their volcanic sources
indicates the potential for the long-distance transport of
relatively large volcanic ash particles. The median shard size
for the Askja 1875 tephra at Linje (75mm) suggests that this
tephra was not at the end of its range, and shards of an
analysable size may well have been transported further east
and south-east to sites in Belarus or the Ukraine.

Conclusions

The discovery of tephra from both Iceland and Alaska in
Polish peatlands indicates the potential for the discovery of
more tephra layers in Poland. The discovery of Askja 1875 in
a Polish peatland underlines the importance of this tephra
layer as a chronological marker in Eastern Europe. The large
size of the shards identified in the Askja 1875 tephra layer at
Linje indicates that shards from this tephra might still be of a
geochemically analysable size in sites further east. We record
the most easterly reported occurrence of the AD 860 B tephra
some 7000 km from its origin in Alaska. The AD 860 B tephra
was not identified in the sediments at Lake Czechowskie

(100 km due east of Kusowo). The tephra layers we identify
have been identified at other sites in north and west Europe
and offer the opportunity to synchronize and compare palae-
oenvironmental records across Europe, from the oceanic
climates of Western Europe to the more continental regions
of Eastern Europe. However, the patchy distribution of tephra
necessitates the examination of more sites in Eastern Europe
before a regional tephrostratigraphy can be established.
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Table S1. Raw EPMA data for Kusowo-1 and Linje-1.
Table S2. Radiocarbon dates obtained on samples from
Kusowo Bagno peatland.

Abbreviations. EPMA, electron probe micro analysis.
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