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Abstract The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris 

reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a 

sixth protein component, variably referred to in the literature as helix W, subunit W 

or protein W.  The position of this protein prevents closure of the LH1 ring, possibly to 

allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 

complex in analogous fashion to the well-studied PufX protein from Rhodobacter 

sphaeroides.  The identity and function of helix W have remained unknown for over 

13 years; here we use a combination of biochemistry, mass spectrometry, molecular 

genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris 

CGA009.  Protein W shares key conserved sequence features with PufX homologs, and 

although a deletion mutant was able to grow under photosynthetic conditions with 

no discernible phenotype, we show that a tagged version of protein W pulls down the 

RC-LH1 complex.  Protein W is not encoded in the photosynthesis gene cluster and our 

data indicate that only approximately 10% of wild-type Rps. palustris core complexes 

contain this non-essential subunit; functional and evolutionary consequences of this 

observation are discussed.  The ability to purify uniform RC-LH1 and RC-LH1-protein 
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W preparations will also be beneficial for future structural studies of these bacterial 

core complexes. 

 

Graphical abstract 

 

 

Highlights 

 Identification of the protein W subunit of the Rps. palustris RC-LH1 core 

complex. 

 The rpa4402 locus encoding protein W is not in the PGC. 

 Protein W is present in only a sub-population of core complexes. 

 Protein W is dispensable for photosynthetic growth. 

 Pure plus/minus protein W core complex preparations will aid structural 

studies. 

 

Keywords: Photosynthesis, Rhodopseudomonas palustris, reaction center-light 

harvesting 1 (RC-LH1) core complex, helix W, RPA4402, PufX. 

 

Abbreviations: reaction center-light harvesting 1 (RC-LH1); Rps. 

(Rhodopseudomonas); Rba. (Rhodobacter); Rsp. (Rhodospirillum); matrix-assisted 

laser desorption/ionisation-time-of-flight (MALDI-TOF) mass spectrometry (MS); 

overlap-extension polymerase chain reaction (OLE-PCR); bacteriochlorophyll (BChl); n-

DŽĚĞĐǇů ɴ-D-ŵĂůƚŽƐŝĚĞ ;ɴ-DDM); column volumes (CV); immobilised metal affinity 

chromatography (IMAC); ion-exchange chromatography (IEC); size exclusion 

chromatography (SEC); atomic force microscopy (AFM); photosynthesis gene cluster 
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(PGC); transmembrane helix (TMH); ATP-binding cassette (ABC); transmission electron 

microscopy (TEM). 

 

1.  Introduction 

 Purple phototrophic bacteria perform anoxygenic photosynthesis where, 

following photon absorption by bacteriochlorophyll (BChl) pigments in the light 

harvesting (LH) complexes, excitation energy is passed to the special pair BChls in the 

reaction center (RC). Subsequently, cyclic electron flow between the RC, cytochrome 

bc1 complex and cytochrome c, generates a transmembrane proton gradient that is 

used to power ATP synthesis [1].  In the photosynthetic membranes of these bacteria, 

the peripheral antenna and LH1 complexes surround the RC in an arrangement 

optimized for efficient energy capture and transfer; the encirclement of the RC by the 

LH1 antenna is termed the RC-LH1 core complex [2].  The core complexes of some 

purple bacterial species such as Rhodobacter (Rba.) sphaeroides and Rba. capsulatus 

contain a PufX polypeptide.  The 8 Å structure of the dimeric RC-LH1-PufX complex of 

Rba. sphaeroides shows that PufX associates with the extrinsic domain of the RC-H 

subunit, and with the N-ƚĞƌŵŝŶŝ ŽĨ LHϭ ɲϭ ĂŶĚ ɴϭ ŽŶ ƚŚĞ ĐǇƚŽƉůĂƐŵŝĐ ƐŝĚĞ ŽĨ ƚŚĞ 

membrane, forming a pore in the LH1 ring to permit shuttling of ubiquinone and 

ubiquinol between the RC and the cytochrome bc1 complex [3-6]. 

 The 4.8 Å resolution X-ray crystal structure of the Rps. palustris core complex 

showed that the RC is surrounded by an incomplete elliptical LH1 ring consisting of 15 

ƉĂŝƌƐ ŽĨ ƚƌĂŶƐŵĞŵďƌĂŶĞ ŚĞůŝĐĂů ɲ- and ɴ-apoproteins [7].  This arrangement is in 

contrast to the Rhodospirillum (Rsp.) rubrum and Thermochromatium (T.) tepidum 

core complexes, which have a complete closed ring of 16 LHϭ ɲɴ-heterodimers around 

the RC [8-10].  In Rps. palustris transmembrane helix W prevents closure of the LH1 

ring round the RC and LH1 consists of 15 LH1 ɲɴ-heterodimers [7] (Figure 1).  The 

location of helix W and the resulting break in the LH1 outer ring are positioned 

adjacent to the secondary electron acceptor ubiquinone (UQB) binding site in the RC 

[7].  High-resolution atomic force microscopy (AFM) images of native Rps. palustris 

membranes also reveal a topography gap in the elliptical LH1 assembly around the RC, 

which the authors attribute to the W subunit [11].  The same study additionally 

showed that the location of this gap is random with respect to the imposed RC axis,  
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Figure 1.  X-ray crystal structure of the Rps. palustris core complex showing the 

position of the W subunit. This figure was made using the data from the 4.8 Å 
resolution RC-LH1 structure of Roszak et al. [7] (PDB ID: 1PYH).  (A) Schematic model 
of the RC-LH1 core complex viewed perpendicular to the membrane plane along the 
pseudo-twofold-axis of the RC and (B) as a narrow section viewed parallel to the 
membrane plane with the cytoplasmic face at the bottom.  Transmembrane helices 
are depicted as ribbons and bacteriochlorophylls/bacteriopheophytins are 
represented as their respective macrocycles and are coloured green.  Core complex 
ƐƵďƵŶŝƚƐ ĂƌĞ ƐŚŽǁŶ ŝŶ ƌĞĚ͕ LHϭ ɲ ƐƵďƵŶŝƚƐ ŝŶ ďůƵĞ͕ LHϭ ɴ ƐƵďƵŶŝƚƐ ŝŶ ǁŚŝƚĞ͕ ĂŶĚ ƚŚĞ W 
subunit in yellow. 
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rather than being restricted to the periapsis of the core complex as seen in the X-ray 

structure.  Whether protein W performs a PufX-like role in allowing 

ubiquinone/ubiquinol exchange or has another function is open to debate. 

 Matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) mass 

spectrometry (MS) of purified Rps. palustris RC-LH1 complexes revealed a sixth protein 

component with a mass of 10,707 Da [7].  However, this protein was resistant to 

Edman sequencing and so the identity of the helix W subunit remained unknown.  

Here, we purified the RC-LH1 core complex from the genome sequenced CGA009 

strain of Rps. palustris and, in addition to the LH1 polypeptides and the RC L (light), M 

(medium) and H (heavy) subunits, we observed a sixth protein on stained SDS-PAGE 

gels.  Using a combination of in-solution and in-gel digestion followed by nano-flow 

liquid chromatography coupled on-line to a mass spectrometer we identified this 

protein as RPA4402.  RPA4402 is a good candidate for protein W, as its predicted 

molecular mass is similar to that of the protein identified in the Rps. palustris 2.1.6 

core complex by Roszak et al. [7].  Deletion of rpa4402 did not result in significant 

retardation of either microoxic growth in the dark or photoheterotrophic growth, 

consistent with the result that the tagged protein pulls down only a small proportion 

of the total core complexes from purified membranes, suggesting only a sub-

population of core complexes contain protein W. 

 

2.  Materials and methods 

 

2.1.  Growth of Rhodopseudomonas palustris 

 Rps. palustris CGA009 was grown under microoxic conditions in the dark at 30 

oC with orbital shaking (150 rpm) in either PYE (5 g.l-1 each of peptone, yeast extract 

and succinate) or M22+ with 0.1% casamino acids [12] media supplemented with 20 

ʅŐ.ml-1 chloramphenicol.  For phototrophic growth, screw-capped, airtight vessels 

(ranging in size from 17 ml - 8 L depending on the experiment) completely filled with 

M22+ medium were illuminated with 30-50 ʅŵŽů.m-2.s-1 white light provided by 

Osram 116 W halogen bulbs and cultures were grown at room temperature with 

agitation using magnetic stir bars.  Growth was monitored as the optical density at 
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680 nm (OD680) against a medium blank.  For growth on plates media contained 1.5% 

agar and 80 ʅŐ.ml-1 kanamycin and/or 10% sucrose as appropriate. 

 

2.2.  Strain generation 

 Strains, primers and plasmids used in this study are listed in Tables 1, S1 and 

S2 respectively.  PCRs were performed using Q5 High-Fidelity DNA Polymerase (New 

England Biolabs, UK).  To delete all but the start and stop codons of the putative 

protein W encoding rpa4402 open reading frame, approximately 400 bp fragments of 

upstream and downstream flanking DNA were amplified by PCR with primer pairs 

W_KO_Up_F/R and W_KO_Down_F/R respectively.  These fragments were joined by 

overlap-extension (OLE)-PCR with primer pair W_KO_Up_F/W_KO_Down_R resulting 

in an approximately 1.0 kb product, which was digested and cloned into the BamHI 

and HindIII sites of the allelic exchange suicide vector pK18mobsacB generating 

plasmid pK18mobsacB-WKO.  Conjugative transfer of the plasmid from Escherichia coli 

S17-1 to Rps. palustris was performed as described previously for Rba. sphaeroides 

[13] with the exception that selection of first transconjugants was performed with 80 

ʅŐ.ml-1 kanamycin on PYE agar.  “ƵĐĐĞƐƐĨƵů ŐĞŶĞƌĂƚŝŽŶ ŽĨ ƐƚƌĂŝŶ ȴƌpa4402 was 

confirmed using PCR with primers W_check_F/R and automated DNA sequencing 

(GATC Biotech, Germany).  OLE-PCR was used to generate constructs for adding an N- 

or C-terminal 10×His tag to RPA4402.  To add an N-terminal tag, three PCR products 

amplified with primer pairs W_KO_Up_F/R, W_N-His_F/R and W_N-

His_Down_F/W_KO_Down_R were joined using primers 

W_KO_Up_F/W_KO_Down_R.  For C-terminal tagging the three PCR products were 

amplified with W_KO_Up_F/R, W_C-His_F/R and W_C-His_Down_F/W_KO_Down_R.  

OLE-PCR products were cloned into the BamHI and HindIII sites of pK18mobsacB 

generating plasmids pK18mobsacB-HisW and pK18mobsacB-WHis, which were 

transferred to Rps. palustris as above.  Sequence verification of the tagged strains His-

RPA4402 and RPA4402-HŝƐ ǁĂƐ ƉĞƌĨŽƌŵĞĚ ĂƐ ĨŽƌ ȴƌpa4402. 
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Table 1.  Strains used in this study. 

Species and strain Description Source/Reference 

Escherichia coli    

JM109 Cloning strain. Promega, UK 

S17-1 Conjugative strain for transfer of 

plasmids to Rps. palustris. 

[14] 

Rhodopseudomonas 

palustris 

  

Wild-type Strain CGA009. Prof. D. J. Kelly* 

ȴrpa4402 Unmarked deletion of rpa4402. This study 

His-RPA4402 Sequence encoding 10̵His tag added 

in frame at the start of rpa4402. 

This study 

RPA4402-His Sequence encoding 10̵His tag added 

in frame at the end of rpa4402. 

This study 

*Department of Molecular Biology and Biotechnology, University of Sheffield, UK. 

 

 

2.3.  Absorbance spectroscopy and deconvolution of spectra 

 Absorbance spectra of Rps. palustris cells, membranes and core complexes 

were acquired at room temperature using a Cary 60 UV-Vis spectrophotometer 

(Agilent Technologies) with appropriate media or buffer baseline correction.  Spectra 

were deconvoluted in Microsoft Excel by fitting spectra of purified RC-LH1 complexes 

(see below) or peripheral light-harvesting complexes (a by-product of the RC-LH1 

purification) to the spectra collected at various stages of preparation to estimate their 

RC-LH1 content.  This was achieved by adaptation of a spreadsheet available online at 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html. 

 

2.4.  RC-LH1 core complex purification 

 Photosynthetically grown Rps. palustris cells were resuspended in 20 mM 

HEPES-NaOH pH 7.8 (buffer A) and broken by three passages through a French 

pressure cell at 18,000 psi.  The lysate was applied directly to a 20/40% (w/w) 

discontinuous sucrose gradient, which was centrifuged at 100,000 × g at 4 oC for 4 h.  
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Membranes were harvested from the 20/40% interface, diluted 2-fold with buffer A 

and pelleted by centrifugation at 235,000 x g for 60 min.  The pellet was re-suspended 

in buffer A to OD875 = 60 and solubilized in 3% n-ĚŽĚĞĐǇů ɴ-D-maltoside (ɴ-DDM) at 4 

oC for 30 min in the dark with stirring.  Non-solubilized material was pelleted at 

211,000 x g for 60 min and the supernatant applied to a 20/21.25/22.50/23.75/25% 

(w/w) discontinuous sucrose gradient in buffer A containing 0.03% ɴ-DDM.  After 

centrifugation at 125,000 x g for 16 h the core complex band was harvested and 

applied to a 2 x 10 cm DEAE-Sepharose ion exchange chromatography (IEC) column 

(GE Healthcare) pre-equilibrated with buffer A plus 0.03% ɴ-DDM and run with a linear 

gradient of 0-400 mM NaCl.  The core complex, which eluted at ~250 mM NaCl, was 

concentrated to 1 ml using a Centriprep YM-50 ultrafiltration device (Millipore) and 

further purified by size-exclusion chromatography (SEC) on a Superdex 200 16/60 

column (GE Healthcare) at 0.4 ml.min-1. 

 

2.5.  In-solution trypsin digestion 

 Isolated core complex was buffer-exchanged into 100 mM triethylammonium 

bicarbonate pH 8.5 (TEAB, Sigma-Aldrich) using a centrifugal ultrafiltration device 

(Microcon Ultracel YM-10, Millipore) and concentrated to 2 g.l-1 protein (Bradford 

assay).  ϭϱ ʅl aliquots were solubilized separately in (1) 0.2% ProteaseMax surfactant 

(PƌŽŵĞŐĂͿ͕ ϱ ŵM DTT͕ ƚŽƚĂů ǀŽůƵŵĞ ϮϬ ʅl, with incubation at 56 °C for 20 min; (2) 1% 

“D“͕ ϱ ŵM DTT͕ ƚŽƚĂů ǀŽůƵŵĞ ϮϬ ʅl, with incubation at 37 °C for 30 min; (3) 60% 

ŵĞƚŚĂŶŽů͕ ƚŽƚĂů ǀŽůƵŵĞ Ϯϵ ʅl, with vortexing at room temperature for 30 sec.  For 

digestion, ϭ͘Ϯ ʅŐ ƚƌǇƉƐŝŶ ;ƉŽƌĐŝŶĞ͕ ŵŽĚŝĨŝĞĚ͕ M“ ŐƌĂĚĞ͕ Sigma-Aldrich) was added in 

;ϭͿ ϲϬ ʅl͕ ;ϮͿ ϭϴϬ ʅl ĂŶĚ ;ϯͿ ϭ͘Ϯ ʅl 100 mM TEAB followed by overnight incubation at 

37 °C.  Digestion (1) was treated with the addition of 0.5% TFA followed by incubation 

at room temperature for 5 min to hydrolyse the ProteaseMax surfactant.  This sample 

was then desalted using a home-made Poros R2 spin column [15].  Digestion (2) was 

processed to remove SDS according to Hollingshead et al. [15] and digestion (3) was 

dried by vacuum centrifugation. 

 

2.6.  In-gel trypsin and pepsin digestion 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 

 

 Purified core complex proteins were precipitated using a 2-D clean-up kit (GE 

HĞĂůƚŚĐĂƌĞͿ ĨŽůůŽǁŝŶŐ ƚŚĞ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů ƉƌŝŽƌ ƚŽ ĂŶĂůǇƐŝƐ ďǇ “D“-PAGE.  

Protein bands, stained with Coomassie Blue, were excised and subjected to trypsin 

digestion according to Pandey et al. [16].  For in-gel pepsin digestion, this method was 

modified by substituting 0.2% formic acid as the post-alkylation wash and digestion 

solvent. 

 

2.7.  Protein identification by nano-flow LC-MS/MS 

 Digested samples were redissolved in 0.1% TFA, 3% acetonitrile and analysed 

by nano-flow liquid chromatography (Ultimate 3000 system, Thermo Scientific) 

coupled on-line to a mass spectrometer (Amazon ion trap, Bruker or Q Exactive HF 

quadrupole-orbitrap, Thermo Scientific).  For protein identification, Amazon MS data-

files were first converted to Mascot Generic File (MGF) format using a script provided 

by Bruker.  Amazon MGF and Q Exactive RAW data-files were uploaded into Byonic v. 

2.9.38 (Protein Metrics) for searching against the Uniprot reference proteome 

database for Rps. palustris (ID: UP000001426, 4811 entries, 9July 2016). 

 

2.8.  His-tagged RPA4402 pulldowns 

 Phototrophically grown Rps. palustris cells (N- or C-terminal His-tagged strains) 

were resuspended in 20 mM Tris-HCl pH 8.0 (buffer B) and broken by two passages 

through a French pressure cell at 18,000 psi.  The cell lysate was applied directly to a 

15/40 % (w/w) discontinuous sucrose gradient, which was centrifuged at 27,000 rpm 

(~85,000 × g) in a Beckman Type 45 Ti rotor at 4 oC for 10 h.  Membranes were 

harvested from the 15/40% interface and solubilized in 2% ɴ-DDM in 50 ml buffer B 

containing 200 mM NaCl at 4 oC for 1 hr in the dark.  The solubilized membranes were 

applied to a 5 ml HisTrap HP column (GE Healthcare) pre-equilibrated with 5 column 

volumes (CV) of buffer B containing 200 mM NaCl, 20 mM imidazole and 0.03% ɴ-DDM 

(IMAC buffer) at a flow rate of 5 ml.min-1 and the flow-through was retained (see 

below).  The column was washed sequentially with 10 CV buffer B with 20 mM then 

40 mM imidazole.  Protein that remained bound was eluted with 3 CV buffer B plus 

250 mM imidazole and collected as 1 ml fractions.  RC-LH1 containing fractions were 

pooled, concentrated to 1 ml (as above) and injected onto a Superdex 200 16/60 SEC 
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column pre-equilibrated with buffer B containing 200 mM NaCl and 0.03% ɴ-DDM.  

Protein was eluted over 150 ml at a flow rate of 0.8 ml.min-1 and fractions enriched in 

RC-LH1 with a ratio of their absorbance at 880 and 803 nm (A880:A803) greater than 

3.5 were retained for further analysis. 

 Core complexes not pulled down by His-tagged RPA4402 were purified from 

the flow-through by IEC on a 50 ml DEAE-Sepharose column pre-equilibrated with 

buffer B plus 0.03% ɴ-DDM (DEAE buffer).  The flow-through was diluted four-fold with 

DEAE buffer to reduce [NaCl] to <50 mM and applied to the column at 5 ml.min-1.  The 

column was washed with 2 CV DEAE buffer followed by 5 CV DEAE buffer plus 50 mM 

NaCl.  RC-LH1 complexes were eluted by a linear gradient of 50 to 250 mM NaCl whilst 

collecting 10 ml fractions.  Fractions containing RC-LH1 complexes were diluted to 

reduce [NaCl] to <50 mM and reapplied to the column for two further rounds of 

enrichment.  RC-LH1 containing fractions with an A880:803 ratio of ш2 were pooled 

and further purified by SEC as described above. 

 

2.9.  Immunoblotting 

 To detect the His-tag on RPA4402, immunoblots with an anti-6-His primary 

antibody (A190-114A, Bethyl Laboratories, USA) were performed and visualized 

following the method described in Grayson et al. [17], with modifications as follows: 

proteins were transferred to methanol-activated polyvinylidene difluoride 

membranes in carbonate transfer buffer (10 mM NaHCO3, 3 mM Na2CO3, 10%) 

methanol); membranes were blocked in 50 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.2 % 

Tween-20 and 5% skimmed milk powder; antibodies were diluted in 50 mM Tris-HCl 

pH 7.6, 150 mM NaCl and 0.05% Tween-20. 

 

2.10.  Ni-NTA nanogold labelling of core complexes 

Immobilised metal affinity chromatography (IMAC) purified RC-LH1 complexes 

(0.083 µM) were incubated in a three-fold molar excess of Ni-NTA nanogold (0.25 µM) 

(Nanoprobes, USA) in the dark for 1 hr at room temperature in a total volume of 1 ml 

in 20mM Tris-HCů ƉH ϴ͕ ϮϬϬ ŵM NĂCů ĂŶĚ Ϭ͘Ϭϯ й ǁͬǀ ɴ-DDM.  Excess nanogold was 

removed by dilution to 15 ml in the same buffer followed by re-concentration to ~250 

µl in a 100,000 MWCO spin filter (Millipore) three times. 
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2.11.  Negative stain transmission electron microscopy 

Nanogold labelled complexes were diluted to an OD875 of 0.3 and 5 µl was 

loaded onto freshly glow-discharged carbon coated copper grids.  The grids were 

rinsed twice in distilled water and once in 0.75% (w/v) uranyl acetate solution (UA).  

Grids were stained by incubation for 2 min in UA, dried under vacuum and imaged in 

a Philips CM100 transmission electron microscope at 52,000x magnification.  Images 

were processed and cropped using ImageJ [18]. 

 

2.12.  Bioinformatics and structural modelling 

 Homologs of RPA4402 were identified using BLAST [19] and sequence 

alignments were performed using CLUSTAL Omega [20].  The TMHMM Server v.2.0 

[21] was used to predict transmembrane helices (TMHs).  Hydrophobicity profiles 

were performed using the ProtScale/Transmembrane Tendency application in 

www.expasy.org [22].  Structural models of RPA4402 were generated using the 

QUARK [23] and Robetta [24] servers. 

 

3.  Results 

 

3.1.  Mass spectrometric identification of RPA4402 as a candidate for helix W 

 Photosynthetic membranes were isolated from WT Rps. palustris cells by rate 

zonal centrifugation.  RC-LH1 core complexes were then purified after a further rate 

zonal centrifugation step followed by anion exchange and size exclusion 

chromatography.  The absorbance spectra in Figure 2A show the expected reduction 

in the LH2/3 B800 signal and concomitant increase in the B875 peak in the purified 

core complexes.  The difference in absorbance profiles around 500 nm reflect the 

carotenoid composition ± LH2/3 complexes.  This preparation was digested with 

trypsin by three different in-solution methods.  Analysis of the resultant peptides by 

nano-flow LC-MS/MS and database searching enabled the identification of the 

abundant, well-characterized components: the three reaction center subunits (L, M 

and H) and two LH1 polypeptides (ɲ ĂŶĚ ɴ), as summarized in Table S3.  Of the two 

surfactant-based methods ProteaseMax, which is specifically designed to enhance 
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trypsin efficiency, identified all five proteins while LH1-ɲ ǁĂƐ ŶŽƚ ŝĚĞŶƚŝĨŝĞĚ after 

digestion in SDS.  Proteolysis in 60% methanol however, enabled the detection of 

peptides derived from additional proteins, presumably minor contaminants of the 

preparation, together with an uncharacterized protein RPA4402 as a significant 

component of the sample.  Analysis of the core complex by SDS-PAGE, shown in Figure 

2B, revealed a protein band migrating above the LH1 polypeptides, which was 

identified by in-gel digestion and nano-flow LC-MS/MS as comprising RPA4402 as its 

highest-scoring constituent (Table S3).  Parallel analysis of core complex from an 

rpa4402 deletion strain (see Figure 2C and section 3.5) at 2x protein loading showed 

the absence of a band at the RPA4402 position (Figure 2D); in-gel digestion and LC-

MS/MS of this region of the gel revealed only minor contaminants, degradation 

products of RC-H and a presumed LH1-ɲɴ heterodimer (Table S3).  RPA4402 has a 

predicted molecular mass of 10,498 Da, close to the 10,707 Da size of the protein 

identified in the core complex preparation from Rps. palustris 2.1.6 [7].  The other 

non-RC-LH1 proteins identified by LC-MS/MS (Table S3) either have known functions 

(e.g. AtpG (RPA0177) and PetB (RPA1193)), are too big (> 175 amino acids/18 kDa) to 

be candidates for protein W (RPA3961, RPA1961, RPA4760 and RPA2303) or do not 

have any predicted transmembrane helices (RPA1495) (Table S4). 

PufX in Rhodobacter spp. is truncated in vivo by the excision of both M1 and 

the C-terminal 12 (Rba. sphaeroides) or 9 (Rba. capsulatus) amino acids [25], 

decreasing the length to 69 or 68 residues, respectively.  The rpa4402 gene encoding 

102 amino acids would give a potential length difference of around 30 residues 

compared to processed PufX, so we investigated the possibility that truncation of 

RPA4402 could generate a functional PufX ortholog.  Tryptic digestion of RPA4402 only 

produces one internal proteotypic peptide with a significant score, shown in Figure 

S1A, consistent with its observed resistance to this protease under aqueous solution 

conditions (see above).  However, sequence coverage of RPA4402 was increased to 

four peptides by in-gel pepsin digestion to confirm an intact C-terminus (Figure S1B).  

Coverage could not be extended to the N-terminus beyond V13 because pepsin (and 

chymotrypsin) would generate fragments from this part of the sequence that are too 

small for detection in proteomic analysis.  Nevertheless, the results show that 
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RPA4402 is at least 90 amino acids in length and, in contrast to PufX, it is not truncated 

at the C-terminus. 

 

 

 

 

 

 

Figure 2.  Analyses of photosynthetic membranes and RC-LH1 core complexes by 

spectroscopy and SDS-PAGE.  (A) Room temperature absorbance spectra of wild-type 
(WT) photosynthetic (PS) membranes (blue) and isolated RC-LH1 complexes (red).  (B) 
SDS-PAGE of WT RC-LHϭ ĐŽŵƉůĞǆĞƐ ;ϭϬ ʅŐ ƉƌŽƚĞŝŶͿ ƐƚĂŝŶĞĚ ǁŝƚŚ “ǇƉƌŽ RƵďǇ ;ŝŶǀĞƌƚĞĚ 
fluorescence image).  (C)  Room temperature absorbance spectra of WT (purple) and 
ȴƌƉĂϰϰϬϮ ƐƚƌĂŝŶ ;ŐƌĞĞŶͿ RC-LH1 complexes. (D)  SDS-PAGE ŽĨ ȴƌƉĂϰϰϬϮ ƐƚƌĂŝŶ RC-LH1 
ĐŽŵƉůĞǆĞƐ ;ϮϬ ʅŐ ƉƌŽƚĞŝŶͿ ƐƚĂŝŶĞĚ ǁŝƚŚ “ǇƉƌŽ RƵďǇ ;ŝŶǀĞƌƚĞĚ ĨůƵŽƌĞƐĐĞŶĐĞ ŝŵĂŐĞͿ͘ 
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3.2.  RPA4402 is conserved in Rps. palustris strains 

Unlike the pufX gene of Rhodobacter spp., rpa4402 is not located within the 

Rps. palustris photosynthesis gene cluster (PGC), but in a region of the genome 

occupied by ATP-binding cassette (ABC) transporter subunits (Figure 3).  Examination 

of this same region in six other other Rps. palustris strains revealed orthologs of 

rpa4402, and sequence alignments (Figure 4) show identities of 65-99% with RPA4402, 

indicating both the genomic location and sequence of protein W are highly conserved 

in Rps. palustris spp. 

 

3.3.  RPA4402 is associated with only a sub-population of RC-LH1 core complexes 

To further demonstrate that RPA4402 is a component of the core complex, 

solubilized membranes from strains in which the protein was tagged with a 10̵His tag 

at either the N- (His-RPA4402) or C-terminus (RPA4402-His) (Figure S2) were used to 

try to co-purify RC-LH1.  Both strains grew comparably to the WT under phototrophic 

conditions (Figure S3).  When membranes from the RPA4402-His strain were applied 

to an IMAC column, a purple band formed at the top of the column and remained 

bound throughout the wash steps until the protein was eluted (Figure 5A). 

Deconvolution of the absorbance spectra of the eluate versus the flow-through using 

the spectra of the individual purified components allowed us to estimate that 

approximately 10% of the total RC-LH1 complexes were pulled down by the His-tag on 

RPA4402 (Figure S4).  Immunodetection of the His-tag on RPA4402 showed the 

protein was present in the load and elution but absent from the flow-through (Figure 

5B), and SDS-PAGE analysis of the eluate (Figure 5C) shows a band at approximately 

the correct predicted molecular weight (11.9 kDa) for RPA4402-His.  RPA4402-His 

remained associated with RC-LH1 complexes purified further by SEC (Figure 5D).  

Notably, RPA4402-His was clearly visible by Coomassie Blue staining, whereas 

untagged RPA4402 in WT core complex preparations was only faintly stained by 

Coomassie Blue, with efficient staining requiring Sypro Ruby (Figure 2B).  These data 

suggest that only a sub-population of core complexes contains a protein W 

component, and using the tagged strain selectively enriches core complexes 

containing RPA4402 so that it is in a 1:1 ratio with each of the RC subunits, explaining 

the easier visualization by Coomassie Blue staining.  Consistent with this hypothesis,  
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Figure 3.  The rpa4402 gene is not part of Rps. palustris photosynthesis gene cluster (PGC).  (A) The chromosome of Rps. palustris strain CGA009 
[26].  The rpa4402 gene (position 4958088-4958396) and the ~55-kb PGC (rpa1505-rpa1554, position 1671137-1725322) are indicated with 
arrows.  The scale (in bp) is indicated around the circumference of the circle.  (B) Zoomed in genomic region (position 4954639-4962005) around 
the rpa4402 locus.  Upstream of rpa4402, rpa4399-rpa4401 encode subunits of a branched chain amino acid ABC-transporter (green).  The 
downstream rpa4403 and rpa4404 genes encode a putative morphinone/N-ethylmaleimide reductase (red) and the substrate-binding protein 
of an ABC-transporter for glycerol (blue).  The corresponding region of the chromosome in other Rps. palustris strains (see figure 4 legend for 
details) reveals conservation of the rpa4402 locus.  Putative pseudogenes are shown in grey. 
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Figure 4.  Alignment of RPA4402 with homologs from other Rhodopseudomonas spp. Sequence identities (%) relative to Rps. palustris CGA009 
used in this study are shown on the right, with identical amino acids (*), and conservative (:) and semi-conservative (.) replacements indicated 
below.  The proteins included are from strains: Rps. palustris DX-1, Rps. palustris TIE-1, Rps. palustris BisB5, Rps. palustris HaA2, Rps. palustris 
DSM123 and Rhodopseudomonas sp. AAP120.  
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Figure 5.  RPA4402-His pulls down RC-LH1.  (A) The HisTrap HP IMAC column (GE 
Healthcare) remained coloured after loading of solubilized RPA4402-His membranes 
and washing with 40 mM imidazole.  (B) Immunodetection of the His-tag shows 
RPA4402 is present in the load (L) and elution (E) fractions but not the flow-through 
(F/T).  (C) Coomassie Blue stained SDS-PAGE of the concentrated IMAC eluate.  The 
RC, LH1 and RPA4402 core complex subunits are labelled.  (D) Further purification of 
RC-LH1-RPA4402-His by SEC.  (E) Purification of RC-LH1 core complexes lacking 
RPA4402-His from the IMAC flow-through by IEC and SEC. 
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the remaining approximately 90% of RC-LH1 core complexes purified from the flow-

through by IEC and SEC did not contain any RPA4402 when analysed by either SDS-

PAGE or immunoblotting (Figure 5E). 

Conversely to the situation with C-terminally His-tagged RPA4402, no coloured 

protein remained bound when solubilized membranes from N-terminally His-tagged 

RPA4402 (His-RPA4402) were applied to an IMAC column (Figure S5A), and all the RC-

LH1 was present in the flow-through (determined by deconvolution of absorbance 

spectra as described above, data not shown).  This observation indicates that the N-

terminal tag either prevents production of RPA4402 or its incorporation into core 

complexes, or that the tagged protein is present but the tag is not available to bind to 

the column, or that the N-terminus is cleaved removing the tag.  To investigate which 

of these scenarios may be true, solubilized membranes, the IMAC flow-through and 

eluate, and core complexes purified from the flow-through by IEC and SEC were 

analysed by SDS-PAGE and immunoblots probed with an anti-His antibody (Figure S5B, 

C).  No anti-His signals corresponding to His-RPA4402 were detected in any of the 

IMAC fractions, and pertinently neither in the solubilized membranes.  In addition, 

there was no evidence of an RPA4402 band on a stained SDS-gel of IEC/SEC-purified 

core complexes from the IMAC flow-through.  Taken together, these findings imply 

that His-RPA4402 is not produced, otherwise it would be detectable in the stained 

SDS-gel either with, or after truncation without, the N-terminal His-tag. 

Absorption spectra of the IMAC-binding core complexes containing RPA4402-

His (Figure. 5D) and the flow-through fraction (Figure 5E) were compared after 

normalisation to the RC pheophytin signal at 760 nm, as shown in Figure S6.  LH1 BChl 

values of 1.024 and 1.100 respectively imply that core complexes containing RPA4402-

His have a lower LH1 BChl content than those in the IMAC flow-through.  This finding 

therefore suggests the possibility that core complexes lacking RPA4402 have an 

ĂĚĚŝƚŝŽŶĂů LHϭɲɴ ƉĂŝƌ͘ 

 

3.4.  Electron microscopy 

 IMAC and SEC purified RC-LH1-RPA4402-His core complexes were labelled with 

gold nano-beads and visualized by negative stain transmission electron microscopy 

(TEM).  Figure 6 shows that the majority of complexes are elliptical and associated 
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with a single nano-bead at the periphery of the complex, which is consistent with the 

expected position of the His-tag on RPA4402.  Measurement of the complexes gives 

an average diameter of 13.4 ± 1.5 nm (n = 29), the expected size of the RC-LH1 complex 

[7].  In the light of this evidence that RPA4402 is associated with the Rps. palustris core 

complex we henceforth refer to it as protein W. 

 

 

 

 

 

Figure 6.  TEM of nanogold labelled core complexes.  Core complexes labelled with 5 
nm Ni-NTA Nanogold, negatively stained with uranyl acetate and imaged at 52 000 x 
magnification.  Each panel is cropped from the wide-field images at 50 x 50 nm to 
show multiple objects of similar composition and an average diameter of 13.4 ± 1.5 
nm (n=29). 
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3.5.  The absence of protein W does not impair phototrophic growth of Rps. palustris 

 An unmarked ȴrpa4402 knockout strain, in which all but the start and stop 

codons of the gene were deleted, was generated using the pK18mobsacB allelic 

exchange vector as described in the Methods section and Figure S2.  To test whether 

removal of protein W from the Rps. palustris core complex had a deleterious effect on 

photosynthesis, phototrophic growth curves were performed. Growth of the mutant 

mimicked the isogenic WT parent (Figure 7A) and the whole cell absorbance spectra 

were indistinguishable between the two strains (Figure 7B). Therefore, protein W is 

neither required for photosynthetic competency nor formation of core complexes, at 

least under standard laboratory growth conditions. 

 

 

 

Figure 7.  RPA4402 is not required for photosynthetic competence in Rps. palustris.  
(A) Photosynthetic growth curves of the WT (purple) and ȴrpa4402 (green) strains.  
Error bars represent the standard deviation from the mean of three biological 
replicate cultures.  (B) Absorbance spectra of the same strains measured at room 
temperature and normalised at 680 nm. 
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3.6.  Sequence alignment of protein W with orthologs of PufX in relation to 

transmembrane helix predictions 

To explore the hypothesis that protein W is related to PufX, the sequence 

alignment shown in Figure 8A was constructed in the format designed by Tsukatani et 

al. [27] and Holden-Dye et al. [28].  Although protein W has, according to its translated 

gene sequence, 102 amino acids while authentic purple bacterial PufX proteins have 

75-83 and has no other obvious homology, the alignment reveals all six of the 

conserved features indicated by these authors as characteristic of PufX proteins 

(highlighted in red).  Despite this pattern match in the sequences, a comparison of 

hydropathy profiles and transmembrane helix (TMH) predictions between protein W 

and PufX from Rba. sphaeroides (Figure 8B) indicates that protein W has three TMHs 

while PufX has one.  This prediction of a single TMH for Rba. sphaeroides PufX, also 

the case for the other PufX orthologs (Figure 8A), is supported by a structural model 

based on both NMR [29, 30] and X-ray data [6].  The spatial relationship between the 

conserved amino acids and the predicted TMH arrangement shows that the MXXG 

motif and a G closely flank the TMH in PufX, while in protein W MXXG is integral to 

TMH2 and G is predicted to be five residues distant from the membrane.  

Furthermore, the C-terminal AA/AP/GP and P motifs occur inside TMH3 of protein W 

rather than residing in the periplasmic space (deduced from the X-ray model described 

by Qian et al. [6]) in PufX. 

 

4.  Discussion 

Purple bacterial photosynthetic core complexes comprise a central RC complex 

ƐƵƌƌŽƵŶĚĞĚ ďǇ Ă ƌŝŶŐ ŽĨ LHϭ ɲɴ ŚĞƚĞƌŽĚŝŵĞƌƐ͘  IŶ Rhodospirillum and 

Thermochromatium spp. for example, the LH1 ring is continuous around the RC with 

ϭϲ ɲɴ ƉĂŝƌƐ [8-10].  In Rhodobacter spp. there is an additional component of the ring, 

PƵĨX͕ ǁŚŝĐŚ ƌĞƉůĂĐĞƐ ƚŚĞ ɲɴ ƉĂŝƌ ĂĚũĂĐĞŶƚ ƚŽ ƚŚĞ UQB site in the RC and creates a gap 

to facilitate ubiquinone/ubiquinol exchange with the cytochrome bc1 complex [31, 

32].  A PufX-like component, referred to as protein W, was detected by X-ray 

crystallography of Rps. palustris core complex [7] (Figure 1).  Refinement of the X-ray 

structure by single-molecule spectroscopy [33, 34] provided support for the physical 

gap modelled in the X-ray crystal structure and observed by AFM [11].   

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

22 

 

 

Figure 8.  Sequence alignment of protein W with PufX orthologs from species of 

Rhodobacteraceae.  (A)  Alignment of protein W with PufX orthologs from Rba. 

sphaeroides (Rba sph), Rba. capsulatus (Rba cap), Rba. veldkampii (Rba vel), Rba. 

blasticus (Rba bla), Rba. azotoformans (Rba azo) and hypothetical membrane proteins 
from proteobacteria DelRiverFos13D03 (Q58PS0), HL-91 (A0A0P8A6W7) and 
CACIA14H1 (V7EN35).  Q58PS0 is referred to as AY912081 in Holden-Dye et al. [28] 
and is included because it displays two exceptions in the identical regions (P>D and 
A>G, indicated in magenta), one of which is shared by protein W.  A0A0P8A6W7 and 
V7EN35 are additional to the ones shown in Holden-Dye et al. [28] and were identified 
by BLAST searching using Rba. sphaeroides PufX as the input sequence.  Identical 
residues are highlighted in red with exceptions in magenta and sequences predicted 
to be in transmembrane helices (TMHs) underlined.  (B)  Hydrophobicity profiles for 
protein W (blue) and Rba. sphaeroides PufX (magenta) with the bars indicating the 
positions of predicted TMHs. (C-D) Models of protein W generated by the Robetta (C) 
and QUARK (D) servers. 
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Rps. palustris 2.1.6 was used in the study of Roszak et al. [7] and Rps. palustris DSM123 

by Scheuring et al. [11], but here we used strain CGA009 as availability of its full 

genome sequence [26] enabled the identification of rpa4402 as the locus encoding 

protein W.  This may explain the 209 Da difference in MW between 2.1.6 protein W 

(10,707 Da) and CGA009 RPA4402/protein W (10,498 Da), considering that the MWs 

of the protein W orthologs in Figure 4 show variation over a range of 363 Da; as far as 

we are aware the genome of strain 2.1.6 has not been sequenced.  Our data show that 

Rps. palustris cells appear to contain two distinct populations of core complexes, a 

large (~90%) subset of RC-LH1 and a smaller (~10%) sub-population RC-LH1-protein W 

complexes.  Why only some core complexes have protein W and others do not is 

unknown, as is whether the protein W occupancy level is constant or variable.  On the 

assumption that the X-ray structure determined by Roszak et al. [7] and the AFM 

topographs of Rps. palustris membranes [11] are comparable, our finding is 

unexpected.  Possible explanations are (a) the Rps. palustris strains used in these 

earlier studies, unlike our CGA009 strain, express protein W at levels which enable 

100% protein W occupancy, or (b) crystallization induced the enrichment of a 

subpopulation of RC-LH1-protein W complexes, or (c) the membrane patches imaged 

by AFM represented domains that were populated exclusively by protein W containing 

core complexes.  Further studies are needed to address this variability, which may be 

relevant to the underlying mechanism that governs core complex assembly in Rps. 

palustris, and to determine whether core complexes that do not contain protein W 

ŚĂǀĞ ĂŶ ĞǆƚƌĂ LHϭɲɴ ƉĂŝƌ, as suggested in Section 3.3 and Figure S6or simply a gap in 

the LH1 ring.  We note that in Rps. palustris the gene encoding protein W is distal from 

the RC and LH1 genes, in contrast to the fixed stoichiometry of PufX in the core 

complexes of Rba. sphaeroides or Rba. capsulatus, which is a consequence of pufX in 

a single transcriptional unit along with the other genes encoding LH1 and RC 

polypeptides [35, 36].  The methods described for purification of both of these 

complexes allow preparation of homogeneous samples with or without protein W, 

which will also be useful for future structural biology work with the Rps. palustris core 

complex. 

Deletion of pufX from Rba. species prevents photosynthetic growth [37, 38] 

unless LH1 is also deleted [39], or LH1 is modified by suppressor mutants or 
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mutagenesis to prevent ring closure [3, 40-42] or to have lowered carotenoid content 

[43]. Here, deletion of rpa4402 did not have any effect on the photosynthetic growth 

of Rps. palustris under our standard laboratory growth conditions; this is in agreement 

with rpa4402 not being identified in a Tn-seq screen of genes essential for 

phototrophic growth [44].  Further work is needed in order to identify conditions 

under which protein W is required, which will allow additional insight into its role in 

the core complex of this metabolically versatile photosynthetic model organism. 

Sequence comparisons (Figure 8) show that protein W is significantly longer 

than the recognised purple bacterial PufX proteins.  Also, our identification of an intact 

C-terminus in protein W (Figure S1B), in contrast to the C-terminal truncation seen in 

PufX [25], confirms that protein W is not processed to become more PufX-like in 

length.  It is evident therefore that protein W is not a PufX ortholog in the accepted 

sense.  Nevertheless, the conserved sequence motifs identified by Tsukatani et al. [27] 

and Holden-Dye et al. [28] as being a common characteristic of PufX proteins are all 

present in protein W (Figure 8).  PufX does not have a catalytic or pigment binding 

function, and it is only required to bind to RCs and/or LH1 polypeptides in a way that 

prevents closure of the LH1 ring.  Thus, there is scope for substantial divergence of 

sequence and even structure for PufX orthologs, especially when the PufX does not 

have to mediate dimerization of core complexes. For example, the identity between 

the PufX proteins of Rba. sphaeroides and Rba. capsulatus is only 23.5%, but a strain 

of Rba. sphaeroides containing the Rba. capsulatus PufX protein could grow 

photosynthetically [45].  Consequently, protein W in the more distantly related Rps. 

palustris might not have to bear much similarity to PufX in order to perform an 

analogous function. 

A BLAST sequence similarity search revealed six orthologs of protein W, shown 

in Figure 4, all of which belong to Rhodopseudomonas species with sequence identities 

in the range 65 ʹ 99%.  Two of these homologs were assigned as sodium/hydrogen 

antiporters.  Unexpectedly, the search results contained no other homologs even from 

other purple bacteria, implying that protein W is unique to this particular genus.  In 

terms of sequence similarity, the nearest significant matches included the C-terminal 

100-residue sections of several ABC transporter permease subunits.  The highest 

scoring match, from Microbacterium GCS4 (accession number A0A0L6HZA3) displays 
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36% sequence identity in the aligned C-terminal region, which also corresponds 

almost exactly with three predicted TMHs (Figure S7).  This homology between the 

three-TMH protein W and the C-terminal three TMHs of a bacterial ABC transporter 

permease is consistent with the position of rpa4402 within a region of the Rpa. 

palustris genome containing ABC transporter subunits (Figure 3).  The orthologs of 

rpa4402 in the other Rhodopseudomonas spp. are located in the genome in equivalent 

positions (Figure 3B), suggesting that the rpa4402 open reading frame corresponds to 

the C-terminal three TMH domains of an ancestral eight TMH ABC transporter 

permease; we translated the DNA sequence upstream of rpa4402 to the stop codon 

of the previous open reading frame but found no evidence of the N-terminal section 

of such a protein in this intergenic region.  Structural models of protein W support the 

three TMH prediction (Figure 8C-D) but in the structure of the core complex 

determined by Roszak et al. [7] protein W is a single TMH, and we could not model a 

three TMH protein into the gap in the 15-ŵĞŵďĞƌĞĚ ɲͬɴ LH1 ring. However, the size 

of the protein identified by mass spectrometry (10,707 Da) in the study by Roszak et 

al. [7] was substantially larger than a single TMH, similar to that of RPA4402. It is 

therefore possible that the assembly of the RC-LH1-protein W core complex is similar 

to that of the Rba. sphaeroides RC-LH1-PufX complex, in which a pre-assembled PufX-

LHϭɲϭɴϭ ƐƵď-complex attaches to the RC near the QB site and initiates the 

encirclement of the RC by a further 13 LHϭɲϭɴϭ ŚĞƚĞƌŽĚŝŵĞƌƐ [46-49].  In the ~10% of 

core complexes with protein W in Rps. palustris, the initiator PufX-LHϭɲϭɴϭ ƐƵď-

complex, with a total of 3 TMHs, could be replaced by the 3 TMH protein W subunit, 

followed by ƐƵďƐĞƋƵĞŶƚ ĂĚĚŝƚŝŽŶ ŽĨ ϭϰ LHϭɲɴ ƵŶŝƚƐ.  This possibility is supported by 

the comparison of the LH1 BChl absorbance of core complexes with (1.024) and 

without (1.100) protein W shown in Figure S6, consistent with the elimination of one 

LHϭɲɴ ƉĂŝƌ ĂŶĚ its associated two BChls.  Substitution is also evident ŝŶ Ă ȴpufX strain 

of Rba. sphaeroides; the position normally occupied by PufX is taken by an additional, 

in this case 2 LHϭɲɴ ƉĂŝƌƐ [49].  The discrepancy between this suggested model, with 

ϭϰ LHϭɲɴ ŚĞƚĞƌŽĚŝŵĞƌƐ ĂŶĚ Ă ϯ TMH ƉƌŽƚĞŝŶ W, and the published structure (15 

LHϭɲɴ ŚĞƚĞƌŽĚŝŵĞƌƐ ĂŶĚ Ă ϭ TMH ƉƌŽƚĞŝŶ W) could be accommodated if a feature 

ŽƌŝŐŝŶĂůůǇ ĂƚƚƌŝďƵƚĞĚ ƚŽ ĂŶ LHϭɲɴ pair was re-assigned as two of the TMHs of protein 
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W.It will be interesting to determine the structures of RC-LH1 and RC-LH1-protein W 

core complexes in the future. 

 

5.  Conclusion 

In this study, we have developed a method for isolating Rps. palustris RC-LH1 

core complexes in a highly purified state.  Minimal interference from contaminants 

enabled the unambiguous identification of a sixth component, previously referred to 

as protein W in Rps. palustris strain 2.1.6, which is encoded by the rpa4402 locus in 

Rps. palustris CGA009.  Structural models, based on earlier crystallographic and AFM 

data suggest that this protein is integrated into the LH1 ring of the core complex where 

it creates a channel to allow efficient transfer of ubiquinol/ubiquinone between the 

RC and cytochrome bc1 complexes.  Furthermore, C-terminally His-tagged protein W 

pulls down RC-LH1 and enables binding of nano-gold beads to core complexes.  

Therefore, protein W in Rps. palustris appears to have an equivalent function to PufX 

in Rhodobacter spp., as originally proposed by Roszak et al. [7]. 

 This similarity between protein W and PufX, however, is not straightforward.  

The rpa4402 deletion mutant does not impair phototrophic growth or core complex 

assembly under the conditions used in this study, in contrast to PufX, which is 

obligatory for phototrophy in Rba. sphaeroides.  This apparent expendability may be 

reflected in the observation that only ~10% of core complexes appear to harbour 

protein W.  Also, as evident from the sequences and structural models of protein W 

and PufX, these proteins are not homologous.  PufX could have evolved from an 

ancestral RC cytochrome subunit; the pufC gene resides in the photosynthesis gene 

cluster of some purple bacterial species [50].  Protein W, on the other hand, displays 

sequence identity with the C-terminal section of an ABC transporter permease, 

consistent with the position of rpa4402 in a region of the genome occupied by ABC 

transporter subunits.  Despite their lack of relationship, the one structural similarity 

between protein W and PufX is the presence of six sequence motifs that are shared 

by all PufX orthologs.  We propose that these motifs form recognition sites for the 

integration of protein W/PufX into nascent core complexes and have evolved in 

different purple bacterial genera by mutations in unrelated ancestral genes.  While 

the role of Rhodobacter PufX in enabling phototrophic growth is now established, 
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further studies might elucidate the environmental conditions under which protein W 

becomes necessary for photosynthetic growth in Rps. palustris. 
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