
This is a repository copy of The Epsilon Pattern Language.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/123979/

Version: Accepted Version

Proceedings Paper:
Kolovos, DImitris S. orcid.org/0000-0002-1724-6563 and Paige, Richard F. orcid.org/0000-
0002-1978-9852 (2017) The Epsilon Pattern Language. In: Proceedings - 2017 IEEE/ACM
9th International Workshop on Modelling in Software Engineering, MiSE 2017. 9th
IEEE/ACM International Workshop on Modelling in Software Engineering, MiSE 2017, 21-
22 May 2017 Institute of Electrical and Electronics Engineers Inc. , ARG , pp. 54-60.

https://doi.org/10.1109/MiSE.2017.8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The Epsilon Pattern Language

Dimitrios S. Kolovos and Richard F. Paige

Department of Computer Science, University of York,

Deramore Lane, York, YO10 5GH, UK.

{dimitris.kolovos, richard.paige}@york.ac.uk

Abstract—We present the Epsilon Pattern Language (EPL), a
textual language that supports expressing and detecting patterns
on models conforming to arbitrary metamodels and captured
using diverse modelling technologies. EPL provides out-of-the-
box integration with existing languages that target a wide range
of related model management activities (such as model validation,
model-to-model and model-to-text transformation), thus enabling
code reuse and seamless runtime interoperability across complex
Model-Driven Engineering workflows. We discuss the syntax
and semantics of EPL, its supporting development tools, and
demonstrate how instances of patterns detected using EPL can
be consumed and further processed by other model management
programs.

I. INTRODUCTION

Pattern matching is the activity of discovering sub-structures

of interest within more complex structures. In Model-Driven

Engineering (MDE), pattern matching refers to the process of

identifying sets of model elements that have certain proper-

ties and/or are connected in interesting ways for the model

management task (e.g. model transformation, validation) at

hand. Pattern matching is only one of the steps of a complex

model management process. For example, identified instances

of patterns can be validated, reduced internally to simpler

structures (through in-place transformation), or be used to

guide subsequent model-to-model and model-to-text transfor-

mations. Our review of existing pattern specification languages

for MDE indicates that although such languages often provide

in-place or model-to-model transformation capabilities, they

do not facilitate syntactic and runtime interoperability with

languages targeting model management tasks such as model

validation and model-to-text transformation, and that they are

typically limited to operate on models adhering to a particular

metamodelling architecture, such as the Eclipse Modeling

Framework.

This paper presents the Epsilon Pattern Language (EPL),

a language that supports specifying and detecting structural

patterns in models conforming to diverse metamodels and

captured using a range of modelling technologies. EPL builds

on the Epsilon platform [1] and provides out-of-the-box inte-

gration with existing languages and tools supporting a wide

variety of model management tasks such as model validation,

refactoring, comparison, merging, migration and model-to-

model and model-to-text transformation.

The rest of the paper is structured as follows. In section II

we discuss the limitations of existing MDE pattern matching

languages that have motivated this work. In section III we

discuss the syntax and semantics of EPL and in section IV we

demonstrate how identified patterns can be used in multi-step

MDE workflows. Section V concludes the paper and outlines

directions for future work.

II. BACKGROUND AND MOTIVATION

Several technical solutions have been proposed for the

problem of pattern matching in models. The majority of these

solutions take the form of tailored graphical or textual lan-

guages, through which patterns can be specified at a high level

of abstraction. Accompanying interpreters/compilers can then

match these pattern specifications against concrete models.

Examples of graphical pattern matching languages include

AGG [2] and EMF Tiger [3], while examples of textual

languages include GrGen.NET [4], VIATRA [5] and EMF-

IncQuery [6]. In [7], QVTr has also been used to express and

detect patterns in EMF models.

Pattern matching is often only one of the steps in a se-

quence of model management activities involved in an MDE

workflow. As such, languages for pattern matching should

ideally integrate seamlessly with languages that support other

model management tasks such as model validation, compari-

son, transformation etc. In our review of previous work, we

have identified that this is not the case; existing languages

for pattern matching typically provide only in-place and/or

model-to-model transformation capabilities, and in order to be

integrated with languages that support other MDE tasks such

as model validation and model-to-text transformation, bespoke

tool adapters need to be developed.

Another limitation of existing pattern matching languages

is that they typically target a specific modelling technology

(e.g. EMF) and/or model representation format. This renders

switching between different technologies or specifying and

detecting patterns that involve elements of heterogeneous mod-

els (e.g. an EMF model and an XML document) particularly

challenging.

The above limitations have motivated us to design and

implement a new pattern matching language, the Epsilon

Pattern Language, which (1) enables seamless runtime in-

teroperability and code reuse with languages supporting a

range of MDE model management tasks, and (2) provides

support for specifying patterns that involve elements of models

conforming to different modelling technologies. The following

section provides an overview of the platform on which the

proposed language has been built.

Fig. 1. Overview of the architecture of Epsilon

A. Epsilon

Epsilon [1] is a mature open-source family of interoper-

able languages for model management that can be used to

manage models of diverse metamodels and technologies. At

the core of Epsilon is the Epsilon Object Language (EOL)

[8], an OCL-based imperative language that provides support

for model modification, multiple model access, flow control

(loops, branches etc.), user interaction, profiling, and support

for transactions. Although EOL can be used as a general-

purpose model management language, its primary aim is

to be embedded as an expression language in hybrid task-

specific languages. Indeed, a number of task-specific lan-

guages have been implemented atop EOL, including languages

for model transformation (ETL), model comparison (ECL),

model merging (EML), model validation (EVL), model refac-

toring (EWL), model-to-text transformation (EGL) – and now

pattern matching (EPL) as illustrated in Figure 1.

B. The Epsilon Model Connectivity Layer

Epsilon takes a broad view on what a model is in order to

accommodate a wide range of modelling – and more generally,

structured data representation – technologies. To treat models

of different technologies in a uniform manner and to shield

the languages of the platform (and the developers of model

management programs) from the intricacies of underlying

technologies, Epsilon provides the Epsilon Model Connectiv-

ity (EMC) layer (illustrated at the lower part of Figure 1).

The core abstraction provided by EMC is the IModel

interface presented in Figure 2, which is a technology-agnostic

interface that encapsulates the minimal requirements that a

modelling technology needs to support in order to be supported

in Epsilon. There are currently several concrete implementa-

tions of IModel for interacting with EMF and MDR models,

XML documents [9], relational databases, spreadsheets and

commercial modelling tools such as MetaEdit+ and PTC’s

Integrity Modeller. This section briefly discusses how the

Epsilon interpreters interact with models through this interface,

as this is essential for explaining later on how the results of

pattern matching can be consumed by other Epsilon model

management programs.

allContents() : Object[*]
getAllOfKind(type:String) : Object[*]
getAllOfType(type:String) : Object[*]
owns(o:Object) : Boolean
isOfType(o:Object, type:String) : Boolean
isOfKind(o:Object, type:String) : Boolean
hasType(name:String) : Boolean
isInstantiable(type:String) : Boolean
...

IModel
name : String
alias : String[*]

ModelRepository

*models

invoke(value:Object)

IPropertySetter
object: Object
property: String

invoke(o:Object, property:String) : Object
IPropertyGetter

propertysetter propertygetter

Fig. 2. The IModel Interface of the Epsilon Model Connectivity layer of
Figure 1

Each Epsilon program (model-to-model/text transformation,

set of validation constraints etc.) is executed against a col-

lection of IModels through which it can query/modify their

underlying concrete models (EMF resources, MDR reposito-

ries, XML documents etc.). For example, the EOL program of

Figure 3 is executed against an in-memory model repository

containing two IModels, DB and CD which conform to differ-

ent metamodels and modelling technologies (EMF and MDR

respectively).

In order to evaluate the DB!Table.all expression, the EOL

interpreter searches the model repository for a model named

DB and when it finds it, it invokes its hasType(type:String)

method to check if Table is a valid type for that model.

If hasType() returns true then the interpreter invokes the

getAllOfKind(type:String) method of the model in order to

retrieve all the instances of Table in this model. In the next line,

in order to retrieve the value of the name property of t, it iter-

ates through all the models in the model repository to find the

one that owns t by calling the models’ owns(element:Object)

method. The owning model must then provide a property getter

for the element through its getPropertyGetter() method. The

returned IPropertyGetter is then responsible for returning the

value of the name property.

for (t in DB!Table.all) {
 t.name.println();
}

for (c in CD!Class.all) {
 c.name.println();
}

: ModelRepository

DB : EMFModel CD : MDRModel

IModel

EMFModel MDRModel

instance of instance of

Fig. 3. Example of EMC Runtime Binding

III. LANGUAGE SYNTAX AND SEMANTICS

Having introduced the main components of the Epsilon

platform that underpins the EPL in section II, this section

presents the abstract and concrete syntax of the language

as well as its execution semantics. The discussion of the

syntax and the semantics of the language revolves around an

exemplar pattern which is developed incrementally throughout

the section.

The aim of the pattern (which we will call PublicField)

is to identify quartets of <ClassDeclaration, FieldDeclaration,

MethodDeclaration, MethodDeclaration>, each representing a

field of a Java class for which appropriately named acces-

sor/getter (getX/isX) and mutator/setter (setX) methods are

defined by the class.

The exemplar pattern is matched against models extracted

from Java source code using tooling provided by the MoDisco1

project. MoDisco is an Eclipse project that provides a fine-

grained Ecore-based metamodel of the Java language as well

as tooling for extracting models that conform to this Java

metamodel from Java source code. A simplified view of the

relevant part of the MoDisco Java metamodel used in this

running example is presented in Figure 4.

name : String
ClassDeclaration

name : String
BodyDeclaration

bodyDeclarations
0..*

FieldDeclaration MethodDeclaration

name : String

VariableDeclaration
Fragment

fragments 1..*

Modifier

modifiers
*

TypeAccess

returnType
type

#none
#public
#protected
#private

VisibilityKind

visibility

Fig. 4. Simplified view of the MoDisco Java metamodel

1http://www.eclipse.org/MoDisco/

A. Syntax

The syntax of EPL is an extension of the syntax of the

EOL language [8], which – as discussed earlier – is the core

language of Epsilon. As such, any references to expression

and statement block in this section, refer to EOL expressions

and blocks of EOL statements respectively.

As illustrated in Figure 5, EPL patterns are organised in

modules. Each module contains a number of named patterns

and optionally, pre and post statement blocks that are executed

before and after the pattern matching process, and helper EOL

operations. EPL modules can import other EPL and EOL

modules to facilitate reuse and modularity.

iterative : Boolean
maxLoops : Integer

EPLModule

name : String
match : Expression [0..1]
onMatch: StatementBlock [0..1]
noMatch: StatementBlock [0..1]
do: StatementBlock [0..1]

Pattern

parts : String[1..*]
negative : Boolean
type : Type
guard: Expression [0..1]
active: Expression [0..1]
optional: Expression [0..1]

Role

roles 1..*

Domain

domain
0..1

patterns

Operation
(from EOL)

operations
0..*

0..*

StaticDomain DynamicDomain

imports

0..*

lowerBound : Integer
upperBound : Integer

Cardinality
cardinality

StatementBlock
(from EOL)

pre 0..*

post 0..*

Expression
(from EOL)

0..1 values

Fig. 5. Abstract Syntax of EPL

In its simplest form a pattern consists of a number of named

and typed roles and a match condition. For example, in lines

3-5, the PublicField pattern of Listing 1, defines four roles

(class, field, setter and getter). The match condition of the

pattern specifies that for a quartet to be a valid match, the

field, setter and getter must all belong to the class (lines 8-10),

and that the setter and getter methods must be appropriately

named2.

1 pattern PublicField

2 class : ClassDeclaration,

3 field : FieldDeclaration,

4 setter : MethodDeclaration,

5 getter : MethodDeclaration {

6

7 match :

8 class.bodyDeclarations.includes(field) and

9 class.bodyDeclarations.includes(setter) and

10 class.bodyDeclarations.includes(getter) and

11 setter.name = "set" + field.getName() and

12 (getter.name = "get" + field.getName() or

2To maintain the running example simple and concise, the pattern does
not check aspects such as matching/compatible parameter/return types in the
field, setter and getter but the reader should easily be able to envision how
this would be supported through additional clauses in the match condition.

13 getter.name = "is" + field.getName())

14 }

15

16 @cached

17 operation FieldDeclaration getName() {

18 return self.fragments.at(0).name.

19 firstToUpperCase();

20 }

Listing 1. First version of the PublicField pattern

The implementation of the PublicField pattern provided in

Listing 1 is functional but not particularly efficient as the

match condition needs to be evaluated #ClassDefinition ∗
#FieldDeclaration∗#MethodDeclaration2 times. To en-

able pattern developers to reduce the search space, each role

in an EPL pattern can specify a domain which is an EOL

expression that returns a collection of model elements from

which the role will draw values.

There are two types of domains in EPL: static domains

which are computed once for all applications of the pattern,

and which are not dependent on the bindings of other roles

of the pattern (denoted using the in keyword in terms of the

concrete syntax), and dynamic domains which are recomputed

every time the candidate values of the role are iterated, and

which are dependent on the bindings of other roles (denoted

using the from keyword). Beyond a domain, each role can also

specify a guard expression that further prunes unnecessary

evaluations of the match condition. Using dynamic domains

and guards, the PublicField pattern can be expressed in a more

efficient way, as illustrated in Listing 2. To further illustrate

the difference between dynamic and static domains, changing

from to in in line 4 would trigger a runtime exception as the

domain would become static and therefore not able to access

bindings of other roles (i.e. class).

1 pattern PublicField

2 class : ClassDeclaration,

3 field : FieldDeclaration

4 from: class.bodyDeclarations,

5 setter : MethodDeclaration

6 from: class.bodyDeclarations

7 guard: setter.name = "set" + field.getName(),

8 getter : MethodDeclaration

9 from: class.bodyDeclarations

10 guard : (getter.name = "get" + field.getName()

11 or getter.name = "is" + field.getName()) { }

Listing 2. Second version of the PublicField pattern using
domains and guards

The implementation of Listing 2 is significantly more

efficient than the previous implementation but can still be

improved by further reducing the number of name comparisons

of candidate setter and getter methods. To achieve this we can

employ memoisation: we create a map (dictionary) of method

names and methods once before pattern matching (line 2), and

use it to identify candidate setters and getters (lines 9 and 12-

14).

1 pre {

2 var methodMap = MethodDeclaration.all.mapBy(m|m.

name);

3 }

4 pattern PublicField

5 class : ClassDeclaration,

6 field : FieldDeclaration

7 from: class.bodyDeclarations,

8 setter : MethodDeclaration

9 from: getMethods("set" + field.getName())

10 guard: setter.abstractTypeDeclaration = class,

11 getter : MethodDeclaration

12 from: getMethods("get" + field.getName())

13 .includingAll(

14 getMethods("is" + field.getName())),

15 guard: getter.abstractTypeDeclaration = class

16 {}

17

18 operation getMethods(name : String) : Sequence(

MethodDeclaration) {

19 var methods = methodMap.get(name);

20 if (methods.isDefined()) return methods;

21 else return new Sequence;

22 }

Listing 3. Third version of the PublicField pattern

The sections below discuss the remainder of the syntax of

EPL.

1) Negative Roles: Pattern roles can be negated using the

no keyword. For instance, by adding the no keyword before

the setter role in line 8 of Listing 3, the pattern will match

fields that have getters but no setters (i.e. read-only fields).

2) Optional and Active Roles: Pattern roles can be des-

ignated as optional using the optional EOL expression. For

example, adding optional: true to the setter role would

also match all fields that only have a getter. By adding

optional: true to the setter role and optional:

setter.isDefined() to the getter role, the pattern would

match fields that have at least a setter or a getter. Roles can

be completely deactivated depending on the bindings of other

roles through the active construct. For example, if the pattern

developer prefers to specify separate roles for getX and isX

getters, with a preference over getX getters, the pattern can be

formulated as illustrated in Listing 4 so that if a getX getter

is found, no attempt is even made to match an isX getter.

1 pattern PublicField

2 class : ClassDeclaration,

3 field : FieldDeclaration ...,

4 setter : MethodDeclaration ...,

5 getGetter : MethodDeclaration ...,

6 isGetter: MethodDeclaration

7 ...

8 active: getGetter.isUndefined() {

9 }

Listing 4. Demonstration of Active Roles

3) Role Cardinality: The cardinality of a role (lower and

upper bound) can be defined in square brackets following the

type of the role. Roles that have a cardinality with an upper

bound > 1 are bound to the subset of elements from the

domain of the role which also satisfy the guard, if the size

of that subset is within the bounds of the role’s cardinality.

Listing 5 demonstrates the ClassAndPrivateFields pattern that

detects instances of classes and all their private fields. If the

cardinality of the field role in line 3 was [1..3] instead of [*],

the pattern would only detect classes that own 1 to 3 private

fields.

1 pattern ClassAndPrivateFields

2 class : ClassDeclaration,

3 field : FieldDeclaration[*]

4 from: class.bodyDeclarations

5 guard: field.getVisibility() =

6 VisibilityKind#private {

7

8 onmatch {

9 var message : String;

10 message = class.name + " matches";

11 message.println();

12 }

13

14 do {

15 // More actions here

16 }

17

18 nomatch : (class.name + " does not match").

println()

19 }

20 operation FieldDeclaration getVisibility() {

21 if (self.modifier.isDefined()) {

22 return self.modifier.visibility; }

23 else {

24 return null;

25 }

26 }

Listing 5. Demonstration of Role Cardinality

B. Execution Semantics

When an EPL module is executed, all of its pre statement

blocks are first executed in order to define and initialise

any global variables needed (e.g. the methodMap variable

in Listing 3) or to print diagnostic messages to the user.

Subsequently, patterns are executed in the order in which they

appear. For each pattern, all combinations that conform to the

type and constraints of the roles of the pattern are iterated,

and the validity of each combination is evaluated in the match

statement block of the pattern. In the absence of a match block,

every combination that satisfies the constraints of the roles of

the pattern is accepted as a valid instance of the pattern.

Immediately after every successful match, the optional

onmatch statement block of the pattern is invoked (see lines 8-

12 of Listing 5) and after every unsuccessful matching attempt,

for combinations which however satisfy the constraints speci-

fied by the roles of the pattern, the optional nomatch statement

block of the pattern (line 18) is executed . When matching of

all patterns is complete, the do part (line 14) of each successful

match is executed. In the do part, developers can modify

the involved models (e.g to perform in-place transformation),

without the risk of concurrent collection modification errors

(which can occur if elements are created/deleted during pattern

matching). After pattern matching has been completed, the

post statement blocks of the module are executed in order to

perform any necessary finalisation actions.

An EPL module can be executed in a one-off or iterative

mode. In the one-off mode, patterns are only evaluated once,

while in the iterative mode, the process is repeated until no

more matches have been found or until the maximum number

of iterations (specified by the developer) has been reached. The

iterative mode is particularly suitable for patterns that perform

reduction of the models they are evaluated against.

IV. IMPLEMENTATION

Having discussed the syntax and semantics of EPL, in

this section we briefly discuss the development tools of

the language and demonstrate how pattern matching can be

seamlessly combined with other MDE tasks, such as model

validation and transformation.

A. Development Tools

EPL is supported by Eclipse-based development tools in-

cluding a syntax-aware editor, a debugger built atop the

Eclipse Platform debug framework, and tool-support for fine-

grained profiling of the execution of EPL patterns. Figure 6

provides a screenshot of a subset of the EPL development

tools which are available as part of the Epsilon distributions

(eclipse.org/epsilon/download).

B. Pattern Matching Output

The output of the execution of an EPL module is a col-

lection of matches encapsulated in a PatternMatchModel, as

illustrated in Figure 7. PatternMatchModel implements the

IModel interface discussed earlier, and as such its instances

can be accessed from other programs expressed in languages

of the Epsilon family.

Pattern

(from EPL) bindings : Map<String,
Object>

Match

getAllOfType(type:String) : Object[*]
getAllOfKind(type:String) : Object[*]
isOfType(element: Object, type:String) : boolean
isOfKind(element: Object, type:String) : boolean
 ...

name : String
 ...

IModel

(from EOL)

PatternMatchModel

matches
*

pattern

patterns
*

Fig. 7. Pattern Matching Output

A PatternMatchModel introduces one model element type

for each pattern. Instances of these types are the identified

matches of the pattern. A PatternMatchModel also introduces

one type for each field of each pattern (the name of these types

are derived by concatenating the name of the pattern with a

camel-case version of the name of the field). Instances of these

types are elements that have been matched in this particular

role. For example, after executing the EPL module of Listing

3, the produced PatternMatchModel contains 5 types:

• PublicField, instances of which are all the identified

matches of the PublicField pattern,

Fig. 6. Screenshot of the EPL Development Tools

• PublicFieldClass, instances of which are all the classes

in the input model which have been matched to the class

role in instances of the PublicField pattern, and similarly

• PublicFieldField,

• PublicFieldSetter,

• PublicFieldGetter

C. Interoperability with Other Model Management Languages

As a PatternMatchModel is an instance of IModel, after its

computation it can be seamlessly queried by other Epsilon

programs. For example, Listing 6 demonstrates using the

ANT-based Epsilon workflow [10] mechanism to run the

EPL module of Listing 3, pass its output to the EVL model

validation constraints module of Listing 7 and, if validation is

successful, to an ETL model-to-model transformation where

it is used to guide the generation of a UML model.

In lines 4-7 of Listing 6, the reverse-engineered Java model

is loaded under the local name Java. Then, in line 10, the Java

model is passed on to publicfield.epl for pattern matching.

The result of pattern matching, which is an instance of the

PatternMatchModel class (and therefore also an instance of

IModel) is exported so that it can be used in subsequent

tasks under the name Patterns. Then, in lines 14, both the

Patterns and the Java models are passed on to the EVL model

validation task which validates the identified pattern matches.

1 <project default="main">

2 <target name="main">

3

4 <epsilon.emf.loadModel name="Java"

5 modelfile="org.eclipse.epsilon.eol.

engine_java.xmi"

6 metamodeluri="...MoDisco/Java/0.2.incubation/

java"

7 read="true" store="false"/>

8

9 <epsilon.epl src="publicfield.epl"

10 exportAs="Patterns">

11 <model ref="Java"/>

12 </epsilon.epl>

13

14 <epsilon.evl src="constraints.evl">

15 <model ref="Patterns"/>

16 <model ref="Java"/>

17 </epsilon.evl>

18

19 <epsilon.etl src="java2uml.etl">

20 <model ref="Patterns"/>

21 <model ref="Java"/>

22 </epsilon.etl>

23 </target>

24 </project>

Listing 6. ANT workflow calculating and passing a pattern
match model to an EVL validation and an ETL transformation
module

Line 1 of Listing 7 defines a set of constraints that will

be applied to instances of the PublicField type from the

Patterns model. As discussed above, these are all matched

instances of the PublicField pattern. Line 5, specifies the

condition that needs to be satisfied by instances of the pattern.

Notice the self.getter and self.field expressions which return

the MethodDeclaration and FieldDeclaration bound to the

instance of the pattern. Then, line 6 defines the message that

should be produced for instances of PublicField that do not

satisfy this constraint.

1 context Patterns!PublicField {

2 guard: self.field.type.isDefined()

3 constraint GetterAndFieldSameType {

4 check : self.getter.returnType.type =

5 self.field.type.type

6 message : "The getter of " + self.class.name +

7 "." + self.field.fragments.at(0).name +

8 " does not have the same type as" +

9 " the field itself"

10 }

11 }

Listing 7. Fragment of the constraints.evl EVL constraints module

If validation is successful, both the Java and the Pat-

terns model are passed on to an ETL transformation that

transforms the Java model to a UML model, a fragment of

which is presented in Listing 8. The transformation encodes

< field, setter, getter > triplets in the Java model as public

properties in the UML model. As such, in line 6 of the

transformation, the Patterns model is used to check whether

field s has been matched under the PublicField pattern, and if

so, the next line ignores the field’s declared visibility and sets

the visibility of the respective UML property to public.

1 rule FieldDeclaration2Property

2 transform s: Java!FieldDeclaration

3 to t: Uml!Property {

4

5 t.name = s.getName();

6 if (s.isTypeOf(Patterns!PublicFieldField)) {

7 t.visibility = Uml!VisibilityKind#public;

8 }

9 else {

10 t.visibility = s.toUmlVisibility();

11 }

12 ...

13 }

Listing 8. Fragment of the java2uml.etl Java to UMLETL transformation

As the Epsilon workflow provides ANT tasks for all its

languages, the same technique can be used to pass the result

of pattern matching on to model-to-text transformations, to

model comparison and model merging programs, and even to

subsequent EPL pattern matching programs in order to detect

composite patterns.

At this point, it is worth stressing that although EPL has

been demonstrated on EMF-based models in this paper in

order to avoid duplication, it can be used to define and detect

patterns on any other type of models supported by Epsilon

(e.g. on XML documents [9])

V. CONCLUSIONS

In this paper we have presented the Epsilon Pattern Lan-

guage, a textual language for specifying and detecting in-

stances of structural patterns in models. EPL enables the

definition of arbitrarily complex patterns by building on a pow-

erful model querying language (EOL). Detected instances of

patterns can be further processed (e.g. validated, transformed)

using other languages of the Epsilon platform under a uniform

and interoperable environment that facilitates code reuse and

runtime interoperability. Moreover, EPL can be used to express

patterns on models of diverse modelling technologies, and the

same patterns can be evaluated on different modelling back-

ends through the layer of indirection provided by the Epsilon

Model Connectivity.

On the other hand, EPL is a dynamically typed language

and as such, any type-related errors are only reported at run-

time. The language run-time does not attempt to optimise

the order in which patterns or roles are evaluated based on

metamodel/model-level heuristics, as is for example the case

in GrGen.NET and EMF IncQuery.

Initial performance evaluation experiments indicate that by

using techniques such as memoisation (see Listing 3), the

performance of EPL can be very similar to that of other

interpreted languages such as GrGen.NET, ATL and EMF-

IncQuery/VIATRA. In the case of EMF-IncQuery, we have

only considered the two languages in non-incremental mode

as EPL does not provide incremental pattern matching capa-

bilities. In future iterations of this work, we plan to conduct

systematic comparative benchmarking that will enable us to

accurately assess the performance of EPL against that of

existing pattern matching languages.

Acknowledgements. This research was part supported by the

EU, through the MONDO FP7 STREP project (#611125).

REFERENCES

[1] Eclipse Foundation. Epsilon Project. http://www.eclipse.org/epsilon.
[2] Taentzer, Gabriele. AGG: AGraph Transformation Environment for

Modeling and Validation of Software. In Pfaltz, John and Nagl, Manfred
and Bhlen, Boris, editor, Applications of Graph Transformations with

Industrial Relevance, volume 3062 of Lecture Notes in Computer

Science, pages 446–453. Springer Berlin / Heidelberg, 2004.
[3] Biermann, Enrico and Ermel, Claudia and Taentzer, Gabriele. Precise

Semantics of EMF Model Transformations by Graph Transformation.
In Proceedings of the 11th international conference on Model Driven

Engineering Languages and Systems, MoDELS ’08, pages 53–67,
Berlin, Heidelberg, 2008. Springer-Verlag.

[4] Edgar Jakumeit, Sebastian Buchwald, Moritz Kroll. GrGen.NET.
International Journal on Software Tools for Technology Transfer (STTT),
12(3):263–271, July 2010.

[5] Andras Balogh, Daniel Varro. Advanced model transformation language
constructs in the VIATRA2 framework. In SAC ’06: Proceedings of the

2006 ACM symposium on Applied computing, pages 1280–1287, New
York, NY, USA, 2006. ACM Press.

[6] Bergmann, Gábor and Ujhelyi, Zoltán and Ráth, István and Varró,
Dániel. A graph query language for EMF models. In Proceedings

of the 4th international conference on Theory and practice of model

transformations, ICMT’11, pages 167–182, Berlin, Heidelberg, 2011.
Springer-Verlag.

[7] Maged Elaasar, Lionel C. Briand, and Yvan Labicie. An Approach
to Detecting Design Patterns in MOF-Based Domain-Specific Models
with QVT. Technical Report TR-SCE-10-02, Carleton University, 2010.
http://squall.sce.carleton.ca/pubs/tech report/TR-SCE-10-02.pdf.

[8] Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The
Epsilon Object Language. In Proc. European Conference in Model

Driven Architecture (EC-MDA) 2006, volume 4066 of LNCS, pages 128–
142, Bilbao, Spain, July 2006.

[9] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, James
Williams, Richard F. Paige. A Lightweight Approach for Managing
XML Documents with MDE Languages. In Proc. 8th European

Conference on Modeling Foundations and Applications, Copenhagen,
Denmark, July 2012.

[10] Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack. A Frame-
work for Composing Modular and Interoperable Model Management
Tasks. In Proc. Workshop on Model Driven Tool and Process Integration

(MDTPI), ECMDA, Berlin, Germany, June 2008.

