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 b x   Vector of the dynamics 

e   Eccentricity 

,f g   In-plane modified equinoctial elements 

i   Inclination, deg 

j   Phase number 

L   True longitude, rad 

0L   Initial true longitude, rad 

fL  Final true longitude, rad 

ˆ
fL  Lower boundary on 

fL , rad   

N̂   Unit vector perpendicular to the sail plane,  
T

r hN N N  

p   Semilatus rectum, AU 

r   Cartesian position vector ( r r ), AU 

r   Mean Sun-Earth distance, 1 AU 

 ˆ ˆˆ, ,r h  Orbital reference frame  

0 ft   Time of flight, days 

*
u   Optimal control vector 

X   Set of free parameters for the shape-based method 

x   State vector 

   Sail cone angle, rad 

*  Optimal sail cone angle, rad 

a  Semimajor axis variation, AU   

v   Velocity increment, km s  

ft   Value used to decrease the lower boundary on the final time, days 

  Sail clock angle, rad  

p   Shaping parameter related to semilatus rectum, AU 

fg   Shaping parameter related to in-plane modified equinoctial elements 
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   Gravitational parameter of the Sun, 11 3 21.3271 10 km s  

p   Phasing parameter related to semilatus rectum, rad 

fg   Phasing parameter related to in-plane modified equinoctial elements 

Subscripts and Superscripts 

ˆ   Unit vector 

  Time derivative 

T   Transpose 

F
  Value dependent on boundary conditions at final time 

I
  Value dependent on boundary conditions at initial time 

min
  Minimum 

pSS
  Pseudo solar sail 

Abstract 

The problem of finding an optimal solar-sail trajectory must be solved by means of numerical methods, since 

no analytical, closed-form solutions exist. A new tool named ATOSS (Automated Trajectory Optimizer for Solar 

Sailing) has been developed for optimizing multi-phase solar-sail trajectories. A shape-based method for solar 

sailing and a two-stage approach for the optimization are the keys to the success of ATOSS, which operates with 

minimum inputs required to the user. Once the initial guess is generated by means of the shape-based method, the 

above mentioned two-stage approach works as follows. First, a solution to the optimal control problem at hand is 

sought; subsequently, the boundaries on the times are modified so that a better solution, in terms of total mission 

duration, is searched. Several numerical test cases are presented to demonstrate ATOSS’ ability to automatically 

find optimal solar-sail trajectories for single- and multi-phase optimization problems. Moreover, the shape-based 

method for solar sailing has been validated as a viable method to produce initial guess solutions for a direct 

optimization algorithm. 

Keywords: Solar sailing; Shape-based method; Automatic trajectory optimization; GPOPS-II 

 



4 

 

1. Introduction 

Propelled only by sunlight, a solar sail is an attractive alternative to conventional low-thrust propulsion, such 

as electric propulsion, for deep-space missions. A solar sail is not constrained by the amount of available 

propellant and, therefore, it can achieve goals unattainable for conventional thrusters [1-6]. Nevertheless, no 

analytical, closed-form solution exists to the solar-sail trajectory problem and an optimal control problem (OCP) 

must be solved, as in the case of classical low-thrust propulsion. From the control point of view, there are two 

main differences between a solar sail and a classical low-thrust propulsion: these are related to the magnitude and 

direction of the acceleration provided. In fact, the magnitude and direction given by a solar sail are strongly related 

[7] and cannot point towards the Sun. 

To date, several studies have been carried out to find preliminary low-thrust trajectories in a quick and reliable 

way [8-13]. Approximated or sub-optimal trajectories are, in fact, useful in a preliminary mission design, in which 

a wide range of possible mission scenarios are to be evaluated at the same time, and solving an OCP for each of 

those is usually inefficient. For this reason, a shape-based method has been recently developed to deal explicitly 

with solar-sail trajectories [14]. 

The shape-based method gives approximated trajectories and sub-optimal solutions, hence it can be used to 

generate initial-guess solutions for higher-fidelity direct-optimization models. A variable-order adaptive Radau 

collocation method is implemented within GPOPS-II [15], a well-known and widely-used general-purpose 

optimal control software. It transcribes the continuous problem into a nonlinear programming (NLP) problem, 

which is solved through a state-of-the-art NLP solver. Recently, the interface for the ESA NLP solver WORHP 

[16] has been implemented into GPOPS-II and is currently under testing. 

Despite the fact that direct-collocation methods are usually more robust to poor initial guesses than indirect 

methods [17], the choice of the initial guess plays an important role in the quality of the optimized solution. 

Although this issue is not widely discussed in the literature, few works highlight the importance of a good initial 

guess even for direct-collocation methods. Porsa et al. [18] showed how the performances of the optimizer, in 

terms of both fitness function and computational load, are sensitive to the choice of initial guess. The need of a 

good initial guess was critical for the convergence of the NLP solver in [19]. The influence of different problem 

formulations on the robustness of the direct-collocation method was investigated in [20], in which it was shown 

that not all the choices of initial guess guaranteed convergence of the optimizer. In the same paper, it is discussed, 

for instance, how SNOPT never converged if a good initial guess was not available, whereas IPOPT was more 

likely to find a solution only if the mesh had few nodes. Moreover, Graham and Rao [21] developed an algorithm 
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to generate the initial guess for a multi-revolution low-thrust transfer in order to help the convergence of the NLP 

solver. To do so, a set of optimal control sub-problems needed to be solved to create the initial-guess solution. 

Even if a good initial guess is provided, issues can arise in the computation of the solution by a numerical 

optimizer [17]. A proper scaling of the problem, the differentiation algorithm used to compute the derivatives, 

and the way the continuous problem is discretized are only three of the possible issues in the numerical 

optimization. Moreover, different settings of the numerical optimizer can potentially lead to issues in the 

convergence of the NLP solver. In the adaptive mesh refinements described in [22, 23], for instance, the number 

of collocation points is explicitly dependent to the maximum/minimum allowed polynomial degree chosen for the 

discretization. That is, different settings affect the number and location of the collocation points and this can 

impair the ability of the NLP solver to find a solution for the given formulation of the problem. Therefore, 

trajectory-optimization problems are usually solved once at a time, allowing the user to manually tweak some 

settings, often in a trial-and-error fashion, in order to help the convergence of the solver or to get better results. 

To the best of the authors’ knowledge, the work of Peloni et al. [24] is the only one that shows a large number of 

solar-sail multiple-rendezvous OCPs solved in an automated way. 

For the aforementioned reasons, the primary aim of this paper is to present a toolbox able to find solar-sail 

multiple-rendezvous trajectories in an automated way, thus improving the results shown in [24]. Such tool is the 

first step towards a more efficient way to generate several solutions for preliminary solar-sail mission design. 

Moreover, the reliability of the shape-based method for solar sailing as an initial-guess solution for a direct 

collocation method is validated against a transversal-thrust law. 

2. Shaped Solar-Sail Trajectories 

In the two-body problem dynamics, it is possible to compute the acceleration a  needed to follow a given 

trajectory, in an inertial Cartesian frame, as: 

 
3r

 ra
r

  (1) 

in which   is the gravitational parameter of the central body (which is the Sun, in this case) and r  is the position 

vector of the sailcraft. Therefore, the purpose of the shape-based method for solar sailing is to find a shape of the 

trajectory such that the acceleration needed to generate it is feasible by the chosen solar sail. The advantage of 

this approach is that the acceleration history can be obtained analytically, once the shape of the trajectory is fixed. 

On the contrary, it is not guaranteed that the trajectory is characterized by an acceleration within the boundaries 
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of the chosen technology. That is, the analytical representation of the trajectory shall have the possibility to be 

properly modified to fulfill the thrust-profile specifications. 

Peloni et al. [14] proposed a set of shaping functions to describe coplanar solar-sail transfers in terms of 

modified equinoctial elements  , , ,
T

p f g Lx  [25, 26]. The shape of the trajectory is described, as a function of 

the true longitude, by: 

 

   

   

   

0

0

0

exp sin
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I F p p

I F fg fg

I F fg fg

p p p L L L

f f f L L L

g g g L L L
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 

 

      



    


    

  (2) 

in which 
0L  is the true longitude at the initial time,  , ,I I Ip f g  and  , ,F F Fp f g  depend on the initial and final 

conditions, respectively. It is possible to verify that the shaping functions shown in Eq. (2) do not describe 

osculating modified equinoctial elements, as discussed in [27]. That is, it is not true, in general, that  0 Ip L p , 

 0 If L f , and  0 Ig L g . The same holds for the values associated with the final true longitude 
fL . In fact, 

the values of  , ,I I Ip f g  and  , ,F F Fp f g  are found by means of a Newton loop so that the constraints on both 

initial and final Cartesian state are satisfied, as discussed in [27]. The terms 
p  and 

fg  are the so-called shaping 

parameters and they directly affect the shape of the trajectory. Lastly, the terms 
p  and 

fg  are the so-called 

phasing parameters and they affect the phase of the trigonometric functions that characterize the shaping functions. 

Therefore, as shown in Eq. (2), the four free parameters , , ,
T

p fg p fg      X  fully define the trajectory, once 

initial and final states are given. 

The four free parameters shall be properly tuned so that the acceleration retrieved through Eq. (1) is achievable 

by the sailcraft under consideration. Specifically, a perfectly-reflecting flat solar sail is considered in this work. 

The acceleration a  of such sailcraft depends on its characteristic acceleration 
ca  and its distance r  from the Sun, 

as follows: 

  
2

2
ˆ ˆˆ

c

r
a

r

 
  

 
N ra N   (3) 

in which r̂  is the Sun-spacecraft unit vector and N̂  is the unit vector perpendicular to the sail plane opposite to 

the Sun. In the orbital reference frame  ˆ ,, ˆ ˆr h , N̂  can be expressed by means of the cone angle   and the clock 

angle  , which are defined as follows: 
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


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 

   
   

 
   
      

N   (4) 

A MATLAB built-in genetic algorithm (GA) is used to find the set of free parameters X , together with the 

number of complete revolutions and the time of flight 
0 ft , so that the shaped trajectory is as close as possible to 

a solar-sail one. Specifically, the time of flight is used to compute the desired Cartesian state of the target object 

so that the shape of the trajectory can be drawn between the initial and final state. Moreover, a set of nonlinear 

constraints is implemented so that: a) the acceleration is always directed along the Sun-spacecraft direction, b) the 

magnitude of the acceleration is compatible with Eq. (3), and c) the time of flight found by the GA and the one 

found by integrating the variation of the time over true longitude are compatible [9, 27]. In this paper, the objective 

function of the GA to be minimized is the time of flight. Note that the evaluation of the objective function by the 

GA is very fast, since the time of flight is one of the optimization variables. Therefore, only the evaluation of the 

function of the constraints requires sensible computational time. The reader is referred to Ref. [14] for a detailed 

description of the shape-based method for solar sailing. 

Note that the shape-based method described above, as well as the majority of shape-based methods in the 

literature, deal with rendezvous problems. In fact, if the problem under consideration is an orbit transfer, this 

method cannot be used as it is. Therefore, a different implementation of the shape-based method is developed for 

orbit transfers. Specifically, in an orbit transfer problem, the spacecraft is not required to be in any specific point 

on the desired target orbit. Therefore, the number of complete revolutions and the time of flight are replaced by 

the final true longitude 
fL  as the unknown of the GA. Consequently, the objective function for the GA to be 

minimized becomes the final value of the true longitude. Lastly, since 
0 ft  is irrelevant, the third nonlinear 

constraint discussed above can be ignored. In conclusion, the implementation of the shape-based method for an 

orbit transfer problem is characterized by one less nonlinear constraint and one less variable to be considered 

within the GA if compared to the rendezvous problem. 

3. ATOSS: Automated Trajectory Optimizer for Solar Sailing 

The Automated Trajectory Optimizer for Solar Sailing (ATOSS) has been developed to find optimal solar-sail 

trajectories automatically and reliably. ATOSS combines an initial-guess generator, which uses the shape-based 

method described in Section 2, with an optimization strategy based on a two-stage approach. Such approach, 

described in detail in Section 3.3, first finds a solution to the OCP and then improves it by modifying the 
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description of the problem. A general-purpose optimal control solver (GPOPS-II [15] in this case) is used to find 

the optimal solution to the solar-sail trajectory problem. 

ATOSS can function in two modes, depending on the availability of a timed sequence. The timed sequence is 

defined as a sequence of objects with preliminary epochs for the object encounters (timeline). This allows ATOSS 

to be easily interfaced with the sequence-search algorithm described in [14] and thus to have a standalone toolbox 

able to both look for preliminary sequences and optimize their trajectories, but also to work independently of it. 

In those cases for which only a sequence of objects is provided (i.e. a non-timed sequence), ATOSS will self-

generate the preliminary timeline. This is generated considering the locally-optimal control laws to maximize the 

rate of change of the orbital parameters, as described in [7]. In particular, the laws to change individually 

semimajor axis, eccentricity and inclination are implemented within ATOSS. For each transfer between two 

consecutive objects, the preliminary timeline considers the time of flight needed to achieve the desired change in 

one or more orbital elements. In this work, the allowed time of flight for each transfer leg is bounded between 500 

and 1,500 days. Moreover, a set stay time is added between two consecutive transfers (100 days, in this work). It 

is worth noting that Graham and Rao [21] showed that “the solutions to the minimum-time low-thrust optimal 

control problem […] have essentially the same number of revolutions as that of the initial guess”. Therefore, to 

improve ATOSS’ robustness in case of a non-timed sequence, the possibility to add an extra full revolution to the 

self-generated time of flight is considered. 

3.1. Problem formulation 

ATOSS solves both single- and multi-phase problems. In this context, a single-phase problem is defined as a 

transfer between a departure and a target object (celestial bodies); instead, a multi-phase problem is characterized 

by several consecutive transfer legs, starting and ending at an object. The transfer legs are connected through 

coasting arcs during which the spacecraft stays in proximity of the target object, and follows the same ballistic 

trajectory, as schematically shown in Fig. 1. Since the spacecraft is considered in a state of rendezvous with the 

object between two consecutive transfer legs, the coasting arc is not explicitly modeled inside ATOSS. The multi-

phase problem is formulated such that the state of the sailcraft at the times corresponding to the beginning and 

end of each phase matches with the state of the target object. 
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Fig. 1. Schematic of the multi-phase problem under consideration. 

The dynamics of each phase are defined as: 

     Ax x a b x   (5) 

in which  A x  and  b x  are, respectively, the matrix and vector of the dynamics in accordance to [28]. The 

acceleration a  is the one given by Eq. (3). A direct collocation method is used to find the optimal control vector 

* ˆu N  such that the total mission duration is minimized while fulfilling the dynamics constraints shown in Eq. 

(5) at any time. 

3.2. Initial-guess generation 

Three different methods can be used to generate the initial-guess solution needed for the optimizer: 

1. Shape-based method: propagated trajectory. 

2. Shape-based method: shaped trajectory. 

3. Transversal-thrust law. 

Note that the first two are two different variants of the shape-based method described in Section 2; the last one is 

to be used as a benchmark for the shape-based method. 

1. Shape-based method – propagated trajectory 

In the first method, the initial-guess trajectory is found propagating the initial state by using the acceleration 

given by the shape-based method. This choice of initial guess has the advantage that state and control are 

consistent with each other. The drawback of this choice is that the final state constraint is not (in general) fulfilled. 
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That is, the main task of the optimizer is to change both state and control histories to find a feasible solution that 

satisfies the end-point constraints. 

2. Shape-based method – shaped trajectory 

In the second method, the initial-guess trajectory is given by the shape. This choice of initial guess has the 

advantage that the initial and final values of the state satisfy the end-point constraints. The drawback is that state 

and control do not fulfil the dynamics. That is, the main task of the optimizer is to change both trajectory and 

control to satisfy the equations of motion (path constraint). 

3. Transversal-thrust law 

In the third method, the initial guess is the trajectory given by a pseudo solar sail with a transversal thrust, 

which is expressed, in the orbital frame  ˆ ,, ˆ ˆr h , as: 

 

2 0

1

0

pSS c

r
a

r



 
   

     
  

a   (6) 

The   sign in Eq. (6) represents a thrust directed either towards or opposite to the transversal unit vector ̂  and, 

therefore, an outward or inward spiral, respectively. Note that a flat solar sail cannot produce the propulsive 

acceleration of Eq. (6) because the direction of such acceleration would be defined by 2  , whereas its 

magnitude by 0  . That is, a pseudo solar sail can be seen as a solar sail for which the magnitude of the thrust 

does not depend on its direction. The trajectory starts at the initial time and state and it is propagated for a defined 

time of flight 
0 ft . 

3.3. Optimization strategy 

The optimization strategy implemented within ATOSS consists of two sequential stages. The general idea of 

the first stage is to find a solution to the OCP by starting with simpler dynamics and eventually solve the problem 

with the full dynamics. That is, starting from the chosen initial guess, the OCP is solved in three sequential steps 

to help the convergence of the numerical optimizer. The solution of each step is used as a first guess for the 

following step. Here and in the remainder of this paper, the term first guess is referred to as the solution used to 

initialize GPOPS-II. For instance, the optimal solution found for the coplanar solar-sail dynamics is used as the 

first-guess solution within GPOPS-II for solving the following OCP that considers three-dimensional (3-D) 

dynamics, as shown in Fig. 2. The description of the first stage is given, for a single-phase problem, as follows 

(Fig. 2): 
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1. Solve the single-phase optimization problem within a coplanar (2-D) approximation. The pseudo 

solar-sail model is considered for the description of the acceleration, as: 

 

2

ˆ
pSS c

r
a

r

 
  

 
a N   (7) 

2. Solve the single-phase optimization problem by considering the solar-sail acceleration [Eq. (3)] 

within a coplanar (2-D) approximation. 

3. Solve the single-phase optimization problem by considering the 3-D dynamics with the solar-sail 

acceleration of Eq. (3). 

 

Fig. 2. Flowchart of single-phase ATOSS’ optimization strategy for the first stage. 

The boundaries on the initial and final time considered in the numerical formulation of each OCP shown in 

Fig. 2 depend on the first-guess solution. This is implemented so that it is possible to consider an upper limit to 

the time of flight of a single-phase problem. For what concerns a multi-phase problem, this implementation allows 

setting the boundaries on initial and final times of two consecutive phases so that the latter phase is not allowed 

to start before the end of the former. Nevertheless, it has been noted that very often the time of flight of the optimal 

solution found is the minimum allowed by the problem formulation, which is 
0 ,minft . A reduction in the lower 

boundary on the final time by about 50-100 days often resulted in unsuccessful runs of the numerical optimizer. 
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Therefore, once an optimal solution has been found for the 3-D dynamics, the second stage of the optimization 

strategy is used. 

In the second stage, ATOSS performs a discrete continuation on the lower boundary of the final time, using 

the previous solution as a first guess for GPOPS-II (Fig. 3). A user-defined value 
ft  is used to decrease the 

lower boundary on the final time, whereas the boundaries on the initial time are related to the initial time of the 

first-guess solution. Such continuation is repeated until an unsuccessful run occurs. The solution of the whole 

optimization is the last optimal solution found. The loop can stop also when a solution has been found if the time 

of flight is larger than the minimum one allowed. 

 

Fig. 3. Flowchart of both single- and multi-phase ATOSS’ optimization strategy for the second stage. 

The strategy used for a multi-phase problem is similar. The algorithm begins by optimizing the first phase 

starting from the selected initial-guess solution and following steps 1) – 3). Once a 3-D solar-sail solution has 

been found for the first phase, instead of performing the continuation on the lower boundary on the final time, the 

second phase is added to the problem (Fig. 4). Subsequently, each phase is sequentially added to the previous 

multi-phase solution (with j  phases) so that the updated multi-phase solution (with  1j   phases) is computed. 

The first guess for this new problem is given by patching the solution of the previous optimization with the initial 

guess of the new phase. The updated multi-phase OCP is therefore solved so that the dynamics considered for the 

first j  phases are the 3-D solar-sail ones, whereas the three-step approach shown in Fig. 2 is considered for the 

…
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last phase only. This approach is radically different respect to what was used in [14], in which each phase of the 

problem was optimized separately and, subsequently, all the single-phase solutions were patched together to build 

the multi-phase solution. That is, even if the solutions of all phases are optimal, there is no guarantee that the 

overall multi-phase solution is also optimal. On the contrary, the approach used within ATOSS guarantees the 

optimality of the entire multi-phase solution. This is in agreement with the Bellman’s principle of optimality, 

which states that “an optimal policy has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision” 

[29]. Once a solution for the complete multi-phase problem has been found, the continuation on the lower 

boundaries on the final time is performed, as shown in Fig. 3. That is, the lower boundary on the final time of 

each leg is decreased by the selected value 
ft . 

 

Fig. 4. Flowchart of multi-phase ATOSS’ optimization strategy for the first stage. 
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4. Numerical Test Cases 

Several numerical test cases are considered in this work to demonstrate the performances of ATOSS at 

increasing levels of complexity. The first three test cases aim to validate ATOSS against the literature. In 

particular, the first two deal with the Earth-Mars and Earth-Venus circular-to-circular orbit transfers shown in 

[30]. In the third test case, ATOSS is validated on a three-NEA rendezvous against the low-thrust trajectory 

optimization tool InTrance [31]. The other test cases can be categorized into three optimization campaigns. 

Campaign 1 deals with single near-Earth asteroid (NEA) rendezvous, whereas multiple NEA rendezvous are 

considered in Campaign 2. In Campaign 3, ATOSS is used to find solutions to many multiple NEA rendezvous. 

A solar sail with a characteristic acceleration 20.2 mm sca   is considered within the three optimization 

campaigns. Note that this sail characteristic acceleration is within the capability of current and near-term 

Gossamer sailcraft technology, according to [32, 33]. Therefore, it is a reasonable choice to validate the model on 

a potential near-term solar-sail mission. Appendix A shows the main properties of the NEAs considered in this 

work (Table A.1). All the simulations presented in this paper were carried out on a 3.40 GHz Core i7-3770 with 

16 GB of RAM and running Windows 7. 

4.1. ATOSS validation 

1. Circular-to-circular orbit transfers 

Quarta and Mengali [30] presented two planar circular-to-circular orbit transfers considering an ideal sail with 

a characteristic acceleration 20.03 mm sca  . With such a small value of the characteristic acceleration, several 

complete revolutions are needed for the Earth-Mars and Earth-Venus transfers. This increases the possibility of 

failure of the numerical optimizer, since a larger number of revolutions might affect the numerical accuracy of 

the solver. As such, these are interesting test cases to validate ATOSS. The shaped-trajectory variant of the shape-

based method (No. 2 in Section 3.2) was used to generate the initial-guess solution and SNOPT was used as NLP 

solver. The boundaries on 
fL  for the GA were set as follows. A minimum-time transfer between two circular 

coplanar orbits is achieved by maximizing the absolute value of the rate of change of the semimajor axis da dL , 

which can be expressed, by means of the Lagrange variational equations, as [7]: 

 
2

2 * *2
cos sinca r ada

dL
 


   (8) 

in which a  is the semimajor axis and  * arctan 1 2   is the cone angle that maximizes the transversal 

acceleration [7]. Note that Eq. (8) has been derived in the approximation of circular osculating orbits during the 
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transfer. This is an acceptable approximation because the transfer is between two circular orbits and the 

characteristic acceleration is very small. The lower boundary on 
fL  is set as the value of true longitude ˆ

fL  for 

which the change in semimajor axis a  is the desired one, as follows: 

 
0

ˆ
f

L

L da
dLa

dL
     (9) 

The upper boundary on 
fL  is set so that , ˆ 2ˆ

f f fL LL  
 

. 

ATOSS found a solution for both Earth-Mars and Earth-Venus orbit transfers which are equivalent to those 

shown in [30]. Specifically, the time of flight for the Earth-Venus transfer found by ATOSS is 3,837 days, which 

is similar to the 3,844 days of the reference paper. The time of flight for the Earth-Mars transfer found by ATOSS 

is 8,773 days, which is again equivalent to the 8,800 days of the reference paper. The Earth-Venus and Earth-

Mars optimal trajectories are shown in Fig. 5. 

a) b) 

Fig. 5. Optimal orbit transfers in the heliocentric ecliptic reference frame. (a) Earth-Venus. (b) Earth-

Mars. 

2. Three-NEA rendezvous 

Dachwald et al. [32] presented a 3-NEA rendezvous mission through solar sailing, considering a sail with a 

characteristic acceleration 20.3 mm sca  . ATOSS has been used to find a solar-sail trajectory for the same list 

of encounter bodies to validate the proposed optimizer. ATOSS has been used considering both a timed and a 

non-timed sequence as an input. In the first case, the mission parameters of the referenced work were used to 

produce the timed sequence needed by ATOSS. This has been done to check whether ATOSS can reproduce and 

refine the trajectory of the referenced work by starting from the same timed sequence. In the second case, instead, 

only the list of objects and the departing date from the referenced work have been given as an input to ATOSS. 
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This has been done to check whether ATOSS can find a similar solution to that shown in [32] without any external 

input. Since the objects in the non-timed sequence are NEAs, it has been chosen to consider only the time of flight 

given by the law to maximize the rate of change of the inclination to generate the preliminary timeline within 

ATOSS. In fact, Table A.1 shows that the differences in semimajor axis and eccentricity are small for the objects 

under consideration, whereas there are significant differences in inclination. For both cases, the shaped-trajectory 

variant of the shape-based method (No. 2 in Section 3.2) was used to generate the initial-guess solution and 

SNOPT was used as NLP solver. 

The features of the mission are described in Table 1 for the case of the timed sequence used as an input for 

ATOSS. Figure 6a shows the trajectory of the first leg from Ref. [32], whereas the corresponding trajectory found 

by ATOSS is shown in Fig. 6b. ATOSS found a solution for which the total mission duration is 8.46 years (i.e. 

3,090 days), which is almost a year less than that proposed in Ref. [32]. However, the time spent at the first object 

is the minimum allowed by the optimizer (i.e. two days). Even though this value of the stay time is in line with 

the mission requirements, more time might be needed at the object. If this is the case, a slower mission was found 

in the same optimization run which is one of the intermediate results of the optimization strategy shown in Fig. 3. 

The characteristics of this mission are shown in Table 2. In this case, the total mission duration is 8.82 years (i.e. 

3,220 days), spending 50 days at 2004 GU9. Such a mission is still approximately 120 days shorter than the 

reference one. Note that ATOSS gives the possibility to set the minimum allowed stay time at each object. 

Therefore, if a longer stay time at the object is needed, this can be set and a new optimization run. 

 

 

a) b) 

Fig. 6. Trajectory of the first leg from Earth to 2004 GU9. Heliocentric ecliptic reference frame. (a) Ref. 

[32]. (b) ATOSS with timed sequence as an input. 
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Table 1. Mission parameters for the optimal 3-NEA rendezvous (values in brackets are those presented 

in [32] and used as timed sequence for ATOSS). 

Object 
Stay time, 

days 

 
Start End 

Time of flight, 

days 

Earth --- 

 

16 May 2020 

(28 Nov 2019) 

13 May 2023 

(13 Dec 2022) 

1093 

(1111) 
2004 GU9 

2 

(113) 

 

15 May 2023 

(05 Apr 2023) 

28 Jan 2027 

(30 Jan 2027) 

1354 

(1396) 
2001 QJ142 

133 

(90) 

 

10 Jun 2027 

(30 Apr 2027) 

31 Oct 2028 

(24 Jan 2029) 

509 

(635) 2006 QQ56 --- 

 

Table 2. Mission parameters for the optimal 3-NEA rendezvous, longer mission (values in brackets are 

those presented in [32] and used as timed sequence for ATOSS). 

Object 
Stay time, 

days 

 
Start End 

Time of flight, 

days 

Earth --- 

 

27 Mar 2020 

(28 Nov 2019) 

12 Feb 2023 

(13 Dec 2022) 

1053 

(1111) 
2004 GU9 

50 

(113) 

 

03 Apr 2023 

(05 Apr 2023) 

30 Jan 2027 

(30 Jan 2027) 

1398 

(1396) 
2001 QJ142 

106 

(90) 

 

16 May 2027 

(30 Apr 2027) 

19 Jan 2029 

(24 Jan 2029) 

614 

(635) 2006 QQ56 --- 

 

In the second case, in which a non-timed sequence was used as an input, ATOSS found a solution by self-

generating the preliminary timeline for the encounters. The total mission duration found by ATOSS is 8.83 years 

(i.e. 3,223 days), which is about 120 days less than that shown in [32]. Table 3 shows the characteristics of this 

mission together with the preliminary timeline self-generated by ATOSS. Note that the sailcraft spends more than 

90 days at each object, which is a stay time equivalent to that shown in the referenced paper. 

 

Table 3. Mission parameters for the optimal 3-NEA rendezvous in the case of a non-timed sequence as 

an input (values in brackets are those self-generated by ATOSS). 

Object 
Stay time, 

days 

 
Start End 

Time of flight, 

days 

Earth --- 

 

04 Mar 2020 

(28 Nov 2019) 

24 Dec 2022 

(19 Dec 2022) 

1026 

(1117) 
2004 GU9 

99 

(100) 

 

02 Apr 2023 

(29 Mar 2023) 

23 Oct 2026 

(12 Sep 2026) 

1300 

(1263) 
2001 QJ142 

111 

(100) 

 

11 Feb 2027 

(21 Dec 2026) 

30 Dec 2028 

(04 May 2028) 

688 

(500) 2006 QQ56 --- 

 



18 

 

4.2. Campaign 1: Single NEA rendezvous 

Campaign 1 aims to test ATOSS for single-phase OCPs. Moreover, the performances of the shape-based 

method for solar sailing are assessed against the transversal-thrust law. Eleven single-phase rendezvous are 

considered as test cases, in which the chosen objects are part of the database used in [14]. This database consists 

of potentially-hazardous asteroids (PHAs) and the asteroids in the Near-Earth Object Human Space Flight 

Accessible Target Study (NHATS) [34]. By definition, NHATS asteroids are targets possible to reach from the 

Earth in a short (less than two years) return mission with low total required v . PHAs, on the other hand, are in 

general characterized by higher v  if reached from the Earth. For this reason, all test cases considered in this 

campaign are so that the first object is either Earth or a NHATS asteroid and the second object is a PHA. 

Table 4 details the properties of the transfers for each test case as found by means of a sequence-search 

algorithm, as detailed in [14]. The departing date and the time of flight for each rendezvous are those given by the 

sequence-search algorithm and are listed in the last two columns of Table 4. The time of flight is considered by 

ATOSS only if the transversal-thrust law is used as the initial guess, as detailed in Section 3.2. Both inward and 

outward spirals are considered for the transversal-thrust law, as shown in Eq. (6). Note that, among the chosen 

PHAs, seven are characterized by an eccentricity 0.2e   and seven are characterized by an inclination 2 degi   

(Table A.1). 

 

Table 4. Campaign 1: Properties of the test cases. 

Test case Departing object Arrival object Departing date 
Time of flight, 

days 

1 Earth 2011 CG2 09 Jan 2029 690 

2 2005 TG50 2015 JF11 26 Jan 2035 718 

3 2012 KB4 2008 EV5 22 Feb 2031 647 

4 2009 YF 2002 AW 23 Aug 2035 607 

5 2010 WR7 1989 UQ 14 Jun 2024 640 

6 2005 FG 1999 AQ10 19 Nov 2027 711 

7 2008 TX3 2000 EA14 30 Aug 2028 740 

8 2004 JN1 2006 KV89 31 Mar 2035 896 

9 2001 QE71 2001 US16 06 Dec 2027 697 

10 2001 QE71 2001 US16 23 Oct 2027 728 

11 2015 EF7 2000 QK130 17 Apr 2026 531 
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An optimal solution to all the test cases shown in Table 4 has been sought by using ATOSS with all three 

available initial-guess approaches discussed in Section 3.2. Moreover, all three available NLP solvers are used. 

An optimization is considered successful when: a) the NLP solver returns a successful exit flag, b) a further mesh 

refinement performed by GPOPS-II will not improve the quality of the solution, and c) all the boundaries of time, 

state and control are verified through a post-processing check. For the sake of conciseness, only the statistical 

results are shown here. Table 5 shows the number of successful test cases for each initial guess and NLP solver 

used. The last column of Table 5 shows the number of successful test cases if no distinction in the NLP solver is 

considered. 

 

Table 5. Campaign 1: Number of successful test cases for each initial guess and NLP solver. 

Initial guess 
Number of successful test cases 

IPOPT SNOPT WORHP Any NLP solver 

Transversal-thrust law 3/11 (27%) 4/11 (36%) 4/11 (36%) 5/11 (45%) 

Shape-based method – 

propagated trajectory 
9/11 (82%) 9/11 (82%) 9/11 (82%) 10/11 (91%) 

Shape-based method –   

shaped trajectory 
9/11 (82%) 11/11 (100%) 11/11 (100%) 11/11 (100%) 

 

The overall results show that the use of the shape-based method as an initial-guess solution helps the 

convergence of GPOPS-II as ten optimal solutions have been found out of the total number of eleven test cases 

with the shape-based guesses. In fact, an optimal solution has been found for all eleven test cases with the shaped-

trajectory variant of the shape-based method. On the contrary, only five solutions have been found using the 

trajectory obtained through the transversal-thrust law as the initial guess. This validates the shape-based method 

developed for solar sailing in [14], and endorses its use as an initial guess for a high-fidelity direct-collocation 

optimization method such as GPOPS-II. The overall statistical results are very similar between the two variants 

of the shape-based method used if no distinction among the NLP solvers is made. If the number of successful test 

cases is investigated as a function of both the initial-guess method and the NLP solver used, the shaped trajectory 

works better than the propagated trajectory: the statistical results show 100% success rate for both SNOPT and 

WORHP. Nevertheless, Table 5 shows that both variants of the shape-based method, as well as all the available 

NLP solvers, are robust enough to be used in the early stages of solar-sail trajectory design. 
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4.3. Campaign 2: Multiple NEA rendezvous 

Campaign 2 aims to assess the performances of ATOSS for a multi-phase solar-sail rendezvous. Moreover, 

the shape-based method for solar sailing is further tested as a method to provide initial-guess solutions in a multi-

phase environment as well. In this case, the performances of ATOSS are evaluated based on the total mission 

duration, which is compared to the results found by means of the optimization strategy discussed in [14]. 

Two test cases have been chosen to verify the performances of ATOSS. The first one is the five-NEA 

rendezvous mission shown in [14]. The second test case is the first five-NEA rendezvous mission shown in [24]. 

The test cases have been optimized using ATOSS with the NLP solver WORHP and the shaped-trajectory variant 

as the initial-guess solution. In both cases, the sail is injected directly into an interplanetary trajectory at Earth, 

with zero hyperbolic excess velocity, as done in the referenced papers. It is worth to underline that no results were 

found by ATOSS with the transversal-thrust law as the initial guess and any of the available NLP solvers. 

The parameters of the first optimized test case are summarized in Table 6, whereas Table 7 shows the 

parameters of the second optimized test case. In these cases, the results of the sequence-search algorithm described 

in [14] were used as the timed sequences needed by ATOSS. The mission time of the first optimized test case is 

3,133 days, whereas the solution shown in [14] for the same sequence described a mission completed in 3,431 

days. That is, ATOSS found a multi-phase trajectory that is about 300 days (~10 months) shorter than the reference 

solution. The mission time of the second optimized test case is 3,183 days, whereas the solution found in [24] for 

the same sequence showed a mission completed in 3,521 days, which is about 340 days (~11 months) longer than 

what was found by ATOSS. In both cases, the sailcraft spends more than 90 days in the proximity of each asteroid. 

Therefore, ATOSS finds better solutions, in terms of total mission duration, to the multiple-NEA-rendezvous 

problem than the optimization strategy used in the referenced papers [14, 24]. 
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Table 6. Campaign 2, first test case: Results obtained through ATOSS (values in brackets are those of 

[14]). 

Object 
Stay time, 

days 

 
Start End 

Time of flight, 

days 

Earth --- 

 

05 Dec 2025 

(10 May 2025) 

18 Mar 2027 

(26 Feb 2027) 

468 

(657) 
2000 SG344 

93 

(123) 

 

19 Jun 2027 

(29 Jun 2027) 

03 Nov 2028 

(06 Sep 2028) 

503 

(436) 
2015 JD3 

104 

(164) 

 

16 Feb 2029 

(18 Feb 2029) 

22 Nov 2030 

(24 Sep 2030) 

644 

(584) 
2012 KB4 

94 

(160) 

 

23 Feb 2031 

(04 Mar 2031) 

22 Nov 2032 

(29 Sep 2032) 

637 

(576) 
2008 EV5 

95 

(171) 

 

25 Feb 2033 

(20 Mar 2033) 

04 Jul 2034 

(30 Sep 2034) 

493 

(560) 2014 MP --- 

 

Table 7. Campaign 2, second test case: Results obtained through ATOSS (values in brackets are those of 

[24]). 

Object 
Stay time, 

days 

 
Start End 

Time of flight, 

days 

Earth --- 

 

10 Apr 2023 

(24 Aug 2022) 

20 Aug 2024 

(18 Aug 2024) 

497 

(725) 
2012 BB14 

106 

(126) 

 

04 Dec 2024 

(22 Dec 2024) 

27 Oct 2026 

(03 Oct 2026) 

692 

(650) 
2011 CG2 

91 

(123) 

 

26 Jan 2027 

(03 Feb 2027) 

11 Jan 2029 

(21 Nov 2028) 

715 

(658) 
2006 BZ147 

107 

(166) 

 

28 Apr 2029 

(07 May 2029) 

05 Sep 2030 

(23 Jun 2030) 

495 

(412) 
2013 BS45 

124 

(188) 

 

07 Jan 2031 

(28 Dec 2030) 

27 Dec 2031 

(13 Apr 2032) 

354 

(473) 2014 YN --- 

 

Lastly, it is interesting to study the evolution of the total mission duration during the second stage of the 

optimization strategy implemented within ATOSS. As detailed in Section 3.3, once the entire multi-phase 3-D 

trajectory has been found, a discrete continuation on the lower boundary on the final time is carried out to find a 

solution with a lower total mission duration. Figure 7 shows the evolution of the total mission duration within 

ATOSS for the two test cases considered in this section. The total cumulative computational time needed to find 

a solution is shown along the horizontal axis. Each point in the figure corresponds to a solution found by ATOSS 

in each intermediate step. The first point of each curve is related to the mission duration of the entire trajectory 

obtained by patching together the initial-guess trajectories for each transfer leg. Note that the significantly longer 

time related to the second point is due to ATOSS finding a 3-D multi-phase trajectory starting from the solutions 

of the shape-based method, which is the first stage of the optimization strategy described in Section 3.3. In 
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conclusion, Fig. 7 demonstrates the importance of the continuation stage implemented within ATOSS, which 

decreases the total mission duration by 10% respect to the value of the initial guess. In fact, a gain of 6% of total 

mission duration is achieved during the second stage of the optimization strategy developed within ATOSS (i.e. 

between the last and the second point of each curve shown in Fig. 7). 

 

Fig. 7. Campaign 2: Evolution of the total mission duration within ATOSS. 

4.4. Campaign 3: Automated optimization 

Campaign 3 aims to assess the performances of ATOSS as an automated multi-phase optimizer. To do so, all 

the 589 preliminary sequences with at least three encounters and at least one PHA found for the second database 

discussed in [24] are optimized by means of ATOSS. The number of optimal solutions found and the 

computational time needed for the entire automated optimization campaign are the two performance metrics used 

for the performance test. To carry out a fair comparison, the NLP solver SNOPT is used, as done in the referenced 

paper. 

Once the initial settings are fixed at the beginning of the optimization campaign, all the simulations are carried 

out with the same settings and with no user intervention. It is likely that some of the results found can be improved 

by choosing ad hoc settings for each test case so that ATOSS and GPOPS-II are tuned for that specific scenario 

[35]. Nevertheless, this is beyond the scope of this work, which aims to test the capability of ATOSS to find as 

many optimal solutions as possible automatically. Once solutions for all the test cases have been found, the user 

can further optimize the most interesting ones. The results of the automated optimization campaign are 

schematically shown in Table 8 and compared with the results shown in the referenced paper. 
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Table 8. Campaign 3: Results and comparison with [24]. 

Optimizer 
Number of 

solutions found 
Success rate Computational time 

ATOSS 390 66% < 6 days 

Ref. [24] 343 58% ~ 30 days 

 

ATOSS found fully-optimized solar-sail trajectories for 390 sequences, i.e. 66% of the total number of test 

cases. On the other hand, Ref. [24] shows that a solution was found for 343 sequences, i.e. 58% of the total number 

of test cases. Moreover, the entire automated optimization campaign took less than six days of computational 

time, whereas the solutions showed in [24] were found in about thirty days on the same machine. An estimate of 

the quality of the solutions can be obtained by analyzing the total mission durations found by the two optimizers. 

This is done only on those test cases (292) for which both optimizers found a solution. Two solutions are 

considered equivalent if the difference in their mission durations is within twenty days. An analysis of the 

numerical results showed that in 285 test cases (~98%) the solutions found by ATOSS are shorter than those in 

[24]. On the other hand, the optimizer in Ref. [24] found a shorter solution than ATOSS in only one test case; the 

two optimizers found equivalent solutions in the remaining six test cases (~2%). These results demonstrate the 

reliability of ATOSS as an automated optimizer. Moreover, the comparison with the results shown in the 

referenced paper proves that ATOSS outperforms the previous optimization strategy in success rate, 

computational speed and quality of the solutions found. 

5. Conclusions 

In this paper, we introduced and discussed ATOSS, an Automated Trajectory Optimizer for Solar Sailing. 

ATOSS was developed as a software tool to find solar-sail trajectories in an automated way. Moreover, ATOSS 

was used to validate the shape-based method for solar sailing proposed in a previous work by the authors. Such 

validation was performed against a transversal-thrust law on several test cases. The overall results demonstrated 

the quality of the shape-based method as an initial guess for a direct-collocation optimization method. Planetary 

orbit transfers, single and multiple near-Earth asteroid (NEA) rendezvous were chosen as test cases to prove the 

reliability of ATOSS as a single- and multi-phase trajectory optimizer for solar sailing. The solutions of ATOSS 

were assessed against those found by the low-thrust trajectory optimization tool InTrance. Moreover, the results 

of an existing optimization strategy shown in previous papers by the authors were used as test beds for ATOSS. 

This study demonstrated that ATOSS outperforms the existing optimization strategy, being able to find better 

results in terms of total mission duration, while guaranteeing a time between two consecutive transfers long 
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enough to carry out studies on the target asteroid. Lastly, an automated optimization campaign was carried out to 

find the solutions for several solar-sail trajectories. As many as 589 optimizations were performed in a completely 

automated way by ATOSS. The results showed a 66% success rate with 390 optimal solutions found. This number 

is larger than what was found in a previous study and it demonstrates the reliability of ATOSS in finding solar-

sail trajectories without the need of any input by the user. This is a key feature of ATOSS, especially considering 

that the numerical optimization is very often sensitive to the optimization parameters. Moreover, the solutions 

found by ATOSS in the automated optimization campaign are better, in terms of total mission duration, than the 

ones found in the previous study. Lastly, ATOSS allows setting a minimum desired stay time at each target object. 

This feature can be fundamental in the mission design of a multiple NEA rendezvous, for which a minimum time 

for close-up observation might be needed by the onboard instruments. 
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Appendix A. Properties of the NEAs considered. 

Table A.1. Properties of the objects considered1. 

Object Semimajor axis, AU Eccentricity Inclination, deg PHA NHATS 

Earth 1 0 0 no no 

1989 UQ 0.915 0.265 1.299 yes no 

1999 AQ10 0.934 0.236 6.501 yes no 

2000 EA14 1.117 0.202 3.555 yes no 

2000 QK130 1.181 0.262 4.722 yes no 

2000 SG344 0.977 0.067 0.111 no yes 

2001 QE71 1.078 0.159 3.035 no yes 

2001 QJ142 1.062 0.086 3.103 no yes 

2001 US16 1.356 0.253 1.905 yes no 

2002 AW 1.071 0.256 0.571 yes no 

2004 GU9 1.001 0.136 13.650 yes no 

2004 JN1 1.085 0.176 1.499 no yes 

2005 FG 1.122 0.213 3.882 no yes 

2005 TG50 0.923 0.135 2.402 no yes 

2006 BZ147 1.024 0.099 1.410 no yes 

2006 KV89 1.150 0.273 3.554 yes no 

2006 QQ56 0.985 0.046 2.796 no no 

2008 EV5 0.958 0.084 7.437 yes yes 

2008 TX3 1.180 0.187 2.180 no yes 

2009 YF 0.936 0.121 1.523 no yes 

2010 WR7 1.046 0.235 1.563 no yes 

2011 CG2 1.178 0.158 2.757 yes yes 

2012 BB14 1.064 0.099 2.645 no yes 

2012 KB4 1.093 0.061 6.328 no yes 

2013 BS45 0.994 0.084 0.773 no yes 

2014 MP 1.050 0.029 9.563 no yes 

2014 YN 0.891 0.136 1.243 no yes 

2015 EF7 1.209 0.225 3.570 no yes 

2015 JD3 1.058 0.009 2.730 no yes 

2015 JF11 1.073 0.111 5.400 yes no 

1https://cneos.jpl.nasa.gov/orbits/elements.html (cited 08 August 2015). 

https://cneos.jpl.nasa.gov/orbits/elements.html
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