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Abbreviations 
 

CDK5 Cyclin-dependant kinase 5 

GLUT4 Glucose Transporter Type 4 

GSV GLUT4 Storage Vesicle 

LRRK2 Leucine-rich repeat kinase 2 

MC Mast cell 

MP Myosin Phosphatase 

MYPT1 Myosin phosphatase targeting subunit 

NSF N-ethylmaleimide sensitive factor 

PKA Protein Kinase A 

PKC Protein Kinase C 

PKCB Protein Kinase C Beta 

ROK RhoA-activated kinase 

SDS Sodium dodecyl sulfate 

SM  Sec1/Munc18 

SNAP 23 Synaptosomal-associated protein 23 

SNAP 25 Synaptosomal-associated protein 25 

SNARE Soluble N-ethylmaleimide-sensitive factor activating protein receptor 

VAMP Vesicle associated membrane protein 
 

Summary 

Trafficking within eukaryotic cells is a complex and highly regulated process; events such as 

recycling of plasma membrane receptors, formation of multivesicular bodies, regulated 

release of hormones and delivery of proteins to membranes all require directionality and 

specificity. The underpinning processes, including cargo selection, membrane fusion, 

trafficking flow and timing are controlled by a variety of molecular mechanisms and engage 

multiple families of lipids and proteins. Here we will focus on control of trafficking processes 



via the action of the SNARE (soluble N-ethylmaleimide sensitive factor attachment protein 

receptor) family of proteins, in particular their regulation by phosphorylation. We will 

describe how these proteins are controlled in a range of regulated trafficking events, with 

particular emphasis on the insulin-stimulated delivery of glucose transporters to the surface 

of adipose and muscle cells. Here, we focus on a few examples of SNARE-phosphorylation 

which exemplify distinct ways in which SNARE machinery phosphorylation may regulate 

membrane fusion. 

 

1. SNARE proteins – a brief overview. 

Membrane trafficking requires a transport vesicle to reach the correct target membrane, 

dock there, and fuse with the membrane (1,2). The fusion step is commonly considered the 

final stage in vesicle trafficking, and can be entirely driven by SNARE proteins in vitro (3). 

The SNARE family is large: there are 24 members in yeast and over 60 in humans. SNAREs 

vary considerably in size, but all are characterised by the presence of a common motif, the 

SNARE motif, of around 60 amino acids arranged in heptad repeats and are anchored to the 

membrane by a C-terminal transmembrane domain or in some cases by palmitoylation.  

SNAREs are generally divided into two types, the vesicle (v-) SNARE and target (t-) SNARE 

(other nomenclatures have been proposed –(4)). SNAREs drive membrane fusion via the 

reversible assembly of v- and t-SNAREs into a so-called trans SNARE complex (or ternary 

complex); this is comprised of a helical bundle of four complimentary SNARE motifs which 

are arranged in parallel, held together by 16 layers of interacting amino acids (see Figure 1) 

(5–7). The formation of the trans-SNARE complex is energetically favourable; indeed many 

SNARE complexes are heat and SDS resistant and the formation of this complex provides the 

energy to drive membrane fusion (8). The SNARE hypothesis posits that a vesicle carrying a 

particular v-SNARE will only fuse with membranes that have specific complimentary t-

SNARE. These complementary SNARE motifs associate by the ‘zippering’ of the SNARE 

motifs into the trans SNARE complex depicted in figure 1. This overcomes the opposing 

forces by the two lipid bilayers facilitating membrane fusion. Hence, SNAREs provide the 

energy for fusion and likely contribute to the specificity of the trafficking event (although 

the latter clearly engages other regulatory molecules). 

 



The most extensively studied SNARE proteins are found in the brain, which is reliant on the 

constant release of neurotransmitters in the synaptic space in response to appropriate 

stimuli – so-called regulated exocytosis (8). There are many other examples of how SNARE-

mediated membrane fusion regulates important cellular processes. These include insulin 

dependent delivery of GLUT4 to the surface of adipocytes and exocytosis of secretory 

granules in mast cells in response to an allergen (9–11). These tightly regulated exocytic 

events rely on SNAREs being primed and/or responding to a signal. Recent research has 

highlighted a role of phosphorylation in control of SNARE protein function. Phosphorylation 

has been shown to mediate effects at multiple stages of the SNARE protein cycle, including 

regulation of binding of SNARE-interacting factors, the ‘zippering’ of the trans SNARE 

complex and modulating the structure of the SNARE protein (see Figure 1; Table 1). 

Although SNARE phosphorylation was first identified as a regulatory mechanism in yeast 

(12,13), this review will consider some recent examples of these regulatory mechanisms, in 

mammalian cells.  

 

Table 1: Recent examples of SNARE phospho-regulatory mechanisms.  

Target 
Kinase/ 
Phosphatase 

AA Effect Reference 

Munc-18 
PKC       
CDK5 

S306, S313,  

Y521, S574 
 

(14) 

(15,16) 

NSF 
PKC 

LRRK2 

S237 

T645 

Increased ATPase activity and 
improved trans-SNARE complex 
disassembly  

(17) 

(18) 

SNAP-23 ? 
T102, S95, 
and S120 

102 facilitates PM association. 
95/120 facilitates translocation 

(10,19,20
) 

SNAP-25 

ROK / MP 

PKC 

PKA 

T138 

T138, S187 

T138 

ROK inhibits synaptosomal 
exocytosis, MP acts as a balance 
to increase release. 

PKC/PKA enhances regulates 
exocytosis 

(21–24) 

Syntaxin-3 ? T14 
Negative effect on Munc18-2 
binding and reduces exocytosis in 
MC 

(25) 

Syntaxin-4 
Insulin 
Receptor 
dependant 

Y115, Y251 
Promotes SNARE complex 
assembly 

(26) 



Syntaxin-16 
Insulin 
Receptor 
dependant 

T7 
Controls entry of GLUT4 into 
GSVs 

Our 
unpublish
ed work. 

VAMP 8 
PKCB 
dependent 

T47, T53, 
S54, and 
S61 

Inhibits trans-SNARE zippering (27,28) 

 

 

2. Phospho-control of SNARE protein function. 

2.1 SNARE motif phosphorylation 

Direct phosphorylation of residues within the SNARE motif can inhibit SNARE mediated 

vesicle fusion and SNARE complex formation (12,13). Phosphorylation of sites near the C-

terminal end of the SNARE motif are hypothesised to impair the zippering interaction (29) 

and consequently the helical bundle cannot fully drive membrane fusion (see Figure 1). A 

recent example provides a compelling illustration of this kind of regulatory mechanism. 

Phosphorylation of the v-SNARE VAMP8 within the SNARE motif in a protein kinase C- 

dependent manner inhibits secretion from Mast cells. The phosphorylation sites identified 

(T47, T53, S54, and S61) lie within the centre of the helical bundle at the C-terminus of the 

SNARE motif (27,28) (the interested reader is referred to the structural model at 

PDB:4WY4). Analysis of cells expressing phosphomimetic mutants of VAMP8 revealed that 

vesicle fusion is impaired in liposome assays and SDS-resistant SNARE complex formation is 

impaired (27). Total internal reflection fluorescence microscopy revealed that expression of 

phosphomimetic VAMP8 mutants led to a significant accumulation of vesicles docked but 

not fused at the plasma membrane after stimulation. Taken together this suggests that the 

phosphorylation of the VAMP8 SNARE motif does not inhibit the docking step of membrane 

trafficking, which might involve partial SNARE assembly, but rather may reflect an inhibition 

of the SNARE complex zippering required for fusion (27). This mode of regulation, where the 

v-SNARE can act as an inhibitor but is still able to bind with complementary t-SNAREs may 

allow for decreased fusion kinetics appropriate for this trafficking. Such regulation could 

also allow for priming of a vesicle at the target membrane, with dephosphorylation acting as 

a positive regulator. Strikingly, the phospho-regulatory sites are absent in all neuronal v-

SNARE isoforms, suggesting that manipulation of secretion via non-neuronal SNARE 



phosphorylation cycles might have therapeutic potential (28) and may be a wide-spread 

regulatory mechanism in non-neuronal tissues. The potential that these phospho-control 

mechanisms represent novel therapeutic targets in disease such as diabetes or in 

immunological dysfunction is an exciting proposition.  

 

2.2 Phosphoregulation of a SNARE regulatory protein – N-ethylmaleimide sensitive 

factor. 

The ATPase N-ethylmaleimide sensitive factor (NSF) is a known regulator of SNARE proteins. 

NSF is thought to act by disassembling the cis-SNARE complex after fusion to allow for 

recycling of the SNARE proteins (see Figure 1) (30,31). Recent work has identified leucine-

rich repeat kinase 2 (LRRK2) acting on NSF to control membrane trafficking (17,18,32). Lrrk2 

is a gene known to be associated with Parkinson’s disease, and LRRK2 is associated with 

synaptic membranes, and over-expression or knockdown studies have shown that LRRK2 

can significantly impact synaptic vesicle endo/exocytosis (18). A recent study has revealed 

that LRRK2 directly phosphorylates NSF in the ATP binding pocket of the protein.  

Phosphorylation of NSF by LRRK2, and also by PKC, results in an increase in ATPase activity 

(17,18). The increased activity of NSF leads to improved cis-SNARE complex disassembly and 

efficient secretory vesicle fusion (18). Therefore, activity of LRRK2 mediates storage and 

mobilisation of secretory vesicles in the neuronal synapse through improving NSF ability to 

recycle SNAREs involved. Such studies hint at complex regulatory networks that can switch 

the balance between rapidly released exocytic populations and more slowly released pools 

by regulating the recycling of the SNARE complexes. Whether similar mechanisms operate in 

other rapidly mobilised vesicle pools, such as insulin granules in the pancreatic beta cell, or 

are utilised in cellular systems where expcotosis is ‘slower’ remains to be determined.  

 

2.3 Syntaxin/SM protein interaction. 

The Syntaxin family of proteins (also known as Qa-SNAREs) contain a SNARE motif and a 

three helical regulatory domain known as the Habc domain (33). For many Syntaxins, 

including the mammalian neuronal Syntaxin-1a, this Habc domain binds intramolecularly to 

the SNARE motif region, and this closed conformation is inhibitory to SNARE complex 

formation (shown in Figure 2) (34). Qa-SNAREs are regulated in part by their interaction with 



the Sec1/Munc18 family (SM) of proteins. SM proteins have multiple roles in exocytosis, 

including regulating Syntaxin stability, SNARE complexes assembly and also appear to 

participate in the fusion process by binding the trans-SNARE complex (see Figure 2) (35). 

Structural studies of the Munc18a/Syntaxin1a complex revealed that the SM protein is an 

arch shaped molecule that holds the Syntaxin molecule in its closed conformation, known as 

mode 1 binding (34). However, other members of the SM protein family were found to use 

an alternative mechanism to bind their cognate syntaxins. In so-called mode 2 binding  (see 

Figure 2), the open conformation of Syntaxin inserts a free N-terminus into a hydrophobic 

pocket on the SM protein (34). Interruption to mode 2 binding in mammalian cells results in 

trafficking defects, however complete abolition of this binding in SM proteins Sly1p and 

Vps45p does not confer additional effects (34). The nature of the SM/SNARE protein 

interaction is further complicated by a further mode of interaction whereby SM proteins can 

directly bind to the intact SNARE complex and promote fusion  (see Figure 2) (36). These 

data support the idea that regulating the Syntaxin/SM interaction might be a commonly 

utilised theme in biology (35,37). 

In Mast cells, syntaxin-3 is constitutively phosphorylated at Thr14. This phosphorylation 

regulates the interaction of this Qa-SNARE with its cognate SM protein, Munc18-2; 

phosphorylation of syntaxin-3 results in a change in secondary protein structure, decreased 

binding to Munc18-2 and results in suppressed exocytic activity (25). Interestingly, there are 

potential phosphorylation sites within the N-termini of many members of the Qa family. We 

have identified Thr-7 as a site of phosphorylation of Synaxtin16; mutation of this site to 

alanine did not modulate interaction with the cognate SM protein, mVps45. However, 

mutation to aspartate (phosphomimetic) abrogated the interaction (Berends, Bryant and 

Gould, unpublished). Such results indicate that phosphorylation of the SM protein 

interacting peptide at the N-terminus of Qa-SNAREs might be a commonly used regulatory 

mechanism. 

 

2.4 Tyrosine Phosphorylation of Sec1/Munc18 proteins. 

Insulin plays a central role in regulating whole body glucose homeostasis. Insulin activates 

its receptor tyrosine kinase and stimulates uptake of glucose from the circulation into 

adipose tissue and skeletal muscle by facilitating delivery of glucose transporters (GLUT4) to 



the plasma membrane. In the absence of insulin, GLUT4 is stored in specialised storage 

vesicles, known as GLUT4 storage vesicles (GSV’s). Following an insulin stimulus, GSV’s are 

trafficked to the cell surface and result in a 10 to 20-fold increase in GLUT4 at the plasma 

membrane (38). The t-SNAREs involved in GLUT4 trafficking are Syntaxin-4/SNAP-23, and 

the cognate v-SNARE is VAMP2 (39–41).   

It is of interest that both the SM protein Munc18c and its cognate Qa-SNARE Syntaxin4 are 

phosphorylated on tyrosine residues in response to insulin. In the case of Munc18c this has 

been shown to regulate SNARE complex assembly at least in vitro (42,43). In response to an 

insulin stimulus, Munc18c exhibits >10 fold increase in tyrosine phosphorylation in 3T3-L1 

adipocytes, specifically at residue 521 (44). Homozygotic disruption of the Munc18c gene in 

mice 3T3-L1 adipocytes results in enhanced translocation of GLUT4 in response to an insulin 

stimulus (45). Interestingly, expression of phospho-resistant mutants of Munc18c fail to 

rescue defective insulin-stimulated glucose transport in 3T3-L1 adipocytes, suggesting that a 

regulatory mechanism involving tyrosine phosphorylation of the SM protein likely operates 

in vivo (46). As reported by us previously (42), we hypothesise that insulin-stimulated 

phosphorylation of Munc18c results in increased SNARE complex formation, and may act on 

a sub-population of Syntaxin4-containing SNARE complexes ‘primed’ for rapid fusion with 

the plasma membrane in response to an insulin trigger. In this model, Munc18c acts as a 

scaffold for SNARE assembly, regulated by direct phosphorylation of Munc18c. The fact that 

Munc18c is directly phosphorylated by the insulin receptor, at least in vitro (38), further 

hints that sub-cellular localisation of the signalling and trafficking machinery may be co-

ordinately regulated. 

 

2.5 Phospho-regulation of SNAP25 family members. 

Mast cells are part of the immune response and require the ability to quickly secrete in 

response to an external signal (10,47,48). The phospho-regulation of SNAREs in this system 

has recently been investigated. SNAP-23 is a peripheral plasma membrane-associated 

protein that, together with Syntaxin-4, provides the components of the t-SNARE for Mast 

cell degranulation. SNAP23 is basally phosphorylated at Thr102 and is inducibly 

phosphorylated at Ser95 and Ser120 (20). Activation of Mast cells with IgE results in SNAP-

23 serine phosphorylation and relocation from the plasma membrane to intracellular 



lysosomal membranes. Evidence suggests that Thr102 phosphorylation is important for 

membrane association of SNAP-23 and Ser95/120 phosphorylation is required for 

translocation to lysosomal membranes in response to Mast Cell activation (19). These 

results show that not only can phosphorylation be responsible for regulating trans-SNARE 

formation but can also be critical for localisation within the cell and thus indirectly regulate 

exocytosis. 

Kinase regulation of SNARE activity has long been the focus of researchers, however there 

has been recent interest in phosphatase activity. SNAP-25 has two identified phospho-sites 

T138 and S187 (23,24). Myosin phosphatase has been shown to co-immunoprecipitate with 

SNAP-25 via the myosin phosphatase targeting subunit (MYPT1). MYPT1 dephosphorylates 

T138, an action shown to increase exocytosis of synaptosomes (21). This is in contrast to 

previous evidence from PKC and PKA studies that suggested phosphorylation of this site 

increased SNAP-25 SNARE activity. T138 lies within the SNAP-25/Syntaxin1 interacting 

region, supporting the idea that phosphorylation has been shown inhibit interaction (21). 

The role of the phosphatase may be to rapidly switch the balance between positive and 

negative signals in different regions of the cell. Further work will be required to define the 

molecular consequences of these processes, but they are included here to emphasise the 

importance of both phosphorylation and dephosphorylation processes. 

 

3.  Summary and perspectives. 

The regulation of SNARE complex formation/disassembly offers the potential for rapid 

regulation of membrane trafficking processes. Phosphorylation control of SNARE complexes 

is a fast-moving area, and the examples used here only scratch the surface of an interesting 

field. The studies we highlight here serve to exemplify a number of potential mechanisms 

that are known to operate at different stages of the SNARE cycle; these studies begin to 

make links between the activation of signalling pathways and the control of subcellular 

traffic, and the elucidation of the molecular detail and their dynamics will likely reveal new 

therapeutic potential in the combatting of a range of human disease. 
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Figure Legends. 

Figure 1: SNARE driven membrane fusion. The lipid bilayer is an optimal thermodynamic state and 

therefore membrane fusion requires accessory proteins to facilitate the fusion of two membranes. 

SNARE proteins are transmembrane proteins (or are palmitoylated). (A) As a vesicle arrives at the 

target membrane the complimentary SNARE motifs facilitate vesicle docking. (B) SNAREs are 

believed to play a role in the docking step which may involve partially assembled SNARE motifs (see 

text). The complimentary SNARE motifs from the vesicle and target membrane form a trans-SNARE 

complex by parallel arrangement of their SNARE motifs. This complex ‘zippers’ to form a stable 

SNARE complex (C) where the tight binding of this complex provides the energy for fusion (D). 

Phosphorylation of VAMP8 in the SNARE motif has been shown to inhibit the zippering process (see 

text).) (E) N-ethylmaleimide sensitive factor (NSF) ATPase activity dissembles the cis-SNARE complex 

after fusion, recycling the SNARE proteins. Phosphorylation of NSF has been shown to increase 

ATPase activity and improve vesicle exocytosis (see text). For brevity, only the SNARE domains of the 

Qb and Qc SNAREs are presented. 

 

Figure 2: Modes of Sec1/Munc18/SNARE interactions. In this figure, different modes of interaction 

between Syntaxin and Sec1/Munc18 proteins are presented schematically. Mode-1 binding involves 

the arch-shaped Munc18c binding the ‘closed’ conformation of Syntaxin4. Mode-2 involves an 

interaction between the amino-terminus of Syntaxin and a distinct binding pocket on Munc18. A 

further interaction (Mode-3) between Munc18 and the assembled SNARE complex is thought to 

potential fusion; the structural basis of this interaction is less well-established. For details, see text. 

Phosphorylation of either the Syntaxin or the Munc could clearly modulate any or all of these 

interactions. 
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