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A classification of the simple weight modules is given for the (6-dimensional)
Euclidean Lie algebra ¢(3) = sl, < V5. As an intermediate step, a classification of
all simple modules is given for the centralizer C of the Cartan element H (in the
universal enveloping algebra U = U(e(3))). Generators and defining relations for
the algebra C are found (there are three quadratic relations and one cubic relation).
The algebra C is a Noetherian domain of Gelfand-Kirillov dimension 5. Classifica-
tions of prime, primitive, completely prime, and maximal ideals are given for the
algebra U. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973378]

. INTRODUCTION

The semidirect product of groups E(3) =~ SO(3) = R? is called the Euclidean group. The Eu-
clidean algebra ¢(3) is the complexification of the Lie algebra of E(3). Various classes of modules
over the Euclidean algebra have been constructed and studied by many authors.'!!%26-28 In partic-
ular, in Ref. 11 the simple Whittaker and quasi-Whittaker ¢(3)-modules were classified. In Refs. 12
and 13, families of indecomposable representations of ¢(3) are constructed by embedding the Eu-
clidean algebra ¢(3) into the simple Lie algebra sl(4,C) and using the irreducible representations
of s1(2,C), respectively. The Euclidean algebra ¢(3) is a member of a more general class of Lie
algebras, the so-called conformal Galilei algebras. The representation theory for these algebras was
developed in Refs. 1, 2,23, 24, and 27.

In this paper, K is a field of characteristic zero unless stated otherwise. The Euclidean algebra
¢(3) is a 6-dimensional Lie algebra with basis H, E, F, X, Y, Z, and Lie bracket as follows:

[H,E|=2E, [H,F]=-2F, [E,F]=H, [H,X]=2X, [HY]=-2Y,
[H,Z]=0, |[EY]=2Z |[E.Z]=2X, [E.X]=0, [FX]=2
[F,Z]=Y, [FY]=0, [X,Y]=[Y,Z] = [X,Z] = 0.

The Lie algebra ¢(3) is neither semisimple nor solvable. It is the semidirect product ¢(3) = sl, < V3
of Lie algebras where sl, = KH @ KE @ KF and V3 = KX @ KY @ KZ is an abelian Lie algebra
which is the three dimensional simple sl,-module. Let U := U(e(3)) be the universal enveloping
algebra of ¢(3). Then U is a Noetherian domain of Gelfand-Kirillov dimension 6. A quantum
analog of U, the quantum Euclidean algebra, was defined and studied in Ref. 6 where its prime,
completely prime, primitive, and maximal ideals were classified.

Classification of prime ideals of U. The centre of the algebra U is a polynomial algebra Z =
K[C,C,], where C; = XY — %Zz and C, = EY + HZ — 2F X (Proposition 2.4.(2)). By a different
method, this result was also obtained in Ref. 11. The vector space V; is a Lie ideal of ¢(3). Hence,
(V3) is an ideal of the algebra U such that U /(V3) ~ U := U(sl,) and Spec (U) C Spec (U). Further-
more, (V3) = (X) = (Y) = (Z) (Lemma 2.6.(1)). In Section II, the following classification of prime
ideals of the algebra U is obtained.
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Theorem 1.1. /.  Spec(U) = {(Z,p) | p € Spec (U(slz))} U {(p) | p € Spec (K[C, o))}

2. The inclusions of prime ideals are given in the following diagram:

Spec (U(s12)) \ {0}
AN
(2)

(C1, ) {(m) |.m € M3
{®o) | o€ P} {(p1) | P1 € P1}

N

0 , D

where M :=Max(K[C|,C]) \ {(C1,C2)}, Po:={p € Spec (K[C},C,]) | ht(p) = 1,p C (C1, ()},
and Py = {p € Spec (K[C|,C]) | ht(py) = 1,p; ¢ (C1,C2)}.

The idea of the proof is to use localizations of the algebra U and repeated application of
Proposition 2.8. As a corollary of Theorem 1.1, the sets of maximal, primitive, and completely
prime ideals of the algebra U are described (Corollary 2.9, Corollary 2.10, and Theorem 2.11).
The algebra U is a free (left and right) module over the polynomial subalgebra K[C),C», H, Z]
(Proposition 2.5). In particular, it is a free module over its centre K[C}, C;].

The prime or/and primitive ideals of various quantum algebras (and their classification) are
considered in Refs. 9, 10, 14—18, and 20-22.

The centralizer Cq/(H), its generators and defining relations, a classification of simple Cqi(H)-
modules. In Section III, it is proved that, as an abstract algebra, the centralizer Cq/(H) := {u €
U|uH = Hu} of the element H in U is generated by elements Cy,C,, H,Z,6, and ¢ subject to the
defining relations (Theorem 3.2) as follows:

[6,Z]= 7%+ 2C, [6,Z] =2¢ + (H -2)Z - C,
[6,0]=200+H)Z-H¢, ¢(p+HZ—-Co)=(0+H)Z>+2C)),

where the elements C;,C,, and H are central. The algebra Cq/(H) is a Noetherian domain of
Gelfand-Kirillov dimension 5 (Theorem 3.2). An U-module M is called a weight module if
M = ®,exM,, where M,, = {m € M | Hm = um}. An element u € K such that M, # 0 is called
a weight of M. Every weight space M,, is a module over the centralizer Cq/(H). If the weight
U-module M is simple, then necessarily each nonzero M, is a simple Cq/(H)-module. There-
fore, as the first step in classifying simple weight U/-modules we have to classify all simple
Cq/(H)-modules. This is done in Sections V and IV, respectively, whether a simple Cq;(H)-module
is annihilated by the element C; or not. These results are too technical to describe in the Intro-
duction. Briefly, the problem of classification of simple Cq/(H)-modules is reduced to one but
for the factor algebras C1v42# == Cq/(H)/Cqy(H)(Cy — A1,Cy — A3, H — ) where A1, Ay, u € K (we
assume that K is an algebraically closed field). It turns out that the cases 4; # 0; 4; = 0,1, # 0;
and A; = 0,4, = 0 are very different and different techniques are used in each of them. In each
case, localizations of the algebra C*42# are used to partition its simple modules into torsion and
torsionfree classes. A “generic” simple module depends on arbitrarily large number of independent
parameters.

A classification of simple, finite dimensional Cq/(H)-modules is given (Theorem 3.13 and

Theorem 5.3.(1)). Theorem 3.12 and Theorem 5.4 give a semisimplicity criterion for the algebra
ClirAam,

Theorem 1.2. Let K be an algebraically closed field of characteristic zero. Then the algebra
Cto 1 s simple if and only if either

I Ay #0and }(u+—2=) ¢ Z\ {0} or
V24
2. ,=0,2,%0.
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Classification of simple weight U-modules. Briefly, the problem of classification of simple
weight U -modules comprises three steps as follows: Step 1: To classify all simple Cq;(H)-modules.
Step 2: How to reassemble some of the simple Cq/(H)-modules into a simple weight U -module?
Step 3: Isomorphism problem for simple weight U/-modules.

Step 1 was done in Sections IV and V. In Section VI, simple weight U/-modules are classified.
The main idea in finding the set Uu (weight) of simple weight U/-modules is to use certain explicit
localizations of the algebra U to partition the set U (weight) into various classes and then to
classify modules of each class. In more detail,

U (weight) = U (weight, X -torsion) LI U (weight, X -torsionfree, Y -torsion)
07 (weight, (X, Y)-torsionfree)

and the simple weight modules from first two sets are described in Theorem 6.13 and Proposition
6.15, respectively. The third set is a disjoint union of two subsets U ([1]) and U ([2]), see (56). The
modules from 4 ([1]) (respectively, u ([2])) are described in Theorem 6.20 (respectively, Theorem
6.23).

In Section VI, simplicity criteria are given for the Verma modules and their dual analogs (Prop-
osition 6.1.(3) and Proposition 6.2.(3)). Simple highest/lowest weight U/-modules are classified
(Proposition 6.3 and Proposition 6.4). The finite-infinite dimension dichotomy was proved for sim-
ple U-modules (Corollary 6.8): For each simple weight U-module, all its (nonzero) weight spaces
are either finite or infinite dimensional. Theorem 6.7 classifies all the simple weight U -modules
with finite dimensional weight spaces.

Il. PRIME IDEALS OF THE ALGEBRA U

In this section, it is proved that the centre of the algebra U is a polynomial algebra K[C), ;]
where C; and C; are quadratic elements of U (Proposition 2.4.(2)) and that the algebra Uy is a
tensor product of three explicit algebras (Proposition 2.4.(1)). This fact is a key in finding the prime
spectrum of the algebra U (Theorem 1.1). Explicit descriptions of the sets of maximal, primitive,
and completely prime ideals of the algebra U are obtained (Corollary 2.9, Corollary 2.10, and
Theorem 2.11).

Recall that an involution + on a K-algebra is a K-algebra anti-automorphism ((ab)* = b*a*)
such that a** = a for all a € A. The algebra U admits an involution * defined by the rule

1
F*=-E, H'=H, E'=-F, Y'=2X, 7Z'=1Z, X*:EY. 2)

The automorphism t: The algebra U admits automorphisms

1
t: E > F, Hw— —-H, F— E, XH—EY, Z— —Z, Y- -2X, (3)
vy: E—E, Hw— H, F — F, X =X, Z - —Z, Y- -Y, @
1
ty: EmF, Hw~ —-H, F— E, X|—>§Y, Zw— Z, Y - 2X. (@)

Clearly, ty = yt and (> = y? = (1y)* = idg. The universal enveloping algebra U = U(e(3)) admits
the canonical involution « given by the rule x(e) = —e for all e € ¢(3). Clearly,

L=Kox. (6)

Recall that the nth Weyl algebra A, = A,(K) is an associative algebra generated by elements
Xl,-. s Xns Y1, . ., Yn subject to the defining relations: [x;,x;] =0, [y, y;] =0, and [y;,x;] = 65,
where [a,b] := ab — ba and §;; is the Kronecker delta function. The Weyl algebra A, is a central,
simple Noetherian domain of Gelfand-Kirillov dimension 2n. For an algebra R, we denote by Z(R)
its centre. For a subset S C R, we denote by (S) the ideal of R generated by the elements of S. An
element a € R is called a normal element if aR = Ra.
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Lemma 2.1. [Ref. 25, Lemma 14.6.5] Let B be a K-algebra, S = B ® A,, be the tensor product
of the algebra B and the Weyl algebra A,,, § be a K-derivation of S, and T = S[t;6]. Then there
exists an element s € S such that the algebra T = B[t';8"] ® A, is a tensor product of algebras
wheret’ =t + s and 8 = 6 + ad,.

Next, we consider two subalgebras & and A of U that are used in finding the prime spectrum
of U.

The subalgebra &. Let & be the subalgebra of U generated by the elements E, X, Y, and
Z. Then & is an iterated Ore extension & = K[X, Z][E; 6][Y; 62], where 6,(X) =0, 6,(Z) = 2X,
02(X) = 62(Y) =0, and 6,(E) = —2Z. Clearly, X is a central element of & and the subalgebra
K[X, Z][E; 6;] is isomorphic to the enveloping algebra of the three dimensional Heisenberg Lie
algebra. Let Ex be the localization of & at the powers of the element X. Then

Ex = (KIX*'| @ A\ 1Y 62),

where A; = K(EX™, %Z) is the first Weyl algebra since [EX ™, %Z] = 1. Now, using Lemma 2.1
we can “delete” the derivation ¢,. Specifically, the element s = —%ZZX ~! satisfies the conditions of
Lemma 2.1, and the element Y’ =Y + s =Y — %ZZX -1 commutes with the elements of A;. Notice
that Y’ also commutes with X, we have

Ex =K[X*.Y® A = K[X*,Ci] ® Ay, @)
where C) := Y’X = XY — 4 Z% Note that C; belongs to the centre of U.

Lemma 2.2. Z(E) = K[X,C4].

Proof. By (7), Z(Ex) = K[X*!,C}]. Then Z(E) = E N Z(Ex) = E NK[X*,C1] = K[X,C]. O

The subalgebra A. Let A be the subalgebra of the U generated by the elements H, E, X, Y,
and Z. Then A is isomorphic to the enveloping algebra of the Lie subalgebra a .= KH @ KE &
KX @ KY @ KZ of ¢(3). Notice that a is a solvable Lie algebra, thus every prime ideal of A
is completely prime [Ref. 25, Corollary 14.5.5]. Clearly, A is an Ore extension A = E[H; 6],
where ¢ is a derivation of & defined by 6(E) = 2E, 6(X) = 2X, §(Y) = =2Y, and 6(Z) = 0. The
element X is a normal element of the algebra A since X is central in & and XH = (H - 2)X.
Let Sx be the localization of & at the powers of the element X. Then Ax = Ex[H; d], by (7),
Ax = (K[Xil,Cl] ® Al)[H; ¢]. Since H commutes with the elements of A, the algebra Ay is a
tensor product of algebras

Ax = K[C|]  K[X*'][H; 6] ® A. (8)

In particular, Ay is a Noetherian domain of Gelfand-Kirillov dimension 5. The algebra K[ X*!][H; §]
where §(X) = 2X and the Weyl algebra A; are central simple algebras. Hence, Z(Ax) = K[C}].

Lemma 2.3. Z(A) = K[Cy].

Proof. Since K[C}] € Z(A) C AN Z(Ax) = K[C,], we have Z(A) = K[Cy]. O

Centre of U. By the defining relations of U, we see that the algebra U is a skew polynomial
algebra

U = A[F;0,6], )

where o is the automorphism of A defined by c(H)=H+2, 0(E)=E, c(X)=X, oY) =Y,
0(Z)=Z, and § is the o-derivation of A defined by 6(H) = 6(Y) =0, 6(E) = -H, §(X) = X,
and 6(Z) =Y. Let Ux be the localization of U at the powers of the element X. Then Uy =
ﬂx [F, g, 6]

Proposition2.4. 1.  Ux = K[C1,C] @ K[X*![H; 6] ® A, is a tensor product of algebras
where Cy = EY + HZ — 2FX and §(X) = 2X.
2. Z(U) =K[C,C,).
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3. (le’x =~ (L{x’z = K[Cl,CQ] ® K[Xil][H;5] ® Bj, where By = AI,Z-
4. C{=«(Cy)=uCy) =Crand C; = k(C3) = UC2) = Co.

Proof. 1.Let F' := FX. By (8) and (9),
Uy = AxIF; 0,81 = AxIF': ') = (KIC1l @ KIX*|[H: 6] @ A1 )IF'5 '),

where 6’ is a derivation of Ax such that §'(C)) =0, §"(X) =XZ, §'(H)=0, §(EX")=-H -
EX'-Z, and 6" (Z) =YX. Using Lemma 2.1, we can “delete” the derivation ¢’. In more detail,
the element s = —%H Z - %EY satisfies the conditions of Lemma 2.1, and the element F = F’ + s =
FX - 1HZ - JEY commutes with the elements of A;. Moreover, F commutes with X and H,
hence F is central in Uy. Let C, := —2F = EY + HZ — 2FX. Then Ux = K[C},C,] @ K[X*'][H;
0] ® Ay, as required.

2. By statement 1, Z(Ux) = K[Cy,C;]. Then the inclusions K[C},C,] € Z(U) €U N Z(Ux) =
K[C,, C;] yield the equality Z(U) = K[C,, C,].

3. Statement 3 follows from statement 1.

4. Straightforward (see also (6)). ]

Proposition 2.5. The set 8 = {E'F/ ,E'FIYK E'X* | i,j € N and k € N,} is a free basis of the
(left and right) K[Cy, Cy, H, Z]-module U. In particular, the algebra U is a free K[Cy, C;]-module.

Proof. As a vector space, the algebra U is a tensor product U ® P53 of the vector spaces
U =U(slh) and P; = U(V;3) = K[X,Y, Z]. Since XY = C| + %ZZ, the polynomial algebra Ps is a free
K[C), Z]-module with a free basis {1,X*,Y* | k € N,}. Using the equality FX = $(EY + HZ -
(), and the fact that V4 is an abelian ideal of the Lie algebra e(3) = sl; < V4, the result follows. O

The prime ideals of the algebra U . The next two lemmas are key facts that are used in the proof
of Theorem 1.1.

Lemma2.6. 1. (X)={)=(2Z)=(X,Y,2).

UNZ)=UGL). |
Foralli > 1,[X,F'] = —iF'~'Z + %i(i - 1)Fi-?y.

4. Foralli > 1,[Y,E"l = -2iE""'Z + 2i(i - 1)E'2X.

w

Proof. 1. Statement 1 follows immediately from the defining relations of U.

2. Statement 2 follows from statement 1.

3. Statement 3 can be proved by induction on i.

4. Statement 4 follows from statement 3 by applying the automorphism «¢. O

Lemma?2.7. 1. (Z)=UZ+UY +UX.
2. (Z2)' =(Z)foralli> 1.

Proof. 1. The inclusion ZU € UZ + UY + UX holds in the algebra U. This follows from
the equalities [Z, E'] = =2iE""'X, [Z,F'] = —iF'~'Y, and Lemma 2.6.(3). Then (Z) C UZ + UY +
UX C (X,Y,Z)=(Z).Hence,(Z)=UZ+UY + UX.

2. It is clear that (Z%) C (Z)!. We prove that (Z)' C (Z') by induction on i. The case i = 1
is obvious. Suppose that the inclusion holds for all i’ < i. Then (Z)' = (Z)(Z)'~' c (Z2)(Z'"") =
UZUZT'U = (UZ+UY + UX)Z'U = (Z7) + (Y Z7!) + (X Z'"), by statement 1. Notice that
YZi~' e (Z") since [F,Z'] = iYZ'"',and XZ'~' € (Z%) since [E, Z] = 2iXZ'~!. Hence, (Z)' C (ZY),
as required. O

For an algebra R, let Spec (R) be the set of its prime ideals. The set (Spec (R), C) is a partially
ordered set (poset) with respect to inclusion of prime ideals. Each element r € R determines two
maps from Rto R, r-: x — rxand -r : x — xr, where x € R.
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Proposition 2.8. (Ref. 5.) Let R be a Noetherian ring and s be an element of R such that
S, == {s"|i € N} is a left denominator set of the ring R and (s') = (s)' for all i > 1 (e.g., s is
a normal element such that ker(-sg) C ker(sg-)). Then Spec(R) = Spec(R,s) U Spec (R), where
Spec(R, s) .= {p € Spec(R) | s € p}, Spec(R) = {q € Spec(R)|s ¢ q} and

(a) the map Spec(R,s) — Spec(R/(s)), p = p/(s), is a bijection with the inverse q +— n~'(q)
wheren : R — R/(s),r = r + (s).

(b) The map Spec,(R) — Spec (Ry), » = S;'p, is a bijection with the inverse q — o~ '(q) where
c:R—>R;=8'R,r— T

(c) Forallp € Spec(R,s)and q € Spec,(R),p £ q.

In this paper, we identify the sets in the statements (a) and (b) via the bijections given there.

Proof of Theorem 1.1. The strategy of classifying the prime ideals of U is to use the following
localizations of the algebra U

Uu Uy Uz, x

l

UN(Z) = U(sly) (10)

together with the fact that (X’)z = (X)), = U (which follows from the relation [Z~'F,X] = 1; in
more detail, foralli > 1,1 = Lad(Z™'F)'(X’) € (X')). By Proposition 2.8, Spec (Uz) = Spec (Uz,x)
and Spec (U) = Spec (U /(Z)) U Spec (Uz) = Spec (U(sl,)) L Spec (Uz). By Proposition 2.4.(3),
Spec (Uz.x) = Spec (K[Cy,C5]) since the algebras K[ X*'|[H; 6] and A, are central simple algebras.
By Proposition 2.5, the algebra U is a free (left and right) K[Cy, Cy, Z]-module. Therefore, for all
p € Spec (K[Cy1,C3]), U N pUz = pU. Now, statement 1 is obvious. So all the prime ideals are pre-
sented in diagram (1) and the inclusions in (1) are obvious. Clearly, there are no additional inclusions
in diagram (1). O

The next corollary describes the set of maximal ideals Max () of the algebra U.

Corollary 2.9. Max (U) = Max (U(sl»)) U Max () \ {(C1,(>)}.

Proof. The equality follows from (1). O

A prime ideal P of a ring R is said to be locally closed if the set {P} is locally closed in
the topological space Spec (R) where Spec (R) is equipped with Zariski topology [Ref. 9, II.1.1].
A prime ideal P of a Noetherian K-algebra R is said to be rational if the field Z (Frac(R/P)) is
algebraic over K where Frac(R/P) is the left (right) quotient ring of the Noetherian prime algebra
R/P. We say that the Dixmier-Moeglin equivalence holds for a Noetherian K-algebra A if for each
prime ideal P of A we have the following equivalences:

P is locally closed &= P is primitive <= P is rational.

The next corollary describes the set of primitive ideals Prim (/) of the algebra U.

Corollary 2.10. Prim (U) = Prim (U(sl,)) LI Max (Z).

Proof. Since U is a universal enveloping algebra of a finite dimensional Lie algebra, it satisfies
the Dixmier-Moeglin equivalence. By Ref. 9 [Lemma I1.7.7], a prime ideal P in a ring R is locally
closed if and only if the intersection of all prime ideals properly containing P is also an ideal
properly containing P. By (1), the set of locally closed prime ideals is Prim (U(sl,)) LI Max (Z).
Then the corollary follows from the Dixmier-Moeglin equivalence for U/. O

The next theorem describes the set of completely prime ideals Spec,.(U) of the algebra U (its
proof is given at the end of Section III).

Theorem 2.11. Let F be the set of annihilators of simple finite dimensional U (sly)-modules of
dimension > 2. Then Spec (U) = Spec (U) \ F.
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lll. THE ALGEBRA C(H), ITS GENERATORS, AND DEFINING RELATIONS

The aim of this section is to find generators and defining relations for the centralizer Cq;(H) of
the element H in the algebra U (Theorem 3.2.(1)), to show that the centre of C¢;(H) is a polynomial
algebra K[Cy,Cy, H] (Lemma 3.1.(2)), to prove that the algebra Cq/(H) is a free (left and right)
module over its polynomial subalgebra I' = K[C},C,, H,Z], and to find an explicit free I'-basis
for Cq/(H) (Theorem 3.2.(2)). We introduced and studied the factor algebras C4# = Clrdz# =
Cy(H)/(Cy— 21,C, — A2, H — p) of Cqy(H) (where A4, A5, u € K) that play a key role in classify-
ing simple weight U -modules (in Section VI). The sets of prime, completely prime, maximal,
and primitive ideals of the algebra C*# are found (Theorem 3.16). Simple finite dimensional
C*#-modules are classified where A; # 0 (Theorem 3.13). We realize the algebra Cq/(H) as an
algebra of differential operators ((12) and (13)).

The next lemma describes the centre of the algebra Cqy(H).

Lemma 3.1. 1. Cyy(H) =K[Cy,Co,H] ® Ay, where Ay = K(3EX™', Z).
2. Z(Cy(H)) = Z(Cuy(H)) = K[C1,Co, H].

Proof. 1. The result follows from Proposition 2.4.(1).
2. Statement 2 follows from statement 1 since Z(A;) = K. O

Since «(H) = —H, the automorphism ¢ of the algebra U (see (3)) induces the automorphism ¢ of
the algebra C¢;(H) by the rule
t:Cy(H)y-» Cy(H), 0> 0+H, ¢ > —-¢p-—HZ+C,, H— -H, Z+— -Z, C;1 > C;, C; > C,.
(11)
Generators and defining relations of Cq;(H). We embed the algebra Cq,(H) into the first Weyl
algebra over the polynomial algebra K[C), C,, H] and use this fact in finding generators and defining
relations of Cq/(H) (Theorem 3.2). Let 9 := %EX“. The Weyl algebra A; = K(Z,0 | [9,Z] =1)
is the GWA A, = K[h][Z,0;0,a = h], where o(h) =h—1 and h := 0Z. The Weyl algebra A; =
®;ezA1,; is a Z-graded algebra (A ;A1 ; C Ay ;4 foralli,j € Z), where A, o := K[A] is a polynomial
algebra in the variable h and, for i > 1, A; +; = K[h]vs;, where v; = Z', v_; = 8" and vy := 1. As a
Z-graded algebra, the Weyl algebra A; has the ascending filtration G = {A; <; };ez associated with
the Z-grading, where A <; = ®©;<;A ;. The associated graded algebra grg(Al) =®;czA1<i/A1<i-1
is isomorphic to the GWA K[h][Z,8; 0,0]. In particular, the algebra grg(A) contains two skew
polynomial rings, K[h][Z;0] and K[A][0;0 '], as Z-graded subalgebras. By Lemma 3.1, the
centralizer Cq, (H) = ®;ezCuy(H); is a Z-graded algebra where the Z-grading is inherited from the
Weyl algebra Ay, i.e., Cy (H); = K[C1,Co, H] ® Ay ;.
Clearly, the algebra Cq/(H) is a subalgebra of Cq/ (H) = K[C},C,H] ® Ay (Lemma 3.1). Let
6 :=FEand ¢ := EY.Then 6,¢ € Cy/(H) and
¢=02C, + 7% =2Cd +hZ, (12)
0=2C10>-Cd+h+H)h-1)=(p+HZ - C)d = —1(9)0. (13)

In more detail, ¢ = EY = EX~'- XY = 20(C; + %ZZ) =2C10 + hZ,since 0Z = h. Similarly,
0=FE=FX -X'E=FX -EX'=(EY+HZ-C)-0=(¢+HZ—-C)d
- (20.0 t(h+ H)Z - cz)a = 20107~ Cod + (h+ H)(h - 1),
since Z0 = o(h) = h— 1. By (12), [3,¢] = 20Z. Then, by (12) and (13),
o= a(¢> +(H=-2)Z-H - cz) _ a(a(zc1 + 7))+ (H-2)Z - H -~ cz). (14)

Theorem 3.2. Recall that 6 = FE and ¢ = EY. Then

1.  The algebra Cq(H) is generated by the elements C|,Cy,H,Z,6, and ¢ subject to the defining
relations as follows:

[¢.Z] = Z* +2Cy, (15)
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[0,Z] =2¢ + (H - 2)Z — C>, (16)
[0,6] =2(0 + H)Z — H, (17)
d(p+HZ—-C)=(0+H)Z*+20)), (18)
[C1,-]1=0, [C5,-] =0, and [H,-] =0, (19)

where (19) means that the elements Cy, C,, and H are central in Cqy(H). In view of (15), the
relation (18) can be replaced by relation

(¢ + HZ — C)o = 0(Z° + 2C)). (20)

2. The set B={0'¢/ |iecN,j=0,1} is a free basis of the (left and right) T-module Cqy/(H)
where T = K[Cy,Cs, H,Z]. The sets B) = {(0 + H)'u(¢) |i €N, j =0, 1} and B’ = {6'(¢) |
i €N, j=0, 1} arefree bases of the (left and right) T'-module Cqy/(H).

3. The algebra Cq(H) is a Noetherian algebra of Gelfand-Kirillov dimension 5.

Proof. 1 and 2. The second part of statement 2 follows from the first one by applying the auto-
morphism ¢. By Proposition 2.5, the algebra C = Cq;(H) is generated by the elements Cy,C,, H, Z, 0,
and ¢. It is straightforward to check that they satisfy the relations (15)—(19). It remains to show that
these relations are defining relations. By (15)—(19), the set B in statement 2 is a set of generators
of the (left and right) I'-module C. The fact that the set B is a free basis for the (right and left)
I'-module C follows from the claim below. Then statement 2 implies statement 1. In order to formu-
late the claim we need to introduce some notation. Let K = K(Cy,C,, H) be the field of rational
functions in the variables Cy,C,, and H. Let A;(K) be the Weyl algebra over the field K. We have
the inclusions of algebras C C Cq, (H) = K[C1,Co, H] ® A1 € Al(K) =K ® A;.

Claim. The elements {0'¢’Z* | i,k € N and j = 0,1} of the algebra A\(K) are K-linearly
independent.

Suppose that this is not true. Then r := } A; jk9f¢f Z* = 0 for some elements A; ik € K, where
i,k > 0and j=0,1. The Weyl algebra A;(K) is a domain. By multiplying on the right the element
r by Z°, we can assume that all the elements 6'¢/ Z* in the relation r belong to the skew polynomial
algebra A (K) = ;50K ® Ay; = K[h][Z; 0], where o(h) = h— 1. The concept of Z-degree,
deg,, for A; () makes sense. Notice that, by (12) and (13),

¢Z =2C1h+hZ? = hZ> + - -, 21
07> =2Ci(h+ Dh = Coh+ (h+ H)(h—-1)Z* = aZ*+ - -, (22)

where @ = (h + H)(h — 1) and the three dots denote smaller terms with respect to the Z-degree. Let
d := max{deg,(0'¢/Z*) = j + k | A;jx # 0}. Then the leading term / of the element r = 0 must be
equal to zero, i.e., [ = 0. Notice that

0'zk=a'Z"+ ...,
0'pZ* = a'hz* + - ...
Then
0=1= ( D /lijka/ihj)Zd - (ZWM + a,-l,d_lh)ai)zd.

J+k=d,j=0,1

Since degj,(a) = 2, the relation / = 0 implies that all A;;x = O (in the relation / = 0), a contradiction.
3. Since U = ®;7U; is a Z-graded Noetherian algebra where U; = kerq;(H — i), the algebra
Uy = Cqy(H) is a Noetherian algebra. By statement 2, GK (Cq/(H)) = 5. O

Relation (18) can be written as

- pu(9) = UO)(Z* +2C). (23)

Relation (20) can be written as

—up)p = 0(Z* +2C>). (24)
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So, Relation (20) is obtained from relation (18) by applying the automorphism ¢, and vice versa
(since (™! = 0).

The algebras CUH = Clo A2k et A, A, e K, and A = (A1, 42). Let (Cy — A1,Co — A2, H — )
be the ideal of the algebra Cq;(H) generated by the elements in the brackets. The algebras C4# :=
ClW2t = Coy(H)/(Cy — 11,Cy — A9, H — ) play an important role in the classification of simple
weight U -modules (see Section VI). Similarly, define C;l{}’; = C,’;,’;‘(H) = Cqyy (H)/(Cr = 11,Co —
Ao, H — ). We use also notations C,’;‘)’(/lz’” and C:Llll)’(’lz’” (H) to denote the algebra C,fb’: . By Lemma
3.1.(1), C,fb’(‘ ~ A is the Weyl algebra.

Proposition 3.3. Let A1, A5, u € K. Then

1. Asan abstract algebra, the algebra C** is generated by the elements Z,0 and ¢ that satisfy the
defining relations as follows:

[6,Z] = Z% + 244, (25)
[0.Z] =2¢ + (u—2)Z - A3, (26)
[6,¢] = 2(0 + W)Z — u¢, (27)
$(¢+ uZ — A3) = (0 + p)(Z° +22). (28)

Inview of (25), relation (28) can be replaced by the relation
(¢ + pZ — )¢ = 0(Z° +24,). (29)

The set B = {0'¢/ | i € N and j = 0,1} is a free basis of the (left and right) K[ Z]-module CH.

3. The algebra homomorphism C4H — C;{;' =A, Z— Z, ¢ 20,0 +hZ, 0 21,0% - 150
+ (h + p)(h — 1) is a monomorphism. In particular, C** is a domain.

4.  The ideal (Cy — 21,Cy — A2, H — p) of the algebra Cqi(H) is equal to the intersection of the
algebra Cq/(H) and the ideal (C, — A1,C> — A2, H — ) of the algebra Cq (H). In particular,
the ideal (Cy — 11,Cy — A2, H — p) is a completely prime ideal of Cq/(H).

5. GK(CY*) = 2and Z(CM) = K.

N

Proof. 1. Statement 1 follows from Theorem 3.2.(1).

2. Statement 2 follows from Theorem 3.2.(2).

3. In view of the inclusion Cq/(H) € Cqi(H) = K[C1,C5, H] ® A; and the equalities (12) and
(13), the homomorphism in statement 3 is well defined. The fact that it is a monomorphism follows
from statement 2 and the claim below.

Claim: The images of the elements {0'¢/Z* | i,k ¢ N and j = 0,1} in A, are K-linearly inde-
pendent: Repeat the proof of the claim in the proof of Theorem 3.2 replacing (K,C;,Cy, H) by
(K, A1, A2, 1) everywhere.

4. Statement 4 follows from statement 3.

5. The inclusion A := K(Z,d) C C# C A yields the inequalities 2 = GK (A) < GK (C#) <
GK (A)) =2, i, GK (C#) = 2. Since Ca,(Z) = K[Z], we must have Z(C*#) C K[Z]. Let f €

Z(C*"). By (25),0 = [, f1= L - (2 +24)). Hence, f € K, ie., Z(C**) = K. o

The Weyl algebra A; admits a finite dimensional ascending filtration S = {S; = ¥;.4<; KZ/
0%} by the total degree of the canonical generators Z and & of A;. The associated graded
algebra gr(A;) = K[Z,d] is a polynomial algebra. The subalgebra C*# c A; (Proposition 3.3.(3))
admits the induced filtration ¥ = {F; := C** N S;}; e It follows that the associated graded algebra
gr(C*H) is a subalgebra of the polynomial algebra gr(A;) = K[Z,8]. In the algebra gry(C*#),
¢ = Z?0 and @ = Z?3°. In particular, ¢* = 6Z>.

Lemma 3.4. 1. gra(C**) ~K[Z,¢,0)/(¢> - 0Z7).
2. The algebra gr(Ay) is not a finitely generated gry(C**)-module.
3. The Weyl algebra Ay is not a finitely generated left/right C***-module.
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Proof. 1. The algebra gry(C**) is an epimorphic image of the factor algebra K[Z, ¢,60]/(¢* —
6Z?) (since ¢* =60Z% in gre-(C+H)). In fact, gre(C**) =~ K[Z,¢,0]/(¢* — 6Z°), by Proposition
3.3.2).

2. Clearly, the algebra gr(C*#) is a subalgebra of the algebra K[Z,Zd] (since ¢ = Z%9
and 0 = Z%9%). The polynomial algebra K[Z,d] is not a finitely generated K[Z, Zd]-module, and
statement 2 follows.

3. Statement 3 follows from statement 2. O

The C*F-modules V¥#(v|) and W*#(v|). We introduce important C*#-modules V4H(v))
and W4#(v;) that play an important role in the classification of simple C*#-modules (especially,
finite-dimensional ones). Generically, these modules are simple. For all A;,4,,u € K, L((C] -

11,Co— A2, H — ,u)) =(Cy— 2,C, — A, H + p). So, the automorphism ¢ of Cq/(H) induces the
automorphism of the algebras

L:CYH S CY R 00—, d —p+ uZ + Ay, Z > —Z. (30)
The polynomial subalgebra I' = K[Z,Cy,C,, H] is t-invariant since «(Z) = —Z, «(Cy) = Cy, (Cy) =
Gy and «(H) = —H. By Theorem 3.2.(2), the algebra C¢,(H) is the tensor product of vector spaces

Cu(H) = (K[a] ® K[9]¢) oT. 31)

By applying the automorphism ¢, the algebra C¢/(H) is a tensor product of vector spaces
Cu(H) = (K[G + Hl® K[+ H]L(¢)) oT. (32)

Let (11,42, u) € K*x K x K and A = (1;,4,). For A, € K*, the polynomial Z%+ 21, € K[Z]
has two distinct, nonzero roots vi and —v;. Let us fix a root, say vy, of Z* + 24y, i.e., vi + 21, = 0.
The maximal ideal m = (Z — v|,C; — 41,C, — A5, H — ) of the algebra I' determines a simple
1-dimensional I'-module I'/T",, ~ K. Consider the induced Cq;( H)-module

31
Culy®rT/T, ¥ (K10 @ X[01g) @ T/T,.
This Cq;(H)-module is, in fact, C**-module

CYH(vy) = CHHICHH(Z — vy) =~ K[0]T @ K[0] 91, (33)

where T = 1 + C*#(Z — v;). The K[#]-module C*#(v,) is a free module of rank 2. By (32), we also
have

CHH(yvy) = K[0]1 @ K[0]u(¢)T = K[0]1 @ K[6](¢ + uvi — )1. (34)
The K[6]-submodule K[#]¢1 of C4#(v,) is a C+H-submodule,
ctugT P r[016T + K016 + 1 — 1)¢1 D K[0161 + K[01002 + 2161 = K[6]41.
Define the C*#-modules
WAH(vy) == K[8)¢1 and VEH(vy) = CHHIWAH(v) =~ CHHICHH(Z - v, ¢) = K[O]1, (35)
where 1 =1+ CY*(Z — vy, $). The K[8]-modules W#(v,) and V#(v,) are free modules of rank
1. Since K[0]u(p)o1 =l K[G]G(vl2 +24;)1 = 0 and the K[6]-module W#(v;) is free of rank 1, it
follows from (34) that
WH(yy) = CHHICH(Z = viu(@)) = CHHICH(Z = visg + v = ) = K011, (36)
where 1’ := 1 + CY#(Z = vi,¢ + vy — A,). Similarly, the K[6]-submodule K[6]u(¢)T = K[0](¢ +
vy — A2)1 of CHH(v)) (see (34)) is a CtH-submodule,
~ (33) - -
CHH(¢ + pvi = )T = K014 + pvi = )T+ K[O]6(4 + vy = A2)]

LRI + v = 2T + KO0 + W) + 24T = K[O1(6 + v = 1.
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It follows from the above arguments and the fact that the K[6]-module K[0](¢ + uv; — A5)1 is free
that the C**#-homomorphism

V() = K011 - K[0)(¢ + pvi — )T, T (¢ + pvi — )1

is an isomorphism. Summarizing, we have short exact sequence of C**#-modules that follow from
the equalities (33) and (34), respectively,

0= W (y) = CHH(vy) = VP (vy) = 0, (37
0= V() > CH(n) > W) - 0. (38)
The next lemma shows that, generically, these short exact sequences split.
Lemma 3.5. Let (1,42, 1) € K* x K x K.

L. If pvi—A2#0, then CHH(vy) =~V’l”‘(v1) ® WAhH(v)) and VUH(vy) ~ K[0]u(p)T =~ K[0](¢ +
uvy — o)1 and WhH(v)) = K[0]¢]1.
2. If uvy — A2 = 0, then VYHH(vy) =~ WHH(vy) and there is a short exact sequence of CYF-modules

0 — VEH(y) = CHH(v)) = VEHE(y) — 0.

Proof. 1. Since uvy — A, # 0, by (33) and (34), CYH(v)) = K[0](¢ + uvi — 1)1 @ K[0]¢1 =
VAE(y) @ WEH(vy).

2. Since pvi — A, = 0, then VH(v)) = K[0](¢ + uvi — 12)1 = K[0]¢1 = WEH(v). Then, by
(37) we have the short exact sequence in statement 2. O

If we identify the algebras C**# and C**~# via the isomorphism ¢ : C*# > C*7H, see (30),
then the isomorphism ¢ induces a C*#-module isomorphism ¢ : C*#(v;) — C*~#(-v,). Clearly,

((VA#On)) = WhH(=v) and (W) = WETH(=vy). (39)
The simple n-dimensional C**-module F;"*(v;): We assume that A, # 0. Let v; is a root
of the polynomial 72424, ie., V12 = —21,. There are two distinct roots of Z%+21;: v; and

—v; (since A; # 0). Let us consider the A;-module V(v)) := A1/A((Z — vi) = K[0]1, where 1 =
1+ A{(Z — vy). The Aj;-module V(v;) is simple and the set of elements {91 | i € N} is its K-basis.
In particular, V(v;) is a free K[d]-module of rank 1. Clearly,

Zl=w1 and Z0'1=v0'1-id"'1fori>1. (40)

We see that V(v;) = U;soker(Z — v;)™*! and ker(Z — v;)'*! = K[0],1, where K[d]<; = @}zOKa«f.
It is straightforward to show (using Proposition 3.3.(3)) that the action of the elements ¢ and 6 on
the basis elements of the Aj-module V(v;) are given below

¢1=0 and ¢d'1=-2iv0T+i(i—-1)o"'l,i>1, (41)

00'1 = 0,01 + n;0'1, i > 0, (42)

where 6; = v,(/,t —2(i + 1)) —Ayand n; == —(u—i)(i + 1). Since C** C A}, V(v)) is also a CHH-
module. The lemma below is a simplicity criterion for the C**-module V (v;). It shows that in case

when the C*#-module V(v;) is not simple, it contains a unique proper submodule which is a finite
dimensional simple C*#-module.

Lemma 3.6. Let A1 # 0 and vlz = —21y. Then the C**-module V(vy) is not simple if and only

if vitu—2n)— A, =0, i.e, 0,_1 =0, for some n € N,. In this case, F;""(v,) = EB?:_O] Kol is a
unique proper C*H-submodule of V(vi). The C**-module F,f’”(vl) is simple, dim F,f’”(vl) =n,
and (Z — v1)"F4#(v)) = 0.

Proof. If 6,1 # 0 for all n € N, then the CtH-module V(v)) is simple by (40) and (42). If
6,-1 = 0 for some n € N, then the number »n is unique and F,f "#(vy) is a simple, n-dimensional
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C*#-submodule of V(v)), by (40) and (42). By (40) and (42), the factor module (V(vl)/F,f’”(vl)
is a simple C**#-module and F,f’”(vl) is an essential submodule of V(v;). Therefore, F,f’”(vl) isa
unique proper submodule of the C*+#-module V (vy). O

Theorem 3.13 shows that the modules F,:l #(v1) and their ‘partners’ Gf,’” (v1) (f exist) are
precisely finite dimensional simple C*#-modules.
The next two corollaries describe the C#-module F,f "#(vy) in terms of the algebra C#.

Corollary 3.7. We keep the assumptions and notation of Lemma 3.6. Then
E(n) = CHHICY(Z =, 6, faid),
where f,f‘f‘] = H?:_Ol(ﬁ —ni)andn; = —(p — i)(i + 1). Furthermore, f,i’,f‘lF,;l’”(vl) =0.

Proof. The set {1,01,...,8" '} is a K-basis of the simple C*#-module F;"*(v;). By (40) and
(41), (Z — v)1 and ¢1 = 0. By (42), the matrix [§] of the linear map 8- : F,"*(v)) = F"*(v)), u —
6u, in the basis above is a lower diagonal n X n matrix given below where the diagonal elements are

10,M1s- - - ,NIn—1 and below the diagonal are elements 6,6, . . ,0,_2,
[70
Oo M1 0
[o]=]0 01 m : (43)
L 0 0 cor Ona Mn—1]

Then f;, j‘lF,f *#(y;) = 0. Therefore, the C+#-module F,"(v;) is an epimorphic image of the C*-#-
module V= CY#/CYH(Z = vy, ¢, fal). By (35), dim(V)=n = dim F;"*(v;). Therefore,
V =~ FH(y). o

By (35), VAH(v)) = CHH/CHH(Z — vy, ¢) = K[6]1. Using the defining relations of the algebra
C*# (Proposition 3.3.(1)) and induction on i, we obtain that

¢
z

0 and ¢0'1==2iv0 T+ - i1, (44)

1=
I=wl and Z6'1=v01-i0,0 T+, i>1, (45)

where 6; = v, (/J - 20 + 1)) — Ay (see (42)) and the three dots means smaller terms.
Simplicity criteria for the C**-modules V¥#(v|) and W*#(v;). The next proposition is a

simplicity criterion for the C*#-module V4#(v;). It also describes the submodules and factor
modules of VA&#(y)).

Proposition 3.8. Let 1, € K* and v12 = —22,. Then the C**-module V>*(v}) is not simple if
and only if n = %(u - i—f) € N, ifand only if 0,,_1 = 0 for some n € N,. In this case,

1. f,i‘,,”lV’l”‘(vl) is the only proper submodule of the C**-module V**(v) where f,’,l‘fll = H?;OI(O
—n)andn; = —(u—1i)(i + 1) (see Corollary 3.7).

2. F,{l’”(vl) ~ V’l’”(vl)/f,’,l”flV’l’”(vl) is the unique simple factor module of the C“F-module
VAA(yy), dim F2*(v)) = n, and K[0] N anngau(F;2H () = ,/,lj‘f'lK[G].

Proof. By Proposition 3.3.(1), the algebra C“# is generated by the elements Z and 6 (see
(26)). Any submodule U of V- is equal to fK[6]1 for a unique monic polynomial f € K[6]. The
submodule U = fK[6]1 of V*4# is a proper submodule if and only if f € K[A] \ K and Zf1 = v, f1,
by (45). Let n = deg,(f). Then necessarily 6,_; = 0, by (45), and the number n € N, is unique
with this property. So, the proper submodule U is unigue. Hence, the n-dimensional C*#-module
F, := V&£ fV4H is a unique proper factor module of the C*#-module V4-#. Now, the proposition
follows from Corollary 3.7. O
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The next corollary is a simplicity criterion for the C*#-module W*-#(v,). It also describes the
submodules and factor modules of W4 (vy).

Corollary 3.9. Let 11 € K* and vf = —2A,. Then

1. The C**-module WYH(vy) is isomorphic to the twisted by the isomorphism 1 : C¥* — CH=F
Ch~Fomodule VA H(=wy), i.e., WEH(v)) = VA H(=y)) = CHHICYH(Z = vi, ().
2. The C**-module WH(vy) is not simple if and only if m = %(—/1 + ;1—12) € N,. In this case,
(a) L(f,ﬁi:l;l)W’l’”(Vl) is the only proper submodule of the C**-module W**(v|) where
o = T175 0 = n)) and )= ~(=p = ) + 1),
() GEF(v)) = FrH(—y)) = ClH/CAH(Z - vl,L(¢),L(f:1::"f])) is the unique simple factor
module of the C**-module W*#(v,) and dim G,’}{”(vl) =m.
(©)  K[0] nannca (G (n) = o/ 7 JEIO) and (Z = v)" Gy () = 0.

Proof. 1. Statement 1 follows from (39) and (35).
2. Statement 2 follows from statement 1 and Proposition 3.8. O

Corollary 3.10. Let 1| € K* and v12 = =21,. If one of the C**-modules V¥H(vi) or WHH(vy) is
not simple, then the other is necessarily simple.

Proof. By Proposition 3.8, the C*#-module V*4#(v) is not simple if and only if %(,u - 1’}—12) €

N,. By Corollary 3.9.(2), the C*#-module W*#(v,) is not simple if and only if —1(u — f—]z) eN,.
Now, the result follows. O

Lemma 3.11. Let A € K*. Suppose that n = %(,u - f—f) € N,. Then

1. 0— F,fl’”(vl) — V(v) — q/(/ll)/F,:l’”(vl) ~ WAH(v)) — 0 is a short exact sequence of
CHH-modules and W*H(v,) is a simple C“*-module.
20 fuh V) = W),

Proof. 1. Let us show that the isomorphism makes sense. Clearly, V =V (/ll)/F,{l’” (v1) =
D,5, K01, where 1 =1+ F;"(v;). By (40) and (41), (Z-v)I =0 and 0= (¢ +2nv)I =
(¢ + pvi — )1 = (¢ + uZ — 1)1 = —u(p)1. So, V is an epimorphic image of W#(v;) (Corollary
3.9.(1)). Since n € N, we have m := %(—,u + 3—12) = —n ¢ N,, and so the C***-module WA”(v,) is
simple (Corollary 3.9.(2)). Hence, V ~ W*#(y,). Now, statement 1 follows.

2. Let f = f,f’ ,f’l We keep the notation of Proposition 3.8. Notice that (Z — v;)f1 = 0 since
degy((Z — vi)f1) < degy(f1) and (Z — v1)f1 € fK[O]1. By (44), degy((¢ + 2nv1) f1) < degy(f1) =
n, hence, (¢ +2nvy)f1 = 0 since (¢ + 2nv)f1 € fK[0]1. Using the equalities n = 3 (u — ’Vl—f) and
(Z = v1)f1 = 0, we obtain that «(¢) f1 = 0: (@) f1 = (¢ + uZ — ) f1 = (¢ + vy — ) f1 = (¢ +
2nv1)f1 = 0. By (36), there is an epimorphism W4H(v;) — fV*#(v). Since n € N,, the CHH-
module W*#(v,) is simple (Corollary 3.9.(2)). Hence, WHH(v)) = fVH(vy). m]

Simplicity criteria for the algebra C** where 1, # 0. The next theorem is a simplicity criterion
for the algebra C*# where 1 # 0.

Theorem 3.12. Let 1, € K" and V12 = —2A,. The following statements are equivalent.

CHH is a simple algebra.
The C*H-modules V'V (+vy) and WH(+vy) are simple.
Yt 32) ¢ 2\ {0},

There is no finite dimensional simple C**-module.

RN b~

Proof. 2 & 3 < 4. These implications follow from Proposition 3.8 and Corollary 3.9.
(1 = 4) This implication is obvious since dim C*# = co.
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(4 = 1) Since the localization C;Zﬁ - of the algebra C*# is isomorphic to the localiza-
1
tion Ay z2,,, of the Weyl algebra A, the algebra C;’Zﬁ 24, is simple. Therefore, any nonzero

ideal a of C** contains s for some i > 1 where s = Z? + 21,. Hence, the C*#-module C*#/a
contains a submodule, say M, which is an epimorphic image of the C*#-module C*#/CtHs ~
CHH(v)) ® CHH(—v)) since the C+#-modules V*#(+v) and WA#(+v) are faithful (Lemma 3.15),
the module M must be finite dimensional, by Proposition 3.8 and Corollary 3.9. O

Classification of simple finite dimensional C*“*-modules. The next theorem classifies the sim-
ple finite dimensional C*#-modules.

Theorem 3.13. Let 1, € K, n = %(,u - ‘/}_12)’ and m = %(,u + j—lz), where v12 +21; = 0. Then

{F#On), F*(=vi)}  ifn,m € N,
{E (), GEE(=v)Y  ifn,—m € N,
{GLE ), ExF(-v)}y  if —n,m € N,
{GEF (), GEF(=v)}y  if —n,—m € Ny,

CAH (fin. dim.) = { {F2#(n)} ifn e N,,+m ¢ N,,
(G5} if -n € N, xm ¢ N,
{Fn/i’”(—Vl)} iftn ¢ N.,m € N,
{Ghn (=)} if +n ¢ N,,—m € N,
0 if £n,+m ¢ N.

Proof. By Theorem 3.9, CA4-# (fin. dim.) = 0 if and only if +n,+m ¢ N,. Let V be a sim-
ple finite dimensional C*#-module. By Lemma 3.5, V is an epimorphic image of some of the
C*H-modules: V4#(+v,), WHH(+y,). Now, the equalities in the theorem follow from the descrip-
tion of factor modules of the modules V4#(+v,) (Proposition 3.8) and W*#(+v,) (Corollary 3.9). It
remains to show that in the first four cases the two modules are not isomorphic. This follows from
the fact that (Z — v))"F;"*(v1) = 0, (Z = v1)'G;"*(v1) = 0 and v; # 0 (since vi=-21; #0). ]

Semisimplicity of the category of finite dimensional C**-modules where 1| # 0. The next theo-
rem shows that the category of finite dimensional C*#-modules is semisimple provided A; # 0. As
a corollary, the annihilator of every simple finite dimensional C*#-module is an idempotent ideal.

Theorem 3.14. Let A, € K*. Then the category of finite dimensional C*F-modules is
semisimple.

Proof. The sets S(v) = {(Z - v,)" | i € N} and S(—v|) = {(Z + v;) | i € N} are Ore sets of the
algebra C+#. For a C*#-module V, we denote by tors(,,(V) = U;s1 kery(Z F vy)" its S(+vy)-
torsion submodule. To prove the theorem, we have to show that every short exact sequence of ChH-
modules 0 - F - M — F — 0 splits where F, F are simple finite dimensional CtH_modules.
Recall that every simple finite dimensional C*#-module is either S(v;)- or S(—v;)-torsion (but not
both). _

If F is S(vi)-torsion and F is S(—v;)-torsion, then F = torg, (M) and torg, (M) # O (since

(Z=v1)(Z +v1)"M =0 for some n > 1 and (Z — v;)'M # 0 for all i > 1). Therefore, tors(_,,(M)
~Fand M = torsq, (M) @ torg—, (M) ~ F @ F,as required.
_In view of Corollary 3.9.(2b) and Theorem 3.13, it suffices to consider the case when F =
F = F,f H(v)). Let 1 and 1 be the canonical generators of the modules F' and F, respectively, see
Lemma 3.6. We may assume that M = F @ F is a direct sum of vector spaces. By (41), ¢1 € F,
F = im(¢) @ ker(¢) and ker(¢) = K1. So, ¢1 = ¢(f1) + ¢ol for some f; € F and ¢, € K. So, replac-
ing the generator 1 by 1 — f;, we can assume that ¢1 = ¢1.
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(i) (Z —v))1 =0: By (40), v := (Z — v)1 € F. Relation (25) can be written as [¢,Z — v|] =
(Z +v)(Z —v)). Since (Z —v))¢1 = (Z — v))¢ol =0, we have ¢v = ¢(Z —v))1 = [¢,Z — w1 =
(Z+v)(Z—-v)DI=(Z+w), ie., (¢ —Z—v))v =0. By (40) and (41), the element ¢ — Z — v,
acts bijectively on the n-dimensional module F (since the linear map ¢ —Z — v, : F — F has
n = dim (F) distinct nonzero eigenvalues: —2v, —4vy,...,—2nv;). Therefore, v = 0.

(ii) ¢1 = 0: We have to show that ¢y = 0. By the statement (i) and (29), 0 = 8(Z + v|)(Z —
vl = 9(22 + 2201 = (¢ + pZ — 1)1 = po(¢ + pZ — /12)1 = po(uZ — 1)1 = o(uvi — A2)1 =y
vi(u — —2)1 = ¢ov12n1, by Proposition 3.8.(2). Hence, ¢o =

The theorem follows from the next statement. _

(iii) The C**-module M is isomorphic to the direct sum of C**-modules F @ F: By the
statements (i) and (ii), the elements 1 and 1 are K-linearly independent elements of M that are
annihilated by the elements Z — v; and ¢. By (35), V4#(v)) = CH#/CYH(Z — vy, ¢) = K[A]1. By
Proposition 3.8, the image, say F of the C*#-module homomorphism V4#(v)) — M, 1+ 1, is
isomorphic to the C**#-module FH (v1). Since the intersection of the kernels keer,,l(VI)(Z vi) N

ker a.u (Vl)(qb) is a 1-dimensional vector space, F N F’ = 0 (since the elements 1 and 1 are linearly
independent), i.e., M = F & F’, as required. O

Lemma 3.15. Let Ay € K* and v} = —=2A,. Then annga,.(V*#(v1)) = annea,u(WH#(v1)) = 0

Proof. Let V = VAH(y) and a := annca..(V). In view of (39), it suffices to show that a = 0. If
V is a simple C*#-module, then V =~ V(v;) (Lemma 3.6) is a simple module over the Weyl algebra
A,. The algebra A, is simple, hence 0 = anny (V(v1)) 2 a,ie,a =0.

If V is not a simple C*#-module, then it contains a nonzero submodule f,f, ,f‘l VA4H(vy) (Prop-
osition 3.8.(1)) which is isomorphic to the C*#-module W*#(v;) (Lemma 3.11.(2)). By Corollary
3.9.(2), the C*#-module W*#(v,) is simple, hence it is a faithful module, by Corollary 3.9.(1).
Therefore, V is also a faithful module. O

The prime spectrum of C** where A, # 0. The subalgebra ® := K(Z, ¢) of C*** is isomorphic
to the algebra ® = K[Z][¢; sdiz], where s = Z% + 21,. We have the inclusions of algebras

DCCY CA CDy=Cl* = Ay (46)
The next theorem together with the classification of finite dimensional simple C**-modules

(Theorem 3.13) describes Spec (CH).

Theorem 3.16. Ler A, € K*.

Spec (C*#) = {0, annga.u(M) | M € CA# (fin. dim.)}.

A
A, u\ {0} - ifC is simple,
Max (C ) - {{amlc/l,,u(M) | M € CAH (fin. dim.)}  if CY* is not simple.

Prim (C*#) = Spec (C*H).
Spec (C*#) = {0, annga.u(M) | M € CA+ (fin. dim.), dim M = 1}.

N b o~

Proof. 1. Let P be a nonzero prime ideal of C***#. We have to show that P is the annihilator of
a finite dimensional simple C*#-module. By (46), the algebra C’l # = A, 4 is a simple Noetherian
algebra. Hence, s’ € P for some i > 1. The left C*#-module C*#/P is an epimorphic image of the
C*#-module C*#/CA#si, By (31), forall j € N,

CLHsT [CUHH = CLHICHEs = CF(vy) @ CHF (=)

since K[Z]/s 2= K[Z]/(Z — vi) X K[Z]/(Z + v1) and v # —v; (since A; # 0). By Lemma 3.5, the
left C*#-module C*#/P has a finite ascending chain of submodules with factors, say Fi,. .., F,
each of them is an epimorphic image of one of the C#-modules: VA4#(xv,), WtH(+v;). Since
PF; =0 for all i = 1,... k, each factor F; must be a proper epimorphic image, by Lemma 3.15.
Since every proper epimorphic image of the modules V4#(+v;), WAH#(+vy) is a finite dimensional
simple C 4 _module, dim(C*#/P) < oo and all factors Fi,...,F; are finite dimensional simple
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C*tH-modules. Then a; - - - a; C P where a; = annca,.(F;). Hence, a; C P for some i, and so a; = P
(since a; is a maximal ideal of C*V#).

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statement 1 and Lemma 3.15.

4. Statement 4 follows from statement 1. ]

Proof of Theorem 2.11. Since U [/(Z) =~ U(sl,), the ideal (Z) is a completely prime ideal. Let
p € Spec (Z) where Z = Z(U) = K[Cy,C,]. The factor algebra Z[Z]/pZ[Z] ~ Z/p[Z] is a domain
and t = Z> + 2C; ¢ pZ[Z]. Hence, we have the inclusion
ziz1 _ zl1z,
pZ[Z] ~ »Z(Z]
Since C; ~ K[C},Cy, H] ® Ay, the factor algebra C,/pC; ~ K[C},(3]/p ® K[H] ® Ay, is a domain.
By Proposition 2.5 and the equality U, = C,[X*'; wx], we have the inclusion of algebras

C +
UpU C U /vU, = (é)[x‘l;wx]
t

and the last one is a domain. Hence, the ideal pU is a completely prime ideal. O

IV. CLASSIFICATION OF SIMPLE C*#-MODULES WHERE A £ 0

In this section, a classification of simple C**#-modules is given (Theorem 4.2 and Theorem 4.4)
where 11 # 0. The case when A; = 0 is treated in Section V. Despite the fact that the algebras C-#
are more complicated algebras comparing to the Weyl algebra A, their simple modules are closely
related.

As a corollary of Theorem 3.14 and Theorem 3.16, we obtain a classification of all the ideals of
the algebra C*“# provided A # 0.

Corollary 4.1. Let 11 € K*. Then

1. Every nonzero ideal I of the algebra C** is an annihilator of a finite dimensional C*H-
module. In particular, the factor algebra C**/1 is a finite dimensional semisimple algebra.

2. Allideals of the algebra C** commute (IJ = JI).

3. Allideals of the algebra C“* are idempotent ideals (I* = I).

4. Forall ideals I and J of the algebra C¥*, INJ = 1J.

5. Every nonzero ideal of the algebra C** is a unique product (up to permutation) of distinct
maximal ideals of C“¥. In particular, the number of ideals of C*** is at most 4.

6. Every ideal of the algebra C*** is a semiprime ideal.

Proof. If the algebra C*# is simple, then there is nothing to prove. So, we may assume
that the algebra C*# is not simple. Let P and Q be annihilators of simple finite dimensional
C*#-modules. By Theorem 3.14, P> = P and PQ = P N Q = QP. By Theorem 3.16.(1), all prime
ideals of the algebra C*# commute and are idempotent ideals. Let I be a nonzero ideal of C*#,
The algebra C# is Noetherian. So, the set min (/) of minimal primes over I is a finite set and
n' €I CngcCU for some i > 1, where 11 = Npemin (1P By Theorem 3.16.(1), every element
of min () is a maximal ideal of C*# of finite co-dimension. Hence, dim (C*#/n) < oo, and so
dim (C*#/n/) < oo for all j > 1 (since C** is a Noetherian algebra). Therefore, dim (C“#/I) < oco.
The finite dimensional algebra C*#/I is semisimple, by Theorem 3.14. This proves statement 1.
Hence, I = 1 = [] pemin (1) P- Now, statements 2—6 follows. O

Classification of simple C**-modules where A; # 0. The set Sy = {s' | i € N} (where s =
Z?% +22,) is an Ore set of the algebra C*# such that C;l’” = Ay, see (46). Then

CLi = CAH (S,-torsion) LI CA4H (Sg-torsionfree). 47)

Descriptions of these two sets are given by Theorem 4.2 and Theorem 4.4, respectively.



011701-17 V.V.Bavulaand T. Lu J. Math. Phys. 58, 011701 (2017)

The set CA:H (Sy-torsion) where s = Z> + 21, and A, # 0. Recall that +v; are the roots of the

polynomial Z2 + 21;. By Proposition 3.8 and Corollary 3.9.(2), each of the C*#-modules V()
and W4#(v;) admits a unique simple factor module denoted Vﬂ’#(vl) and Wﬂ’#(vl), respectively.
A2

Letn = %(,u - V_l) and m = %(—p + ;1—12) = —n. Then

VAR = V(vy) ifn g N,

() = W) = V(=) ifm ¢ N,
YWENER ) ifneN,

GEH(v) ifmeN,.

A1

Vv and W' (v) = { (48)

The next theorem is an explicit description of the set C4-# (Sg-torsion).

Theorem 4.2. Let A1 # 0, vi + 24, = 0, and s = Z* + 21;. Then

CH (S,-torsion) = (V" H (2v1), W (20)}
and the four modules in the bracket are not isomorphic unless

1. pv—A,=0, V/L”(Vl) = W/LF(VI),
—A.u A H
2. /l(—V1) - /lz = 0, \% (—V|) ~W (—Vl).

In particular, all four modules are isomorphic if and only if u = 0and 1, = 0.

Proof. Let M € m(Ss-torsion). Then M is a simple epimorphic image of the C*#-module
CHH|CUHs >~ CUH(y)) @ CHH(—vp) and vice versa. By Lemma 3.5.(1), M is a simple epimorphic im-
age of one of the C*#-modules VA#(xv), WA#(v,), and vice versa. Therefore, C-# (S,-torsion) =
{V/L”(ivl), WA’”(ivl)}. It remains to sort out when some of these four modules are isomorphic or
not. By Lemma 3.5.(2), statements 1 and 2 hold. Since Vﬂ’#(ivl) = U1 ker(Z ¥ v;)" and Wﬁ’”(ivl)
= U1 ker(Z ¥ v), the only possible isomorphisms are of the typeVﬂ’”(Vl) ~ W/L”(vl)orv/l’”(—vl)
~ W/l’”(—vl). To finish the proof of the theorem, it suffices to show that if V/L”(vl) ~ Wﬁ'”(vl) then
uvy — A = 0. So, suppose thatvl’”(vl) ~ W/L”(vl). By Corollary 3.10, if one of the modulesvﬂ’”(vl)
or W/L“(vl) is finite dimensional then the other is necessarily infinite dimensional. Since we as-
sume that the modules V/l’”(vl) and W/l’“(vl) are isomorphic, they must be both infinite dimen-
sional. Then V/l’”(vl) ~ VAH(y)) (Proposition 3.8) and Wﬂ’”(vl) ~ WAH(y)) (Corollary 3.9). By
Lemma 3.6, V4#(v)) = V(v)). Then, by (41), the set of eigenvalues of the K-linear map ¢ : V(v;) —
V(v1), v = ¢v, is Ev(¢) = —2Nv,. By Corollary 3.9.(1), WHH(v;) = ‘VA~H#(—y)). Since the C+H-
module W*#(vy) is simple and infinite dimensional, the C*~#-module V*~#(-v,) is so. Hence,
VA=K (=y)) = V(-v)), and so WHH(v) = “V(-v,). The action of the element ¢ on WH(v) is the
same as the action of the element «(¢) = —¢p + uZ + A, on V(-v;). By (40) and (41), Ev(«(¢)) =
u(=v1) + 1, — 2Ny, Therefore, if V4#(vy) ~ WHH(yy) then —2Nv; = Ev(¢) = Ev(i(¢)) = u(-v)) +
Ap — 2Ny, i.e., uv; — Ao = 0, as required. O

Let A be an algebra and M be an A-module. We denote by [4(M) the length of the A-module
M.

Theorem 4.3. Let 1, € K*. For each a € C**\ {0}, the C**-module C**/C**a has finite
length.

Proof. Recall that the algebra C“# is a Noetherian domain of Gelfand-Kirillov dimension
2 (Proposition 3.3.(3,5)). By Lemma 3.4, the algebra C**# is a somewhat commutative algebra.
Hence, GK (M) < 1 where M = C*#/C*#a. If GK (M) = 0 then the module M is finite dimen-
sional, and the result is obvious. It remains to consider the case when GK (M) = 1. Suppose that
the C*#-module has infinite length, we seek a contradiction. Then there is a descending chain of
submodules of M, M = My> M, D> --- > M; D M;;; D ---, with simple factors M; = M;/M;.,.
By the additivity of the multiplicity, there is a natural number n such that the factors M; are finite
dimensional for all i > n. Hence, the algebra C*# is not simple. Let I be the least nonzero ideal
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of C4#, By Corollary 4.1.(1), the algebra C := C*#/I is a semisimple finite dimensional algebra.
Let d = dim (C) and m be the number of generators of the C**#-module M. By Theorem 3.14, for
all i > n, the C**-module M, /M; is also a C-module. Hence, dim (M,,/M;) < md for all i > n, a
contradiction. O

The sets CA-# (S-torsion) and CA-# (S-torsionfree) where A1 # 0. The set S = K[Z] \ {0} is an
Ore set of the Weyl algebra A; and the algebra B; := S7'A; = K(Z)[0; %] is an Ore extension
where K(Z) is the field of rational functions in the variable Z. The algebra B is a left and right
principle ideal domain, i.e., every left/right ideal of Bj is generated by a single element. When K is
an algebraically closed field of characteristic zero, a classification of simple A;-modules was given
by Ref. 8 (see also Refs. 3 and 4 for an alternative approach),

A= E(S—torsion) U E(S-torsionfree),
E(S—torsion) ={[V(y)] |y € K} where V(y) = A1/A(Z - ),
E(S-torsionfree) = {[Mp = A/A; N B1b] | b € By is irreducible and good},

where the element b € B is called good if it satisfies the conditions of Ref. 8 [Theorem 1]. The set §
is also an Ore set of the algebra C*# and S™'C*+# = By. Then

CAn = CAH (S-torsion) LI CH-H(S-torsionfree).

Clearly, Ct-# (S;-torsion) € C4-# (S-torsion) since Ss C S.
Theorem 4.2 and Theorem 4.4 classify the set of simple C*#-modules where 1; # 0. Theorem
4.4 shows a close connection between the sets of simple C**#-modules and A;-modules.

Theorem 4.4. Let 1, € K* and S = K[Z]\ {0}. Suppose that K is an algebraically closed
field. Then

1. CA#(S-torsion) \ CH (S,-torsion) = Aj (S-torsion) \ {V(2v))} = {[V(P)] | y € K\ {2n}}.
where vi = V=243, Le., every simple S-torsion A\-module which is not isomorphic to V(£v)
is a simple S-torsion C***-module which is not Ss-torsion.

2. The map Z\I(S-torsionfree) — Chu(S-torsionfree), [M] - [socca.u(M)), is a bijection with
the inverse [N] — [soc4 (N;)].

3. Foreach[M] e 2\1 (S-torsionfree), i.e., M ~ My, .= A1/A| N B1b, where b is an irreducible and
good element of By, socca.u(Mp) = Ny i == CUH/CAH N Bibs™ foralli > 0.

Proof. 1. Notice that A; (S-torsion) = {lVM]ly €K} and A, (Ss-torsion) = {[V(£v1)]}

(i) A = A, (S-torsion) \ {[V(2v1)]} € C = CH# (S-torsion) \ CH# (S,-torsion): We have to
show that each A;-module V(y) where y € K\ {£v} is a simple C*#-module and that two
such modules are isomorphic as C*#-modules V(y) =~ V(y’) if and only if y = y’. Since V(y) =
Uisoker(Z —y) andy # +vi, themap s = Z2 +2v; = (Z = v{(Z + v1) : V() = V(y), v & sv is
a bijection. Therefore, V(y) = V(y),. Since Cf M = Ay, the C+#-module V(y) is simple. Clearly,
the C*#-modules V(y) and V(y’) (where y, y’ € K\ {+v,}) are isomorphic if and only if y = y".

(ii) A = C: Given [N] € C. Then N is a simple Cs’l’”—module, ie., N; is a simple K[Z],-
torsion A; s-module (since C;l’” = Ay ). Therefore, Ny = Ay /A1 s(Z —y) = V(y), for some y €
K\ {#v,}. Now, the statement (ii) follows from statement (i).

2. By Theorem 4.3, the map

—

C# (S-torsionfree) — C°* (S-torsionfree), [N] — [Ny]
is a bijection with the inverse [ Ny] + [socca,u(Ny)]. Similarly, the map
A (S-torsionfree) — :4’; (S-torsionfree), [M] +— [M;]

is a bijection with the inverse [M,] +— [soca,(My)]. Since Cs’l’” = A; 5, we have the inclusions
soccau(Mg) € M C M, for all M as above, and so socqa,u(M;) = socqa,u(M) and statement 2
follows.
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3. The C*+#-module M,, contains the C*>#-module N, :== C*#/C+#* N Byb = C+#1 (where 1 =
1 + C*# N Byb) which has finite length, by Theorem 4.3. The simple C*#-module L := soca..(Mp)
is an essential submodule of M,,. Hence, L C N,,. If L = N, then C*# = CYt#s' + CY# N Byb for all
i >0, and so
L=N. = ClHst + CYH N Bb N ClHgt N CLH

TP T T cakn b CAEsinBih CAHN Bibs

and we are done. If L C N, then the C*>#-module N, /L is S-torsion, and so there is a C**#-module
epimorphism f : Nj,/L — U, where U is a simple, S-torsion C**-module.

Claim: U is S,-torsion: If not then, by statement 1, U =~ V() for some y # +v;. Then V(y) =

V(y)y is simple C;**-module/A; ;-module since C;** = A, ,. There is a commutative diagram of
C*-H-homomorphisms,

= Nbs’i’

Np ———— Np s

} b

Ny/L —L5 V() = V(y),,

where g is an epimorphism. The C’l’“-module/Al,s-module Np,s is a nonzero one which is an
A s-submodule of the simple A -module M, . Hence, My, s = Np s =~ V(y),, a contradiction.
Therefore, U is S,-torsion.

By Theorem 4.3, the C*“-module N, has finite length. Therefore, the descending chain
{L; := C*F5'1 | i € N} of C*#-modules of N, stabilizes, say, at jth step: Ng=Log2 L; 2 ... 2
Lj = Lj+l =-..-.Foralli € N,

Lo~ CrHsi 4+ CLH N Bib
v CAH N Byb

By the claim and the choice of j, wehave L=L;=L; 1 =---,andso L ~ N, ; foralli > j, as
required. o

= Nbs_i'

Corollary 4.5. Let 11 € K* and vi = V-244. Then

The set C1-# (Sg-torsionfree) is a disjoint union of the sets in statements 1 and 2 of Theorem 4.4.
2. Foreachy € K\ {xv}, V(y) = CYH(y) == CHH/CHH(Z - ).

~

Proof. 1. Statement 1 follows from Theorem 4.4.

2. Since y # +v; and V(y) = U;soker(Z — y)', the map 5,4, := Z2+ 22, : V(y) > V(y), v —
(Z>+24,)v is a bijection. Hence, V(y) = V(y),. Similarly, since y # +v; and C*¥(y) = ;0
ker(Z —y)/, the map 54, = Z% + 24, : C*H(y) - C#(y), v > (Z*+22))v is a bijection. Hence,
CHH(y) = CPH(y)s = V(y)s = V(). o

V. CLASSIFICATION OF SIMPLE CA-#-MODULES WHERE A = 0

In this section, the following notation is fixed: 1 = —1,, C*# := C%~42# and CO* = COO~,
The simple C*#-modules were classified in Ref. 7 [Section 4]. In this section, we recall this clas-
sification. The cases when A, # 0 and A, = 0 are quite different. We assume that the field K is an
algebraically closed field of characteristic zero.

By Proposition 3.3, the algebra C*# = C®~12# is generated by the elements Z,6, and ¢ that
satisfy the defining relations,

[9.21= 2%, 6,21 = 26+ (u-2)Z + 4,
[0,0]=20Z + (- +2Z)u, 0Z° = (¢ + uZ + )¢,

and it is a subalgebra of the Weyl algebra A; via a monomorphism C** — Ay, Z +— Z, ¢ = hZ,
0+ A9 + (h + u)(h — 1). Furthermore, C*# C A, C A; z = Cp*.
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Classification of simple C**-modules where A # 0. The Weyl algebra A; is a subalgebra of
the skew Laurent polynomial algebra B = K(h)[Z,Z~'; o], where o-(h) = h — 1. The algebra B is
the localization S™'A; of the Weyl algebra A; at the (left and right) Ore set S := K[A]\ {0}. The
algebra B is a Euclidean ring with left and right division algorithms. In particular, the algebra B is
a principle left and right ideal domain. Each simple B-module is isomorphic to B/Bb where b is
an irreducible (indecomposable) element of B. B-modules B/Bb and B/Bc are isomorphic if and
only if the elements b and c are similar, i.e., there exists an element d € B such that 1 is the greatest
common right divisor of ¢ and d, and bd is their least common left multiple.

Leta,B8 € S = K[h] \ {0}. We write a < 8 if there are no roots A and yu of the polynomials «
and S, respectively, such that 4 — € N.

Definition, [Ref. 4]. An element b = 0™ 8,, + 0™ ' Bu_1 + - - - + By, where m > 0, B; € K[A]
and By, Bn # 0, is called normal if By < B,, and By < h.

For a simple A;-module M there are two options either S™'M = 0 or S™'M # 0. Accordingly,
we say that the simple module is K[]-torsion or K[h]-torsionfree, respectively.

Theorem 5.1. [Refs. 3and 4]. A; = A, (K[h]-torsion) U A, (K[h]-torsionfree) where

1. E(K[h]-torsion) ={A1/A1Z, A1/AD, A1JA1(h— A0) | O e K/Z\ {Z}} where Ao is any
fixed element of O = 1p + Z.

2. Each simple K[h]-torsionfree A-module is isomorphic to My := A;/A; N Bb for a normal,
irreducible element b. Simple Ai-modules M, and My are isomorphic if and only if the
elements b and b’ are similar.

The following theorem gives a classification of simple C*#-modules where A # 0. It shows
that there is a tight connection between the sets of simple C*#-modules and A;-modules. The
theorem gives an explicit construction for each simple C*#-module as a factor module C*#/I
where [ is a left maximal ideal of C*#. For a C*#-module M, we denote by [-1..(M) its length.

Theorem 5.2. [Ref. 7]. Let A € K* and u € K. Then

1. The map soc =Ss0Ccoau : A — Eﬂ, [M] - [socca.u(M)], is an injection, and CHH =
SOC(E) U {N*H}. Furthermore, o
(a) the map soc'/ : E(Z-torsionfree) — CLH (Z-torsionfree), [M] — [socca.u(M)), is a
bijection, but
(b) the map soc'" : A, (Z-torsion) = {A;/A;Z} —> CAH (Z-torsion) = {MAH#, N41Y, [A,/
A Z] — [M*H), is an injection which is not a bijection where M“H = CUH|CYH(Z, ¢)
and NYH = CHHICY(Z, ¢ + A). In particular, the simple CYF-modules M*“* and
N gre not isomorphic.
2. Foreach|[M] € E(K[h]—torsion), the C**-module M is simple, i.e., socca(M) = M.
3. Foreach [M] e E(K[h]—torsionfree), i.e, M =M, = A/A, N Bb, where b € B is as in The-
orem 5.1.(2), Ny :=CH*/C** N BbC M, and soccau(Mp) = soccau(Np) = Nyp-n for all
n> 0.

Classification of simple C%*-modules. The subalgebra R of the Weyl algebra A, which is gener-
ated by the elements Z and % is a skew polynomial algebra R = K[4][Z; o], where o(h) = h — 1.
The algebra R is a homogeneous subalgebra of the Z-graded algebra Ay, it is the non-negative part
of the Z-grading of A,. For all u € K, C** c R C A; and the subalgebra C%# of R is generated
by the elements Z,¢ = hZ and 6 = (h + u)(h — 1). Clearly, K[6] € K[Ak] and K[h] = K[0] & K[O]h.
The element Z is a normal element of the algebra R and (Z) = ®;51K[h]Z. The set S = K[A] \ {0}
is a (left and right) Ore set of the domain C%# and B := S~'C%* = K(h)[Z; o] is a skew polynomial
algebra where o(h) = h — 1. The algebra B is a principle (left and right) ideal domain. Let Irr(B) be
the set of irreducible elements of B.
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Theorem 5.3. [Ref. 7].

1. COK(Z-torsion) = {[M] € CO1 | (Z)M = 0} = COH/(Z) = {[CO**/CO*(6 - v,Z,4)] | v € K}.
The set E(E‘ (Z-torsion) contains precisely finite dimensional simple C%*-modules (all of them
are 1-dimensional).

2. E@‘(Z-torsionfree) = E(Z-torsionfree) = E(K[h]-torsionfree) = {[M,=R/RN Bb] | beIrr(B),
R=RZ+ RN Bb}.

The next theorem is a simplicity criterion for the algebra C* 124,

Theorem 5.4. [Ref. 7]. The algebra C%*>H is simple if and only if A, # 0.

VI. A CLASSIFICATION OF SIMPLE WEIGHT 2/-MODULES

In this section, a classification of simple weight U/ -modules is given. They are partitioned into
several classes that are dealt with separately (see the Introduction for details).

Weight U-modules. An U-module M is called a weight module if M = ®,cxM,, where
M,={me M| Hm= um}. An element u € K such that M, # 0 is called a weight of M. Let
Wt(M) be the set of all weights of the module M.

Verma module. Let a,B € K, we define the Verma modules M(a,B) = U/UH - a,Z -
B,E,X). Since the 4-dimensional space KH & KE @ KZ @ KX is a Lie subalgebra of ¢(3), the
U-module M(a,B) = K[F,Y]1 is a free K[F,Y]-module where 1 =1+ U(H - a,Z - B,E,X).
Then

M(a, B) = ) M(@. Bla-2n, Where M(@, B)a-2n = Ketuap(H — @ +2n) = CDEKFY"'T (49)
n=0 i=0

Hence, Wt(M(a, B)) = a — 2N and dim M (e, B)q—20 = n + 1 forall n > 0.

Proposition 6.1. 1. Wt(M(a/,ﬁ)) ={a-2n|neN} and dim M(a, B)q-2n = n+ 1 for all
neN.

M(a, B) =~ M(c', B’) if and only if (a, B) = (a’, B).

The Verma module M(«a, B) is a simple U -module if and only if B + 0.

4. If B # O thenanng (M(e, B)) = (C1 + 1 8%.Co — (@ + 2)B).

w

Proof. 1. Statement 1 follows from (49).
2. If the U-module M(a,B) and M(a’, B’) are isomorphic, then @ — 2N = Wt(M(a,ﬁ)) =

Wt(M(a’,,B’)) =a’-2N, ie., @« =a’—2n for some n €N, and 1 =dimM (e, 8), = dimM(c’,
Ba/—2n =n+ 1,1e.,n =0and @ = @’. The vector space M(«a, 8), = M(a, '), is one dimensional
and is Z-invariant. Hence, 8 = §'.

3. Suppose that 8 # 0 and N is a nonzero submodule of M(a, ). We have to show that
N contains the canonical generator 1 of the U -module M(a, B). Clearly, N = ®,_Na-20, Where
Ny_on = NN M(a,B)e—2n. Since N is nonzero, N,_», is nonzero for some n € N. Let 0 # v =
@i F'Y" 1 € Ny_sy,, where @; € K, @,, # 0 and 0 < m < n. Notice that (Z — p)™v = (=1)"m!
@, Y"1 € N, hence Y"1 € N. Then E -Y"1 = 2nu¥Y"'1, and so E"-Y"1 € K1, ie.,, 1 € N, as
required.

If B =0 then the Verma module M(«,0) is not a simple U/-module since the left ideal
U(H — a,Z,E,X) is properly contained in the left ideal J = U(H — o, Z,E,X,Y) = U(slr)(H —
a,E) +(Z) by Lemma 2.7.(1). This follows from the facts U/ = U(sly)/U(slp)(H — a,E) ~
K[F]1 and M(«a, B) ~ K[F,Y]1. This means that Y M(a, j3) is a proper submodule of M(«, 8).

4. Clearly, (Cl + %/12, C-(1+ 2)u) C ann(u(M(/l,p)). Then the equality holds since the ideal

(Cl + 1A C— (A + 2);1) is maximal, by (1). .

Dual Verma module. For a, B € K, we define the dual Verma module M*(«, 8) .= U /U(H - «,
Z — B,F,Y). Then M*(a, B) =~ ‘M(—a,—B), where ‘M(—a,— ) is the Verma U -module M(—-a,— )
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twisted by the automorphism ¢ of the algebra U. Notice that M*(a, B) = K[E, X]1 is a free K[E, X ]-
module where 1 =1+ U(H —a,Z — B,F,Y). Then

M*(a, ) = EB M*(, B)asan, Where M*(@, B)asan = @ KE X", (50)
n=0 i=0

We summarize the properties of the dual Verma module M*(«, ) in the following proposition.

Proposition 6.2. 1. Wt(M*(a,,B)) ={a +2n|n e N} and dim M*(a, B)q+2n = n + 1 for all
neN.

2. M*a,B) =~ M*(a’,B’)if and only if (a, B) = (a’, B').

The dual Verma module M*(a, B) is a simple U -module if and only if B # 0.

4. If B # O thenanng(M*(@.B)) = (C1 + 1 %.Co - (@ - 2)B).

w

Proof. The result follows from Proposition 6.1 since M*(a, 8) = ‘M(—a,—p). O

Classification of simple highest weight modules. Let V be a weight U/ -module. A weight vector
v €V is called a highest weight vector if Ev = 0 and Xv = 0. The U -module V is called a highest
weight module if V is generated by a highest weight vector. Clearly, the Verma modules M(a, ) are
highest weight modules. The following proposition gives a classification of simple highest weight
U-modules.

Proposition 6.3. Let V be a simple highest weight U-module. Then V is isomorphic to one of
the following modules:

1. the Verma modules M(a, B) where a € K and 8 € K*, or
2. the simple highest weight U(sl,)-modules.

Proof. Let v € V,, be a highest weight vector of V. Since V is a simple U -module, the central
element C, acts on V as a scalar, say A,. Then 4,0 = Cov = (a + 2)Zv.

If «a +2 # 0 then Zv = ’l+zv So, V is an ep1m0rph1c image of the Verma module M(«,
If A, # 0 then, by Proposition 6.1.(3), M(a/, —%) is a simple module and hence V =~ M(a ==
If 1, = 0 then V is isomorphic to a simple factor module of the Verma module M(«a,0). But then
anng(V) D (Z),1.e., V is a simple (highest weight) U(sl,)-module.

If @ + 2 = 0 then Cov = 0. The central element C; acts on V as a scalar, say A. Then Ao =C,V =
—1Z%. So, V is an epimorphic image of the U-module V(1) = U/URZ* + A,H + 2,E,X). If
A # 0 then V(2) has two largest submodules: V(+) = Uv* = K[F,Y]v*, where v* = (Z + V-22)1
and V(=) = Uv™ = K[F,Y]o~, where v~ = (Z — V-22)1 (where I = 1 + U($Z*> + A, H + 2, E,X)).
The two simple factor modules of V() are L(+) = V(1)/V(+) = U/U(Z + V-21,H + 2,E, X) ~
M(-2,—V-22) and L(-) = V(A)/V(=) = U/U(Z - N-21,H +2,E,X) ~ M(-2,V-21), respec-
tively. If A = 0 then V is isomorphic to a simple factor module of V(0) = U /U(Z* H + 2,E, X).
Then it is clear that V is a simple (highest weight) U(sl,)-module. O

<x+2

Classification of simple lowest weight modules. Let V be a weight U-module. A weight vec-
tor v € V is called a lowest weight vector if Fv =0 and Yv = 0. The U-module V is called a
lowest weight module if V is generated by a lowest weight vector. Clearly, the dual Verma modules
M*(a, B) are lowest weight modules. The following proposition gives a classification of simple
lowest weight U/ -modules.

Proposition 6.4. Let V be a simple lowest weight U-module. Then V is isomorphic to one of
the following modules:

1. the dual Verma modules M*(«, B) where @ € Kand 8 € K*, or
2. the simple lowest weight U(sly)-modules.

Proof. The result follows from Proposition 6.3 by applying the automorphism ¢, see (3). In
particular, M*(a, B) # M(a’, B’) for all ¢,a’ € K and B, B’ € K*, by Proposition 6.1.(1) and Propo-
sition 6.2.(1). O
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Simple weight modules with a finite dimensional weight space. First, we give an example
of simple weight U-module with infinite dimensional weight spaces. For «, 8 € K, we define
the left U-module S(a, B) = U/U(H — a,Z - B,X,Y). Then S(a, B) = ¥; jen KE'F/1, where 1 =
1+UH-a,Z-B,X,)Y).

Lemma 6.5. 1. The module S(a, B) is a simple U -module if and only if B # 0.
2. Wt(S(a/,,B)) = {a +2n | n € Z} and each weight space is infinite dimensional. Moreover,

__KE"™F1, ifn>0,
S(a, B)a+an = ietl R

_ KE'F'T', ifn< -1

ieN
3. If B # Othenanny(S(a,B)) = (Ci + 3 8%C2 - ap).
4. Let(a,B),(a’,B) € KxK* Then S(a, B) = S(a’, B’) ifand only if (a, B) = (a’, B').

Proof. 1. Suppose that 8 # 0 we prove that S(a, B) is a simple U -module. It suffices to prove
that for any nonzero element v = 37_, fi(E)F/1 € S(a, B), where f,(E) € K[E] and f.(E) # 0,
there exists some element u € U such that uv € K*1. By Lemma 2.6.(3), X - v = X_, f{(E)[X,F/]1
= Y fHEN=jFIT'Z + 5j(G = DF/2V)1 = 37, fi(E)(=j)BF/~'1. Hence, X" - v is a nonzero
element in K[E]1. Thus we may assume that v is a nonzero element in K[E]1 and then v can be
written as v = )", @;E'l, where @; € Kand @, # 0. Since Y - v = 37 a;[V,E']l = ¥ ai(-2)i B
E-'1, wehave Y" - v € K*1, as required.

If B = 0 then, by Lemma 2.7.(1), the left ideal U(H — @, Z,X,Y) = U(sly)(H — @) + (Z). Then
itis clear that S(@,0) ~ U(sl,)/U(sy)(H — @) is not a simple module.

2. The above argument also shows that S(e, 8) = @; jenKE'F/1. Hence, Wt(S(a, B)) = {a +
2n | n € Z}. The rest is clear.

3. Itis clear that (C; + %ﬁZ,CZ — aB) C anny/(S(a, B)), the equality holds since (C; + %ﬁz, C -
a ) is a maximal ideal of U, by (1).

4. Suppose that S(a, 8) =~ S(a’, B7). Then by statement 3, %,82 = %ﬁ’z and @8 = @’B’. The case
B = —p’is not possible, since, otherwise, both the elements Z — 8 and Z + S act locally nilpotently
on S(a, B). This implies that 8 = 0, a contradiction. So, 8 = B’ and then @ = . O

Let & be the set of simple weight U/ -modules with a finite dimensional weight space, and
9B be the set of simple highest weight and lowest weight modules. By Proposition 6.3 and Prop-
osition 6.4, 98 C F. The next proposition describes the modules of the set % \ %8. Recall that
A = 4FE + H? + 2H is the Casimir element of U(sly).

Proposition 6.6. LetV € F \ B. Then

Wt(V) ={a +2n | n € Z} for any @« € Wt(V) and dimV,, = dim V., foralln € Z.

annq(V) D (Z), i.e., V is a simple U(sl,)-module.

3. V=V(a,d)=U(slp)/UL)H - a,A— ), where A # (a +2i)(a+2i-2) for all icZ;
Via,y) = V(a',y)ifand onlyif A = A’ and a — a’ € 2Z and dim V4, = 1 foralln € Z.

N~

Proof. 1. Since V is a simple module, Wt(V) C {a@ +2n | n € Z} for any a € Wt(V). Sup-
pose that there exists @ € Wt(V) such that dimV, > dimV,, then the maps X : V, — V,,, and
E : V, — V,, are not injections. Then the elements X and E act locally nilpotently on V. Since
XE = EX, there exists a weight vector v € V such that Xv = Ev = 0. Then V is a highest weight
module, a contradiction. Similarly, if dimV,, < dimV,,, for some @ € Wt(V) then Y : V., = V,
and F : V,4p — V, are not injections. Then the elements Y and F act locally nilpotently on V. Since
YF = FY, there exists a weight vector v such that Fv = Yv = 0. Then V is a lowest weight module,
a contradiction. Therefore, dimV,, = dimVj for all @, 8 € Wt(V) and Wt(V) = {a + 2n | n € Z} for
any @ € Wt(V).

2. Since V is a simple U/ -module, in view of Lemma 2.7.(1), it suffices to show that there exists
a weight vector v € V such that Xv = Yv = Zv = 0.
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(i) There exists a weight vector v such that Xv = 0: Suppose this is not the case, then for all
a € Wt(V), the map X : V, — V,,2 is an injection and hence a bijection since all the weight spaces
of V are finite dimensional and of the same dimension by statement 1. Hence, X acts bijectively on
V,ie., V is a simple module over the localized algebra Ux. Notice that each weight space V,, of V is
a simple Cq/y,(H)-module then dim V,, = oo (since Cqyy(H) = K[C,C5, H] ® Ay, see Lemma 3.1), a
contradiction.

(1) There exists a weight vector v such that Yv = 0: the proof is similar to that of statement (i)
by noticing that Cq (H) = K[C},Cr, H] ® Ay, where A; = K(FY~!, Z) is the first Weyl algebra.

(iii) There exists a weight vector v such that Xv = Yv = Zv = 0: By statement (i) and state-
ment (ii), the elements X and Y act locally nilpotently on V. By statement 1, each weight space
V, of V is finite dimensional. Hence the map Z : V, — V,, has an eigenvector v € V,, with eigen-
value, say S, i.e., Zv = Bv. If B =0 then Z acts locally nilpotently on V. Since the elements
X,Y, and Z commute, there exists a weight vector v € V such that Xv = Yv = Zv = 0 and we are
done. Now, suppose that there exists a weight vector v’ € V such that Zv’ = Bv’ where B # 0,
we seek a contradiction. Then there exists a weight vector v € V, such that Xv =Yv =0 and
Zv = Bu, since X and Y act locally nilpotently on V. Then V is an epimorphic image of the
module S(a,B8) =U/U(H — a,Z — B5,X,Y). By Lemma 6.5.(1), S(, B) is a simple module and
hence V ~ S(a, §). But by Lemma 6.5.(2), each weight space of S(a, 8) is infinite dimensional, a
contradiction.

3. U(slp) is a GWA: U(sly) = K[A,H][E,F;0,a = i(A — H(H - 2))]. Now, the result follows
from Ref. 4 [Theorem 3.2] (the condition A # (@ + 2i)(a + 2i — 2) is a necessary and sufficient
condition that the -module V(a,y) belongs to the modules in statement 1 of
Ref. 4 [Theorem 3.2]). O

Let U/(sl\g) (weight) be the set of simple weight U(s];)-modules. The following theorem gives an
explicit description of the set % .

Theorem 6.7. F = {M(c,B) | a €K, B K} U {M*(e, B) | @ € K, B € K*} Ll U(sl,) (weight).

Proof. The theorem follows from Proposition 6.6.(2), Proposition 6.3, and Proposition 6.4. O
The following two corollaries follow from Theorem 6.7.

Corollary 6.8. (Finite-Infinite Dimension Dichotomy). Let M be a simple weight U-module.
Then all its weight spaces are either finite or infinite dimensional.

Corollary 6.9. U (fin. dim.) = U(sh) (fin. dim.).

Our aim is to classify all the simple weight U/-modules. Notice that the set U (weight) of
simple weight ¢/ -modules is a disjoint union of two subsets

Uu (weight) = u (weight, X-torsion) LI u (weight, X-torsionfree). 51

Simple weight X-torsion U-modules. Theorem 6.13 gives an explicit description of the set
U (weight, X-torsion) of simple weight X -torsion modules. It is clear that

U (weight, X-torsion) = U (weight, X-torsion, Y-torsion)
7 (weight, X-torsion, Y-torsionfree). (52)

The set U (weight, X-torsion, Y-torsion). The next proposition is an explicit description of the
set U (weight, X-torsion, Y-torsion).

Proposition 6.10. U (weight, X-torsion, Y-torsion) = {[S(e,B)] | e € K, € K*} U U/(sl\g)
(weight).

Proof. LetV € U (weight, X-torsion, Y-torsion). Then the elements X and ¥ act locally nilpo-
tently on the module V. Since XY = Y X, there is a weight vector v € V such that Xv = Yv = 0.
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Since V is a simple U -module, the central element C; acts on V as a scalar, say ;. Then
Aw =Cw = —%sz, ie., Z% = -2Av.If 1, = O then Z% = 0. We may assume that Zv = 0 (other-
wise, we can replace v by v’ = Zv). Now, Xv = Yv = Zv = 0 and hence (Z) C anng/(V), by Lemma
2.7.(1). So, V is a simple U(sl;)-module. If A # O then there is a weight vector v € V,, such that
Xv=Yv =0 and Zv = Bv for some B € K*. (In more detail, notice that (Z —v{)(Z +v))v =0
where v; = V=21, € K*. If (Z + v{)v = 0 then Zv = —vv, otherwise let v’ := (Z + v;)v then Zv’ =
viv’.) Thus V is an epimorphic image of the module S(a,3). We must have V =~ S(a, ) since
S(a, B) is a simple module by Lemma 6.5. O

The set U (weight, X -torsion, Y-torsionfree). For @, 8 € K and y € K*, we define the left U-
module X% .= U/U(H — a,Z — B,EY —y,X). Then X%PY = 3. | K[F]E'1 + K[F,Y]1, where
1=1+UH-a,Z- B,EY —y,X). Clearly, X*A7 is an X-torsion and Y-torsionfree weight U -
module.

Proposition 6.11. 1. If vy ¢ 2Z3 then X*BY is a simple U-module and X¥%PY = @i>l K[F]
Ele @, KIFIY'L

2. Ify ¢ 278 then Wt(X®PY) = {a + 2n | n € Z} and each weight space is infinite dimensional.

anng(X0PY) = (Cy + 3 8%,Co— vy — ap).

4. Let(a, B,y), (&, B,y € K3 such that y ¢ 2Z8 and y' ¢ 2Z3'. Then X*-PY =~ X*"B"Y' if and
only if (o', B’,v") = (a +2i, B,y — 2iB) for some i € Z.

“

Proof. 1. It suffices to show that for any nonzero element v € X5 there exists some element
u € U such that uv € K*1. Notice that v can be written as v = | g,(F)E'1 + hl, where g;(F) €
K[F] and h € K[F,Y]. By Lemma 2.6.(4), YE'1 = (E'Y = 2iE""'Z + 2i(i = 1)E'2X)1 = (y — 2i8)
E'"'1 and the coeflicient y — 2if # 0 since y ¢ 2ZS. If g,(F) # 0 then Yo = 37, g:(F)(y — 2iB)
E='T +Yh1. Hence, Y"v = P(F,Y)1 for some nonzero polynomial P(F,Y) € K[F,Y]. Therefore,
we may assume that v € K[F,Y]1 and v = i a;j(Y)F/1, where a;(Y) € K[Y] and a,(Y) # 0.
Notice that (Z — B)F/1 = —jYF/~'1. Then (Z - B)v = X7, a;(Y)(~ j)YF/='1. Hence, (Z — B)™v =
Q(Y)1 for some nonzero polynomial Q(Y) € K[Y]. Therefore, we may assume that v € K[Y]1 and
v= % ,cY'1, where ¢; € K and ¢ # 0. Since HY'T = (a - 2i)Y'1 for all i and the eigenvalues
{a=2i|i=0,...,k} are distinct. There exists a polynomial f(H) € K[H] such that f(H)v = Y*I.
Notice that EY¥T = (Y¥E + 2kY*~'Z)1 = (y + 2(k — 1) 3)Y*~'1 and the coefficient y + 2(k — 1) €
K* since y ¢ 2Zp. Then E¥Y*v € K*1, as required. The above argument also implies that X*-A-Y =
P, KIFIETe P, KIFIY'I.

2. Statement 2 follows from the last equality in statement 1.

3. Clearly, (C, + %,82, C>—y — af) C anng(X%P7). Then the equality holds since (C; + %ﬂz,
C, — v — af) is amaximal ideal of U, by (1).

4. (=) Notice that the element Z — f3 acts locally nilpotently on the module X%/, If X®A7 ~
XY then we must have 8 = B’. By statement 2, {a + 2i | i € Z} = Wt(X®FY) = Wt(XFY) =
{a’+2i|ieZ} Hence,a’ = a + 2i forsomei € Z. Then, by statement 3,y + a8 =y’ + a’'f, i.e.,
Y=y+@-a)B=y-2p. o

(<) Suppose that (', 8’,y’) = (a + 2i, B,y — 2if) for some i € Z. Let 1 and 1’ be the canon-
ical generators of the modules X*#¥ and X®"£"Y', respectively. If i < 0, then the map X®"#"Y" —
X®PY, 1"+ YV defines an isomorphism of U-modules with the inverse defined by 1 — ———
E"T" where gi(y, 8) = [1/,(y - 2jB) € K". If i > 0 then the map X@"#"" — X®57 1" E' de-
fines an isomorphism of Z/-modules with the inverse defined by 1 — inT’ where fi(y,8) =

ITioy (v +2G - DB) e K~ o

For any S8 € K, the subgroup 2Z(1,-8) of (K?,+) acts on K? in a obvious way. For each
(a,y) € K2, we denote by O(a,y) := (a,y) + 2Z(1,— ) the orbit of the element (a,y) € K? under
the action of the subgroup 27Z(1,—- ). Clearly, the set of all 2Z(1,—)-orbits can be identified with
the factor group K?/2Z(1,—- ). For each orbit O € K?/2Z(1,— ), we fix an element (@ g,v0) € O.

The next proposition is an explicit description of the set U (weight, X-torsion, Y-torsionfree).
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Proposition 6.12.

U (weight, X -torsion, Y -torsionfree) = {[M (,B)] | eK,Be K*}
U {[x*0FY0] | B € K.0 € K*/2Z(1,~f). Yo ¢ 223}

Proof. Clearly, the Verma modules M(a, ) € u (weight, X-torsion, Y -torsionfree). Now, let
Vel (weight, X-torsion, Y-torsionfree) and V is not isomorphic to a Verma module. We show
that V ~ X%A7 for some «, B,y € K where y ¢ 278.

(1) The module V is E-torsionfree: Otherwise, E acts locally nilpotently on V and there is a
nonzero weight vector v € V such that Ev = 0. Since V is X-torsion, X acts locally nilpotently on
V. There is a weight vector € V such that E5 = X9 = 0. Then V is a simple highest weight module
and hence, by Proposition 6.3, V is isomorphic to a Verma module (since V is Y-torsionfree), a
contradiction.

(ii) There exists a weight vector v € V,, such that Zv = Bv, EYv = yv and Xv = 0 where 8 €
K,y € K*: The element X acts locally nilpotently on V, in particular, there is a nonzero weight
vector v’ € V such that Xv’ = 0. The module V is a simple U-module, so, the central elements
C; and G, act on V as scalars, say A; and A,, respectively. Then A0’ = Civ’ = —%sz’, ie.,
Z%’ = =21,v". So, there is a weight vector v € V,, such that Zv = Sv and Xv = 0 (where 8 = v,
or —vy, vi = V=24, and 4; could be zero). Now, d,v = Cov = EYv + afv, i.e., EYv = yv, where
v = A — aB. It remains to show that vy # 0. The element w = Yv € V is nonzero, since V is
Y-torsionfree. If ¥y =0 then Ew = EYv = 0, contradicts to the fact that V is E-torsionfree (see
statement (i)).

(iii) y ¢ 2ZB: Suppose that y = 2i8 for some i € Z, we seek a contradiction. Then i # 0 and
B #0 since y e K*. If i >0 we set v’ = E'v. Then v’ € V is nonzero since V is E-torsionfree.
By Lemma 2.6.(4), Yo' = YE' = (E'Y = 2E"™'Z + 2i(i - )E"X )v = (y - 2if)E""'v = 0. This
contradicts to the fact that V is Y-torsionfree. If i < 0 we set v” = Y~*!p. Then v” € V is nonzero
since V is Y-torsionfree. But then Ev”’ = EY"*ly = (Y‘i+1E +2(—i + l)Y‘iZ)v =(y=2iB)Y v =
0. This contradicts to the fact that V is E-torsionfree, by statement (i).

By statement (ii), V is an epimorphic image of the U/-module ¥%5 where o, € K and
y € K*. By statement (iii) and Proposition 6.11.(1), X% is a simple U-module and hence,
V =~ X5 Finally, Proposition 6.1.(2) and Proposition 6.11.(4) complete the proof. O

The following theorem is an explicit description of the set U (weight, X-torsion).

Theorem 6.13.

U (weight, X-torsion) = {[S(a,,B)] |laeK,B e K*} u l@(weight)
U {[M(a.p)] | a e K. B ek} u {[x70F20] | g e K0 € K2/2Z(1,—B).y0 ¢ 2Z}.

Proof. The theorem follows from (52), Proposition 6.10, and Proposition 6.12. O

Now, our goal is to describe the set Uu (weight, X-torsionfree). This set can be partitioned
further into two disjoint union of subsets,
u (weight, X-torsionfree) = u (weight, X-torsionfree, Y-torsion)
uU (weight, X-torsionfree, Y-torsionfree). (53)
The set U (weight, X -torsionfree, Y-torsion). For ¢, 8 € K and y € K*, we define the left U-

module Y*#Y = U/UH - «,Z — B,FX —y,Y). Then Y*FY ~ 1X~%P=2 where ‘X~%B~2y
is the U-module X~* =2 twisted by the automorphism ¢ of U, see (3).

Proposition 6.14. 1. If y & ZB then Y P is a simple U-module.
2. Ify¢ZBthen WY *PY) = {a +2i|i € Z} and each weight space is infinite dimensional.
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3. anng(Y*FY) = (C1+ 3 8%C - aB +2y).
4. Let (a, B,y), (&', B',y") € K? such that y ¢ ZB and y’ ¢ Z'. Then Y P =~ Y*"B"Y if and
only if (&', B',vy") = (@ +2i, B,y +iB) for somei € Z.

Proof. The result follows from Proposition 6.11, since Y @AY ~ tX-@=5=2, i

For any S € K, the subgroup Z(2,) of (K?,+) acts on K? in an obvious way. For each
(a,y) € K%, we denote by O(a,y) = (a,y) + Z(2, B) the orbit of the element (a,y) € K? under the
action of the subgroup Z(2, B8). Clearly, the set of all Z(2, 8)-orbits can be identified with the factor
group K?/Z(2, B). For each orbit O € K?/Z(2, 8), we fix an element (@ ¢, y0) € O.

Proposition 6.15.

U (weight, X-torsionfree, Y -torsion) = {[M*(a/,ﬁ)] |laeK,B e K*}
L{[yeoPr0]| B e K,0 e K2/Z(2, B). 0 ¢ ZB}.

Proof. The result follows from Proposition 6.12 by applying the automorphism ¢. O
Theorem 6.16.

U (weight, Y -torsion) = {[S(a/,/i’)] laeK,B € K*} L U/(él\z) (weight)
U A{[M*(.P)] | @ € K, B e K} U {[y70P70] | B € K0 € KY/Z(2,B). 0 ¢ ZB}.

Proof. The theorem follows from Proposition 6.10 and Proposition 6.15, since Uu (weight,
Y-torsion) = U (weight, X-torsion, Y-torsion) L U (weight, X-torsionfree, Y-torsion). O

For 1,1, and @ € K, we define the left U/-module 342 = YUY /U(C; — A,,C, — 1», H —
a,Z).

Lemma 6.17. 1. If 11 € K* then the module 32 is a simple U-module.
2. If A € K* then Wt(312) = {@ + 2i | i € Z} and each weight space is infinite dimensional.
If 11 € K" then annw(S’“”lz"’) =(Ci— 11,C,— ).
4. Let (A1, A2,@), (1],4},a) e K" X KX K. Then 3z 3’13”1,2’“, if and only if (1],4},a’) =
(A1, A2, + 2i) for some i € Z.

w

Proof 1. Let 1=1+U(C; - 1,,C, — A2,H — a,Z) be the canonical generator of the mod-
ule 34122 Then 4,1 = C;1 = XY1 and 1,1 = C,1 = EY1 - 2FX1. So, 1,X1 = 1,E1 - 2F X1,
ie., E1 = A7'(2FX? + 1,X)1 since 4 is nonzero. Hence, 3412 = 3, K[F]X'1 + K[F,Y]1. To
prove that 3412 is a simple U-module, it suffices to prove that for any nonzero element v =

" ai(F)X'T+g(FY)l € 34422 where a;(F) € K[F] and g is a polynomial in K[F,Y], there
exists some element u € U such that uv € K*1. If a,,(F) # 0 then Yv = 37, a;(F)A4, X" 'T + Ygl.
Hence, Y"v = P1 where P is a nonzero polynomial in K[F,Y]. So, we may assume that v is a
nonzero element in K[F,Y]T and then v can be written as v = 3.7, b;(Y)F/1, where b;(Y) € K[Y].
If by(Y) # 0 then Zv = 37 b;(Y)ZF/1 = 37, b;i(Y)j(=Y)F/~'1. So, Z™v = Q1 where Q is a
nonzero polynomial in K[Y]. Now, we may assume that v is a nonzero element in K[Y]1 and v then
can be written as v = 3'!_ ;YT where ¢; € K and ¢; # 0. Since HY'1 = (a — 2i)Y'1 for all i and the
eigenvalues {@ —2i | i =0,...,l} are distinct. There exists a polynomial f(H) € K[H] such that
f(H)o =Y'T. Then X'Y'T = A!T € K*1, as required.

2. The proof of statement 1 implies that 3412 = @B, | K[F]1X'1 & @, ,K[F]Y'1. Then
statement 2 follows.

3. Clearly, (C; — 1;,C; — 15) C annq(3142?), Then the equality holds since (C; — A;,C, —
A) is a maximal ideal of U, by (1).
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4.1t is clear that if 34042@ ~ 311129 thep (A1, A, a’) = (A1, Ay, @ + 2i) for some i € Z. Now,
suppose that (4], 45,a") = (11, A2, + 2i) for some i € Z. Let 1’ and 1 be the canonical generators
of the modules 3142 and 311129 respectively. If i < 0 the map 34v42¢" — 3lede T/ ylil]
defines an isomorphism of U-modules. If i > 0 then the map 34-12¢" — 3W2 1/ ET de-
fines an isomorphism of ¢/ -modules. O

For any a € K, the subgroup 2Z of (K,+) acts on K in a obvious way. For each @ € K,
we denote by O(a) := a + 2Z the orbit of the element @ € K under the action of the subgroup
27Z. Clearly, the set of all 2Z-orbits can be identified with the factor group K/2Z. For each orbit
O € K/2Z, we fix an element ap € O.

Proposition 6.18.

U (weight, X-torsionfree, Y -torsionfree, Z-torsion) = {[31%2%0] | A, € K*, A, € K,0 € K/2Z}.

Proof. LetV € u (weight, X-torsionfree, Y-torsionfree, Z-torsion). Then there is a weight vec-
torv € V, suchthat Zv = 0. Since V is a simple U -module, the central elements C; and C; acton V as
scalars, say A; and A,, respectively. In particular, ;v = Cjv = XYv. This implies that 1, is nonzero
since V is an X and Y-torsionfree U -module. Therefore, V is an epimorphic image of the module
3442@ where A, € K*. By Lemma 6.17.(1), 34429 is a simple module and, so, V =~ 34142@ Then
Lemma 6.17.(4) completes the proof. O

The algebra U is a Noetherian domain. By Goldie’s Theorem, its left/right quotient ring
Q(U) is a division ring. Each non-zero element ¢ € Q(U) determines the inner automorphism
wg : Q(U) > Q(U), a — gag™". The inner automorphisms wx and wy preserve the subalgebra
C; = Cy(H), of Q(U),

wx : C - Cy, 9»—>9—22¢t‘1,¢|—>¢,H0—>H—2, Z— Z, Ci— Ci, C > C,
wy:C,—C, 0 0-2Zup)t™" =2, ¢ ¢-2Z, H>H+2, Z— Z, Ci - Cy, C, — Co.

In more detail, the action of wx on the elements ¢, H, Z, C;, and C, are obvious. Then the
element wx(0) is found by applying wyx to the equality (20) and using the equality wx(f) = t where
t=272+2C: wx(0) = wx(@) " = (¢+(H-2)Z - Cy)pt™ = 0117 = 2Z¢t™" = 6 - 2Z¢t™". The

1

equality «(X) = —%Y implies the equality wy = wxt: Wy = W_1, = W, (x) = WxL = Wwxt since
2

¢ =", Then the action of the automorphism wy on the canonical generators of the algebra C;
is obvious (by using wx). The automorphisms wyx and wy of the algebra C, = Z[H]| ® A, are
Z-automorphisms,

wx(@)=wx(¢pt™)=¢t7' =0, wx(Z)=Z wx(H)=H-2,
wy(@) = wy(pt ™) =0 -2Zt"", wy(Z)=Z, wy(H)=H+2.

In particular, the automorphism wx|c, is a K[C}, C;] ® A;-automorphism such that wx(H) = H — 2.
Clearly,

U, = C[X* 5 wx] = C[Y* wyl. (54)

The set U (weight, (X, Y)-torsionfree). Let M be a simple, weight (X,Y)-torsionfree U-module.
Then (Cy— A)M = (C; — 2)M =0 for some A, A; € K. The U-module M is a simple and
weight module, hence Wt (M) C u + 2Z = O(u) for some/any yu € K such that M, # 0. So, M =
@nez M,42,,. The U-module M is (X,Y)-torsionfree, i.e., the maps Xy, Yas : M — M are injec-
tions. Therefore,

Wt(M) = u+2Z (55)

since 0 # X"M,, € M, 4>, and 0 # Y"M,, € M,,_»,,. Since XY = %(Z2 +2C)) = %t eC and §; C
S € C, every weight component M, >, is a simple, S;-torsionfree C A2 module. The U-module
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M can be either S-torsion or, otherwise, S-torsionfree. Therefore, all the weight components of M
are either S-torsion or, otherwise, S-torsionfree (since S C C). So,

Uu (weight, (X, Y)-torsionfree) = U (1)) u U (2D, (56)
U ([1]) := U (weight, (X, Y)-torsionfree, S-torsion),
U ([2]) = U (weight, (X, Y)-torsionfree, S-torsionfree)

(since S; C S). The iimple, weight, (X,Y)-torsionfree U -module M = @n <7 M,i12,, belongs to u
([1]) (respectively, U ([2])) if and only if, for all n € Z, M,,4», € CH++2" (S-torsion, S;-torsionfree)

(respectively, M2, € CHH+21 (S-torsionfree)).

Recall that t = Z? + 2C) € C and its image in the algebra C*# is Z% +2,. The sets S; = {1’ |
i €N} and Sy, = {(Z*+2,)" | i € N} are Ore sets of the domains C and C*“#, respectively.
Abusing the notations we define

C -+ (S-torsion, S,-torsionfree) := C# (S-torsion, S2,,  -torsionfree).
For each A € K, the C*#-module

Ci(y) = CRHICHMZ —y) = | Jker(Z - y)'

i>1
is S-torsion and, for each element y’ € K such that y’ # v, the map (Z — y)- : CHH(y) = CHH(y),
m + (Z —y)m is a bijection. In particular, the C**-module C**(y) is 872,04, torsionfree if and
only if ¥* + 24, # 0. Clearly, for y,y’ € K, C¥#(y) = C*#(y’)ifand only if y = v".
The next lemma describes the elements of the set CA-# (S-torsion, S;-torsionfree).

Lemma 6.19. CA-# (S-torsion, S;-torsionfree) = {{CHH#(y)] | ¥ € K,¥* + 24, # 0} and CYH(y)
~ CYH(y) ifand only if y = y".

Proof. Since every module M € Ct-# (S-torsion, S;-torsionfree) is an epimorphic image of
C*#(y) for a (unique) y € K such that y*> + 24; # 0 and the C*#-module C*#(y) is S-torsion and
S;-torsionfree, it suffices to show that the C*#-module C#(y) is simple.

Since C*H(y) = ;s 1 ker(Z — y)', the map - : CHH(y) — CHH(y), ¢ + tc is a bijection (since
t=Z2+2C; and y% + 2C, # 0). Since C* =~ Ay, C*H(y) = CHH(y), = Ay, /A1 (Z - y) is a sim-
ple A ;-module, i.e., C+#(y) is a simple C**#-module, as required. i

For A1, A2, 4,y € K, let us consider the U/ -module

(1/1(/1,/1,7) = (I/[/(L{(Cl - /ll’C2_ /lZ’H - H»Z _7)
1
=U/UXY -2, - 572,6‘2 — A0, H — 1, Z —y).

The element 1 =1+ U(Cy - A,,Co — A2, H — 1,Z — ) is called the canonical generator of the
U-module U(A, p,y). The next theorem is an explicit description of the elements of the set U ([1]).

Theorem 6.20. U ([1]) = {[U(A, 1o,7)] | A1, A2y € K,¥2 +22; # 0 and O € K/2Z}, Wt(U
(A, 10,7)) = O = po + 2Z, and U-modules U (A, uo,y) and U, uor,y’) are isomorphic if and
only if O = O’ and (A,y) = (1',y’). Furthermore, the maps t-, Y-, X- : U(A, uo,y) = UL, 1o,y)
are bijections,

(L((/L ﬂ097) = (L((/L ﬂO’Y)t = @ Xn(l/((/l’ ﬂ077)ﬂ0 = @ Yn(l/((/L ﬂO’Y)MO

nez nez

= Py U no.7)uo ® D X U 10,7y

n>1 n>0
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A, u+2
cor

foralln € Z, U(A, no,¥)usan = U(A, 100, Y) ys+2nt is @ -module where u = uo and

U, 0.V psan = X" U, p10,Y)p = Y "U(A, 10,7 )
~ YA, po, ¥ = U@, 0¥y
& QAN CAHTIN 7 _ ) € CLun (S-torsion, S,-torsionfree)
= A/ A (Z = y) = AYJA(Z - y).
Furthermore,

X"(K[0] @ K[0]¢) 1. ifn >0,

Y"(K[6] @ K[0]g) 1, ifn <O, oD

%[(/l’ HO”}/)[I-%-Zn = {

where § = FE, ¢ = EY and 1 is the canonical generator of the U-module U(A, 1o, ).

Proof. Let M € U ([1]). We keep the notation as above. In particular, the elements C; — A
and C, — A, annihilate the module M, M = @HEZ M, .2, where each weight component M, 5,
belongs to the set CLus2n (S-torsion, S-torsionfree) where s = Z2 + 21;. By Lemma 6.19, M,0n =
Chr+n jchusn(z Yyu+2n) for some y,42, € Ksuch that yf”z” +22, #0. .

(1) ¥ =Yy = Yus2n for all n € Z: The multiplicative set T, := {(Z —y)' | i € Z} is an Ore set
of the domain U. The T,-torsion s'ubmodule of M is equal to torTy(M ) = @ (n<Zhyan=y) My, #0
since My40n = Uiz ker(Z — y2,)". The U-module M is simple, hence M = torr, (M), and so
y =7y, foralln € Z.

(ii) ¥2 + 24, # 0: This is obvious.

(iii) The map tp; : M — M, m — tm, is a bijection: For all n € Z, the map TMypion M, 2n —
M,42,, m — tm is a bijection, by the statement (ii) and the fact that M,,42, = [J;> ker(Z - ¥)}, and
the result follows.

(iv) The maps Xu, Yy are bijections and X;; = 2Yyt,,: This follows from the statement (iii)
and the equality XY =YX = %t.

WM=M=0, ,X"M,=D,_,Y"My, Myso, = X"M,, =~ @XM, and My 10, = Y "M,
o~ (“’Y)HM#: The statement (v) follows from the statement (iv) and the facts XM,,.0, © Myio(n+1)
and YM,H.Q,, c Mﬂ+2(n_1).

Notice that C;****" ~ A, ,. By the statement (iii), we have the following chain of C*-#+2n
isomorphisms:

C/l,,u+2n C/I,y+2n Al . Al
Chmi2n(Z —y) (C”"‘””(Z - 7))t CAZ-y) AZ-y)

By Proposition 3.3.(2), Ct#+21 |CAk+2n(7 — ) ~ (K[0] ® K[A]¢)1. Now, the equality (57) follows
from the statement (V). _

Given another module M’ € U ([1]) with the parameters A}, 4}, u’, and y’. Let O’ = O(¢') =
uw+27Z.

(vi) Then M =~ M’ if and only if 1= A,A,=A4,,0 =0, and y =y": Suppose that M =
M’. Then O = Wt(M) = Wi(M’) = O'. Clearly, 1| = 1| and A, = ). By the statement (i), M =
Uis1ker(Z —y)' and M’ = | J;»1 ker(Z — y’)". Hence, y = y’. The implication (<) follows from the
statements (iv) and (v).

In order to finish the proof of the theorem it suffices to prove the next statement.

(vil) M =~ U(A, i, y) (Where y> + 21, # 0): Let M’ := U(A, 1, ). By the very definition, M’ =
Uis1 ker(Z — y)', and so the map 75, is a bijection. Then also the maps X, and Yy are bijec-
tions and X;;, = 2Yyt;,,. Hence, M' =P, ., X "M, By the very definition of the module M’,
M/ = CY#[CYH(Z —y) = M, is asimple C*#-module. By the statement (v), M’ ~ M. m]

The set U ([2]). Clearly,
U= || w@ao, (58)

A1€K2,0€K/2Z
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where U ([2],2,0) contains [M] € U ([2]) such that (C; — )M = (C, — A1,)M =0 and Wt(M) =
0.

Let M e U ([2],2,0). Then the simple U-module M is an essential submodule of the ;-
module M,. Hence, M = socq/(M;). Clearly, M, = @MZX"M#’,, where = po, and M, ;00 =
X"M,,; for all n € Z. So, the simple U;-module M; is uniquely determined by the simple Ct’l H
module M, ;, and the last one is uniquely determined by its socle M = socc(M,, ), since My, ; =
socc(M,,):. So, the map

U ([2],4,0) — CHo (S-torsionfree), [M] > [M,,)] (59)
is an injection.

Proposition 6.21. The map (59) is a bijection.

___ Proof. Since the map (59) is an injection, in order to finish the proof it suffices, for a given [N] €
C.# (S-torsionfree), to construct a U-module [M] € U ([2],4,0) with M,,, =~ N. The induced U-
module U®cN is a weight module with Wt (UQcN) = O (since S, C S C C, and N is an S-tor-
sionfree C-module) and (U ®cN),,, = N. It is annihilated by the elements (C; — A1) and (C; — A2).
It contains the largest submodule, say L, with L N N = 0. The module L is the sum of all (weight)
submodules that do not meet N. The U/-module L is weight.

Claim. M .= URcN/L € u ([2],4,0) and M,, = N: By the very definition, the U/-module
M is simple, weight, M,,, = N and annihilated by the elements C; — 4 and C; — 4. The inclu-
sion N C N; yields the inclusion U®cN C U®cN; (since the algebra C is a direct summand
of the C-bimodule ). Since S C C, we have that 0 # ST'N C S~'M, hence the S~'%/-module
S~'M is simple and M € S™'M, and so M is an S-torsionfree U-module. In particular, M is an
S;-torsionfree module (since S; C S). Hence, M is an (X,Y)-torsionfree U/ -module since XY = 2¢.
Therefore, Wt (M) = po + 2Z = O. This finishes the proof of the claim and the proposition. O

An explicit construction of modules in the class u ([2],4,0). Let us consider the inverse map to
(59),

CLHo (S-torsionfree) — U ([2],1,0), [N]+ [M(1,0,N)]. (60)

In order to finish with classification of the modules in the class U/ ([2],1,0), we give an explicit
construction of them, i.e., we give a construction of the U/-module M(2,0, N) for each choice of N
(Lemma 6.22). By (54), the U,-module

Usc, N, = (CIX* wx])ec,N, = P XN,
nez
is simple and S-torsionfree. Hence, N € N; C U;®c,N;. The U-module U,®¢,N, contains the
U-module UN.

Lemma 6.22. M(A1,0,N) =~ UN as U-modules.

Proof. By the claim of the proof of Proposition 6.21, M(1,0,N) ~ M where M = URcN/L
and L is the largest submodule U ®cN such that L N N = 0. The kernel, say L’, of the obvious U-
homomorphism U®cN — UN € M = U,®c,N;, u ® n +— un, is contained in L. So, URcN/L’
~UN.

Claim. L’ = L: Suppose that L" # L, we seek a contradiction. Then 0 # L/L’ € UN, and so
(L/L"), = M = (UN),, by simplicity of the U;-module M. Hence,

7/[® N (L{®CN/L’
O¢N,§( T ):( )’zM/Mzo,
o (),
a contradiction. The proof of the claim is complete. By the claim, M ~ U N, as required. O

The next theorem is an explicit description of the elements of the set U ([2D-
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Theorem 6.23. U ([2]) = || cx2 oex2joz U ([2],4,0) and U ([2],4,0) = {[M(2,0,N)] | [N]
e CLHo (S-torsionfree)t and M(A, uo, N) =~ M(1,0,N’) ifand only if N =~ N

Proof. The theorem follows from (58), Proposition 6.21, and Lemma 6.22. O
Corollary 6.24. Inview of (56), Theorems 6.20 and 6.23 classify the modules in U ([2]).

Corollary 6.25. For each [M] € Uu (weight (X, Y)-torsionfree), annq (M) = (C; — 11,C, — 1)
for some 41,1, € K.

Proof. Clearly, a := anng;(M) 2 a’ := (C; — 11,C; — A3) for some A1, 4, € K. If (11, 4,) # (0,0)
then the ideal a’ is maximal (Theorem 1.1). Hence, a = a’. If (1;,4,) = (0,0) and a 2 a’ then
a2 (Z)=(X,Y,Z) (Theorem 1.1), a contradiction (since M is (X,Y)-torsionfree). Therefore,
a=a’ O

Proof of Corollary 2.10. We use Theorem 1.1 and (1). By Corollary 6.25, (Cy,C,) € Prim (U).
Then Prim () 2 Prim (U(sl,)) U Max (Z), by (1). Since U /(Z) ~ U(sl,) and Z(U(sly)) = K[A],
(Z) is not a primitive ideal of U . Now, the result follows from (1). O
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