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1 Introduction

Since the observation of a Higgs boson (H) by the ATLAS and CMS collaborations [1, 2],

its properties have been measured and presented in subsequent publications. Its mass was

determined to be mH = 125.09±0.21(stat)±0.11(syst) GeV [3]. The couplings to Standard

Model (SM) elementary particles were measured and confirmed to be consistent with the

predictions for a SM Higgs boson within the present uncertainties [4–6], and alternative

spin and CP hypotheses were rejected in favour of the SM hypothesis [7–10].

In the SM, the Zγ decay proceeds through loop diagrams similar to the H → γγ

decay. The branching ratio for the Higgs boson decay to Zγ is predicted by the SM

to be B(H → Zγ) = (1.54 ± 0.09) × 10−3 at mH = 125.09 GeV, which is comparable

with the branching ratio of the Higgs boson decay to a photon pair, B(H → γγ) =
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(2.27±0.05)×10−3. However, the number of reconstructed events is significantly smaller if

Z boson decays into electron or muon pairs are considered (B(Z → ee) = (3.363±0.004)%

and B(Z → µµ) = (3.366 ± 0.007)% [11]). A H → Zγ branching ratio different from the

SM prediction would be expected if H were a neutral scalar of different origin [12, 13], or

a composite state [14], or in models with additional colourless charged scalars, leptons or

vector bosons coupled to the Higgs boson and exchanged in the H → Zγ loop [15–17].

The H → Z(→ ℓℓ)γ decay (ℓ = e or µ) has been searched for by the ATLAS and CMS

collaborations using the full data sets collected at
√
s = 7 and 8 TeV [18, 19]. No significant

excess over the expected background was observed. The ATLAS Collaboration reported an

observed (expected) upper limit at the 95% confidence level (CL) of 11 (9) times the SM

prediction for a Higgs boson mass of mH = 125.5 GeV. The observed (expected) limit from

the CMS Collaboration is 9.5 (10) times the SM prediction for a 125 GeV Higgs boson.

Many models of physics beyond the SM introduce new heavy bosons (X) through ex-

tensions of the Higgs sector or as additional gauge fields. Searches for heavy Zγ resonances

were carried out by the D0 Collaboration at the Tevatron and by the ATLAS and CMS

collaborations. The D0 Collaboration set upper limits on σ(pp̄→ X) ·B(X → Zγ) ranging

from 2.5 (3.1) pb for a scalar (vector) X mass of 140 GeV to 0.19 (0.20) pb for a mass of

600 GeV [20] using about 1 fb−1 of pp̄ collision data recorded at
√
s = 1.96 TeV. The AT-

LAS Collaboration excluded technimesons decaying to Zγ for technimeson masses between

200 and 700 GeV and between 750 and 890 GeV, and composite spin-0 resonances decaying

to Zγ for most of the resonance mass range between 200 GeV and 1.18 TeV for certain

model parameters using pp collision data recorded at
√
s = 8 TeV [21]. Using 3.2 fb−1

of pp collision data recorded at
√
s = 13 TeV, the ATLAS Collaboration set limits on

σ(pp→ X)·B(X → Zγ) between 295 fb and 8.2 fb for spin-0 resonances produced in gluon-

gluon fusion for a X mass range from 250 GeV to 2.75 TeV using leptonic and hadronic Z

boson decays [22]. The CMS Collaboration set upper limits on σ(pp → X) · B(X → Zγ)

between about 300 fb and about 2.5 fb for spin-0 resonances produced in gluon-gluon fusion

for a mass range of 200 GeV to 3 TeV using leptonic and hadronic Z decays and pp collision

data taken at
√
s = 8 and 13 TeV [23].

This article presents improved searches for decays of the Higgs boson to Zγ as well

as for narrow high-mass resonances decaying to Zγ using Z boson decays to electron or

muon pairs. The Z(→ ℓℓ)γ final state can be reconstructed completely and with high

efficiency, good invariant mass resolution, and relatively small backgrounds. It is therefore

a powerful experimental signature. The main background is the non-resonant production

of Z bosons in conjunction with photons, which is modelled using samples of simulated

events. A smaller contribution arises from Z boson production together with hadronic

jets when a jet is misidentified as a photon. This background is studied with a dedicated

selection of the photon candidate. Both searches are based on pp collision data recorded at√
s = 13 TeV with the ATLAS detector at the LHC during 2015 and 2016, corresponding

to a total integrated luminosity of 36.1 fb−1. The search for decays of the Higgs boson to

Zγ benefits from the increased Higgs production cross section due to the increased centre-

of-mass energy and also from the larger data set compared to the previous search [18]. In

addition, the event categorisation now includes a category sensitive to Higgs boson pro-
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duction via vector-boson fusion. The search is optimised based on the expected production

processes and kinematics for a SM Higgs boson. The search for high-mass resonances

uses a significantly larger data set than the previous search [22] and is extended to spin-2

resonance production.

2 ATLAS detector and data sample

The ATLAS detector [24] at the LHC is a multipurpose particle detector with a forward-

backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists

of an inner tracking detector, electromagnetic and hadronic calorimeters, and a muon spec-

trometer. The inner detector (ID), immersed in a 2 T axial magnetic field provided by a

thin superconducting solenoid, includes silicon pixel and microstrip detectors, which pro-

vide precision tracking in the pseudorapidity range |η| < 2.5, and a transition-radiation

tracker (TRT) providing additional tracking and information for electron identification

for |η| < 2.0. For the
√
s = 13 TeV data-taking period, the ID was upgraded with a

silicon-pixel insertable B-layer [25], providing additional tracking information from a new

layer closest to the interaction point. The solenoid is surrounded by sampling calorime-

ters: a lead/liquid-argon (LAr) electromagnetic calorimeter covering the region |η| < 3.2,

a hadronic calorimeter with a steel/scintillator-tile barrel section for |η| < 1.7 and two

copper/LAr endcaps for 1.5 < |η| < 3.2. The forward region is covered by additional

coarser-granularity LAr calorimeters up to |η| = 4.9. The calorimeter is surrounded by

the muon spectrometer (MS) consisting of three large superconducting toroids each con-

taining eight coils. Precise momentum measurements for muons with pseudorapidity up to

|η| = 2.7 are provided by three layers of tracking chambers. The muon spectrometer also

includes separate trigger chambers covering |η| up to 2.4.

A two-level trigger system [26] was used during the
√
s = 13 TeV data-taking period.

The first-level trigger (L1) is implemented in hardware and uses a subset of the detector

information. This is followed by a software-based level which runs algorithms similar to

the offline reconstruction software, reducing the event rate to approximately 1 kHz from

the maximum L1 rate of 100 kHz.

The pp data collected by ATLAS in 2015 and 2016 were taken at a centre-of-mass

energy of
√
s = 13 TeV and with a bunch spacing of 25 ns. After requiring that the full

detector was operational during data-taking and application of requirements on the data

quality, the integrated luminosity corresponds to 36.1 fb−1, of which 3.2 and 32.9 fb−1

were taken during 2015 and 2016, respectively. The average number of pp interactions per

bunch crossing (pile-up) ranged from about 13 in 2015 to about 25 in 2016, with a peak

instantaneous luminosity of 1.37 × 1034 cm−2s−1 achieved in 2016.

1The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction

point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP

to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the

transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of

the polar angle θ as η = − ln tan(θ/2). The transverse energy is defined as ET = E sin(θ).

– 3 –
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The events were collected with triggers requiring either one or two electrons or muons

in the event. The single-muon trigger has a transverse momentum (pT) threshold of

26 GeV and applies a requirement on the muon track isolation. The track isolation

is defined as the scalar sum of the transverse momenta of the ID tracks in a cone of

∆R =
√

(∆η)2 + (∆φ)2 = 0.3 around the muon. For the trigger used during 2016, the

cone size was modified to be ∆R = 10/(pT/GeV) for muons with pT > 33.3 GeV. The

track isolation is computed from ID tracks with pT > 1 GeV and with a longitudinal im-

pact parameter z0 within 6 mm of the z0 of the muon track, excluding the muon track

itself. The track isolation is required to be less than 6% (7%) of the muon’s transverse

momentum in the 2015 (2016) data set. A second single-muon trigger with a pT threshold

of 50 GeV has no requirement on the track isolation. The dimuon trigger has pT thresholds

of 22 GeV and 8 GeV and does not apply track isolation criteria. Single-electron triggers

with pT thresholds at 24 GeV (26 GeV), 60 GeV, and 120 GeV (140 GeV) are used, as well

as a dielectron trigger with a pT threshold of 12 GeV (17 GeV) during the 2015 (2016)

data taking. In the 2016 data-taking period, the lowest-threshold single-electron trigger

required the track isolation in a cone of ∆R = 0.2 for pT < 50 GeV and ∆R = 10/(pT/GeV)

for pT > 50 GeV to be less than 10% of the electron’s transverse energy. For all electron

triggers, electron candidates must satisfy identification criteria based on the properties of

the energy cluster in the electromagnetic calorimeter and its associated track. The single-

electron triggers with lower thresholds use tighter criteria for the electron identification.

For H → Zγ events that pass the analysis preselection (see section 4), the efficiency to

pass the trigger selection is 92.9% (96.9%) for Z boson decays to muon (electron) pairs.

For a high-mass resonance at 1 TeV, the corresponding efficiencies are 94.3% and 99.8%

for muon and electron final states, respectively.

3 Simulation samples

Samples of simulated Monte Carlo (MC) events are used to optimise the search strategy,

evaluate the selection efficiency and to study the different background contributions. The

generated event samples were processed with the detailed ATLAS detector simulation [27]

based on Geant4 [28] (one exception is noted below).

For the H → Zγ search, the mass of the Higgs boson is chosen to be mH = 125 GeV

and the corresponding width is ΓH = 4.1 MeV [29]. The SM Higgs boson production was

simulated with Powheg Box v2 [30–32] using the combined parton distribution func-

tion (PDF) set PDF4LHC following the recommendations [33] based on the CT14 [34],

MMHT14 [35] and NNPDF3.0 [36] PDF sets and the Hessian reduction method [37–39].

The techniques used for the simulation of gluon-gluon fusion (ggF) production, vector-

boson fusion (VBF) production, and production in association with a vector boson (WH

and ZH, together referred to as V H) and the perturbative order achieved are summarised

in table 1 and detailed below. Higgs boson production in association with a tt̄ pair and

other production processes are not considered as their contributions to the total Higgs

production cross section are of the order of 0.1% or less.
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Process Technique QCD (gen.) QCD (norm.) EW (norm.)

ggF MiNLO & NNLOPS NNLO (incl.), NLO (H + 1-jet) NNNLO NLO

VBF Powheg NLO approx. NNLO NLO

V H MiNLO NLO (incl. and H + 1-jet) NNLO NLO

Table 1. Higgs boson production processes produced with Powheg Box with the techniques

used and their precision in αs for the event generation (gen.). The total cross section is known

with higher precision in QCD and electroweak (norm.) than available in the event generation. The

events were reweighted to reproduce the more precise total cross section.

Higgs boson production via ggF was simulated with Powheg Box, using the MiNLO

approach [40], which achieves next-to-leading-order (NLO) precision for both the inclusive

and the H + 1-jet process in quantum chromodynamics (QCD). In addition, the NNLOPS

approach [41] was used to improve the precision for inclusive observables to next-to-next-

to-leading-order (NNLO) in QCD: the Higgs transverse momentum spectrum achieved by

this technique was found to be in agreement with the result obtained using QCD resum-

mation with next-to-next-to-leading logarithmic (NNLL)+NNLO precision from the HqT

calculation [42, 43]. Top and bottom quark mass effects are included up to NLO precision

in QCD. The central scale choice for the nominal factorisation (µF) and renormalisation

scales (µR) is µF = µR = mH/2. The events were reweighted to reproduce the inclu-

sive cross section at next-to-next-to-next-to-leading-order (NNNLO) precision in QCD and

NLO precision in electroweak corrections [29, 33, 44–47].

Higgs boson production via VBF was simulated with Powheg Box at NLO precision

in QCD [48]. The events were reweighted to reproduce the inclusive cross section with

approximate-NNLO precision in QCD and NLO precision in electroweak corrections [29,

33, 49–51].

Higgs boson production in association with a vector boson via quark-antiquark initial

states was simulated at NLO precision in QCD for inclusive events and H + 1-jet events

using the MiNLO technique [52]. The events were reweighted to reproduce the total V H

production cross section, including also production via gluon-gluon initial states, at NNLO

precision in QCD with NLO electroweak corrections [29, 33, 53–55].

The effects of parton showering, hadronisation and multiple parton interactions (MPI)

were simulated using Pythia 8.186 [56] configured with the AZNLO set of parameters [57]

and the CTEQ6L1 [58] PDF set. The events were reweighted to reproduce the H →
Zγ branching ratio calculated with Hdecay [29, 59, 60].

Three additional event samples of gluon-gluon fusion production are used for the

studies of theoretical uncertainties. The first is an event sample generated with Mad-

Graph5 aMC@NLO version 5.2.3.3 with FxFx multijet merging [61, 62] of H+0-jet and

H+1-jet at NLO precision in QCD, using the NNPDF 3.0 PDF set. The decay of the Higgs

boson and the parton showering, hadronisation and MPI were provided by Pythia 8.186

using the A14 set of parameters [63] and the NNPDF2.3 PDF set [64]. Two more samples

were simulated with Powheg Box v1 [30–32, 65] with the CT10 PDF set [66] and Pythia

8.186 for parton showering and hadronisation using the AZNLO set of parameters and the

– 5 –
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CTEQ6L1 PDF set. The two samples were produced with and without MPI to study the

uncertainties in the signal acceptance related to the modelling of non-perturbative effects.

Production of CP -even, high-mass spin-0 resonances X in the mass range mX ∈ [300–

2500] GeV was simulated for the gluon-gluon fusion and vector-boson fusion production

processes and for an intrinsic resonance width of 4 MeV, which is much smaller than

the experimental resolution (see section 5) and referred to as narrow width assumption

(NWA). Due to the assumed narrow width of the resonance, the interference between the

resonant signal and the non-resonant background is neglected. The ggF (VBF) process was

simulated for mX = 300, 500, 700, 750, 800, 1000, 1500, 2000 and 2500 GeV (mX = 300,

500, 1000 and 2500 GeV). Both the ggF and VBF processes were produced with Powheg

Box v1 with the CT10 PDF set.

Production of CP -even, high-mass spin-2 resonances X with mass mX = 250, 300,

500, 750, 1000, 1500, 2000 and 2500 GeV for an intrinsic resonance width of 4 MeV via

gluon-gluon and quark-antiquark initial states was simulated at LO in QCD in the Higgs

Characterisation Model [67] with MadGraph5 aMC@NLO 2.3.3 [61].

For the high-mass spin-0 (spin-2) resonances, the parton showering, hadronisation and

MPI were simulated with Pythia 8.186 using the AZNLO (A14) set of parameters and

the CTEQ6L1 (NNPDF2.3) PDF set.

The signal shape and the reconstruction and selection efficiency of the studied high-

mass resonances are parameterised as a function of mX . The parameterisation allows the

extraction of the signal shape and efficiency for any mass point at which no simulation

sample is available.

The background mainly originates from non-resonant production of a Z boson and a

prompt photon (Z+γ), with a smaller contribution from production of Z bosons in associa-

tion with jets (Z+jets), with one jet misidentified as a photon. Z+γ production within the

SM is primarily due to radiation of photons from final-state leptons (FSR) or initial-state

quarks (ISR). Both SM processes were simulated using the Sherpa generator [68] (version

2.1.1 for Z+γ and version 2.2.0 for Z+jets), and the matrix elements were calculated using

the Comix [69] and OpenLoops [70] generators, where Z+γ production was calculated

for real emission of up to two partons at leading order (LO) in QCD and merged with the

Sherpa parton shower [71] using the ME+PS@LO prescription [72]. The process of Z+jets

was calculated for up to two partons at next-to-leading-order (NLO) and four partons at

LO and merged with the parton shower using the ME+PS@NLO prescription [73]. For the

Z+γ (Z+jets) samples, the CT10 (NNPDF3.0) PDF set was used in conjunction with ded-

icated parton shower tuning developed by the Sherpa authors. To study the background

model in detail, a large sample of Z+γ events was simulated using fast simulation of the

calorimeter response [74].

For all event samples, the additional inelastic pp collisions per bunch crossing were

simulated with Pythia 8.186 using the A2 set of tuned parameters [75] and the

MRSTW2008LO PDF set [76]. The MC events were reweighted to reproduce the dis-

tribution of the average number of interactions per bunch crossing observed in the data.

Corrections derived from trigger, identification, reconstruction, and isolation efficiency

measurements for electrons and muons, from identification and isolation efficiency mea-
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surements for photons, and from selection efficiency measurements for jets are applied to

the simulated events to improve the description of the data. Similarly, energy scale and

resolution corrections for all simulated objects are also taken into account.

4 Event selection and categorisation

4.1 Event preselection

Events are required to have at least one primary vertex candidate, determined using the

tracks with transverse momentum pT > 400 MeV reconstructed in the ID. The primary

vertex candidate with the largest sum of the squared transverse momenta of the associated

tracks (
∑

p2T) is considered to be the primary vertex of the interaction of interest. For

H/X → Zγ signal events, the selected primary vertex is within 0.3 mm of the true primary

interaction vertex for more than 99% of the events.

The H/X → Z(→ ℓℓ)γ candidate events are selected by requiring two same-

flavour opposite-charge leptons (ℓ = e, µ) to form a Z boson candidate and at least one

photon candidate.

Muon candidates with |η| < 2.5 are reconstructed by combining tracks in the ID

with tracks in the MS. To extend the acceptance beyond that of the ID, muon candidates

are reconstructed from tracks reconstructed only in the MS up to |η| = 2.7 [77]. Muon

candidates are required to satisfy the medium criterion and have pT > 10 GeV. In order

to ensure good track quality, the ID tracks associated with muons in |η| < 2.5 are required

to have at least one hit in the silicon pixel detector and at least five hits in the silicon

microstrip detector, as well as to extend into the TRT for 0.1 < |η| < 1.9. The muon

candidates in 2.5 < |η| < 2.7 are required to have hits in each of the three layers of MS

tracking chambers.

Electron candidates are reconstructed from a cluster of energy deposits in neighbouring

cells of the EM calorimeter and a track, matched to the cluster, in the ID. They are required

to have pT > 10 GeV and be within the fiducial region |η| < 2.47 excluding the candidates

in the transition region between the barrel and endcap EM calorimeters, 1.37 < |η| < 1.52.

The electrons are identified with the medium likelihood-based criterion [78] built from the

shower shapes of the clusters, the number of hits associated with the track in the ID and

the quality of the track-cluster matching.

Both the muon and electron candidates are required to be associated with the primary

vertex by requiring the longitudinal impact parameter, ∆z0, computed with respect to the

primary vertex position along the beam-line, to satisfy |∆z0 · sin θ| < 0.5 mm, where θ is

the polar angle of the track. In addition the significance of the transverse impact parameter

d0 calculated with respect to the measured beam-line position must satisfy |d0|/σd0 < 3 (5)

for muons (electrons) where σd0 is the uncertainty in d0.

The efficiency of the muon identification is higher than 99% (60%) for pT > 10 GeV

muons with |η| > 0.1 (|η| < 0.1) (similar to ref. [77]), while the efficiency of the electron

identification ranges from about 80% for electrons with pT = 10 GeV to higher than 90%

for electrons with pT > 50 GeV (similar to ref. [78]). The efficiency is typically about 5%

higher in the barrel region of the detector than in the endcaps.

– 7 –
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The lepton candidates are further required to satisfy additional criteria for track isola-

tion, which is defined similarly to the track isolation used in the trigger (see section 2), but

uses a different track selection and a different cone size in some cases. The track isolation

is computed as the scalar sum of the transverse momenta of all tracks in a cone around the

lepton candidate with pT > 1 GeV which satisfy loose track-quality criteria and originate

from the selected primary vertex, excluding the track associated with the lepton candi-

date. For muon candidates, the cone size is chosen to be ∆R = 0.3 for pT < 33.3 GeV and

∆R = 10/(pT/GeV) for pT > 33.3 GeV. For electron candidates, the cone size is chosen to

be ∆R = 0.2 for pT < 50 GeV and ∆R = 10/(pT/GeV) for pT > 50 GeV. The requirement

on the track isolation is chosen such that it is 99% efficient over the full lepton pT range.

An overlap removal procedure is applied to the selected lepton candidates. If two

electrons share the same track, or the two electron clusters satisfy |∆η| < 0.075 and

|∆φ| < 0.125, then only the highest-pT electron is retained. Electron candidates that are

within ∆R = 0.02 of a selected muon candidate are also discarded.

Photon candidates are reconstructed from energy clusters in the electromagnetic

calorimeter. Clusters matched to a conversion vertex, reconstructed from either two tracks

consistent with a vertex originating from a photon conversion or one track that does not

have any hits in the innermost pixel layer and has an electron-like response in the TRT,

are reconstructed as converted photon candidates. Clusters without any matching track

(clusters with a matching track are reconstructed as electrons as described above) or con-

version vertex are reconstructed as unconverted photon candidates [79]. Photon candidates

are required to have pT > 10 GeV and |η| < 1.37 or 1.52 < |η| < 2.37. The identification

of photon candidates is based on the lateral and longitudinal shape of the electromagnetic

shower [79, 80]. A loose identification is used for preselection and for background studies.

In order to suppress the events arising from FSR processes and H → ℓℓ∗ → ℓℓγ decays,

photon candidates within a ∆R = 0.3 cone around a selected electron or muon candidate

are rejected.

The selection criteria described in the preceding paragraphs define the event preselec-

tion for the leptons and photons included in the reconstruction of the invariant mass of the

ℓℓ and ℓℓγ systems.

The event categorisation described in section 4.3 used in the search for decays of the

Higgs boson to Zγ makes use of hadronic jets produced in association with the Higgs boson

candidate. Jets are reconstructed using the anti-kt algorithm [81] with a radius parame-

ter of 0.4 with three-dimensional topological clusters [82] as input. Jets are corrected on

an event-by-event basis for soft energy deposits originating from pile-up interactions [83]

and calibrated using a combination of simulation- and data-driven correction factors ac-

counting for the non-compensating response of the calorimeter and energy loss in inactive

regions [84]. Jets are required to have a transverse momentum larger than 25 GeV and

|η| < 4.4. To reduce the contamination from jets produced in pile-up interactions, jets

with transverse momentum smaller than 60 GeV and contained within the inner detector’s

acceptance (|η| < 2.4) are required to pass a selection based on the jet vertex tagging

algorithm [85], which is 92% efficient for jets originating from the hard interaction. The jet

vertex tagging algorithm is based on the tracks associated with the jet which are consis-
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tent with originating from the selected primary vertex. Jet-lepton and jet-photon overlap

removal is performed where the jet is removed if the lepton or photon is within a cone of

size ∆R = 0.2.

4.2 Reconstruction of Z candidates and H/X candidates and final selection

The Z boson candidates are reconstructed from two same-flavour opposite-sign leptons

satisfying the preselection criteria and with an invariant mass mℓℓ larger than 45 GeV.

Leptons are required to be consistent with the objects that triggered the event. Trigger ef-

ficiency turn-on effects are mitigated by transverse momentum requirements on the leptons

that fired the single-lepton or dilepton trigger. If the event was triggered by a single-lepton

trigger, the transverse momentum is required to be at least 27 GeV for the leading lep-

ton, and at least 1 GeV higher than the respective trigger threshold in cases where the

event was triggered by one of the higher-threshold triggers. If the event was triggered by

a dilepton trigger, the transverse momentum is required to be at least 24 GeV (18 GeV)

for the leading muon (electron) and 10 GeV (18 GeV) for the subleading muon (electron).

For Z → µµ candidates with an invariant mass between 66 and 89 GeV, the invariant

mass resolution of the Z boson candidate is improved by correcting the muon momenta

for collinear FSR by including any reconstructed electromagnetic cluster with pT above

1.5 GeV lying close to a muon track (with ∆R < 0.15) if the corrected invariant mass is

below 100 GeV [86]. A constrained kinematic fit is applied to recompute the four-momenta

of the dilepton pair [87] for Z → µµ and Z → ee candidates. The fit models the lepton en-

ergy and momentum response as a Gaussian distribution for each lepton, and the Gaussian

width is given by the expected resolution. The Z lineshape is used as a constraint with the

approximation of the leptons being massless. The lineshape is modelled by a Breit-Wigner

distribution. After the application of the FSR corrections and the kinematic fit, Z boson

candidates are required to have an invariant mass within 15 GeV of the Z boson mass,

mZ = 91.2 GeV [11]. If multiple Z boson candidates pass all requirements, the candidate

with the mass closest to the Z boson mass is chosen. About 0.2% (0.5%) of events that

pass the final H → Zγ (X → Zγ) selection have more than one Z boson candidate within

the 15 GeV mass window.

Higgs boson and X candidates are reconstructed from the Z boson candidate and the

highest-pT photon candidate after the preselection.

For the main analyses with the exception of the background studies, the photon can-

didate used for the reconstruction of the H/X candidate is required to pass the tight

identification [79]. The efficiency of the tight identification ranges from 67% (60%) to

90% (95%) for unconverted (converted) isolated photons from pT of 15 GeV to 50 GeV

and larger.

Photon candidates are furthermore required to be isolated from additional activity in

the detector. A combined requirement on the isolation energy in the calorimeter and the

inner detector is used. The calorimeter isolation is computed as the sum of transverse

energies of positive-energy topological clusters [82] in the calorimeter within a cone of

∆R = 0.2 centred around the photon shower barycentre. The transverse energy of the

photon candidate is removed and the contributions of the underlying event and pile-up are
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Figure 1. Invariant mass distribution, mZγ , for the final selection before and after application of

the final-state radiation corrections (Z → µµ only) and the Z boson mass constrained kinematic

fit for simulated H → Zγ events with mH = 125 GeV in the gluon-gluon fusion production mode.

Events are separated by lepton type, (a) Z → µµ and (b) Z → ee.

subtracted based on the method suggested in ref. [88]. The track isolation for a cone size

of ∆R = 0.2 is used and for converted photons the tracks associated with the conversion

are removed. The calorimeter (track) isolation is required to be less than 6.5% (5%) of

the photon pT. The efficiency of the isolation requirement for photons satisfying the tight

identification criteria ranges from approximately 60% for pT of 15 GeV to more than 90%

for pT of 40 GeV and larger.

For the H → Zγ (X → Zγ) search, the photon transverse momentum requirement is

tightened to 15 GeV (pT/mZγ > 0.3).

The invariant mass of the final-state particles, mZγ , is required to satisfy 115 GeV<

mZγ < 170 GeV for the H → Zγ search and 200 GeV< mZγ < 2500 GeV for the high-mass

resonance search. Figure 1 shows the invariant mass distribution for simulated H → Zγ

candidates after the final selection with and without the lepton momentum corrections

from the FSR recovery and the kinematic fit. Improvements of the mµµγ resolution of

3% are observed for mH = 125 GeV from the FSR recovery. The kinematic fit improves

the mµµγ (meeγ) resolution by 7% (13%) at the same mass. For high invariant masses,

the mµµγ resolution improvement varies from 10% at mX = 300 GeV to about 50% for

mX > 1.5 TeV, while the meeγ resolution is improved by 9% at mX = 300 GeV and by

3% or less above mX = 500 GeV. The constrained kinematic fit is particularly effective

at large mX for the Z → µµ final state due to the decreasing precision of the momentum

measurement for increasing muon pT.

4.3 Categorisation

Events are split into mutually exclusive event categories that are optimised to improve the

sensitivity of both the H → Zγ and X → Zγ searches. The event categories separate

events on the basis of the expected signal-to-background ratio and of the expected three-

body invariant mass resolution. Different categories are used in the search for decays of

the Higgs boson to Zγ and the search for high-mass resonances.
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The H → Zγ search uses six exclusive event categories and events are assigned to the

categories in the following order:

• VBF-enriched : events are required to have at least two jets. A boosted decision tree

(BDT) that was trained to separate VBF events from other Higgs boson production

modes and non-Higgs backgrounds is applied. It uses six kinematic variables as input,

computed from the Z boson candidate, the photon candidate and the two jets with

the largest transverse momenta:

– The invariant mass of the two jets (mjj),

– The separation of the jets in pseudorapidity (∆ηjj),

– The azimuthal separation of the Zγ and the dijet systems (∆φZγ,jj),

– The component of the transverse momentum of the Zγ system that is perpendic-

ular to the difference of the 3-momenta of the Z boson and the photon candidate

(pTt = 2|pZx pγy − pγxpZy |/pZγ
T ),

– The smallest ∆R separation between the Z boson or photon candidate and the

two jets (∆Rmin
Z/γ,j),

– The difference between the pseudorapidity of the Zγ system and the average

pseudorapidity of the two jets (|ηZγ − (ηj1 + ηj2)/2|).

The variable pTt is strongly correlated with the transverse momentum of the Zγ sys-

tem, but has better experimental resolution [89, 90]. Any requirement on ∆φZγ,jj

effectively vetoes additional jets in the event by restricting the phase space for addi-

tional emissions and, to avoid uncontrolled theoretical uncertainties, the BDT does

not use shape information for events with ∆φZγ,jj > 2.94 by merging these events

into one bin. A minimum value of the BDT output (BDT > 0.82) is required. The

expected and observed distributions for two input variables, mjj as a typical variable

to select events with VBF topology and ∆φZγ,jj , which serves as an implicit third-jet

veto, are shown in figure 2 for selected events with at least two jets.

• High relative pT: events are required to have a high pT photon, pγT/mZγ > 0.4.

• ee high pTt: events are required to have high pTt (pTt > 40 GeV) and a Z boson

candidate decay to electrons.

• ee low pTt: events are required to have low pTt (pTt < 40 GeV) and a Z boson

candidate decay to electrons.

• µµ high pTt: events are required to have high pTt (pTt > 40 GeV) and a Z boson

candidate decay to muons.

• µµ low pTt: events are required to have low pTt (pTt < 40 GeV) and a Z boson

candidate decay to muons.
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Figure 2. Kinematic variables used in the BDT used to define the VBF-enriched category: (a)

the invariant mass of the two jets with the highest transverse momenta, mjj and (b) the azimuthal

separation of the Zγ and the dijet system, ∆φZγ,jj for events with at least two jets and 115 GeV <

mZγ < 170 GeV. The observed distribution (normalised to unity) is shown as data points. The

contributions from Z + γ events (obtained from simulation) and the contribution from Z+jets

(obtained from data control regions described in the text) are shown as stacked histograms. The

corresponding expected distributions for Higgs bosons produced via gluon-gluon fusion and vector-

boson fusion production for mH = 125 GeV are shown as open histograms. The ∆φZγ,jj distribution

is shown before the suppression of the shape information for ∆φZγ,jj > 2.94.

ggF VBF WH ZH

Category ǫ[%] f [%] ǫ[%] f [%] ǫ[%] f [%] ǫ[%] f [%]

VBF-enriched 0.25 30.5 6.5 67.5 0.34 1.3 0.24 0.6

High relative pT 1.1 71.5 2.6 14.3 4.0 8.3 4.1 5.3

ee high pTt 1.7 80.8 2.8 11.0 3.2 4.7 3.6 3.3

ee low pTt 7.1 93.2 3.6 4.1 3.7 1.5 4.2 1.1

µµ high pTt 2.2 80.4 3.6 11.3 4.1 4.8 4.2 3.1

µµ low pTt 9.2 93.4 4.7 4.1 4.6 1.5 4.8 1.0

Total efficiency (%) 21.5 23.8 20.2 21.0

Expected events 35 3.3 1.0 0.7

Table 2. The expected signal efficiency times acceptance, denoted by ǫ, per production mode for

each category after the full event selection, as well as the expected fraction f of each production

process relative to the total signal yield, for simulated SM Higgs boson production assuming mH =

125 GeV. The expected number of signal events per production process is also given.

For SM H → Z(→ ℓℓ)γ events, the reconstruction and selection efficiency (includ-

ing kinematic acceptance) is 21.5%. Table 2 shows the expected signal efficiency times

acceptance for each of the different SM Higgs boson production processes in each cate-

gory, as well as the expected relative contribution of a given production process to each

category. The VBF-enriched category is expected to be about 68% pure in VBF events.

The high relative pT and high pTt categories are expected to be slightly enriched in VBF

and V H events. Overall, about 40 H → Zγ events are expected to be selected. Table 3
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Category Events S90 w90 [GeV] S90/B90 [10−2] S90/
√
S90 +B90

VBF-enriched 88 1.2 3.9 9.5 0.32

High relative pT 443 2.3 3.9 3.0 0.26

ee high pTt 1053 3.3 3.9 1.1 0.19

ee low pTt 11707 11.2 4.2 0.3 0.18

µµ high pTt 1413 4.0 3.7 1.2 0.22

µµ low pTt 16529 14.5 3.8 0.3 0.21

Table 3. The number of data events selected in the mass range used for the background fit to

the mZγ spectrum (115-150 GeV) per category. In addition, the following numbers are given: the

expected number of Higgs boson signal events in an interval around the peak position for a signal

of mH = 125.09 GeV, expected to contain 90% of the SM signal (S90), the half-width of the S90

interval (w90), as well as the expected signal-to-background ratio in the S90 window (S90/B90) with

B90 determined from data, and the expected significance estimate S90/
√
S90 +B90.

summarises for each category: the number of selected events from data in the fit range

115 GeV < mZγ < 150 GeV (see section 5); the expected number of events (S90) in an

interval around the mZγ peak position expected to contain 90% of the SM signal events;

w90 defined to be half of the width of the interval; the expected S90/B90, where B90 is

the background yield in the same mass window determined from data; and the expected

S90/
√
S90 +B90. The window is constructed so that it includes 45% of the signal events

on either side of the peak position for mH = 125.09 GeV. The largest fraction of the signal

is expected in the low pTt categories, which have the smallest expected significance. The

VBF-enriched category shows the largest contribution to the expected significance.

The search for high-mass resonances uses two categories, one for each Z boson can-

didate decay mode, Z → ee and Z → µµ, to benefit from both the better invariant mass

resolution in the electron channel at large mZγ and the differences in the systematic un-

certainties between electrons and muons. The invariant mass resolution, measured by the

Gaussian width of the signal model (see section 5), ranges from 2.8 GeV (3.1 GeV) at

mX = 250 GeV to 16 GeV (36 GeV) at mX = 2.4 TeV for Z → ee (Z → µµ).

5 Signal and background modelling

The signal and background yields are extracted from the data mZγ distribution by assuming

analytical models. The parameters that describe the shape of the signal are obtained from

simulated signal samples. The analytical models used for the background shape are chosen

using simulated background samples and the values of their free parameters are determined

from the fit to data.

5.1 Signal modelling

The signal mass distribution in the searches for both the Higgs boson and the high-mass

resonance decay to Zγ is well modelled with a double-sided Crystal Ball (DSCB) function

(a Gaussian function with power-law tails on both sides) [91, 92]. The peak position and

width of the Gaussian component are represented by µCB and σCB, respectively.
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Figure 3. The differential distribution of the invariant Zγ mass (mZγ) for (a) Higgs bosons with

mH = 125 GeV in the low pTt categories and (b) high-mass spin-0 particles produced via gluon-

gluon fusion and with mX = 1000 GeV, using the narrow width assumption (NWA). The markers

show the mZγ distributions and the solid and dotted lines the fitted parameterisations used in

the searches. The bottom part of the figures shows the residuals between the markers and the

parameterisation.

To determine the parameters of the DSCB for the H → Zγ search, a fit is performed to

all the categories (see section 4.3) from the simulated signal samples produced via ggF, VBF

and V H processes at mH = 125 GeV. A shift of 90 MeV is applied to the peak position µCB

to build a signal model for mH = 125.09 GeV. For the high-mass search, a simultaneous fit

is performed to all signal samples, mX = [300–2500] GeV (mX = [250–2500] GeV) for the

spin-0 (spin-2) interpretation. This allows a parameterisation of the signal shape for masses

mX for which no simulation sample is available. The mX dependence of the signal shape

parameters is parameterised by polynomials, and their coefficients are determined during

the simultaneous fit. The parameterisation is done separately for each of the three models

considered, a spin-0 resonance and a spin-2 resonance produced via either gluon-gluon or

quark-antiquark initial states.

Figure 3 shows the MC-simulated mZγ distribution at mH = 125 GeV for the low pTt

categories and at mX = 1000 GeV. Similar fit qualities are obtained for all the categories

in both searches.

Additionally, the signal efficiency defined as the number of events satisfying all the

selection criteria (as given in section 4) normalised to the total number of events is needed

to extract σ ·B(H/X → Zγ) from the measured yield. For the H → Zγ search, the signal

efficiency times the acceptance in each category are shown in table 2.2

For the search for high-mass resonances, the signal efficiency is parameterised as a

function of the resonance mass with an exponentiated second-order polynomial. Figure 4(a)

2The efficiency difference between mH = 125 GeV and mH = 125.09 GeV is estimated to be smaller

than 1%.
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Figure 4. Reconstruction and selection efficiency (including kinematic acceptance) for the X → Zγ

final state as a function of the resonance mass mX (a) for a spin-0 resonance via gluon-gluon fusion,

separately for the ee and the µµ categories, and (b) for a spin-2 resonance produced via either the

gluon-gluon or the quark-antiquark initial states. The markers show the efficiencies obtained from

simulation, while the curves represent the parameterisation used in the analysis. The efficiencies are

given with respect to (a) X → Z(→ ee)γ and X → Z(→ µµ)γ, respectively, and (b) X → Z(→ ℓℓ)γ

where ℓ = e, µ.

shows the reconstruction and selection efficiency for X → Z(→ ℓℓ)γ events for a spin-0

resonance produced in gluon-gluon fusion, separately for Z → ee and Z → µµ. The

efficiencies range from about 30% to about 46% in the mass range from 250 GeV to 2.4 TeV.

For a spin-0 resonance produced via vector-boson fusion, the efficiency is larger by up to

4% over the full resonance mass range considered. Figure 4(b) shows the reconstruction

and selection efficiency for spin-2 resonances produced via gluon-gluon and quark-antiquark

initial states as a function of the resonance mass. For spin-2 resonances produced in gluon-

gluon (quark-antiquark) initial states, the efficiencies range from about 22% (28%) to about

35% (54%) in the mass range from 250 GeV to 2.4 TeV. The efficiency differences between

the spin-0 resonance produced via gluon-gluon fusion, the spin-2 resonance produced via

gluon-gluon initial states and the spin-2 resonance produced via quark-antiquark initial

states are primarily related to the different photon transverse momentum distributions

between the different production mechanisms.

5.2 Background modelling

The background is mainly composed of non-resonant production of a Z boson in asso-

ciation with a photon (irreducible background), and of inclusive Z+jets events where a

jet is misidentified as a photon (reducible background), and the relative contributions are

determined using data as described below. Contributions from other sources, such as tt̄

production, W/Z events, and, for the H → Zγ search, from other Higgs boson decays are

expected to be negligible based on studies of simulated events. The background exhibits a

smoothly falling distribution as a function of the invariant mass of the candidate Z boson

and photon, mZγ .
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The estimated background composition is used to construct simulated background

samples with the same composition as the data background. These samples are used in

the optimisation of the selection criteria, the choice of analytical model of the background

shape, and the estimation of the related systematic uncertainties. The searches rely only

indirectly on the measured background composition since the background shape parameters

are determined from the data.

The composition of the background is estimated using a combined binned fit to the

calorimeter isolation distribution of the photon candidate in the signal region and in a

control region enriched in Z+jets background. In the control region, photon candidates

are required to fail the tight identification, but to pass a modified loose identification. It

differs from the tight identification by removing the requirements on four out of nine shower

shape variables which are the least correlated with the calorimeter isolation [93]. The

calorimeter isolation distribution for photons and the contribution of true photons to the

control region are determined from simulation, while the calorimeter isolation distribution

for jets is determined in the fit and assumed to be the same in the signal and control

regions. This assumption is supported by extensive studies performed in the context of

earlier analyses [93]. The composition is determined in the inclusive selection for the

H → Zγ search and the fraction of Z+γ events is found to be 0.838 ± 0.005 (stat.) ±
0.031 (syst.). For the high-mass resonance search, the fraction of Z+γ events is found to

be 0.916±0.009 (stat.) +0.013
−0.019 (syst.). The systematic uncertainties are estimated by varying

the set of shower shape variables that are removed from the tight identification to define the

modified loose identification [93]. The results of the composition estimate are cross-checked

with a two-dimensional sideband technique [93] based on the calorimeter isolation of the

photon candidate and whether or not the photon candidate satisfies the tight identification

criteria (when the photon fails the tight identification it is still required to pass the modified

loose identification), which gives consistent results.

The analytical model of the background and the mZγ range used for the final fit are

chosen to limit the bias in the extracted signal yield, while at the same time limiting the

number of free parameters in the fit to avoid degradation of the sensitivity [1]. For each

category used in either analysis, the bias (also referred to as spurious signal) is estimated

as a function of the signal invariant mass by performing a signal+background fit to a

mZγ background-only distribution with small statistical fluctuations. The background-only

distribution is constructed from the fast simulation of Z+γ events, and the contribution

from Z+jets events is included by reweighting the Z+γ simulated distribution as follows:

for each category, the shape of the Z+jets contribution is determined in a data control

region defined by requiring that the photon candidate fails to satisfy the identification

and isolation criteria. To smooth statistical fluctuations in the Z+jets shape, a first-

order polynomial is fitted to the ratio of the Z+jets and Z+γ shapes, and the smoothed

Z+jets shape is constructed from the fit result and the Z+γ shape. The reweighting of

the Z+γ distribution to take into account the Z+jets contribution is determined from

the smoothed Z+jets shape. The normalisation of the Z+jets contribution is determined

from the number of events obtained when applying the selection and categorisation to the

Z+γ and Z+jets simulation samples and the purity of the inclusive sample, measured as
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described above. The spurious signal is required to be less than 40% (20%) of the expected

statistical uncertainty in the signal yield, which is dominated by the expected statistical

uncertainty of the background, in the search for Higgs boson (high-mass resonance) decays

to Zγ. The looser requirement for the H → Zγ search is chosen to improve the robustness

of the procedure against statistical fluctuations in the simulated Z+γ event sample. If two

or more considered functions satisfy this requirement, the function with the fewest number

of parameters is chosen.

For the H → Zγ search, the fit range is also optimised on the basis of the spurious

signal estimates, taking into account the spurious signal and the number of parameters of

the chosen functions in all categories. A fit range from 115 GeV to 150 GeV is selected.

A second-order Bernstein polynomial is chosen as the parameterisation for the VBF and

high relative pT categories, and a fourth-order Bernstein polynomial is chosen for the other

categories. For the chosen parameterisation, the largest spurious signal obtained in a

window of 121–129 GeV is assigned as a systematic uncertainty in each category associated

with the choice of background function and ranges from 1.7 events in the VBF category

to 25 events in the µµ low pTt category. The choice of background functions is validated

by using second- and third-order polynomials for the smoothing of the Z+jets background

shape and by varying the Z+γ purity by ±15%. The large variation of the Z+γ purity

is chosen to cover the purity differences between the different categories and intended to

also account for the additional uncertainty in the estimation of the Z+jets invariant mass

distribution.

The high-mass resonance search considers as a background model a class of func-

tions [22] given by

fkbkg(x; b, ak) = N(1 − x1/3)bx
∑k

j=0 ak log(x)j , (5.1)

where x = mZγ/
√
s, N is a normalisation factor, k determines the number of terms con-

sidered in the exponent, and b and ak are determined by the fit. When testing on the

background-only distribution constructed using the simulated Z+γ sample taking into ac-

count Z+jets contributions as discussed before, the spurious signal criterion is found to

be satisfied for the full mass range for k = 0. The spurious signal used as an estimate of

the systematic uncertainty is parameterised as a smooth function of the invariant mass. It

ranges from 3.6 (6.1) events at 250 GeV to 0.01 (0.005) events at 2.4 TeV for the Z → µµ

(Z → ee) channel. The choice of analytic function for the background shape is validated

by using second- and third-order polynomials for the smoothing of the Z+jets background

shape, by varying the Z+γ purity by ±5% (motivated by the range of purities estimated in

the two categories), and by varying the PDFs in the Z+γ simulation using the uncertainties

associated with the different eigenvectors of the PDF set.

The possibility of needing higher-order functions when fitting the selected analytical

function to the data mZγ distribution is further investigated by an F -test. The test statistic

F defined as

F =

(

χ2
0 − χ2

1

p1 − p0

)

/

(

χ2
1

n− p1

)

, (5.2)

compares the fit qualities between less and more complex functions. The χ2
0 (χ2

1) is the χ2
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value of a binned fit with the less (more) complex parameterisation, pk is the number of

free parameters of each fit, and n is the number of bins of the invariant mass distribution.

Should the probability to find values of F more extreme than the one measured on data

be less than 5%, the less complex parameterisation would be rejected in favour of the more

complex parameterisation. The binning for the F -test is chosen to guarantee a sufficient

number of events in each bin. For the H → Zγ search, the test is carried out to determine

if there is any indication that a higher-order Bernstein polynomial is required. It does

not lead to a change in the chosen parameterisation. For the high-mass search, the test is

performed to determine whether or not the quality of the fit to data is improved significantly

if using k = 1. The test confirms that the choice of k = 0 is adequate. The χ2 per degree

of freedom is 1.2 for 30 degrees of freedom (1.1 for 17 degrees of freedom) or better for the

chosen parameterisations for the H → Zγ (high-mass resonance) search.

6 Systematic uncertainties

The experimental and theoretical uncertainties that are considered in the searches can be

grouped into three classes: uncertainties associated with the parameterisation of the signal

and background distributions (see section 6.1), experimental uncertainties in the efficiency

and acceptance affecting the expected event yields (see section 6.2), and theoretical un-

certainties in the modelling of the signal in the simulation (see section 6.3). The nuisance

parameters in the likelihood function (see section 7) represent the uncertainties which are

studied in each category using the simulated signal samples generated at mH = 125 GeV

for the H → Zγ search, and mX = [300–2500] GeV at high-mass. The main experimental

sources of uncertainty are summarised in table 4.

6.1 Uncertainties from signal and background modelling

The uncertainties in the lepton and photon momentum and energy scale and resolution

impact the modelling of the signal. Their impact is assessed by comparing the nominal

mZγ shape parameters with the mZγ shape parameters after varying the lepton and photon

momentum and energy scale and resolution by their uncertainties. Uncertainties in both

the position (µCB) and width (σCB) of the signal mZγ distribution are considered.

The systematic uncertainties in the muon momentum scale and resolution were de-

termined from Z → µµ and J/ψ → µµ events using the techniques described in ref. [77].

At mH = 125 GeV, the uncertainty in the muon momentum scale (resolution) varies σCB

by up to 0.5% (4.0%). In the high-mass search, the effect of the muon momentum scale

(resolution) uncertainty is to change σCB by up to 3.0% (4.0%). The typical effect of the

muon momentum scale uncertainty is to change µCB by < 0.1% of its nominal value.

The systematic uncertainties in the electron and photon energy scale and resolution

follow those in refs. [94, 95]. The overall energy scale factors and their uncertainties were

determined using Z → ee events. Compared to ref. [95], several systematic uncertainties

were re-evaluated with the 13 TeV data, including uncertainties related to the observed LAr

cell non-linearity, the material simulation, the intercalibration of the first and second layer

of the calorimeter, and the pedestal corrections. At mH = 125 GeV, the uncertainty in
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Sources H → Zγ X → Zγ

Luminosity [%]

Luminosity 3.2 3.2

Signal efficiency [%]

Modelling of pile-up interactions 0.02–0.03 < 0.01–0.2

Photon identification efficiency 0.7–1.7 2.0–2.6

Photon isolation efficiency 0.07–0.4 0.6–0.6

Electron identification efficiency 0.0–1.6 0.0–2.6

Electron isolation efficiency 0.0–0.2 0.0–3.5

Electron reconstruction efficiency 0.0–0.4 0.0–1.0

Electron trigger efficiency 0.0–0.1 0.0–0.2

Muon selection efficiency 0.0–1.6 0.0–0.7

Muon trigger efficiency 0.0–3.5 0.0–4.2

MC statistical uncertainty – 1.2–2.0

Jet energy scale, resolution, and pile-up 0.2–10 –

Total (signal efficiency) 2.1–10 4.0–6.3

Signal modelling on σCB [%]

Electron and photon energy scale 0.6–3.5 1.0–4.0

Electron and photon energy resolution 1.1–4.0 4.0–30

Muon momentum scale 0.0–0.5 0.0–3.0

Muon ID resolution 0.0–3.7 0.0–2.0

Muon MS resolution 0.0–1.7 0.0–4.0

Signal modelling on µCB [%]

Electron and photon energy scale 0.1–0.2 0.2–0.6

Muon momentum scale 0.0–0.03 0.0–0.03

Higgs mass 0.2 –

Background modelling [Events]

Spurious signal 1.7–25 0.005–6.1

Table 4. The main sources of experimental uncertainty for the H/X → Zγ searches. The gluon-

gluon fusion signal samples produced at mH = 125 GeV and mX = [300–2500] GeV are used to

estimate the systematic uncertainty. The ranges for the uncertainties span the variations among

different categories and different mX resonance masses. The uncertainty values are given as fractions

of the total predictions, except for the spurious signal uncertainty, which is reported as the absolute

number of events. Values are not listed if systematic sources are negligible or not applicable.

the electron and photon energy scale (resolution) results in variation in σCB between 0.6%

and 3.5% (1.1% and 4.0%) depending on the category. For a high-mass resonance, σCB

varies between 1.0% and 4.0% (4.0% and 30%) due to uncertainties in the electron/photon

momentum scale (momentum resolution). The variation in µCB is less than 0.2% (0.6%)

at mH = 125 GeV (at high masses).

For the H → Zγ search, an additional uncertainty in the assumed Higgs mass mH =

125.09 GeV is added in the fit, reflecting the 0.24 GeV [3] uncertainty in the measured

Higgs boson mass.
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The uncertainty due to the choice of background function is taken to be the signal yield

(spurious signal) obtained when fitting the mZγ spectra reconstructed from background-

only distributions as discussed in section 5.

6.2 Experimental uncertainties affecting the signal efficiency and acceptance

Experimental uncertainties affecting the signal efficiency and acceptance can be either

correlated between all event categories (yield uncertainties) or anticorrelated between some

of the categories (migration uncertainties) when they are related to how the signal populates

the event categories.

The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%, correlated

between all categories. It is derived, following a methodology similar to that detailed in

ref. [96], from a preliminary calibration of the luminosity scale using x–y beam-separation

scans performed in August 2015 and May 2016.

A variation in the pile-up reweighting of the simulation is included to cover the un-

certainty in the ratio of the predicted and measured inelastic cross sections in the fiducial

volume defined by m > 13 GeV where m is the mass of the hadronic system [97]. The un-

certainty in the signal efficiency is no more than 0.03% (0.2%) for the H → Zγ (high-mass

resonance) search.

The uncertainties in the reconstruction, identification, isolation, and trigger efficiency

measurements for muons, electrons and photons (see section 4) are treated as fully cor-

related between all categories. They are determined from control samples of J/ψ → µµ

and Z → µµ for muons, J/ψ → ee and Z → ee for electrons, and Z → ℓℓγ, Z → ee, and

inclusive photons for photons, using methods described in refs. [77, 78, 80].

For the H → Zγ search, the uncertainties in the signal efficiency from the photon

identification and isolation are found to be no more than 1.7% and 0.4%, respectively.

The uncertainties in the signal efficiency from the electron reconstruction, identification,

isolation, and trigger are found to be no more than 0.4%, 1.6%, 0.2%, and 0.1%, respec-

tively. The uncertainties in the signal efficiency from the muon selection and trigger are

determined to be no more than 1.6% and 3.5%, respectively. For the high-mass search, the

uncertainties in the signal efficiency from photon identification and isolation are found to

be no more than 2.6% and 0.6%, respectively. The uncertainties in the signal efficiency

from the electron reconstruction, identification, isolation, and trigger are found to be no

more than 1.0%, 2.6%, 3.5%, and 0.2%, respectively. The uncertainties in the efficiency

from the muon selection and trigger are determined to be as large as 0.7% and 4.2%, re-

spectively. The uncertainty due to the limited size of the simulated event samples ranges

from 1.2% to 2.0% for the search for high-mass resonances.

In the H → Zγ search, the expected signal yield in the VBF category is affected by

the jet energy scale and resolution and the jet vertex tagging efficiency. The corresponding

uncertainties are anticorrelated with the other categories. Uncertainties in the jet energy

scale and resolution are estimated from the transverse momentum balance in dijet, γ+jet

and Z+jet events [84]. Uncertainties in the efficiency of the jet vertex tagging are estimated

by shifting the associated corrections applied to the simulation by an amount allowed by

the data. The uncertainties in the category acceptances are as large as 4.6%, 6.9%, and
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Sources

Total cross section and efficiency [%]

Underlying event 5.3

ggF perturbative order 3.9

ggF PDF and αs 3.2

VBF perturbative order 0.4

VBF PDF and αs 2.1

WH (ZH) perturbative order 0.5 (3.8)

WH (ZH) PDF and αs 1.9 (1.6)

Interference 5.0

B(H → Zγ) 5.9

Total (total cross section and efficiency) 10

Category acceptance [%]

ggF H + 2-jets in VBF-enriched category 0.5–45

ggF BDT variables 0.2–15

ggF Higgs pT 8.4–22

PDF and αs 0.2–2.0

Underlying event 2.9–25

Total (category acceptance) 9.5–49

Table 5. The main sources of theoretical and modelling uncertainties for the H → Zγ search. For

the uncertainties in the total efficiency and the acceptance of the different categories, the gluon-

gluon fusion samples produced with Powheg Box v1 with and without MPI are used, as well as

the nominal Powheg Box v2 gluon-gluon fusion signal sample along with the sample generated

with MadGraph5 aMC@NLO, as described in the text. The combined uncertainty on the total

cross section and efficiency is given assuming the cross sections predicted by the SM. The ranges for

the uncertainties cover the variations among different categories. The uncertainty values are given

as relative uncertainties.

4.8% from the data-driven jet calibration, the impact of the jet flavour composition on the

calibration, and the jet vertex tagging.

6.3 Theoretical and modelling uncertainties

For the H → Zγ search, theoretical and modelling uncertainties in the SM predictions for

Higgs boson production and the decay to the Zγ final state are taken into account and are

summarised in table 5. They fall into two classes: uncertainties in the total predicted cross

sections, the predicted decay branching ratio and the total efficiency, correlated between

all categories; and uncertainties in the event fractions per category, anticorrelated between

certain categories.

Uncertainties related to the total acceptance and efficiency for H → Zγ events affect

the extraction of the signal strength, the branching ratio of H → Zγ assuming SM Higgs

boson production, as well as the product of the Higgs boson production cross section and the
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branching ratio of H → Zγ (see section 7). The uncertainty in the total efficiency due to the

modelling of multiple-parton interactions is estimated from the difference in efficiency with

and without multiple-particle interactions for the gluon-gluon fusion simulation sample,

and found to be 5.3%.

The uncertainties related to the predicted Higgs boson production cross section affect

the extraction of the signal strength as well as the branching ratio of H → Zγ assuming

SM Higgs boson production. The uncertainties in the predicted total cross sections of the

different Higgs boson production processes due to the perturbative order of the calculation

and the combined uncertainties in the PDFs and αs are 3.9% and 3.2% for gluon-gluon

fusion production, respectively, and range from 0.4% to 3.8% for the other production

processes for a Higgs boson mass of 125.09 GeV and a centre-of-mass energy of 13 TeV [29].

An additional 5.0% [98] uncertainty accounts for the effect, in the selected phase space

of the ℓℓγ final state, of the interfering H → ℓℓγ decay amplitudes that are neglected in

the calculation of ref. [29]. They originate from internal photon conversion in Higgs boson

decays to diphotons (H → γ∗γ → ℓℓγ) or from Higgs boson decays to dileptons with an

off-shell lepton (H → ℓℓ∗ → ℓℓγ) [99, 100].

The uncertainty in the predicted Higgs boson branching ratio to Zγ affects the ex-

traction of the signal strength. The relative theoretical uncertainty in the predicted Higgs

boson branching ratio is 5.9% [29].

Uncertainties in the modelling of kinematic distributions in the simulation of Higgs

boson production processes affect the predicted event fractions in the different categories.

The uncertainty in the modelling of the production of jets in gluon-gluon fusion production

due to the perturbative order in QCD is estimated by scale variations in MCFM [101]. It

accounts for the uncertainty in the overall normalisation of H + 2-jets events as well as

the uncertainty due to the use of ∆φZγ,jj , which serves to apply an implicit third-jet veto,

in the VBF BDT. The estimation of this uncertainty uses an extension of the Stewart-

Tackmann method [102, 103]. It corresponds to 45% of the ggF contribution to the VBF

category. Additional uncertainties are assigned to account for potential mismodelling of

the variables that serve as input to the VBF BDT (see section 4). They are estimated

by reweighting the simulated ggF events to match the distributions in mjj , ∆ηjj , pTt,

∆Rmin
Z/γ,j , and |ηZγ−(ηj1+ηj2)/2| obtained from MadGraph5 aMC@NLO. The resulting

uncertainty in the ggF contribution to the VBF category is 15%. Uncertainties in the

modelling of the Higgs boson pT spectrum are taken to be the envelope of the variations of

the renormalisation, factorisation, and resummation scales obtained using HRes 2.3 [104]

to simulate the pT spectrum. The resulting uncertainties are evaluated using the Stewart-

Tackmann method [102, 103] for the high relative pT and the pTt categorisation and found

to range from 8.4% to 22%. Uncertainties from the choice of PDF set and αs are evaluated

using the combined error PDF set, which takes into account 30 variations of NNLO PDFs

and two variations of αs, following the PDF4LHC recommendations [33] and are found

to range from 0.2% to 2.0%. The uncertainty in the acceptance due to the modelling

of multiple-parton interactions is estimated from the difference in acceptance with and

without multiple-particle interactions for the gluon-gluon fusion simulation sample and

ranges from 2.9% to 25%.
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7 Statistical procedure

A profile-likelihood-ratio test statistic [105] is used to search for a localised excess over a

smoothly falling background in the mZγ distribution of the data, as well as to quantify its

significance and estimate either its production cross section or signal strength.

The extended unbinned likelihood function L(α,θ) is given by the product of a Poisson

term, constructed from the number of observed events, n, the expected event yield, N , and

the probability density function of the invariant mass distribution for each candidate event

i, ftot(m
i
Zγ , α, θ) [22]:

L
(

(α,θ)
∣

∣

∣
{mi

Zγ}i=1..n

)

=
e−N(α,θ)Nn(α,θ)

n!

n
∏

i=1

ftot(m
i
Zγ , α, θ) ×G(θ), (7.1)

where α represents the parameter of interest and θ are the nuisance parameters. The

function G(θ) represents the prior constraints on the nuisance parameters. The expected

event yield N is the sum of the expected number of signal (Nsig), background (Nbkg), and

spurious signal (Nspur·θspur) events, where θspur is the nuisance parameter associated with

the spurious signal. For the high-mass resonance search, the parameter of interest is α =

σ(pp→ X)·B(X → Zγ). The H → Zγ search is performed to extract several parameters of

interest: the signal strength µ = σ(pp→ H)·B(H → Zγ)/(σ(pp→ H)SM ·B(H → Zγ)SM),

σ(pp → H) · B(H → Zγ), and B(H → Zγ) assuming σ(pp → H)SM. The signal strength

µ is related to the number of signal events by Nsig = Ltot × µ × (σ(pp → H)SM · B(H →
Zγ)SM) × ε, where Ltot is the total integrated luminosity, ε is the signal efficiency, and

σ(pp → H)SM · B(H → Zγ)SM is predicted by the SM. The theoretical uncertainties are

taken into account as described in section 6.

The probability density function for the invariant mass (ftot(m
i
Zγ , α, θ)) is built from

the probablity density functions fsig and fbkg describing the signal and background invari-

ant mass distributions, respectively:

ftot(m
i
Zγ , α, θ) =

1

N

∑

c

{[

N
(c)
sig (α,θsig) +N (c)

spur · θ(c)spur

]

× f
(c)
sig (mi

Zγ ,θsig)

+N
(c)
bkg × f

(c)
bkg(mi

Zγ ,θbkg)
}

. (7.2)

The index c indicates the category. The θbkg are nuisance parameters that determine the

shape of the background. The nuisance parameters associated with the uncertainties in the

signal parameterisation, efficiency and acceptance are denoted by θsig. Nuisance parame-

ters associated with uncertainties in the event yield or the mZγ resolution are assigned log-

normal probability density functions, while nuisance parameters associated with the mZγ

signal peak position are assigned Gaussian probability density functions. The nuisance

parameters associated with the spurious signal, θspur, are assigned Gaussian probability

density functions.

The probability that the background can produce a fluctuation greater than or equal

to an excess observed in data is quantified by the p-value of the α = 0 hypothesis, p0, which

can also be expressed in terms of number of Gaussian standard deviations and provides an
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estimate of the local significance of a possible deviation from the expected background. The

global significance, corrected for the effect that a deviation can occur anywhere in the search

region, is estimated taking into account the trial factors [106]. The compatibility between

the data and increasing non-zero values of α is used to set upper limits at the 95% CL on

σ(pp → H/X) · B(H/X → Zγ), B(H → Zγ), and the signal strength for pp → H → Zγ,

respectively, using a modified frequentist (CLs) method [107], by identifying the value α

for which the value of CLs is equal to 0.05.

The results are derived using closed-form asymptotic formulae [105] for masses up to

1.6 TeV. Due to the small number of events at large mZγ in the high-mass resonance search,

the results for mX > 1.6 TeV are derived using ensemble tests. The expected cross-section

limits obtained from the asymptotic formulae agree to better than 10% with those obtained

from the ensemble tests up to mX of 1.7 TeV. At high mX , the observed (expected) central

values are underestimated by 35% (23%) in the asymptotic approach.

8 Results

No evidence of a localised excess is visible near the anticipated Higgs mass mH =

125.09 GeV, as shown in figure 5 where the invariant mass distributions mZγ for the

individual categories of the H → Zγ search are displayed with the background-only fit

performed in the range of 115 GeV< mZγ < 150 GeV. At mH = 125.09 GeV, the observed

p-value is 0.16 under the background-only hypothesis, in which the dominant contribution

comes from the µµ low pTt category. The p-value corresponds to a local significance of 1.0σ.

The expected p-value for a SM Higgs boson at mH = 125.09 GeV is 0.33, corresponding to

a significance of 0.5σ. The observed 95% CL limit on σ(pp→ H) ·B(H → Zγ) is found to

be 6.6 times the SM prediction, corresponding to the limit of 547 fb. Assuming SM Higgs

boson production, the upper limit on the branching ratio of the Higgs boson decay to Zγ

is found to be 1.0%. The expected 95% CL limit on σ(pp → H) · B(H → Zγ) assuming

no (a SM) Higgs boson decay to Zγ is 4.4 (5.2) times the SM prediction.

The invariant mass distributions of events satisfying the high-mass selection are dis-

played for both categories (ee and µµ) in figure 6 and compared to the background-only

fit performed in the fit range 200 < mZγ < 2500 GeV. The highest masses measured in

the eeγ and µµγ final states are 1.47 TeV and 1.57 TeV, respectively. In the fit range, no

significant excess is observed with respect to the background-only hypothesis. The largest

deviation is observed around mX = 960 GeV corresponding to a local significance of 2.7σ.

The global significance, evaluated using the search region of [250–2400] GeV in mass, is

found to be 0.8σ. The observed and expected upper limits on σ(pp→ X)·B(X → Zγ) as a

function of mX are shown in figure 7. The observed limits vary between 88 fb and 2.8 fb for

the mass range from 250 GeV to 2.4 TeV at the 95% CL for a spin-0 resonance produced

via gluon-gluon fusion, while the expected limits range from 61 fb to 2.7 fb in the same

mass range. For a spin-0 resonance produced via vector-boson fusion, the limits are up to

4% lower due to the slightly larger efficiency for this production process.

The results are also interpreted in terms of spin-2 resonances. Observed and expected

upper limits at the 95% CL on σ(pp→ X) ·B(X → Zγ) are derived and shown in figure 8
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Figure 5. The invariant Zγ mass (mZγ) distributions of events satisfying the H → Zγ selection in

data for the six event categories: (a) VBF-enriched, (b) high pγ
T

, (c) ee high pTt, (d) ee low pTt, (e)

µµ high pTt, and (f) µµ low pTt. The points represent the data and the statistical uncertainty. The

solid lines show the background-only fits to the data, performed independently in each category.

The dashed histogram corresponds to the expected signal for a SM Higgs boson with mH = 125 GeV

decaying to Zγ with a rate 20 times the SM prediction. The bottom part of the figures shows the

residuals of the data with respect to the background-only fit.
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Figure 6. The invariant Zγ mass (mZγ) distributions of events satisfying the high-mass selection in

data for the two event categories: (a) ee and (b) µµ. The points represent the data and the statistical

uncertainty. The solid lines show the background-only fit to the data, performed independently in

each category. The bottom part of the figures shows the significance, here defined as the residual of

the data with respect to the background-only fit divided by the statistical uncertainty of the data.
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Figure 7. The observed (solid line) and expected (dashed line) upper limit derived at the 95%

CL on σ(pp→ X) ·B(X → Zγ) at
√
s = 13 TeV as a function of the high-mass spin-0 resonance’s

mass, assuming production via gluon-gluon fusion and using the narrow width assumption (NWA).

For mX > 1.6 TeV results are derived from ensemble tests in addition to the results obtained

using closed-form asymptotic formulae. The shaded regions correspond to the ±1 and ±2 standard

deviation bands for the expected exclusion limit derived using asymptotic formulae.

for both the gg and qq̄ processes. The observed limits for the gg (qq̄) process vary between

117 fb (94 fb) and 3.7 fb (2.3 fb) for the mass range from 250 GeV to 2.4 TeV, while the

expected limits range between 82 fb (66 fb) and 3.6 fb (2.2 fb) in the same mass range.

The limits on σ(pp→ X)·B(X → Zγ) for high-mass resonances are valid for resonances

with a natural width that is small compared to the detector resolution.
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Figure 8. The observed (solid line) and expected (dashed line) upper limit derived at the 95% CL

on σ(pp → X) · B(X → Zγ) at
√
s = 13 TeV as a function of the spin-2 resonance mass produced

via (a) gluon-gluon initial states and (b) qq̄ initial states modelled using the Higgs Characterisation

Model (HCM), using the narrow width assumption (NWA). For mX > 1.6 TeV results are derived

from ensemble tests in addition to the results obtained using closed-form asymptotic formulae. The

shaded regions correspond to the ±1 and ±2 standard deviation bands for the expected exclusion

limit derived using asymptotic formulae.

9 Conclusion

Searches for Zγ decays of the SM Higgs boson (H → Zγ) and of a narrow high-mass

resonance (X → Zγ) in 36.1 fb−1of pp collisions at
√
s = 13 TeV at the LHC have been

performed with the ATLAS experiment. The observed data are consistent with the ex-

pected background. No evidence for the H → Zγ and X → Zγ decays is observed and

upper limits are set on σ(pp → H) · B(H → Zγ) at mH = 125.09 GeV and also on

σ(pp → X) · B(X → Zγ) as a function of mX . For the Higgs mass of 125.09 GeV, the

observed 95% CL upper limit on the σ(pp → H) · B(H → Zγ) is 6.6 times the SM pre-

diction. The search for high-mass Zγ resonances was studied using both the spin-0 and

spin-2 interpretations. The observed limit varies between 88 fb and 2.8 fb for the mass

range from 250 GeV to 2.4 TeV for a spin-0 resonance, where a resonance produced in

gluon-gluon fusion is used as a benchmark model. For spin-2 resonances, LO predictions

from the Higgs Characterisation Model are used as benchmarks. The limits for spin-2 res-

onances range between 117 fb (94 fb) and 3.7 fb (2.3 fb) for the mass range from 250 GeV

to 2.4 TeV for a resonance produced via gluon-gluon (quark-antiquark) initial states. The

corresponding expected limits for this mass range vary between 61 fb and 2.7 fb for a spin-0

resonance, and between 82 fb (66 fb) and 3.6 fb (2.2 fb) for a spin-2 resonance produced

via gluon-gluon (quark-antiquark) initial states.
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W.A. Cribbs148a,148b, M. Cristinziani23, V. Croft108, G. Crosetti40a,40b, A. Cueto85,
T. Cuhadar Donszelmann141, A.R. Cukierman145, J. Cummings179, M. Curatolo50, J. Cúth86,
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C. Ferretti92, F. Fiedler86, A. Filipčič78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172,
K.D. Finelli152, M.C.N. Fiolhais128a,128c,r, L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178,
W.C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, R.R.M. Fletcher124, T. Flick178,
B.M. Flierl102, L.R. Flores Castillo62a, M.J. Flowerdew103, G.T. Forcolin87, A. Formica138,
F.A. Förster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141,
P. Francavilla83, M. Franchini22a,22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59,
M. Frate166, M. Fraternali123a,123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97,
D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58,
O. Gabizon154, A. Gabrielli22a,22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80,
G. Gagliardi53a,53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a,128c, E.J. Gallas122,
B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, Y. Gao77, Y.S. Gao145,g,
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A.G. Myagkov132,al, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122,
R. Nagai69,ae, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32,
Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45,
R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7,
H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a,123b, M. Negrini22a, S. Nektarijevic108,
C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32,am,
M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97,
R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132,al, I. Nikolic-Audit83,
K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c,
R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31,
M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47,
M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O’connor25, D.C. O’Neil144,
A.A. O’Rourke45, V. O’Shea56, F.G. Oakham31,d, H. Oberlack103, T. Obermann23, J. Ocariz83,
A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, A. Oh87, S.H. Oh48,
C.C. Ohm16, H. Ohman168, H. Oide53a,53b, H. Okawa164, Y. Okumura157, T. Okuyama69,
A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino34a, D. Oliveira Damazio27,
A. Olszewski42, J. Olszowska42, A. Onofre128a,128e, K. Onogi105, P.U.E. Onyisi11,aa, H. Oppen121,
M.J. Oreglia33, Y. Oren155, D. Orestano136a,136b, N. Orlando62b, R.S. Orr161, B. Osculati53a,53b,∗,
R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121,
A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a,
N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13,
S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a,40b, S. Palestini32,
M. Palka41b, D. Pallin37, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini126a,126b,
J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52,
Th.D. Papadopoulou10, K. Papageorgiou9,s, A. Paramonov6, D. Paredes Hernandez179,
A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a,53b, J.A. Parsons38, U. Parzefall51,
V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80,
S. Pataraia86, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a,128b,
S.V. Peleganchuk111,c, O. Penc129, C. Peng35a,35d, H. Peng36a, J. Penwell64, B.S. Peralva26b,
M.M. Perego138, D.V. Perepelitsa27, F. Peri17, L. Perini94a,94b, H. Pernegger32,
S. Perrella106a,106b, R. Peschke45, V.D. Peshekhonov68,∗, K. Peters45, R.F.Y. Peters87,
B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petroff119,
E. Petrolo134a, M. Petrov122, F. Petrucci136a,136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b,
F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79,
M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87,
M. Pinamonti135a,135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27,
V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen84, R. Poggi123a,123b,
L. Poggioli119, I. Pogrebnyak93, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a,40b,
R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommès32, D. Ponomarenko100,
L. Pontecorvo134a, G.A. Popeneciu28d, S. Pospisil130, K. Potamianos16, I.N. Potrap68,
C.J. Potter30, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16,
S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100, K. Prokofiev62c,
F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119,
J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121,
V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radloff118, P. Rados91, F. Ragusa94a,94b,
G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5,
M.G. Ratti94a,94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87,
M. Raymond32, A.L. Read121, N.P. Readioff58, M. Reale76a,76b, D.M. Rebuzzi123a,123b,
A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17,
J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a,35d, M. Rescigno134a, S. Resconi94a,

– 41 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
2

E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111,c, P. Reznicek131, R. Rezvani97,
R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103,
C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a,123b, M. Rimoldi18,
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107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States

of America
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University

Nijmegen/Nikhef, Nijmegen, Netherlands
109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam,

Netherlands
110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112 Department of Physics, New York University, New York NY, United States of America
113 Ohio State University, Columbus OH, United States of America
114 Faculty of Science, Okayama University, Okayama, Japan
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK,

United States of America
116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
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