
This is a repository copy of Movement, distribution and marine reserve use by an 
endangered migratory giant.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124115/

Version: Accepted Version

Article:

Reynolds, SD, Norman, BM, Beger, M et al. (2 more authors) (2017) Movement, 
distribution and marine reserve use by an endangered migratory giant. Diversity and 
Distributions, 23 (11). pp. 1268-1279. ISSN 1366-9516 

https://doi.org/10.1111/ddi.12618

© 2017 John Wiley & Sons Ltd. "This is the peer reviewed version of the following article: 
Reynolds SD, Norman BM, Beger M, Franklin CE, Dwyer RG. Movement, distribution and 
marine reserve use by an endangered migratory giant. Divers Distrib. 
2017;23:1268–1279., which has been published in final form at 
https://doi.org/10.1111/ddi.12618. This article may be used for non-commercial purposes in
accordance with Wiley Terms and Conditions for Self-Archiving.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Potential distribution and marine reserve use by an endangered 1 

migratory giant 2 

 3 

Samantha D. Reynolds
1,2

, Bradley M. Norman
2
, Maria Beger

3,4
, Craig E. Franklin

1
, Ross G. Dwyer

1 
4 

1 
School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia 5 

2
 ECOCEAN, 102/72 Marine Terrace, Fremantle, WA, 6160, Australia 6 

3
 ARC Centre of Excellence for Environmental Decisions, The School of Biological Sciences, The 7 

University of Queensland, St Lucia, QLD 4072, Australia 8 

4
 School of Biology, University of Leeds, Leeds, LS2 9JT, U.K. 9 

 10 

Authors’ email addresses: 
 

11 

samantha.reynolds1@uq.net.au 12 

brad@whaleshark.org 13 

m.beger@leeds.ac.uk    14 

 
c.franklin@uq.edu.au  15 

ross.dwyer@uq.edu.au  16 

 17 

Running title: Distribution and reserve use by whale sharks 18 

Corresponding author: Ross G. Dwyer 19 

Abstract word count: 294 20 

Word count: 5738 21 

Number of references: 72 22 

  23 

 24 

 25 

  26 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 

 

(A) ABSTRACT  27 

(B) Aim  28 

Understanding the spatial and temporal variation in the distribution of highly migratory species is 29 

critical for management and conservation efforts. However, challenges in observing mobile marine 30 

species throughout their migratory pathways can impede the identification of critical habitat, 31 

linkages between these habitats and threat-mitigation strategies. This study aimed to gain insight 32 

into the long-term residency and movement patterns of the whale shark (Rhincodon typus), and to 33 

reveal important habitat in the context of R. typus usage of existing Marine Protected Areas 34 

(MPAs). 35 

(B) Location  36 

South-eastern Indian Ocean. 37 

(B) Methods  38 

Satellite telemetry was used to remotely track the long-term movements 29 R. typus, and to 39 

quantify shark usage of the existing MPA network. From the tracking data and environmental 40 

predictors, non-linear models were developed to predict suitable R. typus habitat throughout the 41 

south-eastern Indian Ocean. 42 

 (B) Results  43 

This study includes the first documented complete return migrations by R. typus to Ningaloo 44 

Marine Park, which was found to be an important area for the species all year round. We found 45 

that while existing MPAs along Australia’s west coast do afford some protection to R. typus, 46 

telemetry-based habitat models revealed large areas of suitable habitat not currently protected, 47 

particularly along the Western Australian coast, in the Timor Sea, and in Indonesian and 48 

international waters. 49 

(B) Main conclusions  50 

Animal-borne telemetric devices allowed the gathering of long term spatial information from the 51 

elusive and highly mobile R. typus, revealing the spatial scale of their migration in the south-52 

eastern Indian Ocean. Suitable habitat was predicted to occur inside conservation areas, but our 53 
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findings indicate that the current MPA network may not sufficiently protect R. typus throughout 54 

the year.  We suggest that telemetry-based habitat models can be an important tool to inform 55 

conservation planning and spatial management efforts for migratory species.  56 

 (B) Keywords biotelemetry, generalised additive model, habitat suitability model, Marine 57 

Protected Areas, migration, potential distribution, satellite remote sensing, species distribution 58 

model, whale shark, Rhincodon typus 59 

 60 

(A) INTRODUCTION 61 

Knowledge of the broad-scale movements of migratory species is essential for conservation and 62 

management (Costa et al., 2012; Berumen et al., 2014; Ferreira et al., 2015). However, movement 63 

patterns and migration paths of marine species are often poorly understood, due to the logistical 64 

challenges of surveying these highly mobile and often elusive animals throughout such extensive 65 

and complex environments (Heupel et al., 2015; Hussey et al., 2015). This paucity of data can lead 66 

to gaps in the protection of critical habitats for species along entire migratory routes or 67 

throughout entire life cycles (Beger et al., 2010; Block et al., 2011; Runge et al., 2014; Beger et al., 68 

2015; Mazor et al., 2016; McGowan et al., 2016).  69 

One migratory marine species whose distribution and movement patterns are poorly understood 70 

is the world’s largest extant fish, the whale shark (Rhincodon typus). In 2016 the conservation 71 

status of R. typus was updated from ‘Vulnerable’ to ‘Endangered’ on the International Union for 72 

the Conservation of Nature’s (IUCN) Red List (Pierce & Norman, 2016), because of anthropogenic 73 

threats including targeted fishing (Li et al., 2012; Pierce & Norman, 2016), by-catch (Lascelles et 74 

al., 2014; Pierce & Norman, 2016), pollution (such as oil spills and plastics) (Lascelles et al., 2014), 75 

ship strike (Graham, 2007; Berumen et al., 2014; Pierce & Norman, 2016), and activities associated 76 

with oil and gas exploitation (Graham, 2007). Effective conservation of R. typus requires accurate 77 

information on their movements and distribution in order to understand their spatial and 78 

temporal exposure to these threats (Berumen et al., 2014). Whale sharks are known to aggregate 79 

at various coastal locations in the tropics in response to seasonal increases in productivity 80 

(Colman, 1997; Heyman et al., 2001; Nelson & Eckert, 2007; Motta et al., 2010). However, sighting 81 

records of R. typus are generally limited to coastal areas during aggregation periods, because of 82 

improved access to animals (Rowat & Brooks, 2012). Sightings outside these periods and in pelagic 83 
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waters are relatively rare (Rowat & Brooks, 2012; Sequeira et al., 2013). This paucity of 84 

information on long term movements and distributions of R. typus is hampering conservation 85 

efforts (Sequeira et al., 2013; Berumen et al., 2014). 86 

In the Indian Ocean, R. typus aggregate in some coastal areas, including Ningaloo Reef in Western 87 

Australia (WA) during the austral autumn/winter (Colman, 1997; Wilson et al., 2001; Norman & 88 

Stevens, 2007; Anderson et al., 2014; Norman et al., 2016). This aggregation supports a lucrative 89 

tourism industry (Catlin et al., 2010), and most sightings records come from the northern area of 90 

Ningaloo Reef in which the industry operates (Anderson et al., 2014; Norman et al., 2016). 91 

Although R. typus exhibit long distance movements away from this region (Wilson et al., 2005; 92 

Sleeman et al., 2010b; Norman et al., 2016), and genetic studies suggest that some degree of 93 

broad scale mixing of Indo-Pacific populations is occurring (Vignaud et al., 2014), movements 94 

outside this recognised aggregation period are relatively unknown (Norman et al., 2016).  95 

While at Ningaloo Reef, R. typus are protected by a network of State and Commonwealth marine 96 

preserves. Although Marine Protected Areas (MPAs) are widely recognised as a key tool in the 97 

conservation of marine biodiversity (Lester et al., 2009; Klein et al., 2015), their effectiveness in 98 

conserving migratory species has been questioned (Hays et al., 2014), and there is a lack of 99 

understanding of the extent to which existing protected areas cover the distributions of migratory 100 

species (Runge et al., 2015). The use of Australia’s network of MPAs by R. typus has never before 101 

been quantified, and it is unclear how much of their preferred or suitable habitat is protected. This 102 

is because other areas in the Indian Ocean that could be important habitat for R. typus have yet to 103 

be identified (Norman et al., 2016).  104 

Biotelemetry is a valuable tool for gathering spatial information, particularly for mobile marine 105 

species (Hussey et al., 2015). However, there has been a long-standing disconnect between animal 106 

migration ecology, and spatial conservation and management decision making (McGowan et al., 107 

2016; Beger et al., 2015).  Migratory animals tend to be ignored when planning MPAs, because 108 

large-scale migration data are difficult and expensive to obtain, may far exceed the spatial scale of 109 

planning, and spatial planning tools to incorporate animal telemetry are in their infancy 110 

(McGowan et al., 2016).  In addition, telemetry data are presence-only, limited by the number of 111 

animals tagged to adequately represent population patterns (Block et al., 2011; Mazor et al., 112 

2016). Spatial planning requires ecological information from the entire planning area to avoid 113 

biasing prioritisations towards areas where data exist. Species distribution models (SDMs) serve to 114 
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overcome this challenge by predicting suitable habitat for species for which distributions are 115 

unclear (Torres et al., 2015), and can give useful ecological insights (Elith & Leathwick, 2009). 116 

These models predict the potential distribution of a species based on statistical relationships 117 

between recorded occurrences and environmental predictor variables (Torres et al., 2015). Habitat 118 

selectivity models do this by identifying physical and environmental characteristics that influence 119 

known distributions of a species and finding other areas that share these characteristics (Raymond 120 

et al., 2015). 121 

This study aims to identify important areas for, and understand the movement ecology of R. typus 122 

through biotelemetry. The evaluation of the use of existing MPAs off Australia’s west coast by 123 

tagged R. typus will provide insight into how the species is protected by the existing network of 124 

Australia’s MPAs. Habitat selectivity modelling based on satellite-tracked movement data will help 125 

to reveal the potential distribution of R. typus throughout the south-eastern Indian Ocean. The 126 

techniques used could be applied to R. typus populations worldwide, as well as other mobile 127 

marine species, and to inform future management and conservation efforts.  128 

(A) METHODS 129 

(B) Study Area 130 

Ningaloo Reef is located on the west coast of the Cape Range Peninsula, WA (Fig. 1). It is entirely 131 

encompassed by the Ningaloo Marine Park, which lies within state waters and covers 132 

approximately 2633 km
2
. Adjacent to this is the Ningaloo Commonwealth Marine Reserve, which 133 

lies within Commonwealth waters and covers an area of 2435 km
2
 (Australian Government 134 

Department of the Environment and Energy, 2016) (Fig. 1b). For the purposes of this study, the 135 

“Ningaloo Marine Park (NMP)” was considered to include both the Ningaloo Commonwealth 136 

Marine Reserve and the Ningaloo Marine Park.  137 

The whale shark ecotourism industry at Ningaloo Reef operates during the austral autumn and 138 

winter, generally between March and July (Holmberg et al., 2009; Anderson et al., 2014; 139 

Government of Western Australia Department of Parks and Wildlife, 2014), sometimes extending 140 

into August and September (Government of Western Australia Department of Parks and Wildlife, 141 

2014).  142 

To investigate R. typus distribution patterns throughout the south-eastern Indian Ocean, the area 143 

of interest was defined by an area spanning 100
◦
 E - 130

◦
 E longitude, and from 0

◦
 (the equator) to 144 
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35
◦
 S latitude. This was based on areas utilised by tagged sharks in previous studies (Wilson et al., 145 

2005; Wilson et al., 2007; Sleeman et al., 2010b; Norman et al., 2016), and areas hypothesised as 146 

important feeding habitats for R. typus (Norman et al., 2016). A number of MPAs exist in this area, 147 

including Commonwealth marine reserves, in Commonwealth waters (between 3 nautical miles 148 

(nm) and 200 nm offshore), and those administered by the Western Australian State Government 149 

(between the coast and 3 nm offshore) (see Figure S1 in Supporting Information).  150 

 (B) Tagging and Tracking 151 

Spatial and temporal data were collected as part of an ongoing R. typus tagging programme 152 

coordinated by ECOCEAN at Ningaloo Reef. In 2010, one Wildlife Computers’ SPOT tag (Wildlife 153 

Computers Inc., WA, USA) and one Wildlife Computers’ SPLASH tag encased in a positively buoyant 154 

syntactic foam body tethered to a stainless steel dart by a 2 m wire were deployed on two sharks. 155 

The dart was inserted into the flank of the shark just below the first dorsal fin using a Woodie 1000 156 

speargun (Undersee Australia Pty. Ltd., Sydney, NSW). Tags deployed in 2012, 2013, 2014, and 157 

2015 were mounted on a negatively buoyant clamp and deployed on the upper leading edge of 158 

the shark’s first dorsal fin (see Norman et al., 2016). The one tag deployed in 2012 employed a 159 

galvanic time release mechanism on the clamp (Gleiss et al., 2009). Tags deployed in 2013 (n = 8), 160 

2014 (n = 2) and 2015 (n = 12) included a corrodible section of dissimilar metals on the clamp arm. 161 

To minimise impact, all tags were designed to release approximately six to twelve months from 162 

deployment. Before tagging, each shark was photographed according to standardised protocol 163 

and later identified in the Wildbook for Whale Sharks (Arzoumanian et al., 2005; Wildbook, 2016) 164 

(Table 1 and see www.whaleshark.org).  165 

Positional information for each tagged shark was obtained via the Argos CLS satellite network 166 

(Argos, 2016). This system calculates the location of the tag by using Doppler effect measurements 167 

from consecutive transmissions received by the satellites from the tag. Each location estimate is 168 

assigned a “location class”, indicating the degree of accuracy to which they are calculated. The 169 

detections of tagged sharks through time were mapped in ZoaTrack (www.zoatrack.org) (Dwyer et 170 

al., 2015) and erroneous detections (i.e. those occurring on land or those too distant from earlier 171 

or later more accurate detections to be biologically possible) were identified and excluded from 172 

further analyses. Estimates of the minimum distance travelled by each shark were generated using 173 

the Great Circle distance algorithm in ZoaTrack. 174 

(B) Use of Existing MPAs 175 
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To evaluate the use of existing MPAs by R. typus, boundary data of MPAs in the region were 176 

downloaded as shapefile objects from the Australian Government Department of the Environment 177 

and Energy website (https://www.environment.gov.au/land/nrs/science/capad). The number and 178 

proportion of detections from within each MPA and the Great Circle distance of each detection to 179 

the border of the closest MPA was calculated using the rgdal  (Bivand et al., 2016), sp (Pebesma & 180 

Bivand, 2005; Bivand et al., 2013), rgeos (Bivand & Rundel, 2016) and geosphere (Hijams, 2016a) 181 

packages in R (R Core Team, 2016). Usage of these areas during “whale shark season” (defined 182 

herein as March to August, i.e. the austral autumn and winter), and other times of year, “non-183 

whale shark season” (September to February, i.e. the austral spring and summer) were compared 184 

to assess temporal variability in the occupancy of the MPAs. 185 

(B) Habitat Selectivity Modelling 186 

The detections of the tagged sharks in this study represent presence information, but true 187 

absences (i.e. locations where animals could have visited but did not) were unknown. To generate 188 

absence data, randomised tracks were simulated following methods outlined by Wakefield et al. 189 

(2011) and Raymond et al. (2015). Here, the actual tracks were filtered, allowing the prediction of 190 

the simulated tracks back to a common time step of 24 hours. The error between the fixes was 191 

considered using the correlated random walk (rwalc) function in the RWalc package (Wotherspoon 192 

& Raymond, 2016) in R. Simulated tracks began at the same point as the actual track on which 193 

they were based, but proceeded randomly throughout the available marine environment 194 

(constrained by actual trip duration and travel speed), as if the animals were displaying no 195 

preference for any particular environmental conditions (Aarts et al., 2008; Raymond et al., 2015). 196 

From the track of each tagged shark, 10 simulated tracks were generated. The physical and 197 

environmental conditions at the detections along the actual tracks represent habitat used by the 198 

tagged sharks (utilised habitat), and those along the simulated tracks represent habitat that could 199 

potentially have been used by the tagged sharks but was not (available habitat) (Raymond et al., 200 

2015).   201 

In order to model the habitat preference of R. typus, physical and environmental information 202 

known to influence the abundance and distribution of R. typus (Sleeman et al., 2007; Rohner, 203 

2012; Sequeira et al., 2012; Sequeira et al., 2014) and other marine megafauna (Sleeman et al., 204 

2007; Raymond et al., 2015) were matched to the locations of detections on the actual and 205 

random tracks. Sea surface temperature (SST) and chlorophyll-a concentration (Chl) were sourced 206 
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from the National Oceanographic and Atmospheric Administration’s (NOAA) Environmental 207 

Research Division Data Access Program (ERDDAP) website. The xtractomatic package 208 

(Mendelssohn, 2015) in R was used to extract SST and Chl eight day composite data from the Polar 209 

Orbiting Environmental Satellites’ (POES) Advanced Very High Resolution Radiometer (AVHRR) and 210 

from the Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) respectively. 211 

The bathymetry values (i.e. the elevation of the sea floor) at the location of each detection were 212 

determined from the GEBCO_2014 30 arc-second grid (downloaded from The General Bathymetric 213 

Chart of the Oceans’ (GEBCO) website) using the raster package (Hijams, 2016b) in R.  214 

To explore non-linear relationships between the variables and the presence of R. typus, binomial 215 

generalised additive mixed-effects models (GAMMs) with the logistic link function were 216 

constructed using the mgcv package (Wood, 2011) in R. These models describe habitat use relative 217 

to habitat availability and are known as presence-background or habitat selectivity models 218 

(Wakefield et al., 2011; Raymond et al., 2015). This framework was chosen to account for the 219 

serial correlation of repeated detections from the same individuals and the covariation of 220 

environmental variables (Aarts et al., 2008; Raymond et al., 2015). The optimal amount of 221 

smoothing was determined by modelling the covariates with varying numbers of spline points (k) 222 

and comparing the Akaike information criterion (AIC) of each of the models. The model with the 223 

lowest AIC value (k = 3) was used. Individual identity (“ANIMALID”) was used as the random 224 

intercept. The following model was used, with some covariates log or square root transformed to 225 

meet model assumptions of homoscedasticity: 226 

�������� = 	� + 
�√���ℎ������� + 
����� + 
�������ℎ�� + ��� �!�" 

��� �!�"	~	��0, &'()*'+),- � 

This assumes that ANIMALID is normally distributed, with a mean 0 and variance &'()*'+),- . The 227 

full model is presented, without any prior model selection, because of the small number of non-228 

collinear covariates, as advocated by Zuur et al. (2012). 229 

Once constructed, models allowed the suitability of the habitat for R. typus to be predicted 230 

throughout the broader area of interest (i.e. the south-eastern Indian Ocean). Therefore, the 231 

physical and environmental variables were also extracted for the broader study area using the 232 

xtractomatic and raster packages in R (see Figure S2 in Supporting Information). Models were run 233 

with data on SST and Chl covering the full temporal extent of the actual tracking data (May 2010 234 
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to May 2016), averaged by month, and then divided into whale shark season and non-whale shark 235 

season. The relative suitability of the habitat in each raster cell was plotted to create distribution 236 

maps, showing areas in which R. typus could occur across the broader study area for the two time 237 

periods.  238 

Data from an additional four sharks tagged at Ningaloo Reef in April and August 2016 (using the 239 

methods described above for the 2015 tags) (Table 1) were used as an independent dataset to 240 

assess the model predictions using area under the curve (AUC) cross-validation statistics. AUC 241 

statistics were calculated from receiver operating characteristic (ROC) curves, using the inflection 242 

point to maximize the true positive rate while minimizing the false-positive rate (DeLong et al., 243 

1988). ROC curves and AUC statistics were calculated using the PresenceAbsence package in R 244 

(Freeman, 2008). The mean and standard deviation of the AUC values for each time period are 245 

reported. Boundaries of existing MPAs in the region and the locations of the detections from this 246 

independent dataset were overlayed on the distribution maps to determine spatial overlap. 247 

(A) RESULTS 248 

Tagged sharks (n = 25) were tracked for an average of 90.9 ± 13.7 days (mean ± SE), with the 249 

longest tag deployment lasting 261 days (Shark A-546) (Table 1). The average number of 250 

detections received from each shark was 103.4 ± 23.0 (mean ± SE), with 1.1 ± 0.2 (mean ± SE) 251 

detections per day. Tagged animals travelled an average total minimum (Great Circle) distance of 252 

2349.0 ± 310.1 km (mean ± SE) and an average minimum distance per day of 28.7 ± 2.7 km (mean 253 

± SE). The greatest distance travelled by one of the tagged sharks (Shark A-958) was 6157 km, 254 

which it covered in 260 days. The directions of the sharks’ movements were mostly to the north 255 

and north-east of NMP, however sharks also moved north-west and south, with one (A-633) 256 

travelling as far south as the Rottnest Trench (Fig. 1a). While being tracked, nine of the tagged 257 

sharks returned to NMP after travelling at least 300 km away from their tagging locations, at the 258 

northern end of Ningaloo Reef. These represent the first satellite-tracked homing movements of R. 259 

typus to NMP (Fig. 1a). Many sharks travelled considerable distances from NMP, with seven of the 260 

tagged sharks detected further than 1000 km away (Table 1). The maximum distance of any shark 261 

detection was from A-1041 (tagged on 29 July 2015), which travelled at least 1567.4 km from NMP 262 

to the south coast of Java, Indonesia (Fig. 1a and Table 1). Transmissions from A-1041 ceased in 263 

December 2015, while it was still in that area. However, photo-identification confirmed that A-264 

1041 was back at Ningaloo Reef on 21 April 2016 (Wildbook, 2016).  265 
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(B) Use of Existing MPAs 266 

Of the total number of detections received from all sharks (n = 2586), 41 % were from inside the 267 

boundaries of NMP. During non-whale shark season, 33 % of all detections were from inside NMP, 268 

with this figure rising to 50 % during whale shark season. The number of tagged sharks detected 269 

inside NMP and the distances individuals travelled away from the area varied throughout the year 270 

(Fig. 2). Of the total number of detections received from within NMP (n = 1061), those obtained 271 

during whale shark season (55 %) were concentrated throughout the northern extent of NMP (Fig. 272 

1b). Detections obtained during non-whale shark season were concentrated further south, in an 273 

area between Point Cloates and Coral Bay (Fig. 1b). Detections from this southern area of NMP 274 

were received from 12 out of the total 25 tagged sharks, with eight of these sharks utilising the 275 

area during September and/or October (Fig. 2a). All nine sharks that displayed homing movements 276 

to NMP returned to this southern area, with seven individuals first detected back in the area 277 

during September and October, one in November and one in January (Fig. 2b).  278 

Other MPAs distributed along Australia’s west coast were rarely used by tagged sharks, with only 3 279 

% of all detections transmitted from inside other MPAs (see Table S1 in Supporting Information). 280 

These detections were found in five out of a possible 15 MPAs in the region traversed by the 281 

tagged sharks. In total, 56 % of all detections from the 25 tagged sharks were from regions not 282 

currently protected by any existing MPA.  283 

(B) Habitat Preference 284 

GAMMs revealed non-linear relationships between the physical and environmental variables used 285 

in the models (bathymetry, SST, Chl), and the occurrence of R. typus (Fig. 3). All variables were 286 

found to be significant predictors of R. typus occurrence (p < 0.05). In contrast to the simulated 287 

tracks, tagged sharks preferred shallow, coastal waters, but were also found in very deep waters 288 

far from shore (Fig. 3a). Although tagged sharks travelled long distances and were detected in 289 

waters with depths of up to 6563 metres below sea level (mbsl), 56 % of all detections were from 290 

locations in coastal waters with depths of ≤ 200 mbsl. This apparent preference for shallow waters 291 

was even more marked in whale shark season, with 70 % of all detections during this period 292 

coming from locations where water depth was ≤ 200 mbsl. Tagged sharks also preferred warmer 293 

SSTs (Fig. 3b) and mid-range Chl concentrations, although most of the Chl concentrations at the 294 

detection points were low or mid-range, with few very high concentrations (Fig. 3c). Tagged sharks 295 

were found in waters where SSTs ranged from 20
◦
C to 31

◦
C, with most detections (72 %) occurring 296 
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where SSTs were between 23
◦
C and 28

◦
C. The average SST at all detection locations was 25.3 ± 297 

0.03
◦
C (mean ± SE).  298 

(B) Species Distribution Predictions  299 

The results from the habitat selectivity model were used to generate maps showing the relative 300 

suitability of habitat for R. typus across the area of interest in the south-eastern Indian Ocean (Fig. 301 

4). Areas of habitat with higher suitability were found in continental shelf waters along the 302 

Western Australian coast; close to the coastlines of the islands of Indonesia; and in coastal shelf 303 

waters in the Timor Sea. Model validation confirmed a strong predictive capacity of the GAMM. 304 

The average AUC values of the four additional sharks from the independent dataset used to assess 305 

the model predictions were 0.80 ± 0.11 (mean ± SD) during whale shark season and 0.87 ± 0.13 306 

(mean ± SD) during non-whale shark season. 307 

When the boundaries of existing MPAs were overlayed on the maps of predicted habitat suitability 308 

(Fig. 4), an area of high suitability was encapsulated by NMP during both whale shark and non-309 

whale shark seasons. Some areas of higher habitat suitability along the WA coast and in the Timor 310 

Sea are also covered by existing MPAs, such as the Dampier Commonwealth Marine Reserve, the 311 

Eighty Mile Beach Commonwealth Marine Reserve and the Kimberley Commonwealth Marine 312 

Reserve (see Fig. S1). However, there are other areas of higher suitability for R. typus along the 313 

WA coast that are not protected by any existing MPAs, such as around Dirk Hartog Island and to 314 

the east of Bernier and Dorre Islands, just north of Shark Bay, and the coastline around Port 315 

Hedland and between Onslow and Karratha. Areas around the Indonesian islands and in 316 

international waters that are predicted to have higher suitability for R. typus are likewise 317 

unprotected by any existing MPAs.  318 

(A) DISCUSSION 319 

The satellite tracks of 29 R. typus tagged in this study provide the first recorded homing 320 

movements of R. typus to NMP, revealing that some sharks migrated long distances away from 321 

NMP before returning to the area intra-annually. Using detection data from tagged sharks and 322 

habitat selectivity modelling, this study revealed NMP as an area of important habitat for R. typus, 323 

not only during the recognised whale shark season, but throughout the year. The southward shift 324 

in concentration of the detections within NMP during non-whale shark season discovered a 325 

pattern of previously unreported use of this area at this time of year. Whale sharks displayed a 326 
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preference for warmer, shallower waters, and moved across national boundaries into Indonesian 327 

and international waters, as well as along the WA coastline, into areas that are not covered by any 328 

existing MPAs.  329 

(B) Movement and Habitat Preference of Whale Sharks 330 

This study, the most extensive satellite telemetry study on R. typus conducted in Australia, has 331 

shown that sharks generally made relatively short forays away from Ningaloo Reef before 332 

returning to the area intra-annually (Fig. 1). Previous studies have suggested that sharks exhibit 333 

high individual fidelity to the Ningaloo Reef area during the austral autumn/winter, with 334 

individuals often resighted in the area over consecutive years (Holmberg et al., 2008; Holmberg et 335 

al., 2009; Anderson et al., 2014; Norman & Morgan, 2016; Norman et al., 2016). While these 336 

observations documented the usage by R. typus of areas accessed by tourism operators during the 337 

whale shark season, the movements and whereabouts of sharks between these resighting events 338 

remained unclear. Previous satellite tracking studies of R. typus showed movements of sharks to 339 

the north, north-east and north-west of Ningaloo Reef, however, no sharks were tracked returning 340 

to Ningaloo Reef (Wilson et al., 2005; Wilson et al., 2007; Sleeman et al., 2010b). Furthermore, as 341 

individuals in these studies were not recorded in the Wildbook for Whale Sharks, it remains 342 

unknown whether these individuals returned to the area. Although bi-annual circumnavigation of 343 

the Indian Ocean by R. typus has been suggested, based primarily on the timings of sightings at 344 

coastal locations around the ocean basin (Sequeira et al., 2013), our results do not support this. 345 

Indeed, despite over 7000 photo-identification records of individual sharks from 54 countries in 346 

the Wildbook for Whale Sharks, there have been no records that confirm long, ocean-basin scale 347 

migrations (Wildbook, 2016; Norman et al., in review). The results presented here add to the 348 

mounting evidence from around the world that R. typus display high site fidelity to coastal 349 

aggregation locations (Holmberg et al., 2009; Hueter et al., 2013; Berumen et al., 2014; Cagua et 350 

al., 2015; Norman et al., in review), and support the hypothesis that Ningaloo Reef is acting as a 351 

post-nursery conditioning area, a coastal location where juvenile R. typus gather to feed and 352 

mature (Norman et al., in review). 353 

Detections from tagged sharks in this study were received from within NMP throughout the year 354 

and the suitability of habitat in NMP for R. typus was relatively high in both whale shark and non-355 

whale shark season (Fig. 4). It has previously been suggested that R. typus could be year-round 356 

residents at coastal aggregation sites, with changes in behaviour, habitat use or poor 357 
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observational conditions/changes in survey effort making this residency cryptic outside the 358 

recognised aggregation period (Eckert & Stewart, 2001; Rowat & Brooks, 2012; Cagua et al., 2015). 359 

Whale sharks have been reported anecdotally and in the Wildbook for Whale Sharks at Ningaloo 360 

Reef outside the whale shark season (Norman et al., 2016; Wildbook, 2016), and the tracked 361 

sharks provide further evidence of this year-round use. This study found that, outside the whale 362 

shark season, the range of the sharks shifted southward within NMP (Fig. 1b). The evidence that R. 363 

typus are using NMP all year and using certain areas of it at different times of the year is important 364 

for the tourism industry and its management agency, the Western Australian Department of Parks 365 

and Wildlife. “Whale shark season” at Ningaloo Reef may reflect the lack of search effort by the 366 

tourism industry in the summer (because of reduced tourist numbers), rather than a lack of whale 367 

sharks. These findings also suggest that there is potential for tourism operators to extend their 368 

working season.  369 

Tagged sharks displayed a preference for shallower, warmer waters, but could also be found in 370 

very deep waters distant from any coastline (Fig. 3). While this and other studies (Wilson et al., 371 

2001; Sleeman et al., 2007; Sleeman et al., 2010a; Rohner, 2012; Sequeira et al., 2012) suggest 372 

that R. typus prefer certain habitat characteristics, it remains unclear what drives large scale 373 

migratory movements of R. typus. It has been shown that R. typus move independently of surface 374 

ocean currents (Sleeman et al., 2010b), perhaps responding to ephemeral changes in prey 375 

availability (Norman et al., 2016). As the tagging hardware is only able to acquire a location fix 376 

through air (and not through sea water), shark detections in this study were limited to occasions 377 

when the dorsal fin of the shark breaks the water surface and exposes the attached tag. As R. 378 

typus are usually observed swimming just below the ocean surface, it is generally rare for the 379 

dorsal fin to break the surface except during active surface feeding (Gleiss et al., 2013). It is 380 

therefore possible that many of the detections recorded from the tagged sharks represent such 381 

feeding events, and the environments at these locations are producing favourable feeding 382 

conditions. Whale sharks feed on zooplankton and Chl is often used as a proxy for this (because of 383 

the ease of Chl data collection via remote sensing and the lack of available zooplankton data) even 384 

though zooplankton biomass is only moderately related to Chl (Rohner, 2012). Despite this, Chl 385 

was still a significant predictor of R. typus presence in our model and our model performed well 386 

when assessed with an independent dataset. 387 

 Whale sharks may also come to the surface to thermoregulate, i.e. to bask in warm surface waters 388 

after time at depth in cooler waters (Thums et al., 2013). The sharks tagged in this study displayed 389 
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a preference for mid-range SSTs, from 23
◦
C to 28

◦
C, consistent with findings from other studies 390 

that R. typus prefer a narrow thermal range (Sequeira et al., 2012; Acuna-Marrero et al., 2014; 391 

Afonso et al., 2014). To better understand what is driving the movements of R. typus, behavioural 392 

data loggers (Gleiss et al., 2009) could be deployed in conjunction with satellite tracking, to 393 

elucidate the behaviour of sharks at specific locations. 394 

 (B) Threats and Conservation 395 

In Australian waters, R. typus are protected from targeted fishing under state and federal 396 

legislation (Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act); 397 

Conservation and Land Management Act 1984; and Wildlife Conservation Act 1950). Marine 398 

Protected Areas theoretically provide higher levels of protection, from anthropogenic threats such 399 

as shipping traffic. However, some zones of MPAs still allow commercial activities including fishing 400 

operations and mining exploration and leases (Australian Government Department of the 401 

Environment and Energy, 2016). Tagged sharks were rarely detected inside existing MPAs, apart 402 

from NMP, and there are large areas along the WA coast and in the Timor Sea in which R. typus 403 

were predicted to occur that are not covered by these existing MPAs (Fig. 4). The waters of north-404 

western Australia are the focus of extensive petroleum and natural gas extraction industries, with 405 

increases in shipping associated with these activities (Bejder et al., 2012; Pendoley et al., 2014). 406 

Recreational boating and fishing activities are also increasing, as north-western Australia and 407 

Ningaloo Reef draw increasing numbers of tourists (Pendoley et al., 2014; Tourism Western 408 

Australia, 2016). As R. typus tend to spend extended periods swimming just below the surface, 409 

they are highly vulnerable to ship and propeller strike (Rowat & Brooks, 2012). In order to ensure 410 

the protection of R. typus from such activities, there is a need for accurate knowledge of their 411 

occurrence and distribution. The areas traversed by the tagged sharks and predicted to be highly 412 

suitable for R. typus by the habitat selectivity model could be used to inform management of 413 

shipping lanes (Sequeira et al., 2012) and decision-making on mining leases and other commercial 414 

and recreational activities, in and outside of MPAs. While it is naïve to suggest that protection of R. 415 

typus should be the only consideration in planning MPAs, techniques used in this study could be 416 

applied to movement data from other migratory species that traverse the south-eastern Indian 417 

Ocean, to identify areas of important habitat for multiple species and inform future conservation 418 

priorities. While our study used data from animals tagged in only one location, existing movement 419 

data from R. typus tracking studies, and future tagging of R. typus in other locations around the 420 

south-eastern Indian Ocean and throughout their known range could be used to produce less 421 
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biased and more extensive predictions of the species’ distribution. The predicted suitable habitat 422 

for R. typus in Indonesian and international waters, and the visitation by some of the tracked 423 

sharks to such areas, also highlights the need for international co-operation in the protection of 424 

this endangered species.  425 

 (B) Conclusion 426 

The application of biotelemetry has provided insights into the movements of R. typus from 427 

Ningaloo Reef, and extended the spatial and temporal reach of our knowledge of R. typus 428 

occurrence throughout the south-eastern Indian Ocean. The techniques used in this study could 429 

be applied to other R. typus populations, other migratory marine species, and in multi-species 430 

studies, in order to better inform management and conservation. The findings of this study have 431 

improved the understanding of R. typus movements and potential distribution in the south-432 

eastern Indian Ocean and have implications for the ongoing conservation and management of this 433 

species. 434 
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(A) TABLES 

Table 1. Information from deployments of satellite-linked tags on whale sharks (Rhincodon typus), at Ningaloo Reef, Western Australia from 2010 – 2016.  

Shark ID Estimated 

length (m) 

Sex Date of tag 

deployment 

Date of last 

detection 

No. of days 

tracked 

Minimum distance 

travelled (km) 

No. of detections Maximum detected 

distance from NMP 

(km) 

A-958 5.0 Male 24/07/2015 9/04/2016 260 6156.99 226 1312.99 

A-1095 7.5 Male 24/07/2015 7/11/2015 106 5703.97 457 1248.26 

A-1041 4.5 NA 29/07/2015 14/12/2015 138 3690.05 162 1567.40 

A-1135 7.5 Female 18/07/2015 21/12/2015 156 3635.39 106 1289.38 

A-788 9.0 Female 28/07/2015 10/12/2015 135 3633.51 248 669.24 

A-1019 5.0 Female 24/07/2015 22/11/2015 121 3379.98 78 788.31 

A-919 5.5 Male 29/07/2015 1/11/2015 95 3278.13 163 1180.56 

A-633 5.0 Male 24/08/2013 14/03/2014 203 3213.95 77 845.99 

A-546* 7.0 Male 9/04/2013 25/12/2013 261 3159.90 403 312.78 

A-349 9.0 Female 3/08/2013 15/10/2013 74 3122.74 77 1349.65 

A-660ⱡ 6.0 Male 16/07/2010 20/09/2010 67 2571.28 37 985.47 

A-666* 6.5 Female 18/07/2015 29/09/2015 73 2247.80 57 880.79 

A-666* 5.5 Female 20/07/2013 5/10/2013 78 2226.72 51 612.04 

A-957 5.0 Male 22/07/2015 22/08/2015 31 2153.52 21 780.67 

A-683ⱡ 6.0 Male 16/07/2010 29/08/2010 45 1906.40 7 1282.34 

A-481 6.5 Female 7/07/2013 6/10/2013 92 1653.16 73 264.74 

A-013 9.0 Male 30/07/2015 12/10/2015 74 1621.16 63 462.22 
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Table 1. Continued 

Shark ID Estimated 

length (m) 

Sex Date of tag 

deployment 

Date of last 

detection 

No. of days 

tracked 

Minimum distance 

travelled (km) 

No. of 

detections 

Maximum detected 

distance from NMP 

(km) 

 

A-720 5.5 Male 21/08/2013 7/11/2013 79 1327.08 47 202.80 

A-843 8.0 NA 9/09/2012 21/10/2012 43 1181.62 33 210.46 

A-546* 7.5 Male 24/07/2015 10/09/2015 48 1065.97 89 377.13 

A-302 5.0 Male 21/06/2014 27/07/2014 37 576.63 38 218.53 

A-707 6.0 Male 24/07/2015 8/08/2015 15 522.79 19 331.83 

A-088 7.5 Female 21/06/2014 29/06/2014 9 357.86 19 70.17 

A-883 3.0 Male 10/04/2013 22/04/2013 13 227.84 22 # 

A-534 6.5 Male 16/06/2013 4/07/2013 19 110.36 13 # 

A-1249~ 10.0 Male 28/04/2016 7/09/2016 133 2877.28 210 NA 

A-1310~ 7.5 Male 05/08/2016 29/10/2016 86 1641.84 93 NA 

A-907~ 7.5 Male 05/08/2016 05/11/2016 93 1306.93 105 NA 

A-1312~ 5.0 Male 09/08/2016 14/11/2016 98 847.32 74 NA 

All tags deployed were satellite-linked SPOT tags (Wildlife Computers Inc., WA, USA), except for that deployed on A-683, which was a SPLASH tag 

(Wildlife Computers Inc., WA, USA). ⱡ indicates tags encased in positively buoyant foam and attached to the shark with a tether and dart into the 

flank. All other tags were attached to a negatively buoyant clamp and mounted on the first dorsal fin. Shark IDs were determined by photo-

identification in the Wildbook for Whale Sharks (Wildbook, 2016). * indicates sharks that were tagged in two different years. ~ indicates sharks that 

were tagged in 2016 and used as an independent dataset to validate the habitat suitability model predictions. Estimated lengths in metres are total 
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body lengths of the sharks estimated by an experienced researcher. Sex was determined from visual examination of the presence (male) or absence 

(female) of claspers. NA indicates information is not available. Date of last detection is the date on which the last reliable transmission was received 

from the tag. Minimum distance travelled is the Great Circle Distance of the straight line distance between successive detections. No. of detections is 

the number of reliable positional fixes received from each tag. Maximum detected distance from NMP is the distance of the furthest detection 

received from each tag from the closest point on the outer border of the Ningaloo Marine Park. # indicates that the shark was not detected outside 

Ningaloo Marine Park over the tracking period. 
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(A) FIGURE LEGENDS 

Figure 1 (a) The tracks of 25 whale sharks (Rhincodon typus) tagged with satellite-linked 

transmitters at Ningaloo Reef from 2010 – 2015. Each line represents the movement of an 

individual animal. Coloured lines represent the tracks of nine tagged sharks that returned to 

Ningaloo Reef after moving at least 300 km away from their tagging locations. Tracks represent 

the shortest route between successive detections from the tags. (b) The location of the 

Commonwealth Marine Reserve and State Marine Park at Ningaloo Reef, along the west coast of 

the Cape Range Peninsula, Western Australia. Circles represent detections of the 25 tagged sharks, 

separated according to season. 

Figure 2 (a) The total number of whale sharks (Rhincodon typus) that were detected via 

transmissions from satellite tags each month and, of those, the number that were detected from 

at least one location within the boundaries of Ningaloo Marine Park (NMP). (b) The distance of 

tagged R. typus from the closest point on the outer border of NMP over time. The sharks (n = 25) 

were tagged between 2010 and 2015, however distances are plotted by calendar month to show 

movements during whale shark season (WSS, March – August) and non-whale shark season (Non-

WSS, September – February). Lines represent individual sharks. 

 

Figure 3 The generalised additive mixed-effects model (GAMM) outputs, showing the effects of 

the covariates (a) bathymetry (bathy), (b) sea surface temperature (sst) and (c) Chlorophyll-a 

concentration (chl), on the scale of the link-function (y-axes). Dotted lines represent 95% 

confidence limits and the black lines show the mean population responses (i.e. the fixed effect). 

 

Figure 4 Maps showing the relative suitability of habitat for whale sharks (Rhincodon typus) in the 

south-eastern Indian Ocean during (a - b) whale shark season (March – August) and (c - d) non-

whale shark season (September – February). Existing Marine Protected Areas (State and 

Commonwealth) are outlined in black. Yellow circles represent locations from four whale sharks 

tracked via satellite telemetry during 2016 that were used to validate the habitat suitability model. 
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(A) SUPPORTING INFORMATION 

Table S1 Information on Marine Protected Areas utilised by 25 satellite-tracked whale sharks (Rhincodon typus), in the south-eastern Indian Ocean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marine Protected Area Zone utilised Number of detections Number of sharks 

Gascoyne, Commonwealth   

Marine Reserve 

Multiple-use zone (IUCN code VI) 57 11 

Marine National Park zone (IUCN code II) 1 1 

Shark Bay, Commonwealth   

Marine Reserve 
Multiple-use zone (IUCN code VI) 4 2 

Montebello, Commonwealth 

Marine Reserve 
Multiple-use zone (IUCN code VI) 2 

2 

 

Argo-Rowley Terrace, 

Commonwealth Marine Reserve 

Multiple-use zone (IUCN code VI) 5 2 

Marine National Park zone (IUCN code II) 9 1 

Muiron Islands Marine 

Management Area (State Waters) 
Marine Management Area (IUCN code VI) 1 1 

Ningaloo Commonwealth     

Marine Reserve 

and 

Western Australian Ningaloo 

Marine Park (State Waters) 

Recreational use zones (IUCN codes II and IV) 

 

 

All zones 

1061 25 
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