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INTEGRAL SOLUTIONS TO BOUNDARY QUANTUM

KNIZHNIK-ZAMOLODCHIKOV EQUATIONS

NICOLAI RESHETIKHIN, JASPER STOKMAN, BART VLAAR

Abstract. We construct integral representations of solutions to the boundary
quantum Knizhnik-Zamolodchikov equations. These are difference equations
taking values in tensor products of Verma modules of quantum affine sl2,
with the K-operators acting diagonally. The integrands in question are prod-
ucts of scalar-valued elliptic weight functions with vector-valued trigonometric

weight functions (boundary Bethe vectors). These integrals give rise to a basis
of solutions of the boundary qKZ equations over the field of quasi-constant

meromorphic functions in weight subspaces of the tensor product.

1. Introduction

The boundary quantum Knizhnik-Zamolodchikov (qKZ) equations have roots
in representation theory, in the theory of solvable models in statistical mechanics
and integrable quantum field theory. They first appeared in [1] where the qKZ
equation of type A [4] was generalized to other affine Weyl types. What we call
here the boundary qKZ equation corresponds to type C. Shortly after the work [1]
the boundary qKZ equation appeared in [7] as an equation for correlation functions
in the 6-vertex model with reflecting boundary conditions [15]. The boundary
qKZ equations also appear as an equation for form-factors in such models and in
quantum integrable field theories on the half-line [5]. In [20] the precise relation
between the boundary qKZ equations and Sklyanin’s commuting transfer matrices
[15] was established.

Recall that the boundary qKZ equations related to quantum affine sl2 require the
following data (we refer the reader to Section 2 for more details). Fix highest weights

ℓ1, . . . , ℓN ∈ C of Verma modules V ℓ1 , . . . , V ℓN of Uq(ŝl2) and a step size τ ∈ C.
Recall that the Yang-Baxter relation for linear operators Rℓ1ℓ2(x) : V ℓ1 ⊗ V ℓ2 →
V ℓ1 ⊗ V ℓ2 is the identity

(1.1) Rℓ1ℓ212 (x)Rℓ1 ℓ313 (x+ y)Rℓ2 ℓ323 (y) = Rℓ2 ℓ323 (y)Rℓ1 ℓ313 (x+ y)Rℓ1ℓ212 (x),

for linear operators in V ℓ1 ⊗V ℓ2 ⊗V ℓ3 . Here we use standard tensor leg notations,
e.g., Rℓ1ℓ212 (x) = Rℓ1ℓ2(x)⊗ IdV ℓ3 . Given Rℓ1ℓ2(x) satisfying (1.1), the left and right
reflection equations are identities in V ℓ1 ⊗ V ℓ2 for two linear operators K±,ℓ(x) :
V ℓ → V ℓ (ℓ = ℓ1, ℓ2), namely

(1.2)

Rℓ1ℓ2(x− y)K+,ℓ1
1 (x)P ℓ2ℓ1Rℓ2ℓ1(x+ y)P ℓ1ℓ2K+,ℓ2

2 (y) =

= K+,ℓ2
2 (y)Rℓ1ℓ2(x+ y)K+,ℓ1

1 (x)P ℓ2ℓ1Rℓ2ℓ1(x− y)P ℓ1ℓ2 ,

P ℓ2ℓ1Rℓ2ℓ1(x− y)P ℓ1ℓ2K−,ℓ1
1 (x)Rℓ1ℓ2(x+ y)K−,ℓ2

2 (y) =

= K−,ℓ2
2 (y)P ℓ2ℓ1Rℓ2ℓ1(x+ y)P ℓ1ℓ2K−,ℓ1

1 (x)Rℓ1ℓ2(x− y),
1
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respectively; here P ℓ1ℓ2 : V ℓ1 ⊗ V ℓ2 → V ℓ2 ⊗ V ℓ1 is the flip of tensor factors.
The corresponding boundary qKZ equations are the compatible system of dif-

ference equations

(1.3)

Ψ(t1, . . . , tr + τ, . . . , tN ) = R
ℓr ℓr+1

r r+1 (tr − tr+1 + τ) · · ·Rℓr ℓNr N (tr − tN + τ)

×K+,ℓr
r (tr +

τ
2 )R

ℓN ℓr
N r (tN + tr) · · ·Rℓr+1 ℓr

r+1 r (tr+1 + tr)

×R
ℓr−1 ℓr
r−1 r (tr−1 + tr) · · ·Rℓ1 ℓr1 r (t1 + tr)K

−,ℓr
r (tr)

×
(
Rℓ1 ℓr1 r (t1 − tr)

)−1 · · ·
(
R
ℓr−1 ℓr
r−1 r (tr−1 − tr)

)−1
Ψ(t1, . . . , tr, . . . , tN ),

with r ∈ {1, . . . , N} for meromorphic V ℓ1 ⊗ · · · ⊗ V ℓN -valued functions Ψ(t) in
t = (t1, . . . , tN ) ∈ C

N . The Yang-Baxter equation (1.1) and the reflection equa-
tions (1.2) guarantee the compatibility of the system (1.3).

Special solutions to the boundary qKZ equations are known. First results go
back to the papers [6, 7] where the Heisenberg algebra realization of q-vertex oper-
ators was used to construct a specific solution corresponding to correlation functions
in the 6-vertex model. This method was applied to other models, to obtain spe-
cial solutions to boundary qKZ for other R-matrices, see [8] for an overview of
some results in this direction. A family of solutions to the boundary qKZ equa-
tions was constructed in our earlier papers [13, 14] as Jackson integrals (bilateral
series), cf. the works [12, 19] which dealt with the same topic in type A. In [17]
Laurent-polynomial solutions were found in terms of nonsymmetric Koornwinder
polynomials associated to principal series modules of the affine Hecke algebra of
type C.

1.1. Summary of main results. This paper can be regarded as a ”type C coun-
terpart” of [18] where a basis of integral solutions to the qKZ equations of type
A was constructed. From the perspective of the Heisenberg XXZ spin chains, the
present paper deals with (diagonal) integrable reflecting boundary conditions as
opposed to quasi-periodic boundary conditions in [18].

We consider the boundary qKZ equation (1.3) for the tensor product of N finite-
dimensional representations of quantum affine sl2 and/or Verma modules over quan-
tum sl2, for K-matrices which are diagonal in the weight basis. For a fixed total
weight space in the tensor product of the representations, which is naturally labelled
by a nonnegative integer M , we construct a basis for the associated meromorphic
solutions {Ψk}k of the boundary qKZ equations over the field of τZN -periodic
meromorphic functions admitting an explicit integral representation

(1.4) Ψk(t) =

∫

Ck(t)

wk(x; t)B̃(x; t)ΩdMx

for t deep enough in the asymptotic sector

{t | ℜ(t1) > ℜ(t2) > · · · > ℜ(tN ) > 0},
where ℜ(t) is the real part of t. The index set consists ofM -tuples k = (k1, . . . , kM )
of integers satisfying 1 ≤ k1 ≤ k2 ≤ . . . ≤ kM ≤ N , in case of Verma modules.
All the elements appearing in these integrals will be precisely defined in Section
3; we only emphasize some key points here. The integration contours Ck(t) are
Cartesian products of line segments in the complex plane of length π parallel to
the imaginary axis, whose location depends on the variables tk1 , . . . , tkM . The
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weight functions wk are similar to those used in [13, 14]; more precisely, they
are solutions to the same difference equations, but differ by exponential factors

and quotients of Jacobi theta functions. The B̃(x; t)Ω are so-called off-shell Bethe
vectors for reflecting boundary conditions as introduced in [15]; they are, up to a
scalar factor, those used in [13, 14]. The proof of completeness and of independence
of solutions is done by a careful study of asymptotic behaviour of solutions when
ℜ(t1) ≫ ℜ(t2) ≫ · · · ≫ ℜ(tN ) ≫ 0. It is this asymptotic analysis that relates the
integral solutions of the present paper to power series solutions of boundary qKZ
equations, as studied before in, e.g., [10] and [16].

1.2. Open problems. It would be very interesting to understand the precise re-
lation between the integral solutions and the solutions considered in [6, 7] in terms
of matrix elements of vertex operators with respect to so-called boundary states,
as well as the Jackson integral solutions from [13, 14]. See [9] for some results in
this direction for type A. Another important problem is to verify the compatibility
of these solutions Ψk(t) with fusion (cf. [14, Sec. 8]) and study their classical and
rational limits.

Among other open problems it would be a natural continuation of present work
to find integral solutions for the boundary qKZ equations (1.3) for different R- and
K-matrices. It would be nice in all these cases to construct a basis of solutions, to
understand their representation-theoretical meaning and to compare with special
cases known from physics literature.

1.3. Outline. In Section 2 we review the construction of the boundary qKZ equa-
tions for tensor products of Verma modules over quantum sl2. We restrict through-
out the paper to the special case that the associated solutions of the reflections
equations are diagonal with respect to the standard basis of the tensor product of
Verma modules. Section 3 is the heart of the paper: here we introduce the building
blocks necessary for our solutions, namely weight functions defined in terms of q-
shifted factorials, the boundary Bethe vectors and the integration contours. We also
define the integral solutions and state the main result of this paper, namely, that
for a fixed total weight the integral solutions form a basis of the meromorphic solu-
tions to (1.3) over the field of τZN -periodic meromorphic functions, taking values
in the correponding (finite-dimensional) total weight space of the tensor product of
Verma modules.

The proof of the main statement is spread out over Section 4. In Section 5
we consider the boundary qKZ equations for functions taking values in the tensor
product of finite-dimensional modules over quantum affine sl2. The appendices A
and B provide technical statements underpinning the proof of the main result.

1.4. Acknowledgements. The research of N.R. was supported by the Chern-
Simons chair and by the NSF grant DMS-1201391; he also acknowledges support
from QGM at Aarhus, where an important part of the work has been done. B.V.
is grateful to the University of California and the University of Amsterdam for
hospitality; he was supported in his work by an NWO free competition grant when
employed at the University of Amsterdam and EPSRC grant EP/L000865/1 when
employed at the University of Nottingham.
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2. Representation theory and integrable data

Here we will use conventions from [14, Section 2.1] and refer to this publication
for more detail and references.

2.1. The quantum affine algebra Uη(ŝl2) and the universal R-matrix. Let
η ∈ C such that eη is not a root of unity and write

(
a00 a01
a10 a11

)
=

(
2 −2
−2 2

)
.

We start with the unital Hopf algebra Ûη := Uη(ŝl2) with deformation parameter
eη and generators e0, e1, f0, f1 and eh (h ∈ h := Ch0⊕Ch1) with defining relations

e0 = 1, eh+h
′

= eheh
′

,

eheie
−h = eαi(h)ei, ehfie

−h = e−αi(h)fi, [ei, fj ] = δi,j
eηhi − e−ηhi

eη − e−η

for h, h′ ∈ h and i, j = 0, 1, and with the Serre relations

e3i ej − (e2η + 1 + e−2η)e2i ejei + (e2η + 1 + e−2η)eieje
2
i − eje

3
i = 0

f3i fj − (e2η + 1 + e−2η)f2i fjfi + (e2η + 1 + e−2η)fifjf
2
i − fjf

3
i = 0

for i 6= j. Here the roots αi ∈ h∗ are defined by αi(hj) := aij ,
The coproduct ∆ and the counit ǫ are determined by their action on generators:

∆(eh) = eh ⊗ eh,

∆(ei) = ei ⊗ 1 + e−ηhi ⊗ ei,

∆(fi) = fi ⊗ eηhi + 1⊗ fi

and

ǫ(eh) = 1, ǫ(ei) = 0, ǫ(fi) = 0

for h ∈ h and i = 0, 1.

Let Ũη be the extension of Ûη with generators exd (x ∈ C) satisfying [eh, exd] = 0,

exdei = exδi,0eie
xd and exdfi = e−xδi,0fiexd. Then Ũη turns into a quantized Kac-

Moody algebra in a natural way (see [3, Chpt. 9]). In particular, there is a universal

R-matrix R ∈ Ũη⊗̂Ũη [2, 3, 4], where ⊗̂ is suitably completed tensor product. The
universal R-matrix has the form

R = exp(η(c⊗ d+ d⊗ c))R

where c = h0 + h1 and R ∈ Ûη⊗̂Ûη is the “truncated universal R-matrix”. We
denote the opposite coproduct by ∆op. In the category of modules where c acts by
zero (zero-level representations), R satisfies all properties of the universal R-matrix:

R∆(a) = ∆op(a)R,
(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12



INTEGRAL SOLUTIONS TO BOUNDARY QKZ EQUATIONS 5

2.2. Evaluation representations of quantum affine sl2. Ûη contains quantum
sl2 as the Hopf subalgebra Uη = 〈e1, f1, ezh1〉. For ℓ ∈ C, define a representation
πℓ of Uη on V ℓ =

⊕∞
d=0 Cv

ℓ
d by means of

πℓ(ezh1)(vℓd) = e2(ℓ−d)zvℓd,

πℓ(e1)(v
ℓ
d) =

sinh(dη) sinh((2ℓ+ 1− d)η)

sinh(η)2
vℓd−1, with vℓ−1 := 0,

πℓ(f1)(v
ℓ
d) = vℓd+1,

for d ∈ Z≥0. The Uη-module (πℓ, V ℓ) is the Verma module with highest weight ℓ
and highest weight vector vℓ0.

Precisely if ℓ ∈ 1
2Z≥0, the maximal Uη-submodule W ℓ is given by ⊕∞

d=2ℓ+1Cv
ℓ
d.

We write V ℓ := V ℓ/W ℓ for the irreducible finite-dimensional quotient. Denote by
prℓ the canonical map: V ℓ ։ V ℓ. The cosets

vℓd := prℓ(vℓd) = vℓd +W ℓ for d ∈ {0, 1, . . . , 2ℓ}

form a weight basis of V ℓ. If ℓ = 1
2 we write V = V

1
2 and vd = v

1
2

d for d ∈ {0, 1}.
For each x ∈ C there exists a unique unit-preserving algebra homomorphism

φx : Ûη → Uη satisfying

φx(e0) = e−xf1, φx(e1) = e−xe1,

φx(f0) = exe1, φx(f1) = exf1,

φx(e
zh0) = e−zh1 , φx(e

zh1) = ezh1 ,

using which we define the evaluation representation πℓx = πℓ ◦ φx : Ûη → End(V ℓ).

Remark 2.1. In [14] we wrote M ℓ instead of V ℓ and {mℓ
1, . . . ,m

ℓ
2ℓ+1} instead of

{vℓ0, . . . , vℓ2ℓ}. Also, V ℓ in [14] corresponds to the present notation V ℓ. The purpose
of this is to have simplified notation for infinite-dimensional objects (by placing a
bar over the symbol to denote the corresponding finite-dimensional objects) as we
will focus on these in most of this paper.

2.3. R-matrices. We now pass from the universal R-matrix to its image under
the evaluation representation. For details see e.g. [4]. Let ℓ1, ℓ2 ∈ C and let
Rℓ1 ℓ2(x− y) ∈ End(V ℓ1 ⊗V ℓ2) be the scalar multiple of (πℓ1x ⊗ πℓ2y )(R) normalized
by the condition

Rℓ1 ℓ2(x)(vℓ10 ⊗ vℓ20 ) = vℓ10 ⊗ vℓ20 .

Then Rℓ1 ℓ2(x) satisfies the Yang-Baxter equation (1.1). Furthermore, it satisfies
unitarity,

(2.1) Rℓ1 ℓ2(x)−1 = P ℓ2 ℓ1Rℓ2 ℓ1(−x)P ℓ1 ℓ2

as well as P -symmetry,

(2.2) P ℓ2 ℓ1Rℓ2 ℓ1(x)P ℓ1ℓ2 = Rℓ1ℓ2(x).

See, for example, [14, Lemma 2.1] for a proof of P -symmetry. Another important
property is the (higher-spin) ice rule according to which Rℓ1ℓ2(x) preserves the
total weight spaces

(V ℓ1 ⊗ V ℓ2)(M) :={v ∈ V ℓ1 ⊗ V ℓ2 | (πℓ1 ⊗ πℓ2)(∆(eh1))v = e2(ℓ1+ℓ2−M)v}
=span{vℓ1d1 ⊗ vℓ2d2 | d1, d2 ∈ Z≥0 & d1 + d2 =M}

(2.3)
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for all M ∈ Z≥0.
In the case where ℓ1 ∈ 1

2Z≥0, there is a unique linear operator Lℓ1,ℓ2(x) on

V ℓ1 ⊗ V ℓ2 satisfying

(2.4) (prℓ1 ⊗ IdV ℓ2 )R
ℓ1 ℓ2(x) = Lℓ1 ℓ2(x)(prℓ1 ⊗ IdV ℓ2 ).

Furthermore, if ℓ1, ℓ2 ∈ 1
2Z≥0, there is a unique linear operator Rℓ1,ℓ2(x) on V ℓ1 ⊗

V ℓ2 satisfying

(2.5) (prℓ1 ⊗ prℓ2)Rℓ1 ℓ2(x) = Rℓ1 ℓ2(x)(prℓ1 ⊗ prℓ2).

In particular, we have the spin-half R-matrix R(x) := R
1
2

1
2 (x) satisfying, for

d1, d2 ∈ {0, 1},

(2.6) R(x)(vd1 ⊗ vd2) =

{
vd1 ⊗ vd2 , if d1 = d2,
sinh(x)

sinh(x+η)vd1 ⊗ vd2 +
sinh(η)

sinh(x+η)vd2 ⊗ vd1 , if d1 6= d2.

The operators Rℓ1 ℓ2(x) can be recursively defined in terms of R(x) through what
is known as R-matrix fusion, see [14, Sections 3.2 and 3.3] and references therein.

Given ℓ ∈ C we also have the spin-half L-operators Lℓ(x) := L
1
2 ℓ(x), mero-

morphically depending on x ∈ C; from (1.1), (2.4) and (2.5) it follows that they
satisfy

(2.7) R00′(x− y)Lℓ0(x; t)L
ℓ
0′(y; t) = Lℓ0′(y; t)L

ℓ
0(x; t)R00′(x− y),

an identity for operators in V ⊗V ⊗V ℓ, with the first copy of V labelled 0 and the
second labelled 0′. They also satisfy crossing symmetry

(2.8) Lℓ(x) =
sinh(x+ ( 12 − ℓ)η)

sinh(x+ ( 12 + ℓ)η)
σy
0L

ℓ(−x− η)t0σy
0 ,

an identity for operators in V ⊗ V ℓ, with V labelled 0, σy =
(

0 −√−1√−1 0

)
and t0

transposition relative to V , cf. [14, Eq. (2.8)].

Remark 2.2. We emphasize that the notation Rℓ1,ℓ2(x) in this paper corresponds
to Rℓ1,ℓ2(x) in [14] whereas the present notation Rℓ1,ℓ2(x) is called Rℓ1,ℓ2(x) in [14].

2.4. K-matrices. We highlight here the key points from [14, Section 4], which the
reader may consult for more details and references. Let Rℓ1ℓ2(x) be as in Section
2.3. Because of P-symmetry (2.2), both reflection equations (1.2) simplify to

(2.9)
Rℓ1ℓ2(x− y)Kℓ1

1 (x)Rℓ1ℓ2(x+ y)Kℓ2
2 (y) =

Kℓ2
2 (y)Rℓ1ℓ2(x+ y)Kℓ1

1 (x)Rℓ2ℓ1(x− y).

There is a one-parameter family Kℓ(x; ξ) ∈ End(V ℓ) of solutions to (2.9) which are
diagonal in the weight basis. They act on arbitrary weight vectors according to

(2.10) Kℓ(x; ξ)vℓd =




d∏

j=1

sinh(ξ − x+ (ℓ+ 1
2 − j)η)

sinh(ξ + x+ (ℓ+ 1
2 − j)η)


 vℓd,

where d ∈ Z≥0. In particular, they satisfy

Kℓ(x; ξ)(vℓ0) = vℓ0

and the unitarity condition

Kℓ(x; ξ)−1 = Kℓ(−x; ξ).
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For ℓ ∈ 1
2Z≥0, the natural projection prℓ to the quotient representation V ℓ

applied to Kℓ(x; ξ) gives the corresponding solution Kℓ(x; ξ) ∈ End(V ℓ) to (2.9);
furthermore we write K(x; ξ) = K1/2(x; ξ) as for the R-matrix. The operators
Kℓ(x; ξ) can be recursively defined in terms of R(x) and K(x; ξ) through what is
known as K-matrix (bulk-boundary) fusion, see e.g. [11].

Remark 2.3. Similar to the R-matrices, the notation Kℓ(x) in this paper corre-
sponds to Kℓ(x) in [14] whereas the present notation Kℓ(x) is called Kℓ(x) in [14].

2.5. Tensor products of evaluation representations. Let N ∈ Z≥0 and fix
ℓ = (ℓ1, . . . , ℓN ) ∈ C

N . We will be considering linear operators on

V ℓ := V ℓ1 ⊗ · · · ⊗ V ℓN

and write an arbitrary element of its natural basis as vℓd = vℓ1d1⊗· · ·⊗vℓNdN , where d =

(d1, . . . , dN ) ∈ Z
N
≥0. Taking into account the weight decomposition V ℓ = ⊕d≥0Cv

ℓ
d

with respect to the action of eh1 we have the total weight decomposition

V ℓ =

∞⊕

M=0

V ℓ(M)

with

V ℓ(M) :=
⊕

d∈PN (M)

Cvℓd,

PN (M) := {d = (d1, . . . , dN ) ∈ Z
N
≥0 |

N∑

s=1

ds =M}

(compare with (2.3), which is the special case N = 2).
The tensor product basis {vℓd}d∈PN (M) of the weight subspaces V ℓ(M) can be

labelled in another natural way. For M,N ∈ Z≥0, define

(2.11) IM,N = {(k1, . . . , kM ) ∈ {1, . . . , N}M | k1 ≤ k2 ≤ . . . ≤ kM}.
The following map is a bijection between PN (M) and IM,N :

ζM,N : IM,N
∼→ PN (M) : k 7→ (nk(1), . . . , nk(N)),

where we have introduced the notation

(2.12) nk(r) := #{i ∈ {1, . . . ,M} | ki = r}
for k ∈ {1, . . . , N}M and r ∈ {1, . . . , N}. The fact that ζM,N is a bijection is clear
if we write an N -tuple from IM,N as follows:

(k1, . . . , kM ) = (1, . . . , 1︸ ︷︷ ︸
nk(1)

, 2, . . . , 2︸ ︷︷ ︸
nk(2)

, 3, . . . , 3︸ ︷︷ ︸
nk(3)

, . . . , N, . . . , N︸ ︷︷ ︸
nk(N)

).

Note also that
∑N
r=1 nk(r) =M for all k ∈ IM,N . Using ζM,N we can parametrize

the tensor product basis of the weight subspace V ℓ(M) by elements in IN,M :

V ℓ(M) =
⊕

k∈IM,N

CΩk

where

Ωk := vℓζM,N (k) = vℓ1nk(1)
⊗ · · · ⊗ vℓNnk(N).



8 NICOLAI RESHETIKHIN, JASPER STOKMAN, BART VLAAR

2.6. Boundary qKZ equations. Fix ℓ ∈ C
N and τ, ξ+, ξ− ∈ C. Given the R-

and K-matrices defined in Sections 2.3 and 2.4, the spin-ℓ boundary qKZ equations
are the following equations for meromorphic V ℓ-valued functions Ψ(t) in t ∈ C

N :

(2.13) Ψ(t+ τer) = Ar(t)Ψ(t), r ∈ {1, . . . , N},
with {er}Nr=1 the standard othonormal basis of CN and the transport operators
given by

(2.14)

Ar(t) = R
ℓr ℓr+1

r r+1 (tr − tr+1 + τ) · · ·Rℓr ℓNr N (tr − tN + τ)

×Kℓr
r (tr +

τ
2 ; ξ+)R

ℓN ℓr
N r (tN + tr) · · ·Rℓr+1 ℓr

r+1 r (tr+1 + tr)

×R
ℓr−1 ℓr
r−1 r (tr−1 + tr) · · ·Rℓ1 ℓr1 r (t1 + tr)K

ℓr
r (tr; ξ−)

×
(
Rℓ1 ℓr1 r (t1 − tr)

)−1 · · ·
(
R
ℓr−1 ℓr
r−1 r (tr−1 − tr)

)−1

for r ∈ {1, . . . , N}. The Yang-Baxter equation (1.1) and the reflection equation
(2.9) yield the consistency conditions

Ar(t+ τes)As(t) = As(t+ τer)Ar(t) for r, s ∈ {1, . . . , N}.
When ℓs ∈ 1

2Z≥0 the equation projects to the corresponding quotient space V ℓ1 ⊗
· · · ⊗ V ℓs−1 ⊗ V ℓs ⊗ V ℓs+1 ⊗ · · · ⊗ V ℓN , see [14].

The finite-dimensional subspaces V ℓ(M) ⊆ V ℓ (M ≥ 0) are invariant subspaces
for the transport operators Ar(t) (r = 1, . . . , N) since the R-matrices satisfy the
ice rule and since the K-matrices act diagonally with respect to the weight basis of
the Verma module. It follows that the meromorphic solutions of (2.13) are of the
form Ψ =

∑
M≥0 ΨM with ΨM a meromorphic V ℓ(M)-valued solution of (2.13).

In the remainder of the paper we therefore focus on the construction of a basis of
V ℓ(M)-valued meromorphic solutions of the boundary qKZ equations (2.13) for a
fixed value of M .

We now first discuss the existence of power series solutions of the boundary qKZ
equations (2.13), for fixed value of M ∈ Z≥0. Suppose ℜ(τ) < 0 and consider the
sector

A := {(t1, . . . , tN ) ∈ C
N | ℜ(t1) > ℜ(t2) > . . . > ℜ(tN ) > 0}.

We will write t
A→ ∞ when

ℜ(ts − ts+1) → ∞ for s ∈ {1, . . . , N − 1} and ℜ(tN ) → ∞.

Note that if t
A→ ∞ the real parts of the arguments of all R- and K-matrices in

(2.14) go to +∞.
In order to study the asymptotics of the bqKZ equations (2.13) and their solu-

tions as t
A→ ∞ more precisely, we rely on appendix A and [3, §9.6].

Let Q+ ⊆ R
N be the cone

(2.15) Q+ :=

N−1⊕

i=1

Z≥0(ei − ei+1)⊕ Z≥0eN .

For β = (β1, . . . , βN ) ∈ Z
N we write e(β,t): =

∏N
i=1 e

βiti . Let r ∈ {1, . . . , N}. It
follows from [3, §9.6] and the explicit form of the diagonal K-matrices that there
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exist Aα;r ∈ End(V ℓ(M)) for α ∈ Q+ such that

Ar(t) =
∑

α∈Q+

Aα;re
−(α,t)

as linear operator on V ℓ(M), with the power series converging normally on compact
sets for t deep enough in the sector A. Write 0 = (0, . . . , 0) ∈ C

N . Lemma A.2
implies that A0;r acts on V ℓ(M) by the formula

(2.16) A0;rΩm = ϕm;rΩm, m ∈ IM,N ,

where

(2.17) ϕm;r :=

(
M∏

i=1
mi=r

e2(η−ξ+−ξ−)+4(M−i−∑
s≥r ℓs)η

)
e−4ℓr#{i∈{1,...,M}|mi>r}η.

Let Φk be a nonzero meromorphic function on C
N satisfying the scalar difference

equations

(2.18) Φk(t+ τer) = ϕk;rΦk(t), r ∈ {1, . . . , N}.
Then it follows that

Ψ∞
k (t) := Φk(t)Ωk

satisfies the asymptotic boundary qKZ equations

Ψ∞
k (t+ τer) = A0;rΨ

∞
k (t), r = 1, . . . , N.

So it then makes sense to look for power series solutions Ψk(t) of (2.13) tending to

Ψ∞
k (t) as t

A→ ∞.
It is easy to construct an explicit solution Φk of (2.18) as a quotient of products

of renormalized theta functions. We first need to introduce some notations. We
write q = eτ and we will assume ℜ(τ) < 0, so that 0 < |q| < 1. The q2-shifted
factorial

(z; q2)∞ :=
∏

m≥0

(1− zq2m)

is a holomorphic function of z satisfying the property (q2z; q2)∞ = (1−z)−1(z; q2)∞.
We will employ the notation

(z1, z2; q
2)∞ := (z1; q

2)∞(z2; q
2)∞.

The renormalized Jacobi theta function is the holomorphic function defined by

θ(z) := (z, q2z−1; q2)∞.

It satisfies the quasi-periodicity condition θ(q2z) = −z−1θ(z). We will use in for-
mulas the notation a(±x) to stand for a(x)a(−x). For instance, (e±x; q2)∞ stands
for (ex, e−x; q2)∞.

An explicit nonzero meromorphic solution Φk of (2.18) is now given by

Φk(t) =

N∏

r=1

θ(e2tr )

θ(ϕk;re2tr )
.

Any other choice differs from Φk by a nonzero τZN -periodic meromorphic function.
If Ψ is a V ℓ(M)-valued meromorphic solution of the boundary qKZ equations

(2.13) and k ∈ IM,N is fixed, then

Θ̃k := Φ−1
k Ψ
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is a V ℓ(M)-valued meromorphic solution of the rescaled boundary qKZ equations

(2.19) Ψ̃(t+ τer) = Ãk
r (t)Ψ̃(t), r ∈ {1, . . . , N},

with rescaled transport operators Ãk
r (t) := ϕ−1

k;rAr(t). Now the leading coefficient

Ãk
0;r of the power series expansion

Ãk
r (t) =

∑

α∈Q+

Ãk
α;re

−(α,t)

is acting on V ℓ(M) by

Ãk
0;rΩm =

ϕm;r

ϕk;r
Ωm, m ∈ IM,N .

Then [10, Appendix] guarantees, for generic parameters, the existence and unique-

ness of a V ℓ(M)-valued meromorphic solution Θ̃k of the rescaled boundary qKZ
equations (2.19) such that

Θ̃k(t) =
∑

α∈Q+

L̃k
αe

−(α,t), L̃k
α ∈ V ℓ(M)

for t deep enough in the sector A, with the V ℓ(M)-valued power series normally
converging on compact sets and with leading coefficient

L̃k
0 = Ωk.

Our main goal is to find an explicit integral expression of Θ̃k deep enough in the
sector A.

3. Integral solutions of the boundary qKZ equations

We will exhibit V ℓ(M)-valued solutions Ψk(t) of (2.13) for k = (k1, . . . , kM ) ∈
IM,N admitting an integral representation of the form

Ψk(t) =

∫

Ck(t)

wk(x; t)B̃(x; t)ΩdMx,

on some subsector Ã ⊂ A. We will show that, up to an explicit multiplicative

constant, Ψk equals ΦkΘ̃k, which provides the link with the power series solutions
of the boundary qKZ equations from the previous subsection.

The Bethe vectors B̃(x; t)Ω are elements of V ℓ(M) with trigonometric depen-
dence on x ∈ C

M and t ∈ C
N . They will be discussed in Subsection 3.1. The

scalar weight functions wk(x; t) will be defined in Subsection 3.2. We will specify
the integration contour Ck(t) in Subsection 3.3 before stating the main theorem in
Subsection 3.4.

3.1. Bethe vectors. Like the qKZ transport operators Ar(t), the objects B̃(x; t)
are linear operators on V ℓ constructed in terms of the R- and K-matrices introduced
in Section 2, but according to a different procedure, first conceived for quantum
integrable systems with reflecting boundaries by Sklyanin [15]. We first introduce
linear operators acting on V ⊗V ℓ, where the solitary tensor factor V ∼= C

2 is called
auxiliary space and is labelled 0.

Recall the L-operators Lℓ(x) = L
1
2 ℓ(x) ∈ End(V ⊗ V ℓ) defined through (2.4).

Fix ℓ = (ℓ1, . . . , ℓN ) ∈ C
N . Define the (type A) monodromy matrix

T (x; t) = Lℓ10 1(x− t1) · · ·LℓN0N (x− tN ) ∈ End(V ⊗ V ℓ).
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From (2.7) it follows that the T (x; t) satisfy

(3.1) R00′(x− y)T0(x; t)T0′(y; t) = T0′(y; t)T0(x; t)R00′(x− y),

an identity in End(V ⊗ V ⊗ V ℓ), with the first copy of V labelled 0 and the second
labelled 0′. Fix ξ− ∈ C and define

T (x; t) = T (−x; t)−1
(
K(x; ξ−)⊗ IdV ℓ

)
T (x; t) ∈ End(V ⊗ V ℓ).

Given that T (x; t) satisfies (3.1) and K(x; ξ−) satisfies the reflection equation in
End(V ⊗V ), it can be straightforwardly verified that T (x; t) satisfies the reflection
equation in End(V ⊗ V ⊗ V ℓ):

(3.2)
R00′(x− y)T0(x; t)R00′(x+ y)T0′(y; t) =
T0′(y; t)R00′(x+ y)T0(x; t)R00′(x− y).

We introduce an operator B(x; t) ∈ End(V ℓ) by means of

(3.3) T (x; t) =

(
∗ B(x; t)
∗ ∗

)
,

i.e. for all u ∈ V ℓ we have

T (x; t)(v1 ⊗ u) = v0 ⊗ B(x; t)(u) + v1 ⊗ (some element of V ℓ).

In the rest of the paper we will use the shorthand notations

ξ̃+ := ξ+ − η
2 − τ

2 , ξ̃− := ξ− − η
2 .

It is convenient, as will become apparent in Appendix B.2, to use a slightly modified
version of B, namely

B̃(x; t) :=
( N∏

s=1

sinh(ts − x+ ℓsη)

sinh(ts − x− ℓsη)

)
sinh(2x)

sinh(2x+ η)

sinh(ξ̃− − x)

sinh(η)
B(−x− η

2 ; t).

Fix M ∈ Z≥0 and define, for x = (x1, . . . , xM ) and t = (t1, . . . , tN ),

B̃(x; t) = B̃(x1; t) · · · B̃(xM ; t) ∈ End(V ℓ)

(we do not specify the depth M in the notation of B̃, it will be clear from context).

The off-shell spin−ℓ boundary (or type C ) Bethe vectors are the elements B̃(x; t)Ω ∈
V ℓ(M), where Ω is the tensor product of highest weight vectors:

Ω := Ω∅ = vℓ10 ⊗ · · · ⊗ vℓN0 ∈ V ℓ.

One of the results of this paper is an explicit decomposition of the boundary Bethe
vectors in terms of the tensor product basis of V ℓ(M).

Proposition 3.1. As meromorphic V ℓ(M)-valued functions in (x, t) ∈ C
M ×C

N ,
we have

(3.4) B̃(x; t)Ω =
∑

k∈IM,N

βk(x; t)Ωk
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where

βk(x; t) = e
∑

i

(nk(ki)
2 −ℓki

)
η
∑

m∈SMk

∑

ǫ∈{±}M

(
∏

i

ǫi sinh(ǫixi − ξ̃−)

sinh(tmi
+ ǫixi − ℓmi

η)

×
( ∏

s>mi

sinh(ts + ǫixi + ℓsη)

sinh(ts + ǫixi − ℓsη)

)(∏

s

sinh(ts − ǫixi + ℓsη)

sinh(ts − ǫixi − ℓsη)

))

×
(∏

i,j

i<j

sinh(ǫixi + ǫjxj + η)

sinh(ǫixi + ǫjxj)

)( ∏

i,j

mi<mj

sinh(ǫixi − ǫjxj − η))

sinh(ǫixi − ǫjxj)

)
.

Essentially, the result owes to the higher-spin ice rule of the R-operators and the
diagonality of K(x; ξ−). The proof of the Theorem is given in appendix B.

Note that Proposition 3.1 implies that the off-shell boundary Bethe vectors

B̃(x; t)Ω are π
√
−1-periodic in each xi.

3.2. Weight functions. Fix τ, η, ξ+, ξ− ∈ C and ℓ ∈ C
N . Suppose that ℜ(τ) < 0

and set q = eτ . For t ∈ C
N , introduce the single-variable meromorphic π

√
−1-

periodic functions F (·; t), g, h as follows:

(3.5)

F (x; t) :=
N∏

s=1

(
e−2(ts±x−ℓsη); q2

)
∞(

e−2(ts±x+ℓsη); q2
)
∞
,

g(x) :=
(q2e2(ξ̃+−x), q2e2(ξ̃−−x); q2)∞

(e2(−ξ̃+−x), e2(−ξ̃−−x); q2)∞
,

h(x) := (1− e−2x)
(q2e−2(x+η); q2)∞
(e−2(x−η); q2)∞

.

For i ∈ {1, . . . ,M} and k ∈ IM,N define the single-variable meromorphic π
√
−1-

periodic function uk;i(·; t) by

(3.6) uk;i(x; t) := e−tki θ
(
e2(x−tki

+ψk;i)
)∏s>ki

θ(e2(x−ts−ℓsη))∏
s≥ki θ(e

2(x−ts+ℓsη))

where

ψk;i = ξ̃+ + ξ̃− + τ + ℓkiη + 2
(∑

s>ki

ℓs −M + i
)
η.

We use these functions as building blocks to define a meromorphic weight function
wk on C

M × C
N by

(3.7) wk(x; t) := Φk(t)

( M∏

i=1

F (xi; t)g(xi)uk;i(xi; t)

) ∏

1≤i<j≤M
h(xi ± xj)
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By writing out the theta-functions as products of q2-shifted factorials, cancellation
with q2-shifted factorials coming from F takes place. It leads to the expression

(3.8)

wk(x; t) = Φk(t)

{
M∏

i=1

∏
s<ki

(e2(xi−ts+ℓsη); q2)∞∏
s≤ki(e

2(xi−ts−ℓsη); q2)∞
e−tki θ

(
e2(xi−tki

+ψk;i)
)

×
∏
s>ki

(q2e2(ts−xi+ℓsη); q2)∞∏
s≥ki(q

2e2(ts−xi−ℓsη); q2)∞

(∏

s

(e−2(ts+xi−ℓsη); q2)∞
(e−2(ts+xi+ℓsη); q2)∞

)

× (q2e2(ξ̃+−xi), q2e2(ξ̃−−xi); q2)∞

(e2(−ξ̃+−xi), e2(−ξ̃−−xi); q2)∞

}

×
{

M∏

i,j=1
i<j

(1− e−2(xi±xj))
(q2e−2(xi±xj+η); q2)∞
(e−2(xi±xj−η); q2)∞

}
.

The poles of wk(x; t) in xi are unilateral sequences whose real parts tend to either
∞ or −∞ in steps of size −ℜ(τ). Also, wk(x; t) is π

√
−1-periodic in each xi.

3.3. Integration contours. We fix τ ∈ C with ℜ(τ) < 0 and set q = eτ . We
furthermore fix N ∈ Z>0 and M ∈ Z≥0. Write ℓ = (ℓ1, . . . , ℓN ) for the N -tuple of
highest weights.

Definition 3.2. For k ∈ IM,N we write Dk
M,N for the set of parameters (ℓ, η) ∈

C
N × C satisfying

ℜ(ℓrη) > max

(
0,
nk(r)− 1

2
ℜ(η)

)
∀ r ∈ {1, . . . , N}.

Furthermore, set

(3.9) DM,N :=
⋂

k∈IM,N

Dk
M,N .

For k ∈ IM,N we write

(3.10) ik(m; r) :=
∑

s<r

nk(s) +m

for r ∈ {1, . . . , N} and m ∈ {1, . . . , nk(r)}, so that ki = r if and only if i =
i(m; r) for some 1 ≤ m ≤ nk(r). We now define for k ∈ IM,N and (ℓ, η) ∈ Dk

M,N

the set Γk
M,N of base points of the integration cycle as the set of M -tuples γ =

(γ1, . . . , γM ) ∈ C
M satisfying

−ℜ(ℓkiη) < ℜ(γi) < ℜ(ℓkiη),
ℜ(γi(s+1;r)) ≤ ℜ(γi(s;r)),
ℜ(γi(s+1;r)) + ℜ(η) < ℜ(γi(s;r))

for 1 ≤ i ≤ M , 1 ≤ r ≤ N and 1 ≤ s < nk(r). Note that Γk
M,N is nonempty and

path-connected if (ℓ, η) ∈ Dk
M,N .

Let k ∈ IM,N , (ℓ, η) ∈ Dk
M,N and γ ∈ Γk

M,N . The integration cycles that will be

used in the definition of the integral solution of the boundary qKZ equations (2.13)
are of the form

Cγ
k (t) :=

(
tk1 + γ1 +

√
−1[0, π]

)
× · · · ×

(
tkM + γM +

√
−1[0, π]

)



14 NICOLAI RESHETIKHIN, JASPER STOKMAN, BART VLAAR

for t = (t1, . . . , tN ) ∈ C
N .

3.4. Main result. The set {ei − ei+1}N−1
i=1 ∪ {eN} is a choice of simple roots of

the standard realization of the root system of type BN in R
N . Let Q+ be the cone

in Z
N generated by these simple roots, see (2.15). Denote

Λ+ := max
s∈{1,...,N}

ℜ(ℓsη).

The main result of the paper can now be stated as follows.

Theorem 3.3. Fix N ∈ Z>0 and M ∈ Z≥0. Set q = eτ with ℜ(τ) < 0.

a. Let k ∈ IM,N and (ℓ, η) ∈ Dk
M,N . For γ ∈ Γk

M,N the integral

(3.11) Θk(t) :=

∫

Cγ

k
(t)

wk(x; t)

Φk(t)
B̃(x; t)ΩdMx

defines a V ℓ(M)-valued holomorphic function in t ∈ Ã, where

Ã :=
{
t ∈ A

∣∣∣ℜ(ts − ts+1) > 2Λ+ +max(ℜ(η), 0) for 1 ≤ s < N,

ℜ(tN ) > Λ+ +max
(
ℜ(η2 ), 0,ℜ(−ξ̃+),ℜ(−ξ̃−)

)}
.

The integral Θk(t) does not depend on the choice of γ ∈ Γk
M,N .

b. Let k ∈ IM,N and (ℓ, η) ∈ Dk
M,N . There exists a unique V ℓ(M)-valued

meromorphic solution Ψk of the boundary qKZ equations (2.13) on C
N

such that, on the sector Ã,

(3.12) Ψk(t) = Φk(t)Θk(t) =

∫

Cγ

k
(t)

wk(x; t)B̃(x; t)ΩdMx.

c. Let k ∈ IM,N and (ℓ, η) ∈ Dk
M,N . The V ℓ(M)-valued integral Θk(t) has a

V ℓ(M)-valued series expansion for t ∈ Ã of the form

(3.13) Θk(t) =
∑

α∈Q+

Lk
αe

−(α,t), Lk
α ∈ V ℓ(M),

with the series converging normally for t in compact subsets of Ã. The
leading coefficient is given by Lk

0
= νkΩk, where

νk :=
(
π
√
−1eξ−

)M
( ∏

1≤r<s≤N
e2ℓrnk(s)η

)

×
N∏

r=1

nk(r)∏

m=1

(q2e−2mη, qe2((m−1−ℓr)η±ωk;r); q2)∞
(q2, q2e−2η, e2(m−1−2ℓr)η; q2)∞

,

(3.14)

ωk;r := ξ+ + ξ− + τ + (ℓr − nk(r))η + 2
∑

s>r

(ℓs − nk(s))η.(3.15)

d. Let (ℓ, η) ∈ DM,N . Then {Ψk |k ∈ IM,N} is a linear basis of the space of
V ℓ(M)-valued meromorphic solutions of the boundary qKZ equations (2.13)
over the field of τZN -periodic meromorphic functions.

Remark 3.4. We may write

Ψk(t) =
∑

m∈IM,N

(∫

Cγ

k
(t)

wk(x; t)βm(x; t)dMx

)
Ωm
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for t ∈ Ã with the coefficients βm as given in Theorem 3.1. It allows for a direct
comparison with the integral solutions to type A qKZ in [18]. The coefficients
βm(x; t) of the Bethe vectors are the boundary analogons of the “trigonometric
weight functions” appearing in [18], whereas wk(x; t) corresponds to the product of
the “short phase function” and the “elliptic weight function” and Φk(t) is the direct
counterpart of the “adjusting factor” of the elliptic weight function. More precisely,
our integrand is the direct analogon of the integrand F (t) considered in [18, p.43,
Proof of Theorem 6.6]. Here we add that in [18] the elliptic weight function, like
the trigonometric weight function, is defined as an orbit sum. However, owing
to invariance properties under an action of the symmetric group, its terms all
contribute the same to the integral. In [9], this type A elliptic weight function was
re-defined as a single term in order to make a connection with solutions to the qKZ
equations in terms of formulae derived from free-field realizations of intertwiners of
quantum affine sl2.

The version of Theorem 3.3 for solutions of the boundary qKZ equations (2.13)
taking values in the tensor product of finite dimensional modules over quantum sl2
is discussed in Section 5.

4. Proof of the main results

Here we will prove the various statements made in Theorem 3.3. We start by a
helpful lemma listing the poles of the integrand of Θk(t).

Lemma 4.1. Let j ∈ {1, . . . ,M}. Fix xi ∈ tki + γi +
√
−1[0, π] for i 6= j. The

poles of the integrand wk(x; t)B̃(x; t)Ω as a function of xj are contained in
(
(P+

k;j(t)− τZ≥0) ∪ (P−
k;j(t) + τZ≥0)

)
+ π

√
−1Z,

where

P+
k;j(t) = {ts + ℓsη}s≤kj ∪ {xi − η}i<j
P−
k;j(t) = {ts − ℓsη}s≥kj ∪ {−ts − ℓsη}s ∪ {−ξ̃+,−ξ̃−}∪

∪ {xi + η}i>j ∪ {−xi + η}i 6=j .
Proof. Since ℜ(τ) < 0, from (3.8) we see that the sequences of poles of xj 7→
wk(x; t) whose real parts tend to +∞ are given by

({
ts + ℓsη

∣∣ 1 ≤ s ≤ kj
}
∪
{
xi − η

∣∣ i < j
})

− τZ≥0 + π
√
−1Z

whereas the sequences of poles whose real parts tend to −∞ are given by
({
ts − ℓsη + τ

∣∣ kj ≤ s ≤ N
}
∪
{
−ts − ℓsη

∣∣ 1 ≤ s ≤ N
}
∪ {−ξ̃+,−ξ̃−}∪

∪
{
xi + η

∣∣ i > j
}
∪
{
−xi + η

∣∣ i 6= j
})

+ τZ≥0 + π
√
−1Z.

From Proposition 3.1 we see that the poles of xj 7→ βk′(x; t) are contained in
({

±(ts − ℓsη)
∣∣ 1 ≤ s ≤ N

}
∪
{
±xi

∣∣ i 6= j
})

+ π
√
−1Z.

Using (3.8) again, we see that all of these poles except those of the form ts− ℓsη for
1 ≤ s ≤ kj are cancelled by zeros of wk(x; t). We obtain the desired statement. �

In the following four subsections we prove the four parts of Theorem 3.3.
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4.1. Holomorphicity of the Θk. Here and in Section 4.3 we will use the short-
hand notation

tk := (tk1 , . . . , tkM ) ∈ C
M

for t = (t1, . . . , tN ) ∈ C
N and k = (k1, . . . , kM ) ∈ IM,N . We may substitute

xi = yi + tki for i ∈ {1, . . . ,M} in the defining formula (3.11), so that

(4.1) Θk(t) =

∫

Cγ

k
(0)

wk(tk + y; t)

Φk(t)
B̃(tk + y; t)ΩdMy.

Note that the integration over yi is over the line segment γi +
√
−1[0, π].

From Lemma 4.1 we see that, for any j ∈ {1, . . . ,M}, the poles of the integrand
as a function of yj are avoided if the real part of every element of P+

k;j(t) (with

xi = yi + tki for i 6= j) exceeds ℜ(tkj + yj), and the real part of every element of

P−
k;j(t) (with xi = yi+tki for i 6= j) is less than ℜ(tkj +yj). Note that ℜ(yi) = ℜ(γi)

for all i ∈ {1, . . . , N}. This yields the inequalities

|ℜ(γj)| < ℜ(ℓkjη),
ℜ(γj − γj) > ℜ(η), for i < j and ki = kj ,
ℜ(γj − γi) > ℜ(η), for i > j and ki = kj ,
ℜ(ts − tkj ) > ℜ(γj − ℓsη), for 1 ≤ s < kj ,
ℜ(tkj − ts) > ℜ(−γj − ℓsη), for kj < s ≤ N,
ℜ(ts + tkj ) > ℜ(−γj − ℓsη), for 1 ≤ s ≤ N,
ℜ(tki − tkj ) > ℜ(γj − γi + η), for i < j and ki < kj ,
ℜ(tkj − tki) > ℜ(γi − γj + η), for i > j and ki > kj ,
ℜ(tki + tkj ) > ℜ(−γi − γj + η), for i 6= j,

ℜ(tkj ) > ℜ(−ξ̃+ − γj),

ℜ(tkj ) > ℜ(−ξ̃− − γj).

The inequalities independent of t are simple consequences of the condition γ ∈
Γk
M,N . For the inequalities involving sums and differences of the ts we also need

ℜ(tr− tr+1) > 2Λ++max(ℜ(η), 0) for 1 ≤ r < N , ℜ(tN ) > Λ++max(ℜ(η2 ), 0) and
ℜ(tN ) > 0. The final two inequalities rely on ℜ(tN ) > Λ++max(ℜ(−ξ̃+),ℜ(−ξ̃−)).

Since the integration in (4.1) is over a compact set which is independent of t the

integrals define V ℓ(M)-valued holomorphic functions Θk on Ã.
By virtue of Cauchy’s integral theorem, these functions Θk do not depend on

γ ∈ Γk
M,N since Γk

M,N is path-connected and the separation of poles by the contours
is unaltered for different choices of γ. We obtain part a of Theorem 3.3.

4.2. Integral solutions of the boundary qKZ equations. It is convenient to

define Fk to be the V ℓ(M)-valued meromorphic function ΦkΘk on Ã. Consider the
subsector

Ãτ :=
{
t ∈ A

∣∣∣ℜ(ts − ts+1) > 2Λ+ +max(ℜ(η), 0)−ℜ(τ) for 1 ≤ s < N,

ℜ(tN ) > Λ+ +max
(
ℜ(η2 ), 0,ℜ(−ξ̃+),ℜ(−ξ̃−)

)
−ℜ(τ)

}

of Ã. Note that if t ∈ Ãτ ⊂ Ã then t+ τer ∈ Ã for all r ∈ {1, . . . , N} so that both
sides of the boundary qKZ equations (2.13) with Ψ = Fk as given by (3.12) are

well-defined on Ãτ . Here we will show that they are equal on Ãτ .
To show this we need to make additional assumption on the step size τ , which

we can later remove by meromorphic continuation.
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Note that the definition of the parameter set Dk
M,N does not depend on τ . We

can and will therefore restrict to parameters (ℓ, η) ∈ Dk
M,N and τ ∈ C with ℜ(τ) < 0

satisfying the additional conditions

(4.2) −ℜ(τ) ≤ min
1≤r≤N

ℜ(ℓrη) and −ℜ(τ) < min
1≤r≤N

ℜ
(
(2ℓr + 1− nk(r))η

)

nk(r) + 1

(which is possible since (ℓ, η) ∈ Dk
M,N ). We also take the base point γ in the

restricted set Γk
M,N ;τ consisting of the base points γ ∈ Γk

M,N satisfying

−ℜ(ℓkiη + τ) < ℜ(γi) < ℜ(ℓkiη + τ),

ℜ(γi(s+1;r)) + ℜ(η − τ) < ℜ(γi(s;r))
for 1 ≤ i ≤ M , 1 ≤ r ≤ N and 1 ≤ s < nk(r). Note that Γk

M,N ;τ is nonempty as a

consequence of (ℓ, η) ∈ Dk
M,N and (4.2).

We will use the proof [14, Section 7] of the analogous statement for Jackson
integral solutions of the boundary qKZ equations. These were defined as summa-
tions over x ∈ x0 + τZM for some base point x0. Hence each variable xj could
be replaced by xj − τ without affecting the overall value of the sum; such shifts
provided a key step to the proof.

To mimic the proof for Jackson integrals we will shift integration variables by
−τ in the integrals using Cauchy’s theorem (recall that ℜ(τ) < 0). We use the
following standard observation. Let f(x) be a meromorphic function in x ∈ C

M

and view it, for fixed xi (i 6= j), as meromorphic function in xj . Suppose it is

π
√
−1-periodic in xj and holomorphic for xj in the vertical strip

(4.3) Sτ (z) := {y ∈ C | ℜ(z) ≤ ℜ(x) ≤ ℜ(z − τ)}.
Then ∫

z+[0,π]
√−1

f(x)dxj =

∫

z+[0,π]
√−1

f(x− ejτ)dxj

by a direct application of Cauchy’s theorem. So when in [14] a summation variable
is shifted by −τ (this occurs in Lemma 7.6 in ibid.), we replace this by the procedure
above based on the application of Cauchy’s theorem.

The only other difference with the Jackson integral case arises because in the

definition of Fk(t), the contours depend on t. In other words, for t ∈ Ãτ we have

Fk(t+ τer) =

∫

Cγ

k
(t+τer)

wk(x; t+ τer)B̃(x; t+ τer)Ωd
Mx,

with the shift in τ possibly appearing in one of the integration contours as well as
the integrand. If r 6= kj for all j ∈ {1, . . . ,M}, then the shift in τ does not affect
the contour, hence

(4.4) Fk(t+ τer) =

∫

Cγ

k
(t)

wk(x; t+ τer)B̃(x; t+ τer)Ωd
Mx.

We first claim that (4.4) is also true if r = kj for some j ∈ {1, . . . ,M}. We can
apply the above procedure involving Cauchy’s theorem (without the subsequent
variable substitution) with z = tkj +γj+τ . A subtlety arises if nk(r) > 1, in which
case Cauchy’s theorem needs to be successively applied for all integration variables
xj with kj = r starting with the variable xj with j = ik(1; r) and working our way

up to ik(nk(r); r). Hence, at each step we must assume that xi ∈ tki+γi+[0, π]
√
−1
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if ki = kj and i < j, and xi ∈ tki + γi+ τ +[0, π]
√
−1 if ki = kj and i > j. To show

that Cauchy’s theorem indeed can be applied, we use the following lemma.

Lemma 4.2. Let k ∈ IM,N . Let (ℓ, η) ∈ Dk
M,N and τ ∈ C satisfying ℜ(τ) < 0 and

(4.2). Choose γ ∈ Γk
M,N ;τ . Let 1 ≤ j ≤ M . Fix t ∈ Ãτ , xi ∈ tki + γi + [0, π]

√
−1

if i < j and xi ∈ tki + γi + δki,kjτ + [0, π]
√
−1 if i > j, then

wk(x; t+ τekj )

Φk(t+ τekj )
B̃(x; t+ τekj )Ω

as a function of xj is π
√
−1-periodic and has no poles in Sτ (tkj + γj + τ).

Proof. The periodicity condition follows immediately from the analogous properties

of wk(x; t) and B̃(x; t)Ω. Using Lemma 4.1, the desired result on the poles holds if
the real parts of all elements of P+

k;j(t+τekj ) are strictly greater than ℜ(tkj+γj) and
the real parts of all elements of P−

k;j(t+ τekj ) are strictly less than ℜ(tkj + γj + τ).
This imposes the inequalities

ℜ(γj) < ℜ(ℓkjη + τ),
−ℜ(γj) < ℜ(ℓkjη),

ℜ(γi − γj) > ℜ(η), for i < j and ki = kj ,
ℜ(γj − γi) > ℜ(η), for i > j and ki = kj ,
ℜ(ts − tkj ) > ℜ(γj − ℓsη), for 1 ≤ s < kj ,
ℜ(tkj − ts) > ℜ(−γj − ℓsη − τ), for kj < s ≤ N,
ℜ(ts + tkj ) > ℜ(−γj − ℓsη − τ), for 1 ≤ s ≤ N,
ℜ(tki − tkj ) > ℜ(γj − γi + η), for i < j and ki < kj ,
ℜ(tkj − tki) > ℜ(γi − γj + η − τ), for i > j and ki > kj ,
ℜ(tki + tkj ) > ℜ(−γi − γj + η − τ), for i 6= j and ki 6= kj ,

ℜ(2tkj ) > ℜ(−γi − γj + η − τ), for i < j and ki = kj ,
ℜ(2tkj ) > ℜ(−γi − γj + η − 2τ), for i > j and ki = kj ,

ℜ(tkj ) > ℜ(−ξ̃+ − τ − γj),

ℜ(tkj ) > ℜ(−ξ̃− − τ − γj).

The inequalities independent of t immediately follow from γ ∈ Γk
M,N ;τ (the in-

equality ℜ(γj) < ℜ(ℓkjη + τ) is the only instance in this proof where we actually

require γ ∈ Γk
M,N ;τ as opposed to γ ∈ Γk

M,N ). For the inequalities involving t we

also need the condition |ℜ(γj)| < ℜ(ℓkjη) and in addition conditions implied by

t ∈ Ãτ . Namely, the first three inequalities involving t follow from the conditions
ℜ(tr − tr+1) > 2Λ+ −ℜ(τ) for 1 ≤ r < N and ℜ(tN ) > 0. The inequalities involv-
ing tki ± tkj are a consequence of the conditions ℜ(tr − tr+1) > 2Λ+ + ℜ(η − τ),
ℜ(tN ) > Λ+ + ℜ(η2 − τ), ℜ(tN ) > 0 (and ℜ(τ) < 0), and the final two inequalities

are a consequence of ℜ(tN ) > Λ+ +max
(
ℜ(−ξ̃+),ℜ(−ξ̃−)

)
−ℜ(τ). �

Applying Lemma 4.2 for j running through {i ∈ {1, . . . ,M} | ki = r} from low
to high values, we obtain (4.4) Hence the two sides of the boundary qKZ equation
(2.13) for Ψ(t) = Fk(t) have the same contour Cγ

k (t) and differ in the integrands
in the same way as the summands did at the start of the proof in [14, Section
7]. Thus we follow that proof taking care to correctly use Cauchy’s theorem when
dealing with replacements xj → xj − τ . We recall that the strategy is to shift the
integration variable by τ in appropriate terms in (4.4); these terms are essentially

due to the expansion of B̃(x; t) by means of (3.4). Next, we use the conditions (4.5)
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on the weight function wk to establish that the terms on the left- and right-hand
sides of (4.4) can be matched.

We need the following functional equations

F (x; t+ τer) = e4ℓrη
sinh(tr ± x− ℓrη + τ)

sinh(tr ± x+ ℓrη + τ)
F (x; t),

F (x− τ ; t) =

( N∏

s=1

sinh(ts − x− ℓsη + τ)

sinh(ts − x+ ℓsη + τ)

sinh(ts + x+ ℓsη)

sinh(ts + x− ℓsη)

)
F (x; t),

g(x− τ) = q−2e−2(ξ̃++ξ̃−) sinh(x+ ξ̃+)

sinh(x− ξ̃+ − τ)

sinh(x+ ξ̃−)

sinh(x− ξ̃− − τ)
g(x),

h(x− τ) = e2η
sinh(x− τ)

sinh(x)

sinh(x− η)

sinh(x+ η − τ)
h(x),

uk;i(x; t+ τer) = uk;i(x; t)×





1 if r < ki,

e2(ξ++ξ−−η)+4(
∑

s>ki
ℓs−M+i)η if r = ki,

e−4ℓrη if r > ki,

uk;i(x− τ ; t) = q2e2(ξ̃++ξ̃−)−4(M−i)ηuk;i(x; t)

where k, r ∈ {1, . . . , N} and i ∈ {1, . . . ,M}. From these and (2.18) one derives

(4.5)

wk(x; t+ τer)

wk(x; t)
=

( M∏

i=1

sinh(tr ± xi − ℓrη + τ)

sinh(tr ± xi + ℓrη + τ)

)
,

wk(x− τej ; t)

wk(x; t)
=

( N∏

s=1

sinh(ts + xj + ℓsη)

sinh(ts + xj − ℓsη)

sinh(ts − xj − ℓsη + τ)

sinh(ts − xj + ℓsη + τ)

)

× sinh(xj + ξ̃+)

sinh(xj − ξ̃+ − τ)

sinh(xj + ξ̃−)

sinh(xj − ξ̃− − τ)

×
(∏

i 6=j

sinh(xj ± xi − τ)

sinh(xj ± xi)

sinh(xj ± xi − η)

sinh(xj ± xi + η − τ)

)
.

We emphasize that these are the same equations as those satisfied by the weight
function w(x; t) appearing in the Jackson integral in [14, Theorem 6.2]; in particular
they do not depend on k.

We denote ert = (t1, . . . , tr−1,−tr, tr+1, . . . , tN ) for t = (t1, . . . , tN ) ∈ C
N and

r ∈ {1, . . . , N} and Jc = {1, . . . ,M} \J for J ⊆ {1, . . . ,M}. Define, for ǫ ∈ {±}M ,
J ⊆ {1, . . . ,M}, r ∈ {1, . . . , N} and x ∈ Cγ

k (t):

mǫ,J
r (x; t) := (−1)#J

c

(
M∏

i=1

ǫi sinh(ξ̃− − ǫixi)
∏

s 6=r

sinh(ts − ǫixi + ℓsη)

sinh(ts − ǫixi − ℓsη)

)

×
( ∏

i′∈Jc

1

sinh(tr + ǫi′xi′ + ℓrη)

)( ∏

i∈J

i′∈Jc

sinh(±xi + ǫi′xi′ + η)

sinh(±xi + ǫi′xi′)

)

×
( ∏

i<i′

i,i′∈J or i,i′∈Jc

sinh(ǫixi + ǫi′xi′ + η)

sinh(ǫixi + ǫi′xi′)

)
,
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which defines a π
√
−1-periodic function of each xj with j ∈ Jc; this is the same

function as in [14, Eqn. (7.8)].
We require some further notation. For d ∈ {0, . . . ,M} consider a subset J ⊆

{1, . . . ,M} of cardinality M − d. Write J = {i1, . . . , iM−d} with 1 ≤ i1 < i2 <
. . . < iM−d ≤ M . Then for given k = (k1, . . . , kM ) ∈ IM,N , x = (x1, . . . , xM ) ∈
Cγ

k (t) and ǫ = (ǫ1, . . . , ǫM ) ∈ {±}M , we denote kJ := (ki1 , . . . , kiM−d
), xJ :=

(xi1 , . . . , xiM−d
) and ǫJ := (ǫi1 , . . . , ǫiM−d

). Note that xJ ∈ CkJ
(t).

For the remainder of this subsection, we fix r ∈ {1, . . . , N}, d ∈ {0, . . . ,M},
J ⊂ {1, . . . ,M} such that #J =M − d and the subtuples kJ , xJ and ǫJ as above.
For ǫJc ∈ {±}d, set

Λr,ǫJc (t) :=

∫

CkJc (t)

wk(x; t)m
ǫ,J
r (x; ert)d

dxJc ,

Υr,ǫJc (t) :=

∫

CkJc (t)

wk(x; t)m
ǫ,J
r (x; t+ τer)d

dxJc .

They are the analogons of their namesakes introduced in [14, Sec. 7.3] with the
summation over xJc ∈ τZd replaced by an integral over xJc ∈ CkJc (t).

A careful inspection of the proof in [14, Section 7] shows that the only statement
which does not immediately generalize from the Jackson integral case to the integral
case is in fact in the proof of [14, Lemma 7.6] where in the Jackson integral a certain
variable xj in the summand is replaced by xj − τ . In order to adapt that proof to
one suitable for our integral solutions, we apply the argument based on Cauchy’s
theorem again. Hence, the following lemma replaces the start of the proof of [14,
Lemma 7.6].

Lemma 4.3. Let k ∈ IM,N . Let (ℓ, η) ∈ Dk
M,N and τ ∈ C satisfying ℜ(τ) < 0 and

(4.2). Choose γ ∈ Γk
M,N ;τ . Let j ∈ Jc such that ǫj = +. For fixed t ∈ Ãτ and

xi ∈ tki + γi + [0, π]
√
−1 (i 6= j), the functions

xj 7→ wk(x; t)m
ǫ,J
r (x; ert),

xj 7→ wk(x; t)m
ǫ,J
r (x; t+ τer)

are π
√
−1-periodic and have no poles in Sτ (tkj + γj).

Proof. The periodicity statement follows from the fact that both xj 7→ wk(x; t)

and xj 7→ mǫ,J
r (x; t) are π

√
−1-periodic for any t.

Using that ǫj = + we see that the poles of mǫ,J
r (x; ert) as a function of xj are

contained in the set
(
{ts − ℓsη | 1 ≤ s ≤ N} ∪ {±xi | i 6= j}

)
+ π

√
−1Z.

Similarly, the poles of mǫ,J
r (x; t+ τer) as a function of xj are contained in the set

(
{ts − ℓsη | 1 ≤ s ≤ N, s 6= r} ∪ {−tr − τ − ℓrη} ∪ {±xi | i 6= j}

)
+ π

√
−1Z.

Considering (3.8), we see that all xj-dependent poles are cancelled by zeros of
wk(x; t), as well as the poles of the form ts − ℓsη for s < kj . It follows that all
poles of wk(x; t)m

ǫ,J
r (x; ert) and wk(x; t)m

ǫ,J
r (x; t+ τer) are contained in

(
(Q+

k;j − τZ≥0) ∪ (Q−
k;j + τZ≥0)

)
+ π

√
−1Z,
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where

Q+
k;j(t) = {ts + ℓsη}s≤kj ∪ {xi − η}i<j

Q−
k;j(t) = {ts − ℓsη}s≥kj ∪ {−ts − ℓsη − τ}s ∪ {−ξ̃+,−ξ̃−}∪

∪ {xi + η}i>j ∪ {−xi + η}i 6=j .

The conclusion of the lemma is justified if the real parts of all elements of Q+
k;j are

strictly greater than ℜ(tkj + γj − τ) and the real parts of all elements of Q−
k;j are

strictly less than ℜ(tkj + γj). This yields the inequalities

ℜ(γj) > −ℜ(ℓkjη),
ℜ(γj) < ℜ(ℓkjη + τ),

ℜ(γi − γj) > ℜ(η − τ), for i < j and ki = kj ,
ℜ(γj − γi) > ℜ(η − τ), for i > j and ki = kj ,
ℜ(ts − tkj ) > ℜ(γj − ℓsη − τ), for 1 ≤ s < kj ,
ℜ(tkj − ts) > ℜ(−γj − ℓsη), for kj < s ≤ N,
ℜ(ts + tkj ) > ℜ(−γj − ℓsη − τ), for 1 ≤ s ≤ N,
ℜ(tki − tkj ) > ℜ(γj − γi + η − τ), for i < j and ki < kj ,
ℜ(tkj − tki) > ℜ(γi − γj + η), for i > j and ki > kj ,
ℜ(tki + tkj ) > ℜ(−γi − γj + η), for i 6= j and ki 6= kj ,

ℜ(2tkj ) > ℜ(−γi − γj + η), for i 6= j and ki = kj ,

ℜ(tkj ) > ℜ(−ξ̃+ − γj),

ℜ(tkj ) > ℜ(−ξ̃− − γj).

We get similar conditions as in the proof of Lemma 4.2. However, the inequality
for the differences on γj is stronger as ℜ(τ) < 0. All these conditions are again a

consequence of γ ∈ Γk
M,N ;τ , ℜ(τ) < 0 and t ∈ Ãτ . �

In Fig. 1 we illustrate a typical arrangement of poles with respect to the vertical
strip Sτ (tki + γi) as pertains to Lemma 4.3.

Let k ∈ IM,N and (ℓ, η) ∈ Dk
M,N . Following [14] it follows that for τ satisfying

ℜ(τ) < 0 and (4.2) that

(4.6) Fk(t+ τer) = Ar(t)Fk(t), 1 ≤ r ≤ N

as meromorphic functions in t ∈ Ãτ .

Next we show that the V ℓ(M)-valued meromorphic function Fk = ΦkΘk on Ãτ

uniquely extends to a meromorphic V ℓ(M)-valued meromorphic function Ψk on
C
N satisfying (2.13).
Let {Aα(t)}α∈ZN be the unique family of linear operators on V ℓ depending

meromorphically on t ∈ C
N satisfying

Aα(t+ βτ)Aβ(t) = Aα+β(t), α, β ∈ Z
N ,

A0(t) = IdV ℓ ,

Aer
(t) = Ar(t), r = 1, . . . , N,

with Ar(t) the transport operators (2.14) of the boundary qKZ equations (the
compatibility of the transport operators guarantees the existence of the cocycle
{Aα(t)}α∈ZN ).
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Sτ (t1+γ1)

t1+γ1

t1+γ1+π
√−1

t1+γ1−τ+π
√−1

t1+γ1−τ×

×

×

×

×

×

t1−ℓ1η

t1−ℓ1η+π
√−1

×

×

×

×

×

×

t1+ℓ1η

t1+ℓ1η+π
√−1

×

×

−t1−ℓ1η

−t1−ℓ1η−π
√−1

Figure 1. Integration contour t1 + γ1 + [0, π]
√
−1 and t1-

dependent poles of x1 7→ wk(x; t)B̃(x; t)Ω for k1 = 1 and γ1 sat-
isfying |ℜ(γ1)| < ℜ(ℓk1η + τ) as in the proof of Lemma 4.3. For
each pole sequence, the pole closest to the vertical strip Sτ (t1+γ1)
(4.3), which is the shaded area in the figure, is indicated. The poles
consist of (unilateral) sequences entirely to the left or entirely to
the right of Sτ (t1 + γ1). In the vertical strip we have marked the
closed contour with respect to which Cauchy’s theorem is used in
this subsection.

Consider the cone

P+ := {λ ∈ Z
N | λ1 ≥ λ2 · · · ≥ λN ≥ 0}.

Note that t − λτ ∈ Ãτ for t ∈ Ãτ and λ ∈ P+. It follows from (4.6) that for all
λ ∈ P+,

(4.7) Fk(t− λτ) = A−λ(t)Fk(t)

as meromorphic V ℓ(M)-valued functions in t ∈ Ãτ .
If Ψk is a V ℓ(M)-valued meromorphic function on C

N satisfying the boundary

qKZ equations and coinciding with Fk on Ãτ , then

(4.8) Ψk(t) = Aα(t− ατ)Fk(t− ατ)

for t ∈ C
N and α ∈ Z

N such that t − ατ ∈ Ãτ . Now (4.8) can be used to prove
the existence of the meromorphic extension of Fk to C

N . For this we need to show
that the right hand side of (4.8) does not depend on the choice of α such that

t− ατ ∈ Ãτ .
Suppose β ∈ Z

N also satisfies t− βτ ∈ Ãτ . Let λ, µ ∈ P+ such that

λ+ α = µ+ β ∈ P+.
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Then repeated application of (4.7) gives

Aβ(t− βτ)Fk(t− βτ) = Aβ(t− βτ)A−µ(t− βτ)−1Fk(t− (µ+ β)τ)

= Aβ(t− βτ)A−µ(t− βτ)−1A−λ(t− ατ)Fk(t− ατ)

= Aα(t− ατ)Fk(t− ατ),

where the last equality follows from the cocycle property. By a similar computa-
tion one shows that the resulting V ℓ(M)-valued meromorphic function Ψk on C

N

satisfies the boundary qKZ equations (2.13).

The identity Ψk = Fk on Ãτ extends to Ã by meromorphic continuation. Fi-
nally, the extra assumption (4.2) on the step size can be removed by meromorphic
continuation. This completes the proof of part b of Theorem 3.3.

4.3. Asymptotics. In this subsection we prove part c of Theorem 3.3. Recall the
notation tk := (tk1 , . . . , tkM ) ∈ C

M for t ∈ C
N , k ∈ IM,N . We will investigate the

asymptotics of Ψk(t) as t
A→ ∞ using the formula (4.1). It is convenient to study

first the asymptotics of e
∑

i tki
wk(tk+y;t)

Φk(t)
and of

e−
∑

i tki B̃(tk + y; t)Ω = e−
∑

i tki

∑

m∈IM,N

βm(tk + y; t)Ωm.

Lemma 4.4. Let k ∈ IM,N .

a. There exists unique continuous functions ∆k
α on Cγ

k (0) (α ∈ Q+) such that

e
∑M

i=1 tki
wk(tk + y; t)

Φk(t)
=
∑

α∈Q+

∆k
α(y)e

−2(α,t)

for (y, t) ∈ Cγ
k (0)×Ã, with the series converging normally on compact sets.

Furthermore,

∆k
0 (y) =

M∏

i=1

θ
(
e2(yi+ψk;i)

)

(e2(yi−ℓki
η), q2e−2(yi+ℓki

η); q2)∞

×
∏

1≤i<j≤M

ki=kj

(
1− e2(yj−yi)

) (q2e2(yj−yi−η); q2)∞
(e2(yj−yi+η); q2)∞

.

b. Let m ∈ IM,N . There exists unique continuous functions fk,mα on Cγ
k (0)

(α ∈ Q+) such that

e−
∑M

i=1 tkiβm(tk + y; t) =
∑

α∈Q+

fk,mα (y)e−(α,t)

for (y, t) ∈ Cγ
k (0)×Ã, with the series converging normally on compact sets.

Furthermore,

fk,m0 (y) = δk,m

M∏

i=1

−eξ−+2
∑

s<ki
ℓsη

1− e−2(yi+ℓki
η)
.
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Proof. a. This follows from the explicit expression

e
∑M

i=1 tki
wk(tk + y; t)

Φk(t)
=

=

M∏

i=1

{(∏

s<ki

(e2(yi+tki
−ts+ℓsη); q2)∞

(e2(yi+tki
−ts−ℓsη); q2)∞

)
θ
(
e2(yi+ψk;i)

)

(e2(yi−ℓki
η), q2e−2(yi+ℓki

η); q2)∞

×
(∏

s>ki

(q2e2(ts−tki
−yi+ℓsη); q2)∞

(q2e2(ts−tki
−yi−ℓsη); q2)∞

)( N∏

s=1

(e−2(ts+tki
+yi−ℓsη); q2)∞

(e−2(ts+tki
+yi+ℓsη); q2)∞

)

× (q2e2(ξ̃+−tki
−yi), q2e2(ξ̃−−tki

−yi); q2)∞

(e−2(ξ̃++tki
+yi), e−2(ξ̃−+tki

+yi); q2)∞

}

×
∏

1≤i<j≤M

{
(1− e−2((yi+tki

)±(yj+tkj
)))

(q2e−2((yi+tki
)±(yj+tkj

)+η); q2)∞

(e−2((yi+tki
)±(yj+tkj

)−η); q2)∞

}
.

b. We use the explicit expression from Proposition 3.1. It gives

e−
∑

i tkiβm(tk + y; t) =

e
∑

i

(nm(mi)
2 −ℓmi

)
η
∑

p∈SMm

∑

ǫ∈{±}M

{
M∏

i=1

{
ǫie

−tki sinh(ǫitki + ǫiyi − ξ̃−)

sinh(tpi + ǫitki + ǫiyi − ℓpiη)

×
(∏

s>pi

sinh(ts + ǫitki + ǫiyi + ℓsη)

sinh(ts + ǫitki + ǫiyi − ℓsη)

)( N∏

s=1

sinh(ts − ǫiyi − ǫitki + ℓsη)

sinh(ts − ǫiyi − ǫitki − ℓsη)

)}

×
( ∏

1≤i<j≤M

sinh(ǫitki + ǫjtkj + ǫiyi + ǫjyj + η)

sinh(ǫitki + ǫjtkj + ǫiyi + ǫjyj)

)

×
( ∏

1≤i<j≤M

pi<pj

sinh(ǫitki − ǫjtkj + ǫiyi − ǫjyj − η)

sinh(ǫitki − ǫjtkj + ǫiyi − ǫjyj)

)}
.

(4.9)

For fixed p ∈ SMm and ǫ ∈ {±}M , a direct computation shows that

M∏

i=1

ǫie
−tki sinh(ǫitki + ǫiyi − ξ̃−)

sinh(tpi + ǫitki + ǫiyi − ℓpiη)
=
∑

α∈Q+

dp,ǫα (y)e−(α,t)

with leading coefficient

dp,ǫ0 (y) = δp,kδǫ,(−)M

M∏

i=1

−eξ̃−−ℓki
η

1− e−2(yi+ℓki
η)

and (−)M := (−, . . . ,−) the M -tuple of minus signs. Here the convergence is as
indicated in the lemma. For all the other factors in the right hand side of (4.9) it

is easy to compute the series expansion when t
A→ ∞. It leads to the result that

e−
∑M

i=1 tkiβm(tk + y; t) =
∑

α∈Q+

fk,mα (y)e−(α,t)
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with

fk,m0 (y) = δk,m

(
M∏

i=1

−eξ̃−+
(nk(ki)

2 +2
∑

s<ki
ℓs

)
η

1− e−2(yi+ℓki
η)

)
e(#{(i,j) | ki<kj}−#{(i,j) | i<j})η

and the convergence as indicated in the lemma. Finally note that the expression of

fk,m0 (y) coincides with the expression as given in the lemma because

#{(i, j) | ki < kj} −#{(i, j) | i < j} = −#{(i, j) | i < j, ki = kj}

=
M −#{(i, j) | ki = kj}

2
=

M∑

i=1

1− nk(ki)

2
,

where we have used that ki ≤ kj if i < j. �

From Lemma 4.4 we immediately deduce that there exists unique continuous
V ℓ(M)-valued functions Rk

α on Cγ
k (0) (α ∈ Q+) such that

(4.10)
wk(tk + y; t)

Φk(t)
B̃(tk + y; t)Ω =

∑

α∈Q+

Rk
α(y)e

−(α,t)

for (y, t) ∈ Cγ
k (0)×Ã with the V ℓ(M)-valued series converging normally on compact

sets, and with leading coefficient given by

Rk
0 (y) =

∑

m∈IM,N

∆k
0 (y)f

k,m
0 (y)Ωm

= ∆k
0 (y)

( M∏

i=1

−eξ−+2
∑

s<ki
ℓsη

1− e−2(yi+ℓki
η)

)
Ωk

=

(
M∏

i=1

−eξ−+2
∑

s<ki
ℓsηθ

(
e2(yi+ψk;i)

)

(e2(±yi−ℓki
η); q2)∞

)

×
( ∏

1≤i<j≤M

ki=kj

(
1− e2(yj−yi)

) (q2e2(yj−yi−η); q2)∞
(e2(yj−yi+η); q2)∞

)
Ωk.

It follows from (4.1), (4.10) and Fubini’s theorem that Θk(t) has a V
ℓ(M)-valued

series expansion

Θk(t) =
∑

α∈Q+

Lk
αe

−(α,t)

normally converging for t in compact subsets of Ã and with the coefficients given
by

Lk
α =

∫

Cγ

k
(0)

Rk
α(y)d

My, α ∈ Q+.

By the explicit expression of Rk
0 (y) we have in particular

Lk
0 = µkΩk
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with µk the explicit integral given by

(4.11)

µk =

∫

Cγ

k
(0)

(
M∏

i=1

−eξ−+2
∑

s<ki
ℓsηθ

(
e2(yi+ψk;i)

)

(e2(±yi−ℓki
η); q2)∞

)

×
(

∏

1≤i<j≤M

ki=kj

(
1− e2(yj−yi)

) (q2e2(yj−yi−η); q2)∞
(e2(yj−yi+η); q2)∞

)
dMy.

So to complete the proof of part c of Theorem 3.3, it suffices to prove the following
explicit evaluation formula for the integral µk.

Lemma 4.5. Let k ∈ IM,N , (ℓ, η) ∈ Dk
M,N and τ ∈ C with ℜ(τ) < 0. Let

γ ∈ Γk
M,N . Then µk = νk, with νk given by (3.14).

Proof. Fix k ∈ IM,N . Recall the notation ik(m; r) from (3.10). It follows that

ψk;i(m;r) = ωk;r +
τ
2 + (2m− nk(r)− 1)η,

with ωk;r given by (3.15).

Let r ∈ {1, . . . , N}. We introduce the meromorphic function fkr on C
nk(r) by

fkr (z) :=

(
n(r)∏

m=1

θ(qe2(zm+ωk;r+(2m−n(r)−1)η))

(e2(±zm−ℓrη); q2)∞

)

×
(

∏

1≤m<m′≤nk(r)

(
1− e2(zm′−zm)

) (q2e2(zm′−zm−η); q2)∞
(e2(zm′−zm+η); q2)∞

)

and the cycles

C(r) :=
(
γi(1;r) +

√
−1[0, π]

)
× · · · ×

(
γi(nk(r);r) +

√
−1[0, π]

)
.

Define

µk
r :=

∫

C(r)

fkr (z)d
nk(r)z(4.12)

νkr :=

nk(r)∏

m=1

(−π
√
−1)

(q2e−2mη, qe2((m−1−ℓr)η±ωk;r); q2)∞
(q2, q2e−2η, e2(m−1−2ℓr)η; q2)∞

.(4.13)

Because

Cγ
k (0) = C(1) × · · · × C(N)

and the product over i < j in (4.11) entails the restriction ki = kj , we note that
the integral µk factorizes into a product of nk(r)-fold integrals for r ∈ {1, . . . , N}:

(4.14) µk =

( M∏

i=1

−eξ−+2
∑

s<ki
ℓsη

) N∏

r=1

µk
r .

In view of (3.14) it therefore suffices to show that µk
r = νkr .

We prove µk
r = νkr for the following parameter values. We fix k ∈ IM,N , r ∈

{1, . . . , N} with nk(r) ≥ 1 and τ ∈ C with ℜ(τ) < 0. Consider the path-connected
non-empty parameter domain

D =
{
(ℓr, η) ∈ C

2 | ℜ(ℓrη) > max
(
0, nk(r)−1

2 ℜ(η)
)}
.
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For fixed (ℓr, η) ∈ D let

γ(r) =
(
γi(1;r), . . . , γi(nk(r);r)

)
∈ C

nk(r)

be such that

−ℜ(ℓrη) < ℜ(γi(s;r)) < ℜ(ℓrη),
ℜ(γi(s′+1;r)) ≤ ℜ(γi(s′;r)),
ℜ(γi(s′+1;r)) + ℜ(η) < ℜ(γi(s′;r))

for 1 ≤ s ≤ nk(r) and 1 ≤ s′ < nk(r). Note that if ℜ(η) < 0 then γ(r) = (0, . . . , 0)
satisfies the conditions.

The integral µk
r (see (4.12)) does not depend on the choice of γ(r). This follows

from the fact that the separation of the poles of fkr (z) by the cycle C(r) does not
depend on the choice of γ(r), and Cauchy’s theorem. It now also follows directly

that µk
r is holomorphic in (ℓr, η) ∈ D. The same is true for νkr (see (4.13)) by

a direct inspection. Hence it suffices to prove that µk
r = νkr for the restricted

parameter domain

{(ℓr, η) ∈ D | ℜ(η) < 0} = {(ℓr, η) ∈ C
2 | ℜ(ℓrη) > 0 & ℜ(η) < 0}.

But this is the special case of [18, Appendix D - Proof of formula (5.13)] with the
associated parameters specialized to

a = b = e−2ℓrη, c = q e−2ωk;r , p = q2, x = e2η. �

4.4. Completeness. Consider the boundary qKZ equations (2.13) as a compatible
system of difference equations for V ℓ(M)-valued meromorphic functions on C

N .

The fact that the leading coefficients νkΩk of Θk(t) as t
A→ ∞ (k ∈ IM,N ) form a

linear basis of V ℓ(M) implies that the {Ψk}k∈IM,N
form a linear basis of the space

of V ℓ(M)-valued meromorphic solutions of the boundary qKZ equations over the
field of τZN -periodic meromorphic functions on C

N by the arguments of [10, §5.6].
This proves part d of Theorem 3.3.

5. Integral solutions for finite-dimensional representations of

quantum sl2

Fix ℓr ∈ 1
2Z>0 for 1 ≤ r ≤ N and write

prℓ := prℓ1 ⊗ · · · ⊗ prℓN : V ℓ → V
ℓ
:= V

ℓ1 ⊗ · · · ⊗ V
ℓN

for the projection onto the finite-dimensional quotient. Write

Ωk := prℓΩk = vℓ1nk(1)
⊗ · · · ⊗ vℓNnk(N)

for k ∈ IM,N . Note that

V
ℓ
=

2
∑N

r=1 ℓr⊕

M=0

V
ℓ
(M)

with

V
ℓ
(M) =

⊕

k∈Iℓ
M,N

CΩk

and with index set

IℓM,N := {k ∈ IM,N | nk(r) ≤ 2ℓr ∀ r = 1, . . . , N}.
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Let Ar(t) : V
ℓ → V

ℓ
be the linear operators such that

Ar(t) ◦ prℓ = prℓ ◦ Ar(t),

with Ar(t) : V ℓ → V ℓ the transport operators of the boundary qKZ equations

(2.13). The boundary qKZ equations for V
ℓ
-valued meromorphic functions Ψ on

C
N are

(5.1) Ψ(t+ τer) = Ar(t)Ψ(t), r ∈ {1, . . . , N}.
Let η ∈ C with ℜ(η) > 0. Then for all k ∈ IℓM,N we have (ℓ, η) ∈ Dk

M,N . Hence
Theorem 3.3 immediately gives the following result.

Theorem 5.1. Let τ ∈ C with ℜ(τ) < 0. Let ℓr ∈ 1
2Z>0 (1 ≤ r ≤ N) and η ∈ C

with ℜ(η) > 0. Let 0 ≤ M ≤ 2
∑N
r=1 ℓr. For k ∈ IℓM,N let Ψk be the V ℓ(M)-

valued meromorphic solution of the boundary qKZ equations (2.13) with respect to
the parameters (ℓ, η), as defined in Theorem 3.3.

Then {prℓΨk}k∈Iℓ
M,N

is a basis of the V
ℓ
(M)-valued meromorphic solutions of

the boundary qKZ equations (5.1) over the field of τZN -invariant meromorphic
functions.

Remark 5.2. If ℓ1 = . . . = ℓN = 1
2 then V ℓ ∼= (C2)⊗N and V ℓ(M) is spanned by

vectors Ωk with k ∈ IM,N such that nk(r) ≤ 1 for all r ∈ {1, . . . , N}. For all such
k we may take γ = (0, 0, . . . , 0) ∈ Γk

M,N , since ki = kj for i 6= j does not occur.

Appendix A. Asymptotics of the boundary qKZ equations

Lemma A.1. Let ℓ1, ℓ2 ∈ C. The limits

(A.1) Rℓ1ℓ2∞ := lim
ℜ(x)→∞

Rℓ1ℓ2(x), Kℓ1
∞(ξ) := lim

ℜ(x)→∞
Kℓ1(x; ξ).

exist and for all d1, d2 ∈ Z≥0 we have

(A.2)
Rℓ1ℓ2∞ (vℓ1d1 ⊗ vℓ2d2) = e2(d1d2−ℓ1d2−d1ℓ2)ηvℓ1d1 ⊗ vℓ2d2

Kℓ1
∞(ξ)(vℓ1d1) = (−1)d1e−d1(2ξ+(2ℓ1−d1)η)vℓ1d1 .

Proof. Let R be the truncated universal R-matrix for Ûη, see Section 2.1. After

twisting it by z
d
2 ⊗ f1 we will have an element R(z) ∈ Û⊗2

η [[z]] of the form R(z) =
exp(η2h1 ⊗ h1)(1 + O(z)). The evaluation of R(z) in the tensor product of two

irreducible representations V ℓ1 ⊗ V ℓ2 gives the R-matrix e2ℓ1ℓ2ηRℓ1ℓ2(x) where z =
ex; the extra factor is due to the normalized action on the tensor product of highest
weight vectors. The limit ℜ(x) → −∞ corresponds to z → 0. Thus, for the
R-matrices in question we have:

Rℓ1ℓ2(x) → e2ℓ1ℓ2η(πℓ1 ⊗ πℓ2) exp
(
−η

2h1 ⊗ h1
)

as ℜ(x) → −∞, and owing to unitarity (2.1) we obtain

Rℓ1ℓ2(x) → e−2ℓ1ℓ2η(πℓ1 ⊗ πℓ2) exp
(
η
2h1 ⊗ h1

)

as ℜ(x) → ∞. When applied to vℓ1d1 ⊗ vℓ2d2 , this gives the desired formula.

The asymptotic formula for Kℓ(x; ξ) follows immediately from (2.10). �

As a consequence of Lemma A.1 we have
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Lemma A.2. Let ℓ ∈ C
N and r ∈ {1, . . . , N}. Then the limit A∞,r as defined in

(2.16) exists and for all k ∈ IM,N and all r ∈ {1, . . . , N} we have

(A.3) A∞,r(Ωk) = ϕk;rΩk,

with ϕk;r given by (2.17).

Proof. According to Lemma A.1, the desired limit exists and is equal to

A∞,r = (Rℓr ℓr+1
∞ )r r+1 · · · (Rℓr ℓN∞ )r N

(
Kℓr

∞(ξ+)
)
r
(RℓN ℓr

∞ )N r · · · (Rℓr+1 ℓr
∞ )r+1 r

× (Rℓr−1 ℓr
∞ )r−1 r · · · (Rℓ1 ℓr∞ )1 r

(
Kℓr

∞(ξ−)
)
r

(
Rℓ1 ℓr∞

)−1

1 r
· · ·
(
Rℓr−1 ℓr

∞
)−1

r−1 r

=
(
Kℓr

∞(ξ+)K
ℓr
∞(ξ−)

)
r

∏

s>r

(
Rℓrℓs∞

)2
r s
,

where we have used (2.2) and the diagonality of both Rℓr ℓs∞ and Kℓ
∞(ξ). Applying

(A.2), for d ∈ Z
N
≥0 we have

A∞,r(vd) = e−2dr

(
ξ++ξ−+(2ℓr−dr)η

)(∏

s>r

e4
(
drds−ℓrds−drℓs

)
η

)
vd

= e
2dr(η−ξ+−ξ−)+4dr

(
∑

s>r ds+
dr−1

2 −∑
s≥r ℓs

)
η
(∏

s>r

e−4ℓrdsη
)
vd.

Using the bijection ζM,N : IM,N → PN (M) we arrive at the following formula

A∞,r(Ωk) = e
2nk(r)(η−ξ+−ξ−)+4nk(r)

(
∑

s>r nk(s)+
nk(r)−1

2 −∑
s≥r ℓs

)
η

×
(∏

s>r

e−4ℓrnk(s)η
)
Ωk

for k ∈ IM,N . We denote maxk(r) = max{i ∈ {1, . . . ,M} | ki = r}. Recalling the
definition of nk(s) as given by (2.12) we have

∑
s>r nk(s) = M −maxk(r). From

the formula for the sum of a finite arithmetic progression we infer that

nk(r)

(∑

s>r

nk(s) +
nk(r)− 1

2

)
=

M∑

i=1
ki=r

(M − i).

Formula (A.3) now readily follows. �

Appendix B. The boundary Bethe vectors

In this section we prove Proposition 3.1

B.1. Decomposition of ordinary Bethe vectors. For generic values of ℓ, t ∈
C
N and x ∈ C we write

T ℓ(x; t) = Lℓ10 1(x− t1) · · ·LℓN0N (x− tN ) =

(
∗ Bℓ(x; t)
∗ Dℓ(x; t)

)

with Bℓ(x; t), Dℓ(x; t) ∈ End(V ℓ); for the case N = 0 the convention on empty
products means B∅(x; ∅) = 0. For ℓ, t ∈ C

N and x ∈ C
M , we define

Bℓ(x; t) = Bℓ(x1; t) · · ·Bℓ(xM ; t) ∈ End(V ℓ)

with the convention that for M = 0 we have Bℓ(∅; t) = IdV ℓ . From (3.1) it follows
that [Bℓ(x; t), Bℓ(y; t)] = 0; as a consequence we have Bℓ(wx; t)Ω = Bℓ(x; t)Ω for
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any permutation w ∈ SM . The vectors Bℓ(x; t)Ω are called spin-ℓ ordinary (or
type A) Bethe vectors. A simple induction argument with respect to N , ultimately
a consequence of the ice rule for the R-operators, establishes that

(B.1) Bℓ(x; t)Ω =
∑

d∈PN (M)

bℓd(x; t)vd

for some bℓd(x; t) ∈ C, depending meromorphically on x ∈ C
M and t ∈ C

M .

It is the aim of this section to provide a self-contained prescription for the closed
formula for the coefficients bℓd(x; t). They are the “trigonometric weight funtions”
of [18]; we refer to this work, and references therein, for other points of view on
bℓd(x; t) and other derivations for their explicit formulae.

Recall that Jc := {1, . . . ,M} \ J for any J ⊂ {1, . . . ,M} and introduce the
notations ẑ := (z1, . . . , zN−1) ∈ C

N−1 for z = (z1, . . . , zN ) ∈ C
N and xJ :=

(xi1 , . . . , xiM−d
) for x = (x1, . . . , xM ) ∈ C

M and J = {i1, . . . , iM−d} with i1 < i2 <
. . . < iM−d. From a statement analogous to [13, Lemma 4.2] it follows that

(B.2)

Bℓ(x; t)Ω =
∑

J⊂{1,...,M}

(∏

i∈J

sinh(tN − xi − ( 12 − ℓN )η)

sinh(tN − xi − ( 12 + ℓN )η)

)

×
(∏

i∈J

j∈Jc

sinh(xi − xj + η)

sinh(xi − xj)

)(
Bℓ̂(xJ ; t̂)⊗

∏

i∈Jc

BℓN (xi; tN )

)
Ω.

Cf. [14, Eq. (5.6)] we have, for ℓ, x, t ∈ C and d ∈ Z≥0,

Bℓ(x; t)vℓd =
−e(−ℓ+

1
2+d)η sinh(η)

sinh(t− x− ( 12 + ℓ)η)
vℓd+1.

Combining this with (B.2) we obtain

(B.3)

Bℓ(x; t)Ω =
M∑

d=0

ed(
d
2−ℓN )η

∑

J⊂{1,...,M}
#Jc=d

(∏

i∈Jc

− sinh(η)

sinh(tN − xi − ( 12 + ℓN )η)

)

×
(
∏

i∈J

sinh(tN − xi − ( 12 − ℓN )η)

sinh(tN − xi − ( 12 + ℓN )η)

)

×
(
∏

i∈J

j∈Jc

sinh(xi − xj + η)

sinh(xi − xj)

)(
Bℓ̂(xJ ; t̂)Ω

ℓ̂
)
⊗ vℓNd .

A collection of functions

{cℓd : CM ⊗ C
N → C meromorphic | ℓ ∈ C

N , d ∈ PN (M)}M,N∈Z≥0

is said to satisfy quantum affine sl2-recursion if the initial condition

(B.4) c∅∅(∅; ∅) = 1
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and the recurrence relation

(B.5)

cℓd(x; t) = edN (
dN
2 −ℓN )η

∑

J⊂{1,...,M}
#Jc=dN

(∏

i∈Jc

− sinh(η)

sinh(tN − xi − ( 12 + ℓN )η)

)

×
(∏

i∈J

sinh(tN − xi − ( 12 − ℓN )η)

sinh(tN − xi − ( 12 + ℓN )η)

)

×
(∏

i∈J

j∈Jc

sinh(xi − xj + η)

sinh(xi − xj)

)
cℓ̂
d̂
(xJ ; t̂)

hold true. Our plan is now as follows. First we will show that the bd implicitly
defined in (B.1) satisfy this recursion. Then we will present another collection of
meromorphic functions aℓd on C

M × C
N , parametrized by ℓ ∈ C

N , d ∈ Z
N
≥0, by

means of a closed-form expression, which can be shown to satisfy the same recursion.
Since quantum affine sl2-recursion has a unique solution, we obtain bℓd = aℓd and an
explicit expression for the Bethe vectors in terms of the basis {vℓd}d∈ZN

≥0
follows.

Lemma B.1. {bℓd | ℓ ∈ C
N , d ∈ PN (M)}M,N∈Z≥0

satisfies quantum affine sl2-
recursion.

Proof. In the case N = 0, from B∅(x; ∅) = δ0,M we obtain (B.4). Combining (B.3)
with (B.1) and using that the vℓd form a basis for V ℓ we obtain that the bℓd also
satisfy the recurrence relation (B.5). �

Let d ∈ PN (M) and define

I(d) := {m ∈ {1, . . . , N}M | ∀s nm(s) = ds}

and

aℓd(x; t) =
∑

m∈I(d)

(∏

i

−e

(nm(mi)
2 −ℓmi

)
η sinh(η)

sinh(tmi
− xi − ( 12 + ℓmi

)η)

∏

s>mi

sinh(ts − xi − ( 12 − ℓs)η)

sinh(ts − xi − ( 12 + ℓs)η)

)

×
∏

i,j

mi<mj

sinh(xi − xj + η)

sinh(xi − xj)
.

Lemma B.2. {aℓd | ℓ ∈ C
N , d ∈ PN (M)}M,N∈Z≥0

satisfies quantum affine sl2-
recursion.

Proof. It is immediately seen that the aℓd satisfy (B.4) owing to the convention that
empty sums are zero and empty products are one. To establish (B.5) for the aℓd
first note that if nm(s) = ds then

M∑

i=1

(nm(mi)

2
− ℓmi

)
=

N∑

s=1

M∑

i=1
mi=s

(nm(s)

2
− ℓs

)
=

N∑

s=1

ds

(ds
2

− ℓs

)
.
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Note that

aℓ̂
d̂
(xJ ; t̂) =e

∑N−1
s=1 ds

(
ds
2 −ℓs

)
η
∑

m∈I(d̂)

(
∏

i∈J

− sinh(η)

sinh(tmi
− xi − ( 12 + ℓmi

)η)

×
N−1∏

s=mi+1

sinh(ts − xi − ( 12 − ℓs)η)

sinh(ts − xi − ( 12 + ℓs)η)

)
∏

i,j∈J

mi<mj

sinh(xi − xj + η)

sinh(xi − xj)
.

Hence, the right-hand side of (B.5) for cℓd = aℓd is given by

e
∑N

s=1 ds

(
ds
2 −ℓs

)
η
∑

m∈I(d̂)

∑

J⊂{1,...,M}
#Jc=dN(∏

i∈Jc

− sinh(η)

sinh(tN − xi − ( 12 + ℓN )η)

)(∏

i∈J

− sinh(η)

sinh(tmi
− xi − ( 12 + ℓmi

)η)

)

×
(
∏

i∈J

sinh(tN − xi − ( 12 − ℓN )η)

sinh(tN − xi − ( 12 + ℓN )η)

N−1∏

s=mi+1

sinh(ts − xi − ( 12 − ℓs)η)

sinh(ts − xi − ( 12 + ℓs)η)

)

×
(∏

i∈J

j∈Jc

sinh(xi − xj + η)

sinh(xi − xj)

)( ∏

i,j∈J

mi<mj

sinh(xi − xj + η)

sinh(xi − xj)

)
.

We specify a map

I(d̂)× {J ⊂ {1, . . . ,M} |#J =M − dN} → I(d)

by inserting N ’s in the (M − dN )-tuples at the places given by the elements of
Jc = {1, . . . ,M} \ J , i.e.

((m1, . . . ,mM−dN ), J) 7→(m1, . . . ,mj1−1, N,mj1 , . . . ,mj2−2, N,mj2−1, . . . ,

. . . ,mjdN −dN , N,mjdN −dN+1, . . . ,mM−dN ),

where Jc = {j1, . . . , jdN } with j1 < j2 < . . . < jdN ; this is evidently injective, and

since both sets have finite cardinality (M−dN )!∏N−1
s=1 ds!

(
M
dN

)
= M !∏

N
s=1 ds!

it follows that the

map is bijective. Hence the right-hand side of (B.5) equals

e
∑N

s=1 ds

(
ds
2 −ℓs

)
η
∑

m∈I(d)
( M∏

i=1
mi=N

− sinh(η)

sinh(tN − xi − ( 12 + ℓN )η)

)( M∏

i=1
mi 6=N

− sinh(η)

sinh(tmi
− xi − ( 12 + ℓmi

)η)

)

×
(

M∏

i=1
mi 6=N

sinh(tN − xi − ( 12 − ℓN )η)

sinh(tN − xi − ( 12 + ℓN )η)

N−1∏

s=mi+1

sinh(ts − xi − ( 12 − ℓs)η)

sinh(ts − xi − ( 12 + ℓs)η)

)

×
( M∏

i,j=1
mi<mj=N

sinh(xi − xj + η)

sinh(xi − xj)

)( M∏

i,j=1
mi<mj 6=N

sinh(xi − xj + η)

sinh(xi − xj)

)
,

where the remaining products recombine so as to yield aℓd(x; t) as required. �
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Combining Lemmas B.1 and B.2 we deduce

(B.6)

Bℓ(x; t)Ω =
∑

k∈IM,N

∑

m∈SM (k)

( M∏

i=1

−e

(nm(mi)
2 −ℓmi

)
η sinh(η)

sinh(tmi
− xi − ( 12 + ℓmi

)η)

×
N∏

s=mi+1

sinh(ts − xi − ( 12 − ℓs)η)

sinh(ts − xi − ( 12 + ℓs)η)

)

×
( M∏

i,j=1
mi<mj

sinh(xi − xj + η)

sinh(xi − xj)

)
Ωm.

B.2. Decomposition of the boundary Bethe vectors. Having completed the
induction, we may now consider ℓ fixed and drop it from the notation. Because of
(2.8) we have

T (−x; t)−1 =

( N∏

s=1

sinh(ts + x+ ( 12 − ℓs)η)

sinh(ts + x+ ( 12 + ℓs)η)

)
σy
0T (−x− η; t)t0σy

0 .

Hence, from (3.3) it follows that

(B.7)

B(x; t) =
( N∏

s=1

sinh(ts + x+ ( 12 − ℓs)η)

sinh(ts + x+ ( 12 + ℓs)η)

)

×
(
D(−x− η; t)B(x; t)− sinh(ξ− − x)

sinh(ξ− + x)
B(−x− η; t)D(x; t)

)
.

From (3.1) we obtain the commutation relation

D(x; t)B(y; t) =

=
sinh(x− y + η)

sinh(x− y)
B(y; t)D(x; t)− sinh(η)

sinh(x− y)
B(x; t)D(y; t).

Using this and a trigonometric identity we infer from (B.7) that

B(x; t) = sinh(2x)

sinh(2x+ η)

( N∏

s=1

sinh(ts + x+ ( 12 − ℓs)η)

sinh(ts + x+ ( 12 + ℓs)η)

)

×
(
B(x; t)D(−x− η; t)− sinh(ξ− − x− η)

sinh(ξ− + x)
B(−x− η; t)D(x; t)

)
.

Hence

(B.8) B̃(x; t) =
∑

ǫ∈{±}
ǫ
sinh(ξ̃− − ǫx)

sinh(η)
B(−ǫx− η

2 ; t)D(ǫx− η
2 ; t).

(B.8) serves as the base case of an inductive argument analogous to the proof of
[13, Prop. 4.1]. It establishes that

(B.9)

B̃(x; t) =
∑

ǫ∈{±}M

( M∏

i=1

ǫi
sinh(ξ̃− − ǫixi)

sinh(η)

)( M∏

i,j=1
i<j

sinh(ǫixi + ǫjxj + η)

sinh(ǫixi + ǫjxj)

)

×
( M∏

i=1

B(−ǫixi − η
2 ; t)

)( M∏

i=1

D(ǫixi − η
2 ; t)

)
.
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In [14, Eq. (5.8)] the relation

(B.10) D(x; t)Ω =

(
N∏

s=1

sinh(ts − x− ( 12 − ℓs)η)

sinh(ts − x− ( 12 + ℓs)η)

)
Ω

is derived. Combining it with (B.9) we find the following expression for the spin-ℓ
boundary Bethe vectors in terms of the spin-ℓ ordinary (type A) Bethe vectors:

(B.11)

B̃(x; t)Ω =
∑

ǫ∈{±}M

(
M∏

i=1

ǫi
sinh(ξ̃− − ǫixi)

sinh(η)

N∏

s=1

sinh(ts − ǫixi + ℓsη)

sinh(ts − ǫixi − ℓsη)

)

×
( M∏

i,j=1
i<j

sinh(ǫixi + ǫjxj + η)

sinh(ǫixi + ǫjxj)

)( M∏

i=1

B(−ǫixi − η
2 ; t)

)
Ω.

In this formula we can then substitute expression (B.6) to arrive at an explicit
formula for the coefficients βk(x; t) in the decomposition (3.4), yielding Theorem
3.1.
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