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Periodic “stick-slip” transition within a continuum model for

entangled supramolecular polymers

Victor A. H. Boudara and Daniel J. Read∗

School of Mathematics, University of Leeds, LS2 9JT Leeds, U.K.

(Dated: November 1, 2017)

Abstract

We investigate shear flow instabilities using a recently-derived constitutive law, designed for

describing the rheology of entangled telechelic polymers. The continuum model displays shear

banding, often accompanied by a strong elastic recoil in the transient response, which appears

as an “apparent” wall slip. For certain parameters, the model also displays a novel “apparent”

stick-slip behavior, giving rise to strong nonlinear oscillations in the stress response driven by a

repeating cycle of elastic recoil followed by diffusive rehomogenization of the flow. We elucidate

the detailed mechanism behind this oscillatory response, demonstrating that it arises from a com-

petition between shear-induced breaking of sticky bonds, which leads to recoil and banding, and a

diffusive rehomogenization of the flow. We discuss the relation between the apparent stick-slip in

our continuum model with similar behavior in “true” wall slip.

∗ d.j.read@leeds.ac.uk
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I. INTRODUCTION

The flow of viscoelastic liquids is often accompanied by interesting effects usually not seen

in (simple) Newtonian liquids [1–7]. Non-Newtonian effects are frequently present during the

extrusion of molten polymers at high stresses – one of the most common industrial shaping

process. The surface or shape of the resulting material is altered by the presence of flow

defects such as extrudate swelling, crystallization effects, sharkskin or melt flow instabilities,

depending on the type of polymer as well as on the construction of the capillary device [4, 8–

10]. In some constant rate experiments on capillaries [11, 12] or cone-plate geometry [13, 14],

a periodic oscillation of the shear stress or pressure is observed and attributed to either a

structural breakdown (chain disentanglement), or to a stick-slip transition at the walls or

between macrodomains [14]. These instabilities can alter the flow and final properties of

the material and therefore controlling these phenomena is of critical industrial importance

in the processing of polymers.

We focus on the specific phenomenon of wall slip. A non-zero relative velocity at a solid-

liquid interface is called “true slip”. This must be carefully distinguished from “apparent

slip” which is a phenomenon related to shear banding. For example, when we impose an ex-

ternal shear rate, higher than the complex-fluid characteristic time, the internal mesoscopic

structure is reorganized and the shear rate may localize so that two (or more) bands expe-

riencing different shear rates coexist. In the resulting “shear banded” state, a narrow shear

band close to a wall can appear as an apparent wall slip, and in practice it can be difficult

to distinguish true wall slip from apparent slip. This illustrates a more general point, that

different types of explanation are advanced for many of the problematic processing phenom-

ena such as shark skin, wall slip, gross melt fracture. Some phenomena are elastic or bulk in

origin, coming from an instability in the bulk of the material. Gross melt fracture would be

an example, as is “apparent” wall slip. Such phenomena can be investigated by examining

the bulk rheological behaviour of the material in question. Other instabilities are related

to the local molecular physics and chemistry near the wall or free surface, and so require

investigation of that local environment. “True” wall slip would be an example of this. For

more details, see Refs. [15, 16] for reviews on wall slip and instabilities, and Ref. [17] for a

handbook on polymer fracture.

Shear banding is ubiquitous in complex fluids and has been reported in systems such as
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FIG. 1. Sketch of the typical network structure of linear telechelic chains. At low concentration,

telechelic chains assemble into flowerlike micelles, i.e. mainly loops are formed (I). Upon increasing

concentration, some bridges between micelles appear (II), until the point where bridges are the

most energetically-favorable configurations, and typically there is overlap between chains (III).

Finally, at “high” concentration, the chains overlap enough to become entangled (IV).

wormlike micellar surfactant solutions, polymer solutions and melts, star polymers, emul-

sions, suspensions, microgels, biological gels, and foams [18]. Since the first theoretical

models for wormlike micelles [19–22], numerous techniques and experiments were devel-

oped to understand the shear banding phenomenon; see [23–26] for reviews of experiments

(mainly on wormlike micelles) and theoretical considerations. Experimental understanding

of the flow and instabilities in complex fluids generally rely on rotational rheometers [27], e.g.

Taylor-Couette, cone-plate, or parallel plate geometries. Polymeric systems with reversible

junctions, such as entanglements or associative stickers, are also known to undergo flow

instabilities, e.g. spurt [28], shear banding [18, 24, 29–32] or melt fracture [33–35]. In con-

centrated solutions of telechelic polymers, i.e. linear chains with stickers at both extremities

that enable the formation of transient network, experiments [33, 36, 37] and MD simulations

[38] showed that flow instabilities can occur.

In this paper, we will examine shear banding instabilities present in a particular con-

stitutive model, the preaveraged constitutive model for entangled telechelic star polymers

(PETS) [39]. We demonstrate that this model can produce both apparent wall slip, and an

apparent stick-slip oscillation. The PETS model was developed from a molecular picture

of entangled star polymers with sticky groups at the ends of the star arms. It was argued

that the star architecture provided the simplest system for consideration of the combined

effects of entanglements and sticker dynamics in a non-linear model (because a star arm

is a two state system, in which the sticker is either attached, or detached). However, the
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model may also be applicable in many more general situations where sticky interactions

and entanglements are both present, such as telechelic linear chains, as we now discuss.

Above a critical concentration, telechelic polymers self-assemble into overlapping flowerlike

micelles whose local structure resembles star polymers. Indeed, in the limit of very sticky

systems, linear entangled telechelic polymers have both ends attached most of the time

and, upon (rare) detachment of a sticker, the linear polymer is in a configuration akin to

star polymers with one anchored end (branch point) and one free end. Fig. 1 sketches the

effect of increasing concentration of linear telechelic chains on the network structure. At

low concentration, telechelic chains assemble into flowerlike micelles, i.e. mainly loops are

formed (I). Upon increasing concentration, some bridges between micelles appear (II), until

the point where bridges are the most energetically-favorable configurations, and typically

there is overlap between chains (III). Finally, at “high” concentration, the chains overlap

enough to become entangled (IV). The onset of entanglements would occur whether or not

the chains also have telechelic end groups, provided the chains are sufficiently concentrated.

Note that Refs. [40, 41] are typical models for the unentangled regime (III), and that these

models have a similar “two state” (attached and detached) structure to the PETS model.

In this work, we focus on regime (IV), where the PETS model [39] typically applies if the

stickers have a long lifetime and most of the stickers are associated at equilibrium. These

conditions translate in the notation of this work into τas ≫ τs and φas ≫ 1 (see Section II A

for definitions).

In summary: we investigate shear banding using the preaveraged constitutive model for

entangled telechelic star polymers (PETS) [39] and compare with experimental findings

on concentrated solution of linear telechelic chains. We show that a molecular constitutive

model for entangled telechelic polymers predicts (i) steady state shear banding and (ii) peri-

odic oscillatory stress response. These oscillations are generated by an “apparent slip” i.e. a

narrow shear band usually close to the wall, giving the impression of a “stick-slip” behavior

(though our simulations use non-slip boundary conditions). In contrast with phenomeno-

logical models of, e.g., Refs. [42, 43], our molecular model reveals a novel mechanism for a

stick-slip transition, arising from interaction between the structural relaxation within the

material, and diffusion of the constituent species across a narrow band. In what follows, we

present our model, the mechanism of this apparent stick-slip process, and discuss how this

may relate to the non-trivial physical phenomena occurring in experiments. We also discuss
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whether a similar diffusive mechanism may be at work for oscillatory behavior in true wall

slip.

II. PREAVERAGED CONSTITUTIVE MODEL FOR ENTANGLED TELECHELIC

STAR POLYMERS

A. Origins of the PETS model

FIG. 2. Each star-arm has a sticky group “⊏” on one end, and is fixed to the branch point “•” on

the other end. Top: the sticker is attached (to the gray area), CCR event (red star) contributes to

stress relaxation. Bottom: the sticker is detached, CLF relaxes stress by renewing the tube (dotted

line)–in addition to CCR.

As a toy (i.e. single mode) model combining entanglements and stickers, we previously

developed a stochastic model for entangled telechelic star polymers [39]. This considers

an ensemble of star arms where each arm has its own history of sticker attachment and

detachment. Additionally, each star arm is entangled, and we used the Rolie-Poly model

(RP) [44] to account for the entanglement effects. The advantage of the RP model [44]

over, e.g., the Johnson-Segalman model (a widely used phenomenological constitutive model

[45, 46]) is that it is derived from a full molecular model based on tube dynamics, and it

includes chain stretch, contour length fluctuation, and thermal and convective constraint

release (CCR) [47]. When detached, all relaxation mechanisms included in the RP model

are possible: orientation relaxation, stretch relaxation, contour length fluctuations (CLF),

and convective constraint release (CCR). When attached, the arm is pinned between the

star branch point and the sticker, thus it cannot relax its orientation or stretch, however,

CCR is still possible, see Fig. 2. In reality, for an attached arm with Z entanglements, there
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should be a spectrum of Z Rouse modes associated with CCR; the fact that the ends of the

arm are pinned means that the longest mode cannot relax stress by CCR, but the remaining

(Z−1) internal modes are free to relax stress. In the single-mode Rolie-Poly approximation

to this situation, we choose to allow CCR to relax the stress on attached arms.

The dynamics of attachment/detachment of the sticker is essentially controlled by τas and

φas, the average time a sticker stays associated at equilibrium, and the fraction of associated

sticker at equilibrium, respectively. Note that a third parameter, τfree, being the typical time

a sticker stays free, is constrained by the above two by

τfree = τas(1 − φas)/φas. (1)

All the “sticky features” of the material are contained in τas and φas. Temperature or

chemical modification of the solvent may affect the strength of the stickers. For example, an

increase of temperature deactivates hydrogen bonds; counter-ions inactivates metal-ligands

stickers [48–50]. These might also affect the rate at which supramolecular bonds are formed

and broken. Therefore, a so-called “sticky” system (φas close to 1) can have either a fast or

slow rate of bond formation and breaking. All these parameters are contained in φas and

τas.

The detachment is considered as an activated process. Attached stickers are residing

within an energy well, so that they must overcome an energy barrier in order to detach [51].

The rate of detachment, rdet, is a function of the arm stretch: it increases as the arm is

stretched, i.e. when the arm pulls on an attached sticker, it lowers the energy barrier that

the sticker must overcome in order to detach.

In summary the stochastic model considers an ensemble of Nc arms, each arm i has his

sticker either attached or detached. When the sticker is attached, we use [39]

rdet(λi) = τ−1
as







1 − λ2
iλ

−2
max

1 − λ−2
max

(

λi − r
Za0

)2







−
3

2
Zλ2

max

, (2)

dAi

dt
= κ ·Ai + Ai · κT − 2βνλ2δ

i (Ai − I). (3)
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When the sticker is detached, we use:

ratt = τ−1
free, (4)

dAi

dt
= κ ·Ai + Ai · κT − 2βνλ2δ

i (Ai − I) (5)

− 1

τd
(Ai − I) − 2(1 − λ−1

i )

τs
fE(λi)Ai,

where Ai is the conformation tensor of the arm i, κ is the velocity gradient tensor, τd and

τs are the orientation and stretch relaxation times of the (unattached) arms, fE is a finite

extensibility function, (β, δ) are the CCR parameters, ν is the CCR rate averaged over the

ensemble of arms, and λi = (trAi/3)1/2 is the stretch ratio of the arm i. Eqs. (2) and (4)

are the rates of detachment and attachment of the stickers. Note that rdet diverges when

the stretch (of an attached chain) approaches the maximal stretch ratio λmax: increased

forces in the polymer chain promotes detachment of the sticker. Eqs. (3) and (5) are the

evolution equations that the conformation tensor, Ai, of the chain i, follows when its sticker

is associated or free, respectively. The total stress, σ, in units of G, is then

σ =
1

Nc

Nc
∑

i=1

fE(λi)Ai. (6)

B. Towards flow computation

The stochastic model, just described, was in good qualitative agreement with linear

rheology data of entangled telechelic stars [52]. In nonlinear flows, the stochastic model ex-

hibits a non-monotonic flow curve for (reasonable) parameter values typical of supramolec-

ular systems in the absence of supramolecular interactions [39, 52], and for RP parame-

ters (β, δ) = (1,−0.5), known for producing a monotonic flow curve in the non-telechelic

Rolie-Poly model [44]. However, the stochastic model is not very efficient for numerical

computation in complex flows such as shear banding calculations because of the cost of

solving stochastic equations for many arms. Given this, we developed the PETS model – a

preaveraged version of the stochastic model briefly presented above in Section II A – which

is far less computationally costly and retains most of the features of the stochastic model.

The PETS model predictions closely match the stochastic model, and it is suitable for flow

computation.
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The stress tensor, σ, in the PETS model, is written as a linear combination of stress from

arms with attached and detached stickers

σ = fQA + (1 − f)QD. (7)

The dynamical variables are: f , the instantaneous fraction of attached stickers, and QA and

QD, the averaged stress (including maximum stretch) from Attached and Detached chains,

respectively. The full dynamical equations of the PETS model are derived in Ref. [39] and

reproduced in Table I, but may be written schematically as:

df

dt
= (1 − f) ratt − f rdet, (8)

dQA

dt
=

dQA

dt

∣

∣

∣

∣

flow,CCR

+ ratt
1 − f

f
(QD −QA) , (9)

dQD

dt
=

dQD

dt

∣

∣

∣

∣

flow,CCR,relax

+ rdet
f

1 − f
(QA −QD) . (10)

At equilibrium with no flow, Eq. (8) gives f = φas. All three equations include contributions

from the rate of sticker attachment ratt, and a stretch-dependent rate of sticker detachment

rdet, as defined in Eqs. (2) and (4). The latter terms in Eqs. (9) and (10) ensure that the

stress remains constant upon attachment/detachment. This feature is due to the fact that,

in the PETS model, QA and QD contain the nonlinear spring force.

The “flow,CCR,relax” term in Eq. (10) contains relaxation mechanisms similar to the

“classic” RP model, Eq. (5). However, because attached chains are “clamped” on both

ends, the “flow,CCR” term of Eq. (9) only contains CCR relaxation, as in Eq. (3). See

Table I for the full equation set.

Important parameters of the PETS model are (i) parameters reminiscent of the “classic”

RP model [44]: the orientation, τd, and stretch, τs, relaxation times of the (unattached)

chain; (ii) sticker parameters: τas and φas; (iii) finite extensibility parameter: the maximum

stretch ratio λmax of the chain (as the maximum stretch is approached, the polymeric stress,

the rate of stretch relaxation, and the rate of sticker dissociation all diverge). Typically, for

real systems such as “sticky” entangled telechelic stars, as reported in Ref. [52], (1−φas) ≪ 1

and τs ≪ τd ≪ τas. For the majority of this work, we therefore choose τs = 1, τd = 102,

τas = 103, to represent experiments. Also, we choose λmax = 10 (unless otherwise stated). In

the PETS model, increasing λmax has a clear influence on the predictions in nonlinear shear

or extensional flows, at flow rates greater than the inverse effective stretch time, τ−1
s , or
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inverse of the association time, τ−1
as , whichever is smaller. In shear flow, at high flow rates,

increasing λmax increases the strain value at which the stress is maximum and also increases

the steady state stress value; however, the maximum stress value is nearly unchanged. In

extensional flow, at high extension rates, increasing λmax increases the maximum stress

value, the steady state stress value, and the strain at which the maximum stress occurs.

The influence of λmax can be seen, e.g., by looking at Fig. 11, where λmax = 40.

It is worth noting that the “two state” nature of the PETS model shares some similarities

with other constitutive models for supramolecular systems. As discussed in the Introduction,

there are several models available for telechelic linear polymers forming flowerlike micelles in

the unentangled state, e.g. Ref. [40, 41]. Another similar model is the the VCM model [53]

often used for wormlike micellar solutions, which can be thought of as arising from the joining

together of linear chains with sticky groups at either end to form longer linear chains. The

critical difference as compared to the PETS model is that, for a wormlike micelle in the

“attached” state, reptation is still possible and can relax stress: the VCM model reflects

this. In contrast, in the PETS model, stress relaxation is suppressed in the attached state.

For this reason, the PETS model most likely should not be applied to wormlike micelles

without further modification. It is also worth mentioning that in other “two-state” models

such as the VCM model [53] or Ref. [40, 41] for unentangled telechelic chains, stress is not

conserved upon attachment and detachment of chains, whilst (as noted above) the PETS

model does ensure that stress is conserved.

III. SHEAR BANDING SIMULATIONS

A. Flow curve and shear banding

We briefly summarize the phenomenology of shear banding. Fig. 3 presents a sketch of the

steady state shear stress as a function of the applied shear rate, typically for σ following the

Rolie-Poly model [54] with β ≈ 0, i.e. no CCR [55]. Other models that exhibit shear banding,

e.g. the Johnson-Segalman [45] model, often have a similar steady state stress curve [25]. The

(non-monotonic) homogeneous constitutive curve is “ABCDEF”. The system is unstable in

the portion “CD”, and often considered to be metastable in the “BC” and “DE” portions

(though global stability analysis remains an open question [25, 56]). The (shear banded)
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TABLE I. Preaveraged model (PETS) equation set [39].

Expression for the stress tensor, in units of G:

σ = fQA + (1− f)QD.

Evolution of the fraction of attached chains:

df

dt
= ratt (1− f)− rdetf.

Evolution of the attached chains tensor:

dQA

dt
= g (QA) +

1

3λ2
max − 3

tr [g (QA)]QA + ratt
1− f

f
(QD −QA) ,

with

g (QA) ≡ κ ·QA +QA · κT − 2βν̃λ−1
A (QA − fE(λA)I) .

Evolution of the detached chains tensor:

dQD

dt
= h (QD) +

1

3λ2
max − 3

tr [h (QD)]QD + rdet
f

1− f
(QA −QD) ,

with

h (QD) ≡ κ ·QD +QD · κT − 2βν̃λ−1
D (QD − fE(λD)I)−

1

τd
(QD − fE(λD)I)−

2(1− λ−1
D )

τs
fE(λD)QD.

Preaveraged CCR rate:

ν̃ = (1− f)
1− λ−1

D,eq

τs
fE(λD,eq) + f rdet

λA − λD

(λA + λD)
.

Evolution of the CCR stretch-variable:

dλD,eq

dt
= (κ : QD/ trQD)λD,eq −

λD,eq − 1

τs
fE(λD,eq) + f rdet(λA − λD,eq).

Rate of attachment and detachment:

ratt = τ−1
as

φas

1− φas
, rdet(λA) = τ−1

as







1− λ2
Aλ

−2
max

1− λ−2
max

(

λA − r
Za0

)2







−
3

2
Zλ2

max

.

Stretch of the attached and detached chains:

λA =

(

λ2
max tr (QA)

3λ2
max − 3 + tr (QA)

)1/2

, λD =

(

λ2
max tr (QD)

3λ2
max − 3 + tr (QD)

)1/2

.

Finite extensibility function:

fE(λ) =
1− λ−2

max

1− λ2λ−2
max

.
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FIG. 3. Steady state shear stress function of the applied shear rate. The “ABCDEF” line is the

(non-monotonic) homogeneous constitutive curve, while the “ABEF” path is the shear-banded flow

curve. The selected stress is the “BE” level and the selected shear rates are γ̇low and γ̇high.

flow curve is “ABEF”, i.e. when the applied shear rate, γ̇av, is between γ̇low and γ̇high, the

system spontaneously forms two macroscopic bands of fluid, one at a shear rate γ̇low and the

other at γ̇high [29]. In the banded regime, i.e. γ̇low < γ̇av < γ̇high, the stress stays constant,

or slightly increases due to curvature effects (not considered here) in geometries such as

cylindrical Couette [57–59].

For an applied shear rate such that γ̇low < γ̇av < γ̇high, the fraction, αhigh, of fluid

“experiencing” the high shear rate is given by the lever rule:

γ̇av ≈ αhighγ̇high + (1 − αhigh)γ̇low. (11)

This rule has been confirmed by many experiments [26]. The stress selection that is made

by the system when it bands, which corresponds to the stress plateau “BE” in Fig. 3, is

unique if we include a diffusion term in our model [60].

In what follows, we present the geometry, the method used to derive the diffusion terms

(that allow a single stress selection) as well as the simulation set-up, followed by our results

and discussion.

B. Parallel plates

We consider a parallel plate configuration: the top plate at y = L moves with velocity u

in the x-direction with respect to the bottom plate at y = 0, giving fixed average shear rate
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FIG. 4. Simulation set-up. The top plate at y = L moves with a velocity u in the x-direction with

respect to the bottom plate at y = 0. Left: homogeneous flow. Right: a banded flow.

γ̇av = u/L, cf. Fig. 4. This may describe a cone-plate or Taylor-Couette flow, if we neglect

the curvature effects.

C. Diffusive terms

In order to study the shear banding effects associated with the set of equations presented

in Table I, we detail (in Appendix A) the effect of diffusion of the chains across a unidimen-

sional channel. We split the domain between y = 0 and y = L into a set of “boxes” of size

∆y, and we consider the effect of chains “jumping” between these boxes. We suppose that

there are n chains in total in each box, a fraction f of which are attached and a fraction

(1− f) detached. We then assume that at each time step ∆t, each box exchanges δn chains

with each of the adjacent boxes. These chains are selected in proportion to the number of

attached or detached chains in the box from which they leave.

The derivation of the diffusive terms is done in Appendix A, and the resulting equations,

which act in addition to the dynamics listed in Table I, are:

∂f

∂t
= D

∂2f

∂y2
, (12)

∂fQA

∂t
= D

∂2fQA

∂y2
, (13)

∂(1 − f)QD

∂t
= D

∂2(1 − f)QD

∂y2
, (14)

where D is the diffusion coefficient. The derivation of these equations, as presented in

the Appendix, is based on a “toy” model for diffusion in which it is imagined that star

arms (both attached and detached) hop back and forth, carrying their stress with them,
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resulting in the symmetric set of equations above with a single diffusion constant. These

equations are physical in the sense of being derived from a microscopic molecular model,

albeit a highly idealized one. It is possible to imagine processes whereby both detached and

attached arms could diffuse in a real physical system, even when noting that in practice

both are connected to the branch point of the star. For example, when a detached arm

relaxes, it gains freedom to move a short distance into a new region of space. When it

does so, the rest of the entanglement matrix (comprising both attached and unattached

arms) must correspondingly move in the opposite direction so as to maintain the overall

incompressibility of the system. Relaxation of the detached arm also allows the star branch

point to take a small “hop” in space, and permits surrounding chains to relax and move by

constraint release. Through a succession of such processes, the entangled matrix, detached

and attached arms, and branch points can all be carried diffusively back and forth. A

more rigorous derivation should account for all these processes, and may result in effects

whereby the detached arms effectively diffuse faster than the attached arms, or where the

diffusion constant increases as the proportion of detached arms increases. For the present

manuscript, we do not attempt a detailed derivation of diffusive terms based on these, or

other, microscopic processes, but instead use the symmetric toy diffusion equations above.

The above discussion does highlight that it may be possible to consider a situation in

which only one species diffuses – most likely the detached species – whilst not altering the

stress from the other species, or the fraction f of attached species as a function of position.

We tested such a scenario in which diffusion was applied only to the QD variable. We found

that, although QD varied smoothly across the shear band interface, all other variables such

as f , QA and shear rate became discontinuous at the interface in our numerical scheme,

i.e. the numerical solution was not smooth. As a result, the stress selection mechanism

(which is one reason for including diffusion) appeared to be ineffective. Although we have

not investigated this extensively, we do not presently believe that diffusion in only one of

the species is sufficient to stabilize the bands.

D. Simulation method and parameters

The diffusion coefficient, D, is dimensionless in the simulations, as are the gap size L and

timescales (e.g. τas, the longest relaxation time), corresponding to physical (dimensional)
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quantities D̃, L̃ and τ̃as respectively. The dimensionless D may therefore be obtained from

D = D̃L2τ̃as/L̃
2τas, so a decrease in physical gap size L̃ increases the dimensionless D. For

the rest of this work, the (dimensionless) gap size is set as L = 1, without loss of generality.

Experimental methods can provide values of D̃ for: (i) linear entangled polymers, which

range from 10−15 to 10−10 m2/s [61–64], (ii) linear polymers with stickers along the backbone

ranging from 10−12 to 10−15 m2/s [65], or (iii) unentangled telechelic stars ranging from 10−14

to 10−13 m2/s [66, 67].

To our knowledge, diffusion coefficients for entangled telechelic star polymers are not

available in the literature but must somewhat fall within the ranges given above. Taking

D̃ ∼ 10−14 m2/s, L̃ ∼ 1 mm, τ̃as ∼ 106 s, and τas = 103 (as used in Section IV to represent

the experiments of Ref. [52]), gives a reference dimensionless diffusion coefficient D0 = 10−5.

In the following, we vary D around D0, noting that (for example) changes in gap height will

substantially affect the dimensionless diffusion constant.

We use the fourth order Runge-Kutta (RK4) method to increment Eqs. (8) to (10), and

the widely used [59, 68–70] Crank-Nicolson (CN) finite difference method [71] to increment

the diffusive terms, Eqs. (12) to (14). To increment in time Eqs. (8) to (10), we could use a

simple Euler scheme. We choose to use RK4 method which offers a good balance between

order of accuracy and cost of computation. The CN method is a second order method in

time and unconditionally stable. At each numerical time step, f , QA, and QD are changed

by Eqs. (8) to (10) using a RK4 step (flow contribution) and then via Eqs. (12) to (14) using

a CN step (diffusion contribution).

We use a uniform spatial grid of Ngrid ≥ 1 000 points with a zero-gradient (Neumann)

boundary condition imposed on the top and bottom plates, i.e. no quantity can exit the

system:

∂X

∂y

∣

∣

∣

∣

y=0

= 0 and
∂X

∂y

∣

∣

∣

∣

y=L

= 0, (15)

where X is each of QA, QD, and f . Note that other boundary conditions could have been

considered [72] but we use Eq. (15) since these are consistent with the assumed microscopic

basis for the diffusion terms in our equations.

We use a (common) time step for the RK4 and CN methods that is smaller than the

characteristic times of the system (τas, τfree, γ̇
−1) and smaller than the characteristic diffusion

time across a box ∆tdiff = (∆y)2/D, where ∆y = L/Ngrid is the box (grid) size. Therefore, a
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finer grid (increase of Ngrid) not only implies more computation points but could also imply a

smaller simulation time step, (as ∆y decreases), which would highly increase the simulation

time. Nevertheless, we must ensure that the transition between the high and low share rate

bands (if any) is “numerically smooth”, see inserts of Fig. 8. The width of that interface, ℓint,

is determined by the diffusion coefficient and a relaxation time as ℓint ≈ (Dτ)1/2 [73], and we

must ensure that ∆y ≪ ℓint, so we take τ ≡ τs (the smallest relaxation time). Hence, a high

number of grid points are needed for small-D simulations. In Section IV, we explore the

effects of three values for the (dimensionless) diffusion coefficient: D = {10−7, 10−5, 10−3},

with respectively Ngrid = {10 000, 4 000, 1 000}, ensuring that ∆y ≪ ℓint. We have checked

for convergence with respect to the size of the time-steps and space-steps.

E. Momentum equation in parallel plate geometry

The typical Reynolds number, Re, is given by the balance between the inertia and viscosity

as Re = ρuL/µ, where ρ ≈ 1 g/cm3 is the density of the polymer, u ≈ 1 mm/s is the typical

velocity, L ≈ 1 mm is the typical gap size, and µ the polymer viscosity that we take of order

105 Pa·s [74]. Hence, Re ≈ 10−8 ≪ 1, so we can neglect the inertia contribution.

The momentum equation reads

ρDtu = ∇ · T , (16)

where Dt ≡ ∂t + u ·∇, and T = σ + η(κ + κT ) − pI is the total stress with κ = (∇u)T

the velocity gradient tensor, σ the polymeric stress, η the Newtonian-solvent viscosity set

as η = 0.1 for the rest of this work, and p the isotropic pressure ensuring incompressibility.

Note that the viscosity is not a crucial parameter here as long as the Newtonian stress

remains smaller than the polymeric stress, i.e. ηγ̇av < σxy.

A direct consequence of a small Reynolds number is that Eq. (16) becomes

∇ · T = 0. (17)

Thus, ∂Txy/∂y = 0, so Txy is constant across the gap. It follows that Txy(y, t) =
〈

Txy(y, t)
〉

,

where 〈 · 〉 = 1
L

∫ L

0
· dy is an average across the gap, with

Txy(x, t) = σxy(y, t) + ηγ̇(y, t) (18)
〈

Txy(y, t)
〉

=
〈

σxy(y, t)
〉

+ η
〈

γ̇(y, t)
〉

. (19)
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FIG. 5. Homogeneous flow curves of the PETS model [39] with φas = {0.01, 0.5, 0.99, 0.9999}. In

insert is Txy(t) for γ̇av = 0.42 and φas = 0.99. Parameters are τs = 1, τd = 102, τas = 103.

Combining the two above equations gives

γ̇(y, t) =
〈

γ̇(y, t)
〉

+
1

η

(

〈

σxy(y, t)
〉

− σxy(y, t)
)

, (20)

where
〈

γ̇(y, t)
〉

≡ γ̇av is the constant (externally) applied shear rate, or average shear rate

across the gap, during step rate experiments or simulations.

At each time step, we compute the local value of the polymeric stress σxy(y, t) using

the set of equations Table I and Eqs. (12) to (14). Then, the average stress across the

gap,
〈

σxy(y, t)
〉

, is computed which, in turn, allows us to evaluate the local shear rate via

Eq. (20). This local shear rate is then used in the next step to update the polymeric stress.

We increment the dynamical equations for the system by repeating this cycle for each time

step.

IV. PREDICTIONS OF THE “DIFFUSIVE” PREAVERAGED MODEL

A. PETS model: Homogeneous flow curves

In Fig. 5, we present the homogeneous (i.e. we force the system to remain homogeneous)

constitutive flow curves of the PETS model where we vary the equilibrium fractions, φas,

of attached stickers, i.e. we change the “stickiness” of the system from φas = 0.01 (not
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sticky) to φas = 0.9999 (sticky). It is clear that, as φas increases, a non-monotonicity

in the constitutive curve appears, and so shear banding phenomena may be anticipated.

Additionally, as illustrated by the insert in Fig. 5, the transient stress during start-up of

steady homogeneous flow exhibits a sharp stress maximum, which is a result of attached

chains being stretched close to their maximum λmax before the stickers are forced to detach.

This detachment event, and subsequent relaxation of the detached chains, produces a rapid

reduction of stress. We may anticipate that this produces interesting dynamical phenomena

during the establishment of shear bands. We refer the reader to Section IV of Ref. [39] for a

detailed explanation of the transient flow behavior depending on the parameter value. Note

that, in the notation of Ref. [39], the flow curves represented here in Fig. 5 sit in regions C1

for φas = 0.01, intersection C1/C2 for φas = 0.5, C2 for φas = 0.99, and A1 for φas = 0.9999.

The multiple transition that can be seen in Fig. 5 can be explained as follows. A first

transition is seen at a flow rate, when γ̇av ≈ (τd/1−φas)
−1. Then, there are three phenomena

to consider:

(i) When γ̇av > τ−1
as = 10−3, the attached chains (if any) start to stretch giving rise to an

increase in Txy;

(ii) When γ̇av > τ−1
free, the fraction of attached arms (if any), f , drops. In effect, this de-

creases Txy because when attached chains detach they can then relax their stretch.

Note that, given Eq. (1), φas = {0.01, 0.5, 0.99, 0.9999} correspond to τ−1
free =

{10−5, 10−3, 0.1, 10} which are roughly the rates at which the stress decreases for

each curve;

(iii) When γ̇av > τ−1
s = 1, detached chains start to stretch, giving rise to an increase in Txy.

B. Banded flow curves

In the following, we explore the complex flow dynamics arising from the ”PETS + diffu-

sion” model, i.e. Table I and Eqs. (12) to (14), for φas = 0.99 (sticky system) by means of

1-dimensional parallel plate simulations, as described Section III B.

At t = 0, the stress tensors QA and QD are set equal to the isotropic tensor, and the

fraction of attached chains, f , is set as the fraction of attached chains at equilibrium, φas,
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FIG. 6. Steady state stress versus shear rate for (forced) homogeneous flow (dashed line), and

for shear banding simulations (symbols), time averaged in the case of oscillatory response (white

crossed symbols). Inserts (a, b, c) show the transient stress versus time, Txy(t), at γ̇av = 0.42, for

D = 10−3, D = 10−5, and D = 10−7 respectively. Parameters are τs = 1, τd = 102, τas = 103,

φas = 0.99, λmax = 10.

plus a small perturbation,

f(y, t = 0) = φas + ξ cos(πy), (21)

where ξ ≪ φas is the overall amplitude of the perturbation, which ensures f to be slightly

lower than φas at high y and vice versa. A small value of ξ leads to delayed effects, i.e. longer

simulation time needed to access a banded state, while large values of ξ are unphysical – in

the following, we use ξ = 10−3. If banding occurs, Eq. (21) guarantees a high shear rate band

at high y values, because f drops when the flow rate increases. Other initial conditions may

result in bands (either oscillatory or steady) forming away from the wall, which typically

migrate towards one wall or the other, see Section V.

In Fig. 6 we plot the steady state stress as a function of applied γ̇av, for various diffusion

coefficients around D0, as discussed in Section III D. We also show transient plots of stress
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versus time for different diffusion coefficient at the same γ̇av = 0.42. We found that for

large values of the diffusion coefficient and in a narrow range of applied shear rate, e.g.

D = 10−3 (equivalently, for small gap size) and 0.2 < γ̇av < 1, the total stress does not

reach steady state but keeps oscillating (white crossed symbols) between, roughly, the stress

values for homogeneous flow (dashed line) and for the shear banded state. Each “oscillation”

appears to be, in detail, a sharp stress overshoot similar to the early event where initially

attached chains reach their maximal stretch and detach. However, at smaller values of D,

e.g. D = 10−5 (equivalently, as the gap size increases), the stress oscillates for a short time,

but a steady state is eventually reached. After a further decrease of D, e.g. D = 10−7, no

oscillation is seen.

Note that we also performed a simulation with D = 10−3 (and all parameters identical to

those in Fig. 6), where we imposed γ̇av = 30, giving steady state shear banding. Once the

steady banded state is reached, we decreased γ̇av rapidly (in a time scale of order τfree) to

γ̇av = 0.42, i.e. a value where oscillations are expected. We saw that the oscillations showed

up again, this time starting from a steady banded state, and the system reached the limit

cycle that we found in Fig. 7 top right, described below.

C. Stick-slip and diffusion

In order to investigate the transient behavior and especially the interesting oscillatory re-

sponse further, we present, in Fig. 7, color maps (corresponding to the three inserts in Fig. 6)

of γ̇(y, t) and f(y, t), and the trajectory of the simulation projected onto the plane (Txy,∆f),

where ∆f is the difference between the maximum and minimum value of f observed across

the gap.

Focusing first on D = 10−7 in Fig. 7 left, we observe that the fraction of attached arms

drops across the whole width of the simulation at the time (t ≈ 40) of the initial sharp

stress maximum, and at this point no significant banding is observed. The flow remains

homogeneous (H) for a time, but the (Txy,∆f) plane reveals the growth of an instability

in which ∆f increases. Eventually, at t ≈ 54, a thin band of material near the upper wall

reaches a state with almost all chains detached, which gives rise to a sharp recoil (R), i.e.

where coexistence of negative and positive shear rates is seen, see Fig. 8. This permits a

release of the elastic energy stored in the remaining bulk of the material, driving the sharp
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FIG. 7. Bottom to top: Time evolution of the spatially resolved local shear rate and fraction of

attached chains, and of the stress versus ∆f , for various diffusion coefficient and γ̇av = 0.42. “H”,

“B”, and “R” stand for homogeneous flow, (steady state) banded flow, and recoil, respectively.

The highest values of γ̇ have been truncated for clarity, and only y > 0.9 is shown. Parameters are

φas = 0.99, ξ = 10−3.

recoil and a rapid drop in stress. Subsequently, the flow stabilizes to a banded state (B),

with a narrow band at high shear rate close to the upper wall, effectively an apparent wall

slip. Fig. 8 displays the velocity profile during the homogeneous (H), recoil (R) and banded

(B) states, at times indicated by stars in Fig. 7 left. We see in the (Txy,∆f) plane that the

system is driven away from the instability and reaches a permanent banded state, where

∆f ≈ 1; two shear bands are formed, one with a high number of attached stickers, and

the other with most of the stickers detached. In contrast, for larger D = 10−5, shown in

Fig. 7 middle, after the initial recoil the simulation returns towards a homogeneous state

(H) before recoiling (R) once more and eventually stabilizing into a banded state (B) where,

as before, ∆f ≈ 1. The (Txy,∆f) plane shows the extra oscillatory cycle made before the

system eventually reaches a steady banded state.

For large values of the diffusion coefficient, e.g. D = 10−3, oscillation between homoge-

neous (H) and recoil (R) states repeats indefinitely, i.e. no steady banded state is reached.

The (Txy,∆f) plane, of Fig. 7 right, reveals the limit cycle that underpins the oscillations.

Additionally, we provide snapshots of the simulation in Fig. 9, in which we can clearly iden-

tify the initial configuration (t = 30, top left), where the fraction of attached stickers seems

homogeneous across the gap (due to ξ ≪ 1 in Eq. (21)), and the velocity profile is a straight
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FIG. 8. Velocity profile (normalized by γ̇av) for D = 10−7 at times indicated by stars in Fig. 7.

line, indicating a homogeneous shear rate across the gap. Then, at t = 55 (Fig. 9 top right)

we can see that the velocity profile is no longer linear and that the fraction of attached

chains, f , has started to drop near y = 1. Subsequently, a snapshot at t = 55.3 (Fig. 9

bottom left) gives an indication of the severity of the recoil, which is driven by release of

stored elastic energy in the material. A narrow band of material close to y = 1 has almost

all its stickers detached (f ≈ 0) and experiences high (positive) shear rates, while a large

band with f ≈ 0.55 has a relatively low and negative shear rate (i.e. it is recoiling). At this

point it is worth emphasizing that the majority of the material has a negative velocity and

only a thin band of material has a positive velocity. Experimentally, that would manifest

in a large band of material going “backwards”, i.e. in the direction opposite to the applied

shear, while a narrow band of material would still flow in the direction of the applied shear.

At a later time, t = 65.4 (Fig. 9 bottom right), the velocity profile is again nearly linear

meaning that the shear rate is again nearly homogeneous across the gap, and that all the

material is now flowing in the direction of the applied shear. Note that f has recovered to

higher values (more stickers attached), which indicates that the material has self-healed: it

nearly recovered all the bonds it had before the rupture [75].

Possible experimental verification of this phenomenon include velocimetry experiments

where one could see the high shear rate band of material and a periodical recoil with some

material going in the direction opposite to the applied shear.

The critical process driving the oscillation is the return towards a homogeneous flow
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FIG. 9. Snapshots of the simulation at times t = 30, t = 55, t = 55.3, and t = 65.4 for D = 10−3

in Fig. 7. We present the (Txy,∆f) plane, the fraction of associated stickers, f , across the gap,

and the normalized (by γ̇av) velocity profile, form top to bottom respectively.

profile following the banding and elastic recoil. The dependence of this process on the

diffusion constant indicates the following mechanism is at work: After the recoil, a narrow

high shear rate band is formed, in which most chains are in the detached state. However, if

diffusion is sufficiently rapid (depending upon the width of the band as well as the magnitude

of the diffusion constant) diffusive exchange of chains between the narrow band and bulk of
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the material (which contains many attached chains) leads to an increase in the number of

attached chains in the “fast” band (seen as a reduction of ∆f in the (Txy,∆f) trajectory).

This slows down shear in the fast band, re-establishing a nearly homogeneous flow. This

then sets up a state in which the initial banding and recoil instability can reoccur, so that

the cycle potentially repeats indefinitely. The oscillation is therefore a result of interaction

between the diffusion and the dynamics of the internal variables of the constitutive model.

Confirmation of this oscillatory mechanism is found by examining the effect of increasing

shear rate. The oscillation is first seen for γ̇av on the onset of the unstable region (negative

slope of the constitutive curve, Fig. 5). The frequency of the oscillations increases almost

linearly with increasing shear rate (circles Fig. 10), because the time needed for a chain

to reach its maximum strain (followed by detachment and recoil) decreases as shear rate

increases. Indeed, by analyzing the stress, Txy, as a function of strain γ = γ̇avt, we see

that the frequency of these oscillations is quasi-constant with increasing shear rate (squares

Fig. 10). However, according to Eq. (11), the width of the high shear-rate band, αhighL, also

increases with increasing shear rate until, eventually, the band becomes sufficiently wide

that diffusion can no longer re-establish a homogeneous flow profile. Beyond this point,

oscillations are no longer seen.

Hence, there is a competition between two phenomena: (i) the homogenization of f across

the gap via diffusion on a timescale τdif = (αhighL)2/D, with αhigh = (γ̇av−γ̇low)/(γ̇high−γ̇low)

the fraction of gap occupied by the high shear rate band, from Eq. (11); and (ii) the breaking

of the associated chains in the high shear rate band that occurs at a fixed strain γc, on a

timescale τb = γc/γ̇high. Thus, oscillations on the unstable branch of the flow are expected

if τdif < τb, i.e. if γ̇av < γ̇av,c, where

γ̇av,c = γ̇low + (γ̇high − γ̇low)(Dγc/L
2γ̇high)1/2 (22)

is the critical shear rate above which no oscillations are expected. According to Fig. 6,

γ̇high ≈ 130, γ̇low ≈ 0.02. Therefore, Eq. (22) gives γ̇av,c = 1.5 for D = 10−3, and γ̇av,c = 0.03

for D = 10−7 (which is before the unstable region), in qualitative agreement with Fig. 6.

Note that the critical strain, γc, depends on the value of the maximum stretch ratio, λmax

as γc ≈
√

3λmax.

We examine Eq. (22) further by investigating a broader range of parameters. In

Figs. 11 and 12, we present the flow curves for various D, with (λmax, τas) = (40, 103)
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and (λmax, τas) = (10, 2 × 102) respectively, and we indicate where oscillations are seen in

the simulations (shaded zone), and the prediction of Eq. (22) (vertical dashed line). In

Fig. 13 we compare directly the upper critical shear rate for oscillations, γ̇av,c, as predicted

by Eq. (22), with the simulation observations for the upper critical average shear rate.

Although, in our simulations, the transition between oscillations and steady banded state

is not exactly predicted by Eq. (22), as seen in Fig. 13, it nevertheless follows the same

trend, i.e. oscillations are seen for a larger γ̇av interval as D increases, and the increase in

the critical average shear rate with increasing λmax is captured. Note that large D values

broaden the transition between the high and low shear rate regions, to the extent that, at

the largest D values we simulate (in Figs. 11 and 12), the “transition” region begins to span

the width of the simulation. The discrepancy observed for large D values in Fig. 13 can

be attributed to the fact that the lever rule, Eq. (11), which considers a sharp transition

between high and low shear rate bands, no longer accurately describes the banded flow with

“smooth” transition. Moreover, the breaking time, τb, will be affected by the presence of a

broad range of high shear rates, and the diffusion time, τdif , will be affected by the proximity

of the far boundary, leading to the failure of the scaling argument.

Given that such complications exist in the simulations, we consider that Eq. (22), and

the underlying physics it represents, captures the essential features of the transition from

oscillatory to non-oscillatory flow.

V. INFLUENCE OF THE INITIAL PERTURBATION

In Section IV, the initial perturbation on the fraction of attached chains, f , was set was

using Eq. (21), ensuring that f was slightly higher than φas near the upper wall (y = 1) and

slightly lower than φas near the lower wall (y = 0) which guaranteed that, when banding

occurs, the high shear rate band is located near the upper wall.

A symmetric initial perturbation such as

f(y) = φas + ξ cos(2πy) (23)

ensures that, initially, the minimum of f is located at the center of the gap. Using Eq. (23)

as initial condition, we observe that

(i) When steady banding occurs, the high shear rate band remains in the center of the
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FIG. 10. Frequency of the oscillations as a function of the applied shear rate, corresponding to

D = 10−3 in Fig. 7. Red circles: for the stress vs time curve. Black squares: for the stress vs strain

curve.

FIG. 11. Flow curves for (λmax, τas) = (40, 103), and various D. The shaded zone and empty

symbols indicate where oscillations are seen in the simulations, and the vertical dashed line is the

prediction of Eq. (22).
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FIG. 12. Flow curves for (λmax, τas) = (10, 2× 102), and various D. The shaded zone and empty

symbols indicate where oscillations are seen in the simulations, and the vertical dashed line is the

prediction of Eq. (22).
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FIG. 13. Critical shear rate as a function of the diffusion coefficient from simulation (symbols)

and from Eq. (22) (continuous lines) corresponding to Fig. 11 (top curves) and Fig. 12 (bottom

curves).

gap;

(ii) When oscillations occur (in a range of shear rates), the high shear rate band appears

in the center of the gap;
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(iii) The range of shear rates at which (“permanent”) oscillations are produced is slightly

larger, e.g. for D = 10−3, we see permanent oscillations for γ̇av = 1, see Fig. 14 left,

whereas at that shear rate the system stabilizes into a steady banded state when f is

initialized using Eq. (21).

These results support the idea that diffusion destabilizes the bands, especially observation

(iii), since when the high shear rate band is in the center of the simulation “box”, diffusion

from above and below the band rehomogenizes the flow. Hence the effect of the diffusion

of the attached chains from the low shear rate band to the high shear rate band is stronger

when the high shear rate band is in the center of the domain as compared to the edge, and

we therefore expect oscillations when τdif/2 < τb.

The above situation, with the shear band, or stick-slip behavior, in the middle of the gap

is in fact linear unstable to small perturbations and the band will eventually drift towards

the upper or lower plate. We demonstrate this drift starting from an asymmetric initial

condition. Focusing on γ̇av = 1, we can set the initial perturbation such that f has its

lowest value at y = 1/3,

f(y) =











φas + ξ cos(3πy), 0 ≤ y ≤ 2/3

φas + ξ, 2/3 < y ≤ 1
(24)

the high shear rate band is initially formed at around y = 1/3, then it is slowly “pushed”

to the bottom, cf. Fig. 14 right. When the high shear rate band reaches the bottom wall,

oscillations cease for that particular shear rate (γ̇av = 1), which is consistent with our initial

results, Section IV.

Finally, if the initial perturbation is a random noise, then, when shear banding occurs,

high shear rate front(s) appear across the gap at random places. When there are several

high shear rate fronts, they eventually merge into one and is then “pushed” up or down at

the wall, similarly to what is seen in Fig. 14 right.

VI. CONCLUSIONS

We have investigated shear instabilities using the novel constitutive law designed for de-

scribing the rheology of entangled telechelic star polymers of Ref. [39]. We augmented the
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FIG. 14. Time evolution spatially resolved of f and γ̇ for an initial perturbation set as Eq. (23)

(left), and Eq. (24) (right).

model by including a diffusive term and performed simulations in a parallel plate configu-

ration. The model displays shear banding, often accompanied by a strong elastic recoil in

the transient response. This may appear as an “apparent” wall slip, i.e. a very narrow band

of high shear rate close to the wall. In the same sense, the model also displays an oscilla-

tory “apparent” stick-slip behavior, driven by a cycle of elastic recoil followed by diffusive

rehomogenization of the flow. We link the oscillations unambiguously to the diffusion of the

attached chains (with sticker attached) from the low shear rate band to the high shear rate

band which destabilizes the banded structure. Interestingly, experimental data [36] shows

a large noise (oscillations) on the stress response corresponding to the establishment of the

banded structure, which is precisely where we found, in our model, the oscillations.

Since our modelling is entirely at the continuum level, with an imposed no-slip boundary

condition, it is wholly impossible for these observed phenomena to be anything but “appar-

ent” wall slip or stick-slip. Within this continuum approach, reducing the diffusion constant,

or (correspondingly) increasing the gap size, removes the oscillations. Nevertheless, we may

speculate that an identical mechanism drives stick-slip oscillations in the case of “true” wall

slip, which occurs as a result of the microscopic local environment close to a wall, corre-

sponding to a few polymer chain radii. Here, the physics governing chain conformations

and dynamics can be quite different from the material bulk, and can include, for example,

perturbation of the chain conformations by the hard wall, or physical bonding of chains

to the wall. It seems very plausible that molecular diffusion from the material bulk into

the local wall region might temporarily arrest wall slip (i.e. rehomogenizes the flow) before
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wall slip occurs once more, driving a similar cyclic phenomenon to the one we observe. In

the case of true wall slip, the local environment sets a new physical lengthscale (e.g. via

the chain dimensions), so that increasing the (macroscopic) gap size no longer removes the

oscillations.

Recent experiments on concentrated solution of telechelic polymers showed the following

results: (i) stress maxima at a constant strain, (ii) shear banding [33], (iii) oscillatory/chaotic

transient stress response [36, 37]. With supporting evidence, these effects were attributed

to “a mechanical instability at the interface between coexisting bands” rather than to stick-

slip at the walls. An underlying transport process was suggested [36], though the existence

of this was identified from the long time to reach steady state, rather than as a factor in

the oscillatory or chaotic response. Some, but not all, of the studied materials were in the

concentrated regime where chains become entangled [36]. The observed stress maxima, shear

banding and oscillatory response are in qualitative agreement with our findings. Our results

indicate that the presence of a transport process could be a contributing factor in transient

response, in addition to determining stress selection at steady state. Nevertheless, there

remain differences, e.g. we have not observed a chaotic response. We may speculate that

these differences could be due to differences in the precise constitutive behavior, or to the

three dimensional character of the flow which is beyond the presently reported simulations

(e.g. they could be observing an elastic flow instability leading to the chaotic response, which

would not be captured in our 1D model).

The mechanism of rehomogenization of the fraction of attached stickers can be seen as

a self-healing mechanism through chain reassociation into a network structure. To design

surfaces with adjusted friction properties, an important objective in a large number of prac-

tical situations, it is crucial to understand the mechanisms at work. For example, some

experiments have evidenced a stick-slip phenomenon in non-sticky entangled systems [76],

gels [77–79], or lubricants [80]. The work presented in this article could have a potential

impact on these other area and give some insights to understand the complex phenomenon

leading to stick-slip.
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Appendix A: Derivation of the diffusive terms

Theories for polymer migration, such as the two-fluid model, usually involve incorporating

into the mass balance equation a polymer stress-diffusion term, which can be derived in a

variety of ways [81, 82]. Other approach, such as “body tensor continuum theory” proposed

by Öttinger [83] result in mass transport terms that include the divergence of the stress

tensor. More recently, Larson and co-workers [84, 85] developed a continuum theory that

demonstrated how the divergence of stress arises as a result of defining local polymer mass

by the local density of beads rather than by the density of molecular centers of mass, leading

to a coupling of polymer stress relaxation to center-of-mass migration.

In this work, we derive the diffusive terms based on a molecular picture that at each time

step ∆t, there is a small quantity δn of material leaving the box y towards the (y+ ∆y) box

(and a same quantity δn arrives from that box), and a quantity δn of material leaving the

box y towards the (y−∆y) box (and a same quantity δn arrives from that box), see Fig. 15.

Therefore, our system is set so that it is incompressible.

At each time step, the box at “height” y loses stress related to the attached and detached

population in proportion to

2δnf(y)QA(y), (A1)

2δn
(

1 − f(y)
)

QD(y), (A2)

where the factor 2 comes from the fact that, except at the boundaries, the quantities exit

through the top and bottom. Moreover, at each time step, the box at “height” y gains some

stress coming from the top and bottom boxes:

from A-chains

δn(fQA)(y + ∆y) + δn(fQA)(y − ∆y), (A3)

from D-chains

δn
(

(1 − f)QD

)

(y + ∆y) + δn
(

(1 − f)QD

)

(y − ∆y), (A4)
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where we used the shorthand (fQ)(y) ≡ f(y)Q(y), and all the quantities are at time t.

Now, we can express the fraction of attached chains, f , at t + ∆t. Considering that the

total number of chains in the box at “height” y is n, the number of attached chains at time

t + ∆t is

nf(y, t + ∆t) = (n− 2δn)f(y) + δnf(y + ∆y) + δnf(y − ∆y)

= nf(y) + δn
(

f(y + ∆y) + f(y − ∆y) − 2f(y)
)

, (A5)

where all quantities are evaluated at time t if not specified otherwise. Dividing by n∆t and

rearranging the terms, we recognize the finite difference approximation of the time derivative

and second order spatial derivative derivative, so that in the limit ∆t → 0 and ∆y → 0,

taken such that (∆y)2/∆t remains constant, we find:

∂f

∂t
= D

∂2f

∂y2
, (A6)

where D =
δn

n

(∆y)2

∆t
. Hence, the fraction of attached chains, f , diffuses across the boxes

with a diffusion coefficient D.

Now, we will derive the value of the tensor QA at time t + ∆t. According to the balance

equations previously written we have that the total stress in the box at “height” y from the

FIG. 15. Diffusion across the simulation boxes.
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attached population is

nf(y, t + ∆t)QA(y, t + ∆t) = (stress from A-chains at time t in box y)

− (stress from A-chains leaving box y)

+ (stress from A-chains arriving box y)

= n(fQA)(y, t)

−2δn(fQA)(y, t)

+δn
(

(fQA)(y + ∆y, t) + (fQA)(y − ∆y, t)
)

.

Rearranging the terms and approximating the finite differences for the derivatives, we obtain

the partial differential equation

∂fQA

∂t
= D

∂2fQA

∂y2
. (A7)

From Eq. (12), we know the value of f(y, t+∆t), hence we can deduce the value of QA(y, t+

∆t) from Eq. (13) by a simple division.

Similarly, the time evolution of the tensor QD representing the detached chains can be

obtained via
∂(1 − f)QD

∂t
= D

∂2(1 − f)QD

∂y2
. (A8)
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