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Abstract. Recent experimental data revealed a stiffening of aged cortical bone

tissue, which could not be explained by common multiscale elastic material models.

We explain this data by incorporating the role of mineral fusion via a new

hierarchical modeling approach exploiting the asymptotic (periodic) homogenization

(AH) technique for three dimensional linear elastic composites. We quantify for the first

time the stiffening that is obtained by considering a fused mineral structure in a softer

matrix in comparison with a composite having non-fused cubic mineral inclusions.

We integrate the AH approach in the Eshelby-based hierarchical mineralized

turkey leg tendon model [Tiburtius et al., Biomech Model Mechanobiol, 2014, DOI:

10.1007/s10237-013-0550-8], which can be considered as a base for musculoskeletal

mineralized tissue modeling. We model the finest scale compartments, i.e. the extra-

fibrillar space and the mineralized collagen fibril, by replacing the self-consistent

scheme with our AH approach. This way, we perform a parametric analysis at

increasing mineral volume fraction, by varying the amount of mineral that is fusing

in the axial and transverse tissue directions in both compartments. Our effective

stiffness results are in good agreement with those reported for aged human radius

and support the argument that the axial stiffening in aged bone tissue is caused by

the formation of a continuous mineral foam. Moreover, the proposed theoretical and

computational approach supports the design of biomimetic materials which require an

overall composite stiffening without increasing the amount of the reinforcing material.

Keywords: Multiscale composites, Asymptotic homogenization, Bioinspired materials,

Aged bone stiffening, Mineral fusing
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1. Introduction

Musculoskeletal mineralized tissues (MMTs), such as tendons and bones, can be

regarded as multiscale composite materials [1, 2, 3, 4] as their basic constituents interplay

on several hierarchical levels of organization [5, 6]. The main constituents of MMTs are

collagen, mineral crystals (in the form of hydroxyapatite), and water. The multiscale

nature of MMTs implies that information concerning solely the relative amount of the

individual constituents is not sufficient to fully determine their mechanical or other

properties. It is indeed crucial to capture the details of the mutual interplay among

the various basic constituents and the way they interact to arrange across several (up

to seven for human bone [5]) spatial scales to form the tissue scale MMT structure.

Although the composition and multiscale arrangement of these constituents strongly

depend on the specific tissue type, it is possible to identify the mineralized collagen

fibril (MCF) as a common fine scale structural motif in all mineralized tissues.

The MCF consists of self-assembled collagen molecules that align parallel in

staggered arrays, see Fig. 1 a). Hydroxyapatite crystals nucleate and grow within this

organic matrix, see Fig. 1 b), both in the intrafibrillar space, reinforcing the collagen

fibrils, and in the extrafibrillar space (ES), which primarily consists of mineral and

water, [5].

Figure 1: a) Model of a young mineralized fibril bundle (MCFB). Collagen molecules are stacked in

a fibril. Mineral crystals nucleate first within the gap regions (blue) and then also in the extrafibrillar

space (green). Adjacent fibrils are connected by collagen cross-links. b) Tissue aging leads to crystal

growth and nucleation of more crystals. The latter occurs predominantly in the extrafibrillar space.

Adjacent crystals can fuse (I-III). The fusion of crystals between adjacent fibrils (II) establish a rigid

fusion, eventually replacing the function of the more flexible collagen cross-links. c) The development

of aligned and partially fused crystal chains can also be seen in scanning electron micrographs of

deproteinized bone; image reproduced from [7] with permission.

The mechanical properties of the mineral and collagen phase play a crucial role in

the setup of any macroscopic MMT model. More specifically, changes in the collagen
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properties have a stronger influence on macroscopic toughness and strength (see, e.g.,

[8]), whereas the crystal organization at the nanometer level can substantially affect the

macroscopic tissue behavior in terms of elastic stiffness. Relevant examples of mineral

crystal modeling may incorporate structural information such as crystal particles size

and shape, spacing in directions along and transverse to the crystal c-axis, and crystal

orientation. The approach reported by Currey in [9] represents a first, pioneering

attempt to account for the observed rise of the bone stiffness with increasing mineral

content, which appears to be steeper than the rise that would be observed in a composite

with embedded fibers. The author explained this behavior by means of the analytical

model [10] (which provides an estimate of the Young’s modulus of the MCF assuming a

cylindrical crystal shape) considering an end-to-end fusion of the crystals at increasing

mineral volume fraction. In [11], the basic crystal-collagen compound is considered as a

platelet-reinforced composite (rather than a fiber-reinforced one) and modeled via the

approach [12], where the crystals geometry is specified in terms of thickness, width and

length. In [13], the mineral crystals are modeled as staggered arrays, unlike previous

works where parallel arrays are considered. The latter model captures the increase of

both the stiffness and the fracture stress at increasing mineralization as well as the role

of the shear forces in the collagen matrix. Essential limitations of the above mentioned

models are that a) they essentially provide an estimation of the Young’s modulus (in

the direction of the crystal axis) only and b) they are based on ad-hoc assumptions on

the type of interaction between the collagen and the mineral or on the strain or stress

fields.

Mean field techniques based on the analytical results introduced by Eshelby [14]

are widely exploited in the literature, as they can predict all terms of the stiffness tensor

semi-analytically, see, e.g., the MCF models developed in [15, 16, 17, 18, 19, 20, 21].

Eshelby-based models are formulated assuming ellipsoidal material inclusions, such that

the geometry of embedded inclusions (such as the mineral crystals in the collagen matrix)

is specified by their representative ellipsoid aspect ratios. Eshelby-based methods

are also well suited to derive approximations of the elastic stiffness of hierarchical

composites, such as MMTs, as the various Eshelby-based techniques can be applied in

cascade across a wide range of spatial scales. Hellmich and co-workers have repeatedly

used the concept of mineralized collagen fibrils embedded in a hydroxyapatite foam

(with water and non-collagenous organic material in the inter-crystalline space), see,

for instance, [15, 16, 21]. This compound (sometimes referred to as ultrastructure) is

modeled with a mean field approach, based on Mori-Tanaka and self-consistent methods,

that accounts for strong interactions between individual mineral particles in the mineral

foam and between the fibrils and the mineral foam. However this approach assumes

a random microstructure and as such does not allow to explicitly model a specific

microstructural pattern [22]. In other words, for given phase volume fractions, mean field

approaches do not distinguish between a fused end-to-end network of mineral crystals

and a dense cloud of small (not connected) mineral crystals. In [23] we developed a

multiscale Eshelby-based model for the hierarchical structure of the mineralized turkey
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leg tendon (MTLT). We exploited a sequence of nested models to compute the apparent

stiffness of MTLT on the basis of (a) The MCF and ES compartments, represented as

collagen-mineral and mineral-water composites, respectively (b) the mineralized collagen

fibril bundle (MCFB), modeled as composite consisting of an ES and an MCF phase,

and (d) the MTLT, comprising the MCFB and the (micro) pores phases. The latter

hierarchical model was experimentally validated by means of site-matched scanning

acoustic microscopy (SAM) and synchrotron radiation microcomputed tomography

(SRµCT) data (Fig. 2). In these studies, the ultrasound frequency and lateral confocal

beam diameter (i.e. 50 MHz to 200 MHz and 25µm to 8µm, respectively) used for

mapping the acoustic impedance as well as the voxel size and the spatial resolution

for the tomographic assessment of the mineral volume fraction were carefully adjusted

such that i) the interaction volumes for both modalities were comparable and ii)

the compound tissue properties were measured. The quantitative influence of key

parameters on the elastic stiffness tensor, such as the mineral volume fraction and

the microporosity, was identified. Since the model accounts for unidirectionally aligned

MCFs, and it is based on the characteristic MMT building blocks, the predictions of

the transverse and axial elastic stiffness components can be viewed as upper and lower

bounds for more generic bone tissues. In fact, a site-matched analysis of mineral volume

fraction and elastic stiffness data from various bone tissues showed that the majority of

the experimental data fell within these bounds, except for very old cortical bone, which

exhibited stiffness values significantly above the predicted upper limit, see Fig. 2.

Figure 2: Predicted and measured elastic stiffness coefficients C11 (transverse) and C33 (axial) with

respect to the mineral volume fraction. The experimental data have been obtained from various tissues

and specimen, i.e. mineralized turkey leg tendon (MTLT) [23], human femur [24], human radius [25]

and mice [26]. The lines show the upper and lower stiffness bounds predicted by the MTLT model

proposed in [23]. The encircled data are predominantly from interstitial tissue regions and are clearly

outside the range predicted by the MTLT model (reprinted from Tiburtius et al. [23] with permission).

These findings support the hypothesis that there exists a further mechanism (other

than the increase of the mineral volume fraction only) driving MMTs stiffening, such as

a tissue age dependent fusion of mineral crystals. This process arises as a consequence



Can a continuous mineral foam explain the stiffening of aged bone tissue? 5

of mineral growth and extrafibrillar mineral deposition, leading to the constitution of

a continuous mineral foam. In this contribution we setup an innovative multiscale

framework for MMTs that incorporates such a mechanism.

Clear experimental evidence of such a continuous mineral crystal structure with

strong bounds between mineral particles was recently shown in [27] for mature bone.

Compression tests were performed to show that the mineral phase, after removing

the organic phase, still appears as a self-supporting network. In [28] the authors

studied the architecture and microstructure of the mineral phase in deproteinized bone.

Using electron microscopy, they demonstrated that the mineral phase in bone forms

continuous, self-supporting fiber-like structures. These polycrystalline fibers feature a

periodic spacing of crystallites along their long axis, which is consistent with the periodic

bending pattern of the gap region in collagen fibrils. These observations support the

hypothesis of an initial hydroxyapatite nucleation in the gap space within the MCF. The

authors also observed the presence of hydroxyapatite bridges between the fibrils with the

same spacing as the intrafibrillar crystal aggregation. These experimental observations

on the mineral organization in bone suggest that the mechanical properties of mature

bone are not only determined by the relative amount of crystals, but also by the

interconnections between mineral crystallites. Although the nature of interconnecting

bonds between mineral particles is not yet fully understood, recent findings [29]

confirmed the presence of citrate bridges between mineral platelets that could be

responsible for the formation of a continuous, self-supporting mineral structure. In [30],

the authors observed stiffening of elderly women bone by means of nanoindentation.

Moreover, they observed that both young and old bone softened towards the same

stiffness value when increasing the nanoindentation depth, i.e. increasing the amount of

broken mineral interconnections. A sketch of the mineral fusing phenomenon occurring

at the mineralized collagen fibril bundle (MCFB) level is depicted in Fig. 1.

The aim of this work is the setup of a novel modeling framework broadly applicable

to MMTs and capable to account for fused mineral structures both in the MCF and in

the ES. We exploit our recent advances concerning the application of the asymptotic

(periodic) homogenization technique for three dimensional composites [31] to capture

the effective stiffness due to a fused skeleton embedded in a softer matrix. The fine scale

geometry is identified with a periodic cell that comprises a softer phase (representing

the collagen in MCF or the nanopores in ES) and a cross-shaped structure (representing

the mineral phase) that extends up to the boundaries of periodic cell. This approach

is then integrated in the sequence of nested models exploited in [23] by replacing the

Eshelby based model in the ES and/or the MCF to quantify the stiffening effect due

to both intra and extra fibrillar mineral fusing occurring to a different extent in the

transverse and axial directions.

Our work is structured as follows:

• In Section 2, we summarize the asymptotic homogenization (AH) approach

to compute the effective elasticity tensor for linear elastic composite materials

with discontinuous material properties. This approach represents a suitable
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approximation of the interplay between the different MMTs constituents. We

perform an in silico experiment to quantify the axial and transverse stiffening that

is obtained for a composite with a cross-shaped fused structure when compared to

a composite having cubic inclusions occupying the same volume fraction.

• In Section 3, we setup hybrid models based on the MTLT model [23] by replacing

the self-consistent scheme, exploited there to model the MCF and the ES, with our

AH approach. In Section 3.1, we summarize the features of the multiscale model

provided in [23], which serves as a starting point for our analysis. In Section 3.2, we

show an example of how this model can be modified via AH with cuboid inclusions

for the MCF. We validate this new hybrid model against the MTLT experimental

results reported in [23], thus strengthening the reliability of our technique. In

Section 3.3, we describe a novel hybrid model with AH for a fused mineral structure

in the ES and perform a parametric analysis by varying the amount of mineral

that is fusing in the axial and transverse directions (including the limit case of

uniaxial fusing). In Section 3.4, we assume uniaxial fusing in the ES and apply

such a parametric analysis to the case where AH is employed also for a fused

mineral structure in the MCF. The axial stiffness results of Sections 3.3 and 3.4 are

compared with the axial stiffness data measured for aged human radius, [25].

• In Section 4, we highlight the major novelties and discuss the results.

• In Section 5, we conclude the paper presenting future directions and challenges.

2. Mathematical and computational methodology

In [31, 32] the authors exploit the potential of the asymptotic homogenization technique

(e.g., [33, 34, 35, 36, 37, 38, 39]) for composites with discontinuous materials properties,

from a computational and theoretical viewpoint, respectively. They account for the

coupling between a host (matrix ) phase and another (or multiple) distinct linear elastic

subphase via continuity of stresses and displacements at each matrix-subphase interface.

Then they enforce a sharp length scale separation between a fine scale d, where details

of the local structure are clearly identified and a coarse scale L characterizing the whole

composite, such that

ε =
d

L
� 1, and y =

x

ε
, (1)

where x and y represent the independent coarse and fine scale spatial variables,

respectively. The classical asymptotic homogenization steps are then exploited,

namely: (a) representation of the elastic displacement and individual constituent elastic

properties as independent functions of x and y in both the matrix and the subphase(s);

(b) series expansions of the solution in terms of the asymptotic parameter ε; (c) fine

scale periodicity; (d) upscaling to determine the coarse scale equations for the zero-th

order component of the elastic displacement. This way, a system of elastic-type partial

differential equations is obtained on the coarse scale x, where the arising fourth rank
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tensor C̃, which is indeed the effective elasticity tensor for the composite (see [32]),

reads:

C̃ =
〈
CA + CAMA

〉
A

+
〈
CB + CBMB

〉
B
, (2)

where the integral average operators are defined as

〈 r 〉A =
1

|Ω|

∫
ΩA

r dy; 〈 r 〉B =
1

|Ω|

∫
ΩB

r dy. (3)

Here, CA and CB represent the individual elasticity tensors for the matrix and the

subphase, and ΩA and ΩB their corresponding portion of the periodic cell Ω (with

associated total volume |Ω| and subphases volumes |ΩA| and |ΩB| ). The auxiliary

fourth rank tensors MA, MB are defined, componentwise, as

MA
pqkl = ξklpq(χ

A) =
1

2

(
∂χA

pkl

∂yq
+
∂χA

qkl

∂yp

)
, (4)

MB
pqkl = ξklpq(χ

B) =
1

2

(
∂χB

pkl

∂yq
+
∂χB

qkl

∂yp

)
. (5)

The third rank tensor χ (with restrictions χA and χB over ΩA and ΩB, respectively)

is the solution of the following periodic cell problems in Ω:

∂

∂yj

(
CA

ijpqξ
kl
pq(χ

A)
)

= −
∂CA

ijkl

∂yj
in ΩA, (6)

∂

∂yj

(
CB

ijpqξ
kl
pq(χ

B)
)

= −
∂CB

ijkl

∂yj
in ΩB, (7)

CA
ijpqξ

kl
pq(χ

A)nB
j − CB

ijpqξ
kl
pq(χ

B)nB
j = (CB − CA)ijkln

B
j on Γ, (8)

χA
ikl = χB

ikl on Γ, (9)

where nB
j is the j-th component of the unit vector normal to the matrix-subphase

interface Γ = ∂ΩA ∩ ∂ΩB and pointing into the subphase ΩB. In (6-9), summation

over repeated indices p, q, j is understood and the problem (6-9) is closed by periodic

conditions on ∂Ω\Γ. Further conditions are to be imposed to ensure solution uniqueness,

e.g. 〈
χA
ikl

〉
A

=
〈
χB
ikl

〉
B

= 0 i, k, l = 1, 2, 3. (10)

The system (6-9) can be rewritten as six elastic-type boundary value problems equipped

with interface loads proportional to the difference in the elastic constants across Γ, as

shown in [31]. These interface loads play a crucial role in determining the solution of

the cell problems and represent the only driving force whenever the two (or multiple)

elastic phases are uniform, as the volume forces in (6, 7) vanish in that case.

Numerically we obtain the effective elasticity tensor C̃ by firstly solving the elastic-

type cell problems (6-9) to obtain the fourth rank tensors MA and MB given by (4,5) and

secondly computing the effective elasticity tensor C̃ via (2). We carry out the required

3D simulations using the scheme adopted in [31] employing the finite element software

COMSOL Multiphysics.
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Next we follow the AH approach for a cross-shaped structure, see Fig. 3, which

represents, in a periodic setting, a fused skeleton embedded in a matrix phase.

2.1. Elastic stiffening for a cross-shaped structure

We assume that the embedded phase ΩB is stiffer than the matrix ΩA and we aim at

pointing out the stiffening that is arising as a result of merely fusing the geometry of

the embedded subphase. To this end, we compare the effective stiffness that is obtained

for a composite material made of cubic inclusions (as reported in [32]) to that obtained

for a structure which is equally fusing along the three orthogonal directions (where

we identify e3 and {e1, e2} with the axial and transverse directions, respectively), as

represented by the periodic cell depicted in Fig. 3. Since we focus on a geometrically

Figure 3: A cross-shaped periodic cell representing a structure equally fusing along the three

orthogonal directions. The embedded stiff phase ΩB and the softer matrix phase ΩA are depicted

in blue and red, respectively.

induced effect, we consider the simplest possible case for the material properties, i.e. the

matrix ΩA and the subphase ΩB are isotropic and uniform elastic media, characterized

by the Young’s moduli and Poisson’s ratios EA, EB and νA, νB, respectively. We exploit

the same values as in [31], thus referring to the values reported in [23] for the collagen

matrix, ΩA, and the (hydroxyapatite) mineral phase, ΩB, in the bone, that is

EA = 5 [GPa]; νA = 0.3; EB = 110 [GPa]; νB = 0.28. (11)

A cubic inclusion and the considered cross-shaped geometry are characterized by three

orthogonal planes of symmetry and are invariant with respect to permutation of the

three orthogonal axis, see, e.g., [40], hence we can represent the elasticity tensor (in

the Voigt notation, see, e.g., [41]) in a cubic symmetric form (see, e.g., [42]) via the
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following 6× 6 symmetric matrix

C̃ =



C̃ C̃12 C̃12 0 0 0

C̃12 C̃ C̃12 0 0 0

C̃12 C̃12 C̃ 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃44


. (12)

Hence, the elasticity tensor is fully specified by three independent parameters. The

axial (C̃33) and transverse (C̃11 = C̃22) stiffness components are represented by the

single parameter C̃. We perform a parametric analysis varying the mineral volume

fraction φm =
|ΩB|
|Ω|

in the range 0 < φm < 0.5, thus accounting for an upper limit

which is consistent with the mineralized tissues scenario (see, e.g., [43]). The resulting

C̃ values are plotted against the subphase (mineral) volume fraction in Fig. 4.

5 10 15 20 25 30 35 40 45 50
0
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φm

C̃
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a
]

 

 

Cubic inclusion (AH)
Cross-shaped geometry (AH)
Reuss bound
Voigt bound
Mori-Tanaka
Self-consistent

Figure 4: The effective stiffness C̃ versus mineral volume fraction for cubic inclusion, cross shaped

structure, Reuss lower bound, Voigt upper bound, Mori-Tanaka method, and self-consistent scheme.

We also plot the well-known upper (Voigt [44]) and lower (Reuss [45]) bounds (that

apply to every diagonal component of the effective elasticity tensor, cf. [32]), together

with the self-consistent [46] and Mori-Tanaka [47] results using spherical inclusions. Our

results quantify, for the first time, the geometrically induced stiffening due to fusing of

an elastic three dimensional subphase embedded in a softer matrix, in the context of

our asymptotic homogenization scheme. According to the results shown in Fig. 4, we

report the following observations.

(a) The stiffness C̃ characterizing the fused structure is substantially greater (over

100% for φm approaching 50%) than the one obtained for a cubic inclusion at fixed

volume fraction.
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(b) We performed a comparison between the asymptotic homogenization scheme

and Eshelby based [14] techniques, such as the Mori-Tanaka and self-consistent

schemes. Since we can consider ellipsoidal inclusions only in the latter context, we

considered spherical inclusions because the geometries exploited for our asymptotic

homogenization analysis are invariant for permutation of the three orthogonal axis.

The two approaches are comparable for non-fused inclusion phases only, whereas

the remarkable stiffening obtained for a fused structure can only be captured via our

asymptotic homogenization scheme, which allows for more flexibility in retaining

the full details of the fine structure (see also the computational tests reported in

[31]).

Next, we integrate the approach described in this section to model the MCF and ES

compartments in unidirectionally aligned mineralized collagen fibril bundles. We also

consider more flexible cross-shaped structures, such that the relative amount of fusion

in the transverse and axial directions can be modified. This way we can construct a

novel multiscale model which can be used as an approximation to capture the observed

stiffening effect in old bone (see Fig. 2) and relate it to the formation of a continuous

mineral foam (see Figs. 1 b) and 1 c)), as reported in [27] for mature bone.

3. MMTs with fusing minerals: multiscale model and results

Our aim is to setup a new hybrid multiscale model for musculoskeletal mineralized tissues

to capture the stiffening effect caused by mineral fusing in the (human) bone. To this

end, we start from the mineralized turkey leg tendon hierarchical model developed in

[23], see also Fig. 5, and integrate the methodology of Section 2 in a way which allows

to account for different relative amounts of mineral fusing in the axial and transverse

directions. Table 1 gives an overview of the models considered in this section. Before

describing the hybrid models, we first summarize the main features of the model [23] in

the following subsection.

Hierarchical model MCF ES

(a) Eshelby-based model, cf. [23] SC SC

(b) Hybrid model, cf. Section 3.2 AH (cuboid inclusion) SC

(c) Hybrid model, cf. Section 3.3 SC AH (fusing)

(d) Hybrid model, cf. Section 3.4 AH (fusing) AH (uniaxial fusing)

Table 1: The MCF and ES modeling options presented in this paper involve combination of the

asymptotic homogenization (AH) and self-consistent (SC) schemes. The elastic stiffness components of

MCFB and MTLT are always computed via the Mori-Tanaka scheme.
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Figure 5: Model hierarchy of MTLT tissues (adapted with permission from [23], Fig. 3, page 1009)

and a schematic of the nested sequence of models to compute the effective stiffness. The spatial scale

separation and hierarchical level representation is also highlighted in [21] and references therein. The

various modeling options are summarized in Table 1.

3.1. An Eshelby-based multiscale model of the MTLT

In [23] the authors setup and validate a multiscale model for the MTLT characterized

by the following main features:

• Hierarchical structure. The MTLT is a particular MMT, which is organized across

several hierarchical levels spanning different spatial scales, from≈ 1 nm to 1−50µm,

see Fig. 5. The nanoscale level comprises unidirectionally aligned mineralized

collagen fibrils (forming the MCF), composed of a collagen and a mineral phase, and

the extrafibrillar space (ES), composed of water (filling “nanopores”) and a mineral

phase. At the next hierarchical level, multiple MCFs embedded in the ES form the

mineralized collagen fibril bundle (MCFB), composed of an MCF and an ES phase.

The last hierarchical level (≈ 50µm) under consideration is the MTLT tissue itself,

which is composed of an MCFB phase and a water phase (filling “micropores”).

Both water phases are replaced with polymethylmethacrylate (pmma) for the sake

of consistency with the experimental data reported in [23], where the samples where

embedded in pmma. This choice is also convenient as it allows to carry out the

modeling analysis solely in the simplified framework of (linear) elasticity, rather

than accounting for multiscale modeling of poroelastic materials.

• Elastic properties of the basic constituents. The basic tissue constituents, that is

mineral, pores (pmma), and collagen, were modeled as isotropic elastic materials.

The corresponding elastic parameters, as given in [23], are used in all computations

reported in this work. Furthermore, the defining elastic moduli for mineral and
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collagen are also given in Eq. (11).

• Eshelby-based elastic modeling. The hierarchical structure of the MTLT is modeled

via an Eshelby-based approach [14], which provides the semi-analytical solution for

the strain inside an ellipsoidal inclusion in an infinite medium subject to uniform

strain conditions at infinity. Such a solution is exploited to construct several

approximations by proper superpositions of the Eshelby solutions to compute

the effective elasticity tensor of composite materials, depending on (a) individual

constituent elastic properties, (b) ellipsoidal inclusions aspect ratios, (c) individual

phase volume fractions. In [23], the ES and MCF are modeled via the self-

consistent scheme. They are both assumed to be composed of two distinct phases,

namely pmma-mineral and collagen-mineral, respectively. Individual phases are

represented as ellipsoidal inclusions. The inclusions are then embedded in a

homogeneous material whose stiffness is the one of the composite itself, leading to

a nonlinear system of equations to determine the elastic stiffness. This procedure

accounts for the interaction among inclusions and is particularly suited when dealing

with non-diluted systems, as remarked in [16]. The MCFB is modeled via a more

diluted Eshelby-based technique, namely the Mori-Tanaka scheme. In this case, the

effective stiffness is computed considering the ES as a matrix and the MCFs as the

embedded ellipsoidal inclusions. The matrix phase is clearly identified and it also

acts as the homogeneous material where the inclusions are embedded. Moreover,

the superposition of Eshelby-based solutions leads to a straightforward evaluation of

the effective elasticity tensor. In the Mori-Tanaka scheme, the interactions between

the inclusions and the matrix are not considered explicitly, although the inclusions

“feel” the matrix through the constant strain at infinity (which is set to the average

strain in the matrix).

• Experimental validation. The results obtained via the above described model have

been validated against experimental data by means of acoustic impedance values

corresponding to axial and transverse stiffness components. The relative root mean

square error between the model and the experimental data is of the order of 6-8 %.

• The MTLT model as an upper and lower bound for MMTs. The MTLT model is

based on the same building blocks characterizing a general MMT, and represents a

simplified base for bone tissue modeling. In particular, it assumes unidirectionally

aligned mineralized fibrils. Therefore, the axial and transverse stiffness components

provided by this model can be regarded as upper and lower bounds for a general

MMT, where the fibrils can be arranged according to different orientation patterns

[48].

We now setup and validate a new hybrid model for MTLT obtained via application of

the asymptotic homogenization technique to the MCF.
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3.2. A new hybrid multiscale model for the MTLT

We present an alternative MTLT model by replacing the self-consistent scheme modeling

the MCF in [23] with our asymptotic homogenization approach for cuboid inclusions

(hybrid model (b), see Table 1). Although a comprehensive sensitivity and parametric

analysis of every possible geometry and modeling assumption that could be taken into

account is beyond the scope of this work, we provide this example to show how our

approach can be successfully applied in a practical context. We exploit all the base

values reported in [23] and focus on tissue without microporosity. The MCF is modeled

as a composite made of cuboid inclusions elongated in the axial direction with an aspect

ratio equal to two. Figure 6 depicts the comparison between the axial and transverse

acoustic impedances obtained for the new hybrid and the Eshelby-based [23] MTLT

models and how they relate to the experimental data. Note that we use, as in [23],

axial and transverse acoustic impedance for this comparison because the experimental

data is available in that way and it is directly related to axial and transverse stiffness,

respectively; for details we refer to [23]. The relative root mean square errors (as defined
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Figure 6: The axial and transverse acoustic impedance values obtained for the model [23] and the

proposed hybrid model (b) exploiting AH in the MCF, in comparison with the experimental data

(represented by circles). In both models and experimental data of circumferential (CIR) tissue, the

microporosity was assumed to be negligible.

in [23]) between the Eshelby-based model [23] and the experimental data are 6.15%

and 5.88% in the axial and transverse directions, respectively. The corresponding

errors for the new hybrid model are 6.31% and 6.13%. Thus, a proper choice of

the inclusion geometry leads to experimental validation also exploiting our asymptotic

homogenization approach (here applied for the MCF).

3.3. A new hybrid multiscale model for MTLT with ES mineral fusion

In this and the following section, we exploit the asymptotic homogenization approach

described in Section 2 for the ES and MCF compartments within the framework of
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the sequence of nested multiscale models assumed in [23] and briefly summarized in

Section 3.1. The multiscale modeling of the MCFB and the MTLT tissue phases is

unmodified and carried out via the Mori-Tanaka scheme. We account for the MTLT

circumferential (CIR) base values reported in [23] unless otherwise specified. Every

investigation presented below is performed by varying parametrically the hydroxyapatite

mineral volume fraction in the MCFB, denoted by vf(HA, MCFB), in the range

0.25 ≤ vf(HA, MCFB) ≤ 0.5, (13)

at a resolution of 1%. The mineral volume fraction is then distributed between ES and

MCF according to the fraction of interfibrillar (MCF) mineral, which is assumed to be

25% in [23] according to the experimental observations reported in [49].

In this section, we assume that mineral fuses in the ES only, where the growing

mineral crystals have no restrictions with respect to their structural arrangement. The

self-consistent scheme, instead, is assumed to model the MCF compartment. This model

is referred to as hybrid model (c), see Table 1. The ES compartment is modeled via a

cross-shaped geometry and we always represent both the axial and the transverse mineral

fusion areas as squares. We allow for a different relative amount of mineral fusing in

the axial and transverse directions. To this end, we perform a parametric analysis by

varying the ratio between the transverse and axial fusion square side lengths, denoted

by ax = ay and az, respectively, as follows

0.5 ≤ ax/az = ay/az ≤ 1, (14)

for each mineral volume fraction resolved in the range given by (13). The periodic cell

representing the case of equally likely mineral fusion in all three orthogonal directions,

i.e. ax/az = 1, is shown in Fig. 3, whereas the periodic cell accounting for mineral fusion

where ax/az = 0.5 is shown in Fig. 7 a).

Figure 7: a) The periodic cell for the transverse-to-axial fusion area side ratio ax/az = 0.5 and b)

the particular case of uniaxial fusion, i.e. ax/az = 0.
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The results of this parametric study in terms of the axial (C̃33) and transverse (C̃11)

stiffness components are shown in Fig. 8. The results from the Eshelby-based model (a)

and the particular case of the hybrid model (c) with uniaxial fusing, which corresponds

to ax/az = 0, see Fig. 7 b), are also included for the sake of comparison. In the latter

case, the cell problem (6-9) can be transformed into two-dimensional problems exploiting

the symmetry arguments that apply for aligned fibers (see Appendix A in [31] and also

[50]), further enhancing computational feasibility of the AH approach. In addition, in

Fig. 8 a), we also show the full data from the interstitial human radius axial stiffness

[25], including those not falling within the range given by mean ± standard deviation

as identified in [25].
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Figure 8: The axial stiffness C̃33 (top plot) and the transverse stiffness C̃11 (bottom plot) as functions

of the mineral volume fraction. For the hybrid model (c), the ratio ax/az for fusing in the ES is given

in square brackets. The human radius axial stiffness data from [25] are represented as circles in a).

Mineral fusing has a relevant quantitative impact on the elasticity tensor

components, even when occurring in the ES only. The axial stiffness C̃33 is characterized

by an ≈ 30% increase (with respect to the MTLT model [23]), when moving towards
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the limit case (i.e. axial fusing only) for 0.37 < vf(HA, MCFB) < 0.40, that is the

mineral volume fraction range that pertains to most of the experimental data according

to the statistical analysis reported in [25]. The stiffness in the transverse direction (C̃11),

instead, reaches its maximum value when the fusing is equally-likely occurring in each

orthogonal direction (ax/az = 1). In general, both the axial and the transverse stiffness

components increase, compared to the Eshelby-based model (a) and in that range of

mineral volume fraction, in the explored range of ax/az (the transverse component only

is found to be lower than the MTLT model [23] in the limit case of uniaxial fusing).

3.4. A new hybrid multiscale model for MTLT with ES and MCF mineral fusion

We conclude the section quantifying the effect of mineral fusing also in the MCF

compartment via our hybrid asymptotic homogenization/Eshelby-based approach for

cross-shaped structures. Since, according to [49], only 25% of the global mineral content

is present in the MCF, the elastic stiffness components are primarily influenced by

variations in the ES compartment. However, we aim at determining the maximum

axial stiffening that can be captured by our model and observe to what extent the

experimental results [25] fall within the range we provide. To this end, we focus on

uniaxial fusing in the ES compartment, and perform a parametric analysis by varying

the ratio ax/az in the MCF (hybrid model (d), cf. Table 1). The results for C̃33 and C̃11

are shown in Fig. 9. The axial stiffness exhibits the same monotonically and linearly

increasing (with respect to the mineral volume fraction) profile that characterizes

mineral fusing in the ES compartment only. However, we obtain a further increase

of the elastic stiffness. The particular case of uniaxial fusing in both compartments

represents an upper bound for the axial stiffness. This particular case also represents a

lower bound for the transverse stiffness, as in this case the mineral phase corresponds,

in both compartments, to reinforcing fibers aligned along the axial direction.

The results in this section, compared to those shown in [23], see also Fig. 2, show a

remarkably better agreement with the experimental axial stiffness in the aged interstitial

human radius data from [25].

4. Discussion

In this paper we have combined the potential of the asymptotic homogenization

approach [31, 32] with the MTLT hierarchical model [23] to setup an innovative

multiscale framework for musculoskeletal mineralized tissues. The major novelty resides

in incorporating and quantifying the effect of mineral fusing reported for mature bone

[27]. This effect can explain the remarkably high axial stiffness values of aged cortical

bone that do not fall within the bounds reported in [23].

We have started depicting the main features of the asymptotic homogenization

technique for elastic composites with discontinuous materials properties in Section 2. In

Section 2.1 we have performed a three-dimensional test to compute the elastic stiffness
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Figure 9: The axial stiffness C̃33 (top plot) and the transverse stiffness C̃11 (bottom plot) as functions

of the mineral volume fraction. For the hybrid model (d), the ratio ax/az for fusing in the MCF is

given in square brackets and uniaxial fusing in the ES is used. The human radius axial stiffness data

from [25] are represented as circles in a).

of a fused structure surrounded by a softer matrix. Our results, when compared to those

obtained for single cubic inclusions, show a significant stiffening solely due to the cross-

shaped structure, which represents the fused material in a periodic setting. This example

may be of crucial importance to support an informed design of artificial/biomimetic

elastic materials, when it is required to increase the overall composite stiffness without

further increasing the volume fraction of the embedded stiffer phase.

In Section 3 we have implemented several hybrid Eshelby-based/asymptotic

homogenization hierarchical model based on the MTLT model [23] that is capable to

describe mineralized tissues to different extents. After summarizing the main features

of [23] in Section 3.1, we have presented a hybrid hierarchical approach by modeling the

MCF via asymptotic homogenization, representing the mineral as cuboid inclusions. Our

results compare well with the MTLT experimental data reported in [23] and demonstrate
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that the AH technique is reliable when used in the context of this practical application.

The validation shown by Fig. 6 is not surprising, as, by replacing the self-consistent

scheme with asymptotic homogenization in the MCF, we still fully retain the interactions

between phases, as highlighted in [31]. Furthermore, we note that in our simulations,

replacing the self-consistent scheme by the asymptotic homogenization approach does

not affect the overall computing time which remains in the order of minutes. Although in

the latter approach three-dimensional finite element calculations are involved, the former

scheme requires an almost equally expensive solution of a highly nonlinear system of

equations.

In Section 3.2 we apply our asymptotic homogenization scheme to the ES

performing a parametric analysis to investigate variations of the transverse and axial

stiffness at increasing amount of mineral fusing in the axial direction (ranging from

equally-likely to uniaxial fusing), for a wide range of physiological mineral volume

fractions (up to 50%). In Section 3.3, we perform the same analysis in the MCF assuming

uniaxial fusing in the ES (where most of the mineral content resides), reaching the

highest possible axial stiffness that can be captured via our hybrid modeling approach.

The transverse stiffness is inversely correlated with the amount of mineral fusing

in the axial direction and the highest transverse stiffness profile is observed for

equally-likely fusing in the ES only, see Fig. 8 b), Hybrid model (c) [1.0]. The self-

consistent scheme used in [23] considers ellipsoidal inclusions highly elongated in the

axial directions, thus explaining the higher transverse stiffness values observed for non-

uniaxial mineral fusing in ES only, up to 40% mineral volume fraction. However, the

stiffness vs. mineral volume fraction profile for the self-consistent scheme is nonlinearly

increasing and the stiffness values become comparable to those for equally likely fusion

when the 50% mineral volume fraction upper limit is reached.

Axial stiffness is, instead, directly correlated with the mineral fusing in the axial

direction. In this case, an increasing amount of mineral fusing in the axial direction leads

to stiffness values significantly higher than those of [23], see Figs. 8 a) and 9 a). Our

parametric analysis shows that also the fusing mechanism, together with the increase of

the mineral volume fraction, drives stiffening for mineralized tissues. We have compared

our results to the aged bone data that fall outside the bounds provided in [23], focusing

on the interstitial human radius [25], which exhibits the highest (detectable) axial

stiffness values ([23], Table 3, page 1019). According to the mean and standard deviation

values reported in [25] and taking ranges as mean ± standard deviation, most of the

experimental axial stiffness values are in the range from 35.5 to 55.7 GPa and most of

the experimental mineral volume fraction values are in the range from 37 to 40 %. In the

latter volume fractions range, we report axial stiffness values from 35 GPa (Hybrid model

(c) [1.0]) to 50.4 GPa (Hybrid model (d) [Uniaxial fusion in ES and MCF]). We thus

obtain a good agreement with the considered experimental data for aged human radius.

Our analysis clearly shows that the increase in axial stiffness is not only influenced by

the amount of mineral, but also by the presence of mineral fusing in different directions.

The latter can play a crucial role in determining the stiffening of the whole MMT.
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The distribution of the experimental data points is apparently counterintuitive, as their

axial stiffness values are not always monotonically increasing with the mineral volume

fraction. According to our analysis, these results can be simply explained accounting

for the fusion mechanism, which can occur to a different extent in the axial/transverse

directions and/or in the MCF/ES compartments.

5. Conclusions

The novel modeling approach we have presented here involves several simplifying

assumptions and is open to improvements. In this paper, as well as in [23], we have

considered a stationary, linear elastic modeling approach for every hierarchical level

considered in the sequence of nested models. We have neglected (a) the different

mineralization mechanisms occurring inter- and extrafibrillarly via growth of the mineral

crystals, which are related to the formation of the interconnections leading to the

formation of a continuous mineral foam, (b) the interplay between water and the various

MMT constituents, (c) a potential aging-related effect on the collagen volume fraction,

(d) the plastic nature of the bone tissue and any aging-related issue concerning changes

of strength and toughness.

Hydroxyapatite crystals nucleate within the gap region between adjacent collagen

fibrils and align along the bone axis during maturation of long bones [51]. Extrafibrillar

mineralization, as reported in [52, 53], occurs via appositional coating around the

collagen fibrils, as considered in the micromechanical model [54]. We have chosen

our cross-shaped structures as a proxy that resembles the fused mineralized skeleton

that is experimentally observed in mature bone [28]. Although we believe that this

approximation is well-grounded as a first step, future modeling approaches should

carefully consider the difference between the mineral fusing processes taking place in

the MCF and the ES and how they interplay with mineral growth, as this may lead

to consider different geometries (depending on the growth stage), that can in turn

modify the resulting MMT stiffness. Although the process of mineral nucleation into

the organic matrix is not yet fully understood, possible mechanisms are identified in

the precipitation of calcium phosphate solutions or calcium binding protein molecules

interactions. This implies, in turn, a crucial interplay with water, especially, but not

solely, on the nanoscale, as highlighted in [55].

Water is actually one of the major constituents of MMTs [5], and almost every

hierarchical level can be considered as a poroelastic material [56]. In this paper we have

dealt with a simplified scenario, representing the nanopores as a linear elastic material

(pmma), as in [23], where this choice is dictated by the actual experimental setting at

hand. A more accurate description of the ES should account for the fluid structure

interaction between the slowly-flowing water (containing calcium ions) and mineral

crystals, and address the complex issue of appositional growth via a mass exchange

between the fluid (water) and solid (mineral) phase to reach an effective representation

of the compound as a poroelastic growing material [57].
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As a first approximation, we have neglected the microporosity contribution (thus

using the 0% base value reported in [23] for circumferential MTLT tissue, where the

microporosity is likewise approximated as an elastic material), as water content has been

proven to be inversely proportional to the mineral content [58] (and, as a consequence,

to elastic stiffness), where the latter is supposed to increase during hypermineralization.

The qualitative stiffening profile deduced by the present analysis is actually not affected

by changes in microporosity within the range reported in [23] (0-10%), whereas the

quantitative results regarding axial stiffening amount to a decrease of up to 10% for

10% microporosity. However, the role of water should be carefully addressed in future

works, depending on the particular bone tissue and hierarchical level under investigation.

This constituent can not only influence the overall MMT stiffness, but can also affect

other important mechanical properties such as toughness.

In our present MMT model, we compute, as detailed in [23], the collagen volume

fraction from the prescribed mineral volume fraction using the empirical formula

as documented in [25]. That empirical relationship, while validated against diverse

experimental data, might, however, have to be adapted for aged bone tissue. To the

best of the authors knowledge this issue has not been discussed yet in the literature. If

there were an influence on the collagen volume fraction with tissue aging, this would

then also contribute to partially explain the variation of the experimental elastic stiffness

detected for the same mineral volume fraction, cf. Figure 2. This effect would then add

to or interact with the effect that mineral fusion has on the stiffness for fixed mineral

volume fraction as discussed in this study.

The toughness, which is not considered in this work, is related to the resistance

to fracture, and this is dramatically affected by aging [59]. Recent studies have

demonstrated that MMTs become more brittle as a consequence of collagen cross-links

reduction [60]. Experimental evidence of toughness reduction via heat-induced collagen

denaturation has been reported in [8]. Careful investigation of these mechanical aspects

cannot be carried out via a linear elastic framework, and a future challenge resides in

an appropriate plastic constitutive relationship for the collagen behavior in a multiscale

modeling framework, as highlighted in [61].

Our modeling framework represents a first, fundamental step towards the multiscale

modeling of aging effects in bone tissue. We are able to show that the stiffening of aged

bone is actually related to the constitution of a continuous mineral foam. This modeling

framework at hand can provide unique insights towards an efficient design of biomimetic

materials making use of continuous and interconnected stiffening structures.

However, a number of intriguing challenges remain to be addressed towards a

comprehensive hierarchical model of musculoskeletal mineralized tissues that can fully

include the mechanical and chemical role of the various constituents and their interplay

with age related modifications.
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