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 2

Abstract 23 

Glucocorticoids (GCs) are effective for the treatment of many chronic conditions but their 24 

use is associated with frequent and wide-ranging adverse effects including osteoporosis and 25 

growth retardation. The mechanisms that underlie the undesirable effects of GCs on skeletal 26 

development are unclear and there is no proven effective treatment to combat them. An in-27 

vivo model that investigates the development and progression of GC-induced changes in bone 28 

is, therefore, important and a well characterized pre-clinical model is vital for the evaluation 29 

of new interventions. Currently, there is no established animal model to investigate GC 30 

effects on skeletal development and there are pros and cons to consider with the different 31 

protocols used to induce osteoporosis and growth retardation. This review will summarize the 32 

literature and highlight the models and techniques employed in experimental studies to date.   33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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Introduction and background  48 

It is estimated that, at any one time, over 250,000 people are exposed to systemic 49 

glucocorticoids (GCs); approximately 10% of children will require GCs at some stage 50 

during their childhood (Mushtaq & Ahmed 2002) and 5% of the population aged 80 years 51 

or over have used GCs in the past (Kanis et al. 2004). Long-term GCs are effective in 52 

many conditions, such as inflammatory bowel disease (Pappa et al. 2011), chronic renal 53 

disorders (Olgaard et al. 1992), lung conditions, hematological malignancies( El-Hajj 54 

Fuleihan et al. 2012) and connective tissue disease, and in some, such as Duchenne 55 

muscular dystrophy (DMD) (Matthews et al. 2016), they are the mainstay of long-term 56 

treatment.  Unfortunately, GCs are associated with frequent and wide-ranging side-effects, 57 

many of which are dose-related and associated with considerable morbidity. Of these, two 58 

of the potentially most serious and challenging to manage are glucocorticoid-induced 59 

osteoporosis (GIO) and growth retardation. Osteoporosis is characterized by a reduction in 60 

bone mass and loss of bone microarchitecture, leading to impaired bone strength and 61 

increased fracture risk (Reinwald & Burr 2008). GIO is the most prevalent type of 62 

secondary osteoporosis and accounts for about 25% of cases (Eastell et al. 1998). It is 63 

associated with considerable morbidity and mortality; a reduction in bone mineral density 64 

(BMD) of up to 40% can occur with GC therapy and it is estimated that up to half of those 65 

on long-term GC therapy will experience fractures (Reid 1997). In those with DMD, 75% 66 

are predicted to have a vertebral fracture after 8 years of GC therapy( Bothwell et al. 67 

2003) and this event is often followed by loss of ambulation (McDonald et al. 2002). The 68 

General Practice Research Database has shown that daily prednisolone doses of as little as 69 

2.5mg can cause an increased risk of fracture (Van Staa et al. 2000). A recent meta-70 

analysis also showed that there is only weak evidence for the use of common osteoporosis 71 
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drugs in the prevention of fractures (Amiche et al. 2016), suggesting that there is great 72 

need for preclinical work to inform the development of new therapies.  73 

 74 

As healthy children have high rates of bone growth, their skeleton is particularly 75 

vulnerable to the adverse effects of GCs on bone formation. GC-induced growth 76 

retardation was first described 60 years ago after an equivalent cortisone dose of only 77 

1.5mg/kg/day (Blodgett et al. 1956) and can be considerable; by 15 years of age, boys 78 

with DMD who are treated with deflazacort are 21 cm shorter on average than untreated 79 

boys (Biggar et al. 2006). GC-induced growth retardation can also occur following GC 80 

exposure by several alternative routes including inhaled GC in asthma (Allen et al. 1994) 81 

and intra-articular GC injections in juvenile arthritis (Umlawska & Prusek-Dudkiewicz 82 

2010). GC-induced growth retardation is dose-dependent and alternate-day or weekend 83 

dosing is associated with less growth retardation (Escolar et al. 2011; Ricotti et al. 2013). 84 

In children, although compensatory catch up growth may occur after cessation of GC 85 

therapy(Crofton et al. 1998), prolonged exposure may reduce the potential for catch up 86 

(Simon et al. 2002). 87 

 88 

Skeletal Development  89 

The fetal skeleton develops in two distinct ways; intramembranous ossification occurs within 90 

flat bones including the skull and facial bones, whereas endochondral ossification accounts 91 

for the linear development of the long bones such as the femur and tibia. Appositional growth 92 

also occurs, whereby bone lining the medullary cavity is reabsorbed and new bone tissue is 93 

laid down beneath the periosteum, thus increasing bone diameter.  This can still occur even 94 

after longitudinal growth ceases. In this review we shall focus on endochondral ossification, 95 

which is driven by the actions of the chondrocytes within the epiphyseal growth plate and is 96 
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the process responsible for bone formation and longitudinal growth of the majority of the 97 

skeleton. During the initial, patterning phase of skeletal development, mesenchymal cells 98 

condense into tissue elements at specific sites that form the structure of future bones 99 

(Karsenty & Wagner 2002). By 5 weeks gestation in humans, these pre-cartilaginous anlagen 100 

reflect the shape, size, position and number of skeletal elements that will be present in the 101 

mature skeleton (Javaid & Cooper 2002). Following this, differentiation to either 102 

chondrocytes or osteoblasts occurs within the condensations. Chondrocytes within each 103 

element organize into growth plates and move through their associated orderly pattern of 104 

resting, proliferative and hypertrophic phases (Mackie et al. 2011). Once they reach the 105 

hypertrophic phase, chondrocytes promote invasion of blood vessels and the production of an 106 

extracellular matrix (ECM) that is rich in type II collagen, aggrecan, cytokines and vascular 107 

growth factors which facilitates vascular invasion and gradual mineralization of the ECM 108 

surrounding the hypertrophic chondrocyte.  The cartilaginous ECM is gradually replaced by a 109 

bony ECM (rich in type I collagen), when apoptosis of the hypertrophic chondrocytes occurs 110 

and osteoblasts invade the cartilaginous scaffold. As osteoblasts lay down new bone, to form 111 

the periosteum, the primary ossification centre expands towards the ends of the cartilage 112 

model. In long bones, a secondary ossification centre subsequently forms at each end of the 113 

bone, leaving a cartilaginous growth plate in between the two ossification centres.  Growth is 114 

orchestrated at the growth plates but at puberty, bony bridges form between the ossification 115 

centers, resulting in the cessation of growth due to the fusion of the growth plate and its 116 

replacement by bone.  After birth, a continuing cycle of modelling (or remodelling in adults 117 

when it occurs without a change in bone shape) occurs and there is a fine balance between 118 

bone formation and bone resorption to ensure that bone can sense and adapt to alterations in 119 

functional, metabolic and mechanical demands.  120 

 121 
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 122 

GCs and their mechanisms  123 

Figure 1   124 

 125 

a) GC-induced osteoporosis 126 

The aetiology of GC-induced osteoporosis is complex and a detailed review of the underlying 127 

mechanisms as recently reported (Henneicke et al. 2014) is beyond the scope of the current 128 

review. Instead we will summarise the key mechanisms and the differing effects of GCs in 129 

osteoblasts, osteoclasts and osteocytes. There are two distinct phases of GC-induced bone 130 

loss, resulting from the suppressive effects of GCs on both osteoblastogenesis and 131 

osteoclastogenesis. The initial acute period of increased bone resorption is followed by a 132 

more indolent phase of bone loss caused by a reduction in bone formation (Canalis et al. 133 

2004).  Indirect effects of GCs on the skeleton such as decreased calcium absorption, 134 

increased renal calcium clearance, reduced growth hormone (GH) secretion and suppression 135 

of sex steroid metabolism were previously thought to play a fundamental role, but the main 136 

mechanisms underlying GIO are now known to result from the direct effect of GCs on the 137 

resident bone cells, see figure 1.  138 

Glucocorticoids and mineralocorticoids act through corticosteroid receptors - the 139 

mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). These receptors have 140 

often been referred to as Type 1 and Type 2 corticosteroid receptors, respectively(Eberwine 141 

1999; Stewart 2007). The GR is expressed in many bone cells, including osteoblasts, 142 

osteoclasts and osteocytes (Bouvard et al. 2009) and also in chondrocytes within the growth 143 

plate.  Once GCs bind to the GR in the cytoplasm, the GR translocates to the nucleus, where 144 

it acts as a transcription factor and modifies gene expression, via the GC-response element, 145 

either by causing transactivation or transrepression. Transactivation accounts for most of the 146 
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GC-associated adverse effects and in-vitro and murine studies demonstrate that selective GR 147 

modulators can alter the extent of these adverse effects (Owen et al. 2007; Thiele et al. 2012). 148 

However, studies using transgenic mice with a GR gene mutation that prevents dimerization 149 

and therefore transactivation still have reduced bone formation. This suggests that 150 

transrepression is probably also at least partly responsible (Rauch et al. 2010). Polymorphism 151 

of the GR gene is associated with varying susceptibility to GCs (Huizenga et al. 1998) which 152 

may in part explain the heterogeneity in GC-associated fracture rates in humans.  153 

Micro RNAs (MiRNAs) are endogenous RNAs made up of 18-25 nucleotides that interact 154 

with messenger RNA to change protein expression. Recent work has shown that several 155 

MiRNAs have differential expression in GC-treated bone. For example, a reduction in 156 

MiRNA-29a expression, which interacts with Wnt signalling components and Dkk-1 during 157 

osteoblast differentiation was associated with GC-associated bone loss. Gain of MiRNA-29a 158 

function by a MiRNA-29a precursor (Wang et al. 2013) attenuated the deleterious effects of 159 

GC treatment on bone mass, microarchitecture, and biomechanical strength.  160 

 161 

Effects of GC on osteoblasts 162 

The chronic bone loss in GIO predominantly results from the ability of GCs to decrease 163 

both the number and functionality of osteoblasts. Osteoblasts and adipocytes are both 164 

derived from mesenchymal stem cells. By changing the fate of osteoprogenitor cells, GCs 165 

effectively reduce the pool of cells that can become mature, differentiated osteoblasts and 166 

bone marrow stromal cells are instead directed along the adipogenesis pathway. This has 167 

been shown to occur via the transactivation of CCAAT/enhancer binding protein in 168 

murine stromal cells(Pereira et al. 2002), which increases expression of peroxisome 169 

proliferator-activated receptor gamma 2 (PPARγ2) and suppresses expression of Runx2 170 

(Canalis et al. 2004, 2007). GCs may, therefore, increase bone marrow adipose tissue at 171 
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the expense of mature osteoblasts and cancellous bone (Weinstein & Manolagas 2000). 172 

Outside of bone, GCs also promote preadipocycte conversion to mature adipocytes and 173 

thus cause hyperplasia of adipose tissue. A 2-fold increase in cancellous adipocyte area in 174 

GC-treated mice compared to placebo has been reported, alongside a significant increase 175 

in adipocyte production in bone marrow cultures (Weinstein & Manolagas 2000). The 176 

exact mechanism(s) by which the reduction in osteoblastogenesis occurs is unclear, 177 

however, it is known that GCs cause suppression of bone anabolic factors such as bone 178 

morphogenetic proteins (Pereira et al. 2002), osteoblast-specific factor 2 (OSF-2) and 179 

insulin-like growth factor 1 (IGF-1) (Jones & Clemmons 1995) and TGF-β which activate 180 

osteoblastic transcription factors such as Runx2 and β-catenin. In cultured human 181 

osteoblasts, exogenous GC administration also results in suppression of the canonical 182 

Wnt-β-Catenin signaling pathway which prevents osteoblast apoptosis and encourages 183 

progression through the osteoblast cell cycle and thus proliferation (Ohnaka et al. 2005).  184 

Furthermore, murine GC exposure has been shown to upregulate sclerostin gene 185 

expression, which antagonises Wnt stimulation of osteoblast differentiation (Yao et al. 186 

2016). Using a transgenic mouse line, GCs have also been shown to suppress interleukin 187 

11 expression, which further inhibits osteoblast differentiation (Rauch et al. 2010). As 188 

well as inhibiting osteoblast differentiation, GCs also prevent bone matrix synthesis by 189 

inhibiting osteoblast-driven synthesis of type I collagen, which forms most of the ECM 190 

(Canalis 2005) and osteocalcin. GC administration to mice has also been shown to induce 191 

osteoblast apoptosis and suppress terminal differentiation (Weinstein et al. 1998).  192 

 193 

Effects of GC on osteoclasts and osteocytes 194 

Osteoclasts are derived from haematopoetic stem cells and resorb bone by creating an acidic 195 

environment and producing collagen-degrading enzymes. GCs exert an early direct effect on 196 
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osteoclasts by increasing both their number and activity, with a corresponding increase in 197 

bone resorption, seen after only 7 days of GC treatment in mice (Jia et al. 2006). This overall 198 

increase in osteoclast number occurs despite a reduction in osteoclast production in the bone 199 

marrow, suggesting that GC treatment increases the lifespan of pre-existing osteoclasts. 200 

However, the longer term role of the osteoclast in glucocorticoid-induced osteoporosis 201 

remains controversial; despite an initial increase in bone resorption, prolonged GC excess 202 

appears to suppress osteoclast number and function. For example,  after 4 weeks of 203 

prednisolone treatment in mice, bone resorption fell to or below normal levels (Weinstein et 204 

al. 1998). GCs also directly block the induction of cytoskeletal changes in the osteoclast 205 

required for the resorptive capabilities of the cell (Kim et al. 2007). There is also evidence 206 

that GCs suppress the proliferation of osteoclast precursors (Kim et al. 2006) However, GC 207 

also cause an increase in Receptor Activator of Nuclear Factor Kappa Beta Ligand (RANKL) 208 

(Hofbauer et al. 2009), which is produced by both osteoblasts and osteocytes (Nakashima et 209 

al. 2011; Xiong et al. 2011) and down-regulation of osteoprotegrin (OPG), which is a decoy 210 

receptor for RANKL. This skews the ratio of RANKL: OPG towards osteoclastogenesis. 211 

Overall, the long-term effect of exogenous GCs on osteoclastogenesis still requires 212 

clarification but it appears that the osteoblast is the main target of exogenous GCs. 213 

Osteocytes are terminally differentiated osteoblasts that play an important role in the repair of 214 

bone micro-damage. GCs alter the osteocyte-canalicular network by changing the elastic 215 

modulus surrounding the lacunae of osteocytes and cause reduced mineralisation (Lane et al. 216 

2006). Autophagy may be responsible for these observed localised osteocyte perilacunar 217 

changes, occurring as a self-protection mechanism during GC treatment  (Xia et al. 2010). 218 

High dose GC therapy in several animal and human models has also been shown to induce 219 

osteocyte apoptosis (Zalavras et al. 2003). 220 

 221 
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b) GC-induced growth retardation 222 

The growth-suppressing effects of GCs are multifactorial and result from both systemic and 223 

local actions on all types of bone cell. The GH/IGF-1 axis is the main determinant of 224 

postnatal longitudinal growth and GH and IGF-1 have interdependent roles in growth 225 

regulation. The rate of longitudinal bone growth is principally controlled through the 226 

regulation of chondrocyte proliferation, differentiation and hypertrophy at the growth plate 227 

(Wong et al. 2016). GH promotes chondrocyte differentiation, the secretion of IGF-1 by liver 228 

cells and the amplification of local IGF-1 synthesis by chondrocytes, which induces clonal 229 

expansion of chondrocyte columns within the growth plate (Zezulak & Green 1986).  230 

 231 

GCs also affect the expression of various components of the GH/IGF-1 axis (Price et al. 232 

1992; Jux et al. 1998; Klaus et al. 2000; Smink et al. 2002). Seven days of dexamethasone 233 

treatment in pre-pubertal mice reduced gene expression of IGF-1 throughout chondrocytes in 234 

all phases within the growth plate (Smink et al. 2003a) as well as causing a significant 235 

increase in the number of apoptotic cells within the hypertrophic zone. Different mechanisms 236 

of GC-induced apoptosis have been proposed such as activation of caspase 3 and suppression 237 

of Bcl-2 (Chrysis et al. 2003; Espina et al. 2008). GCs block the activation of GH and IGF-1 238 

receptors in chondrocytes as well as reducing IGF-1 and GH receptor expression by 239 

chondrocytes (Wong et al. 2016). Glucocorticoids also impair IGF-1 signaling, mainly via 240 

the phosphoinositide 3-kinase pathway within the growth plate. Furthermore, GCs suppress 241 

prostaglandin E2 synthesis (Harada et al. 1995) as well as vascular endothelial growth factor 242 

expression in chondrocytes, thus preventing blood vessel invasion of the ossification center, 243 

which is crucial for degradation of the ECM and subsequent ossification and growth (Smink 244 

et al. 2003a). The intrinsic effect of GC on the mouse growth plate was evident when a local 245 

dexamethasone infusion significantly reduced tibial growth compared to the contralateral 246 
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limb (Baron et al. 1992). GCs also act systemically to inhibit the pulsatile secretion of GH 247 

from the anterior pituitary gland by increasing somatostatin tone (Mazziotti & Giustina 248 

2013). 249 

 250 

Animal models of GIO and GC induced growth retardation  251 

It is essential to utilise animal models that show similar pathology to the human disease 252 

process that is under scrutiny, in order to effectively carry out pre-clinical studies and test 253 

novel compounds. GCs may lead to some localized changes in bone strength that are similar 254 

to other causes of osteoporosis, but they also display some unique effects which explains why 255 

GC exposure is associated with a higher risk of fracture at equivalent BMD and hence 256 

reinforcing the need for an appropriate animal model to specifically investigate GIO (Lane 257 

2005; Xia et al. 2010). In addition, the search continues to find selective GR agonists that 258 

possess the anti-inflammatory benefits of traditional GCs without the associated adverse 259 

effects (Sundahl et al. 2015). Suitable pre-clinical models are also vital to this process.  260 

It remains a challenge, however, to find an appropriate animal model for preclinical studies 261 

of skeletal development as there is no single animal model that exactly mimics the human 262 

pathology. Whilst larger animals such as primates and dogs may have the most similar 263 

reproductive, anatomical and physiological characteristics, there are ethical issues to consider 264 

as well as difficulties with their maintenance and costs (Reinwald & Burr 2008). Sheep, 265 

rabbits, and pigs have also been developed as large animal models of GIO in previous studies 266 

(Scholz-Ahrens et al. 2007; Baofeng et al. 2010; Ding et al. 2010) but these too have 267 

limitations. The following section will discuss the various animal models used to investigate 268 

both GIO and GC-induced growth retardation. 269 

Animal species used for GC-induced osteoporosis models 270 
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Different animal species have been used to explore the effect of GCs on the development of 271 

osteoporosis and to search for substances that prevent the observed deleterious effects. The 272 

inquiry performed on PubMed, with “osteoporosis”, “glucocorticoids” and “animal name” 273 

used as MeSH terms, retrieved 70 papers for rats, 34 for mice, 16 for rabbits, 11 for sheep, 5 274 

for pigs and 3 papers for zebrafish. Although the popularity of rats is related to their 275 

established position in postmenopausal osteoporosis research, as evidenced by FDA 276 

guidelines (Thompson et al. 1995), murine models are increasingly used nowadays. Mice are 277 

considered to be an appropriate pre-clinical model of GIO.  They share more than 95% of the 278 

human genome and can be readily genetically manipulated to simulate specific human 279 

diseases. It is also possible to control for the variability found in humans and undertake 280 

experiments that would otherwise be impossible in humans.  They also have the added 281 

advantage of being relatively easy and cost-effective to maintain. The adult mammalian 282 

skeleton undergoes a continuous remodeling cycle and some of the early pre-clinical studies 283 

using different species failed to appreciate this. More recent work has shown that the mouse 284 

shows a similar pattern to human GIO, with an early phase of osteoclast mediated bone 285 

resorption, followed by a more indolent phase of decreased osteoblastogenesis and bone 286 

formation (Yao et al. 2008). Unlike in humans, however, mice lack osteons (or the Haversian 287 

system) in cortical bone and therefore remodelling within this structure does not occur as it 288 

does in humans  (Jilka 2013). Marked effects on bone structural parameters caused by GCs 289 

are more frequently observed in younger animals, but in order to avoid complications in bone 290 

measurements due to loss of weight caused by GC, it has been suggested that skeletally 291 

mature animals should be used to investigate GIO. Gene knockout and transgenic approaches 292 

have also established the usefulness of the mouse in determining which genes are critical for 293 

bone turnover (Rauch et al. 2010). The mouse has also been used effectively in other models 294 

of bone loss, such as androgen or estrogen loss and ageing (Pogoda et al. 2005). However, 295 
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with regard to bone density and quality, dogs appear to be most similar to humans and rats 296 

the least (Aerssens et al. 1998). Interestingly, in vivo and in vitro bone mineral imaging as 297 

well as scale mineralization studies in zebrafish were described as a very simple alternative to 298 

explore alterations in mineralization pathways to GC challenge (Barrett et al. 2006). 299 

Techniques to measure GIO 300 

Osteoporosis is defined as an alteration of bone structure leading to increased fragility and 301 

fracture rate. In humans, clinically significant fractures and inappropriately low BMD serve 302 

as diagnostic criteria for osteoporosis. There is no such consensus on criteria defining 303 

osteoporosis in animal models. As spontaneous fractures do not occur in most animal models, 304 

unlike in humans, suitable proxy outcome measures need to be utilized. The following 305 

methods have been used to describe changes in bone health after GC exposure: 306 

 307 

Bone histomorphometry 308 

Traditional methods to assess changes in bone structure include the evaluation of histological 309 

sections of mineralized bone. In basic osteoporosis research, lumbar vertebral bodies and 310 

long-bone (typically, femoral and tibial) metaphyses are examined to investigate trabecular 311 

(cancellous) bone changes, whereas cortical bone alterations are assessed within the 312 

diaphysis of long-bones. In addition to the primary static measures, so-called dynamic 313 

parameters can also be calculated using the primary measures assessed on bone histological 314 

sections after appropriate fluorochrome labeling.  315 

 316 

Dual-energy x-ray absorptiometry 317 

Dual-energy x-ray absorptiometry (DXA) is widely used for BMD evaluation in the clinical 318 

as well as research setting. DXA assesses areal BMD (aBMD = bone mineral content/bone 319 

area). The precision of in vivo DXA scans has been shown to be very good in mice 320 
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(coefficients of variation < 2 %) at total body (excluding head), lumbar spine (L4-L5), whole 321 

femur and whole tibia sites (Iida-Klein et al. 2003). This enables longitudinal BMD 322 

observations to be used in murine osteoporosis studies. However, in studies, DXA scans have 323 

often been performed on different skeletal sites ex vivo as an outcome measure (see Table 1). 324 

The main drawback of DXA is that there is no information on bone structure or quality. Bone 325 

mass increases with body mass, therefore, smaller and younger animals will have lower BMD 326 

compared to larger and older ones, but not necessarily more fragile bones. Since experimental 327 

drugs, such as GCs, may affect body weight or growth (as discussed later), size should be 328 

taken into account to prevent the introduction of bias regarding the effect on BMD. However, 329 

bone size adjustments are rarely undertaken in murine osteoporosis studies (none of the 330 

studies listed in Table 1).  331 

 332 

Peripheral quantitative computerized tomography and Micro-computerized tomography 333 

By using peripheral quantitative computerized tomography (pQCT), true volumetric BMD 334 

can be assessed, that, together with bone architecture and geometry, allows for calculation of 335 

bone strength and structural indices. These indices correlate very well with whole bone 336 

strength when tested ex vivo (Siu et al. 2003; Kokoroghiannis et al. 2009). Micro-337 

computerized tomography (µCT) is normally used at a resolution of 1-10µm in rodents 338 

(Bouxsein et al. 2010). Major advantages compared to 2D histological sections are the 3D 339 

nature of the data, so that real mineralized bone matrix volumes in whole bone tissue 340 

volumes (BV/TV) can be assessed, faster data acquisition and larger bone region under 341 

investigation.  342 

 343 

Biomechanical testing and biochemical markers of bone metabolism 344 
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Although the primary aim may be focused at the molecular, cellular, tissue or whole bone 345 

organ level, the crucial clinically relevant outcome of the numerous papers focusing on 346 

osteoporosis research is to increase bone strength and reduce fracture risk. Bone tissue is a 347 

complex and metabolically active structure and, at the organ level, bone continuously adapts 348 

to mechanical loading and other environmental factors to mitigate the stress and sustain its 349 

function. Therefore, none of the above mentioned parameters alone can sufficiently mirror 350 

actual bone health. Biomechanical testing is the only method capable of verifying whether a 351 

treatment may cause or prevent bone fragility. In laboratory animals, bone competence is 352 

usually tested through axial compression of the vertebral bodies or three-point bending of 353 

long bones (Jepsen et al. 2015). 354 

Distinct biochemical markers in serum/plasma are also used to follow disease or drug-355 

mediated changes in bone formation (Glendenning 2011). 356 

 357 

GC type and dose to induce osteoporosis 358 

Prednisolone (or prednisone), methylprednisolone and dexamethasone are the most frequent 359 

synthetic GC used in osteoporosis animal models (see Table 1). However, they have distinct 360 

differences in potency. Although the following order from the most to least potent is in 361 

agreement with several studies (i.e., dexamethasone > methylprednisolone > 362 

prednisolone/prednisone > hydrocortisone/corticosterone), the relative efficacy may vary 363 

based on the assay or method of evaluation (Meikle & Tyler 1977; Tanaka et al. 1994; 364 

Buttgereit et al. 2002). The relative efficacy and potency of GC may also depend on the 365 

system studied, for example the potency for effects on bone metabolism may be quite 366 

different to those on glucose and fat metabolism (Ahmed et al. 2002; Wallace et al. 2003). In 367 

addition, it is not yet clear whether genomic or non-genomic pathways play the major role in 368 

GIO (Hartmann et al. 2016). Altered bone structure was observed in two-month-old male 369 
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mice treated with 15 mg/kg/day of corticosterone (Herrmann et al. 2009), but only 2.8 370 

mg/kg/day of methylprednisolone was needed to induce similar changes in mice of same age 371 

and sex (Yao et al. 2016). Therefore, methylprednisolone appears to be more potent than 372 

corticosterone in osteoporosis induction. Another study showed decreases in bone density, 373 

bone formation rate and bone strength in 6-month-old C57BL/6 male mice treated with 374 

prednisolone 2.1 mg/kg/day over 28 days, but the same dose was not sufficient to induce 375 

significant changes in female mice (Weinstein et al. 2011). By contrast, the same 376 

prednisolone dose was used in female mice of similar age, but different strain (i.e., Swiss 377 

Webster), and significant decreases were observed in bone density, bone formation and bone 378 

strength after only 10 days (Plotkin et al. 2011). This highlights that sex- as well as strain-379 

specific efficacy may be present with different GCs. Controlling for sex (male), strain (Swiss 380 

Webster) and route of administration (slow release subcutaneous pellets), 3-month-old mice 381 

required 5.6 mg/kg/day of prednisolone, the highest dose tested, to induce a significant 382 

decrease in mineralizing surface/ bone surface (MS/BS) and bone strength (Jia et al. 2011) 
383 

whereas a decrease in MS/BS and BMD was observed in 7-month-old mice challenged with 384 

2.1 mg/kg/day of prednisolone (Weinstein et al. 1998). Therefore, mouse age and pubertal 385 

status may be an additional factor influencing the potency of the tested GCs. In humans a 386 

dose of dexamethasone of 1mg is equivalent to 6mg of prednisolone, therefore consideration 387 

of the dose used relative to clinical application is important.  388 

It is also important when investigating GIO to describe the impact on both trabecular and 389 

cortical bone as there are discrepancies between data obtained at different sites, see table 1. 390 

 391 

Route of administration in GIO models 392 

Osteoporosis is induced by systemic administration of GC. Many studies implemented 393 

regular intramuscular, intraperitoneal or subcutaneous injections, but single implantation of 394 
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slow release subcutaneous pellet or oral gavage have also been used (see table 1). In rats of 395 

the same strain and age, daily oral gavage of GCs over a 90 day period (Lin et al. 2014) led 396 

to similar adverse effects on bone (as assessed by histomorphometry and aBMD) as thrice 397 

weekly subcutaneous injections of GC over 56 days (Iwamoto et al. 2008). By contrast, a 398 

much shorter period of intervention is necessary to induce osteoporosis with daily injections 399 

(Ogoshi et al. 2008) or continuous infusion through subcutaneously implanted osmotic 400 

pumps (King et al. 1996). Daily injections are stressful for the animals, which may negatively 401 

influence the outcome and ethical regulations in some countries may not allow multiple 402 

repeated injections over a long time period. For example, the injection of carrier alone (PEG 403 

400) caused a 3-fold increase in serum corticosterone levels in mice, compared to a 5-10 fold 404 

increase induced by an intraperitoneal injection of 10 mg corticosterone/kg body weight, 1 405 

hour after injection (Herrmann et al. 2009). This technique of administration would also not 406 

be acceptable to most patients in the clinical trial setting. Micro-osmotic pumps were found 407 

to have a large variation in residual volumes 21 days after implantation. With a filling volume 408 

of 250 µL, residual volumes containing active drug ranged from 50 to 180 uL, which 409 

indicated major differences in the flow-rate of individual pumps (Herrmann et al. 2009). 410 

Subcutaneous insertion of slow release pellets containing corticosterone leads to more 411 

consistent drug levels as compared to subcutaneous injections of corticosterone. Oral gavage 412 

seems to be less effective compared to daily injections or slow release subcutaneous pellets, 413 

but has the most translational relevance, as this would be the most accepted method of GC 414 

administration in the clinical setting. Whilst slow release pellet insertion may reduce 415 

unnecessary repetition of periodical injections over the study period their safety and efficacy 416 

needs further validation. 417 

 418 

Animal models of GC-induced growth retardation 419 
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It is likely that different animal models are required to investigate GIO and growth 420 

retardation. Poor choice of model may result in misinterpretation of results and limited 421 

translational promise. For example, the young growing rat does not show any bone loss or 422 

changes in microarchitecture of trabecular bone and modelling is the prevailing activity,  423 

therefore it is a poor model for human GIO (until at least 9 months of age when the transition 424 

to remodelling occurs). It does appear, however, to be a good model to mimic the growth 425 

retardation seen in children exposed to GC (Lelovas et al. 2008). For growth studies, the age 426 

and status of sexual maturity at the time of growth plate closure must also be considered. 427 

Unlike humans, bone acquisition and longitudinal bone growth continue in mice and rats 428 

after sexual maturity. Linear bone growth in rodents increases during the largest proportion 429 

of life expectancy in comparison with other species (Kilborn et al. 2002). Humans and 430 

primates (showing the second highest ratios of age at growth plate closure to life expectancy), 431 

cows and sheep are also considered adults at the age when growth plate closure occurs. By 432 

contrast, rabbits, dogs, and cats would be described as very young adults at the time of physis 433 

closure. In mice, whilst the highest growth phase is from weaning until sexual maturation, 434 

body weight continues to increase in the mouse up to the end of the 52nd week and long bone 435 

growth continues slowly after puberty (Jilka 2013).  By contrast, New Zealand white rabbits 436 

begin sexual maturation at approximately 2 months of age and undergo epiphyseal fusion by 437 

approximately 6 months of age. Therefore in order to induce growth retardation and allow for 438 

subsequent catch-up growth in one study, GC challenge was commenced when the rabbits 439 

were 5 weeks of age (Weise et al. 2001). Nevertheless, using rabbits at a young age proved 440 

problematic for Kugelberg and colleagues who were unable to sex them at 3 weeks of age 441 

and therefore had to use both males and females in their study (Kugelberg et al. 2005). This 442 

is important as imprinting (Jansson et al. 1985) by androgen secretion of the neonatal rodent 443 
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brain has been shown to result in sex differentiation of body growth and, therefore, it is also 444 

important to consider which sex of animal is most relevant to the research question.  445 

 446 

Techniques to assess bone growth rate 447 

When studying mammalian growth, simple gross parameters such as weight, body or tail 448 

length have historically been used as proxies for growth rates (Hughes & Tanner 1970), and are 449 

still routinely recorded when assessing growth in pre-clinical studies. These measurements 450 

can be very inaccurate however, and dependent on other confounding factors (Melin et al.). X-451 

ray determination of the length of different long bones with the aid of anatomical landmarks 452 

(Weber et al. 1968) is a simple but more accurate proxy.  Recent advances in imaging also 453 

mean that tibial/femoral length can be accurately measured using micro (µ)CT. This is often 454 

performed in conjunction with other measures of trabecular and cortical bone structure 455 

(Waarsing et al. 2004; Bouxsein et al. 2010). In addition, in vivo µCT is a non-invasive 456 

imaging technique that allows longitudinal bone growth to be evaluated over a period of 457 

weeks or months in the same animals and would therefore be well suited for monitoring GC-458 

induced growth retardation. This can be a cost effective and ethical method as it reduces the 459 

number of animals required for a study and also minimizes intra-subject variability. Potential 460 

drawbacks include the dose of ionizing radiation delivered through multiple scans and the 461 

potential for radiation associated tissue effects on the growing skeleton (Klinck et al. 2008; 462 

Laperre et al. 2011). Inclusion of a non-irradiated contralateral limb would clarify the 463 

magnitude of this potential issue.  Also, by administering fluorescent labels (Owen et al. 464 

2009) at known time intervals, the bone formation rate (BFR) at the chondro-osseous 465 

junction can be assessed visually under UV light, without the need for further staining or 466 

decalcification (Dobie et al. 2015).  In addition to the methods used to assess the growth rate 467 
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of the entire bone, measures of the tibial epiphyseal growth plate width have been used for 468 

over 50 years as a reliable proxy indicator of growth rate (Interlichia et al. 2010).  469 

More recently, a number of investigators have used ex vivo models such as rodent metatarsals 470 

in culture (Mårtensson et al. 2004; Mushtaq et al. 2004). For example, when fetal mouse 471 

metatarsals were cultured for up to 10 days with either daily or alternate day dexamethasone 472 

at 10-6M, dexamethasone treated bones paralleled control bone growth rate until day 8 when 473 

their rate of growth decreased resulting in a total length that was significantly reduced from 474 

controls at days 8 and 10 (Mushtaq et al. 2004). 475 

  476 

It is well established that the rate of linear bone growth is dependent on growth plate 477 

chondrocyte proliferation, matrix turnover and changes in chondrocyte shape and size 478 

(Hunziker & Schenk 1989; Farquharson & Jefferies 2000). Advances in quantitative 479 

histology now enable the growth plate to be scrutinized in greater detail to assess the 480 

contribution of the different chondrocyte activities to overall growth rate.  Whilst quantitative 481 

histology techniques were developed in the 1970’s to assess the relationship between cell 482 

division in growth cartilage and overall bone growth, chondrocyte proliferation is now 483 

routinely quantified by the immunohistochemical detection of BrdU incorporation into 484 

proliferating cells in tissue sections of the growth plate (Farquharson & Loveridge 1990).  485 

Cell death of hypertrophic chondrocytes within the growth plate is also required for 486 

physiological bone growth and the TUNEL assay allows the detection and quantification of 487 

apoptotic cells within a population of chondrocytes (Kyrylkova et al. 2012).  488 

 489 

GC type and dose to induce growth retardation 490 

The inquiry was performed on PubMed, with “growth retardation” or “growth”, 491 

“glucocorticoids” and “animal name” used as MeSH terms. When summarising the data, we 492 
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have not included studies where only gross body measurement parameters were taken as a 493 

subset of a larger study. Studies where only an abstract was available were also excluded. 494 

Where the same groups have published multiple work using the same species and 495 

methodology, only the initial data has been represented in table 2.  496 

As shown in Table 2, dexamethasone was the most frequently used GC in the growth 497 

retardation models that we reviewed. Method of administration and dosage varied greatly, 498 

consistent with the GIO models. Rodents were used in the majority of studies. Four of the 499 

studies administered subcutaneous injections of dexamethasone to mice of between 3 and 5 500 

weeks of age. All used daily injections, except for one, where a 5-times weekly regimen was 501 

followed (Rooman et al. 1999). The length of course varied from 7 to 28 days and the dose 502 

used varied from approximately 0.02mg/kg/day to 5mg/kg/day. In one of the studies, where 503 

three varying doses were used, the lowest dose of 0.2µg (approximately 0.02mg/kg/day) did 504 

not cause significant growth reduction, but both the 2µg and 20µg doses caused similar 505 

growth retardation (Rooman et al. 1999). No differing side-effects were reported in the two 506 

groups. When a dose of 2mg/kg/day was used, body weight was reduced only in males and 507 

femur length only in females, whilst a significant reduction in body weight was demonstrated 508 

by day 3 using 5mg/kg/day in females in a different study (Owen et al. 2009). It would, 509 

therefore, appear that there is a sex difference in response to GCs and that an optimal dose 510 

would be greater than 2mg/kg/day to ensure significant growth retardation in both sexes. 511 

However, the rapid catabolic response with a reduction in body weight by day 3 seen with a 512 

dose of 5mg/kg/day would suggest the need for close monitoring (Owen et al. 2009).  513 

 514 

We reviewed 8 studies using rats, usually either Wistar or Sprague-Dawley and up to 4 515 

months of age at study induction. All except two studies used only male rats. Length of 516 

course varied greatly from 4 to 90 days. In one of the studies using prednisolone, 517 
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10mg/kg/day was originally chosen (after a previous study by the same authors demonstrated 518 

no effect on cortical bone using 5mg/kg/day (Ortoft et al. 1992)) but after observing 519 

unexpectedly high weight loss, the dose was decreased to 5mg/kg/day. Using 5mg/kg/day 520 

they were able to demonstrate reduced longitudinal bone growth of the lumbar vertebrae. 521 

This highlights one of the problems of using body weight as a reflection of growth. GC can 522 

show a dual metabolic effect on body weight, depending on the dosage, method of 523 

administration and length of treatment. High dosages can cause a catabolic effect and loss in 524 

body weight whereas lower dosages can cause an increase in appetite and associated weight 525 

gain (as frequently seen in humans). For example, 1mg/kg single dose of dexamethasone 526 

given to piglets caused accelerated growth at 18 days of age (Carroll 2001). Piglets are also 527 

noted to have a metabolic response to GCs that closely mimics the response observed in 528 

infants and children receiving long-term GC therapy (Ward et al. 1998). One of the studies 529 

using Wistar rats demonstrated inhibition of growth after only 10 days of either inhaled 530 

budesonide or fluticasone (Kemer et al. 2015), even at a dose of only 50mcg. This is 531 

particularly relevant when considering that inhaled GCs are the treatment of choice for 532 

persistent asthma symptoms in both children and adults.  533 

 534 

 Decreased bone growth has been demonstrated even at concentrations as low as 1mg/kg/day 535 

in a study of rats, where doses of up to 9mg/kg/day of methylprednisolone were used (Ortoft 536 

et al. 1998a). In this study there was no discernible dose-specific side-effects although serum 537 

insulin levels were reduced in all groups.   These authors also noted that the catabolic effect 538 

of 9mg/kg/day of methylprednisolone (Ortoft et al. 1998b) by daily subcutaneous injection 539 

was less than that noted when a 5mg of depot prednisolone was used in rats of a similar age 540 

(Ortoft et al. 1998a). This suggests that routes of administration must also be considered.  541 

 542 

Page 22 of 54



 23

Three studies were reviewed which used rabbits; each of these used dexamethasone, but via a 543 

different method of administration (eye drops, local infusion and daily subcutaneous 544 

injection) therefore they cannot be directly compared. However, all studies reported 545 

significant reductions in growth within the dexamethasone-treated groups. All rabbits were 546 

aged 5 weeks or less at study induction and all were aged 11 weeks or less at time of cull. In 547 

the only pre-clinical model to use a topical method of GC administration, significant effects 548 

on growth were demonstrated (Kugelberg et al. 2005).  549 

 550 

Three studies used piglets, all of whom were less than 7 weeks of age at the end of the study. 551 

Again a variety of routes of GC administration were used. It would appear that a dose of 0.25 552 

mg/kg/day of dexamethasone is insufficient to induce bone growth retardation in young 553 

piglets (Śliwa et al. 2005). In a similar study, a reduction in growth velocity persisted only 554 

when piglets were dosed with 0.3mg/kg/day and above (Ward et al. 1998) and when 555 

prednisolone, at an equivalent dexamethasone dose of 0.75mg/kg/day was used, a significant 556 

change in growth plate histology was seen (Smink et al. 2003b). 557 

 558 

It appears that higher equivalent doses of GCs are used in rodents compared to larger 559 

mammals such as rabbits and piglets.  In young mice, an optimal dose of dexamethasone 560 

when administered by daily subcutaneous injection seems to be between 2 and 5 mg/kg/day. 561 

This review demonstrates that there are a varied number of different methods that can be 562 

employed effectively to cause GC-induced growth retardation. However, unlike the review of 563 

GIO, we found no studies using implantable pellets or osmotic mini-pumps that measured 564 

growth parameters and therefore further studies are required to clarify their effectiveness of 565 

these delivery routes in causing growth retardation. Having highlighted the pitfalls of using 566 

the gross parameter body weight as a marker of growth; we propose that any future studies 567 
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should also use other confirmatory parameters of growth such as bone length measurements, 568 

BFR or growth plate histology.  569 

Genetically engineered animal models  570 

Global deletion of GR is lethal and mice die of respiratory failure due to lung atelectasis on 571 

the first day of life (Cole et al. 1995) therefore it is not possible to create a complete GR-572 

knockout model. However, tissue-specific genetically modified mouse models can be useful 573 

to tease out the effect of GCs on interlinked reactions between the different types of bone 574 

cells. For example, deleting osteoblast-specific GR conferred protection from GIO, while 575 

deleting osteoclast-derived GR had no effect (Rauch et al. 2010). Development of col 2.3 and 576 

col 3.6 hydroxysteroid dehydrogenase (HSD)2 transgenic mouse models that activate 11β-577 

HSD2 in osteoblasts showed decreased vertebral trabecular and femoral cortical bone mass, 578 

without any change in serum GC levels (Liu et al. 2004), thus implicating a role for 579 

endogenous GC signaling within the osteoblast for optimal bone mass acquisition.   580 

 581 

Conclusion  582 

In this review we have demonstrated that there are specific outcome measures that should be 583 

assessed when investigating either GIO or GC-induced growth retardation. We carried out a 584 

literature review with the aim of determining the most appropriate animal model to use when 585 

demonstrating the effects of GC on growth and bone structure, but results are too 586 

heterogeneous to enable one specific model to be advocated over another in all situations. 587 

However, there is sufficient evidence to recommend that investigation of GC-induced growth 588 

retardation in mice should be performed using dexamethasone 2-5 mg/kg/day by daily 589 

subcutaneous injection and the outcome measures should include serial lengths (using 590 

consistent measuring technique) and/or growth plate width and BFR; the measurement of 591 
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body weight for assessing linear growth is too inaccurate. When investigating GIO, there is 592 

insufficient evidence to recommend one specific mode of delivery over another but in most 593 

studies a dose of prednisolone 2-5mg/kg/day in mice has been sufficient. Recommended 594 

outcome measures include volumetric BMD (by pQCT or µCT rather than by DXA for 595 

greater accuracy) and bone biomechanical testing to mimic fracture rate in clinical studies.  596 
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Figure 1: systemic consequences of exogenous glucocorticoids and effects on different bone 

cells and adipocytes.  

Legend- RANKL; receptor activator of nuclear factor kappa-B ligand, OPG; osteoprotegrin, 

BMP2; bone morphogenetic protein 2, OSF-2; osteoblast-specific factor- 2, IGF-1; Insulin-

like growth factor-1,  TGF/, transforming growth factor beta. 
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Table 1. Animal models of glucocorticoid-induced osteoporosis 

Species Sex + 

Age 

GC type, 

duration, 

administration, 

dose 

Body Weight 

(compared to 

baseline) 

Bone 

site 

Bone Imaging 

Technique 

Histomorphometry  

(GC vs Controls) 

µCT 

(GC vs control) 

DXA 

(GC vs 

control) 

Bone Strength Testing 

(GC vs control) 

Ref 

Mice, FVB F, 3 w Dex, 28 days 

working day SC 

14.3 ug/mouse/d 

NA  

 

Fem uCT NA BV/TV: no diff NA NA (Postnov et al. 

2009) 

Mice, ICR M, 6-8 w Dex, 28 days, 

daily IP inj., 2.5 

mg/kg/d 

No change in GC 

group, + 15 % in 

controls 

Tib Histomorph, (tib), 

pQCT (tib diaphysis) 

BV/TV - 45 % pQCT: no difference in 

vBMD, Cortical 

Thickness - 57 % 

NA NA (Du et al. 2011) 

Mice, mod 

Swiss 

Webster 

backgrnd 

M, 2 m Pred, 21 days, sc 

pellet, 0.8, 2.8 

and 4.0 mg/kg/d 

-20 % in GC 

groups, +24 % in 

controls 

Fem 

LS 

Histomorph,(L4, fem 

shaft); uCT (L5, 

distal fem) 

MS/BS - 50 %, BFR/BS - 65 % 

in highest GC group only 

BV/TV - 22 % in highest 

GC group only 

NA Axial compression (L6), 4-

point-bend test (fem) 

L6: Max Load -48 % and -61 % 

in 2 higher doses GC gps, resp; 

no diff  at fem 

(Yao et al. 2016) 

Mice, Swiss 

Webster 

M, 2 m Pred, 21 days, sc 

pellet, 3.3 

mg/kg/d 

- 20 % in GC 

group; + 25 % in 

controls 

Fem 

LS 

Histomorph (L4, 

L5,fem diaphysis); 

uCT (fem diaphysis, 

L5) 

L5: MS/BS -46 %, BFR/BS -60 

%; Fem: diaphyseal 

endocortex: BFR/BS -91 %, 

diaphyseal periosteum -92 % 

L5: BV/TV -32 %; distal 

fem: BV/TV: no diff 

NA Axial compression (L6), 3-

point-bend test (femur) 

Max Load: L6: -24 %, fem: no 

diff 

(Dai et al. 2015) 

Mice, WT 

littermates 

of 

transgenic 

offspring 

M, 8 w Cort, 28 days, sc 

pellet, NA 

NA Tib 

LS 

Histomorph(prox 

tibia); uCT (L3, tibia) 

Zero endocortical BFR/BS at 

tib 

L3: BV/TV: no diff; tibial 

metaphysis: BV/TV: no 

diff; tib diaphysis: 

Cortical thickness: no 

diff 

NA 3-point-bend test (tib) Max 

Load: no diff 

(Henneicke et al. 

2011) 

Mice, CD1 

Swiss 

White 

M, 7-9 w Cort, 28 days, sc 

pellet, 15 

mg/kg/d 

NA Tib 

LS 

uCT (L3, tibia) NA L3: BV/TV - 33 %; tibia: 

BV/TV - 56 % 

NA NA (Herrmann et al. 

2009) 

Mice, 

C57BL/6J + 

129/SvJ 

F+M,  

9 w 

Cort, 28 days 

sc pellet  

every week 

NA 

+ 27 % in GC 

groups; + 3 % in 

controls 

Tib QCT NA Trab BMD:-12% F,-21% 

M BV/TV -20% F,-27%M 

cort vBMD decreased, 

but not cort thickness/ 

bone area 

NA NA (Tamura et al. 

2015) 

Mice, 

C57BL/6 

F,  

8-10 w 

Dex, 17 days 

working day IP  

88 ug/mouse/d 

NA Fem pQCT NA Trab vBMD :+30%, 

Cort thickness: -9% 

 

NA NA (Grahnemo et al. 

2015) 

Mice, 

C57BL/6J 

F, 3 m Dex, 84 days 

thrice wk IM 

2.1 mg/kg/d 

NA (at end GC 

group +22 % v 

controls) 

Tib Histomorph,;CT NA BV/TV - 47 % NA NA (Cheng et al. 2015) 

Mice, Swiss 

Webster 

M, 3 m Pred, 28 days, sc 

pellet, 1.4, 2.8 

and 5.6 mg/kg/d 

NA F Histomorph MS/BS -40-60 % (in two 

highest GC doses) 

NA NA Axial compression (L6) (Jia et al. 2011) 
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Mice, 

C57BL/6 

F, 4 m Pred, 28 days  

sc pellet 

1.4, 2.1 mg/kg/d 

No change Fem 

LS 

Histomorph (LS)  

DXA (LS; fem) 

uCT (LS) 

MS/BS: no diff,  

BFR/BS: -36% 

BV/TV: no diff 

Cort thickness: -22% 

LS: 

aBMD: -

5% 

Fem: 

no diff 

Axial compression (LS) 

No diff  

(Sato et al. 2016) 

Mice, Swiss 

Webster 

M, 4 m Pred, 28 days, sc 

pellet, 2.1 

mg/kg/d 

NA LS Histomorph(L5);  

DXA (L? in vivo) 

BV/TV - 66 % NA aBMD change from 

baseline - 9 % in GC gp 

and - 4 % in controls,  

(sig diff between grps) 

NA (Li et al. 2016) 

Mice, Swiss 

Webster 

F, 5 m Pred, 10 days  

sc pellet 

2.1 mg/kg/d 

NA LS Histomorph, 

DXA  

BV/TV: -23%,  

MS/BS: -86%,  

BFR/BS: -90% 

NA aBMD: - 18% Axial 

compression 

(LS) 

Max Load: - 

34% 

(Plotkin et al. 

2011) 

Mice, Swiss 

Webster 

M, 5 m Pred, 28 days, sc 

pellet, 5.0 

mg/kg/d 

No change by 

end (-15 % after 

2 wks in GC gp) 

Tib Histomorph, ; uCT BV/TV -22 %, MS/BS -61 %, 

BFR/BS -75 % 

BV/TV no difference NA NA (Bouvard et al. 

2013) 

Mice, 

C57BL/6 

M, 6 m Pred, 56 days, sc 

pellet, 2.8 

mg/kg/d 

NA Fem 

LS 

uCT (L3, femoral 

diaphysis) 

NA L3: BV/TV - 25 %; 

femoral diaphysis: 

Cortical thickness -20 % 

NA NA (Fumoto et al. 

2014) 

Mice, 

C57BL/6 

M, 6 m Pred, 28 days, sc 

pellet, 2.1 

mg/kg/d 

NA LS Histomorph,(L1-L4); 

uCT (L5); DXA (L1-L4 

in vivo) 

BFR/BS - 49 % BV/TV not diff aBMD - 11 % Axial 

compression 

(L6) 

(Weinstein et al. 

2011) 

Mice, Swiss 

Webster 

M, 6 m Pred, 56 days, sc 

pellet, 5.0 

mg/kg/d 

NA Fem uCT NA BV/TV no difference (- 

30 % at day 28) 

NA NA (Yao et al. 2008) 

Mice, 

BALB/c 

F, 7 m Dex, 14 & 21 

days daily IP 

1.0, 5.0, 10 

mg/kg/d 

No change Fem 

Tib 

LS 

Histomorph (Fem, 

Tib, L5) 

uCT (Fem, Tib, LS) 

Fem: BV/TV: no diff, Fem: 

MS/BS: -62%, Fem: BFR/BS: -

74% (at mid GC dose) 

Fem BV/TV: + 11%; 

LS: no diff 

NA NA (McLaughlin et al. 

2002) 

Mice, Swiss 

Webster 

M, 6 m Pred, 21 days, sc 

pellet, 1.4 

mg/kg/d 

-10 % after 1 wk, 

regained initial 

weight by study 

end (no diff GC v 

control by end) 

LS Histomorph(L5); 

uCT (L5) 

BV/TV -19 %, MS/BS - 31 %, 

BFR/BS - 80 % 

BV/TV - 22 % NA Axial 

compression 

(L3) 

Max Load: no 

dif 

(Lane et al. 2005) 

Mice, Swiss 

Webster 

M, 7 m Pred, 27 days, sc 

pellet, 0.7 and 

2.1 mg/kg/d 

NA (tendency to 

lower weights in 

GC grps by end) 

Fem 

LS 

Histomorph(L?, 

femur), DXA (L? in 

vivo) 

BV/TV - 39 %, MS/BS - 26 %, 

BFR/BS - 53 % (in higher GC 

group only) 

NA aBMD change from base 

- 3,- 7,- 9 % in controls, 

lower, higher GC dose 

groups, respectively (sig 

diff between higher GC v 

control) 

NA (Weinstein et al. 

1998) 

Mice, Black 

Swiss + 

129SvJ 

M, 7 m Pred, 28 days 

sc pellet, 2.1 

mg/kg/d 

NA  

 

Fem 

LS 

Histomorph,(LS, 

Fem); pQCT (LS, 

Fem) 

LS: BV/TV: -31% 

LS: BFR/BS: 84% 

Fem: no difference 

pQCT: vBMD no diff NA Axial 

compression 

(LS);  

3-point bend 

test (femur) 

(Hofbauer et al. 

2009) 
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Max Load: LS: 

- 29 %, Fem: 

no diff 

Rabbits, 

Japanese 

white 

 

F, 6 m MP, 28 days, 

daily IM inj., 2.0 

mg/kg/d 

- 9 % in both 

control and GC 

groups 

Fem 

LS 

DXA (fem head and 

shaft), uCT (fem, L4) 

NA osteonecrosis after 8 

wks (4-wk treatment + 

4-wk wash out) in  fem 

head 

aBMD: femoral head - 

33 %; fem shaft - 22 % 

NA (Lin et al. 2016) 

Rabbits, 

New 

Zealand 

white 

F, 8 m MP, 56 days, 

daily IM inj., 1.0 

mg/kg/d 

No change LS DXA (L3-L4 in vivo), 

uCT (L3-4) 

NA BV/TV - 17 % aBMD - 25 % Axial 

compression 

(L3-4) Max 

Load - 19 %, 

no diff in 

Stiffness 

(Baofeng et al. 

2010) 

Rabbits, 

New 

Zealand 

white 

F, 8 m MP, 28 days, 

daily IM inj., 1.5 

mg/kg/d 

No change (no 

details were 

shown) 

LS 

Knee 

DXA (L3-L4, knee) NA NA aBMD: spine - 9 %; knee 

- 19 % 

NA (Castañeda et al. 

2008) 

Rabbits, 

New 

Zealand 

white 

M, 8 m Dex, 84 days, 

twice a week IM 

inj., 0.9 mg/kg/d 

Slight increase in 

all groups (no 

numbers shown) 

LS Histomorph (L3), 

DXA (L3-L4) 

BV/TV - 39 % NA aBMD - 27 % Axial 

compression 

(L4) Max Load 

- 38 %, 

Stiffness - 34 

% 

(Yongtao et al. 

2014) 

Rats, 

Wistar 

M, 2 m Pred, 42 days, 

oral gavage every 

second day, 15 

mg/kg/d 

NA Tib pQCT (tibial 

diaphysis) 

NA Cortical vBMD -2 %, 

Cortical thickness: no 

diff, SSI - 25 % 

NA NA (Yokote et al. 

2008) 

Rats, 

Sprague-

Dawley 

F, 3 m Dex, 84 days, 

twice a week IM 

inj., 0.7 mg/kg/d 

 

No change Multi 

sites 

DXA (head, upper 

limb, fem, trunk, rib, 

pelvis, spine, whole 

body) 

NA NA aBMD: spine - 18 % NA (Jiang et al. 2016) 

Rats, 

Sprague-

Dawley  

F, 3 m MP, 56 days, 

thrice a week SC 

inj., 2.1 mg/kg/d 

 

No change Tib 

Fem 

Histomorph,(tib  

diaphysis); DXA 

(fem) 

MS/BS - 60 %, BFR/BS - 76 % NA aBMD - 5 % NA (Iwamoto et al. 

2008) 

Rats, 

Sprague-

Dawley 

M, 3 m Pred, 90 days, 

daily oral gavage, 

1.5, 3.0 and 6.0 

mg/kg/d 

+33 % in GC 

groups; +62 % in 

controls 

Tib 

Fem 

LS 

Histomorph (fem, 

tibia); DXA (fem, 

L5); uCT (L6) 

tib: BV/TV: no diff, MS/BS - 

27 % (high GC-gp only), 

BFR/BS - 52 % (all 

combined); fem: BV/TV: no 

diff, MS/BS - 39 % (comb), 

BFR/BS - 38% (comb) 

BV/TV: no difference aBMD: fem: - 8 %; L5: no 

diff 

Axial 

compression 

(L5), 3-point-

bend test 

(fem) Max 

Load: fem: - 7 

% (no diff with  

lowest dose), 

L5: -22 %; 

Stiffness: fem: 

(Lin et al. 2014) 
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-17 % (no diff 

with lowest 

dose), L5: 

data not 

shown 

Rats, 

Wistar 

F, 3, 6, 

12 m 

Pred, 28 days, 

daily SC inj., 2.0 

and 20 mg/kg/d 

+ 9 %, + 3 % No 

change in 

controls; +5%, 

no change, -8 % 

in high GC group 

(3, 6, 12-mth old 

mice, resp.) 

Tib pQCT (tib 

metaphysis and 

diaphysis) 

NA Trab vBMD higher/ 

lower/not diff (3/6/12-

mth old), Cortical vBMD 

unchanged in either 

group (only %changes 

from baseline  given) 

NA NA (Ogoshi et al. 

2008) 

Rats, 

Sprague-

Dawley 

F, 6 m MP, 30 days, 

thrice a week SC 

inj, 3.0 mg/kg/d 

No change (no 

details shown) 

Tib 

Total 

Body 

Histomorph(tib)DXA 

(total body) 

BV/TV - 11 %, MS/BS - 13%, 

BFR/BS - 18 % 

NA aBMD - 8 % NA (Dalle Carbonare 

et al. 2007) 

Rats, 

Sprague-

Dawley 

F, 8 m MP, 60 days, 

daily SC inj, 30 

mg/kg/d 

NA Fem DXA NA NA aBMD - 9 % 3-point-bend 

test (femur) 

Max Load - 27 

% 

(Bitto et al. 2009) 

Rats, 

Wistar 

M, 8 m MP, 42 days, 

weekly SC inj, 1.0 

mg/kg/d 

NA Femur 

LS 

Histomorph (distal 

fem); DXA (L2-L4 in 

vivo) 

BV/TV -34 % NA aBMD -1% in controls,- 

10 % in GC  (sig diff 

between gps) 

NA (Wimalawansa & 

Simmons 1998) 

Rats, 

Sprague-

Dawley 

M, NA 

200-

225g 

Dex, 19 days, 

continuous pump 

infusion, 16.3 

ug/rat/d 

+ 8 % in GC 

group, + 52 % in 

controls 

Fem Histomorph BV/TV - 50 % NA NA NA (King et al. 1996) 

 
Abbreviations- aBMD: areal bone mineral density, BFR/BV: bone formation rate / bone surface, BV/TV: bone volume/tissue volume, Cort: corticosterone, 

Dex: dexamethasone, DXA: dual x-ray absorptiometry, F: female, Fem: femur, GC: glucocorticoid, Histomorph: histomorphometry, LS: lumbar spine, 
M: male, MAR: mineral apposition rate, MP: methylprednisolone, MS/BS: mineralizing surface / bone 

Surface, mths: months, NA: not available, Pred: prednisolone, pQCT: peripheral quantitative CT, QCT: quantitative CT, Tib: tibia, uCT: micro CT, vBMD: 

volumetric BMD, wks:weeeks 
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Table 2 Animal models of glucocorticoid-induced growth retardation 

Species Sex + age GC duration, method, dose Measurement Bone site Results Ref 

FVB Mice F, 3 wks Dex, 5 days a week for 4 wks, Daily 
SC inj, 0.2 µg, 2µg or 20µg/ animal/ 
day 
(approx. 0.02mg- 2mg /kg/day) 
 

BW, snout-tail length under anaesthesia 
weekly 
After cull, organs weighed, tib dissected, 
length measured using digital caliper. 
Tib dissected- GP width. 

tib Dex at 2 and 20µg/ day caused reduction in: 
- wt of tib, humerus and lumbar vertebra (only vertebra sig) 
- wt of organs esp. liver/muscle 
- total width of GP (mainly due to reduction in proliferative zone).   
Tibia length only slightly affected. No change in hypertrophic zone.  

(Rooman et al. 1999) 

FVB mice F, 3 wks Dex, 7 days, Daily SC inj, 20µg/day 
(approx. 2mg /kg/day) 
 

BW 
Nose-tail length 
Tibiae dissected- GP width and zones 
TUNEL assay 

tib Dex caused reduction in:- 
- total body weight (16.7 v 13.6g) 
- length gain (1.9 v 1.3cm) 
- tib GP width (dec in width of proliferative zone) 
- number of prolif chondrocytes 
 Inc in number of apoptotic chondrocytes. 

(Smink et al. 2003a) 

BL6 and BL6 (P21-/-
)mice 

F, 4 wks Dex, 7 days, Daily SC inj, 
5mg/kg/day 

Daily BW, nose-rump body length on days 1 
and 7. 
Digital caliper measurement of tib and organ 
weights after dissection.GP zone widths. 
Calcein labelling to measure MAR. 

tib Dex treatment caused reduction in:-  
- BW by D3 and CRL by D7 (8.2 v 7.6 cm)  
- liver, spleen and tibia Wt  
- GP width (esp in PZ and HZ)  
- MAR.  

(Owen et al. 2009) 

Homozygous Bax-
deficient and C57BL6 
mice 

Both, 30-
32 days 

Dex, 28 days, Daily SC inj, 2mg/kg Body weight 
Bones measured weekly by X-ray 
BrdU histology, TUNEL assay 

fem Dex caused reduction in: 
- fem growth (by 47% in female, 50% in males 
- BW (only significant in males) 
- chondrocyte proliferation and chondrocyte column density.   
Inc no. apoptotic chondrocytes. 

(Zaman et al. 2012) 

Wistar rats Both, 10 
days 

Budesonide 10 days, inhaled, 50 or 
200mcg 
 Fluticasone propionate 10 days, 
inhaled, 50 or 250mcg 
 

BW change during study period 
Tib dissected-GP zone widths, proliferation 
and apoptosis rates using Ki-67 and Tdt 
markers 

 Lowest weight gain in high dose fluticasone group 
All GP zone widths lower than controls (only significant at higher 
doses, more marked in high dose fluticasone than budesonide) 
Proliferative cell rates sig lower than controls 
Apoptosis in hypertophic zone of high dose fluticasone group almost 
doubled 

(Kemer et al. 2015) 

Sprague–Dawley rats M, 23 
days 

Dex, 24 days, Daily intra-peritoneal 
inj, 40 μg/kg /day. 

BW bi-weekly 
Nose-anal length prior to cull 

 Dex caused reduction in:  
- final BW (118 v 106g) 
- nose-anal length (18.5 v 17.8 cm) 
- growth rate (7.4 v 6.1g/day) 

(Tulipano et al. 2007) 

Long-Evans rats M, 37 
days  

Cortisone, 4 days, Daily SC inj, 1 
mg/25 g BW/ day 

BW, tail length 
Right tib measured after cull, with calipers.  
GP Width measured 

tib Cortisone treatment showed reduction in: 
- tail + tib length 
- BW velocity  
Wider epiphyseal GP width seen. 

(Mosier & Jansons 1989) 
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Sprague  Dawley rats M, 7 wks Dex, 7 days, Daily SC inj, 
5mg/kg/day 

BW 
Growth rate by calcein labelling of tibia. 
TUNEL assay 

tib Dex caused reduction in:  
- BW (23% loss v 32% gain in controls.  

- growth rate (68 /207µm day) 
- chondrocyte column density  
4-fold increase in apoptosis in THCs 

(Chrysis et al. 2003) 

Wistar rats F, 2 mths Methylpred, 90 days, Daily SC inj, 
Variable dose- 1,3,6 or 9 mg/kg/day 

BW weekly. Nose-tail length, length of R lower 
extremity weekly for 4 wks, then fortnightly 
using sliding caliper. Calcein/ tetracycline 
labelling of GP sections from prox tib after 
dissection. 

fem, tib Dose-dependent decrease in: 
- weight gain 
- nose-tail length 
- fem and tib lengths (even at 1mg/kg/day) 
- growth at the prox epiphyseal GP 
- muscle mass 
Effect seen after 1 wk, persisted for study duration. 

(Ortoft et al. 1998b) 

Sprague– Dawley rats  
 

M, 3 
mths 

Pred, 90 days, Oral gavage, Varied- 
1.5/3.0/6.0 mg/kg/day 

BW weekly 
Calcein/ tetracycline labelling to measure MAR 
and longitudinal growth rate  

fem, tib Pred caused dose dependent reduction in:- 
- BW (11.4, 14.7 and 19.2% with pred at 1.5/3.0/6.0 mg/kg/day 
respectively) 
- fem metaphyseal growth rate 
6.0mg/kg/day caused reduction in periosteal MAR of tib cortex.  

(Lin et al. 2014) 

Wistar rats M, 3 
mths 

Corticosterone, 3 wks, Daily SC inj, 
10mg/day (approx 40mg/kg/day) 

BW 
TUNEL assay 
Tib dissected- GP width. 

tib Corticosterone caused reduction in: 
- BW velocity 
- GP width  
Increased apoptosis of terminal hypertrophic chondrocytes. 

(Silvestrini et al. 2000) 

Wistar rats F,105 
days 

Pred, 80 days, Daily SC inj, 
5mg/kg/day (initially 10mg/kg/ 
day-  dec due to s/e) 

BW 
Height of L5 vertebrae 

LS Longitudinal bone growth of L5 arrested  (Ortoft et al. 1998a) 

New Zealand white 
rabbits 

Both, 3 
wks 

Dex, 8 wks, Eye drops, 20µl 10 
times daily over 13 hr period.  Gp 1- 
all doses, Group 2-alt doses. Ave 
daily dose 0.24 to 0.62 mg/kg/day. 

BW and crown-rump length weekly 
Fem length measured after cull by micrometer 

fem Dex caused dose-dependent reduction in: 
- crown-rump length 
- fem length  
- BW gain 

(Kugelberg et al. 2005) 

New Zealand white 
rabbits 

M, 4 wks Dex, Local infusion into one 
proximal tibial GP, over 7 days, 

80ng/µl, 1µl/hr 

Serial radiographs of pinned tibia tib Dex caused reduction in: 
- epiphyseal growth rate compared with contralateral side.  
Most marked at days 5-8. Recovered by day 21. 

(Baron et al. 1992) 

New Zealand white 
rabbits 

M, 5 wks Dex, 5 wks, Daily SC inj, 0.5 mg/kg 
per day  
 

Fem length measurement using digital caliper. 
Oxytetracycline labelling of longitudinal 
growth. Fem dissected- GP width/ zones. 
Chondrocyte prolif rate. 

fem Dex caused reduction in:  
- fem length  
- heights of the total GP, prolif and hypertrophic zones  
- BW gain  

(Weise et al. 2001) 

Large Polish White 
piglets 

Both, 2 
days 

Dex, 12 days, IM inj every 2nd day, 
0.5mg/kg of birthwt 

BW at start and end of study 
Length of fem, hum (technique not specified) 

fem, hum Dex treatment caused reduction in: 
- BW 
- Femoral and humerus bone length (not significant) 

(Śliwa et al. 2005) 

Yorkshire piglets M,4- 5 
days  

Dex, 15 days, bd by orogastric 
gavage, Tapering- 5 days each of 
0.5, 0.3 and 0.2 mg/kg/d 

Body weight, snout to rump length, fem 
length using single photon absorptiometry 

fem Dex caused reduction in: 
- length by day 6 and BW by day 11.  
Growth velocity reduction persisted only with 0.3 and 0.5mg/kg/day  

(Ward et al. 1998) 

Cross-bred piglets 
(Landrace x Yorkshire) 

F, 6 wks Pred, 5 days, oral, 5mg/kg/day Tib dissected- GP width. TUNEL assay tib Pred caused reduction in: 
- total GP widths to 81% of controls,proliferative zone 
- trab bone length  
7-fold inc in apoptotic chondrocytes in hypertrophic zone. 

(Smink et al. 2003b) 
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Abbreviations- BD: twice daily, BW: birthweight, Dex: dexamethasone, F: female, Fem: femur, GP: Growth plate 

 IM: intramuscular, Inj:injection, LS: lumbar spine, M: male, MAR: mineral apposition rate, mths: months, Pred: prednisolone, SC:SC, S/E:side-

effects, tib: tibia, Wks: weeks,  
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Bone formation 

Bone resorption 

Mesenchymal stem cell 

Adipocyte 

Osteoblast 

Osteoclast Osteocyte 

GC excess: 

Sex steroid production
↑ Calcium excretion
↓ Calcium absorption
– Secondary hyperparathyroidism

↑ Apoptosis
Altered elastic modulus
↓ Mineralisation
↑ RANKL
↓ OPG

↑ Apoptosis
↓ Differentiation
↓ Synthesis of type 1 collagen 
Suppression of BMP2, OSF-2, IGF-1, TGF-β
Down-regulation of Wnt-β catenin
↑ RANKL
↓ OPG

↑ Life span pre-exisitng osteoclasts
↓ Apoptosis of mature osteoclasts

↑ PPAR γ 2

↓ Runx2
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