
[19:15 17/6/2014 hbt024.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 69 69–93

EFFECTIVE GOVERNING EQUATIONS FOR
POROELASTIC GROWING MEDIA

by R. PENTA and D. AMBROSI†

(MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32,
20133 Milano, Italy)

and

R. J. SHIPLEY
(Department of Mechanical Engineering, University College London, Torrington Place,

London WC1E 7JE)

[Received 11 March 2013. Revise 9 October 2013. Accepted 12 November 2013]

Summary

A new mathematical model is developed for the macroscopic behaviour of a porous, linear elastic
solid, saturated with a slowly flowing incompressible, viscous fluid, with surface accretion of the
solid phase. The derivation uses a formal two-scale asymptotic expansion to exploit the well-
separated length scales of the material: the pores are small compared to the macroscale, with a
spatially periodic microstructure. Surface accretion occurs at the interface between the solid and
fluid phases, resulting in growth of the solid phase through mass exchange from the fluid at a
prescribed rate (and vice versa). The averaging derives a new poroelastic model, which reduces to
the classical result of Burridge and Keller in the limit of no growth. The new model is of relevance
to a large range of applications including packed snow, tissue growth, biofilms and subsurface
rocks or soils.

1. Introduction

The theory of poroelasticity concerns the mechanics of porous elastic solids with fluid-filled pores.
The applications and motivations for this theory are far-reaching, and include the seepage of liquid
waste disposed of underground, oil and gas recovery, soil consolidation and glaciers dynamics,
as well as transport, mass exchange and solid stress in biological tissues. Whereas poroelasticity
concerns fluid-solid interactions in two-phase materials, it lies within the broader field of mixture
theory, which includes fluid and chemical transport in multiphase systems.

The literature in poroelasticity develops according to two main approaches; volume-averaging
and homogenisation (the two are discussed in detail and compared in the review paper (1)). Most
authors state ab initio the mass, momentum and energy balance equations for the individual phases
on the basis of their ‘in bulk’ mechanical behaviour and utilize dissipation inequalities to restrict the
possible constitutive equations for the components in the mixture (2, 3). While this approach allows
for generality in the number of components and their mechanical nature, including finite elastic
strains, any information on the microstructure of the material is suppressed by an implicit averaging
procedure; as a consequence, effective coefficients that appear in the equations (for example, the
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fluid permeability) are at most characterized by their sign and are to be fitted by macroscopic
experiments only.

The alternative homogenization method exploits information on the geometry at the microscale
by a multiscale expansion of the fields. This approach yields macroscopic equations with parameters
that depend explicitly on the microscale geometry and physics; these parameters are obtained
by averaging suitable microscale cell problems (as for example in (4)–(7)). The homogenization
technique is therefore powerful in retaining microscopic information; the drawback is that
periodicity of the microstructure and linearity in the constitutive equations must be assumed.
Moreover, the algebraic complexity of the method has reduced de facto its application to physical
systems.

From the point of view of continuum mechanics, a challenging peculiarity of soft biological tissues
is their ability to grow and remodel, a special characteristic of living matter that poses a number of
intriguing mathematical questions: how to account for the resulting residual stress, which are the
driving forces of growth, which are the corresponding regulatory mechanisms and the inner energy
balance (8)–(10). This kind of questions has inspired a substantial body of literature in mathematical
methods that, starting from one–component continuum mechanics, move towards the inclusion of
multicomponent and microscale information in the model (11).

On the basis of the considerations above, it is not surprising that the specific issue of poroelastic
materials that exchange mass has been mainly addressed in terms of mixtures, both for inert (see
for example (12)–(14)) and living matter (15, 16). In the current study we seek to extend the
existing poroelastic literature by considering mass exchange between elastic and fluid phases using
a multiscale approach.1 Although poroelasticity exhibits a wide range of applicability and growth is
a crucial issue to address in a number of fields, the chief motivation for this work is biological. The
growth and remodelling of living tissues is driven by chemical stimuli as well as the mechanical
environment (alongside genetic cues) and the development of mathematical models that couple
fluid and chemical transport with mechanical properties is of fundamental interest (as for example
in (15) and (16)). A candidate system is a vascularized tissue, where the elastic phase (comprised
of cells, fluid and protein matrix) undergoes small strains and the fluid phase (the blood supply)
flows slowly. In this scenario, nutrients are delivered to the cell population by diffusion across
the blood vessel walls, and may induce cellular proliferation and hence growth. In the context
of drugs delivered through the blood supply, cellular death and tissue regression may result (for
example, tumour treatment by chemotherapeutics); indeed, poroelastic frameworks have been used
to model solid tumours (see (17, 18) and the discussions within) and to extract tissue-specific
poroelastic parameters from biological experiments (19). In a recent study (20), a combination
of experiments and theory has also been used to develop a poroelastic model for the cytoplasm of
living cells. Alternative scenarios of interest include tissue engineering applications, where tissue
growth must be tightly controlled by providing a biomechanical and biochemical environment that
mimics the physiological scenario. In many such situations surface growth of a cellular phase
is a key feature, for example, in tissue expansion in hollow fibre bioreactors (21) (among many
others). In (22)–(24) mixture theory has been developed for such biological applications, and the
interplay between fluid and chemical transport and tissue growth are explored; however, such
models present challenges if the evolution of solid stresses are included (see (25) and (11) for
examples and discussions). Also, a remarkable example of surface growth modelling can be found

1 In this work we refer to interfacial mass exchange between the solid and the fluid phase as ‘growth’, notwithstanding the
sign of the mass flow that can actually indicate ‘resorption’.
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in (26), where a rigorous thermomechanical theory to account for the coupling between growth
and mass transport phenomena across material interfaces is developed and biological examples are
provided.

Inevitably any modelling approach faces challenges for integration with specific biological
scenarios. Poroelastic materials (and, in general, multiphase frameworks) require the prescription of
constitutive relationships to describe the fluid and solid stresses within the material of interest. In the
case of linear elasticity, combined mathematical and experimental approaches (for example (19, 20))
have been used to extract solid parameters and make predictions around solid stress generation within
living tissues. However, many biological soft tissues and cell aggregates behave as complex non-
linear-elastic (and possibly visco-plastic) materials, as in (27, 28), so that the increased complexity
of such models has limited the extraction of relevant parameters from biological experiments.
Indeed, model parameterization is a much broader issue given that mechanical, chemical and kinetic
properties are both tissue and species-specific, and this motivates collaboration between biologists
and mathematicians to close the data gap.

In the current study we derive a new poroelastic model that includes mass exchange between
the solid and the fluid phase. The focus is on the accretion (or appositional growth) that occurs at
the interface between solid and fluid in the pores. The mass exchange at the microscale interface
modifies the mechanical properties of the elastic phase (which may be anisotropic) and the hydraulic
characterization of the flow in the microstructure. While the small strains assumption applies to
ensure linearity in the equations, finite growth (finite advancement of the fluid–solid interphase) is
retained. This regime of infinitesimal displacement of the solid phase with respect to a finite evolution
of the geometry rules out applicability of the model to questions of emergence of residual stress, an
issue that should be addressed in the framework of non-linear elasticity (8).

The model is derived using a two-scale asymptotic expansion, which exploits the separation
between the length scale of the pores and the macroscale of the material. Such an approach has
already been developed in the literature. In (29) Burridge and Keller present a rigorous derivation
of Biot’s equations of poroelasticity (30, 31) via the multiple scales method, whereas in (32) the
interface law between a deformable porous medium containing a viscous fluid and an elastic body
is derived using rigorous homogenization and the two-scale convergence approach. In (33), Shipley
and Chapman derive a dual porous medium model for vascular and interstitial fluid transport, and
chemical transport, in a vascularised tissue. Here the averaging procedure is applied to a pore-
scale description of coupled fluid transport and linear elasticity, with solid accretion at the interface
between the two phases.

The article is organized as follows. In Section 2, we formulate the mechanical model description
in both the fluid and solid phases of the material. The solid phase is described using a linear elastic
model, and is coupled to Stokes’ flow for the fluid phase via the normal component of stress on
the interface between the two. Continuity of the mass flux is also imposed on the fluid–solid
moving interface (16), alongside a growth law to describe its temporal evolution. In Section 3
non-dimensionalisation of the equations is performed. Section 4 is devoted to the multiple scales
analysis and, in particular, the assumptions of length scale separation and local periodicity are
highlighted. Under these assumptions, a formal two-scale asymptotic expansion is used to decouple
micro and macro spatial variations, and thus derive the effective equations for a poroelastic growing
material in Section 5. The results are discussed in section 6, while in Section 7 key limiting cases are
highlighted; in particular the poroelastic equations of (29) are recovered in the limit of no growth,
as well as the specific form of the model in the isotropic case. Finally, conclusions are presented in
Section 8.
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Fig. 1 A 2D cartoon of the pore scale (left), depicting the porous structure of the medium on the microscale
and the corresponding homogenized one on the macroscale (right), where the geometry of the microstructure
is smoothed out

2. The governing equations for a poroelastic growing medium

We consider a set � ∈ R
3, such that � = �s ∪ �f , where �s and �f represent the porous solid

and fluid compartment, respectively. At this stage, every field of interest is a function of space x and
time t. We assume the typical length scale r of the pores to be small compared to the characteristic
size d of the domain (see Fig. 2), so that their ratio

r/d = ε � 1. (2.1)

We consider an incompressible Newtonian fluid, so that, assuming that body forces and inertial
effects can be neglected, the Stokes’ problem holds in the fluid domain �f ,

∇ · σ = 0, ∇ · v = 0, (2.2)

where σ denotes the fluid stress tensor defined by

σ = −pI + μ
(
∇v + (∇v)T

)
(2.3)

and v, p, μ are the fluid velocity, pressure and viscosity, respectively.
The solid phase is modelled as a linear, elastic solid, with inertia and body forces neglected,

through
∇ · τ = 0 (2.4)

in �s, where the solid stress tensor τ is given by

τ = C∇u. (2.5)
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Here, u is the displacement vector for the solid compartment and C is the fourth rank elasticity
tensor (with components denoted Cijkl for i, j, k, l = 1, 2, 3), completely defined by its action on the
symmetric part of ∇u (34), through

C∇u = Ce, e: = 1

2

(
∇u + (∇u)T

)
. (2.6)

In other words, the skew component of ∇u is in the kernel of C. Note that if C∇u = Ce = 0 then
u is a rigid body motion.

Interface conditions for the fluid-structure interaction apply between the fluid and the solid phase.
Following (16), the boundary �: = ∂�s ∩ ∂�f is represented as a moving interface with velocity
v� . Enforcing global mass conservation in � we define

ρf (v − v�) · n = ρs(u̇ − v�) · n = g̃ on �, (2.7)

where u̇, ρf and ρs are the solid phase velocity and the fluid and solid densities, respectively. Here
n is the unit vector normal to the interface pointing into the solid region, and g̃ is the mass transfer
rate per unit of surface area, which is assumed to be prescribed and strictly positive in the case of
solid phase growth. Equation (2.7) accounts for mass exchange between the solid and fluid phase,
and is equivalent to the following two scalar conditions

ρs(u̇ − v�) · n = g̃ on �, (2.8)

ρf (v − v�) · n = g̃ on �. (2.9)

These equations relate the interface velocity to the mass transfer rate g̃ and to the solid and fluid
velocities and densities, respectively. From (2.8) we obtain

v� · n = u̇ · n − g̃

ρs
on �. (2.10)

Substituting (2.10) into (2.9) gives

ρf v · n − ρf u̇ · n + ρf
g̃

ρs
= g̃ on �. (2.11)

Finally, dividing by ρf and rearranging terms, (2.11) yields the following jump condition for the
fluid and solid velocities at the interface:

(v − u̇) · n = g̃

(
1

ρf
− 1

ρs

)
on �. (2.12)

In order to simplify notation, we denote by g the right-hand side of (2.12), so that

g := g̃

(
1

ρf
− 1

ρs

)
. (2.13)
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The tangential components of the velocity and all components of the stress on � are continuous
across the interface, such that

τn = σn on � (2.14)

u̇ · t = v · t on �, (2.15)

where t is any unit vector tangent to the interface.

2.1 Kinematics of the moving interface

The interface velocity (which is directed along n), satisfies

v� · n = v · n − g̃

ρf
= u̇ · n − g̃

ρs
, (2.16)

where (2.8) and (2.9) have been used for the simplification. The function g̃ accounts for surface
growth and should be constitutively specified according to the physical system at hand. We further
note that, as the interface is moving, the fluid and solid subdomains�s(t) and�f (t) change in time.2

The assumptions underlying the material descriptions of the solid and fluid phases (small deformation
of the solid elastic phase, negligible inertia) do not affect surface growth. The present framework
allows for finite growth at a pore scale; the position of the fluid–solid interface evolves in time
according to the interface velocity condition (2.16), and global mass conservation in � is ensured
by the jump condition (2.12). Assuming that the moving interface is described by F(x, t) = 0, its
kinematics are described by

∂F

∂t
+ ∇F · v� = 0. (2.17)

Equations (2.2)–(2.5) describing the mechanics of the fluid and solid phases, together with the
interface conditions, (2.12), (2.14) and (2.15), and the kinematic relationships for the evolution of
the interface, (2.16)–(2.17), represent the system of partial differential equations to be solved for
every x ∈� and for every t ∈ (0,T ), T ∈ R

+, (subject to appropriate initial and boundary conditions).
When g̃ = 0, there is no growth and the normal components of the fluid and solid velocities are equal
and are the velocity of the interface itself. In this particular case the problem reduces to a standard
linearized fluid-structure interaction problem as in (29).

3. Non-dimensionalization

Next we formulate the model in non-dimensional form in order to clarify the mutual weight of the
relevant physical mechanisms. The model derived in this article does not aim to be application-
specific; as such, we do not motivate the non-dimensionalization via specific parameter values (see
(33) and (35) for biological tissues), but instead we perform a formal non-dimensionalization to
highlight the proper asymptotic behaviour of the relevant fields. We rescale

x = dx′, v = Cr2

μc
v′, v� = Cr2

μc
v′
� p = Cdp′, u = du′, t = dμc

Cr2
t′,

2 We avoid denoting this time dependence explicitly in the following sections for simplicity of notation.
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g̃ = ρc
Cr2

μc
g̃′, μ = μcμ

′, ρs = ρcρ
′
s, ρf = ρcρ

′
f , C = CdC

′,

g = Cr2

μc
g′, g′ = g̃′

(
1

ρ′
f

− 1

ρ′
s

)
, τ = Cdτ ′, σ = Cdσ ′, (3.1)

where C, ρc and μc denote the characteristic pressure gradient, density and viscosity, respectively.
Here, we scale the spatial coordinate and the elastic displacement by the characteristic length scale
of the domain d, whereas the non-dimensional form of the velocity is suggested by the parabolic
profile of a viscous fluid flowing in a straight channel of radius r

V = Cr2/μc. (3.2)

Further, we scale pressure and stresses by adopting the same reference pressure gradient exploited in
(3.2), (multiplied by the reference length scale d) and time assuming d/V as a reference time scale
for slow flow of the fluid phase (which is analogous to that for deformation of the elastic material).

Thus, exploiting (3.1) and dropping the prime notation for the sake of simplicity, (2.2)–(2.5),
(2.12), (2.14) and (2.15) become

∇ · σ = 0 in �f (3.3)

−pI + ε2μ
(
∇v + (∇v)T

)
= σ in �f (3.4)

∇ · v = 0 in �f (3.5)

τn = σn, (v − u̇) · n = g, u̇ · t = v · t on � (3.6)

∇ · τ = 0, C∇u = τ in �s. (3.7)

The ε2 coefficient that appears in (3.4) follows when assuming a reference velocity of the type (3.2)
and is the standard scaling for Stokes’ flow in porous media (see for example (4, 6, 29, 36)), which
reflects the asymptotic behaviour of the characteristic fluid velocity in the pores, that scales with ε2

as ε → 0, as noted in (5).
The kinematic condition is rewritten in non-dimensional form using the pore spatial scale r, so

that the relevant time scale is

Tg = r

V
= ε

dμc

Cr2
. (3.8)

The interface kinematic equations, (2.16) and (2.17), with the time scale (3.8) yield, in non-
dimensional form

1

ε

∂F

∂t
+ ∇F · v� = 0, (3.9)

v� · n = v · n − g̃

ρf
= u̇ · n − g̃

ρs
, (3.10)

where the prime notation has again been neglected, and the ε−1 term appearing at the left hand side
of (3.9) accounts for the time scale separation between finite growth and linearized motion of the
material.
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4. Multiple scales formulation

In this section we employ a formal two-scales asymptotic expansion widely exploited in the literature
(for example (4)–(7) and (37)) to derive a continuum macroscale model for the system of equations
(3.3)–(3.7), (3.9)–(3.10). Since ε � 1, we enforce a sharp length scale separation between r (the
microscale) and d (the macroscale), defining

y: = x/ε. (4.1)

Following the usual approach in multiscale analysis, from now on x and y denote independent
variables, representing the macro and micro spatial scale, respectively. In the analysis that follows,
all the fields (denoted collectively by ψ) and the elasticity tensor C are functions of these
independent spatial variables, ψ = ψ(x, y, t) and C = C(x, y), and the differential operators
transform accordingly,

∇ → ∇x + ε−1∇y. (4.2)

Now we formally perform the following multiple scales expansion in power series of ε for every
field ψ :

ψε(x, y, t) =
∞∑

l=0

ψ (l)(x, y, t)εl. (4.3)

The components ψ (l) are defined for every x belonging to the macroscale domain, whereas y spans
only the specific portion of the microscale where ψ is defined. We further assume regularity of the
microstructure, so that every ψ (l) and C are y-periodic. This means that local periodicity only is
assumed, such that any (regular enough) macroscale variation in any field ψ is in principle allowed.
Furthermore, since the surface description F can macroscopically vary, macroscale variations in the
interface � are also permitted. A schematic of the setup is shown in Fig. 2.

Under the transformation (4.2), (3.3)–(3.7), (3.9)–(3.10) become

∇y · σε + ε∇x · σε = 0 in �f (4.4)

pε I − εμ
(
∇yvε + (∇yvε)T

)
− ε2μ

(
∇xvε + (∇xvε)T

)
= σε in �f (4.5)

∇y · vε + ε∇x · vε = 0 in �f (4.6)

τεn = σεn, u̇ε · t = vε · t, vε · n − u̇ε · n = gε on � (4.7)

∇y · τε + ε∇x · τε = 0,
1

ε
C∇yuε + C∇xuε = τε in �s (4.8)

∂Fε
∂t

+ ∇yFε · v�ε + ε∇xFε · v�ε = 0 (4.9)

v�ε · n = vε · n − g̃ε
ρf

= u̇ε · n − g̃ε
ρs

on �, (4.10)

where pε , vε , uε , σε , τε , v�ε , g̃ε , gε and Fε are the representation in the power series form (4.3) of the
corresponding fields. Next we substitute power series expansions of the form (4.3) into the relevant
fields in (4.4)–(4.10); by equating coefficients of εl for l = 0, 1, . . ., we derive the macroscale model
for the poroelastic growing medium in terms of the leading (zeroth) order relevant fields.
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5. The macroscopic model

In this section we derive a closed system of partial differential equations for the macroscopic
behaviour of the leading order fields p(0), v(0), u(0), by averaging over the zeroth and first-order
systems corresponding to (4.4)–(4.10).

Whenever a component of the asymptotic expansion retains a dependence on the microscale y,
we can take its integral average, defined as follows:

〈ψ〉k = 1

|�|
∫
�k

ψ(x, y, t) dy k = f , s, (5.1)

where |�| represents the volume of the domain and integration is performed over the microscale y.
Because of y-periodicity, the integral average can be performed over one representative cell only
(see Fig. 1): from now on, (5.1) should be understood as a cell average, where |�| is replaced by the
cell volume and �k by the corresponding k-phase subvolume.

Equating coefficients of ε0 in the system (4.4)–(4.10) yields

∇y · σ (0) = 0 in �f (5.2)

σ (0) = −p(0)I in �f (5.3)

∇y · v(0) = 0 in �f (5.4)

τ (0)n = σ (0)n on � (5.5)

u̇(0) · t = v(0) · t, v(0) · n − u̇(0) · n = g(0) on � (5.6)

∇y · τ (0) = 0 in �s (5.7)

C∇yu(0) = 0 in �s (5.8)

∂F(0)

∂t
+ ∇yF(0) · v(0)

� = 0 (5.9)

v(0)
� · n = v(0) · n − g̃(0)

ρf
= u̇(0) · n − g̃(0)

ρs
on �, (5.10)

whereas equating coefficients of ε1 in (4.4)–(4.8) yields

∇y · σ (1) + ∇x · σ (0) = 0 in �f (5.11)

−p(1)I + μ
(
∇yv(0) + (∇yv(0))

T) = σ (1) in �f (5.12)

∇y · v(1) + ∇x · v(0) = 0 in �f (5.13)

τ (1)n = σ (1)n on � (5.14)

u̇(1) · t = v(1) · t on � (5.15)

v(1) · n − u̇(1) · n = g(1) on � (5.16)
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∇y · τ (1) + ∇x · τ (0) = 0 in �s (5.17)

C

(
∇yu(1) + ∇xu(0)

)
= τ (0) in �s. (5.18)

Equations (5.2) and (5.3) imply that p(0) does not depend on the microscale y, hence

p(0) = p(0)(x, t). (5.19)

Equation (5.8) implies, together with the elasticity tensor property (2.6), that u(0) must correspond
to a rigid body motion. Since the only y-periodic solution of this type is y-constant, we see that

u(0) = u(0)(x, t). (5.20)

Hence the leading order solid displacement field is also locally constant.

5.1 Macroscale fluid flow

In order to obtain information on the leading order velocity of the fluid v(0), we note that, enforcing
(5.3), (5.6), (5.11)–(5.12) form a Stokes-type boundary value problem for (v(0), p(1)) which can be
rewritten in terms of the relative fluid–solid displacement w defined by

ẇ(x, y, t): = v(0)(x, y, t) − u̇(0)(x, t), (5.21)

as follows

μ∇2
y ẇ − ∇yp(1) − ∇xp(0) = 0 in �f (5.22)

∇y · ẇ = 0 in �f (5.23)

ẇ · t = 0 on � (5.24)

ẇ · n = g(0) on �, (5.25)

where the knowledge that u(0) is locally constant has been explicitly used. Now we exploit linearity
together with (5.19) and propose the following ansatz for the solution (ẇ, p(1)):

ẇ = −W̃∇xp(0) + h, (5.26)

p(1) = −P · ∇xp(0) + ph, (5.27)

where p(1) is defined up to an arbitrary y-constant function and the quantities (W̃, P), (h, ph) satisfy
the following differential cell problems, to be solved on the single representative cell

μ∇2
y W̃T − ∇yP + I = 0 in �f (5.28)

∇y · W̃T = 0 in �f (5.29)

W̃ = 0 on �, (5.30)
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μ∇2
y h − ∇yph = 0 in �f (5.31)

∇y · h = 0 in �f (5.32)

h · t = 0 on � (5.33)

h · n = g(0) on �. (5.34)

The above systems of equations, (5.28)–(5.30) and (5.31)–(5.34), are supplemented by periodicity
conditions on the unit cell in y, together with suitable uniqueness conditions for P, ph. Example
conditions are

〈P〉f = 0, 〈ph〉f = 0. (5.35)

Exploiting definition (5.21) and equation (5.26), we notice that v(0), and hence its cell average,
can be recovered in terms of p(0) and u(0) as follows

〈ẇ〉f =
〈
v(0)

〉
f
− φu̇(0) = −

〈
W̃
〉
f
∇xp(0) + 〈h〉f , (5.36)

where φ(x, t): = |�f |/|�| is the porosity of the material.
Exploiting the local incompressibility constraint (5.32) together with interface condition (5.34)

and y-periodicity, we note that

0 =
∫
�f

∇y · h dy =
∫
∂�f

h · n dSy =
∫
�

h · n dSy =
∫
�

g(0) dSy. (5.37)

Hence, the cell problem (5.31)–(5.34) has a solution if and only if the compatibility condition

∫
�

g(0) dSy = 0 (5.38)

is satisfied. Given that

g(0) = g̃(0)
(

1

ρf
− 1

ρs

)
, (5.39)

and g̃(0) �= 0 when surface growth is occurring, condition (5.38) is automatically satisfied whenever
the density difference between the fluid and solid compartment is negligible,

ρf = ρs. (5.40)

In this case, every g(l) for l = 0, 1, . . . and in particular g(0) reduces to zero and the unique solution
of the cell problem (5.31)–(5.34) is h = 0. This is not surprising, as the interface condition (5.34)
is directly related to the jump condition (5.25), that arises from mass conservation for a moving
interface. Indeed, if ρf = ρs, then mass conservation is automatic, the fluid and solid velocities on
the interface are equal, and as a consequence h · n = 0 on �. It is worth remarking that g(0) = 0
does not imply g̃(0) = 0: the interface moves in absence of a density difference, with leading-order
velocity driven by g̃(0) and provided by (5.10). The assumption (5.40) applies in most applications of
interest, for example interstitial fluid versus cells in biological tissues, or water versus ice in glaciers.
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Whenever (5.40) does not apply and there is a density jump between the solid and fluid phases,
possible choices for the growth law g̃(0) are restricted by the compatibility condition (5.38). For
example, any functional form of g̃(0) that takes the form

g̃(0) = v∗ · n (5.41)

satisfies the compatibility condition (5.38) provided that v∗ is a locally divergence-free vector field,

∇y · v∗ = 0 in �f . (5.42)

Clearly, a prescription of the type (5.41) is in general time-dependent because n evolves in time while
the interface is moving. In practice in this scenario, given a suitable initial condition on the interface
position, it suffices to prescribe the velocity field v∗ (satisfying (5.42)); from here the updated
interface normal vector n may be calculated using the leading-order kinematics of the interface (5.9)
for every t ∈ (0,T ).

5.2 Effective poroelasticity

Finally, we require a set of macroscale equations to close the system for the solid displacement u(0)

and the fluid pressure p(0). Taking the integral average of the sum of (5.11) and (5.17) and using the
divergence theorem yields

1

|�|
∫
�

(
σ (1)n − τ (1)n

)
dSy =

〈
∇x · τ (0)

〉
s
− φ∇xp(0), (5.43)

where the contributions from the periodic boundaries cancel and the knowledge that p(0) is locally
constant has been exploited. Given the normal stress condition on internal boundaries (5.14), (5.43)
reduces to 〈

∇x · τ (0)
〉
s
− φ∇xp(0) = 0. (5.44)

Equation (5.44) can be rewritten in terms of
〈
τ (0)

〉
s

by means of the Reynolds transport theorem (see

for example (6)) and using y-periodicity, namely∫
�s

∇x · τ (0) dy = ∇x ·
∫
�s

τ (0) dy +
∫
�

τ (0)q dSy, (5.45)

where the vector q, which accounts for macroscale variations in the interface �, is defined by

q: = (∇xr(x, y, t))Tn. (5.46)

Here the fact that the unit outward normal vector to ∂�s is −n has been used in the simplification.
The vector r (see Fig. 2), which spans the interface �, should be recovered by integration of the
interface descriptor (5.9). When each �k is independent of the macroscale, q = 0 and we say that
the medium is macroscopically uniform. Using (5.44) together with (5.45) we obtain

∇x ·
〈
τ (0)

〉
s
− φ∇xp(0) + sτ = 0, (5.47)

where

sτ : = 1

|�|
∫
�

τ (0)q dSy (5.48)

is the momentum production due to macroscopic changes in the solid–fluid interface.
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Fig. 2 2D schematic of a non-macroscopically uniform medium. In this case, the model supports macroscale
variations of the microstructure so that, for every fixed t ∈ (0,T ), the interface position vector r related to the
same (homologous by y-periodicity) local point is varying with respect to x, that is r(xa, y, t) �= r(xb, y, t).
Whenever the medium exhibits such variations, one cell problem for every x of the homogenized domain needs
to be solved

Now we notice that (5.5), (5.7) and (5.18) form a linear Neumann-type differential problem for
u(1) which can be written, enforcing (5.19) and (5.20), as

∇y ·
(
C∇yu(1)

)
= 0 in �s (5.49)(

C∇yu(1) + C∇xu(0)
)

n = −p(0)n on �, (5.50)

equipped with y-periodicity in �s. Since u(1) is guaranteed to be a bounded vector function of y by
local periodicity, then the solution is found to be unique up to an arbitrary y-constant vector field
and can be expressed, exploiting linearity of the problem, as

u(1) = A∇xu(0) + ap(0), (5.51)

where A is a rank three tensor, with components denoted Aijk for i, j, k = 1, 2, 3.
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The cell problem for the vector a is given by

∇y · (C∇ya
) = 0 in �s (5.52)(

C∇ya
)

n = −n on �, (5.53)

whereas A satisfies, in component notation,

∂

∂yj

(
Cijkl

∂Akνγ

∂yl

)
= 0 in �s (5.54)

Cijkl
∂Akνγ

∂yl
nj + Cijνγ nj = 0 on �, (5.55)

where i, j, k, l, ν, γ = 1, 2, 3 and summation over repeated notation indices is used.
As previously, a further condition for a and each Aijk is required to ensure uniqueness; example

conditions are:
〈a〉s = 0,

〈
Aijk

〉
s = 0 ∀ i, j, k = 1, 2, 3. (5.56)

Note that, since u(1) is directly related to the leading order solid stress tensor via (5.18), the form of
u(1) given by (5.51) indicates that τ (0) (and also its cell average) is a function of both the gradient
of the leading order solid displacement and the macroscopic fluid pressure p(0), as expected for a
poroelastic material. In fact, enforcing (5.51), we can exploit (5.18), which relates the leading order
solid stress tensor to ∇xu(0) and ∇yu(1), to provide an explicit relationship for τ (0) as a function of
∇xu(0) and p(0), namely

τ (0) = (CM + C)∇xu(0) + CQp(0), (5.57)

where the fourth rank tensor M and the second rank tensor Q are defined as follows

M: = ∇yA, Q : = ∇ya. (5.58)

Now, (5.47) and (5.48) can be regarded as the effective macroscale stress equilibrium equations for
the poroelastic medium.

A final scalar equation is required to close the macroscale model for the zeroth order variables

u(0),
〈
v(0)

〉
f
, p(0) and this is provided by averaging the incompressibility condition (5.13) to give

〈
∇y · v(1)

〉
f
+
〈
∇x · v(0)

〉
f

= 0. (5.59)

Applying the divergence theorem in the y variable, y-periodicity together with (5.16), and the
Reynolds theorem in x gives

1

|�|
∫
�

u̇(1) · n dSy + ∇x ·
〈
v(0)

〉
f
− sv = 0, (5.60)

where

sv: = 1

|�|
∫
�

(v(0) · q − g(1)) dSy (5.61)
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is an effective mass source which is related to both the lack of macroscopic uniformity and to surface
accretion (through g(1)). Since∫

�

u̇(1) · n dSy = −
∫
�s

∇y · u̇(1) dy = −
∫
�s

Tr (∇yu̇(1)) dy, (5.62)

(5.60) can be rewritten by means of (5.51) and (5.58), accounting for (5.19) and (5.20), as

∇x ·
〈
v(0)

〉
= 〈

Tr Ṁ
〉
s : ∇xu(0) + 〈Tr M〉s : ∇xu̇(0) +

〈
Tr Q̇

〉
s

p(0) + 〈Tr Q 〉s ṗ(0) + sv. (5.63)

Having derived the new effective model on the macroscale, in the next sections we discuss
the physical relevance of the various terms before comparing it against traditional poroelastic
frameworks in the literature.

6. Discussion of the results

We have derived the homogenized macroscale model for the mechanical behaviour of a poroelastic
medium, incorporating surface growth of the solid phase (provided that a suitable growth law is
imposed constitutively). Equations (5.36), (5.47) and (5.63) form the effective macroscale differential
system to be solved for a growing poroelastic medium, provided that the time evolution of the
microstructure is updated by (5.9) and (5.10). It is a closed system for the leading order fields 〈v(0)〉f ,
u(0), p(0), which are functions of x and t only; substituting (5.26) and (5.57) into (5.47), (5.63)
yields a self-consistent system of partial differential equations for the leading order displacement
and pressure fields u(0) and p(0), so that the average fluid velocity 〈v(0)〉f can be finally recovered
by means of (5.36).

The macroscale behaviour of the fluid flow is given by an effective Darcy-type law for the relative
average velocity 〈ẇ〉f = 〈v(0)〉f −φu̇(0) given by (5.36). The effective permeability tensor 〈W̃〉f (x, t)
provides the link between macroscale fluid transport and the pore-scale geometry and dynamics. The
correction velocity 〈h〉f on the left hand side of (5.36) comes from global mass conservation (the
solid and fluid phases exchange mass without any surface source), and vanishes whenever there is
no density difference between the two compartments.

The effective stress equilibrium equations (5.47) can be written in the form

∇x · τE = −sτ , (6.1)

where
τE : =

〈
τ (0)

〉
s
− φp(0)I = 〈CM + C〉s ∇xu(0) + (〈CQ 〉s − φI) p(0). (6.2)

Equations (6.1) and (6.2) can be formally viewed as the average force balance equations for the
poroelastic medium.

The scalar equation (5.63), which in standard poroelasticity directly relates the pressure to the
fluid and solid phases motion, here encodes instead both the surface growth and the movement of the
material. The two terms on the right-hand side, including time derivatives of the fields p(0) and u(0),
are related to the small displacement of the structure. The two terms including the time derivatives of
the coefficients (Tr Ṁ, Tr Q̇ ) account for the interplay between the elastic movement of the structure
and surface growth. In fact, they reduce to zero both in the no growth limit (the coefficients are no
longer varying in time) and in the rigid limit (every u(l) for l = 0, 1, . . . reduces to zero, implying
that, through (5.51) and (5.58), Q = 0).
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Remark 6.1. Since the interface � is moving, it should be understood that every cell problem must
be solved in the evolving geometry, described by the leading-order equation for transport of the
interface (5.9). As a result, the cell variables W̃, P, h, ph, A, a are microscale variables, and depend
on t as well as x. Hence, although the effect of growth is purely geometrical at the microscale,
it impacts on the macroscale model through the dependence of such variables on the microscale
geometry. This represents a crucial difference compared to previous works, where the cell problems
and the related macroscale coefficients do not involve any time dependence (see for example (33)
and (36)).

Remark 6.2. When the elasticity tensor C is y-constant, the unique (up to a y-constant vector field)
solution of (5.49) and (5.50) can be written in the form

u(1) = A∇xu(0) + ap(0) = ÃC∇xu(0) + ap(0), (6.3)

where the rank-three tensor Ã solves, componentwise

∂

∂yj

(
Cijkl

∂Ãkνγ

∂yl

)
= 0 in �s (6.4)

Cijkl
∂Ãkνγ

∂yl
nj + δiνδjγ nj = 0 on �. (6.5)

Hence, defining the tensor:

L: = ∇yÃ (6.6)

yields

∇yu(1) = M∇xu(0) + Qp(0) = LC∇xu(0) + Qp(0), (6.7)

so that M = LC. Furthermore, comparing (6.4) and (6.5) with the cell problem for a given by (5.52)
and (5.53), we deduce that

Tr Ã = a, (6.8)

or, in component notation.

Ãikk = ai, i = 1, 2, 3, (6.9)

up to an y-constant vector.
In summary, in the simplified scenario of a locally constant elasticity tensor, once Ã is calculated

solving the cell problem (6.4-6.5), it suffices to exploit (6.9) to obtain the vector a and hence the
tensors Q and L via (5.58) and (6.6).

6.1 Macroscopic uniformity

The momentum source sτ and the mass source sv are both related to variations of the interface
position vector r with respect to x; these contributions arise when a poroelastic growing medium is
not macroscopically uniform, so that �k = �k(x, y) and in particular q �= 0. The vector q reduces
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to zero whenever r = r(y, t) only and this implies, in turn, that both the initial value for the interface
position and the interface velocity are x-constant, so that

F(0)
0 = F(0)

0 (y), (6.10)

v(0)
� = v(0)

� (y, t), ∀t ∈ (0,T ), (6.11)

where F(0)
0 = F(0)|t=0. However, the interface velocity is directly related to the growth law g̃ (see

(2.16)), so that, since we have assumed that movement of the interface is dominated by surface
accretion, condition (6.11) is equivalent to

g̃(0) = g̃(0)(y, t) ∀t ∈ (0,T ). (6.12)

Whenever the medium is macroscopically uniform sτ and sv simplify to

sτ = 0, sv = − 1

|�|
∫
�

g(1)(y, t) dSy, (6.13)

and the macroscale model to be solved becomes⎧⎪⎪⎨
⎪⎪⎩

〈
v(0)

〉
f
− φu̇(0) = −

〈
W̃
〉
f
∇xp(0) + 〈h〉f , ∇x · τE = 0, (6.14)

∇x ·
〈
v(0)

〉
f

= 〈
Tr Ṁ

〉
s : ∇xu(0) + 〈Tr M〉s : ∇xu̇(0) +

〈
Tr Q̇

〉
s

p(0) + 〈Tr Q 〉s ṗ(0) + sv,

where (6.2) represents the effective constitutive relationship for the poroelastic growing medium.
Whenever macroscopic uniformity applies, the following solution scheme for the macroscale

model applies:

1. Fix material properties of the medium ρs, ρf , μ and elastic moduli C.
2. Fix a microscale structure, including a unit cell definition together with an initial value for the

interface position F(0)
0 (y).

3. Prescribe constitutively a growth law g̃, so that every g̃(l) for l = 0, 1, . . . is defined. In particular,
g(0) must satisfy the compatibility condition (5.38). Whenever the densities of the solid and fluid
phases are equal (ρs = ρf ), every g(l) = 0 for l = 0, 1, . . . so the compatibility condition (5.38)
is automatic and h = 0.

4. Fix a macroscale geometry and corresponding boundary conditions.
5. Solve the cell problems (5.28) and (5.29), (5.31) and (5.32), (5.52) and (5.53), (5.54) and (5.55),

and calculate the corresponding macroscale model coefficients exploiting (5.1) and (5.58).
6. Solve the macroscale model (6.14), using (6.2) as the effective constitutive relationship for the

material.
7. Update the interface position by means of (5.9), where the leading-order interface velocity is

recovered by relationship (5.10).
8. Repeat the calculations explained in (5,6,7) for every t ∈ (0,T ).

It is worth remarking that, whenever the medium is not macroscopically uniform, additional
momentum and mass sources of the form (5.48) and (5.61) must be taken into account. Further,
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the interface position would depend on the macroscale variable x, so that, in principle, every cell
problem should be solved for each x belonging to the macroscale domain (see Fig. 2). Hence, in this
scenario, computational feasibility may be compromised.

7. Particular cases

In this section we focus on specific physical regimes, namely the no-growth limit and the macroscopic
isotropy of the poroelastic material. These particular cases are chosen as they coincide with traditional
literature results, namely the standard poroelasticity models of Burridge and Keller (29), and also a
physically relevant special case.

In order to avoid unessential technicalities and to better highlight the results, in the following we
assume that C is y-constant, so that the considerations in Remark 6.2 apply.

7.1 No growth limit and comparison with standard poroelasticity

In the limiting case of no growth, we compare our model to the classical poroelasticity results. In
particular, we refer to (29), where the authors derive a set of equations for a poroelastic medium by
means of a multiscale approach that matches the classical Biot system of equations, reported in (30)
and (31), in the case of macroscopic uniformity.

Thus, setting g̃ = 0 and q = 0 our results, written for the average relative fluid–solid velocity
〈ẇ〉f , the leading order elastic displacement u(0) and the leading order pressure p(0), reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ẇ〉f = −
〈
W̃
〉
f
∇xp(0) (7.1)

∇x ·
〈
τ (0)

〉
s
− φ∇xp(0) = 0 (7.2)

ṗ(0) = 1

〈Tr Q 〉s

[
Tr
(
φ∇xu̇(0) −

〈
LC∇xu̇(0)

〉
s

)
+ ∇x · 〈ẇ〉f

]
(7.3)

〈
τ (0)

〉
s
= 〈CLC + C〉s ∇xu(0) + 〈CQ 〉s p(0), (7.4)

where in (7.3) terms have been rearranged and the interface is assumed fixed, so that the coefficients
are no longer varying in time. Since we are in a linearized motion context and the subdomains �f
and�s are no longer time dependent, following (29), we focus on linearized dynamics. We consider
time harmonic motion with angular frequency ω, such that for every field ψ we have ψ̇ = iωψ .
Then (7.1)–(7.3) become⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈w〉f = − 〈 W〉f ∇xp(0) (7.5)

∇x ·
〈
τ (0)

〉
s
− φ∇xp(0) = 0 (7.6)

p(0) = 1

〈Tr Q 〉s

[
φ∇x · u(0) − Tr 〈LC〉s : ∇xu(0) + ∇x · 〈w〉f

]
, (7.7)

where W = (iω)−1W̃ solves

iωμ∇2
y WT − ∇yP + I = 0 in �f (7.8)
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∇y · WT = 0 in �f (7.9)

W = 0 on �. (7.10)

This system recovers the results of (29),3 when they are simplified to the quasistatic scenario.
Furthermore, the scalar coefficient multiplying the square brackets in (7.7), which is, in the present
framework, directly related to the geometric and mechanical properties of the elastic phase only,
should be compared to the one in (29)4 given, in our notation, by

− κ

φ − κ 〈Tr Q 〉s
, (7.11)

where κ denotes the bulk modulus. Since incompressibility of the fluid phase is assumed here,

lim
κ→∞

(
− κ

φ − κ 〈Tr Q 〉s

)
= 1

〈Tr Q 〉s
, (7.12)

and hence standard poroelasticity is recovered. Note that, as in (29), if the solid matrix is rigid,
u(l) = 0 for every l, ẇ = v(0) and Q = 0. Thus rearranging terms, (7.5) and (7.7) are sufficient to
close the system for (v(0), p(0)), which reduces to〈

v(0)
〉
f

= −
〈

W̃
〉
f
∇xp(0), ∇x ·

〈
v(0)

〉
f

= 0, (7.13)

so that we recover the simple incompressible Darcy’s flow when a rigid, non-growing solid phase is
assumed.

Remark 7.1. In this work we assume quasistatic dynamical conditions and incompressibility of the
fluid phase, a restriction with respect to the regime addressed in (29). These assumptions can be easily
relaxed but add no increased physical insight. Moreover, we assume local periodicity, whereas in
(29) every field is simply a bounded function of y. Our formulation can nevertheless be generalized
to local boundness, when assuming that � = ∂�s = ∂�f . In this case, the results would be formally
equivalent, but substantially different, because the resulting microscale differential problems would
not be cell-decoupled problems and they would have to be solved on the whole microscale domain.
It is worth remarking that the present formulation allows us to account for arbitrary macroscale
boundary conditions, the latter prescribed, for example, by another mechanical system interacting
with the poroelastic growing medium.

7.2 Macroscopically isotropic medium

When the poroelastic medium is macroscopically isotropic, we obtain〈
W̃
〉
f

= k

μ
I, 〈Tr LC〉s = αI, (7.14)

〈Q 〉s = βI → 〈Tr Q 〉s = 3β, (7.15)

〈CLC + C〉s ∇xu(0) = λ∇x · u(0)I + 2μ̂e(0), (7.16)

3 Equations (7.4), (7.5)–(7.7) are equivalent to (36a), (39a), (39b) and (36b) on p. 1443 of (29), where average quantities are
represented by the superscript ¯ instead of brackets 〈 〉 and the porosity is denoted by Vf instead of φ.
4 We refer to (36b) and (37), p. 1443 of (29).
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where

e(0): = 1

2

[
∇xu(0) + (∇xu(0))

T]
,

and k, λ, μ̂ formally play the role of an effective permeability and Lamé constants respectively,
whereas α and β are poroelastic parameters. Note that α, λ, β and μ̂ depend both on the evolving
microstructure and on the microscale elastic properties of the medium, whereas k is purely geometric
and, in general, all of them are functions of x and t. Following Remark 6.2, we adapt results
(5.36), (5.47), (5.63) accordingly and exploit (7.14)–(7.16), so that, for a macroscopically isotropic
poroelastic growing medium, the system of equations to be solved reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈
v(0)

〉
f
− φu̇(0) = − k

μ
∇xp(0) + 〈h〉f (7.17)

∇x · τE = −sτ (7.18)

∇x ·
〈
v(0)

〉
f

= α̇∇x · u(0) + α∇x · u̇(0) + 3β̇p(0) + 3βṗ(0) + sv, (7.19)

while the effective isotropic constitutive relationship is

τE : =
[
λ∇x · u(0) + (α − φ)p(0)

]
I + 2μ̂e(0). (7.20)

8. Conclusions

We have developed a theoretical model which describes the macroscopic behaviour of a poroelastic
medium, when surface mass exchange occurs in the pores. The starting point is a coupled description
of linear elasticity and Stokes’ flow of the solid and fluid phases at the pore-scale. The solid and
fluid mechanics are coupled through continuity of stress and mass flow on the displacing solid–fluid
interface. Next, homogenisation via multiple scales yields the effective model on the macroscale.
The result is a new system of equations for a poroelastic medium where time-dependent growth is
encoded in the coefficients of the model; these coefficients can be computed by solving cell problems
on the evolving microstructure.

The fluid flow is described through a Darcy-type law (5.36) for the relative average velocity of
the fluid and solid phase, with an associated permeability tensor that captures the dependence on
the pore-scale structure. A correction velocity 〈h〉f appears as a consequence of the global transfer
of mass between the solid and fluid phases. The mechanical properties of the poroelastic growing
medium are directly encoded in a new effective constitutive relationship (5.57) which accounts for
the fluid pressure in the pore, small elastic displacement of the structure and surface accretion of the
solid phase. The interplay between the strain of the structure and appositional growth resides in the
effective mass source contributions.

When macroscopic uniformity applies, the model simplifies and a solution strategy is provided.
Limiting cases of the model are explored: in absence of growth, the model reduces to the classical
result of Burridge and Keller (29), while the assumption of isotropic growth leads to a much simpler
set of equations. In the latter scenario, hydraulic and mechanical parameters are recovered, which
formally play the role of effective permeability and Lamé moduli, respectively. A distinction can
be made between parameters which depend purely on the evolving microstructure and pore scale
elastic properties of the medium, and those which are purely geometric.
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The homogenized set of equations has been obtained under assumption of periodic microstructure,
infinitesimal strain and slow flow. While a slow modulation of the periodicity could be introduced
without affecting the main results, the physical assumptions underlying the use of linear elasticity
and Stokes’ equations cannot be relaxed.

There are numerous opportunities for extension and application of the model presented here to
specific mechanical systems. A natural development is to compare predictions of our new model to
the classical description of Biot in the context of specific pore-scale structures. (In (38) the authors
account for surface growth of a rigid solid porous medium, and numerical solutions of the resulting
model are explored). In general, a critical next step in the application of the models derived here is to
introduce constitutive equations for the mass exchange rate g̃, motivated by the specific application
under consideration. This will enable simulations to be performed, model testing and prediction.
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