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A classification of the simple weight modules is given for the (6-dimensional)

Euclidean Lie algebra e(3) = sl2 ⋉ V3. As an intermediate step, a classification of

all simple modules is given for the centralizer C of the Cartan element H (in the

universal enveloping algebra U = U(e(3))). Generators and defining relations for

the algebra C are found (there are three quadratic relations and one cubic relation).

The algebra C is a Noetherian domain of Gelfand-Kirillov dimension 5. Classifica-

tions of prime, primitive, completely prime, and maximal ideals are given for the

algebraU . Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973378]

I. INTRODUCTION

The semidirect product of groups E(3) ≃ SO(3) ⋉ R3 is called the Euclidean group. The Eu-

clidean algebra e(3) is the complexification of the Lie algebra of E(3). Various classes of modules

over the Euclidean algebra have been constructed and studied by many authors.11,19,26,28 In partic-

ular, in Ref. 11 the simple Whittaker and quasi-Whittaker e(3)-modules were classified. In Refs. 12

and 13, families of indecomposable representations of e(3) are constructed by embedding the Eu-

clidean algebra e(3) into the simple Lie algebra sl(4,C) and using the irreducible representations

of sl(2,C), respectively. The Euclidean algebra e(3) is a member of a more general class of Lie

algebras, the so-called conformal Galilei algebras. The representation theory for these algebras was

developed in Refs. 1, 2, 23, 24, and 27.

In this paper, K is a field of characteristic zero unless stated otherwise. The Euclidean algebra

e(3) is a 6-dimensional Lie algebra with basis H, E, F, X, Y, Z , and Lie bracket as follows:

[H,E] = 2E, [H,F] = −2F, [E,F] = H, [H,X] = 2X, [H,Y ] = −2Y,

[H, Z] = 0, [E,Y ] = 2Z, [E, Z] = 2X, [E,X] = 0, [F,X] = Z,

[F, Z] = Y, [F,Y ] = 0, [X,Y ] = [Y, Z] = [X, Z] = 0.

The Lie algebra e(3) is neither semisimple nor solvable. It is the semidirect product e(3) = sl2 ⋉ V3

of Lie algebras where sl2 = KH ⊕ KE ⊕ KF and V3 = KX ⊕ KY ⊕ KZ is an abelian Lie algebra

which is the three dimensional simple sl2-module. Let U ≔ U(e(3)) be the universal enveloping

algebra of e(3). Then U is a Noetherian domain of Gelfand-Kirillov dimension 6. A quantum

analog of U , the quantum Euclidean algebra, was defined and studied in Ref. 6 where its prime,

completely prime, primitive, and maximal ideals were classified.

Classification of prime ideals of U . The centre of the algebra U is a polynomial algebra Z =
K[C1,C2], where C1 = XY − 1

2
Z2 and C2 = EY + H Z − 2FX (Proposition 2.4.(2)). By a different

method, this result was also obtained in Ref. 11. The vector space V3 is a Lie ideal of e(3). Hence,

(V3) is an ideal of the algebraU such thatU/(V3) ≃ U ≔ U(sl2) and Spec (U) ⊆ Spec (U ). Further-

more, (V3) = (X) = (Y ) = (Z) (Lemma 2.6.(1)). In Section II, the following classification of prime

ideals of the algebraU is obtained.
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Theorem 1.1. 1. Spec (U ) = {(Z,p) | p ∈ Spec
(

U(sl2)
)

} ⊔ {(p) | p ∈ Spec (K[C1,C2])}.

2. The inclusions of prime ideals are given in the following diagram:

, (1)

where M≔Max(K[C1,C2]) \ {(C1,C2)}, P0≔ {p ∈ Spec (K[C1,C2]) | ht (p) = 1,p ⊂ (C1,C2)},

and P1 ≔ {p1 ∈ Spec (K[C1,C2]) | ht (p1) = 1,p1 1 (C1,C2)}.

The idea of the proof is to use localizations of the algebra U and repeated application of

Proposition 2.8. As a corollary of Theorem 1.1, the sets of maximal, primitive, and completely

prime ideals of the algebra U are described (Corollary 2.9, Corollary 2.10, and Theorem 2.11).

The algebra U is a free (left and right) module over the polynomial subalgebra K[C1,C2,H, Z]

(Proposition 2.5). In particular, it is a free module over its centre K[C1,C2].

The prime or/and primitive ideals of various quantum algebras (and their classification) are

considered in Refs. 9, 10, 14–18, and 20–22.

The centralizer CU(H), its generators and defining relations, a classification of simple CU(H)-

modules. In Section III, it is proved that, as an abstract algebra, the centralizer CU(H) ≔ {u ∈
U |uH = Hu} of the element H in U is generated by elements C1,C2,H, Z, θ, and φ subject to the

defining relations (Theorem 3.2) as follows:

[φ, Z]= Z2 + 2C1, [θ, Z] = 2φ + (H − 2)Z − C2,

[θ,φ]= 2(θ + H)Z − Hφ, φ(φ + H Z − C2) = (θ + H)(Z2 + 2C1),

where the elements C1,C2, and H are central. The algebra CU(H) is a Noetherian domain of

Gelfand-Kirillov dimension 5 (Theorem 3.2). An U -module M is called a weight module if

M = ⊕µ∈KMµ, where Mµ = {m ∈ M | Hm = µm}. An element µ ∈ K such that Mµ , 0 is called

a weight of M . Every weight space Mµ is a module over the centralizer CU(H). If the weight

U -module M is simple, then necessarily each nonzero Mµ is a simple CU(H)-module. There-

fore, as the first step in classifying simple weight U -modules we have to classify all simple

CU(H)-modules. This is done in Sections V and IV, respectively, whether a simple CU(H)-module

is annihilated by the element C1 or not. These results are too technical to describe in the Intro-

duction. Briefly, the problem of classification of simple CU(H)-modules is reduced to one but

for the factor algebras Cλ1,λ2, µ ≔ CU(H)/CU(H)(C1 − λ1,C2 − λ2,H − µ) where λ1, λ2, µ ∈ K (we

assume that K is an algebraically closed field). It turns out that the cases λ1 , 0; λ1 = 0, λ2 , 0;

and λ1 = 0, λ2 = 0 are very different and different techniques are used in each of them. In each

case, localizations of the algebra Cλ1,λ2, µ are used to partition its simple modules into torsion and

torsionfree classes. A “generic” simple module depends on arbitrarily large number of independent

parameters.

A classification of simple, finite dimensional CU(H)-modules is given (Theorem 3.13 and

Theorem 5.3.(1)). Theorem 3.12 and Theorem 5.4 give a semisimplicity criterion for the algebra

Cλ1,λ2, µ.

Theorem 1.2. Let K be an algebraically closed field of characteristic zero. Then the algebra

Cλ1,λ2, µ is simple if and only if either

1. λ1 , 0 and 1
2

(

µ ± λ2√
−2λ1

)

< Z \ {0} or

2. λ1 = 0, λ2 , 0.
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Classification of simple weight U -modules. Briefly, the problem of classification of simple

weightU -modules comprises three steps as follows: Step 1: To classify all simple CU(H)-modules.

Step 2: How to reassemble some of the simple CU(H)-modules into a simple weight U -module?

Step 3: Isomorphism problem for simple weightU -modules.

Step 1 was done in Sections IV and V. In Section VI, simple weightU -modules are classified.

The main idea in finding the set U (weight) of simple weight U -modules is to use certain explicit

localizations of the algebra U to partition the set U (weight) into various classes and then to

classify modules of each class. In more detail,

U (weight) = U (weight,X-torsion) ⊔ U (weight,X-torsionfree,Y -torsion)

⊔ U (weight, (X,Y )-torsionfree)

and the simple weight modules from first two sets are described in Theorem 6.13 and Proposition

6.15, respectively. The third set is a disjoint union of two subsets U ( 1 ) and U ( 2 ), see (56). The

modules from U ( 1 ) (respectively, U ( 2 )) are described in Theorem 6.20 (respectively, Theorem

6.23).

In Section VI, simplicity criteria are given for the Verma modules and their dual analogs (Prop-

osition 6.1.(3) and Proposition 6.2.(3)). Simple highest/lowest weight U -modules are classified

(Proposition 6.3 and Proposition 6.4). The finite-infinite dimension dichotomy was proved for sim-

ple U -modules (Corollary 6.8): For each simple weight U -module, all its (nonzero) weight spaces

are either finite or infinite dimensional. Theorem 6.7 classifies all the simple weight U -modules

with finite dimensional weight spaces.

II. PRIME IDEALS OF THE ALGEBRAU

In this section, it is proved that the centre of the algebra U is a polynomial algebra K[C1,C2]

where C1 and C2 are quadratic elements of U (Proposition 2.4.(2)) and that the algebra UX is a

tensor product of three explicit algebras (Proposition 2.4.(1)). This fact is a key in finding the prime

spectrum of the algebra U (Theorem 1.1). Explicit descriptions of the sets of maximal, primitive,

and completely prime ideals of the algebra U are obtained (Corollary 2.9, Corollary 2.10, and

Theorem 2.11).

Recall that an involution ∗ on a K-algebra is a K-algebra anti-automorphism ((ab)∗ = b∗a∗)
such that a∗∗ = a for all a ∈ A. The algebraU admits an involution ∗ defined by the rule

F∗ = −E, H∗ = H, E∗ = −F, Y ∗ = 2X, Z∗ = Z, X ∗ =
1

2
Y. (2)

The automorphism ι: The algebraU admits automorphisms

ι : E → F, H → −H, F → E, X → −1

2
Y, Z → −Z, Y → −2X, (3)

γ : E → E, H → H, F → F, X → −X, Z → −Z, Y → −Y, (4)

ιγ : E → F, H → −H, F → E, X → 1

2
Y, Z → Z, Y → 2X. (5)

Clearly, ιγ = γι and ι2 = γ2 = (ιγ)2 = idU. The universal enveloping algebra U = U(e(3)) admits

the canonical involution κ given by the rule κ(e) = −e for all e ∈ e(3). Clearly,

ι = κ ◦ ∗. (6)

Recall that the nth Weyl algebra An = An(K) is an associative algebra generated by elements

x1, . . . , xn, y1, . . . , yn subject to the defining relations: [xi, x j] = 0, [yi, y j] = 0, and [yi, x j] = δi j,

where [a,b] ≔ ab − ba and δi j is the Kronecker delta function. The Weyl algebra An is a central,

simple Noetherian domain of Gelfand-Kirillov dimension 2n. For an algebra R, we denote by Z(R)

its centre. For a subset S ⊂ R, we denote by (S) the ideal of R generated by the elements of S. An

element a ∈ R is called a normal element if aR = Ra.
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Lemma 2.1. [Ref. 25, Lemma 14.6.5] Let B be a K-algebra, S = B ⊗ An be the tensor product

of the algebra B and the Weyl algebra An, δ be a K-derivation of S, and T = S[t; δ]. Then there

exists an element s ∈ S such that the algebra T = B[t ′; δ′] ⊗ An is a tensor product of algebras

where t ′ = t + s and δ′ = δ + ads.

Next, we consider two subalgebras E and A of U that are used in finding the prime spectrum

ofU .

The subalgebra E. Let E be the subalgebra of U generated by the elements E, X, Y , and

Z . Then E is an iterated Ore extension E = K[X, Z][E; δ1][Y ; δ2], where δ1(X) = 0, δ1(Z) = 2X ,

δ2(X) = δ2(Y ) = 0, and δ2(E) = −2Z . Clearly, X is a central element of E and the subalgebra

K[X, Z][E; δ1] is isomorphic to the enveloping algebra of the three dimensional Heisenberg Lie

algebra. Let EX be the localization of E at the powers of the element X . Then

EX =

(

K[X±1] ⊗ A1

)

[Y ; δ2],

where A1 = K⟨EX−1, 1
2

Z⟩ is the first Weyl algebra since [EX−1, 1
2

Z] = 1. Now, using Lemma 2.1

we can “delete” the derivation δ2. Specifically, the element s = − 1
2

Z2X−1 satisfies the conditions of

Lemma 2.1, and the element Y ′ ≔ Y + s = Y − 1
2

Z2X−1 commutes with the elements of A1. Notice

that Y ′ also commutes with X , we have

EX = K[X
±1,Y ′] ⊗ A1 = K[X

±1,C1] ⊗ A1, (7)

where C1 ≔ Y ′X = XY − 1
2

Z2. Note that C1 belongs to the centre ofU .

Lemma 2.2. Z(E) = K[X,C1].

Proof. By (7), Z(EX) = K[X
±1,C1]. Then Z(E) = E ∩ Z(EX) = E ∩ K[X±1,C1] = K[X,C1]. �

The subalgebra A. Let A be the subalgebra of the U generated by the elements H, E, X, Y,

and Z . Then A is isomorphic to the enveloping algebra of the Lie subalgebra a ≔ KH ⊕ KE ⊕
KX ⊕ KY ⊕ KZ of e(3). Notice that a is a solvable Lie algebra, thus every prime ideal of A
is completely prime [Ref. 25, Corollary 14.5.5]. Clearly, A is an Ore extension A = E[H; δ],

where δ is a derivation of E defined by δ(E) = 2E, δ(X) = 2X, δ(Y ) = −2Y , and δ(Z) = 0. The

element X is a normal element of the algebra A since X is central in E and X H = (H − 2)X .

Let EX be the localization of E at the powers of the element X . Then AX = EX[H; δ], by (7),

AX =
(

K[X±1,C1] ⊗ A1

)

[H; δ]. Since H commutes with the elements of A1, the algebra AX is a

tensor product of algebras

AX = K[C1] ⊗ K[X±1][H; δ] ⊗ A1. (8)

In particular,AX is a Noetherian domain of Gelfand-Kirillov dimension 5. The algebraK[X±1][H; δ]

where δ(X) = 2X and the Weyl algebra A1 are central simple algebras. Hence, Z(AX) = K[C1].

Lemma 2.3. Z(A) = K[C1].

Proof. Since K[C1] ⊆ Z(A) ⊆ A ∩ Z(AX) = K[C1], we have Z(A) = K[C1]. �

Centre of U . By the defining relations of U , we see that the algebra U is a skew polynomial

algebra

U = A[F;σ,δ], (9)

where σ is the automorphism of A defined by σ(H) = H + 2, σ(E) = E, σ(X) = X , σ(Y ) = Y ,

σ(Z) = Z , and δ is the σ-derivation of A defined by δ(H) = δ(Y ) = 0, δ(E) = −H , δ(X) = X ,

and δ(Z) = Y . Let UX be the localization of U at the powers of the element X . Then UX =

AX[F;σ,δ].

Proposition 2.4. 1. UX = K[C1,C2] ⊗ K[X±1][H; δ] ⊗ A1 is a tensor product of algebras

where C2 ≔ EY + H Z − 2FX and δ(X) = 2X.

2. Z(U ) = K[C1,C2].
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3. UZ,X ≃ UX,Z = K[C1,C2] ⊗ K[X±1][H; δ] ⊗ B1, where B1 = A1,Z.

4. C∗
1
= κ(C1) = ι(C1) = C1 and C∗

2
= κ(C2) = ι(C2) = C2.

Proof. 1. Let F ′ ≔ FX . By (8) and (9),

UX = AX[F;σ,δ] = AX[F
′; δ′] =

(

K[C1] ⊗ K[X±1][H; δ] ⊗ A1

)

[F ′; δ′],

where δ′ is a derivation of AX such that δ′(C1) = 0, δ′(X) = X Z , δ′(H) = 0, δ′(EX−1) = −H −
EX−1 · Z , and δ′(Z) = Y X . Using Lemma 2.1, we can “delete” the derivation δ′. In more detail,

the element s = − 1
2

H Z − 1
2

EY satisfies the conditions of Lemma 2.1, and the element F̃ = F ′ + s =

FX − 1
2

H Z − 1
2

EY commutes with the elements of A1. Moreover, F̃ commutes with X and H ,

hence F̃ is central in UX. Let C2 ≔ −2F̃ = EY + H Z − 2FX . Then UX = K[C1,C2] ⊗ K[X±1][H;

δ] ⊗ A1, as required.

2. By statement 1, Z(UX) = K[C1,C2]. Then the inclusions K[C1,C2] ⊆ Z(U ) ⊆ U ∩ Z(UX) =

K[C1,C2] yield the equality Z(U ) = K[C1,C2].

3. Statement 3 follows from statement 1.

4. Straightforward (see also (6)). �

Proposition 2.5. The set B ≔ {EiF j,EiF jY k,EiX k | i, j ∈ N and k ∈ N+} is a free basis of the

(left and right) K[C1,C2,H, Z]-moduleU . In particular, the algebraU is a free K[C1,C2]-module.

Proof. As a vector space, the algebra U is a tensor product U ⊗ P3 of the vector spaces

U = U(sl2) and P3 = U(V3) = K[X,Y, Z]. Since XY = C1 +
1
2

Z2, the polynomial algebra P3 is a free

K[C1, Z]-module with a free basis {1,X k,Y k | k ∈ N+}. Using the equality FX = 1
2
(EY + H Z −

C2), and the fact that V3 is an abelian ideal of the Lie algebra e(3) = sl2 ⋉ V3, the result follows. �

The prime ideals of the algebraU . The next two lemmas are key facts that are used in the proof

of Theorem 1.1.

Lemma 2.6. 1. (X) = (Y ) = (Z) = (X,Y, Z).

2. U/(Z) ≃ U(sl2).

3. For all i > 1, [X,F i] = −iF i−1Z + 1
2
i(i − 1)F i−2Y.

4. For all i > 1, [Y,Ei] = −2iEi−1Z + 2i(i − 1)Ei−2X.

Proof. 1. Statement 1 follows immediately from the defining relations ofU .

2. Statement 2 follows from statement 1.

3. Statement 3 can be proved by induction on i.

4. Statement 4 follows from statement 3 by applying the automorphism ι. �

Lemma 2.7. 1. (Z) = UZ +UY +UX.

2. (Z)i = (Z i) for all i > 1.

Proof. 1. The inclusion ZU ⊆ UZ +UY +UX holds in the algebra U . This follows from

the equalities [Z,Ei] = −2iEi−1X , [Z,F i] = −iF i−1Y , and Lemma 2.6.(3). Then (Z) ⊆ UZ +UY +

UX ⊆ (X,Y, Z) = (Z). Hence, (Z) = UZ +UY +UX .

2. It is clear that (Z i) ⊆ (Z)i. We prove that (Z)i ⊆ (Z i) by induction on i. The case i = 1

is obvious. Suppose that the inclusion holds for all i′ < i. Then (Z)i = (Z)(Z)i−1 ⊆ (Z)(Z i−1) =

UZUZ i−1U = (UZ +UY +UX)Z i−1U = (Z i) + (Y Z i−1) + (X Z i−1), by statement 1. Notice that

Y Z i−1 ∈ (Z i) since [F, Z i] = iY Z i−1, and X Z i−1 ∈ (Z i) since [E, Z i] = 2iX Z i−1. Hence, (Z)i ⊆ (Z i),

as required. �

For an algebra R, let Spec (R) be the set of its prime ideals. The set (Spec (R),⊆) is a partially

ordered set (poset) with respect to inclusion of prime ideals. Each element r ∈ R determines two

maps from R to R, r · : x → r x and ·r : x → xr , where x ∈ R.
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Proposition 2.8. (Ref. 5.) Let R be a Noetherian ring and s be an element of R such that

Ss ≔ {si | i ∈ N} is a left denominator set of the ring R and (si) = (s)i for all i > 1 (e.g., s is

a normal element such that ker(·sR) ⊆ ker(sR·)). Then Spec (R) = Spec(R, s) ⊔ Specs(R), where

Spec(R, s) ≔ {p ∈ Spec (R) | s ∈ p}, Specs(R) = {q ∈ Spec (R) | s < q} and

(a) the map Spec (R, s)→ Spec (R/(s)), p → p/(s), is a bijection with the inverse q → π−1(q)

where π : R→ R/(s),r → r + (s).

(b) The map Specs(R)→ Spec (Rs), p → S−1
s p, is a bijection with the inverse q → σ−1(q) where

σ : R→ Rs ≔ S−1
s R, r → r

1
.

(c) For all p ∈ Spec (R, s) and q ∈ Specs(R),p * q.

In this paper, we identify the sets in the statements (a) and (b) via the bijections given there.

Proof of Theorem 1.1. The strategy of classifying the prime ideals ofU is to use the following

localizations of the algebraU

(10)

together with the fact that (X i)Z = (X)i
Z
= UZ (which follows from the relation [Z−1F,X] = 1; in

more detail, for all i > 1, 1 = 1
i!

ad(Z−1F)i(X i) ∈ (X i)). By Proposition 2.8, Spec (UZ) = Spec (UZ,X)

and Spec (U ) = Spec (U/(Z)) ⊔ Spec (UZ) = Spec (U(sl2)) ⊔ Spec (UZ). By Proposition 2.4.(3),

Spec (UZ,X) = Spec (K[C1,C2]) since the algebrasK[X±1][H; δ] and A1,Z are central simple algebras.

By Proposition 2.5, the algebra U is a free (left and right) K[C1,C2, Z]-module. Therefore, for all

p ∈ Spec (K[C1,C2]),U ∩ pUZ = pU . Now, statement 1 is obvious. So all the prime ideals are pre-

sented in diagram (1) and the inclusions in (1) are obvious. Clearly, there are no additional inclusions

in diagram (1). �

The next corollary describes the set of maximal ideals Max (U ) of the algebraU .

Corollary 2.9. Max (U ) = Max (U(sl2)) ⊔ Max (Z) \ {(C1,C2)}.

Proof. The equality follows from (1). �

A prime ideal P of a ring R is said to be locally closed if the set {P} is locally closed in

the topological space Spec (R) where Spec (R) is equipped with Zariski topology [Ref. 9, II.1.1].

A prime ideal P of a Noetherian K-algebra R is said to be rational if the field Z
(

Frac(R/P)
)

is

algebraic over K where Frac(R/P) is the left (right) quotient ring of the Noetherian prime algebra

R/P. We say that the Dixmier-Moeglin equivalence holds for a Noetherian K-algebra A if for each

prime ideal P of A we have the following equivalences:

P is locally closed ⇐⇒ P is primitive ⇐⇒ P is rational.

The next corollary describes the set of primitive ideals Prim (U ) of the algebraU .

Corollary 2.10. Prim (U ) = Prim (U(sl2)) ⊔ Max (Z).

Proof. SinceU is a universal enveloping algebra of a finite dimensional Lie algebra, it satisfies

the Dixmier-Moeglin equivalence. By Ref. 9 [Lemma II.7.7], a prime ideal P in a ring R is locally

closed if and only if the intersection of all prime ideals properly containing P is also an ideal

properly containing P. By (1), the set of locally closed prime ideals is Prim (U(sl2)) ⊔ Max (Z).

Then the corollary follows from the Dixmier-Moeglin equivalence forU . �

The next theorem describes the set of completely prime ideals Specc(U ) of the algebra U (its

proof is given at the end of Section III).

Theorem 2.11. Let F be the set of annihilators of simple finite dimensional U(sl2)-modules of

dimension > 2. Then Specc(U ) = Spec (U ) \ F .
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III. THE ALGEBRA CU(H ), ITS GENERATORS, AND DEFINING RELATIONS

The aim of this section is to find generators and defining relations for the centralizer CU(H) of

the element H in the algebraU (Theorem 3.2.(1)), to show that the centre of CU(H) is a polynomial

algebra K[C1,C2,H] (Lemma 3.1.(2)), to prove that the algebra CU(H) is a free (left and right)

module over its polynomial subalgebra Γ = K[C1,C2,H, Z], and to find an explicit free Γ-basis

for CU(H) (Theorem 3.2.(2)). We introduced and studied the factor algebras Cλ,µ = Cλ1,λ2, µ ≔

CU(H)/(C1 − λ1,C2 − λ2,H − µ) of CU(H) (where λ1, λ2, µ ∈ K) that play a key role in classify-

ing simple weight U -modules (in Section VI). The sets of prime, completely prime, maximal,

and primitive ideals of the algebra Cλ,µ are found (Theorem 3.16). Simple finite dimensional

Cλ,µ-modules are classified where λ1 , 0 (Theorem 3.13). We realize the algebra CU(H) as an

algebra of differential operators ((12) and (13)).

The next lemma describes the centre of the algebra CU(H).

Lemma 3.1. 1. CUX
(H) = K[C1,C2,H] ⊗ A1, where A1 = K⟨

1
2

EX−1, Z⟩.

2. Z(CU(H)) = Z(CUX
(H)) = K[C1,C2,H].

Proof. 1. The result follows from Proposition 2.4.(1).
2. Statement 2 follows from statement 1 since Z(A1) = K. �

Since ι(H) = −H , the automorphism ι of the algebraU (see (3)) induces the automorphism ι of

the algebra CU(H) by the rule

ι : CU(H)→ CU(H), θ → θ + H, φ → −φ − H Z + C2, H → −H, Z → −Z, C1 → C1, C2 → C2.

(11)

Generators and defining relations of CU(H). We embed the algebra CU(H) into the first Weyl

algebra over the polynomial algebra K[C1,C2,H] and use this fact in finding generators and defining

relations of CU(H) (Theorem 3.2). Let ∂ ≔ 1
2

EX−1. The Weyl algebra A1 = K⟨Z, ∂ | [∂, Z] = 1⟩

is the GWA A1 = K[h][Z, ∂;σ,a = h], where σ(h) = h − 1 and h ≔ ∂Z . The Weyl algebra A1 =

⊕i∈ZA1, i is a Z-graded algebra (A1, iA1, j ⊆ A1, i+ j for all i, j ∈ Z), where A1,0 ≔ K[h] is a polynomial

algebra in the variable h and, for i > 1, A1,±i = K[h]v±i, where vi = Z i, v−i = ∂i and v0 ≔ 1. As a

Z-graded algebra, the Weyl algebra A1 has the ascending filtration G = {A1,6i}i∈Z associated with

the Z-grading, where A1,6i ≔ ⊕ j6iA1, j. The associated graded algebra grG(A1) = ⊕i∈ZA1,6i/A1,6i−1

is isomorphic to the GWA K[h][Z, ∂;σ,0]. In particular, the algebra grG(A1) contains two skew

polynomial rings, K[h][Z;σ] and K[h][∂;σ−1], as Z-graded subalgebras. By Lemma 3.1, the

centralizer CUX
(H) = ⊕i∈ZCUX

(H)i is a Z-graded algebra where the Z-grading is inherited from the

Weyl algebra A1, i.e., CUX
(H)i = K[C1,C2,H] ⊗ A1, i.

Clearly, the algebra CU(H) is a subalgebra of CUX
(H) = K[C1,C2,H] ⊗ A1 (Lemma 3.1). Let

θ ≔ FE and φ ≔ EY . Then θ,φ ∈ CU(H) and

φ = ∂(2C1 + Z2) = 2C1∂ + hZ, (12)

θ = 2C1∂
2 − C2∂ + (h + H)(h − 1) = (φ + H Z − C2)∂ = −ι(φ)∂. (13)

In more detail, φ = EY = EX−1 · XY = 2∂(C1 +
1
2

Z2) = 2C1∂ + hZ , since ∂Z = h. Similarly,

θ = FE = FX · X−1E = FX · EX−1 = (EY + H Z − C2) · ∂ = (φ + H Z − C2)∂

=

(

2C1∂ + (h + H)Z − C2

)

∂ = 2C1∂
2 − C2∂ + (h + H)(h − 1),

since Z∂ = σ(h) = h − 1. By (12), [∂,φ] = 2∂Z . Then, by (12) and (13),

θ = ∂

(

φ + (H − 2)Z − H − C2

)

= ∂

(

∂(2C1 + Z2) + (H − 2)Z − H − C2

)

. (14)

Theorem 3.2. Recall that θ = FE and φ = EY. Then

1. The algebra CU(H) is generated by the elements C1,C2,H, Z, θ, and φ subject to the defining

relations as follows:

[φ, Z] = Z2 + 2C1, (15)



011701-8 V. V. Bavula and T. Lu J. Math. Phys. 58, 011701 (2017)

[θ, Z] = 2φ + (H − 2)Z − C2, (16)

[θ,φ] = 2(θ + H)Z − Hφ, (17)

φ(φ + H Z − C2) = (θ + H)(Z2 + 2C1), (18)

[C1, ·] = 0, [C2, ·] = 0, and [H, ·] = 0, (19)

where (19) means that the elements C1, C2, and H are central in CU(H). In view of (15), the

relation (18) can be replaced by relation

(φ + H Z − C2)φ = θ(Z2 + 2C1). (20)

2. The set B = {θ iφ j | i ∈ N, j = 0,1} is a free basis of the (left and right) Γ-module CU(H)

where Γ = K[C1,C2,H, Z]. The sets ι(B) = {(θ + H)iι(φ) j | i ∈ N, j = 0, 1} and B′ = {θ iι(φ) j |

i ∈ N, j = 0, 1} are free bases of the (left and right) Γ-module CU(H).

3. The algebra CU(H) is a Noetherian algebra of Gelfand-Kirillov dimension 5.

Proof. 1 and 2. The second part of statement 2 follows from the first one by applying the auto-

morphism ι. By Proposition 2.5, the algebra C = CU(H) is generated by the elements C1,C2,H, Z, θ,

and φ. It is straightforward to check that they satisfy the relations (15)–(19). It remains to show that

these relations are defining relations. By (15)–(19), the set B in statement 2 is a set of generators

of the (left and right) Γ-module C. The fact that the set B is a free basis for the (right and left)

Γ-module C follows from the claim below. Then statement 2 implies statement 1. In order to formu-

late the claim we need to introduce some notation. Let K = K(C1,C2,H) be the field of rational

functions in the variables C1,C2, and H . Let A1(K ) be the Weyl algebra over the field K . We have

the inclusions of algebras C ⊆ CUX
(H) = K[C1,C2,H] ⊗ A1 ⊆ A1(K ) ≔ K ⊗ A1.

Claim. The elements {θ iφ jZk | i, k ∈ N and j = 0,1} of the algebra A1(K ) are K -linearly

independent.

Suppose that this is not true. Then r ≔


λi jkθ
iφ jZk = 0 for some elements λi jk ∈ K , where

i, k > 0 and j = 0,1. The Weyl algebra A1(K ) is a domain. By multiplying on the right the element

r by Z s, we can assume that all the elements θ iφ jZk in the relation r belong to the skew polynomial

algebra A1,+(K ) ≔ ⊕i>0K ⊗ A1, i = K [h][Z;σ], where σ(h) = h − 1. The concept of Z-degree,

degZ, for A1,+(K ) makes sense. Notice that, by (12) and (13),

φZ = 2C1h + hZ2 = hZ2 + · · ·, (21)

θZ2 = 2C1(h + 1)h − C2h + (h + H)(h − 1)Z2 = αZ2 + · · ·, (22)

where α = (h + H)(h − 1) and the three dots denote smaller terms with respect to the Z-degree. Let

d ≔ max{degZ(θ
iφ jZk) = j + k | λi jk , 0}. Then the leading term l of the element r = 0 must be

equal to zero, i.e., l = 0. Notice that

θ iZk = αiZk + · · ·,

θ iφZk = αihZk + · · ·.

Then

0 = l =

(



j+k=d, j=0,1

λi jkα
ih j
)

Zd =

(



i

(λi0d + λi1,d−1h)αi
)

Zd.

Since degh(α) = 2, the relation l = 0 implies that all λi jk = 0 (in the relation l = 0), a contradiction.

3. Since U = ⊕i∈ZUi is a Z-graded Noetherian algebra where Ui = kerU(H − i), the algebra

U0 = CU(H) is a Noetherian algebra. By statement 2, GK (CU(H)) = 5. �

Relation (18) can be written as

− φι(φ) = ι(θ)(Z2 + 2C2). (23)

Relation (20) can be written as

− ι(φ)φ = θ(Z2 + 2C2). (24)
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So, Relation (20) is obtained from relation (18) by applying the automorphism ι, and vice versa

(since ι−1 = ι).

The algebras Cλ,µ = Cλ1,λ2, µ. Let λ1, λ2, µ ∈ K, and λ = (λ1, λ2). Let (C1 − λ1,C2 − λ2,H − µ)

be the ideal of the algebra CU(H) generated by the elements in the brackets. The algebras Cλ,µ
≔

Cλ1,λ2, µ ≔ CU(H)/(C1 − λ1,C2 − λ2,H − µ) play an important role in the classification of simple

weight U -modules (see Section VI). Similarly, define C
λ,µ

UX
≔ C

λ,µ

UX
(H) ≔ CUX

(H)/(C1 − λ1,C2 −
λ2,H − µ). We use also notations C

λ1,λ2, µ

UX
and C

λ1,λ2, µ

UX
(H) to denote the algebra C

λ,µ

UX
. By Lemma

3.1.(1), C
λ,µ

UX
≃ A1 is the Weyl algebra.

Proposition 3.3. Let λ1, λ2, µ ∈ K. Then

1. As an abstract algebra, the algebra Cλ,µ is generated by the elements Z, θ and φ that satisfy the

defining relations as follows:

[φ, Z] = Z2 + 2λ1, (25)

[θ, Z] = 2φ + (µ − 2)Z − λ2, (26)

[θ,φ] = 2(θ + µ)Z − µφ, (27)

φ(φ + µZ − λ2) = (θ + µ)(Z2 + 2λ1). (28)

In view of (25), relation (28) can be replaced by the relation

(φ + µZ − λ2)φ = θ(Z2 + 2λ1). (29)

2. The set B = {θ iφ j | i ∈ N and j = 0,1} is a free basis of the (left and right) K[Z]-module Cλ,µ.

3. The algebra homomorphism Cλ,µ → C
λ,µ

UX
= A1, Z → Z, φ → 2λ1∂ + hZ, θ → 2λ1∂

2 − λ2∂

+ (h + µ)(h − 1) is a monomorphism. In particular, Cλ,µ is a domain.

4. The ideal (C1 − λ1,C2 − λ2,H − µ) of the algebra CU(H) is equal to the intersection of the

algebra CU(H) and the ideal (C1 − λ1,C2 − λ2,H − µ) of the algebra CUX
(H). In particular,

the ideal (C1 − λ1,C2 − λ2,H − µ) is a completely prime ideal of CU(H).

5. GK (Cλ,µ) = 2 and Z(Cλ,µ) = K.

Proof. 1. Statement 1 follows from Theorem 3.2.(1).

2. Statement 2 follows from Theorem 3.2.(2).

3. In view of the inclusion CU(H) ⊆ CUX
(H) = K[C1,C2,H] ⊗ A1 and the equalities (12) and

(13), the homomorphism in statement 3 is well defined. The fact that it is a monomorphism follows

from statement 2 and the claim below.

Claim: The images of the elements {θ iφ jZk | i, k ∈ N and j = 0,1} in A1 are K-linearly inde-

pendent: Repeat the proof of the claim in the proof of Theorem 3.2 replacing (K ,C1,C2,H) by

(K, λ1, λ2, µ) everywhere.

4. Statement 4 follows from statement 3.

5. The inclusion Λ ≔ K⟨Z, ∂⟩ ⊆ Cλ,µ ⊆ A1 yields the inequalities 2 = GK (Λ) 6 GK
(

Cλ,µ
)

6

GK (A1) = 2, i.e., GK
(

Cλ,µ
)

= 2. Since CA1
(Z) = K[Z], we must have Z(Cλ,µ) ⊆ K[Z]. Let f ∈

Z(Cλ,µ). By (25), 0 = [φ, f ] =
df

dZ
· (Z2 + 2λ1). Hence, f ∈ K, i.e., Z(Cλ,µ) = K. �

The Weyl algebra A1 admits a finite dimensional ascending filtration S = {Si ≔


j+k6iKZ j

∂k}i∈N by the total degree of the canonical generators Z and ∂ of A1. The associated graded

algebra gr(A1) = K[Z, ∂] is a polynomial algebra. The subalgebra Cλ,µ ⊂ A1 (Proposition 3.3.(3))

admits the induced filtration F = {Fi ≔ Cλ,µ ∩ Si}i∈N. It follows that the associated graded algebra

grF (C
λ,µ) is a subalgebra of the polynomial algebra gr(A1) = K[Z, ∂]. In the algebra grF (C

λ,µ),

φ = Z2∂ and θ = Z2∂2. In particular, φ2 = θZ2.

Lemma 3.4. 1. grF (C
λ,µ) ≃ K[Z, φ, θ]/(φ2 − θZ2).

2. The algebra gr(A1) is not a finitely generated grF (C
λ,µ)-module.

3. The Weyl algebra A1 is not a finitely generated left/right Cλ,µ-module.
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Proof. 1. The algebra grF (C
λ,µ) is an epimorphic image of the factor algebra K[Z, φ, θ]/(φ2 −

θZ2) (since φ2 = θZ2 in grF (C
λ,µ)). In fact, grF (C

λ,µ) ≃ K[Z, φ, θ]/(φ2 − θZ2), by Proposition

3.3.(2).

2. Clearly, the algebra grF (C
λ,µ) is a subalgebra of the algebra K[Z, Z∂] (since φ = Z2∂

and θ = Z2∂2). The polynomial algebra K[Z, ∂] is not a finitely generated K[Z, Z∂]-module, and

statement 2 follows.

3. Statement 3 follows from statement 2. �

The Cλ,µ-modules V λ,µ(ν1) and W λ,µ(ν1). We introduce important Cλ,µ-modules V λ,µ(ν1)

and W λ,µ(ν1) that play an important role in the classification of simple Cλ,µ-modules (especially,

finite-dimensional ones). Generically, these modules are simple. For all λ1, λ2, µ ∈ K, ι
(

(C1 −
λ1,C2 − λ2,H − µ)

)

= (C1 − λ1,C2 − λ2,H + µ). So, the automorphism ι of CU(H) induces the

automorphism of the algebras

ι : Cλ,µ → Cλ,−µ, θ → θ − µ, φ → −φ + µZ + λ2, Z → −Z. (30)

The polynomial subalgebra Γ = K[Z,C1,C2,H] is ι-invariant since ι(Z) = −Z, ι(C1) = C1, ι(C2) =

C2 and ι(H) = −H . By Theorem 3.2.(2), the algebra CU(H) is the tensor product of vector spaces

CU(H) =

(

K[θ] ⊕ K[θ]φ
)

⊗ Γ. (31)

By applying the automorphism ι, the algebra CU(H) is a tensor product of vector spaces

CU(H) =

(

K[θ + H] ⊕ K[θ + H]ι(φ)

)

⊗ Γ. (32)

Let (λ1, λ2, µ) ∈ K∗ × K × K and λ = (λ1, λ2). For λ1 ∈ K∗, the polynomial Z2 + 2λ1 ∈ K[Z]
has two distinct, nonzero roots ν1 and −ν1. Let us fix a root, say ν1, of Z2 + 2λ1, i.e., ν2

1
+ 2λ1 = 0.

The maximal ideal m = (Z − ν1,C1 − λ1,C2 − λ2,H − µ) of the algebra Γ determines a simple

1-dimensional Γ-module Γ/Γm ≃ K. Consider the induced CU(H)-module

CU(H) ⊗Γ Γ/Γm
(31)≃
(

K[θ] ⊕ K[θ]φ
)

⊗ Γ/Γm.

This CU(H)-module is, in fact, Cλ,µ-module

Cλ,µ(ν1) ≔ Cλ,µ/Cλ,µ(Z − ν1) ≃ K[θ]1̃ ⊕ K[θ]φ1̃, (33)

where 1̃ = 1 + Cλ,µ(Z − ν1). The K[θ]-module Cλ,µ(ν1) is a free module of rank 2. By (32), we also

have

Cλ,µ(ν1) = K[θ]1̃ ⊕ K[θ]ι(φ)1̃ = K[θ]1̃ ⊕ K[θ](φ + µν1 − λ2)1̃. (34)

The K[θ]-submodule K[θ]φ1̃ of Cλ,µ(ν1) is a Cλ,µ-submodule,

Cλ,µφ1̃
(34)
= K[θ]φ1̃ + K[θ](φ + µν1 − λ2)φ1̃

(29)
= K[θ]φ1̃ + K[θ]θ(ν2

1 + 2λ1)φ1̃ = K[θ]φ1̃.

Define the Cλ,µ-modules

W λ,µ(ν1) ≔ K[θ]φ1̃ and V λ,µ(ν1) ≔ Cλ,µ/W λ,µ(ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, φ) = K[θ]1̄, (35)

where 1̄ = 1 + Cλ,µ(Z − ν1, φ). The K[θ]-modules W λ,µ(ν1) and V λ,µ(ν1) are free modules of rank

1. Since K[θ]ι(φ)φ1̃
(29)
= K[θ]θ(ν2

1
+ 2λ1)1̃ = 0 and the K[θ]-module W λ,µ(ν1) is free of rank 1, it

follows from (34) that

W λ,µ(ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, ι(φ)) ≃ Cλ,µ/Cλ,µ(Z − ν1, φ + µν1 − λ2) = K[θ]1
′, (36)

where 1′ ≔ 1 + Cλ,µ(Z − ν1, φ + µν1 − λ2). Similarly, the K[θ]-submodule K[θ]ι(φ)1̃ = K[θ](φ +

µν1 − λ2)1̃ of Cλ,µ(ν1) (see (34)) is a Cλ,µ-submodule,

Cλ,µ(φ + µν1 − λ2)1̃
(33)
= K[θ](φ + µν1 − λ2)1̃ + K[θ]φ(φ + µν1 − λ2)1̃

(28)
= K[θ](φ + µν1 − λ2)1̃ + K[θ](θ + µ)(ν2

1 + 2λ1)1̃ = K[θ](φ + µν1 − λ2)1̃.
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It follows from the above arguments and the fact that the K[θ]-module K[θ](φ + µν1 − λ2)1̃ is free

that the Cλ,µ-homomorphism

V λ,µ(ν1) = K[θ]1̄→ K[θ](φ + µν1 − λ2)1̃, 1̄ → (φ + µν1 − λ2)1̃

is an isomorphism. Summarizing, we have short exact sequence of Cλ,µ-modules that follow from

the equalities (33) and (34), respectively,

0→ W λ,µ(ν1)→ Cλ,µ(ν1)→ V λ,µ(ν1)→ 0, (37)

0→ V λ,µ(ν1)→ Cλ,µ(ν1)→ W λ,µ(ν1)→ 0. (38)

The next lemma shows that, generically, these short exact sequences split.

Lemma 3.5. Let (λ1, λ2, µ) ∈ K∗ × K × K.

1. If µν1 − λ2 , 0, then Cλ,µ(ν1) = V λ,µ(ν1) ⊕W λ,µ(ν1) and V λ,µ(ν1) ≃ K[θ]ι(φ)1̃ ≃ K[θ](φ +
µν1 − λ2)1̃ and W λ,µ(ν1) = K[θ]φ1̃.

2. If µν1 − λ2 = 0, then V λ,µ(ν1) ≃ W λ,µ(ν1) and there is a short exact sequence of Cλ,µ-modules

0→ V λ,µ(ν1)→ Cλ,µ(ν1)→ V λ,µ(ν1)→ 0.

Proof. 1. Since µν1 − λ2 , 0, by (33) and (34), Cλ,µ(ν1) = K[θ](φ + µν1 − λ2)1̃ ⊕ K[θ]φ1̃ =

V λ,µ(ν1) ⊕W λ,µ(ν1).

2. Since µν1 − λ2 = 0, then V λ,µ(ν1) = K[θ](φ + µν1 − λ2)1̃ = K[θ]φ1̃ = W λ,µ(ν1). Then, by

(37) we have the short exact sequence in statement 2. �

If we identify the algebras Cλ,µ and Cλ,−µ via the isomorphism ι : Cλ,µ → Cλ,−µ, see (30),

then the isomorphism ι induces a Cλ,µ-module isomorphism ι : Cλ,µ(ν1)→ Cλ,−µ(−ν1). Clearly,

ι
(

V λ,µ(ν1)
)

= W λ,−µ(−ν1) and ι
(

W λ,µ(ν1)
)

= W λ,−µ(−ν1). (39)

The simple n-dimensional Cλ,µ-module F
λ,µ
n (ν1): We assume that λ1 , 0. Let ν1 is a root

of the polynomial Z2 + 2λ1, i.e., ν2
1
= −2λ1. There are two distinct roots of Z2 + 2λ1: ν1 and

−ν1 (since λ1 , 0). Let us consider the A1-module V(ν1) ≔ A1/A1(Z − ν1) = K[∂]1̄, where 1̄ =

1 + A1(Z − ν1). The A1-moduleV(ν1) is simple and the set of elements {∂i1̄ | i ∈ N} is its K-basis.

In particular,V(ν1) is a free K[∂]-module of rank 1. Clearly,

Z 1̄ = ν11̄ and Z∂i1̄ = ν1∂
i1̄ − i∂i−11̄ for i > 1. (40)

We see that V(ν1) =


i>0 ker(Z − ν1)
i+1 and ker(Z − ν1)

i+1 = K[∂]6i1̄, where K[∂]6i ≔ ⊕ij=0
K∂ j.

It is straightforward to show (using Proposition 3.3.(3)) that the action of the elements φ and θ on

the basis elements of the A1-moduleV(ν1) are given below

φ1̄ = 0 and φ∂i1̄ = −2iν1∂
i1̄ + i(i − 1)∂i−11̄, i > 1, (41)

θ∂i1̄ = θi∂
i+11̄ + ηi∂

i1̄, i > 0, (42)

where θi ≔ ν1

(

µ − 2(i + 1)
)

− λ2 and ηi ≔ −(µ − i)(i + 1). Since Cλ,µ ⊆ A1, V(ν1) is also a Cλ,µ-

module. The lemma below is a simplicity criterion for the Cλ,µ-moduleV(ν1). It shows that in case

when the Cλ,µ-moduleV(ν1) is not simple, it contains a unique proper submodule which is a finite

dimensional simple Cλ,µ-module.

Lemma 3.6. Let λ1 , 0 and ν2
1
= −2λ1. Then the Cλ,µ-module V(ν1) is not simple if and only

if ν1(µ − 2n) − λ2 = 0, i.e., θn−1 = 0, for some n ∈ N+. In this case, F
λ,µ
n (ν1) ≔

n−1

i=0
K∂i1̄ is a

unique proper Cλ,µ-submodule of V(ν1). The Cλ,µ-module F
λ,µ
n (ν1) is simple, dim F

λ,µ
n (ν1) = n,

and (Z − ν1)
nFλ,µ(ν1) = 0.

Proof. If θn−1 , 0 for all n ∈ N+, then the Cλ,µ-module V(ν1) is simple by (40) and (42). If

θn−1 = 0 for some n ∈ N+, then the number n is unique and F
λ,µ
n (ν1) is a simple, n-dimensional
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Cλ,µ-submodule of V(ν1), by (40) and (42). By (40) and (42), the factor module V(ν1)/F
λ,µ
n (ν1)

is a simple Cλ,µ-module and F
λ,µ
n (ν1) is an essential submodule of V(ν1). Therefore, F

λ,µ
n (ν1) is a

unique proper submodule of the Cλ,µ-moduleV(ν1). �

Theorem 3.13 shows that the modules F
λ,µ
n (ν1) and their ‘partners’ G

λ,µ
n (ν1) (if exist) are

precisely finite dimensional simple Cλ,µ-modules.

The next two corollaries describe the Cλ,µ-module F
λ,µ
n (ν1) in terms of the algebra Cλ,µ.

Corollary 3.7. We keep the assumptions and notation of Lemma 3.6. Then

F
λ,µ
n (ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, φ, f

λ,µ
n,ν1

),

where f
λ,µ
n,ν1
≔
n−1

i=0 (θ − ηi) and ηi = −(µ − i)(i + 1). Furthermore, f
λ,µ
n,ν1

F
λ,µ
n (ν1) = 0.

Proof. The set {1̄, ∂1̄, . . . , ∂n−11̄} is a K-basis of the simple Cλ,µ-module F
λ,µ
n (ν1). By (40) and

(41), (Z − ν1)1̄ and φ1̄ = 0. By (42), the matrix [θ] of the linear map θ· : F
λ,µ
n (ν1)→ F

λ,µ
n (ν1), u →

θu, in the basis above is a lower diagonal n × n matrix given below where the diagonal elements are

η0, η1, . . . , ηn−1 and below the diagonal are elements θ0, θ1, . . . , θn−2,

[θ] =



η0

θ0 η1 0

0 θ1 η2

...
...

. . .
. . .

0 0 . . . θn−2 ηn−1



. (43)

Then f
λ,µ
n,ν1

F
λ,µ
n (ν1) = 0. Therefore, the Cλ,µ-module F

λ,µ
n (ν1) is an epimorphic image of the Cλ,µ-

module V ≔ Cλ,µ/Cλ,µ(Z − ν1, φ, f
λ,µ
n,ν1

). By (35), dim(V ) = n = dim F
λ,µ
n (ν1). Therefore,

V ≃ F
λ,µ
n (ν1). �

By (35), V λ,µ(ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, φ) = K[θ]1̄. Using the defining relations of the algebra

Cλ,µ (Proposition 3.3.(1)) and induction on i, we obtain that

φ1̄ = 0 and φθ i1̄ = −2iν1θ
i1̄ + · · ·, i > 1, (44)

Z 1̄ = ν11̄ and Zθ i1̄ = ν1θ
i1̄ − iθi−1θ

i−11̄ + · · ·, i > 1, (45)

where θi = ν1

(

µ − 2(i + 1)
)

− λ2 (see (42)) and the three dots means smaller terms.

Simplicity criteria for the Cλ,µ-modules V λ,µ(ν1) and W λ,µ(ν1). The next proposition is a

simplicity criterion for the Cλ,µ-module V λ,µ(ν1). It also describes the submodules and factor

modules of V λ,µ(ν1).

Proposition 3.8. Let λ1 ∈ K∗ and ν2
1
= −2λ1. Then the Cλ,µ-module V λ,µ(ν1) is not simple if

and only if n ≔ 1
2
(µ − λ2

ν1
) ∈ N+ if and only if θn−1 = 0 for some n ∈ N+. In this case,

1. f
λ,µ
n,ν1

V λ,µ(ν1) is the only proper submodule of the Cλ,µ-module V λ,µ(ν1) where f
λ,µ
n,ν1
=
n−1

i=0 (θ

− ηi) and ηi = −(µ − i)(i + 1) (see Corollary 3.7).

2. F
λ,µ
n (ν1) ≃ V λ,µ(ν1)/ f

λ,µ
n,ν1

V λ,µ(ν1) is the unique simple factor module of the Cλ,µ-module

V λ,µ(ν1), dim F
λ,µ
n (ν1) = n, and K[θ] ∩ annCλ, µ(F

λ,µ
n (ν1)) = f

λ,µ
n,ν1
K[θ].

Proof. By Proposition 3.3.(1), the algebra Cλ,µ is generated by the elements Z and θ (see

(26)). Any submodule U of V λ,µ is equal to fK[θ]1̄ for a unique monic polynomial f ∈ K[θ]. The

submodule U = fK[θ]1̄ of V λ,µ is a proper submodule if and only if f ∈ K[θ] \ K and Z f 1̄ = ν1 f 1̄,

by (45). Let n = degθ( f ). Then necessarily θn−1 = 0, by (45), and the number n ∈ N+ is unique

with this property. So, the proper submodule U is unique. Hence, the n-dimensional Cλ,µ-module

Fn ≔ V λ,µ/ f V λ,µ is a unique proper factor module of the Cλ,µ-module V λ,µ. Now, the proposition

follows from Corollary 3.7. �
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The next corollary is a simplicity criterion for the Cλ,µ-module W λ,µ(ν1). It also describes the

submodules and factor modules of W λ,µ(ν1).

Corollary 3.9. Let λ1 ∈ K∗ and ν2
1
= −2λ1. Then

1. The Cλ,µ-module W λ,µ(ν1) is isomorphic to the twisted by the isomorphism ι : Cλ,µ → Cλ,−µ

Cλ,−µ-module V λ,−µ(−ν1), i.e., W λ,µ(ν1) ≃ ιV λ,−µ(−ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, ι(φ)).

2. The Cλ,µ-module W λ,µ(ν1) is not simple if and only if m ≔ 1
2
(−µ + λ2

ν1
) ∈ N+. In this case,

(a) ι( f
λ,−µ
m,−ν1

)W λ,µ(ν1) is the only proper submodule of the Cλ,µ-module W λ,µ(ν1) where

f
λ,−µ
m,−ν1

=
m−1

i=0 (θ − η ′
i
) and η ′

i
≔ −(−µ − i)(i + 1).

(b) G
λ,µ
m (ν1) ≔

ιF
λ,−µ
m (−ν1) ≃ Cλ,µ/Cλ,µ(Z − ν1, ι(φ), ι( f

λ,−µ
m,−ν1

)) is the unique simple factor

module of the Cλ,µ-module W λ,µ(ν1) and dim G
λ,µ
m (ν1) = m.

(c) K[θ] ∩ annCλ, µ(G
λ,µ
m (ν1)) = ι( f

λ,−µ
m,−ν1

)K[θ] and (Z − ν1)
mG

λ,µ
m (ν1) = 0.

Proof. 1. Statement 1 follows from (39) and (35).

2. Statement 2 follows from statement 1 and Proposition 3.8. �

Corollary 3.10. Let λ1 ∈ K∗ and ν2
1
= −2λ1. If one of the Cλ,µ-modules V λ,µ(ν1) or W λ,µ(ν1) is

not simple, then the other is necessarily simple.

Proof. By Proposition 3.8, the Cλ,µ-module V λ,µ(ν1) is not simple if and only if 1
2
(µ − λ2

ν1
) ∈

N+. By Corollary 3.9.(2), the Cλ,µ-module W λ,µ(ν1) is not simple if and only if − 1
2
(µ − λ2

ν1
) ∈ N+.

Now, the result follows. �

Lemma 3.11. Let λ ∈ K∗. Suppose that n = 1
2
(µ − λ2

ν1
) ∈ N+. Then

1. 0 −→ F
λ,µ
n (ν1) −→ V(ν1) −→ V(λ1)/F

λ,µ
n (ν1) ≃ W λ,µ(ν1) −→ 0 is a short exact sequence of

Cλ,µ-modules and W λ,µ(ν1) is a simple Cλ,µ-module.

2. f
λ,µ
n,ν1

V λ,µ(ν1) ≃ W λ,µ(ν1).

Proof. 1. Let us show that the isomorphism makes sense. Clearly, V ≔ V(λ1)/F
λ,µ
n (ν1) =



i>0
K∂n+i1̃, where 1̃ = 1 + F

λ,µ
n (ν1). By (40) and (41), (Z − ν1)1̃ = 0 and 0 = (φ + 2nν1)1̃ =

(φ + µν1 − λ2)1̃ = (φ + µZ − λ2)1̃ = −ι(φ)1̃. So, V is an epimorphic image of W λ,µ(ν1) (Corollary

3.9.(1)). Since n ∈ N+, we have m ≔ 1
2
(−µ + λ2

ν1
) = −n < N+, and so the Cλ,µ-module W λ,ν(ν1) is

simple (Corollary 3.9.(2)). Hence, V ≃ W λ,µ(ν1). Now, statement 1 follows.

2. Let f = f
λ,µ
n,ν1

. We keep the notation of Proposition 3.8. Notice that (Z − ν1) f 1̄ = 0 since

degθ((Z − ν1) f 1̄) < degθ( f 1̄) and (Z − ν1) f 1̄ ∈ fK[θ]1̄. By (44), degθ((φ + 2nν1) f 1̄) < degθ( f 1̄) =

n, hence, (φ + 2nν1) f 1̄ = 0 since (φ + 2nν1) f 1̄ ∈ fK[θ]1̄. Using the equalities n = 1
2
(µ − λ2

ν1
) and

(Z − ν1) f 1̄ = 0, we obtain that ι(φ) f 1̄ = 0: −ι(φ) f 1̄ = (φ + µZ − λ2) f 1̄ = (φ + µν1 − λ2) f 1̄ = (φ +

2nν1) f 1̄ = 0. By (36), there is an epimorphism W λ,µ(ν1)→ f V λ,µ(ν1). Since n ∈ N+, the Cλ,µ-

module W λ,µ(ν1) is simple (Corollary 3.9.(2)). Hence, W λ,µ(ν1) ≃ f V λ,µ(ν1). �

Simplicity criteria for the algebra Cλ,µ where λ1 , 0. The next theorem is a simplicity criterion

for the algebra Cλ,µ where λ1 , 0.

Theorem 3.12. Let λ1 ∈ K∗ and ν2
1
= −2λ1. The following statements are equivalent.

1. Cλ,µ is a simple algebra.

2. The Cλ,µ-modules V λ,µ(±ν1) and W λ,µ(±ν1) are simple.

3. 1
2
(µ ± λ2

ν1
) < Z \ {0}.

4. There is no finite dimensional simple Cλ,µ-module.

Proof. 2⇔ 3⇔ 4. These implications follow from Proposition 3.8 and Corollary 3.9.

(1⇒ 4) This implication is obvious since dim Cλ,µ = ∞.
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(4 ⇒ 1) Since the localization C
λ,µ

Z2+2λ1
of the algebra Cλ,µ is isomorphic to the localiza-

tion A1,Z2+2λ1
of the Weyl algebra A1, the algebra C

λ,µ

Z2+2λ1
is simple. Therefore, any nonzero

ideal a of Cλ,µ contains si for some i > 1 where s = Z2 + 2λ1. Hence, the Cλ,µ-module Cλ,µ/a

contains a submodule, say M , which is an epimorphic image of the Cλ,µ-module Cλ,µ/Cλ,µs ≃
Cλ,µ(ν1) ⊕ Cλ,µ(−ν1) since the Cλ,µ-modules V λ,µ(±ν1) and W λ,µ(±ν1) are faithful (Lemma 3.15),

the module M must be finite dimensional, by Proposition 3.8 and Corollary 3.9. �

Classification of simple finite dimensional Cλ,µ-modules. The next theorem classifies the sim-

ple finite dimensional Cλ,µ-modules.

Theorem 3.13. Let λ1 ∈ K∗, n = 1
2
(µ − λ2

ν1
), and m = 1

2
(µ +

λ2

ν1
), where ν2

1
+ 2λ1 = 0. Then

ECλ,µ (fin. dim.) =



{F
λ,µ
n (ν1), F

λ,µ
m (−ν1)} if n,m ∈ N+,

{F
λ,µ
n (ν1), G

λ,µ
−m (−ν1)} if n,−m ∈ N+,

{G
λ,µ
−n (ν1), F

λ,µ
m (−ν1)} if −n,m ∈ N+,

{G
λ,µ
−n (ν1), G

λ,µ
−m (−ν1)} if −n,−m ∈ N+,

{F
λ,µ
n (ν1)} if n ∈ N+,±m < N+,

{G
λ,µ
−n (ν1)} if −n ∈ N+,±m < N+,

{F
λ,µ
m (−ν1)} if ±n < N+,m ∈ N+,

{G
λ,µ
−m (−ν1)} if ±n < N+,−m ∈ N+,

∅ if ±n,±m < N.

Proof. By Theorem 3.9, ECλ,µ (fin. dim.) = ∅ if and only if ±n,±m < N+. Let V be a sim-

ple finite dimensional Cλ,µ-module. By Lemma 3.5, V is an epimorphic image of some of the

Cλ,µ-modules: V λ,µ(±ν1), W λ,µ(±ν1). Now, the equalities in the theorem follow from the descrip-

tion of factor modules of the modules V λ,µ(±ν1) (Proposition 3.8) and W λ,µ(±ν1) (Corollary 3.9). It

remains to show that in the first four cases the two modules are not isomorphic. This follows from

the fact that (Z − ν1)
nF

λ,µ
n (ν1) = 0, (Z − ν1)

tG
λ,µ
t (ν1) = 0 and ν1 , 0 (since ν2

1
= −2λ1 , 0). �

Semisimplicity of the category of finite dimensional Cλ,µ-modules where λ1 , 0. The next theo-

rem shows that the category of finite dimensional Cλ,µ-modules is semisimple provided λ1 , 0. As

a corollary, the annihilator of every simple finite dimensional Cλ,µ-module is an idempotent ideal.

Theorem 3.14. Let λ1 ∈ K∗. Then the category of finite dimensional Cλ,µ-modules is

semisimple.

Proof. The sets S(ν1) = {(Z − ν1)
i | i ∈ N} and S(−ν1) = {(Z + ν1)

i | i ∈ N} are Ore sets of the

algebra Cλ,µ. For a Cλ,µ-module V , we denote by torS(±ν1)(V ) ≔


i>1 kerV(Z ∓ ν1)
i its S(±ν1)-

torsion submodule. To prove the theorem, we have to show that every short exact sequence of Cλ,µ-

modules 0→ F → M → F → 0 splits where F, F are simple finite dimensional Cλ,µ-modules.

Recall that every simple finite dimensional Cλ,µ-module is either S(ν1)- or S(−ν1)-torsion (but not

both).

If F is S(ν1)-torsion and F is S(−ν1)-torsion, then F = torS(ν1)(M) and torS(−ν1)(M) , 0 (since

(Z − ν1)
n(Z + ν1)

nM = 0 for some n > 1 and (Z − ν1)
iM , 0 for all i > 1). Therefore, torS(−ν1)(M)

≃ F and M = torS(ν1)(M) ⊕ torS(−ν1)(M) ≃ F ⊕ F, as required.

In view of Corollary 3.9.(2b) and Theorem 3.13, it suffices to consider the case when F =
F = F

λ,µ
n (ν1). Let 1̄ and 1̃ be the canonical generators of the modules F and F, respectively, see

Lemma 3.6. We may assume that M = F ⊕ F is a direct sum of vector spaces. By (41), φ1̃ ∈ F,

F = im(φ) ⊕ ker(φ) and ker(φ) = K1̄. So, φ1̃ = φ( f1) + φ01̄ for some f1 ∈ F and φ0 ∈ K. So, replac-

ing the generator 1̃ by 1̃ − f1, we can assume that φ1̃ = φ01̄.
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(i) (Z − ν1)1̃ = 0: By (40), v ≔ (Z − ν1)1̃ ∈ F. Relation (25) can be written as [φ, Z − ν1] =

(Z + ν1)(Z − ν1). Since (Z − ν1)φ1̃ = (Z − ν1)φ01̄ = 0, we have φv = φ(Z − ν1)1̃ = [φ, Z − ν1]1̃ =

(Z + ν1)(Z − ν1)1̃ = (Z + ν1)v , i.e., (φ − Z − ν1)v = 0. By (40) and (41), the element φ − Z − ν1

acts bijectively on the n-dimensional module F (since the linear map φ − Z − ν1 : F → F has

n = dim (F) distinct nonzero eigenvalues: −2ν1, −4ν1, . . . ,−2nν1). Therefore, v = 0.

(ii) φ1̃ = 0: We have to show that φ0 = 0. By the statement (i) and (29), 0 = θ(Z + ν1)(Z −
ν1)1̃ = θ(Z2 + 2λ1)1̃ = (φ + µZ − λ2)φ1̃ = φ0(φ + µZ − λ2)1̄ = φ0(µZ − λ2)1̄= φ0(µν1 − λ2)1̄= φ0

ν1(µ − λ2

ν1
)1̄ = φ0ν12n1̄, by Proposition 3.8.(2). Hence, φ0 = 0.

The theorem follows from the next statement.

(iii) The Cλ,µ-module M is isomorphic to the direct sum of Cλ,µ-modules F ⊕ F: By the

statements (i) and (ii), the elements 1̄ and 1̃ are K-linearly independent elements of M that are

annihilated by the elements Z − ν1 and φ. By (35), V λ,µ(ν1) = Cλ,µ/Cλ,µ(Z − ν1, φ) = K[θ]1̄. By

Proposition 3.8, the image, say F ′, of the Cλ,µ-module homomorphism V λ,µ(ν1)→ M, 1̄ → 1̃, is

isomorphic to the Cλ,µ-module F
λ,µ
n (ν1). Since the intersection of the kernels ker

F
λ, µ
n (ν1)

(Z − ν1) ∩
ker

F
λ, µ
n (ν1)

(φ) is a 1-dimensional vector space, F ∩ F ′ = 0 (since the elements 1̄ and 1̃ are linearly

independent), i.e., M = F ⊕ F ′, as required. �

Lemma 3.15. Let λ1 ∈ K∗ and ν2
1
= −2λ1. Then annCλ, µ(V λ,µ(ν1)) = annCλ, µ(W λ,µ(ν1)) = 0.

Proof. Let V = V λ,µ(ν1) and a ≔ annCλ, µ(V ). In view of (39), it suffices to show that a = 0. If

V is a simple Cλ,µ-module, then V ≃ V(ν1) (Lemma 3.6) is a simple module over the Weyl algebra

A1. The algebra A1 is simple, hence 0 = annA1
(V(ν1)) ⊇ a, i.e., a = 0.

If V is not a simple Cλ,µ-module, then it contains a nonzero submodule f
λ,µ
n,ν1

V λ,µ(ν1) (Prop-

osition 3.8.(1)) which is isomorphic to the Cλ,µ-module W λ,µ(ν1) (Lemma 3.11.(2)). By Corollary

3.9.(2), the Cλ,µ-module W λ,µ(ν1) is simple, hence it is a faithful module, by Corollary 3.9.(1).

Therefore, V is also a faithful module. �

The prime spectrum of Cλ,µ where λ1 , 0. The subalgebra Φ ≔ K⟨Z, φ⟩ of Cλ,µ is isomorphic

to the algebra Φ = K[Z][φ; s d
dZ

], where s = Z2 + 2λ1. We have the inclusions of algebras

Φ ⊂ Cλ,µ ⊂ A1 ⊂ Φs = C
λ,µ
s = A1,s. (46)

The next theorem together with the classification of finite dimensional simple Cλ,µ-modules

(Theorem 3.13) describes Spec (Cλ,µ).

Theorem 3.16. Let λ1 ∈ K∗.

1. Spec (Cλ,µ) = {0, annCλ, µ(M) | M ∈ECλ,µ (fin. dim.)}.

2. Max (Cλ,µ) =



{0} if Cλ, µ is simple,

{ann
Cλ, µ(M ) | M ∈Cλ, µ (fin. dim.)} if Cλ, µ is not simple.

3. Prim (Cλ,µ) = Spec (Cλ,µ).

4. Specc(C
λ,µ) = {0, annCλ, µ(M) | M ∈ECλ,µ (fin. dim.), dim M = 1}.

Proof. 1. Let P be a nonzero prime ideal of Cλ,µ. We have to show that P is the annihilator of

a finite dimensional simple Cλ,µ-module. By (46), the algebra C
λ,µ
s = A1,s is a simple Noetherian

algebra. Hence, si ∈ P for some i > 1. The left Cλ,µ-module Cλ,µ/P is an epimorphic image of the

Cλ,µ-module Cλ,µ/Cλ,µsi. By (31), for all j ∈ N,

Cλ,µs j/Cλ,µs j+1 ≃ Cλ,µ/Cλ,µs ≃ Cλ,µ(ν1) ⊕ Cλ,µ(−ν1)

since K[Z]/s ≃ K[Z]/(Z − ν1) × K[Z]/(Z + ν1) and ν1 , −ν1 (since λ1 , 0). By Lemma 3.5, the

left Cλ,µ-module Cλ,µ/P has a finite ascending chain of submodules with factors, say F1, . . . ,Fk,

each of them is an epimorphic image of one of the Cλ,µ-modules: V λ,µ(±ν1),W
λ,µ(±ν1). Since

PFi = 0 for all i = 1, . . . k, each factor Fi must be a proper epimorphic image, by Lemma 3.15.

Since every proper epimorphic image of the modules V λ,µ(±ν1), W λ,µ(±ν1) is a finite dimensional

simple Cλ,µ-module, dim(Cλ,µ/P) < ∞ and all factors F1, . . . ,Fk are finite dimensional simple
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Cλ,µ-modules. Then a1 · · · ak ⊆ P where ai = annCλ, µ(Fi). Hence, ai ⊆ P for some i, and so ai = P

(since ai is a maximal ideal of Cλ,µ).

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statement 1 and Lemma 3.15.

4. Statement 4 follows from statement 1. �

Proof of Theorem 2.11. Since U/(Z) ≃ U(sl2), the ideal (Z) is a completely prime ideal. Let

p ∈ Spec (Z)whereZ = Z(U ) = K[C1,C2]. The factor algebraZ[Z]/pZ[Z] ≃ Z/p[Z] is a domain

and t = Z2 + 2C1 < pZ[Z]. Hence, we have the inclusion

Z[Z]

pZ[Z]
⊂ Z[Z]t

pZ[Z]t
.

Since Ct ≃ K[C1,C2,H] ⊗ A1, t, the factor algebra Ct/pCt ≃ K[C1,C2]/p ⊗ K[H] ⊗ A1, t is a domain.

By Proposition 2.5 and the equalityUt = Ct[X
±1;ωX], we have the inclusion of algebras

U/pU ⊆ Ut/pUt ≃
( Ct

pCt

)

[X±1;ωX]

and the last one is a domain. Hence, the ideal pU is a completely prime ideal. �

IV. CLASSIFICATION OF SIMPLE Cλ,µ-MODULES WHERE λ1 , 0

In this section, a classification of simple Cλ,µ-modules is given (Theorem 4.2 and Theorem 4.4)

where λ1 , 0. The case when λ1 = 0 is treated in Section V. Despite the fact that the algebras Cλ,µ

are more complicated algebras comparing to the Weyl algebra A1, their simple modules are closely

related.

As a corollary of Theorem 3.14 and Theorem 3.16, we obtain a classification of all the ideals of

the algebra Cλ,µ provided λ , 0.

Corollary 4.1. Let λ1 ∈ K∗. Then

1. Every nonzero ideal I of the algebra Cλ,µ is an annihilator of a finite dimensional Cλ,µ-

module. In particular, the factor algebra Cλ,µ/I is a finite dimensional semisimple algebra.

2. All ideals of the algebra Cλ,µ commute (I J = JI).

3. All ideals of the algebra Cλ,µ are idempotent ideals (I2 = I).

4. For all ideals I and J of the algebra Cλ,µ, I ∩ J = I J.

5. Every nonzero ideal of the algebra Cλ,µ is a unique product (up to permutation) of distinct

maximal ideals of Cλ,µ. In particular, the number of ideals of Cλ,µ is at most 4.

6. Every ideal of the algebra Cλ,µ is a semiprime ideal.

Proof. If the algebra Cλ,µ is simple, then there is nothing to prove. So, we may assume

that the algebra Cλ,µ is not simple. Let P and Q be annihilators of simple finite dimensional

Cλ,µ-modules. By Theorem 3.14, P2 = P and PQ = P ∩Q = QP. By Theorem 3.16.(1), all prime

ideals of the algebra Cλ,µ commute and are idempotent ideals. Let I be a nonzero ideal of Cλ,µ.

The algebra Cλ,µ is Noetherian. So, the set min (I) of minimal primes over I is a finite set and

ni ⊆ I ⊆ n ⊆ Cλ,µ for some i > 1, where n = ∩P∈min (I )P. By Theorem 3.16.(1), every element

of min (I) is a maximal ideal of Cλ,µ of finite co-dimension. Hence, dim (Cλ,µ/n) < ∞, and so

dim (Cλ,µ/n j) < ∞ for all j > 1 (since Cλ,µ is a Noetherian algebra). Therefore, dim (Cλ,µ/I) < ∞.

The finite dimensional algebra Cλ,µ/I is semisimple, by Theorem 3.14. This proves statement 1.

Hence, I = n =


P∈min (I ) P. Now, statements 2–6 follows. �

Classification of simple Cλ,µ-modules where λ1 , 0. The set Ss = {si | i ∈ N} (where s =

Z2 + 2λ1) is an Ore set of the algebra Cλ,µ such that C
λ,µ
s = A1,s, see (46). Then

ECλ,µ =ECλ,µ (Ss-torsion) ⊔ ECλ,µ (Ss-torsionfree). (47)

Descriptions of these two sets are given by Theorem 4.2 and Theorem 4.4, respectively.
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The set ECλ,µ (Ss-torsion) where s = Z2 + 2λ1 and λ1 , 0. Recall that ±ν1 are the roots of the

polynomial Z2 + 2λ1. By Proposition 3.8 and Corollary 3.9.(2), each of the Cλ,µ-modules V λ,µ(ν1)

and W λ,µ(ν1) admits a unique simple factor module denoted V
λ,µ

(ν1) and W
λ,µ

(ν1), respectively.

Let n = 1
2
(µ − λ2

ν1
) and m = 1

2
(−µ + λ2

ν1
) = −n. Then

V
λ,µ

(ν1) =


V λ,µ(ν1) ≃ V(ν1) if n < N+,

F
λ,µ
n (ν1) if n ∈ N+

and W
λ,µ

(ν1) =


W λ,µ(ν1)≃ ιV(−ν1) if m < N+,

G
λ,µ
m (ν1) if m ∈ N+.

(48)

The next theorem is an explicit description of the set ECλ,µ (Ss-torsion).

Theorem 4.2. Let λ1 , 0, ν2
1
+ 2λ1 = 0, and s = Z2 + 2λ1. Then

ECλ,µ (Ss-torsion) = {V
λ,µ

(±ν1), W
λ,µ

(±ν1)}

and the four modules in the bracket are not isomorphic unless

1. µν1 − λ2 = 0, V
λ,µ

(ν1) ≃ W
λ,µ

(ν1),

2. µ(−ν1) − λ2 = 0, V
λ,µ

(−ν1) ≃ W
λ,µ

(−ν1).

In particular, all four modules are isomorphic if and only if µ = 0 and λ2 = 0.

Proof. Let M ∈ECλ,µ (Ss-torsion). Then M is a simple epimorphic image of the Cλ,µ-module

Cλ,µ/Cλ,µs ≃ Cλ,µ(ν1) ⊕ Cλ,µ(−ν1) and vice versa. By Lemma 3.5.(1), M is a simple epimorphic im-

age of one of the Cλ,µ-modules V λ,µ(±ν1), W λ,µ(±ν1), and vice versa. Therefore, ECλ,µ (Ss-torsion) =

{V
λ,µ

(±ν1), W
λ,µ

(±ν1)}. It remains to sort out when some of these four modules are isomorphic or

not. By Lemma 3.5.(2), statements 1 and 2 hold. Since V
λ,µ

(±ν1) =


i>1 ker(Z ∓ ν1)
i and W

λ,µ
(±ν1)

=


i>1 ker(Z ∓ ν1)
i, the only possible isomorphisms are of the type V

λ,µ
(ν1) ≃ W

λ,µ
(ν1) or V

λ,µ
(−ν1)

≃ W
λ,µ

(−ν1). To finish the proof of the theorem, it suffices to show that if V
λ,µ

(ν1) ≃ W
λ,µ

(ν1) then

µν1 − λ2 = 0. So, suppose that V
λ,µ

(ν1) ≃ W
λ,µ

(ν1). By Corollary 3.10, if one of the modules V
λ,µ

(ν1)

or W
λ,µ

(ν1) is finite dimensional then the other is necessarily infinite dimensional. Since we as-

sume that the modules V
λ,µ

(ν1) and W
λ,µ

(ν1) are isomorphic, they must be both infinite dimen-

sional. Then V
λ,µ

(ν1) ≃ V λ,µ(ν1) (Proposition 3.8) and W
λ,µ

(ν1) ≃ W λ,µ(ν1) (Corollary 3.9). By

Lemma 3.6, V λ,µ(ν1) ≃ V(ν1). Then, by (41), the set of eigenvalues of theK-linear map φ : V(ν1)→
V(ν1), v → φv , is Ev(φ) = −2Nν1. By Corollary 3.9.(1), W λ,µ(ν1) ≃ ιV λ,−µ(−ν1). Since the Cλ,µ-

module W λ,µ(ν1) is simple and infinite dimensional, the Cλ,−µ-module V λ,−µ(−ν1) is so. Hence,

V λ,−µ(−ν1) ≃ V(−ν1), and so W λ,µ(ν1) ≃ ιV(−ν1). The action of the element φ on W λ,µ(ν1) is the

same as the action of the element ι(φ) = −φ + µZ + λ2 on V(−ν1). By (40) and (41), Ev(ι(φ)) =

µ(−ν1) + λ2 − 2Nν1. Therefore, if V λ,µ(ν1) ≃ W λ,µ(ν1) then −2Nν1 = Ev(φ) = Ev(ι(φ)) = µ(−ν1) +

λ2 − 2Nν1, i.e., µν1 − λ2 = 0, as required. �

Let A be an algebra and M be an A-module. We denote by lA(M) the length of the A-module

M .

Theorem 4.3. Let λ1 ∈ K∗. For each a ∈ Cλ,µ \ {0}, the Cλ,µ-module Cλ,µ/Cλ,µa has finite

length.

Proof. Recall that the algebra Cλ,µ is a Noetherian domain of Gelfand-Kirillov dimension

2 (Proposition 3.3.(3,5)). By Lemma 3.4, the algebra Cλ,µ is a somewhat commutative algebra.

Hence, GK (M) 6 1 where M = Cλ,µ/Cλ,µa. If GK (M) = 0 then the module M is finite dimen-

sional, and the result is obvious. It remains to consider the case when GK (M) = 1. Suppose that

the Cλ,µ-module has infinite length, we seek a contradiction. Then there is a descending chain of

submodules of M , M = M0 ⊃ M1 ⊃ · · · ⊃ Mi ⊃ Mi+1 ⊃ · · · , with simple factors M i ≔ Mi/Mi+1.

By the additivity of the multiplicity, there is a natural number n such that the factors M i are finite

dimensional for all i > n. Hence, the algebra Cλ,µ is not simple. Let I be the least nonzero ideal
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of Cλ,µ. By Corollary 4.1.(1), the algebra C ≔ Cλ,µ/I is a semisimple finite dimensional algebra.

Let d = dim (C) and m be the number of generators of the Cλ,µ-module M . By Theorem 3.14, for

all i > n, the Cλ,µ-module Mn/Mi is also a C-module. Hence, dim (Mn/Mi) 6 md for all i > n, a

contradiction. �

The sets ECλ,µ (S-torsion) and ECλ,µ (S-torsionfree) where λ1 , 0. The set S = K[Z] \ {0} is an

Ore set of the Weyl algebra A1 and the algebra B1 ≔ S−1A1 = K(Z)[∂; d
dZ

] is an Ore extension

where K(Z) is the field of rational functions in the variable Z . The algebra B1 is a left and right

principle ideal domain, i.e., every left/right ideal of B1 is generated by a single element. When K is

an algebraically closed field of characteristic zero, a classification of simple A1-modules was given

by Ref. 8 (see also Refs. 3 and 4 for an alternative approach),

A1=A1 (S-torsion) ⊔ A1 (S-torsionfree),

A1 (S-torsion)= {[V(γ)] | γ ∈ K} where V(γ) = A1/A1(Z − γ),
A1 (S-torsionfree)= {[Mb ≔ A1/A1 ∩ B1b] | b ∈ B1 is irreducible and good},

where the element b ∈ B1 is called good if it satisfies the conditions of Ref. 8 [Theorem 1]. The set S

is also an Ore set of the algebra Cλ,µ and S−1Cλ,µ = B1. Then

ECλ,µ =ECλ,µ (S-torsion) ⊔ ECλ,µ (S-torsionfree).

Clearly, ECλ,µ (Ss-torsion) ⊆ECλ,µ (S-torsion) since Ss ⊆ S.

Theorem 4.2 and Theorem 4.4 classify the set of simple Cλ,µ-modules where λ1 , 0. Theorem

4.4 shows a close connection between the sets of simple Cλ,µ-modules and A1-modules.

Theorem 4.4. Let λ1 ∈ K∗ and S = K[Z] \ {0}. Suppose that K is an algebraically closed

field. Then

1. ECλ,µ (S-torsion) \ECλ,µ (Ss-torsion) =A1 (S-torsion) \ {V(±ν1)} = {[V(γ)] | γ ∈ K \ {±ν1}},

where ν1 =
√
−2λ1, i.e., every simple S-torsion A1-module which is not isomorphic to V(±ν1)

is a simple S-torsion Cλ,µ-module which is not Ss-torsion.

2. The map A1 (S-torsionfree)→ECλ,µ (S-torsionfree), [M] → [socCλ, µ(M)], is a bijection with

the inverse [N] → [socA1
(Ns)].

3. For each [M] ∈ A1 (S-torsionfree), i.e., M ≃ Mb ≔ A1/A1 ∩ B1b, where b is an irreducible and

good element of B1, socCλ, µ(Mb) ≃ Nbs−i ≔ Cλ,µ/Cλ,µ ∩ B1bs−i for all i ≫ 0.

Proof. 1. Notice that A1 (S-torsion) = {[V(γ)] | γ ∈ K} and A1 (Ss-torsion) = {[V(±ν1)]}.

(i) A ≔A1 (S-torsion) \ {[V(±ν1)]} ⊆ C ≔ECλ,µ (S-torsion) \ECλ,µ (Ss-torsion): We have to

show that each A1-module V(γ) where γ ∈ K \ {±ν1} is a simple Cλ,µ-module and that two

such modules are isomorphic as Cλ,µ-modules V(γ) ≃ V(γ′) if and only if γ = γ′. Since V(γ) =


i>0 ker(Z − γ)i and γ , ±ν1, the map s = Z2 + 2ν1 = (Z − ν1)(Z + ν1) : V(γ)→V(γ), v → sv is

a bijection. Therefore,V(γ) = V(γ)s. Since C
λ,µ
s = A1,s, the Cλ,µ-moduleV(γ) is simple. Clearly,

the Cλ,µ-modulesV(γ) andV(γ′) (where γ, γ′ ∈ K \ {±ν1}) are isomorphic if and only if γ = γ′.
(ii) A = C: Given [N] ∈ C. Then Ns is a simple C

λ,µ
s -module, i.e., Ns is a simple K[Z]s-

torsion A1,s-module (since C
λ,µ
s = A1,s). Therefore, Ns = A1,s/A1,s(Z − γ) = V(γ)s for some γ ∈

K \ {±ν1}. Now, the statement (ii) follows from statement (i).

2. By Theorem 4.3, the map

ECλ,µ (S-torsionfree)→E
C

λ,µ
s (S-torsionfree), [N] → [Ns]

is a bijection with the inverse [Ns] → [socCλ, µ(Ns)]. Similarly, the map

A1 (S-torsionfree)→A1,s (S-torsionfree), [M] → [Ms]

is a bijection with the inverse [Ms] → [socA1
(Ms)]. Since C

λ,µ
s = A1,s, we have the inclusions

socCλ, µ(Ms) ⊆ M ⊆ Ms, for all M as above, and so socCλ, µ(Ms) = socCλ, µ(M) and statement 2

follows.
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3. The Cλ,µ-module Mb contains the Cλ,µ-module Nb ≔ Cλ,µ/Cλ,µ ∩ B1b = Cλ,µ1̄ (where 1̄ =

1 + Cλ,µ ∩ B1b) which has finite length, by Theorem 4.3. The simple Cλ,µ-module L ≔ socCλ, µ(Mb)

is an essential submodule of Mb. Hence, L ⊆ Nb. If L = Nb then Cλ,µ = Cλ,µsi + Cλ,µ ∩ B1b for all

i > 0, and so

L = Nb =
Cλ,µsi + Cλ,µ ∩ B1b

Cλ,µ ∩ B1b
≃ Cλ,µsi

Cλ,µsi ∩ B1b
≃ Cλ,µ

Cλ,µ ∩ B1bs−i
= Nbs−i,

and we are done. If L ( Nb then the Cλ,µ-module Nb/L is S-torsion, and so there is a Cλ,µ-module

epimorphism f : Nb/L → U , where U is a simple, S-torsion Cλ,µ-module.

Claim: U is Ss-torsion: If not then, by statement 1, U ≃ V(γ) for some γ , ±ν1. ThenV(γ) =

V(γ)s is simple C
λ,µ
s -module/A1,s-module since C

λ,µ
s = A1,s. There is a commutative diagram of

Cλ,µ-homomorphisms,

,

where g is an epimorphism. The Cλ,µ-module/A1,s-module Nb,s is a nonzero one which is an

A1,s-submodule of the simple A1,s-module Mb,s. Hence, Mb,s = Nb,s ≃ V(γ)s, a contradiction.

Therefore, U is Ss-torsion.

By Theorem 4.3, the Cλ,µ-module Nb has finite length. Therefore, the descending chain

{Li ≔ Cλ,µsi1̄ | i ∈ N} of Cλ,µ-modules of Nb stabilizes, say, at jth step: N0 = L0 ⊇ L1 ⊇ . . . ⊇
L j = L j+1 = · · · . For all i ∈ N,

Li ≃
Cλ,µsi + Cλ,µ ∩ B1b

Cλ,µ ∩ B1b
≃ Nbs−i.

By the claim and the choice of j, we have L = L j = L j+1 = · · · , and so L ≃ Nbs−i for all i > j, as

required. �

Corollary 4.5. Let λ1 ∈ K∗ and ν1 =
√
−2λ1. Then

1. The set ECλ,µ (Ss-torsionfree) is a disjoint union of the sets in statements 1 and 2 of Theorem 4.4.

2. For each γ ∈ K \ {±ν1},V(γ) ≃ Cλ,µ(γ) ≔ Cλ,µ/Cλ,µ(Z − γ).

Proof. 1. Statement 1 follows from Theorem 4.4.

2. Since γ , ±ν1 andV(γ) =


i>0 ker(Z − γ)i, the map sλ1
≔ Z2 + 2λ1 : V(γ)→V(γ), v →

(Z2 + 2λ1)v is a bijection. Hence, V(γ) = V(γ)s. Similarly, since γ , ±ν1 and Cλ,µ(γ) =


i>0

ker(Z − γ)i, the map sλ1
= Z2 + 2λ1 : Cλ,µ(γ)→ Cλ,µ(γ), v → (Z2 + 2λ1)v is a bijection. Hence,

Cλ,µ(γ) = Cλ,µ(γ)s ≃ V(γ)s = V(γ). �

V. CLASSIFICATION OF SIMPLE Cλ,µ-MODULES WHERE λ1 = 0

In this section, the following notation is fixed: λ = −λ2, Cλ,µ
≔ C0,−λ2, µ, and C0, µ = C0,0, µ.

The simple Cλ,µ-modules were classified in Ref. 7 [Section 4]. In this section, we recall this clas-

sification. The cases when λ2 , 0 and λ2 = 0 are quite different. We assume that the field K is an

algebraically closed field of characteristic zero.

By Proposition 3.3, the algebra Cλ,µ = C0,−λ2, µ is generated by the elements Z, θ, and φ that

satisfy the defining relations,

[φ, Z]= Z2, [θ, Z] = 2φ + (µ − 2)Z + λ,

[θ,φ]= 2θZ + (−φ + 2Z)µ, θZ2 = (φ + µZ + λ)φ,

and it is a subalgebra of the Weyl algebra A1 via a monomorphism Cλ,µ → A1, Z → Z , φ → hZ ,

θ → λ∂ + (h + µ)(h − 1). Furthermore, Cλ,µ ⊂ A1 ⊂ A1,Z = C
λ,µ

Z
.
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Classification of simple Cλ,µ-modules where λ , 0. The Weyl algebra A1 is a subalgebra of

the skew Laurent polynomial algebra B = K(h)[Z, Z−1;σ], where σ(h) = h − 1. The algebra B is

the localization S−1A1 of the Weyl algebra A1 at the (left and right) Ore set S ≔ K[h] \ {0}. The

algebra B is a Euclidean ring with left and right division algorithms. In particular, the algebra B is

a principle left and right ideal domain. Each simple B-module is isomorphic to B/Bb where b is

an irreducible (indecomposable) element of B. B-modules B/Bb and B/Bc are isomorphic if and

only if the elements b and c are similar, i.e., there exists an element d ∈ B such that 1 is the greatest

common right divisor of c and d, and bd is their least common left multiple.

Let α, β ∈ S = K[h] \ {0}. We write α < β if there are no roots λ and µ of the polynomials α

and β, respectively, such that λ − µ ∈ N.

Definition, [Ref. 4]. An element b = ∂m βm + ∂m−1βm−1 + · · · + β0, where m > 0, βi ∈ K[h]
and β0, βm , 0, is called normal if β0 < βm and β0 < h.

For a simple A1-module M there are two options either S−1M = 0 or S−1M , 0. Accordingly,

we say that the simple module is K[h]-torsion or K[h]-torsionfree, respectively.

Theorem 5.1. [Refs. 3 and 4]. A1 =A1 (K[h]-torsion) ⊔ A1 (K[h]-torsionfree) where

1. A1 (K[h]-torsion) = {A1/A1Z, A1/A1∂, A1/A1(h − λO) | O ∈ K/Z \ {Z}} where λO is any

fixed element of O = λO + Z.

2. Each simple K[h]-torsionfree A1-module is isomorphic to Mb ≔ A1/A1 ∩ Bb for a normal,

irreducible element b. Simple A1-modules Mb and Mb′ are isomorphic if and only if the

elements b and b′ are similar.

The following theorem gives a classification of simple Cλ,µ-modules where λ , 0. It shows

that there is a tight connection between the sets of simple Cλ,µ-modules and A1-modules. The

theorem gives an explicit construction for each simple Cλ,µ-module as a factor module Cλ,µ/I

where I is a left maximal ideal of Cλ,µ. For a Cλ,µ-module M , we denote by lCλ, µ(M) its length.

Theorem 5.2. [Ref. 7]. Let λ ∈ K∗ and µ ∈ K. Then

1. The map soc = socCλ, µ : A1 −→ECλ,µ, [M] → [socCλ, µ(M)], is an injection, and ECλ,µ =

soc(A1) ⊔ {Nλ,µ}. Furthermore,

(a) the map soct f : A1 (Z-torsionfree) −→ECλ,µ (Z-torsionfree), [M] → [socCλ, µ(M)], is a

bijection, but

(b) the map soct t : A1 (Z-torsion) = {A1/A1Z} −→ECλ,µ (Z-torsion) = {Mλ,µ,Nλ,µ}, [A1/

A1Z] → [Mλ,µ], is an injection which is not a bijection where Mλ,µ = Cλ,µ/Cλ,µ(Z, φ)

and Nλ,µ = Cλ,µ/Cλ,µ(Z, φ + λ). In particular, the simple Cλ,µ-modules Mλ,µ and

Nλ,µ are not isomorphic.

2. For each [M] ∈ A1 (K[h]-torsion), the Cλ,µ-module M is simple, i.e., socCλ, µ(M) = M.

3. For each [M] ∈ A1 (K[h]-torsionfree), i.e., M = Mb = A1/A1 ∩ Bb, where b ∈ B is as in The-

orem 5.1.(2), Nb ≔ Cλ,µ/Cλ,µ ∩ Bb ⊆ Mb and socCλ, µ(Mb) = socCλ, µ(Nb) ≃ Nbt−n for all

n ≫ 0.

Classification of simple C0, µ-modules. The subalgebra R of the Weyl algebra A1 which is gener-

ated by the elements Z and h is a skew polynomial algebra R = K[h][Z;σ], where σ(h) = h − 1.

The algebra R is a homogeneous subalgebra of the Z-graded algebra A1, it is the non-negative part

of the Z-grading of A1. For all µ ∈ K, C0, µ ⊂ R ⊂ A1 and the subalgebra C0, µ of R is generated

by the elements Z, φ = hZ and θ = (h + µ)(h − 1). Clearly, K[θ] ⊆ K[h] and K[h] = K[θ] ⊕ K[θ]h.

The element Z is a normal element of the algebra R and (Z) = ⊕i>1K[h]Z
i. The set S = K[h] \ {0}

is a (left and right) Ore set of the domain C0, µ and B ≔ S−1C0, µ = K(h)[Z;σ] is a skew polynomial

algebra where σ(h) = h − 1. The algebra B is a principle (left and right) ideal domain. Let Irr(B) be

the set of irreducible elements of B.
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Theorem 5.3. [Ref. 7].

1. C0, µ (Z-torsion) = {[M] ∈ C0, µ | (Z)M = 0} = C0, µ/(Z) = {[C0, µ/C0, µ(θ − ν, Z, φ)] | ν ∈ K}.

The set C0, µ (Z-torsion) contains precisely finite dimensional simple C0, µ-modules (all of them

are 1-dimensional).

2. C0, µ(Z-torsionfree)= R(Z-torsionfree)= R(K[h]-torsionfree) = {[Mb = R/R ∩ Bb] | b ∈ Irr(B),

R = RZ + R ∩ Bb}.

The next theorem is a simplicity criterion for the algebra C0,λ2, µ.

Theorem 5.4. [Ref. 7]. The algebra C0,λ2, µ is simple if and only if λ2 , 0.

VI. A CLASSIFICATION OF SIMPLE WEIGHTU -MODULES

In this section, a classification of simple weightU -modules is given. They are partitioned into

several classes that are dealt with separately (see the Introduction for details).

Weight U -modules. An U -module M is called a weight module if M = ⊕µ∈KMµ, where

Mµ = {m ∈ M | Hm = µm}. An element µ ∈ K such that Mµ , 0 is called a weight of M . Let

Wt(M) be the set of all weights of the module M .

Verma module. Let α, β ∈ K, we define the Verma modules M(α, β) ≔ U/U (H − α, Z −
β,E,X). Since the 4-dimensional space KH ⊕ KE ⊕ KZ ⊕ KX is a Lie subalgebra of e(3), the

U -module M(α, β) = K[F,Y ]1̄ is a free K[F,Y ]-module where 1̄ = 1 +U (H − α, Z − β,E,X).

Then

M(α, β) =

∞


n=0

M(α, β)α−2n, where M(α, β)α−2n ≔ kerM (α,β)(H − α + 2n) =

n


i=0

KF iY n−i1̄ (49)

Hence, Wt
(

M(α, β)
)

= α − 2N and dim M(α, β)α−2n = n + 1 for all n > 0.

Proposition 6.1. 1. Wt
(

M(α, β)
)

= {α − 2n | n ∈ N} and dim M(α, β)α−2n = n + 1 for all

n ∈ N.

2. M(α, β) ≃ M(α′, β′) if and only if (α, β) = (α′, β′).
3. The Verma module M(α, β) is a simpleU -module if and only if β , 0.

4. If β , 0 then annU
(

M(α, β)
)

=
(

C1 +
1
2
β2,C2 − (α + 2)β

)

.

Proof. 1. Statement 1 follows from (49).

2. If the U -module M(α, β) and M(α′, β′) are isomorphic, then α − 2N =Wt
(

M(α, β)
)

=

Wt
(

M(α′, β′)
)

= α′ − 2N, i.e., α = α′ − 2n for some n ∈ N, and 1 = dimM(α, β)α = dimM(α′,
β′)α′−2n = n + 1, i.e., n = 0 and α = α′. The vector space M(α, β)α = M(α, β′)α is one dimensional

and is Z-invariant. Hence, β = β′.
3. Suppose that β , 0 and N is a nonzero submodule of M(α, β). We have to show that

N contains the canonical generator 1̄ of the U -module M(α, β). Clearly, N = ⊕∞
n=0

Nα−2n, where

Nα−2n = N ∩ M(α, β)α−2n. Since N is nonzero, Nα−2n is nonzero for some n ∈ N. Let 0 , v =
m

i=0 αiF
iY n−i1̄ ∈ Nα−2n, where αi ∈ K, αm , 0 and 0 6 m 6 n. Notice that (Z − µ)mv = (−1)mm!

αmY n1̄ ∈ N , hence Y n1̄ ∈ N . Then E · Y n1̄ = 2nµY n−11̄, and so En · Y n1̄ ∈ K∗1̄, i.e., 1̄ ∈ N , as

required.

If β = 0 then the Verma module M(α,0) is not a simple U -module since the left ideal

U (H − α, Z,E,X) is properly contained in the left ideal J ≔ U (H − α, Z,E,X,Y ) = U(sl2)(H −
α,E) + (Z) by Lemma 2.7.(1). This follows from the facts U/J ≃ U(sl2)/U(sl2)(H − α,E) ≃
K[F]1̃ and M(α, β) ≃ K[F,Y ]1̄. This means that Y M(α, β) is a proper submodule of M(α, β).

4. Clearly,
(

C1 +
1
2
µ2,C2 − (λ + 2)µ

)

⊆ annU
(

M(λ, µ)
)

. Then the equality holds since the ideal
(

C1 +
1
2
µ2,C2 − (λ + 2)µ

)

is maximal, by (1). �

Dual Verma module. For α, β ∈ K, we define the dual Verma module M⋆(α, β) ≔ U/U(H − α,

Z − β,F,Y ). Then M⋆(α, β) ≃ ιM(−α,−β), where ιM(−α,−β) is the VermaU -module M(−α,−β)



011701-22 V. V. Bavula and T. Lu J. Math. Phys. 58, 011701 (2017)

twisted by the automorphism ι of the algebraU . Notice that M⋆(α, β) = K[E,X]1̃ is a free K[E,X]-

module where 1̃ = 1 +U (H − α, Z − β,F,Y ). Then

M⋆(α, β) =

∞


n=0

M⋆(α, β)α+2n, where M⋆(α, β)α+2n ≔

n


i=0

KEiX n−i1̃. (50)

We summarize the properties of the dual Verma module M⋆(α, β) in the following proposition.

Proposition 6.2. 1. Wt
(

M⋆(α, β)
)

= {α + 2n | n ∈ N} and dim M⋆(α, β)α+2n = n + 1 for all

n ∈ N.

2. M⋆(α, β) ≃ M⋆(α′, β′) if and only if (α, β) = (α′, β′).
3. The dual Verma module M⋆(α, β) is a simpleU -module if and only if β , 0.

4. If β , 0 then annU
(

M⋆(α, β)
)

=
(

C1 +
1
2
β2,C2 − (α − 2)β

)

.

Proof. The result follows from Proposition 6.1 since M⋆(α, β) ≃ ιM(−α,−β). �

Classification of simple highest weight modules. Let V be a weightU -module. A weight vector

v ∈ V is called a highest weight vector if Ev = 0 and Xv = 0. The U -module V is called a highest

weight module if V is generated by a highest weight vector. Clearly, the Verma modules M(α, β) are

highest weight modules. The following proposition gives a classification of simple highest weight

U -modules.

Proposition 6.3. Let V be a simple highest weight U -module. Then V is isomorphic to one of

the following modules:

1. the Verma modules M(α, β) where α ∈ K and β ∈ K∗, or

2. the simple highest weight U(sl2)-modules.

Proof. Let v ∈ Vα be a highest weight vector of V . Since V is a simple U -module, the central

element C2 acts on V as a scalar, say λ2. Then λ2v = C2v = (α + 2)Zv .
If α + 2 , 0 then Zv =

λ2

α+2
v . So, V is an epimorphic image of the Verma module M(α,

λ2

α+2
).

If λ2 , 0 then, by Proposition 6.1.(3), M(α,
λ2

α+2
) is a simple module and hence V ≃ M(α,

λ2

α+2
).

If λ2 = 0 then V is isomorphic to a simple factor module of the Verma module M(α,0). But then

annU(V ) ⊃ (Z), i.e., V is a simple (highest weight) U(sl2)-module.
If α + 2 = 0 then C2v = 0. The central element C1 acts on V as a scalar, say λ. Then λv =C1V =

− 1
2

Z2v . So, V is an epimorphic image of the U -module V (λ) = U/U ( 1
2

Z2 + λ,H + 2,E,X). If

λ , 0 then V (λ) has two largest submodules: V (+) = Uv+ = K[F,Y ]v+, where v+ = (Z +
√
−2λ)1̄

and V (−) = Uv− = K[F,Y ]v−, where v− = (Z −
√
−2λ)1̄ (where 1̄ = 1 +U ( 1

2
Z2 + λ,H + 2,E,X)).

The two simple factor modules of V (λ) are L(+) = V (λ)/V (+) ≃ U/U (Z +
√
−2λ,H + 2,E,X) ≃

M(−2,−
√
−2λ) and L(−) = V (λ)/V (−) ≃ U/U (Z −

√
−2λ,H + 2,E,X) ≃ M(−2,

√
−2λ), respec-

tively. If λ = 0 then V is isomorphic to a simple factor module of V (0) = U/U (Z2,H + 2,E,X).

Then it is clear that V is a simple (highest weight) U(sl2)-module. �

Classification of simple lowest weight modules. Let V be a weight U -module. A weight vec-

tor v ∈ V is called a lowest weight vector if Fv = 0 and Y v = 0. The U -module V is called a

lowest weight module if V is generated by a lowest weight vector. Clearly, the dual Verma modules

M⋆(α, β) are lowest weight modules. The following proposition gives a classification of simple

lowest weightU -modules.

Proposition 6.4. Let V be a simple lowest weight U -module. Then V is isomorphic to one of

the following modules:

1. the dual Verma modules M⋆(α, β) where α ∈ K and β ∈ K∗, or

2. the simple lowest weight U(sl2)-modules.

Proof. The result follows from Proposition 6.3 by applying the automorphism ι, see (3). In

particular, M⋆(α, β) ; M(α′, β′) for all α,α′ ∈ K and β, β′ ∈ K∗, by Proposition 6.1.(1) and Propo-

sition 6.2.(1). �
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Simple weight modules with a finite dimensional weight space. First, we give an example

of simple weight U -module with infinite dimensional weight spaces. For α, β ∈ K, we define

the leftU -module S(α, β) = U/U (H − α, Z − β,X,Y ). Then S(α, β) =


i, j ∈NKEiF j1̄, where 1̄ =

1 +U (H − α, Z − β,X,Y ).

Lemma 6.5. 1. The module S(α, β) is a simpleU -module if and only if β , 0.

2. Wt
(

S(α, β)
)

= {α + 2n | n ∈ Z} and each weight space is infinite dimensional. Moreover,

S(α, β)α+2n =





i∈N
KEn+iF i1̄, if n > 0,



i∈N
KEiF i−n1̄, if n 6 −1.

3. If β , 0 then annU(S(α, β)) = (C1 +
1
2
β2,C2 − αβ).

4. Let (α, β), (α′, β′) ∈ K × K∗. Then S(α, β) ≃ S(α′, β′) if and only if (α, β) = (α′, β′).

Proof. 1. Suppose that β , 0 we prove that S(α, β) is a simple U-module. It suffices to prove

that for any nonzero element v =
n

j=0 f j(E)F
j1̄ ∈ S(α, β), where f j(E) ∈ K[E] and fn(E) , 0,

there exists some element u ∈ U such that uv ∈ K∗1̄. By Lemma 2.6.(3), X · v = n
j=1 f j(E)[X,F

j]1̄

=
n

j=1 f j(E)(− jF j−1Z + 1
2

j( j − 1)F j−2Y )1̄ =
n

j=1 f j(E)(− j)βF j−11̄. Hence, X n · v is a nonzero

element in K[E]1̄. Thus we may assume that v is a nonzero element in K[E]1̄ and then v can be

written as v =
n

i=0 αiE
i1̄, where αi ∈ K and αn , 0. Since Y · v = n

i=1 αi[Y,E
i]1̄ =

n
i=1 αi(−2)i β

Ei−11̄, we have Y n · v ∈ K∗1̄, as required.

If β = 0 then, by Lemma 2.7.(1), the left idealU (H − α, Z,X,Y ) = U(sl2)(H − α) + (Z). Then

it is clear that S(α,0) ≃ U(sl2)/U(sl2)(H − α) is not a simple module.

2. The above argument also shows that S(α, β) = ⊕i, j ∈NKEiF j1̄. Hence, Wt(S(α, β)) = {α +

2n | n ∈ Z}. The rest is clear.

3. It is clear that (C1 +
1
2
β2,C2 − αβ) ⊆ annU(S(α, β)), the equality holds since (C1 +

1
2
β2,C2 −

αβ) is a maximal ideal ofU , by (1).

4. Suppose that S(α, β) ≃ S(α′, β′). Then by statement 3, 1
2
β2 = 1

2
β′2 and αβ = α′β′. The case

β = −β′ is not possible, since, otherwise, both the elements Z − β and Z + β act locally nilpotently

on S(α, β). This implies that β = 0, a contradiction. So, β = β′ and then α = α′. �

Let F be the set of simple weight U -modules with a finite dimensional weight space, and

B be the set of simple highest weight and lowest weight modules. By Proposition 6.3 and Prop-

osition 6.4, B ⊆ F. The next proposition describes the modules of the set F \B. Recall that

∆ ≔ 4FE + H2 + 2H is the Casimir element of U(sl2).

Proposition 6.6. Let V ∈ F \B. Then

1. Wt(V ) = {α + 2n | n ∈ Z} for any α ∈ Wt(V ) and dim Vα = dim Vα+2n for all n ∈ Z.

2. annU(V ) ⊃ (Z), i.e., V is a simple U(sl2)-module.

3. V ≃ V (α, λ) ≔ U(sl2)/U(sl2)(H − α,∆ − λ), where λ , (α + 2i)(α + 2i − 2) for all i ∈ Z;

V (α,γ) ≃ V (α′, γ′) if and only if λ = λ ′ and α − α′ ∈ 2Z and dim Vα+2n = 1 for all n ∈ Z.

Proof. 1. Since V is a simple module, Wt(V ) ⊆ {α + 2n | n ∈ Z} for any α ∈ Wt(V ). Sup-

pose that there exists α ∈ Wt(V ) such that dimVα > dimVα+2 then the maps X : Vα → Vα+2 and

E : Vα → Vα+2 are not injections. Then the elements X and E act locally nilpotently on V . Since

X E = EX , there exists a weight vector v ∈ V such that Xv = Ev = 0. Then V is a highest weight

module, a contradiction. Similarly, if dimVα < dimVα+2 for some α ∈ Wt(V ) then Y : Vα+2→ Vα

and F : Vα+2→ Vα are not injections. Then the elements Y and F act locally nilpotently on V . Since

Y F = FY , there exists a weight vector v such that Fv = Y v = 0. Then V is a lowest weight module,

a contradiction. Therefore, dimVα = dimVβ for all α, β ∈ Wt(V ) and Wt(V ) = {α + 2n | n ∈ Z} for

any α ∈ Wt(V ).

2. Since V is a simpleU -module, in view of Lemma 2.7.(1), it suffices to show that there exists

a weight vector v ∈ V such that Xv = Y v = Zv = 0.
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(i) There exists a weight vector v such that Xv = 0: Suppose this is not the case, then for all

α ∈ Wt(V ), the map X : Vα → Vα+2 is an injection and hence a bijection since all the weight spaces

of V are finite dimensional and of the same dimension by statement 1. Hence, X acts bijectively on

V , i.e., V is a simple module over the localized algebraUX. Notice that each weight space Vα of V is

a simple CUX
(H)-module then dim Vα = ∞ (since CUX

(H) = K[C1,C2,H] ⊗ A1, see Lemma 3.1), a

contradiction.

(ii) There exists a weight vector v such that Y v = 0: the proof is similar to that of statement (i)

by noticing that CUY
(H) = K[C1,C2,H] ⊗ Ã1, where Ã1 = K⟨FY−1, Z⟩ is the first Weyl algebra.

(iii) There exists a weight vector v such that Xv = Y v = Zv = 0: By statement (i) and state-

ment (ii), the elements X and Y act locally nilpotently on V . By statement 1, each weight space

Vα of V is finite dimensional. Hence the map Z : Vα → Vα has an eigenvector v ∈ Vα with eigen-

value, say β, i.e., Zv = βv . If β = 0 then Z acts locally nilpotently on V . Since the elements

X,Y , and Z commute, there exists a weight vector v ∈ V such that Xv = Y v = Zv = 0 and we are

done. Now, suppose that there exists a weight vector v ′ ∈ V such that Zv ′ = βv ′ where β , 0,

we seek a contradiction. Then there exists a weight vector v ∈ Vα such that Xv = Y v = 0 and

Zv = βv , since X and Y act locally nilpotently on V . Then V is an epimorphic image of the

module S(α, β) = U/U (H − α, Z − β,X,Y ). By Lemma 6.5.(1), S(α, β) is a simple module and

hence V ≃ S(α, β). But by Lemma 6.5.(2), each weight space of S(α, β) is infinite dimensional, a

contradiction.

3. U(sl2) is a GWA: U(sl2) = K[∆,H][E,F;σ,a = 1
4
(∆ − H(H − 2))]. Now, the result follows

from Ref. 4 [Theorem 3.2] (the condition λ , (α + 2i)(α + 2i − 2) is a necessary and sufficient

condition that the U -module V (α,γ) belongs to the modules in statement 1 of

Ref. 4 [Theorem 3.2]). �

Let U(sl2) (weight) be the set of simple weight U(sl2)-modules. The following theorem gives an

explicit description of the set F.

Theorem 6.7. F= {M(α, β) | α ∈K, β ∈K∗} ⊔ {M⋆(α, β) | α ∈K, β ∈K∗} ⊔U(sl2) (weight).

Proof. The theorem follows from Proposition 6.6.(2), Proposition 6.3, and Proposition 6.4. �

The following two corollaries follow from Theorem 6.7.

Corollary 6.8. (Finite-Infinite Dimension Dichotomy). Let M be a simple weight U -module.

Then all its weight spaces are either finite or infinite dimensional.

Corollary 6.9. U (fin. dim.) =U(sl2) (fin. dim.).

Our aim is to classify all the simple weight U -modules. Notice that the set U (weight) of

simple weightU -modules is a disjoint union of two subsets

U (weight) = U (weight, X-torsion) ⊔ U (weight, X-torsionfree). (51)

Simple weight X-torsion U -modules. Theorem 6.13 gives an explicit description of the set
U (weight, X-torsion) of simple weight X-torsion modules. It is clear that

U (weight, X-torsion) = U (weight, X-torsion, Y -torsion)

⊔ U (weight, X-torsion, Y -torsionfree). (52)

The set U (weight, X-torsion, Y-torsion). The next proposition is an explicit description of the

set U (weight, X-torsion, Y -torsion).

Proposition 6.10. U (weight, X-torsion, Y-torsion) = {[S(α, β)] | α ∈ K, β ∈ K∗} ⊔ U(sl2)

(weight).

Proof. Let V ∈ U (weight, X-torsion, Y -torsion). Then the elements X and Y act locally nilpo-

tently on the module V . Since XY = Y X , there is a weight vector v ∈ V such that Xv = Y v = 0.
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Since V is a simple U -module, the central element C1 acts on V as a scalar, say λ1. Then

λ1v = C1v = − 1
2

Z2v , i.e., Z2v = −2λ1v . If λ1 = 0 then Z2v = 0. We may assume that Zv = 0 (other-

wise, we can replace v by v ′ = Zv). Now, Xv = Y v = Zv = 0 and hence (Z) ⊆ annU(V ), by Lemma

2.7.(1). So, V is a simple U(sl2)-module. If λ1 , 0 then there is a weight vector v ∈ Vα such that

Xv = Y v = 0 and Zv = βv for some β ∈ K∗. (In more detail, notice that (Z − ν1)(Z + ν1)v = 0

where ν1 =
√
−2λ1 ∈ K∗. If (Z + ν1)v = 0 then Zv = −ν1v , otherwise let v ′ ≔ (Z + ν1)v then Zv ′ =

ν1v
′.) Thus V is an epimorphic image of the module S(α, β). We must have V ≃ S(α, β) since

S(α, β) is a simple module by Lemma 6.5. �

The set U (weight, X-torsion, Y-torsionfree). For α, β ∈ K and γ ∈ K∗, we define the left U -

module Xα,β,γ ≔ U/U (H − α, Z − β,EY − γ,X). Then Xα,β,γ =


i>1K[F]E
i1̄ + K[F,Y ]1̄, where

1̄ = 1 +U (H − α, Z − β,EY − γ,X). Clearly, Xα,β,γ is an X-torsion and Y -torsionfree weight U -

module.

Proposition 6.11. 1. If γ < 2Zβ then Xα,β,γ is a simple U -module and Xα,β,γ =


i>1
K[F]

Ei1̄ ⊕


i>0
K[F]Y i1̄.

2. If γ < 2Zβ then Wt (Xα,β,γ) = {α + 2n | n ∈ Z} and each weight space is infinite dimensional.

3. annU(X
α,β,γ) = (C1 +

1
2
β2,C2 − γ − αβ).

4. Let (α, β, γ), (α′, β′, γ′) ∈ K3 such that γ < 2Zβ and γ′ < 2Zβ′. Then Xα,β,γ ≃ Xα′, β′,γ′ if and

only if (α′, β′, γ′) = (α + 2i, β, γ − 2i β) for some i ∈ Z.

Proof. 1. It suffices to show that for any nonzero element v ∈ Xα,β,γ there exists some element

u ∈ U such that uv ∈ K∗1̄. Notice that v can be written as v =
n

i=1 gi(F)E
i1̄ + h1̄, where gi(F) ∈

K[F] and h ∈ K[F,Y ]. By Lemma 2.6.(4), Y Ei1̄ = (EiY − 2iEi−1Z + 2i(i − 1)Ei−2X)1̄ = (γ − 2i β)

Ei−11̄ and the coefficient γ − 2i β , 0 since γ < 2Zβ. If gn(F) , 0 then Y v =
n

i=1 gi(F)(γ − 2i β)

Ei−11̄ + Y h1̄. Hence, Y nv = P(F,Y )1̄ for some nonzero polynomial P(F,Y ) ∈ K[F,Y ]. Therefore,

we may assume that v ∈ K[F,Y ]1̄ and v =
m

j=0 a j(Y )F
j1̄, where a j(Y ) ∈ K[Y ] and am(Y ) , 0.

Notice that (Z − β)F j1̄ = − jY F j−11̄. Then (Z − β)v =
m

j=1 a j(Y )(− j)Y F j−11̄. Hence, (Z − β)mv =

Q(Y )1̄ for some nonzero polynomial Q(Y ) ∈ K[Y ]. Therefore, we may assume that v ∈ K[Y ]1̄ and

v =
k

i=0 ciY
i1̄, where ci ∈ K and ck , 0. Since HY i1̄ = (α − 2i)Y i1̄ for all i and the eigenvalues

{α − 2i | i = 0, . . . , k} are distinct. There exists a polynomial f (H) ∈ K[H] such that f (H)v = Y k1̄.

Notice that EY k1̄ = (Y kE + 2kY k−1Z)1̄ = (γ + 2(k − 1)β)Y k−11̄ and the coefficient γ + 2(k − 1)β ∈
K∗ since γ < 2Zβ. Then EkY kv ∈ K∗1̄, as required. The above argument also implies that Xα,β,γ =


i>1
K[F]Ei1̄ ⊕



i>0
K[F]Y i1̄.

2. Statement 2 follows from the last equality in statement 1.

3. Clearly, (C1 +
1
2
β2,C2 − γ − αβ) ⊆ annU(X

α,β,γ). Then the equality holds since (C1 +
1
2
β2,

C2 − γ − αβ) is a maximal ideal ofU , by (1).

4. (⇒) Notice that the element Z − β acts locally nilpotently on the module Xα,β,γ. If Xα,β,γ ≃
Xα
′, β′,γ′ then we must have β = β′. By statement 2, {α + 2i | i ∈ Z} =Wt (Xα,β,γ) =Wt (Xα

′, β′,γ′) =

{α′ + 2i | i ∈ Z}. Hence, α′ = α + 2i for some i ∈ Z. Then, by statement 3, γ + αβ = γ′ + α′β′, i.e.,

γ′ = γ + (α − α′)β = γ − 2i β.

(⇐) Suppose that (α′, β′, γ′) = (α + 2i, β, γ − 2i β) for some i ∈ Z. Let 1̄ and 1̄′ be the canon-

ical generators of the modules Xα,β,γ and Xα
′, β′,γ′, respectively. If i 6 0, then the map Xα

′, β′,γ′→
Xα,β,γ, 1̄′ → Y |i |1̄ defines an isomorphism of U -modules with the inverse defined by 1̄ → 1

g i(γ,β)

E |i |1̄′ where gi(γ, β) =
|i |

j=1
(γ − 2 j β) ∈ K∗. If i > 0 then the map Xα

′, β′,γ′→ Xα,β,γ, 1̄′ → Ei1̄ de-

fines an isomorphism of U -modules with the inverse defined by 1̄ → 1
fi(γ,β)

Y i1̄′ where f i(γ, β) =
i

j=1

(

γ + 2( j − 1)β
)

∈ K∗. �

For any β ∈ K, the subgroup 2Z(1,−β) of (K2,+) acts on K2 in a obvious way. For each

(α,γ) ∈ K2, we denote by O(α,γ) ≔ (α,γ) + 2Z(1,−β) the orbit of the element (α,γ) ∈ K2 under

the action of the subgroup 2Z(1,−β). Clearly, the set of all 2Z(1,−β)-orbits can be identified with

the factor group K2/2Z(1,−β). For each orbit O ∈ K2/2Z(1,−β), we fix an element (αO, γO) ∈ O.

The next proposition is an explicit description of the set U (weight, X-torsion, Y -torsionfree).
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Proposition 6.12.

U (weight, X-torsion, Y-torsionfree)=

[M(α, β)] | α ∈ K, β ∈ K∗



⊔

[XαO, β,γO] | β ∈ K,O ∈ K2/2Z(1,−β), γO < 2Zβ


.

Proof. Clearly, the Verma modules M(α, β) ∈ U (weight, X-torsion, Y -torsionfree). Now, let

V ∈ U (weight, X-torsion, Y -torsionfree) and V is not isomorphic to a Verma module. We show

that V ≃ Xα,β,γ for some α, β,γ ∈ K where γ < 2Zβ.

(i) The module V is E-torsionfree: Otherwise, E acts locally nilpotently on V and there is a

nonzero weight vector v ∈ V such that Ev = 0. Since V is X-torsion, X acts locally nilpotently on

V . There is a weight vector ṽ ∈ V such that E ṽ = X ṽ = 0. Then V is a simple highest weight module

and hence, by Proposition 6.3, V is isomorphic to a Verma module (since V is Y -torsionfree), a

contradiction.

(ii) There exists a weight vector v ∈ Vα such that Zv = βv , EY v = γv and Xv = 0 where β ∈
K, γ ∈ K∗: The element X acts locally nilpotently on V , in particular, there is a nonzero weight

vector v ′ ∈ V such that Xv ′ = 0. The module V is a simple U -module, so, the central elements

C1 and C2 act on V as scalars, say λ1 and λ2, respectively. Then λ1v
′ = C1v

′ = − 1
2

Z2v ′, i.e.,

Z2v ′ = −2λ1v
′. So, there is a weight vector v ∈ Vα such that Zv = βv and Xv = 0 (where β = ν1

or −ν1, ν1 =
√
−2λ1 and λ1 could be zero). Now, λ2v = C2v = EY v + αβv , i.e., EY v = γv , where

γ = λ2 − αβ. It remains to show that γ , 0. The element w = Y v ∈ V is nonzero, since V is

Y -torsionfree. If γ = 0 then Ew = EY v = 0, contradicts to the fact that V is E-torsionfree (see

statement (i)).

(iii) γ < 2Zβ: Suppose that γ = 2i β for some i ∈ Z, we seek a contradiction. Then i , 0 and

β , 0 since γ ∈ K∗. If i > 0 we set v ′ = Eiv . Then v ′ ∈ V is nonzero since V is E-torsionfree.

By Lemma 2.6.(4), Y v ′ = Y Eiv =
(

EiY − 2iEi−1Z + 2i(i − 1)Ei−2X
)

v = (γ − 2i β)Ei−1v = 0. This

contradicts to the fact that V is Y -torsionfree. If i < 0 we set v ′′ = Y−i+1v . Then v ′′ ∈ V is nonzero

since V is Y -torsionfree. But then Ev ′′ = EY−i+1v =
(

Y−i+1E + 2(−i + 1)Y−iZ
)

v = (γ − 2i β)Y−iv =
0. This contradicts to the fact that V is E-torsionfree, by statement (i).

By statement (ii), V is an epimorphic image of the U -module Xα,β,γ where α, β ∈ K and

γ ∈ K∗. By statement (iii) and Proposition 6.11.(1), Xα,β,γ is a simple U -module and hence,

V ≃ Xα,β,γ. Finally, Proposition 6.1.(2) and Proposition 6.11.(4) complete the proof. �

The following theorem is an explicit description of the set U (weight, X-torsion).

Theorem 6.13.

U (weight, X-torsion) =

[S(α, β)] | α ∈ K, β ∈ K∗


⊔ U(sl2) (weight)

⊔

[M(α, β)] | α ∈ K, β ∈ K∗


⊔


[XαO, β,γO] | β ∈ K,O ∈ K2/2Z(1,−β), γO < 2Zβ


.

Proof. The theorem follows from (52), Proposition 6.10, and Proposition 6.12. �

Now, our goal is to describe the set U (weight, X-torsionfree). This set can be partitioned

further into two disjoint union of subsets,

U (weight, X-torsionfree) = U (weight, X-torsionfree, Y -torsion)

⊔ U (weight, X-torsionfree, Y -torsionfree). (53)

The set U (weight, X-torsionfree, Y-torsion). For α, β ∈ K and γ ∈ K∗, we define the left U -

module Yα,β,γ = U/U (H − α, Z − β,FX − γ,Y ). Then Yα,β,γ ≃ ιX−α,−β,−2γ, where ιX−α,−β,−2γ

is theU -module X−α,−β,−2γ twisted by the automorphism ι ofU , see (3).

Proposition 6.14. 1. If γ < Zβ thenYα,β,γ is a simpleU -module.

2. If γ < Zβ then Wt(Yα,β,γ) = {α + 2i | i ∈ Z} and each weight space is infinite dimensional.
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3. annU(Yα,β,γ) = (C1 +
1
2
β2,C2 − αβ + 2γ).

4. Let (α, β, γ), (α′, β′, γ′) ∈ K3 such that γ < Zβ and γ′ < Zβ′. Then Yα,β,γ ≃ Yα′, β′,γ′ if and

only if (α′, β′, γ′) = (α + 2i, β, γ + i β) for some i ∈ Z.

Proof. The result follows from Proposition 6.11, sinceYα,β,γ ≃ ιX−α,−β,−2γ. �

For any β ∈ K, the subgroup Z(2, β) of (K2,+) acts on K2 in an obvious way. For each

(α,γ) ∈ K2, we denote by O(α,γ) ≔ (α,γ) + Z(2, β) the orbit of the element (α,γ) ∈ K2 under the

action of the subgroup Z(2, β). Clearly, the set of all Z(2, β)-orbits can be identified with the factor

group K2/Z(2, β). For each orbit O ∈ K2/Z(2, β), we fix an element (αO, γO) ∈ O.

Proposition 6.15.

U (weight, X-torsionfree, Y-torsion)=

[M⋆(α, β)] | α ∈ K, β ∈ K∗



⊔

[YαO, β,γO] | β ∈ K,O ∈ K2/Z(2, β), γO < Zβ


.

Proof. The result follows from Proposition 6.12 by applying the automorphism ι. �

Theorem 6.16.

U (weight,Y-torsion) =

[S(α, β)] | α ∈ K, β ∈ K∗


⊔ U(sl2) (weight)

⊔

[M⋆(α, β)] | α ∈ K, β ∈ K∗


⊔


[YαO, β,γO] | β ∈ K,O ∈ K2/Z(2, β), γO < Zβ


.

Proof. The theorem follows from Proposition 6.10 and Proposition 6.15, since U (weight,

Y -torsion) = U (weight, X-torsion, Y -torsion) ⊔ U (weight, X-torsionfree, Y -torsion). �

For λ1, λ2 and α ∈ K, we define the left U -module Zλ1,λ2,α = U/U (C1 − λ1,C2 − λ2,H −
α, Z).

Lemma 6.17. 1. If λ1 ∈ K∗ then the module Zλ1,λ2,α is a simpleU -module.

2. If λ1 ∈ K∗ then Wt(Zλ1,λ2,α) = {α + 2i | i ∈ Z} and each weight space is infinite dimensional.

3. If λ1 ∈ K∗ then annU(Z
λ1,λ2,α) = (C1 − λ1,C2 − λ2).

4. Let (λ1, λ2,α), (λ
′
1
, λ ′

2
,α) ∈ K∗ × K × K. Then Zλ1,λ2,α ≃ Zλ′

1
,λ′

2
,α′ if and only if (λ ′

1
, λ ′

2
,α′) =

(λ1, λ2,α + 2i) for some i ∈ Z.

Proof. 1. Let 1̄ = 1 +U (C1 − λ1,C2 − λ2,H − α, Z) be the canonical generator of the mod-

ule Zλ1,λ2,α. Then λ11̄ = C11̄ = XY 1̄ and λ21̄ = C21̄ = EY 1̄ − 2FX 1̄. So, λ2X 1̄ = λ1E1̄ − 2FX21̄,

i.e., E1̄ = λ−1
1
(2FX2 + λ2X)1̄ since λ1 is nonzero. Hence, Zλ1,λ2,α =



i>1K[F]X
i1̄ + K[F,Y ]1̄. To

prove that Zλ1,λ2,α is a simple U -module, it suffices to prove that for any nonzero element v =
n

i=1 ai(F)X
i1̄ + g(F,Y )1̄ ∈ Zλ1,λ2,α, where ai(F) ∈ K[F] and g is a polynomial in K[F,Y ], there

exists some element u ∈ U such that uv ∈ K∗1̄. If an(F) , 0 then Y v =
n

i=1 ai(F)λ1X i−11̄ + Yg1̄.

Hence, Y nv = P1̄ where P is a nonzero polynomial in K[F,Y ]. So, we may assume that v is a

nonzero element in K[F,Y ]1̄ and then v can be written as v =
m

j=0 bj(Y )F
j1̄, where bj(Y ) ∈ K[Y ].

If bm(Y ) , 0 then Zv =
m

j=0 bj(Y )ZF j1̄ =
m

j=0 bj(Y ) j(−Y )F j−11̄. So, Zmv = Q1̄ where Q is a

nonzero polynomial in K[Y ]. Now, we may assume that v is a nonzero element in K[Y ]1̄ and v then

can be written as v =
l

i=0 ciY
i1̄ where ci ∈ K and cl , 0. Since HY i1̄ = (α − 2i)Y i1̄ for all i and the

eigenvalues {α − 2i | i = 0, . . . , l} are distinct. There exists a polynomial f (H) ∈ K[H] such that

f (H)v = Y l1̄. Then X lY l1̄ = λl
1
1̄ ∈ K∗1̄, as required.

2. The proof of statement 1 implies that Zλ1,λ2,α =


i>1
K[F]X i1̄ ⊕



i>0
K[F]Y i1̄. Then

statement 2 follows.

3. Clearly, (C1 − λ1,C2 − λ2) ⊆ annU(Z
λ1,λ2,α). Then the equality holds since (C1 − λ1,C2 −

λ2) is a maximal ideal ofU , by (1).
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4. It is clear that if Zλ1,λ2,α ≃ Zλ′
1
,λ′

2
,α′ then (λ ′

1
, λ ′

2
,α′) = (λ1, λ2,α + 2i) for some i ∈ Z. Now,

suppose that (λ ′
1
, λ ′

2
,α′) = (λ1, λ2,α + 2i) for some i ∈ Z. Let 1̄′ and 1̄ be the canonical generators

of the modules Zλ1,λ2,α
′
and Zλ1,λ2,α, respectively. If i 6 0 the map Zλ1,λ2,α

′→ Zλ1,λ2,α, 1̄′ → Y |i |1̄

defines an isomorphism of U -modules. If i > 0 then the map Zλ1,λ2,α
′→ Zλ1,λ2,α, 1̄′ → Ei1̄ de-

fines an isomorphism ofU -modules. �

For any α ∈ K, the subgroup 2Z of (K,+) acts on K in a obvious way. For each α ∈ K,

we denote by O(α) ≔ α + 2Z the orbit of the element α ∈ K under the action of the subgroup

2Z. Clearly, the set of all 2Z-orbits can be identified with the factor group K/2Z. For each orbit

O ∈ K/2Z, we fix an element αO ∈ O.

Proposition 6.18.

U (weight, X-torsionfree, Y-torsionfree, Z-torsion) = {[Zλ1,λ2,αO] | λ1 ∈ K∗, λ2 ∈ K,O ∈ K/2Z}.

Proof. Let V ∈ U (weight, X-torsionfree, Y -torsionfree, Z-torsion). Then there is a weight vec-

tor v ∈ Vα such that Zv = 0. Since V is a simpleU -module, the central elements C1 and C2 act on V as

scalars, say λ1 and λ2, respectively. In particular, λ1v = C1v = XY v . This implies that λ1 is nonzero

since V is an X and Y -torsionfree U -module. Therefore, V is an epimorphic image of the module

Zλ1,λ2,α where λ1 ∈ K∗. By Lemma 6.17.(1), Zλ1,λ2,α is a simple module and, so, V ≃ Zλ1,λ2,α. Then

Lemma 6.17.(4) completes the proof. �

The algebra U is a Noetherian domain. By Goldie’s Theorem, its left/right quotient ring

Q(U ) is a division ring. Each non-zero element q ∈ Q(U ) determines the inner automorphism

ωq : Q(U )→ Q(U ), a → qaq−1. The inner automorphisms ωX and ωY preserve the subalgebra

Ct = CU(H)t of Q(U ),

ωX : Ct → Ct, θ → θ − 2Zφt−1, φ → φ, H → H − 2, Z → Z, C1 → C1, C2 → C2,

ωY : Ct → Ct, θ → θ − 2Z ι(φ)t−1 − 2, φ → φ − 2Z, H → H + 2, Z → Z, C1 → C1, C2 → C2.

In more detail, the action of ωX on the elements φ, H, Z, C1, and C2 are obvious. Then the

element ωX(θ) is found by applying ωX to the equality (20) and using the equality ωX(t) = t where

t = Z2 + 2C1: ωX(θ) = ωX(θt)t−1 =
(

φ + (H − 2)Z − C2

)

φt−1 = θtt−1 − 2Zφt−1 = θ − 2Zφt−1. The

equality ι(X) = − 1
2
Y implies the equality ωY = ιωX ι: ωY = ω− 1

2
Y
= ωι(X ) = ιωX ι

−1 = ιωX ι since

ι = ι−1. Then the action of the automorphism ωY on the canonical generators of the algebra Ct

is obvious (by using ωX). The automorphisms ωX and ωY of the algebra Ct = Z[H] ⊗ A1 are

Z-automorphisms,

ωX(∂)= ωX(φt−1) = φt−1 = ∂, ωX(Z) = Z, ωX(H) = H − 2,

ωY(∂)= ωY(φt−1) = ∂ − 2Zt−1, ωY(Z) = Z, ωY(H) = H + 2.

In particular, the automorphism ωX |Ct is a K[C1,C2] ⊗ A1-automorphism such that ωX(H) = H − 2.

Clearly,

Ut = Ct[X
±1;ωX] = Ct[Y

±1;ωY]. (54)

The set U (weight, (X,Y )-torsionfree). Let M be a simple, weight (X,Y )-torsionfreeU -module.

Then (C1 − λ1)M = (C2 − λ2)M = 0 for some λ1, λ2 ∈ K. The U -module M is a simple and

weight module, hence Wt (M) ⊆ µ + 2Z = O(µ) for some/any µ ∈ K such that Mµ , 0. So, M =


n∈ZMµ+2n. The U-module M is (X,Y )-torsionfree, i.e., the maps XM, YM : M → M are injec-

tions. Therefore,

Wt (M) = µ + 2Z (55)

since 0 , X nMµ ⊆ Mµ+2n and 0 , Y nMµ ⊆ Mµ−2n. Since XY = 1
2
(Z2 + 2C1) =

1
2
t ∈ C and St ⊆

S ⊆ C, every weight component Mµ+2n is a simple, St-torsionfree Cλ,µ+2n-module. The U -module
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M can be either S-torsion or, otherwise, S-torsionfree. Therefore, all the weight components of M

are either S-torsion or, otherwise, S-torsionfree (since S ⊆ C). So,

U (weight, (X,Y )-torsionfree) = U ( 1 ) ⊔ U ( 2 ), (56)

U ( 1 ) := U (weight, (X,Y )-torsionfree,S-torsion),

U ( 2 ) := U (weight, (X,Y )-torsionfree,S-torsionfree)

(since St ⊆ S). The simple, weight, (X,Y )-torsionfree U -module M =


n∈ZMµ+2n belongs to U
( 1 ) (respectively, U ( 2 )) if and only if, for all n ∈ Z, Mµ+2n ∈ Cλ,µ+2n (S-torsion,St-torsionfree)

(respectively, Mµ+2n ∈ Cλ,µ+2n (S-torsionfree)).

Recall that t = Z2 + 2C1 ∈ C and its image in the algebra Cλ,µ is Z2 + 2λ1. The sets St = {t i |

i ∈ N} and SZ2+2λ1
= {(Z2 + 2λ1)

i | i ∈ N} are Ore sets of the domains C and Cλ,µ, respectively.

Abusing the notations we define

ECλ,µ (S-torsion,St-torsionfree) ≔ECλ,µ (S-torsion,SZ2+2λ1
-torsionfree).

For each λ ∈ K, the Cλ,µ-module

Cλ,µ(γ) ≔ Cλ,µ/Cλ,µ(Z − γ) =


i>1

ker(Z − γ)i

is S-torsion and, for each element γ′ ∈ K such that γ′ , γ, the map (Z − γ)· : Cλ,µ(γ)→ Cλ,µ(γ),

m → (Z − γ)m is a bijection. In particular, the Cλ,µ-module Cλ,µ(γ) is SZ2+2λ1
-torsionfree if and

only if γ2 + 2λ1 , 0. Clearly, for γ,γ′ ∈ K, Cλ,µ(γ) ≃ Cλ,µ(γ′) if and only if γ = γ′.

The next lemma describes the elements of the set ECλ,µ (S-torsion,St-torsionfree).

Lemma 6.19. ECλ,µ (S-torsion,St-torsionfree) = {[Cλ,µ(γ)] | γ ∈ K, γ2 + 2λ1 , 0} and Cλ,µ(γ)

≃ Cλ,µ(γ′) if and only if γ = γ′.

Proof. Since every module M ∈ECλ,µ (S-torsion,St-torsionfree) is an epimorphic image of

Cλ,µ(γ) for a (unique) γ ∈ K such that γ2 + 2λ1 , 0 and the Cλ,µ-module Cλ,µ(γ) is S-torsion and

St-torsionfree, it suffices to show that the Cλ,µ-module Cλ,µ(γ) is simple.

Since Cλ,µ(γ) =


i>1 ker(Z − γ)i, the map t· : Cλ,µ(γ)→ Cλ,µ(γ), c → tc is a bijection (since

t = Z2 + 2C1 and γ2 + 2C1 , 0). Since C
λ,µ
t ≃ A1, t, Cλ,µ(γ) = Cλ,µ(γ)t ≃ A1, t/A1, t(Z − γ) is a sim-

ple A1, t-module, i.e., Cλ,µ(γ) is a simple Cλ,µ-module, as required. �

For λ1, λ2, µ,γ ∈ K, let us consider theU -module

U (λ, µ,γ) := U/U (C1 − λ1,C2 − λ2,H − µ, Z − γ)

= U/U (XY − λ1 −
1

2
γ2,C2 − λ2,H − µ, Z − γ).

The element 1̄ = 1 +U (C1 − λ1,C2 − λ2,H − µ, Z − γ) is called the canonical generator of the

U -moduleU(λ, µ,γ). The next theorem is an explicit description of the elements of the set U ( 1 ).

Theorem 6.20. U ( 1 ) = {[U (λ, µO, γ)] | λ1, λ2, γ ∈ K, γ2 + 2λ1 , 0 and O ∈ K/2Z}, Wt (U
(λ, µO, γ)) = O = µO + 2Z, and U -modules U (λ, µO, γ) and U (λ ′, µO′, γ

′) are isomorphic if and

only if O = O ′ and (λ,γ) = (λ ′, γ′). Furthermore, the maps t·, Y ·, X · : U (λ, µO, γ)→U(λ, µO, γ)
are bijections,

U (λ, µO, γ) = U (λ, µO, γ)t =


n∈Z
X nU (λ, µO, γ)µO =



n∈Z
Y nU (λ, µO, γ)µO

=


n>1

Y nU (λ, µO, γ)µO ⊕


n>0

X nU (λ, µO, γ)µO,
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for all n ∈ Z,U (λ, µO, γ)µ+2n = U (λ, µO, γ)µ+2n, t is a C
λ,µ+2n
t -module where µ = µO and

U (λ, µO, γ)µ+2n = X nU (λ, µO, γ)µ ≃ Y−nU (λ, µO, γ)µ

≃ (ωX)−nU (λ, µO, γ)µ ≃ (ωY )nU (λ, µO, γ)µ

≃ Cλ,µ+2n/Cλ,µ+2n(Z − γ) ∈ Cλ,µ+2n (S-torsion,Ss-torsionfree)

≃ A1, t/A1, t(Z − γ) ≃ A1/A1(Z − γ).

Furthermore,

U (λ, µO, γ)µ+2n =


X n
(

K[θ] ⊕ K[θ]φ
)

1̄, if n > 0,

Y |n |
(

K[θ] ⊕ K[θ]φ
)

1̄, if n < 0,
(57)

where θ = FE, φ = EY and 1̄ is the canonical generator of theU -moduleU (λ, µO, γ).

Proof. Let M ∈ U ( 1 ). We keep the notation as above. In particular, the elements C1 − λ1

and C2 − λ2 annihilate the module M , M =


n∈ZMµ+2n where each weight component Mµ+2n

belongs to the set Cλ,µ+2n (S-torsion,Ss-torsionfree) where s = Z2 + 2λ1. By Lemma 6.19, Mµ+2n ≃
Cλ,µ+2n/Cλ,µ+2n(Z − γµ+2n) for some γµ+2n ∈ K such that γ2

µ+2n
+ 2λ1 , 0.

(i) γ ≔ γµ = γµ+2n for all n ∈ Z: The multiplicative set Tγ ≔ {(Z − γ)i | i ∈ Z} is an Ore set

of the domain U . The Tγ-torsion submodule of M is equal to torTγ(M) =


{n∈Z|γ2n=γ}
Mµ+2n , 0

since Mµ+2n =


i>1 ker (Z − γ2n)
i. The U -module M is simple, hence M = torTγ(M), and so

γ = γ2n for all n ∈ Z.

(ii) γ2 + 2λ1 , 0: This is obvious.

(iii) The map tM : M → M, m → tm, is a bijection: For all n ∈ Z, the map tMµ+2n
: Mµ+2n →

Mµ+2n, m → tm is a bijection, by the statement (ii) and the fact that Mµ+2n =


i>1 ker(Z − γ)i, and

the result follows.

(iv) The maps XM, YM are bijections and X−1
M
= 2YMt−1

M
: This follows from the statement (iii)

and the equality XY = Y X = 1
2
t.

(v) M = Mt =


n∈Z X nMµ =


n∈ZY nMµ, Mµ+2n = X nMµ ≃ (ωX)−nMµ and Mµ+2n = Y−nMµ

≃ (ωY )nMµ: The statement (v) follows from the statement (iv) and the facts X Mµ+2n ⊆ Mµ+2(n+1)

and Y Mµ+2n ⊆ Mµ+2(n−1).

Notice that C
λ,µ+2n
t ≃ A1, t. By the statement (iii), we have the following chain of Cλ,µ+2n-

isomorphisms:

Cλ,µ+2n

Cλ,µ+2n(Z − γ) ≃
(

Cλ,µ+2n

Cλ,µ+2n(Z − γ)

)

t
≃ A1, t

A1, t(Z − γ)
≃ A1

A1(Z − γ)
.

By Proposition 3.3.(2), Cλ,µ+2n/Cλ,µ+2n(Z − γ) ≃ (K[θ] ⊕ K[θ]φ)1̄. Now, the equality (57) follows

from the statement (v).

Given another module M ′ ∈ U ( 1 ) with the parameters λ ′
1
, λ ′

2
, µ′, and γ′. Let O ′ = O(µ′) =

µ′ + 2Z.

(vi) Then M ≃ M ′ if and only if λ1 = λ ′
1
, λ2 = λ ′

2
,O = O ′, and γ = γ′: Suppose that M ≃

M ′. Then O =Wt(M) =Wt(M ′) = O ′. Clearly, λ1 = λ ′
1

and λ2 = λ ′
2
. By the statement (i), M =



i>1 ker(Z − γ)i and M ′ =


i>1 ker(Z − γ′)i. Hence, γ = γ′. The implication (⇐) follows from the

statements (iv) and (v).

In order to finish the proof of the theorem it suffices to prove the next statement.

(vii) M ≃ U(λ, µ,γ) (where γ2 + 2λ1 , 0): Let M ′ ≔ U (λ, µ,γ). By the very definition, M ′ =


i>1 ker(Z − γ)i, and so the map tM′ is a bijection. Then also the maps XM′ and YM′ are bijec-

tions and X−1
M′ = 2YM′t

−1
M′. Hence, M ′ =



n∈Z X nM ′µ. By the very definition of the module M ′,

M ′µ ≃ Cλ,µ/Cλ,µ(Z − γ) ≃ Mµ is a simple Cλ,µ-module. By the statement (v), M ′ ≃ M . �

The set U ( 2 ). Clearly,

U ( 2 ) =


λ∈K2,O∈K/2Z

U ( 2 , λ,O), (58)
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where U ( 2 , λ,O) contains [M] ∈ U ( 2 ) such that (C1 − λ1)M = (C2 − λ2)M = 0 and Wt(M) =

O.

Let M ∈ U ( 2 , λ,O). Then the simple U -module M is an essential submodule of the Ut-

module Mt. Hence, M = socU(Mt). Clearly, Mt =


n∈Z X nMµ, t, where µ = µO, and Mt, µ+2n =

X nMµ, t for all n ∈ Z. So, the simple Ut-module Mt is uniquely determined by the simple C
λ,µ
t -

module Mµ, t, and the last one is uniquely determined by its socle M = socC(Mµ, t), since Mµ, t =

socC(Mµ, t)t. So, the map

U ( 2 , λ,O)→Cλ,µO (S-torsionfree), [M] → [MµO] (59)

is an injection.

Proposition 6.21. The map (59) is a bijection.

Proof. Since the map (59) is an injection, in order to finish the proof it suffices, for a given [N] ∈
ECλ,µ (S-torsionfree), to construct aU -module [M] ∈ U ( 2 , λ,O) with MµO ≃ N . The inducedU -

module U⊗CN is a weight module with Wt (U⊗CN) = O (since St ⊆ S ⊆ C, and N is an S-tor-

sionfree C-module) and (U⊗CN)µO = N . It is annihilated by the elements (C1 − λ1) and (C2 − λ2).

It contains the largest submodule, say L, with L ∩ N = 0. The module L is the sum of all (weight)

submodules that do not meet N . TheU -module L is weight.

Claim. M ≔ U⊗CN/L ∈ U ( 2 , λ,O) and MµO = N : By the very definition, the U -module

M is simple, weight, MµO = N and annihilated by the elements C1 − λ1 and C2 − λ2. The inclu-

sion N ⊂ Nt yields the inclusion U⊗CN ⊆ U⊗CNt (since the algebra C is a direct summand

of the C-bimodule U ). Since S ⊆ C, we have that 0 , S−1N ⊆ S−1M , hence the S−1U -module

S−1M is simple and M ⊆ S−1M , and so M is an S-torsionfree U -module. In particular, M is an

St-torsionfree module (since St ⊆ S). Hence, M is an (X,Y )-torsionfree U -module since XY = 2t.

Therefore, Wt (M) = µO + 2Z = O. This finishes the proof of the claim and the proposition. �

An explicit construction of modules in the class U ( 2 , λ,O). Let us consider the inverse map to

(59),

Cλ,µO (S-torsionfree)→ U ( 2 , λ,O), [N] → [M(λ,O,N)]. (60)

In order to finish with classification of the modules in the class U ( 2 , λ,O), we give an explicit

construction of them, i.e., we give a construction of theU -module M(λ,O,N) for each choice of N

(Lemma 6.22). By (54), theUt-module

Ut⊗CtNt =
(

Ct[X
±1;ωX]

)

⊗CtNt =


n∈Z
X nNt

is simple and S-torsionfree. Hence, N ⊆ Nt ⊆ Ut⊗CtNt. The U -module Ut⊗CtNt contains the

U -moduleUN .

Lemma 6.22. M(λ,O,N) ≃ UN asU -modules.

Proof. By the claim of the proof of Proposition 6.21, M(λ,O,N) ≃ M where M ≔ U⊗CN/L

and L is the largest submoduleU⊗CN such that L ∩ N = 0. The kernel, say L′, of the obviousU -

homomorphism U⊗CN →UN ⊆ M ≔ Ut⊗CtNt, u ⊗ n → un, is contained in L. So, U⊗CN/L′

≃ UN .

Claim. L′ = L: Suppose that L′ , L, we seek a contradiction. Then 0 , L/L′ ⊆ UN , and so

(L/L′)t =M = (UN)t, by simplicity of theUt-moduleM. Hence,

0 , Nt ⊆
(U⊗CN

L

)

t
≃

(

U⊗CN/L′
)

t
(

L/L′
)

t

≃ M/M = 0,

a contradiction. The proof of the claim is complete. By the claim, M ≃ UN , as required. �

The next theorem is an explicit description of the elements of the set U ( 2 ).
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Theorem 6.23. U ( 2 ) =


λ∈K2,O∈K2/2Z
U ( 2 , λ,O) and U ( 2 , λ,O) = {[M(λ,O,N)] | [N]

∈Cλ,µO (S-torsionfree)} and M(λ, µO,N) ≃ M(λ,O,N ′) if and only if N ≃ N ′.

Proof. The theorem follows from (58), Proposition 6.21, and Lemma 6.22. �

Corollary 6.24. In view of (56), Theorems 6.20 and 6.23 classify the modules in U ( 2 ).

Corollary 6.25. For each [M] ∈ U (weight (X,Y )-torsionfree), annU(M) = (C1 − λ1,C2 − λ2)

for some λ1, λ2 ∈ K.

Proof. Clearly, a ≔ annU(M) ⊇ a′ ≔ (C1 − λ1,C2 − λ2) for some λ1, λ2 ∈ K. If (λ1, λ2) , (0,0)

then the ideal a′ is maximal (Theorem 1.1). Hence, a = a′. If (λ1, λ2) = (0,0) and a % a′ then

a ⊇ (Z) = (X,Y, Z) (Theorem 1.1), a contradiction (since M is (X,Y )-torsionfree). Therefore,

a = a′. �

Proof of Corollary 2.10. We use Theorem 1.1 and (1). By Corollary 6.25, (C1,C2) ∈ Prim (U ).

Then Prim (U ) ⊇ Prim (U(sl2)) ⊔ Max (Z), by (1). Since U/(Z) ≃ U(sl2) and Z(U(sl2)) = K[∆],

(Z) is not a primitive ideal ofU . Now, the result follows from (1). �
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