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ABSTRACT
We perform N-body simulations of young triple systems consisting of two low-mass compan-
ions orbiting around a significantly more massive primary. We find that, when the orbits of
the companions are coplanar and not too widely separated, the chance of a collision between
the two companions can be as high as 20 per cent. Collisions between one of the compan-
ions (always the less massive) and the primary can also occur in systems with unequal-mass
companions. The chance of collisions is a few per cent in systems with more realistic initial
conditions, such as with slightly non-coplanar orbits and unequal-mass companions. If the
companions start widely separated then collision are very rare except in some cases when
the total mass of the companions is large. We suggest that collisions between members of
young multiple systems may explain some unusual young multiple systems such as apparently
non-coeval companions.
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1 IN T RO D U C T I O N

It appears that many, if not most, stars form in multiple systems
(see Mathieu 1994; Goodwin et al. 2007; Goodwin 2010). Indeed,
an increasing proportion of both pre-main-sequence (PMS) and
main-sequence (MS) multiple systems are being found in triple
or higher order systems (e.g. Correia et al. 2006; Tokovinin et al.
2006; Eggleton & Tokovinin 2008; Law et al. 2010). There is also
evidence for dynamical decay in young stellar systems suggesting
that the initial triple and higher order fraction may be even higher
than the field (Haisch et al. 2004; Connelley, Reipurth & Tokunaga
2008a,b).

Observations have found a number of young stars with unusual
companions, i.e. companions with unexpected colours (Hartigan,
Strom & Strom 1994; Koresko, Herbst & Leinert 1997; Duchêne,
Ghez & McCade 2003; Hartigan & Kenyon 2003; Prato, Greene
& Simon 2003; Kraus & Hillenbrand 2009). The interpretation of
these unusual companions is complex with some authors claiming
some non-coevality between components in multiple systems (e.g.
Hartigan et al. 1994; Hartigan & Kenyon 2003; Prato et al. 2003;
Kraus & Hillenbrand 2009), although at least some such objects
may be the result of an enshrouded companion as appears to be
the case in T Tauri itself (see Dyck, Simon & Zuckerman 1982;
Skemer et al. 2008; Ratzka et al. 2009). Non-coevality is suggested
by the two objects having positions on PMS tracks that cannot
be explained by different masses. However, Baraffe, Chabrier &
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Gallardo (2009) has suggested that apparent non-coevality may be
due to differences in the accretion history of the protostars leading
to different evolution along PMS tracks. Within a multiple system,
this may be due to different accretion histories (through the different
angular momentum of infalling material?), but we suggest that it
is possible that it could be due to a collision between low-mass
companions early in the history of the system. Indeed, a collision
has been suggested to explain the underluminosity of the low-mass
brown dwarf 2M1207B by Mamajek & Meyer (2007) but described
as ‘improbable’, we will show that such a solution might not be as
improbable as one might first think.

We perform N-body simulations of a large ensemble of triple
systems to investigate the frequencies of collisions in such sys-
tems. We describe the details of our simulations in Section 2. The
results are presented in Section 3 and followed by discussion in
Section 4.

2 SI M U L AT I O N S

2.1 Initial conditions

We set up a three-body system of young stars in which two low-mass
companions of masses M2 and M3 are orbiting around a primary
star of (a higher) mass M1. The companions are assumed to form
within a circumstellar disc (e.g. Stamatellos & Whitworth 2009).
We simulate the evolution of the system once the majority of the disc
has disappeared (by accretion or removed by feedback?) and so we
can describe the evolution as a simple N = 3 N-body problem. It is
quite possible that the companions interact or collide with each other

C© 2011 The Authors
Monthly Notices of the Royal Astronomical Society C© 2011 RASDownloaded from https://academic.oup.com/mnras/article-abstract/419/3/2025/1063687

by University of Sheffield user
on 03 November 2017



2026 K. Rawiraswattana, O. Lomax and S. P. Goodwin

whilst a massive disc is present, and they may well interact with the
disc in such a way that one or both migrate inwards or outwards.
Such situations are extremely interesting but require modelling the
hydrodynamics of the disc.

The system can be characterized by three parameters.

2.1.1 Protostellar masses

We simulate typical T Tauri systems with primary masses M1 = 1
or 2 M�. The total masses of the companions, M2 and M3, have
a range M2 + M3 = 0.1–0.6 M� in steps of 0.05 M�, and mass
ratios of M2/M3 = 0.25, 0.5 and 1. This gives us 33 combinations
of companion masses for each primary mass.

2.1.2 Protostellar radii

The radius of a young star in the systems is estimated and scaled
from the mass–radius relation of low-mass MS stars. In this
work, we use the empirical mass–radius relation from Caillault &
Patterson (1990) which is for stars of mass ∼0.1–0.5 M� in the
solar neighbourhood. We assume that the relation extends to very
low mass stars of a few tens of Jupiter mass. Since the PMS stars
are young, their radius could be larger by a factor of α > 1. The
radius R of a PMS star of mass M can then be written as

R = 0.92α

[
M

M�

]0.80

R�. (1)

The values of α used in the simulations are selected from 1 up to
20, in steps of 0.5 for α = 1–10, and in steps of 1 for α = 10–20.

2.1.3 Initial positions

Observations of PMS binaries show that they have a range of sep-
arations from sub-au to a few hundreds of au (e.g. Mathieu 1994;
Patience et al. 2002; Konopacky et al. 2007; Goodwin 2010). The
peak in separations of PMS binaries appears to be around 100–
200 au with an excess above the field (see e.g. Patience et al. 2002;
Konopacky et al. 2007). To cover the bulk of the separation range
of PMS companions, we perform simulations with companions be-
tween 20–100, 100–200 and 200–300 au.

The two companions are placed randomly in the given ranges
measured from the primary and usually both in the same plane
(we also perform simulations to test the effect of non-coplanar
motion by giving the third companion a small velocity component
in z-direction). The angular separation between the companions is
forced to be greater than 45◦ in order to avoid initial states which
result in a collision or ejection almost immediately. They are given
the correct velocity for a circular orbit, and both orbit in the same
direction.

For each value of M1, M2, M3 and α, we perform an ensemble of
5 × 103 or 104 simulations.

2.2 Numerical method

The integrator that we use is a variable stepsize fourth-order
Adams–Bashforth–Moulton predictor–corrector (e.g. Mathews &
Fink 2004; Binney & Tremaine 2008). This integrator requires only
two force evaluations per time-step to provide a solution with high
accuracy. The fractional energy error of the calculations is kept be-
low 10−5, and a system with unacceptable error is reintegrated from
the beginning with a higher accuracy. If an error persists the result

is omitted from analyses (reducing the number of the systems in an
ensemble).

2.3 Termination criteria

Simulations can result in either a collision, an ejection or a stable
system.

2.3.1 Ejections

We consider a companion ‘ejected’ if it travels further than 5000 au
from the primary. Whilst this might not always be unbound, we
consider that a companion on an orbit of at least 5000 au apastron
distance will be very soft and likely to be perturbed by interactions
with other stars in the cluster in which we assume our young multiple
system has formed.

2.3.2 Collisions

Stars collide if the mutual separation is less than the sum of their
radii as calculated above. There are two possible types of collisions
that can occur: (i) collisions between companions (companion–
companion collisions or CCCs) and (ii) collisions between a com-
panion and the primary star (companion–primary collisions or
CPCs).

2.3.3 Stable systems

We consider a system stable if there are no ejections or collisions
within 5 Myr. This length of time covers the typical ages of clusters
containing T Tauri systems. (As we shall see, stable systems are
rare and so the exact length of this criterion is unimportant as long
as it is >1 Myr).

3 R ESULTS

Our fiducial system has a primary mass M1 = 1 M�, and com-
panion separations between 100 and 200 au about the peak of the
PMS separation distribution. The main result of the fiducial system
simulations is as would be expected: most of the systems decay
by ejection within ∼100 crossing times, preferentially ejecting
their least-massive member (e.g. Anosova 1986; Sterzik & Durisen
1998). However, we also often find a significant number of CCCs,
but very few stable systems or CPCs. In ensembles with different
initial conditions, stable systems and CPCs can become important,
however dynamical decay is most often by far the dominant outcome
(see below).

In a three-body system such as the ones we are simulating there
is one major body (the primary) which dominates the potential. At
sufficiently low mass, companions would barely feel each other’s
gravity and would evolve as a planetary system (M1 � M2 + M3).
As the mass of the companions increases they will perturb each
other’s orbits, but always in the global potential of the primary
(M1 > M2 + M3). As their orbits are perturbed by each other, the
companions will undergo a number of close encounters which will
transfer energy from one body to the other. Often an encounter
will provide one of the companions with enough energy to escape
the system altogether – an ejection. However, a not insignificant
fraction of encounters will be close enough to cause a collision.
This collision is almost always between the two minor bodies in the
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system as they are the bodies whose orbits are most perturbed by
the other.

3.1 Companion–companion collisions

In Fig. 1 we show the change in the number of ejections (lines
with diamond symbols) and collisions (lines with circle symbols)
for our fiducial system with increasing total companion mass where
both companions are of the same mass (M2 = M3). The increasing
thickness of the lines shows the effect of increasing the radii of
all the stars by a factor α = 1, 5, 10, 15, 20 (moving upwards
with increasing thickness to higher α for CCC, and downwards for
ejections).

Unsurprisingly, larger stellar radii result in more collisions, from
a few per cent when α = 1 (the MS radius), to around 20 per
cent when α = 20 (a very large PMS star). Collision time-scales are
similar to those of ejections and usually occur within ∼100 crossing
times.

The fraction of CCCs stays relatively constant for any given α as
M2 + M3 changes from 0.1 to 0.6 M� (from 10 to 60 per cent of the
primary mass). This is because even at 0.6 M� the companions are
still not the dominant contributor to the potential. And even though
more massive companions require a greater escape energy (as they
are more massive and escaping from a more massive system), the
energy change in an encounter between more massive companions
is greater by the same order.

The number of CCCs changes in an unusual way with increasing
α. The number of CCCs increases quite rapidly as α is increased
from 1 to 5 to 10, but the relative increase in the number of collisions
as α is increased from 10 to 15 to 20 is small.

A CCC occurs when the separation of the companions r23 is equal
to the sum of their radii R2 + R3. Therefore, the number of CCCs
is the probability that the separations become less than r23, P(r23).
Fig. 2 shows the increase in P(r23) with r23 for two example systems
with M2 + M3 = 0.3 M� and mass ratios M2/M3 = 0.25 and 1.

Figure 1. The effect of changing the radius factor (α) in our fiducial system
(with primary mass 1 M� and orbits between 100 and 200 au) on the fre-
quencies of ejections (blue lines with diamond symbols), CCCs (red lines
with circle symbols), CPCs (purple lines with triangle symbols) and sta-
ble systems (cyan lines with square symbols). The frequencies are plotted
against total companion mass M2 + M3 of the ensembles. In all cases M2 =
M3. Increasing line thicknesses correspond to increasing radius factors α =
1, 5, 10, 15, 20. Note that the fractions of CPCs and stable systems are
negligible.

Figure 2. The probability of an encounter at a companion separation ≤r23,
P(r23), as measured by the frequency of CCCs with increasing α. In all cases
M1 = 1 M� and M2 + M3 = 0.3 M�. Black circles are for systems with
mass ratio M2/M3 = 1 and red circles for M2/M3 = 0.25. Solid lines are the
fits from equation (2) for all data, whilst dashed lines show the fits for only
α = 1–10.

The trends in Fig. 2 can be fitted very well with the Lévy cumu-
lative distribution function (CDF) of the form:

P (r23) = a erfc
(√

b/r23

)
+ c, (2)

where a, b and c are constants, and erfc is the complementary error
function. This CDF provides the best fit with meaningful proper-
ties, namely dP (r)/dr = 0 at r = 0 and limr →∞ P (r) = constant.
The values of the constants and coefficient of determination (R2)
corresponding to each data set are summarized in Table 1. The solid
lines in Fig. 2 show the best fits to high-α, while the dashed lines
show the best fits to low-α (see below).

That the data are well fitted by the Lévy distribution can be ex-
plained by assuming the following. (i) As the distance between the
companions at collision is far smaller than the distance to the pri-
mary, the encounter between the two companions is approximately
a two-body problem. (ii) The effects of a rotating frame of reference
about the primary are small at low r23. The problem can then be
simplified to one body of a reduced mass μ = M2M3/(M2 + M3)
orbiting around a fixed central mass of M = M2 + M3. Let us now
consider r23 as the separation between the masses μ and M at the
pericentre of the orbit. At this turning point, as the radial velocity is
zero, we assume further that (iii) the tangential velocity (vt) of the
mass μ follows the one-dimensional Maxwell–Boltzmann distribu-
tion, i.e. f (vt) ∝ exp(−v2

t /2σ 2), where σ is the velocity dispersion.
The probability of the mass μ having vt from that for a circular orbit

Table 1. The constants in equation (2) obtained from
non-linear regressions of the data in Fig. 2. The good-
ness of fit is represented by the coefficient of determi-
nation R2 (closer to 1 is better).

α M2/M3 a b c R2

1.00 0.254 1.242 0.091 0.9971
1–20

0.25 0.207 1.265 0.079 0.9945

1.00 0.232 0.972 0.084 0.9988
1–10

0.25 0.180 0.847 0.070 0.9984
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to hyperbolic orbits around the fixed mass M may be written as

P (vt ≥ vcir) ∝
∫ ∞

vcir

e−v2
t /2σ 2

dvt ∝ erfc
(
vcir/

√
2σ

)
. (3)

Substituting vcir =
√

GM/r23 in equation (3), we have

P (r23) = a erfc
(√

b/r23

)
, (4)

where a and b are constants. The constant c in equation (2) is due
to ‘head-on’ collisions in which vt is ∼0.

In addition to the solid lines in Fig. 2, the dashed lines show the
fits of the data with α ≤ 10. Although these curves are formally
better fits (higher R2, as shown in Table 1), they tend to diverge
from the data at higher α. These divergences probably indicate some
complicated dynamics that we have not included in our derivation
above (i.e. the effects of motion in a rotating frame of reference).

The differential of P(r23) with respect to r23, p(r23), is the prob-
ability density function of the encounter having a separation at
pericentre of r23:

p(r23) = a

√
b

π

e−b/r23

r
3/2
23

. (5)

3.2 Systems of unequal-mass companions

The companion mass ratio (M2/M3) plays an important role in the
energy redistribution during close encounters between the com-
panions. In N-body systems, the objects in the systems tend to dis-
tribute kinetic energy equally (equipartition). The systems thus usu-
ally consist of slow-moving high-mass and fast-moving low-mass
objects.

In our three-body system, most of the time only the companions
are closely interacting with each other (see above). For systems
with unequal-mass companions (M2/M3 < 1), the equipartition of
the kinetic energy usually causes the lower mass companion to be
ejected from the system. For systems with equal-mass compan-
ions, the companions need more close encounters before energy
exchange is able to eject one object. The chance of collisions in
the equal-mass systems is therefore higher than in unequal-mass
systems. In Fig. 3 we can see that the number of collisions between
companions (marked with circles) increases with the increasing
mass ratio from M2/M3 = 0.25 (the dotted line) to M2/M3 = 1
(the solid line).

Fig. 3 also shows an interesting feature of systems with unequal-
mass companions: increasing numbers of CPCs. We find that it is
almost always the lower mass companion that collides with the
primary star. This occurs after the lower mass companion has been
regularly perturbed by the more massive companion orbiting the
primary with a larger orbit. Some angular momentum is extracted
from the lower mass companion during each close encounter. This
causes the orbit of the lower mass companion to become more
and more eccentric until eventually colliding with the primary star.
CPCs are almost never seen with equal-mass companions.

3.3 The effect of other parameters

Apart from the radius factor (α) and the companion mass ratios,
three other parameters can also affect the results. First, the primary
mass and the separation from the primary to the companions (es-
sentially the potential energy of the system). Secondly, the distance
between the companions. Thirdly, the coplanarity of the orbits.

Figure 3. The effect of changing the companion mass ratio (M2/M3) on
the frequencies of CCCs (red lines with circle symbols), CPCs (purple lines
with triangle symbols) and stable systems (cyan lines with square symbols).
Different line styles represent different mass ratios: M2/M3 = 0.25 (dotted
lines), 0.5 (dashed lines) and 1.0 (solid lines). In all cases M1 = 1 M� and
α = 5.

3.3.1 Potential energy

The potential energy of the system is set by the primary mass and
the distance of the companions from the primary. The deeper the
potential well, the more difficult it is for an ejection to occur
(the more energy needed to be transferred). Therefore, the deeper
the potential well the more encounters are needed before an ejection
occurs, and the greater the chance of a collision or the ‘partial’ ejec-
tion of a companion to a wider stable orbit. In Fig. 4 we decrease the
separation range of companions from 200–300 au (solid lines), to
100–200 au (dashed lines), to 20–100 au (dotted lines). The number
of CCCs (red lines with circles) increases with decreasing separation
(increasing potential energy). In the case of 20–100 au separations,
the number of stable systems is also significant (dotted cyan line
with squares); indeed, at low companion masses stable systems

Figure 4. The effect of changing the companion initial orbital range on the
frequencies of CCCs (red lines with circle symbols), CPCs (purple lines
with triangle symbols) and stable systems (cyan lines with square symbols).
Different line styles represent different ranges of the orbital radii: 20–100 au
(dotted lines), 100–200 au (dashed lines) and 200–300 au (solid lines). In all
cases M1 = 1 M�, M2/M3 = 1 and α = 5.
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Figure 5. The effect of large initial separations between the companions
(r23) on the frequencies of ejections (blue lines with diamond symbols),
CCCs (red lines with circle symbols), CPCs (purple lines with triangle
symbols) and stable systems (cyan lines with square symbols). Dotted lines
represent the systems with M2/M3 = 0.5 (the less massive in the smaller
orbit), dashed lines with M2/M3 = 1 and solid lines with M2/M3 = 2 (the
more massive in the smaller orbit). In all cases M1 = 1 M� and α = 5.

outnumber CCCs. Similar effects are also seen with increasing pri-
mary mass (not illustrated).

3.3.2 Separation between the companions

Initial separation is an important parameter. Frequent interactions
leading to ejections and collisions occur far less often in systems
in which the companions start widely separated. We demonstrate
this with three ensembles whose companion’s initial orbits are each
restricted to be within two widely separated ranges of r2 = 50–60 au
and r3 = 200–210 au: (i) M2/M3 = 0.5 (the less massive in the closer
orbit), (ii) M2/M3 = 1 and (iii) M2/M3 = 2 (the more massive in the
closer orbit).

We can see from Fig. 5 that most systems that start widely sep-
arated are stable. Systems tend to be more stable if the lower mass
companion has the closer orbit, or if M2/M3 < 1; compare the dotted
cyan line (M2/M3 = 0.5) with the dashed cyan line (M2/M3 = 1)
and the solid cyan line (M2/M3 = 2) in Fig. 5. Similarly to our
fiducial systems, CPC apparently occurs only in the systems with
M2/M3 < 1 (the dotted purple line with triangle symbols).

Although the number of CCCs drops significantly, they do not
disappear entirely except for very low companion masses. It is
unclear what the initial architecture of young triple systems would
most often be. Disc fragmentation would be expected to occur at
large radii (>100 au; Stamatellos & Whitworth 2009), however
migration within the disc may rapidly separate companions.

3.3.3 Coplanarity of the orbits

To test the effect of non-coplanarity, we perform some ensembles
of simulations in which the companion M3 is given a small ve-
locity component in the z-direction just enough to make its orbit
initially inclined by around (i) ∼5◦ and (ii) ∼10◦. We find that the
number of collisions drops significantly, as shown in Fig. 6, from
∼15 per cent at zero inclination (solid line at top) to a �5 per cent
at 5◦ and 10◦ inclinations (dashed and dotted lines). Non-coplanar
interactions produce fewer collisions due to the introduction of a

Figure 6. The effect of changing the orbital coplanarity on the frequencies
of CCCs (red lines with circle symbols), CPCs (purple lines with triangle
symbols) and stable systems (cyan lines with square symbols). Different
line styles represent different degrees of orbital inclination between the two
companions: coplanar orbits (solid lines), ∼5◦ inclined orbits (dashed lines)
and ∼10◦ inclined orbits (dotted lines). In all cases M1 = 1 M�, M2/M3 = 1
and α = 5.

third dimension, however there are still a non-negligible number of
collisions.

4 D I SCUSSI ON

We have studied the dynamical evolution of coplanar triple systems
of young stars. We find that collisions between members are not
very unusual and can occur up to 20 per cent of the time in coplanar
systems with two equal-mass companions. Collisions are mostly
between the two companions rather than between a companion and
the primary. We unsurprisingly find that stars with larger radii are
more likely to collide, but that collisions are not uncommon at stellar
radii only a few times the MS radius.

We find that in more realistic situations with different mass com-
panions and slightly non-coplanar orbits the number of collisions is
significantly lower, but can still be a few per cent.

We conclude that collisions in young triple systems would not
usually occur, but that they might happen often enough that they
could explain some unusual systems such as some of the apparently
non-coeval T Tauri systems that have been observed (Hartigan et al.
1994; Koresko et al. 1997; Duchêne et al. 2003; Hartigan & Kenyon
2003; Prato et al. 2003; Kraus & Hillenbrand 2009).

In our simple N-body simulations, we are unable to determine
what would happen after a collision and what the product or products
might be. Many collisions may be glancing collisions stripping
material off of one or both objects, or collisions may cause the
objects to merge to make a new, larger, object (Laycock & Sills
2005).

Whatever happens, a collision would be expected to change the
mass of the final object(s) either stripping material or forming a
new object. Such rapid and violent mass changes would be ex-
pected to change the structure of the objects and cause them to
be in unexpected places for their ages on the Hertzsprung–Russell
diagram (Baraffe et al. 2009). Stripped or ejected material could
persist around one or other object causing it to have a different (and
unusual?) extinction to other objects in the system (an explanation
for T Tauri itself? See Ratzka et al. 2009).
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Without detailed hydrodynamic simulations and radiative transfer
modelling it is impossible to know what the colours of the new
object(s) after collision might be. Kraus & Hillenbrand (2009) find
non-coevality with the most massive star appearing younger. If the
mass determinations are accurate, then this might suggest CPCs
above CCCs (despite CCCs being more common in most of our
simulations). However, the collision product will presumably be
larger and so appear more massive, but it may also be hotter and
so appear older? The collision product will presumably follow a
different path towards the MS than it would previously have done,
not appearing the ‘correct’ colour and magnitude until it reaches the
MS. Without detailed modelling it is very difficult to guess how a
PMS collision product would look or evolve, but it seems reasonable
to assume that it would very different to a ‘normal’ PMS star of the
same (post-collision) mass.

In summary, collisions would be expected in some young triple
systems. They are not common, but are not so rare as to be ignored
in attempting to explain some unusual systems (e.g. Mamajek &
Meyer 2007).
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eds, Astrophys. Space Sci. Libr. Vol. 299, Open Issues in Local Star
Formation. Kluwer, Dordrecht, p. 223

Dyck H. M., Simon T., Zuckerman B., 1982, ApJ, 255, L103
Eggleton P. P., Tokovinin A. A., 2008, MNRAS, 389, 869
Goodwin S. P., 2010, R. Soc. Philos. Trans. A, 368, 851
Goodwin S. P., Kroupa P., Goodman A., Burkert A., 2007, in Reipurth B.,

Jewitt D., Keil K., eds, Protostars and Planets V. Univ. Arizona Press,
Tucson, p. 133

Haisch K. E., Jr, Greene T. P., Barsony M., Stahler S. W., 2004, AJ, 127,
1747

Hartigan P., Kenyon S. J., 2003, ApJ, 583, 334
Hartigan P., Strom K. M., Strom S. E., 1994, ApJ, 427, 961
Konopacky Q. M., Ghez A. M., Rice E. L., Duchêne G., 2007, ApJ, 663,
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