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ABSTRACT 

 

This paper details the basic tasks for the numerical implementation of a simple elasto-plastic 

critical state model for bonded materials (i.e. soft rocks-hard soils) into the finite element program 

SNAC developed at the University of Newcastle in Australia. The first task described focusses on 

the derivation of the incremental constitutive relationships used to represent the mechanical 

response of a bonded/cemented material under saturated conditions. The second task presents how 

these stress-strain relations can be numerically integrated using an explicit substepping scheme 

with automatic error control. The third task concentrates on the verification of the substepping 

algorithm proposed. The model used to represent the saturated mechanical response of a bonded 

material combines the modified Cam clay with the constitutive relationships for cemented 

materials proposed in Gens & Nova (1993), but incorporates some flexibility on the degradation 

law adopted. The role of suction and other relevant aspects of unsaturated behaviour are also 

discussed at the end of the paper.  

 

INTRODUCTION 

 

This paper presents a simple constitutive model to represent the mechanical response of saturated 

soft rocks-hard soils. In essence, the representation of the mechanical behaviour of these bonded 

or cemented materials is achieved in the paper by combining the modified Cam clay, MCC, 

(Roscoe & Burland 1968) with the constitutive relationships for bonded materials proposed in 

Gens & Nova (1993). A small variation on how cementation is destroyed under mechanical and 

environmental actions is adopted in the paper to test the validity of the degradation law proposed 

by Pineda et al. (2014a). To understand the performance of this simple model, its corresponding 

incremental stress-strain relationships are integrated using an explicit substepping formulation 
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with automatic error control (Sloan 1987; Sloan et al. 2001). The paper demonstrates how useful 

is to use this small program to check the numerical response for simple stress paths whose 

behaviour is known in advance. At this stage of the implementation process, it is also convenient 

to verify other theoretical and computational aspects of the integration scheme used. Once the 

correctness of the integration scheme has been checked, it is simple to include this small driver 

into a larger finite element program. For this purpose, this research uses the finite element program 

SNAC developed at the University of Newcastle in Australia (Abbo 1997; Sloan and Abbo 1999; 

Sheng et al. 2003).  

 

MODELLING BONDED MATERIALS: SATURATED CONDITIONS 

 

Soft rocks-hard soils are geotechnical materials sharing mechanical features from rocks and soils 

and are, therefore, often referred to as transitional materials. To represent their mechanical 

behaviour, the existence of internal cementations/bonds around inter-particle (or inter-aggregate) 

contacts can be idealized as part of their internal structure acting as a cementation. The occurrence 

of this cementation in the material has an influence on its mechanical response that is gradually 

lost with the reduction (or degradation) of cementation occurring during application of mechanical 

and environmental actions. In this paper, the constitutive laws proposed in Gens and Nova (1993) 

are incorporated into the MCC model to represent the saturated mechanical response of these 

transitional materials. A small modification on the way in which the effect of bonding is reduced 

during mechanical yielding is introduced in the paper to test the numerical performance of a novel 

degradation law proposed by Pineda et al. (2014a). This new degradation law was obtained from 

long-term relative humidity cycling tests carried out on Lilla claystone (Spain). It is therefore 

important to test first its numerical performance for saturated conditions, in view of any future 

extension of the saturated model to include unsaturated stress states. In this context, it is also 

important to ensure at this stage, that the saturated framework adopted is also a suitable platform 

from where the representation of the transitions between saturated and unsaturated states can be 

modelled (Lloret-Cabot et al. 2017a) and that such representation is done consistently with the 

elasto-plastic critical state theory typically adopted to model saturated conditions (Lloret-Cabot et 

al. 2017b).  

 

Stress state variables. For stress states that correspond to the triaxial test, the stress state variables 

of the model are the saturated mean effective stress p′ and the deviator stress q:  

w'p p u          (1) 

1 2q            (2) 

where p is mean total stress, uw is pore water pressure, σ1 and σ2 are, respectively, major and minor 

principal total stresses.  

 

Elastic behaviour. Elastic components of dεv and dεq are assumed to be given by: 
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where v is the specific volume, κ is the gradient of elastic unloading-reloading lines in the v: ln 'p  

plane and G is the elastic shear modulus.  

 

Flow rules. As a first approximation, associated flow rules are assumed in this work: 
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where   is an unknown positive scalar (often referred to as plastic multiplier) and fb is the yield 

surface of the bonded material.  

 

Effect of bonding. For the representation of the mechanical behaviour of a bonded material it is 

useful to consider a reference constitutive framework able to characterize the response of the 

unbonded material. The effect of the amount of bounds on the mechanical behaviour, can be then 

incorporated into this reference model. Different alternatives can be used as a reference model 

(e.g. González et al. 2009; González 2011; González and Gens 2011). One simple choice is to use 

the MCC model, as adopted in here. The existence of bonds influences the mechanical response 

of such reference material (i.e. unbonded) by increasing its elastic domain, its cohesion and its 

tensile strength. Consequently, the elastic domain of the bonded material will in general be larger 

in size than that corresponding to the reference model (unbonded material). This aspect is 

represented by Equation 7, whereas Equation 8 accounts for the increase of cohesion and tensile 

strength (Gens and Nova 1993):  

 c 0' 1 'p b p         (7) 

t t 0' 'p b p          (8) 

where p0′ is the hardening parameter of the unbonded yield surface, pc′ is the hardening parameter 

of the bonded yield surface, pt′ relates to the increase in cohesion and tensile strength of the 

material with the degree of bonding, αt is a model parameter and b is a non-dimensional positive 

variable to represent the amount of bonds in the material (b = 0 means no bond). Gens and Nova 

(1993) propose that the generation of plastic volumetric and deviatoric strains during mechanical 

yielding progressively reduces the influence of bonds, in such a way that the mechanical response 

of bonded and unbonded materials converge when all the cementation provided by the bond is lost. 

To give some flexibility to their approach (and allow for the possibility of a residual non-zero 

degree of bonding), the one-dimensional degradation law proposed by Pineda et al. (2014a) is 
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adopted here. This law uses the following relationship between the damage parameter D and the 

amount of bond b:  

 
0

1
b

D
b

          (9) 

where b0 is the initial degree of bonding and D is a damage parameter ranging from 0 (undisturbed 

state) to 1 (fully disturbed state). By assuming that the rate of damage change is proportional to 

the current stress state, Pineda et al. (2014a) propose the following degradation law:  

     01 1 exp damageD D r d r             (10) 

and  
p p

v q

damaged d d            (11) 

where D0 is the initial damage, χ is a positive parameter controlling the rate of degradation and r 

controls the residual stiffness/tensile strength. Equation 10 governs how the effect of cementation 

reduces with the generation of plastic strains (i.e. increase of damage), irrespective of their sign 

(Equation 11). Note that both components of plastic strains (volumetric and deviatoric) are 

assumed to contribute to bond degradation.  

 

Yield surfaces. The model includes two mechanical yield surfaces in the q:p′ plane as (see Figure 

1). A reference yield surface to represent the unbonded material fu and a larger one for the bonded 

material fb. In the limit, when most bonds are being destroyed, bonded and unbonded yield surfaces 

progressively converge, with full convergence only if r = 0. The reference yield surface adopted 

corresponds to the conventional ellipse of the MCC model, with the hardening parameter p0′ 

defining its current size (Figure 1). The expression of this elliptical yield surface is given by 

Equation 12, where M corresponds to its aspect ratio. Sheng et al. (2000) argues that the specific 

normalized form of Equation 12 is useful for the finite element implementation of critical state 

models, as this form of scaling the mathematical expression of the ellipse reduces the influences 

that the magnitude of stresses may have on the values of the yield surface. The larger homothetic 

yield surface corresponds to the bonded material. Similarly, the yield surface for the bonded 

material adopted is given by Equation 13, where pc′ is its hardening parameter and pt′ relates to the 

increase in cohesion and tensile strength given by the bond. In the limit, if r = 0 and the effect of 

cementation is completely lost, the hardening parameter of the bonded material pc′ converges to 

p0′, and pt′ converges to zero. If associated plasticity is assumed, plastic volumetric and deviatoric 

strains occur during yielding on this bonded yield surface.    
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Figure 1. Yield surfaces for triaxial stress conditions: (a) effect of bonding on tensile 

strength; (b) no effect of bonding on tensile strength 

 

Hardening laws. The mechanical hardening law is similar to that proposed in the MCC but 

includes, in addition to the effect of plastic volumetric strains, the influence of plastic deviatoric 

strains. Its expression is given by:  

0
v q

0

'

'

p pdp v
d wd

p
       

       (14) 

where λ is the gradient of a normal compression line in the v: ln 'p  plane for a constant degree of 

cementation (such as the NCL of the unbonded material) and w is a positive model parameter. It 

is interesting to highlight the fact that the hardening law refers to the hardening parameter 

corresponding to the unbonded yield surface (reference material). In this way, normal compression 

and critical states converge to the conventional NCL and critical state line of the MCC model when 

D = 1 (and if r = 0).  

 

Consistency condition. Enforcing that the stress state remains on fb during mechanical yielding is 

equivalent to impose that the total differential of fb is zero (consistency condition):  

b b b b
b t c

t c

0  ' ' ' 0
' ' '

f f f f
df dp dq dp dp

p q p p

   
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   
   (15) 

Combining Equation 15 with Equations 3-14, an expression for the unknown plastic multiplier 

can be obtained (see González 2011).  

 

NUMERICAL IMPLEMENTATION 

 

For the full implementation of a constitutive model into a finite element formulation, it is useful 

to program first a small subroutine responsible for the numerical integration of the stress-strain 

relationships of the model. These small subroutines (sometimes known as drivers) are extremely 

simple to use and, as shown latter in this section, are central for any preliminary check of the 

formulation before its final implementation into the larger finite element program. For finite 
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element analysis, it is more convenient to express the incremental relationships of the model in 

terms of the increments of strain (instead of increments of stresses). In such case, the subroutine 

is referred to as strain-driven (in contrast to stress-driven formulations, where the increment of 

stresses are the typical variables known). Strain-driver formulations are particularly suited for 

finite element analysis because in these analyses, nodal displacements are usually found from the 

discretized global stiffness equations which are then combined with the strain-displacement 

relations to find the corresponding strain increments at a finite number of integration points within 

each element. A large number of strategies are available in the literature to perform the numerical 

integration of the incremental stress-strain relations of a model (Sloan 1987; Borja, 1991; Ortiz 

and Simo 1986, etc.). From these, the work presented here choses the family of explicit 

substepping algorithms with automatic error control proposed by Sloan et al. (2001).   

 

Formulation of the problem. The notation adopted here follows that employed in Sloan et al. 

(2001) but making explicit the dependence of the response on the specific volume v, as this 

dependency plays a key role in the accuracy of the computed solution (Lloret-Cabot et al. 2016). 

The mechanical behaviour of a bonded saturated material can be characterized by the following 

ordinary differential equation (ODE) (with the superior dot representing a time derivative):  

' σ Dε          (16) 

where 'σ  is a vector of effective stress rate components, ε  is a vector of strain components and D 

is the elastic matric (De if no plastic yielding occurs and Dep when a given strain increments causes 

plastic yielding). If plastic yielding occurs, two additional ODEs need to be solved accounting for 

the evolution of the bonded yield surface and the degree of bonding:  

0 1'p B           (17) 

    0 0 2 01 expb b D r B r b             (18) 

where   is the plastic multiplier, B1 and B2 are two scalar functions. Once the hardening parameter 

for the unbonded surface p0′ has been updated, the corresponding hardening parameter for the 

bonded surface pc′ and the parameter pt′ are simply found using Equation 7 and 8, respectively. A 

final equation for the update of v completes the system of equations:  

vv v            (19) 

Explicit substepping formulation. The system of ODEs given by Equations 16-19 defines an 

initial value problem IVP when the initial stress state (values of p′, q and v at the start of the 

integration) together with the initial values of the hardening parameters p0′ and pc′, the initial value 

of pt′, D and b, the model parameter values and the imposed  are known. Using an explicit 

substepping algorithm, the solution of this IVP provides the increments of effective stresses, the 

updated hardening parameters and pt′, the current amount of bond and the specific volume. Details 

on the specific formulation of the substepping algorithm can be found elsewhere (Sloan et al. 2001; 

Lloret-Cabot et al. 2016).   
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Numerical performance and verification aspects. Perhaps the first task once the algorithm is 

formulated is to verify the correctness of the numerical response during isotropic compression for 

r = 0. Plotting the evolution of v against lnp′ for this simple stress path allows for the verification 

of various numerical aspects. In particular, v should vary according to a swelling compression line 

of gradient κ before the stress path reaches the bonded yield surface. The stress path should reach 

this yield surface at (1+b)p′0, where a transition from elastic to elasto-plastic behaviour must be 

captured in the computed evolution of v. Beyond this yield point, the volumetric response should 

progressively converge to the unbonded normal compression line of gradient λ when the 

cementation is not zero (b larger than one). Under such circumstances, the implemented 

degradation law (Equation 11) should result in a reduction of the amount of bonding available 

when mechanical yielding is occurring; in such a way, that (assuming r = 0) the computed 

volumetric response for v should converge to the NLC of the reconstituted material when all the 

bonds are entirely destroyed. This convergence ensures, in addition, that both bonded and 

unbonded yield surface coincide, because p′c = p′0 and p′t = 0 (see Equations 12 and 13). All these 

aspects are illustrated in Figure 2 for different degrees of bonding, including the reconstituted case 

i.e. b0 = 0. The evolution of the specific volume during compression is illustrated in Figure 2a 

whereas Figure 2b shows the degradation of the parameter b when r = 0 and no initial damage is 

considered.  

 

  
 

Figure 2. Model responses for isotropic compression loadings at different degrees of 

bonding: (a) volumetric behaviour; (b) bond degradation. 

 

In addition to the qualitative checks discussed above, the results plotted in Figure 2 are also useful 

for a first assessment of the error incurred by the integration scheme. For example, gradients κ and 

λ can be obtained from a best-fitted straight line and then compared to the inputted value in the 

computations. Lloret-Cabot et al. (2016) propose, in this context, a more sophisticated assessment 

of the error behaviour incurred by a substepping integration scheme by means of plotting the so-

called performance maps. This way of plotting the numerical outcomes verifies that the local error 

is not larger than that corresponding to the integration scheme used and is useful to assess the local 

and global performance of the substepping scheme. The effect of plastic deviatoric strains on 
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bonding degradation cannot be evaluated in the simulations plotted in Figure 2 and, hence, other 

responses involving shearing stress paths should also be conducted at this stage, before full 

implementation of the strain-driver into the finite element program.  

 

Comparison of the numerical solution of strain-driver and SNAC. Once the strain-driver 

algorithm has been implemented into the finite element program, it is convenient to verify that the 

solution provided by the implemented program corresponds, in fact, to the solution obtained by 

the strain-driver. This is illustrated in Figure 3 where the same element-test simulations showed in 

Figure 2 are run again as a small boundary value problem of a triaxial compression test with SNAC 

and the implemented model for bonded materials. As expected, Figure 3 confirms that both 

numerical solutions are indistinguishable for this set of isotropic tests.  

 

  
 

Figure 3. Numerical outcomes of strain-driver and SNAC during isotropic compression 

loadings at different degrees of bonding: (a) volumetric behaviour; (b) bond degradation. 

 

INFLUENCE OF THE UNSATURATED CONDITION 

 

It is now well accepted that the mechanical response of a bonded material under unsaturated 

conditions may be substantially different than that under saturated conditions (Garitte et al. 2006). 

Suction will often influence the mechanical properties of a bonded material. In general, when 

compared to a stress state at suction equal to zero, a value of suction greater than zero in a bonded 

material will typically show a strengthening effect and an increase of the yield stress (Leroueil & 

Barbosa 2000). Additionally, a non-zero suction will also influence the mechanics of the bonds 

described earlier for fully saturated materials. Variations of suction during cyclic changes of 

relative humidity have an important impact on the mechanical properties of bonded materials as 

demonstrated, for example, in Pineda et al. (2014a) for an argillaceous rock (Lilla claystone, Figure 

4a). Interestingly, the experimental results illustrated in Figure 4a for this material demonstrate a 

progressive accumulation of irreversible expansion during application of wetting-drying cycles. 

Figure 4b shows indeed that such accumulation of swelling is what governs the degradation of 

stiffness moduli, tensile strength and effective cohesion. Such influence of irreversible swelling 
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on all three mechanical properties is demonstrated in Pineda et al. (2014a) with the formulation of 

a single degradation law. The incorporation of the water retention behaviour into the constitutive 

relationships for saturated bonded materials presented above will be based on this set of 

experimental data including a degradation law consistent with these experimental observations.   

 

(a) (b) 

 

Figure 4. Degradation of Lilla claystone. (a) accumulation of volumetric expansion with the 

application of RH cycles. (b) degradation of stiffness moduli and tensile strength with 

damage volumetric strain (Pineda et al., 2014a). 

 

CONCLUSIONS 

 

A reference saturated model to represent the behaviour of an idealized partly or completely 

destructured material is the starting point to model the response of soft rocks-hard soils under 

saturated conditions. The combination of this reference framework with the influence that the 

amount of bonds has on the mechanical behaviour of bonded materials is sufficient to reproduce 

many relevant features of their behaviour. Some of the capabilities of such approach are 

demonstrated in here using the modified Cam clay and the constitutive relationships proposed in 

Gens and Nova (1993) for cemented materials, but incorporating the novel experimentally based 

degradation law proposed by Pineda et al. (2014a). The implementation of this constitutive 

relationships for saturated bonded materials into the finite element SNAC has been discussed in 

some detail highlighting the importance of the verification process. It has also been shown that the 

formulation of a strain-driven algorithm is particularly convenient for verification aspects, before 

its final implementation to a finite element program to solve boundary value problems.  
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