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ABSTRACT
An important problem in spatial ecology is to understand how
population-scale patterns emerge from individual-level birth, death,
and movement processes. These processes, which depend on local
landscape characteristics, vary spatially and may exhibit sharp tran-
sitions through behavioural responses to habitat edges, leading to
discontinuous population densities. Such systems can be modelled
using reaction–diffusion equations with interface conditions that
capture local behaviour at patch boundaries. In thisworkwedevelop
a novel homogenization technique to approximate the large-scale
dynamics of the system. We illustrate our approach, which also gen-
eralizes tomultiple species,with anexampleof logistic growthwithin
a periodic environment. We find that population persistence and the
large-scale population carrying capacity is influenced by patch resi-
dence times that depend on patch preference, as well as movement
rates in adjacent patches. The forms of the homogenized coefficients
yield key theoretical insights into how large-scale dynamics arise
from the small-scale features.
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1. Introduction

Spatial ecology aims to explain observed spatial distribution patterns of populations
and to predict their response to landscape alterations. Population-level patterns emerge
from individual-level processes of movement, reproduction, and death. Such processes
are influenced by local landscape features as individuals adjust their behaviour to their
surroundings. Movement decisions in particular determine the extent to which local con-
ditions affect individuals. For example, predation risk for many songbirds is higher in open
fields than in dense forest cover. Accordingly, many birds tend to avoid open areas, ormove
through quickly [19]. A fundamental problem in theoretical ecology then is to determine
the extent to which individual processes on smaller scales affect population responses on
larger scales. In this paper, we present a homogenization approach to the multiscale prob-
lem of how individual behavioural responses to sharp transitions in landscape features,
such as forest edges, affect population-dynamical outcomes.
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172 B. P. YURK AND C. A. COBBOLD

We cast the spatial-temporal dynamics of a population in a reaction–diffusion model of
the form

∂τρ(y, τ) = ∂2y [D(y)ρ(y, τ)] + ε2f (y, ρ), (1)

where ρ(y, τ) denotes the density of the population at time τ and location y ∈ R. Growth
and death dynamics are modelled by a function f that may depend on spatial location.
Movement is modelled by ‘ecological diffusion’, wherebyD(y) denotes the motility of indi-
viduals [24]. This formulation assumes that while individuals adjust the probability of
moving, they do not bias their movement in any direction. Models of the form (1) have
been used extensively in ecological modelling [5,10,12,22]. A typical assumption for math-
ematical analysis is that the coefficient functions depend smoothly on the spatial variable
[15,27].

Many natural landscapes exhibit edges or interfaces with sharp transitions between dif-
ferent landscape features, for example between forest and grassland, or lake and shore.
Many human landscape alterations create similarly sharp edges, for example at a road
or a subdivision. There is a wealth of empirical studies on how individuals direct their
movement to avoid or cross such edges [8,20,21]. Several authors proposed approaches for
how to include interfaces and individual behaviour at interfaces into reaction–diffusion
equations [1,3,12,16,23]. We follow the work by [12].

We take a landscape-ecology point of view and consider the environment to consist
of patches, i.e. areas that are relatively homogeneous within but substantially different
from their immediate surroundings. Accordingly, motility and population growth are
spatially constant within a patch but different from outside that patch. We partition a
one-dimensional landscape into intervals (‘patches’) (yi−1, yi), i ∈ Z, and have a diffusion
equation on each interval. Equation (1) then turns into a system of the form

∂τρ = Di∂
2
yρ + ε2fi(ρ) for y ∈ (yi−1, yi), i ∈ Z. (2)

We need to define matching conditions that link the densities and population fluxes
between adjacent patches. Conservation of individuals requires that the flux be continuous
across an interface, i.e.

Di+1∂yρ(y+
i , τ) = Di∂yρ(y−

i , τ). (3)

Here, y+
i and y−

i denote right- and left-sided limits at yi.
A careful derivation of interface conditions from a random walk model reveals that

the density across an interface is, in general, not continuous [16]. Rather, we use the
condition [12]

α−
i Di+1ρ(y+

i , τ) = α+
i Diρ(y−

i , τ), (4)

where α+
i (α−

i ) is the probability that an individual at interface yi moves to the right (left)
such that α+

i ∈ [0, 1], and α−
i = 1 − α+

i . The formal study of systems of the form (2) with
conditions (3) and (4) is still in its infancy, but some qualitative results about the stability of
the linear system andminimal travelling wave speeds are known, assuming that the system
shows a particular translational symmetry [12,13].

A powerful tool to study the dynamics of model (1) is multi-scale analysis and homog-
enization. If one assumes that the coefficient functions vary on a small scale only, one can
separate scales and introduce a small-scale variable. Applying themethod ofmultiple scales
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leads to a suite of equations that are solved sequentially, and the leading order solution often
provides a very good approximation to the solution of the original problem [9,15,17]. The
classical results on homogenization techniques require that the solution be continuous.
For example, Othmer [15] applied the method of homogenization to a model of Fickian
diffusion assuming continuous population density. There are very few recent papers that
deal with ecological diffusion with discontinuous densities [7,14], and these analyses are
restricted to the special case of no habitat preference (α+

i = α−
i ). Other authors incorpo-

rated the more general interface conditions (3)–(4), but then proceeded to scale density
and space in Equations (2)–(4) to obtain continuous densities so that the classical tech-
niques apply [13]. This approach is unsatisfactory and does not generalize, for example to
multispecies models.

In this work, we develop the theory to homogenize equations of the form (2) with the
general interface conditions (3)–(4). We treat the special case of a periodic environment
consisting of two types of alternating patches, but the theory carries over to other periodic
settings. More specifically, we assume the interval (yi−1, yi) will represent a patch of type 1
(type 2), whenever i is odd (even). All patches of type 1 have width �y1, and all patches of
type 2 have width �y2. We set the motility coefficients and growth functions to be

Di =
{
D1 for i odd,
D2 for i even.

fi(ρ) =
{
f1(ρ) for i odd,
f2(ρ) for i even.

(5)

The probabilities that individuals at interfaces move to the right or left may be defined
similarly, by setting α±

i equal to α±
1 when i is odd or α±

2 when i is even. However, we
assume that the probability that an individual moves towards a patch of type 1 (or type
2) is independent of whether that patch is to the right or to the left of the interface. Thus,
α−
1 = α+

2 = α, and α+
1 = α−

2 = 1 − α, and to simplify notation at the interfaces, we set

ki =
{
k−1 for i odd,
k for i even,

(6)

for k = (α/(1 − α))(D2/D1). Then Equation (4) becomes

ρ(y+
i , τ) = kiρ(y−

i , τ). (7)

We present the formal derivation of the homogenization limit for this system in the next
section. In Section 3, we compare the homogenization approximation with numerical sim-
ulations of the full spatial model. We discuss ecological insights from our approach as well
as future directions and application in the final section.

2. Multiple scales analysis and homogenization

It is useful to introduce fast- (small-) and slow- (large-) scale temporal and spatial variables.
Models of spatio-temporal dynamics may be formulated at the fast scale (Equation (1)),
accounting for variation in movement behaviour and population dynamics arising from
local environmental heterogeneity. The fast-scale models can then be ‘scaled-up’ to obtain
amodel in terms of the slow-scale variables. To this end, the fast-scale spatial and temporal
variables are y and τ , and we introduce the corresponding slow-scale variables x and t. We
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174 B. P. YURK AND C. A. COBBOLD

impose the parabolic scaling x = εy and t = ε2τ , where ε � 1 is a small, dimensionless
parameter that describes the separation between the fast and slow scales.

At the fast scale, the spatio-temporal dynamics are given by Equation (1). The scale of
the environmental heterogeneity is determined by�y1 and�y2, both ofwhich are assumed
to be small (O(ε)). The reaction term is scaled by ε2, reflecting the assumption that growth
dynamics are very slow when we are ‘zoomed-in’ on the fast scale. Lastly, we consider the
diffusion coefficient to vary only with respect to the small scale.

The goal of homogenization is to obtain an approximate model that describes the slow-
scale behaviour of the system by appropriately averaging the variation in the movement
and growth parameters over the fast scale. The coefficients of the resulting homogenized
model are constant or only vary at the slow scale [9,15,17]. Consequently, the homogenized
model is much easier to analyse analytically or numerically, and often leads to important
theoretical insights about the relationship between local individual movement behaviours
and variation in growth rates and large-scale population-dynamical outcomes.

Proceeding formally, we assume that ρ depends explicitly on both spatial scales x and
y and on the slow temporal scale t. Treating x and y as independent induces a change in
derivative, ∂x → ε−1∂y + ∂x. If we assume that the motilities and the growth parameters
vary only at the fast scale, then in terms of the slow-scale variables, the model (2) and
interface conditions (3), (7) become

∂tρ = Di(ε
−1∂y + ∂x)

2ρ + fi(ρ) for y ∈ (yi−1, yi), (8)

with

ε−1Di+1(ε
−1∂y + ∂x)ρ(x, y+

i , t) = ε−1Di(ε
−1∂y + ∂x)ρ(x, y−

i , t), (9)

and

ε−2ρ(x, y+
i , t) = ε−2kiρ(x, y−

i , t), (10)

for i ∈ Z. Coefficients and growth functions are given by (5), (6).
In the analysis that follows, we assume that �y1 = �y2 = �y. On the other hand, if

the patch widths differ, then the system (2), (3), (7), expressed in terms of the fast-scale
variables, may be rescaled to obtain a fast-scale system with both patch widths equal to
�y1. To demonstrate this, we set y0 = 0, and we focus on the single period (−�y2,�y1],
which includes the patch to the right (type 1) and to the left (type 2) of 0. The results
are then extended periodically throughout R. We introduce the rescaled spatial vari-
able ξ and set ξ = y, for y ∈ (0,�y1) and ξ = (�y1/�y2)y, for y ∈ (−�y2, 0). We also
set ω(ξ , t) = ρ(y, t) for ξ ∈ (0,�y1), and ω(ξ , t) = (�y2/�y1)ρ(y, t) for ξ ∈ (−�y1, 0).
Then the system (2), (3), (7), becomes

∂τω(ξ , τ) = D̃i∂
2
ξ ω(ξ , τ) + ε2 f̃i(ω(ξ , τ)), (11)

for ξ ∈ (0,�y1) or for ξ ∈ (−�y1, 0), with interface conditions

D̃i+1∂ξω(ξ+
i , τ) = D̃i∂ξω(ξ−

i , τ), (12)

and

ω(ξ+
i , t) = k̃iω(ξ−

i , τ). (13)
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JOURNAL OF BIOLOGICAL DYNAMICS 175

Here, the coefficients and growth functions are given by

D̃i =
{
D̃1 = D1 for i odd,
D̃2 = (�y1/�y2)2D2 for i even,

(14)

f̃i(ω) =
{
f̃1(ω) = f1(ω) for i odd,
f̃2(ω) = (�y2/�y1)f2((�y1/�y2)ω) for i even,

(15)

and

k̃i =
{
k̃−1 for i odd,
k̃ for i even,

(16)

where k̃ = (�y1/�y2)k. Scaling up the system in (11)–(13), and treating ξ and ζ = εξ

as independent, results in a system of the form (8)–(10). Thus, in our analysis below
(Section 2.1) we assume equal patch widths, however we give results in Section 2.2 for
the more general case of two different patch lengths.

2.1. Homogenization

Since ε is small, we assume a series solution of the form

ρ = ρ0(x, y, t) + ερ1(x, y, t) + ε2ρ2(x, y, t) + · · · , (17)

where each ρj(x, y, t), for j = 0, 1, . . ., is a bounded function of y. The analysis that follows
applies to a large class of growth functions fi that satisfy

fi(ρ) = fi(ρ0) + O(ε1). (18)

Assuming equal patch widths, we proceed by substituting the ansatz (17) into the model
and interface conditions (8)–(10), equating terms with the same powers of ε, and solving
the resulting equations iteratively. We seek the leading order solution, ρ0.

2.1.1. Order ε−2

The equations at the largest order, O(ε−2) are

0 = Di∂
2
yρ0 for y ∈ (yi−1, yi), i ∈ Z, (19)

with interface conditions

Di+1∂yρ0(x, y+
i , t) = Di∂yρ0(x, y−

i , t), (20)

and

ρ0(x, y+
i , t) = kiρ0(x, y−

i , t). (21)

To solve (19) and find ρ0 we defineD(y) = Di for y ∈ (yi−1, yi) and investigate the integral
of (19)

∫ y

0
∂2y (Dρ0)(x, s, t) ds =

∫ y

yj−1

Dj∂
2
yρ0(x, s, t) ds +

j−1∑
i=1

∫ yi

yi−1

Di∂
2
yρ0(x, s, t) ds, (22)
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176 B. P. YURK AND C. A. COBBOLD

where y ∈ (yj−1, yj) for some j ∈ Z. According to (19), the integrand in each term on the
right side of (22) must vanish at all values of s. Applying this fact and integrating, we obtain

0 =
j−1∑
i=1

Di
[
∂yρ0(x, y−

i , t) − ∂yρ0(x, y+
i−1, t)

]+ Dj

[
∂yρ0(x, y, t) − ∂yρ0(x, y+

j−1, t)
]
. (23)

Here, we have assumed, without loss of generality, that j>0. Applying the continuous–flux
interface condition from Equation (20) causes the series on the right side of (23) to
telescope, collapsing down to

0 = Dj∂yρ0(x, y, t) − D1∂yρ0(x, y+
0 , t), (24)

and, thus,

∂yρ0(x, y, t) = D1∂yρ0(x, y+
0 , t)

D(y)
. (25)

Next, in order to apply the discontinuous–density interface condition (21) we define

hi =
{
1 for i odd,
k for i even,

(26)

and let h(y) = hi for y ∈ (yi−1, yi). We then consider the integral

∫ y

0
∂y(hρ0)(x, s, t) ds =

∫ y

yj−1

hj∂yρ0(x, s, t) ds +
j−1∑
i=1

∫ yi

yi−1

hi∂yρ0(x, s, t) ds. (27)

Integrating each term on the right side, we obtain

∫ y

0
∂y(hρ0)(x, s, t) ds =

j−1∑
i=1

hi
[
ρ0(x, y−

i , t) − ρ0(x, y+
i−1, t)

]

+ hj
[
ρ0(x, y, t) − ρ0(x, y+

j−1, t)
]
. (28)

Equations (26) and (21) imply that the series telescopes. Thus,∫ y

0
∂y(hρ0)(x, s, t) ds = hjρ0(x, y, t) − h1ρ0(x, y+

0 , t). (29)

Alternatively, we can multiply (25) by h(y) and integrate, to obtain∫ y

0
∂y(hρ0)(x, s, t) ds = D1∂yρ0(x, y+

0 , t)
∫ y

0

h(s)
D(s)

ds. (30)

The integral on the right side can be rewritten as

∫ y

0

h(s)
D(s)

ds = hj
Dj

(y − yj) + �y
j−1∑
i=1

hi
Di

, (31)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

la
sg

ow
] 

at
 0

8:
43

 1
8 

D
ec

em
be

r 
20

17
 



JOURNAL OF BIOLOGICAL DYNAMICS 177

which can be simplified to yield∫ y

0

h(s)
D(s)

ds = y
2

(
1
D1

+ k
D2

)
+ �(y)

2

(
1
D1

− k
D2

)
, (32)

where �(y) is defined by

�(y) =
{
y − yi−1 for i odd,
yi − y for i even,

(33)

for y ∈ (yi−1, yi). Note that for all y we have 0 < �(y) < �y.
Substituting (32) into (30), and applying (29), we obtain

ρ0(x, y, t) = D1

h(y)
∂yρ0(x, y+

0 , t)
[
y
2

(
1
D1

+ k
D2

)
+ �(y)

2

(
1
D1

− k
D2

)]

+ h1
h(y)

ρ0(x, y+
0 , t). (34)

The first term on the right-hand side of this equation is O(y), so that ρ0(x, y, t) will only
remain bounded as y → ∞ if ∂yρ0(x, y+

0 , t) = 0. This condition implies the following
simple form for ρ0:

ρ0(x, y, t) = g(x, t)/h(y), (35)

where g(x, t) = ρ0(x, y+
0 , t) is independent of y. So it remains to find g(x, t), and we do this

by studying the order ε−1 and ε0 equations.

2.1.2. Order ε−1

The equations at O(ε−1) are

0 = Di

[
∂2yρ1 + 2∂x∂yρ0

]
for y ∈ (yi−1, yi), i ∈ Z, (36)

with interface conditions

Di+1
[
∂yρ1 + ∂xρ0

]
(x, y+

i , t) = Di
[
∂yρ1 + ∂xρ0

]
(x, y−

i , t), (37)

and

ρ1(x, y+
i , t) = kiρ1(x, y−

i , t). (38)

Since h(y) is constant over each patch (yi−1, yi), Equation (35) implies that ∂yρ0 = 0 on
each patch. Consequently, Equation (36) becomes

0 = Di∂
2
yρ1 for y ∈ (yi−1, yi), i ∈ Z. (39)

Following our approach for finding ρ0 we consider the integral of (39)

∫ y

0
∂2y (Dρ1)(x, s, t) ds =

∫ y

yj−1

Dj∂
2
yρ1(x, s, t) ds +

j−1∑
i=1

∫ yi

yi−1

Di∂
2
yρ1(x, s, t) ds, (40)
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178 B. P. YURK AND C. A. COBBOLD

where y ∈ (yj−1, yj). Equation (39) implies that each of these integrals vanishes. Thus,
integrating and assuming, without loss of generality, that j ≥ 0, we obtain

0 =
j−1∑
i=1

Di
[
∂yρ1(x, y−

i , t) − ∂yρ1(x, y+
i−1, t)

]+ Dj

[
∂yρ1(x, y, t) − ∂yρ1(x, y+

j−1, t)
]
. (41)

Note that (35) implies ∂xρ0(x, y, t) = ∂xg(x, t)/hi, which is constant for all y ∈
(yi−1, yi), and so ∂xρ0(x, y−

i , t) = ∂xρ0(x, y+
i−1, t), for all i ∈ Z. Consequently, (41) can be

rewritten as

0 = Dj

[
(∂yρ1 + ∂xρ0)(x, y, t) − (∂yρ1 + ∂xρ0)(x, y+

j−1, t)
]

+
j−1∑
i=1

Di
[
(∂yρ1 + ∂xρ0)(x, y−

i , t) − (∂yρ1 + ∂xρ0)(x, y+
i−1, t)

]
. (42)

In this form we can now apply the continuous–flux interface condition (37), and the series
telescopes, yielding

∂yρ1(x, y, t) = D1

D(y)
(∂yρ1 + ∂xρ0)(x, y+

0 , t) − ∂xρ0(x, y, t). (43)

Similar to the approach used to obtain Equation (29), we can use the discontinuous–density
interface condition (38) to show that∫ y

0
∂y(hρ1)(x, s, t) ds = hjρ1(x, y, t) − h1ρ1(x, y+

0 , t). (44)

Alternatively, we can multiply (43) by h(y) and integrate to obtain∫ y

0
∂y(hρ1)(x, s, t) ds = D1(∂yρ1 + ∂xρ0)(x, y+

0 , t)
∫ y

0

h(s)
D(s)

ds

−
∫ y

0
h(s)∂xρ0(x, s, t) ds. (45)

Applying (32) and (35) to this equation yields∫ y

0
∂y(hρ1)(x, s, t) ds = D1(∂yρ1 + ∂xρ0)(x, y+

0 , t)
[
y
2

(
1
D1

+ k
D2

)

+�(y)
2

(
1
D1

− k
D2

)]
− y∂xg(x, t). (46)

Equating (46) and (44) gives

ρ1(x, y, t) = D1(∂yρ1 + ∂xρ0)(x, y+
0 , t)

[
y
2

(
1
D1

+ k
D2

)

+ �(y)
2

(
1
D1

− k
D2

)]
/h(y) − y∂xg(x, t)/h(y)

+ h1ρ1(x, y+
0 , t)/h(y). (47)

Note that the first and second terms on the right-hand side are each O(y) and unbounded
as y → ∞. Consequently, they must balance each other so that ρ1 remains bounded as
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y → ∞. Correspondingly, we require

∂xg(x, t) = lim
y→∞

1
y

· D1(∂yρ1 + ∂xρ0)(x, y+
0 , t)

[
y
2

(
1
D1

+ k
D2

)

+ �(y)
2

(
1
D1

− k
D2

)]
. (48)

Evaluating the limit, we find that

∂xg(x, t) = 1
2

(
1
D1

+ k
D2

)
· D1(∂yρ1 + ∂xρ0)(x, y+

0 , t). (49)

Substituting this relationship into (47) and simplifying, gives

ρ1(x, y, t) = a1(x, t)/h(y) +
(

�(y)
2

)
a2(x, t)/h(y), (50)

where

a1(x, t) = h1ρ1(x, y+
0 , t), (51)

and

a2(x, t) = D1

(
1
D1

− k
D2

)
(∂yρ1 + ∂xρ0)(x, y+

0 , t), (52)

are both independent of y, as required.

2.1.3. Order ε0

The population dynamics vary on the slow time scale and so first appear in the O(ε0)

equations given by

∂tρ0 = Di

[
∂2yρ2 + 2∂x∂yρ1 + ∂2xρ0

]
+ fi(ρ0), for y ∈ (yi−1, yi), i ∈ Z, (53)

with interface conditions

Di+1
[
∂yρ2 + ∂xρ1

]
(x, y+

i , t) = Di
[
∂yρ2 + ∂xρ1

]
(x, y−

i , t), (54)

and

ρ2(x, y+
i , t) = kiρ2(x, y−

i , t). (55)

Following the procedure in the previous two sections we consider the integral∫ y

0
(∂2y Dρ2 + ∂y∂xDρ1)(x, s, t) ds = Dj[(∂yρ2 + ∂xρ1)(x, y, t)

− (∂yρ2 + ∂xρ1)(x, y+
j−1, t)]

+
j−1∑
i=1

Di[(∂yρ2 + ∂xρ1)(x, y−
i , t)

− (∂yρ2 + ∂xρ1)(x, y+
i−1, t)]. (56)
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Applying the continuous–flux interface condition (54), the series on the right-hand side
telescopes, yielding∫ y

0
(∂2yDρ2 + ∂y∂xDρ1)(x, s, t) ds = Dj(∂yρ2 + ∂xρ1)(x, y, t)

− D1(∂yρ2 + ∂xρ1)(x, y+
0 , t). (57)

Alternatively, note that rearranging Equation (53) gives

∂2y (Dρ2) + ∂y∂x(Dρ1) = ∂tρ0 − ∂y∂x(Dρ1) − ∂2x (Dρ0) − fi(ρ0), (58)

for y ∈ (yi−1, yi), i ∈ Z. By substituting in the expressions for ρ0 and ρ1 (Equations (35)
and (50)) and integrating (58), we obtain∫ y

0
(∂2y Dρ2 + ∂y∂xDρ1)(x, s, t) ds = ∂tg(x, t)

∫ y

0
(h(s))−1 ds

− ∂xa2(x, t)
∫ y

0
∂y(D�/(2h))(s) ds

− ∂2x g(x, t)
∫ y

0
(D/h)(s) ds

−
∫ y

0
f (ρ0, s) ds. (59)

The integral in the first term on the right-hand side of (59) is∫ y

0
(h(s))−1 ds = y

2
(1 + 1/k) + �(y)

2
(1 − 1/k). (60)

The second integral is∫ y

0
∂y(D�/(2h))(s) ds = y

4
(D1 − D2/k) + �(y)

4
(D1 + D2/k). (61)

The third integral is∫ y

0
(D/h)(s) ds = y

2
(D1 + D2/k) + �(y)

2
(D1 − D2/k). (62)

The fourth integral is∫ y

0
f (ρ0, s) ds = y

2
[
f1(g) + f2(g/k)

]+ �(y)
2

[
f1(g) − f2(g/k)

]
. (63)

Substituting Equations (60)–(63) into (59), applying Equation (57), and simplifying yields,

∂yρ2(x, y, t) =
{
(1 + 1/k)∂tg −

(
D1 − D2/k

2

)
∂xa2 − (D1 + D2/k)∂2x g

− (f1(g) + f2(g/k))
}

· [y/(2D(y))
]
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+
{
(1 − 1/k)∂tg −

(
D1 + D2/k

2

)
∂xa2 − (D1 − D2/k)∂2x g

− (f1(g) − f2(g/k))
}

· [�(y)/(2D(y))
]

+ D1(∂yρ2 + ∂xρ1)(x, y+
0 , t)/D(y) − ∂xρ1(x, y, t). (64)

We multiply this equation by h(y) and integrate
∫ y

0
∂y(hρ2)(x, s, t) ds =

{
(1 + 1/k)∂tg −

(
D1 − D2/k

2

)
∂xa2

− (D1 + D2/k)∂2x g − (f1(g) + f2(g/k))
}

·
∫ y

0
[sh(s)/(2D(s))] ds +

{
(1 − 1/k)∂tg

−
(
D1 + D2/k

2

)
∂xa2 − (D1 − D2/k)∂2x g

− (f1(g) − f2(g/k))
}

·
∫ y

0
[�(s)h(s)/(2D(s))] ds

+ D1(∂yρ2 + ∂xρ1)(x, y+
0 , t)

∫ y

0
h(s)/D(s) ds

−
∫ y

0
h(s)∂xρ1(x, y, t) ds. (65)

Similar to the approach used to obtain Equations (29) and (44), we can apply the dis-
continuous–density interface condition (55) to the integral on the left-hand side of
Equation (65), yielding

∫ y

0
∂y(hρ2)(x, s, t) ds = h(y)ρ2(x, y, t) − h1ρ2(x, y+

0 , t). (66)

Since ρ2 is bounded, (66) implies that the left-hand side of Equation (65) isO(1) as y → ∞.
There are unbounded O(y) and O(y2) terms on the right-hand side of Equation (65) that
must balance each other as y → ∞. In particular, the first integral on the right-hand side
is O(y2), whereas the other integrals are O(y). Consequently, the coefficient of the O(y2)
term, which is independent of y, must vanish. Accordingly, we require

(1 + 1/k)∂tg =
(
D1 − D2/k

2

)
∂xa2 + (D1 + D2/k)∂2x g + [

f1(g) + f2(g/k)
]
. (67)

We can express a2 in terms of g by combining Equations (49) and (52) from Section 2.1.2
to give

a2(x, t) = 2
(

1
D1

− k
D2

)(
1
D1

+ k
D2

)−1
∂xg(x, t). (68)
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182 B. P. YURK AND C. A. COBBOLD

Substituting the expression for a2 into Equation (67) and simplifying, yields the reaction–
diffusion equation for g

∂tg = 〈D〉h∂2x g +
(

1
1 + 1/k

) [
f1(g) + f2(g/k)

]
, (69)

where the homogenized diffusion coefficient is

〈D〉h =
(

2
1 + 1/k

)(
2

1
D1

+ k
D2

)
. (70)

The solution, g(x, t), of Equation (69) gives our main result, the slow-scale variation in the
leading order solution ρ0(x, y, t). Variation at the fast scale is recovered by dividing the
slowly varying solution by h(y), as in Equation (35).

2.2. Different patch widths

We also easily recover the slow-scale variation (g̃) in the leading order solution when the
two patch types have different widths. Suppose the width for the type 1 patches is�y1 = l1,
and the width of the type 2 patches is �y2 = l2. After transforming the system into one
with equal patch widths as in (11)–(13), scaling up, then homogenizing, we obtain the
homogenized diffusion equation

∂t g̃ = 〈D̃〉h∂2ζ g̃ +
(

l1
l1 + l2/k

) [
f1(g̃) + (l2/l1)f2(g̃/k)

]
. (71)

The homogenized diffusion coefficient is

〈D̃〉h =
(

2l1
l1 + l2/k

)2 ( l1 + l2/k
l1/D1 + (l2/k)/(D2/k2)

)
. (72)

Note that 〈D̃〉h is not symmetric in l1 and l2 due to the spatial scaling. The leading order
solution for the rescaled system (11)–(13) is

ω0(ζ , ξ , t) = g̃(ζ , t)/h̃(ξ), (73)

where, h̃(ξ) = h̃i for ξ ∈ (ξi−1, ξi), and

h̃i =
{
1 for i odd,
k̃ = (l1/l2)k for i even.

(74)

Note that although we have expressed the coefficients in terms of the original movement
parameters and growth functions, the diffusion Equation (71) models large-scale dispersal
and growth of the rescaled (equal patch width) system. Thus, the leading order solution
must be rescaled to return to the original variables.
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3. An example with logistic growth

To illustrate the accuracy and insights that can be gained from the homogenization results
we consider the example that the growth functions are logistic

fi(ρ) = (λi − μiρ)ρ. (75)

The homogenized model (71) becomes a constant coefficient reaction–diffusion equation
with a logistic reaction term

∂t g̃ = 〈D̃〉h∂2ζ g̃ + (�̃ − Mg̃)g̃, (76)

where the intrinsic growth rate and the intraspecific competition coefficients for the
homogenized equation are

�̃ = λ1l1 + λ2l2/k
l1 + l2/k

, M̃ = μ1l1 + μ2l2/k2

l1 + l2/k
. (77)

3.1. Travelling wave solutions

3.1.1. Numerical comparisons of the travelling wave profile
In order to explore the accuracy of our approach we compare the travelling wave solutions
of the original non-homogenized equations (2,3,7) to the leading order approximation
given by the homogenization (Equations (71), (73), (74)). An implicit numerical scheme
which is second order in time and space is used to solve the equations numerically. Full
details of the numerical scheme are provided in the Appendix.

Figure 1 illustrates the travelling wave solution of the reaction–diffusion problem with
logistic growth, demonstrating the excellent agreement (see insert) between the leading
order approximation and the original non-homogenized solution. The homogenization
theory uses the assumption that spatial variation occurs on a small scale and the reactions
occur on a slow scale. While the former is true in our simulations (l1 + l2 � Di), the later
was relaxed (λi = μi = 1), but still resulted in an accurate leading order approximation. To
examine if the assumption of small-scale spatial variation can also be relaxedwe considered
only motility (setting fi = 0) and varied patch lengths. Specifically, we fixed l1 = 0.1 and
varied l2. The homogenization continues to be very accurate even when patch widths are
large (Figure 2). When l2 = 1.9 the spatial scale is order one, but we observed a maximum
absolute error of 0.25 (less than 10%) (see Figure 2(e)). The error was maximal at the edges
of non-preferred patches (type 1 (2) if α < 0.5 (α > 0.5)), but was low in the rest of the
domain, with the average error across space being 0.05 (Figure 2(f)). The leading order
approximation remains accurate, despite the spatial variation being on the same order as
dispersal, a finding supported by previous work in the literature [6,11].

The accuracy of the leading order approximation is affected by patch preference (α) (see
(Figure 2 (e,f) and compare (a,b) to (c,d)). We can understand this result by examining the
solution profiles. In Figure 2 (a,b), where there is greater preference for patch 2 (α = 0.25),
the population is quick to move through the landscape when compared to Figure 2 (c,d)
where preference is for patch 1 (α = 0.75). The difference in speeds is due to l2 	 l1. With
l2 	 l1, most of the landscape is of type 2, so when preference is for patch 1 the population
movement is slower, the population get ‘stuck’ in small type 1 patches. Once in patch 1 the
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184 B. P. YURK AND C. A. COBBOLD

Figure 1. Comparison of the travellingwave solutionρ with the leading order approximationρ0 at time
t= 10 in the logistic growth example. The inset graph shows a ‘zoomed-in’ plot of the leading order
approximation ρ0 (red dashed) and the numerical non-homogenized solution ρ (black). Themain graph
shows the numerical non-homogenized solution (black curve) and the upper and lower bound obtained
from thehomogenized solution. The top red curve is the upper boundgwhile thebottom red curve is the
lower bound g/k. The parameters are D1 = D2 = 1, l1 = l2 = 0.1, λi = μi = 1, and α = 0.75 (k= 3).

population has a tendency to stay there and as this patch is small the population cannot
travel far. The result of this patch 1 preference is a slower travelling wave and a shallower
gradient in population density at the wave front (Figure 2(d)). In contrast, when preference
is high for type 2 patches the population moves faster. Although the population now tends
to get ‘stuck’ in the large type 2 patches, the larger patch size means the population can still
move, generating a faster travelling wave with a steeper gradient in population density at
the wave front (Figure 2 (b)). The difference in gradients observed in these travelling wave
solutions affects the accuracy of the leading order solution, it is more accurate when the
spatial gradient in density is small. The leading order approximation captures the average
density on each patch, and so when the spatial variation within a patch is small (small
gradient in density, large α) the spatial average is a closer approximation to the within
patch density and hence the leading order approximation is more accurate (see Figure 2
(e,f)).

3.1.2. Asymptotic spread rate
The homogenized equation (76) is the Fisher–KPP equation and so admits travelling
wave solutions when �̃ > 0. The asymptotic speed of these travelling wave solutions in
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Figure 2. The effect of varying l2 on the accuracy of the leading order approximation of the travelling
wave profile. In plots (a–d) l2 = 1.9 and the numerical non-homogenized solution ρ (black) and leading
order approximation ρ0 (red) are plotted as a function of the scaled spatial variable ξ (left column) and
the unscaled spatial variable x (right column). The first row corresponds to the case where α = 0.25
andthere is greater preference for patch 2. The second row corresponds to the case where α = 0.75 and
there is greater preference for patch 1. Finally, plot (e) shows the maximum absolute error (maxξ |ρ −
ρ0|) as l2 is varied. Plot (f ) shows the averaged absolute error across rescaled space ξ . In all cases we
ignore population dynamics with f1 = f2 = 0 and D1 = D2 = 1 and l1 = 0.1. We use a Gaussian initial
condition and compare solutions at t= 3.

ζ -t-coordinates is c̃∗ = 2
√

�̃〈D̃〉h, which is given by

c̃∗ = 2
(

2l1
l1 + l2/k

)√
λ1l1 + λ2l2/k

l1/D1 + (l2/k)/(D2/k2)
. (78)

Since a single period has length 2l1 in the ξ coordinate, and length l1 + l2 in the y
coordinate, the asymptotic speed in x-t-coordinates will be c∗ = c̃∗(l1 + l2)/(2l1), or

c∗ = 2
(

l1 + l2
l1 + l2/k

)√
λ1l1 + λ2l2/k

l1/D1 + (l2/k)/(D2/k2)
. (79)

This result, which matches the asymptotic speed obtained by [12], may be used to approx-
imate the asymptotic speed of periodic travelling wave solutions of the original system
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186 B. P. YURK AND C. A. COBBOLD

Figure 3. Asymptotic wave speed plotted as a function of patch preference, α. The solid line illustrates
the homogenized wave speed prediction (Equation 79) in the case λ1 = λ2 = 1, and the dashed line
illustrates the caseλ1 = 1,λ2 = 0.5. The grey stars are the numerically simulatedwave speeds obtained
from solving the original non-homogenized Equations (2), (3), (7). The solution was solved until t= 50,
and the last 30 time steps were used to estimate wave speed, taking a threshold of 0.01 to track the
location of the wave front at each time point. In all cases the population dynamics are given by logistic
growth (fi(ρ) = (λi − μiρ)ρ), and parameters are D1 = D2 = 1,μi = 1 and l1 = l2 = 1.

(2), (3), (7) in x-t-coordinates. In y-τ -coordinates, the asymptotic speed will be smaller by
a factor of ε as a result of the parabolic scaling.

We compare the asymptotic wave speed prediction with the numerically solved
speed obtained from the original non-homogenized system (Equations (2), (3), (7)) (see
Figure 3). In this example we have chosen l1 = l2 = 1 as well as the intraspecific competi-
tion coefficients μi = 1. The asymptotic wave speed prediction has good agreement with
the numerically obtained speed. When λi = 1 the wave speed is maximized when there
is no patch preference (α = 0.5, i.e. k=1). Lowering λ2, such that growth in patch 2 is
lower than in patch 1, we find that wave speed is maximized when α > 0.5 correspond-
ing to preference for patch 1 over patch 2. This result is expected as the lower λ2 reduces
spread rate in patch 2 and so increased preference for patch 1, where spread rate is higher,
can increase the overall wave speed compared to the case of no patch preference (α = 0.5).
However, increasing α too much leads to an eventual decrease in wave speed. A high patch
1 preference reduces entry into patch 2 and hence slowing entry into the next consecutive
patch of type 1, ultimately leading to a slower travelling wave solution. As expected, this
is in line with findings by [12] who found similar results for the case of linear growth in
patch 1 and linear death in patch 2.
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3.2. Equilibrium densities

In addition to looking at the travelling wave solutions we can also gain ecological insight
into the effect of spatial heterogeneity on the equilibrium densities. We can rewrite the
reaction term in the homogenized equation (71)

∂t g̃ = 〈D̃〉h∂2ζ g̃ + �̃(1 − g̃/K̃hom)g̃, (80)

allowing us to compute the carrying capacity for the homogenized model

K̃hom = �̃/M̃ = λ1l1 + λ2l2/k
μ1l1 + μ2l2/k2

. (81)

The homogenized equation then admits a non-zero spatially homogeneous equilibrium,
g̃(ζ , t) = K̃hom, which is positive whenever �̃ is positive. At this equilibrium, the lead-
ing order solution to the rescaled problem varies periodically, with period 2l1 in the
ξ -coordinate, or l1 + l2 in the x-coordinate. In x– t-coordinates, the leading order solution
ρ0 has constant value K̃hom in each patch of type 1 and constant value K̃hom/k in each patch
of type 2 (see Figure 1). Each patch type (i=1,2) has its own type-specific carrying capacity
Ki = λi/μi if λi > 0. This is the equilibrium value that would be obtained if the population
was spreading through a spatially uniform environment with patch i conditions.

At equilibrium, the leading order solution obtains constant values on patches that gen-
erally do not match the patch-specific carrying capacities (K̃hom �= K1 and K̃hom/k �= K2).
However, there are some interesting and surprising relationships between these values. We
assume without loss of generality that patch 1 has a higher patch-specific intrinsic growth
rate than patch 2 (λ1 > λ2). We also assume that the intrinsic growth rate for the homog-
enized model is positive (�̃ > 0), so that the spatially uniform equilibrium is positive and
stable (K̃hom > 0). A necessary (but not sufficient) condition for this to occur is λ1 > 0.

Under these assumptions, we can use Equation (81) to derive relationships between the
equilibrium densities (K̃hom and K̃hom/k) and the patch-specific carrying capacities (K1
and K2). We consider two cases, λ1 > λ2 > 0 and λ1 > 0 > λ2. In the first case, K̃hom is
always between K1 and kK2. This relationship is most interesting when K1 < kK2, espe-
cially ifK1 > K2.When this is true, the presence of patches of type 2 drives the equilibrium
density in patches of type 1 above K1, and the presence of patches of type 1 drives the
equilibriumdensity in patch 2 belowK2, even though patches of type 1 have a higher patch-
specific carrying capacity than patches of type 2. If K1 > K2, then the condition K1 < kK2
requires k to be relatively large. Recall that

k = α

1 − α
· D2

D1
, (82)

where α is the probability that an individual at an interface moves towards the patch of
type 1. Thus, k becomes larger as the probability of moving into patch type 1 at an inter-
face increases, or as the motility in patch type 2 (type 1) increases (decreases). The latter
increases (decreases) the rate at which individuals in patches of type 2 (type 1) reach the
interfaces, and the former determines which patch they enter when they get there. Thus
equilibrium densities are strongly influenced by patch-specific carrying capacities as well
as the interaction between movement characteristics within the patches and at the inter-
faces. It is also possible that the equilibrium density in patches of type 2 will be higher than
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188 B. P. YURK AND C. A. COBBOLD

in patches of type 1 in the case that λ1 > λ2 > 0, even if K1 > K2. In fact, this will occur
whenever k<1, which reflects a tendency to move into patches of type 2 even though the
patch-specific intrinsic growth rate and carrying capacity is lower in those patches.

In the case that λ1 > 0 > λ2, it is still possible to obtain positive equilibrium densities
in patches of type 2, even though the intrinsic growth rate is negative in these patches. If
λ1 > 0 > λ2, then only patches of type 1 have positive patch-specific carrying capacities,
and it is always the case that the equilibrium density in patches of type 1 will be lower
than K1.

3.3. Persistence condition

The homogenized model (76) also suggests a very simple approximate persistence condi-
tion, �̃ > 0, or, equivalently

λ1l1 + λ2l2/k > 0. (83)

This condition is always satisfied when both patch-specific intrinsic growth rates are posi-
tive, and it is never satisfied when both are negative. Thus, we explore the more interesting
case when λ1 > 0 > λ2. First, we note that although the approximate persistence condi-
tion (83) is derived easily from the homogenized model (76), it may also be derived as
an approximation to the exact persistence boundary obtained by [12]. Using our notation,
their exact persistence boundary reads

k tan

(
l1
2

√
λ1

D1

)
=
√

−λ2D2

λ1D1
tanh

(
l2
2

√
−λ2

D2

)
. (84)

Since, l1 and l2 are small (O(ε)), we approximate the tangent and hyperbolic tangent using
Maclaurin series (tan(x) = x + O(x3) and tanh(x) = x + O(x3)), yielding

k

(
l1
2

√
λ1

D1

)
≈
√

−λ2D2

λ1D1

(
l2
2

√
−λ2

D2

)
. (85)

Simplifying, we obtain

l1λ1 ≈ −λ2l2/k, (86)

which is the same persistence boundary as (83).
Though the persistence condition (83) is approximate, it is valid for small patch widths,

and it is much simpler than the exact condition (84). It also readily yields important the-
oretical insights. The approximate persistence condition suggests that invasion will occur
whenever a weighted average of the patch-specific intrinsic growth rates is positive. The
corresponding weights, l1 and l2/k have an appealingly simple biological interpretation.
In the original model (2), (3), (7), 1 and 1/k give the residence indices within patches of
types 1 and 2, respectively. The residence index is proportional to the equilibrium popu-
lation density and inversely proportional to motility [24]. Scaling the residence indices by
the corresponding patch extent (li in the x direction, and unit extent in the perpendicular
direction) gives the residence times [18] for the two patch types, which are equal to the
weights l1 and l2/k. The residence time for a patch type is proportional to the amount of
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time that individuals will spend in that patch type at equilibrium. Thus, we may interpret
the persistence condition (83) to say that the intrinsic rate of growth in patches of type 1
multiplied by the relative amount of time spent in those patches at equilibriummust exceed
the intrinsic rate of decline within patches of type 2 multiplied by the relative amount of
time spent in those patches at equilibrium.

4. Discussion

The dynamics of populations on large spatial and temporal scales are of great interest in
theoretical ecology, for example in conservation and invasion biology. Empirical work,
however, typically considers individual behaviour on small spatial and temporal scales.
Understanding how processes on a small scale impact patterns on larger scales is a fun-
damental challenge in ecology. Reaction–diffusion equations are a natural framework to
study such questions since they allow the inclusion of individual-level movement rules
into equations for population densities [4]. These equations have provided many impor-
tant insights into processes in spatial ecology, but typically assume that population densities
are continuous. Recentwork onmodelling individualmovement behaviour at sharp habitat
edges expanded the framework of reaction–diffusion equations to include aspects such as
habitat preference, for which many empirical studies exist, see [12] and references therein.
It turns out that not only the coefficient functions but also the population density is dis-
continuous at interfaces [12,16]. Our work here contributes to the understanding of this
relatively novel aspect of reaction–diffusion equations.

Homogenization methods have a long and distinguished history in the qualitative
analysis of reaction–diffusion equations [2,9,17]. If the coefficient functions in a reac-
tion–diffusion equation vary on a small spatial scale, then an appropriate average over that
small scale yields a reaction–diffusion equation with constant coefficients on a larger scale
as a zero-order approximation. While this asymptotic result holds in the limit as the small
scale goes to zero, the resulting large-scale equation provides a surprisingly good approxi-
mation far from the small-scale limit.However, the knownhomogenizationmethods either
assume continuous density functions [15], are restricted to the special case of no habitat
preference at patch interfaces [7], or rely on spatial rescaling to make the population den-
sity continuous [13]. The main result of our work is the development of corresponding
techniques for general interface conditions that do not depend on rescaling. As a result,
the techniques developed here are applicable to a broader range of models, including mul-
tispecies systems. It turns out that while the limiting equations have a simple form that is
similar to the case of continuous densities [15], the arguments, and calculations that lead
to them are quite a bit more involved than in that case.

While a number of qualitative results are available, a rigorous analytical investigation
of the type of reaction–diffusion equations with discontinuity conditions at interfaces is
still in its infancy. But the discontinuities of the density is not only an analytical chal-
lenge. Numerical schemes to resolve the discontinuities need to be developed along with
corresponding convergence and error estimates. We used a second-order finite differ-
ence scheme to match densities and fluxes across an interface and applied a spatially
implicit, temporally explicit fractional step method known as Strang-splitting [26]. We
found an excellent agreement of the homogenized solution to the numerical solution of
the exact equations.
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The simple formof the homogenized equation enables us to obtain analytical results that
cannot be easily obtained from the non-homogenized equation directly. As an example of
this, the persistence condition for the logistic example demonstrates that patch residence
time plays a key role in determining population persistence and we are able to directly
relate patch residence time to the small-scale characteristics of individual movement at
and near the patch interfaces. In particular, if at a patch interface the probability of moving
into patch 1 is high then the patch 2 residence time will be low unless motility in patch 2
is much lower than patch 1 or the size of patch 2 is much larger than patch 1. Hence, we
can see how the small-scale processes trade off against one another to give landscape-scale
behaviour.

Probably the most surprising ecological result from our numerical examples is that
the carrying capacity of the homogenized equation can be higher than the highest carry-
ing capacity in the small-scale equation. While the equilibrium population density in the
homogenized model cannot exceed the homogenized carrying capacity, the density on the
small-scale model can and does, as we see in the numerical simulations (see Figure 1). The
mechanism behind this ‘overshooting’ of the carrying capacity is the preference of individ-
uals for these patches. The carrying capacities in the two patch types are Ki = λi/μi. In
dimensional terms, the carrying capacity of the homogenized model is given by

Khom = �̃/M̃ =
(

λ1l1 + λ2l2/k
l1 + l2/k

)(
(μ1)l1 + (μ2/k)l2/k

l1 + l2/k

)−1
. (87)

The numerator of this expression is a weighted average of the growth rates with weights
l1 and l2/k, and as we saw in Section 3.3, these weights are, respectively, the patch 1 and 2
residence times. The denominator of Khom is an average of the modified intraspecific com-
petition coefficients μ1 and μ2/k also with the same weights. In Section 3.3 we noted that
1 and 1/k in these modified competition coefficients are proportional to the equilibrium
patch 1 and 2 densities. Thus, we can regardμ1 andμ2/k as scaled competition coefficients,
scaled by patch density. The factor k = (αD2)/((1 − α)D1) that appears in the various
weights incorporates the movement rates in the patches adjacent to the interface as well as
movement preference (see Equation (82)). In other words, the small-scale characteristics
of individual movement at and near an interface enters the population growth function on
the large scale through the homogenization procedure. A similar phenomenonwas implic-
itly observed but not discussed in a model with Allee effect, where the homogenization
required a prior scaling to obtain continuous population densities [13]. The method pre-
sented here is much more general. In particular, it is applicable to models of two or more
interacting populations. It will be particularly interesting and ecologically important to
study how the small-scale movement characteristics of the various populations enter and
modify the population growth functions on the large scale. This question is the subject of
future work.
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Appendix. Numerical simulation

A.1 Numerical algorithm

To solve the non-homogenized reaction–diffusion problem (Equations (2), (3), (7)) we use a frac-
tional step method, which involves treating the PDE as a sequence of disjoint operations. If we letD
denote the diffusion operator andR denote the reaction operator, then we can obtain a numerical
scheme that is second order accurate in time and space using the fractional step method Strang-
splitting [25,26]. Let un be the solution of the PDE at time tn then we can obtain un+1, a numerical
approximation of the solution at time tn+1 = tn + �t, as follows:

un+1 = D(�t/2)R(�t)D(�t/2)un.

Thuswe apply half a time step of diffusion (D(�t/2)) followed by a full time step of reaction (R(�t))
and then another half a time step of diffusion.

As the diffusion and reaction steps in this method are now independent we can choose second-
order accurate numerical schemes for approximating D and R. For the diffusion step we use
Crank–Nicolson, and for the reaction step we use fourth order Runge–Kutta. When applying the
Crank–Nicolson step we have the additional complication of the interface conditions at each patch
boundary. To ensure the whole scheme remains second-order accurate we use second-order forward
or backward difference to approximate the derivatives in the interface conditions (Equations (3), (7)).
As density may be discontinuous across the interface, we need to introduce two nodes at an inter-
face location. One of these nodes (j) corresponds to the interface on the right-hand side of the patch
to the left of the interface, and the other node (j+1) corresponds to the interface on the left-hand
side of the patch to the right of the interface. Thus if we consider an interface with a patch of type
1 (type 2) located to the right (left) then at each time step n the interface conditions (3), and (7) are
expressed as

unj+1 = kunj , (A1)

D1
(−3unj+1 + 4unj+2 − unj+3)

2�x
= D2

(3unj + 4unj−1 + unj−2)

2�x
, (A2)

where unj is the value of the solution at time tn at grid point j and �x is the spatial step. In the
numerical simulations presented in the paper we chose �t = 1 × 10−4 and �x = 1 × 10−3.
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A.2 Initial conditions

In order to compare the travelling wave profile ρ(x, y, t) of the original non-homogenized equa-
tions (2), (3), (7) to the leading order approximation ρ0(x, y, t) = g(x, t)/h(y) care needs to be taken
to choose appropriate initial conditions for ρ(x, y, t). Taking a Gaussian for the initial condition
for g(x, 0) in the homogenized equation (69), then we take ρ(x, y, 0) = g(x, t)/h(y) as the initial
condition for the original PDE (2).
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