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The onset of convection in a rapidly rotating layer in which a thermal wind is present is studied. Diffusive effects are included. The main
motivation is from convection in planetary interiors, where thermal winds are expected due to temperature variations on the core-mantle
boundary. The system admits both convective instability and baroclinic instability. We find a smooth transition between the two types
of modes, and investigate where the transition region between the two types of instability occurs in parameter space. The thermal wind
helps to destabilise the convective modes. Baroclinic instability can occur when the applied vertical temperature gradient is stable, and
the critical Rayleigh number is then negative. Long wavelength modes are the first to become unstable. Asymptotic analysis is possible
for the transition region and also for long wavelength instabilities, and the results agree well with our numerical solutions. We also
investigate how the instabilities in this system relate to the classical baroclinic instability in the Eady problem. We conclude by noting
that baroclinic instabilities in the Earth’s core arising from heterogeneity in the lower mantle could possibly drive a dynamo even if the
Earth’s core were stably stratified and so not convecting.
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1 Introduction

The geomagnetic field is believed to be generated by convection in the Earth’s fluid outer core. The
convection in the core is strongly influenced by rotation, leading to the formation of tall thin columns
which transport the heat out from the interior to the core-mantle boundary (Busse and Carrigan 1976,
Jones 2000). The form of these columns plays a vital role in the mechanism by which magnetic field is
generated (Olson et al. 1999). Although the convection in the core is in a strongly nonlinear regime, with
Rayleigh number well above that at the onset of convection, dynamo models show that the convecting
columns still have many features that resemble the pattern of convection derived from linear theory.

The onset of convection from stationary fluid in rapidly rotating spherical bodies is now fairly well
understood. Roberts (1968) and Busse (1970) evaluated the essential principles, confirmed in numerical
studies by Zhang (1992). The behaviour in the asymptotic limit of small Ekman number (rapid rotation)
was elucidated by Jones et al. (2000) and Dormy et al. (2004). In this paper we study the onset of convection
in a rotating system with an imposed zonal flow, that is an axisymmetric, azimuthal flow. Zonal flows occur
frequently in nature. Well-known examples are the wind systems on the giant planets, where east-west
flows reaching up to several hundreds of metres per second can occur. The systems most relevant to this
paper are the cases where the zonal flow is a thermal wind, driven by latitudinal temperature gradients.
A famous example is the jet-stream in our atmosphere, driven by the pole-equator temperature difference.
Thermal winds are also believed to occur in the Earth’s core (Olson and Aurnou 1999, Sreenivasan and
Jones 2005, 2006) where warmer regions above the poles lead to anticyclonic vortices which can be detected
in the secular variation as the geomagnetic field is advected by the flow. This process has been modelled
in the laboratory by Aurnou et al. (2003).

Convection in the outer core is significantly affected by the presence of a solid inner core of radius
approximately 0.35 times the radius of the fluid outer core. The fundamental cause of the warmer (and
compositionally lighter) regions near the poles is believed to be the different efficiency of convection
in the polar regions inside the tangent cylinder and outside the tangent cylinder (Tilgner and Busse
1997). The tangent cylinder is the imaginary cylinder that touches the inner core; outside the tangent
cylinder convection columns can reach right across the outer core, but inside the tangent cylinder columns
are bounded by the inner core. Thermal winds inside the Earth’s core could also arise more directly,
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because of a heterogeneous heat flux across the core-mantle boundary. Seismic tomography suggests that
heterogeneities exist, and a natural interpretation is that the variations in seismic velocity are due to
thermal variations caused by a core-mantle heat flux that varies with latitude and longitude (Gubbins
et al. 2007). In this situation, even when the temperature gradient is subadiabatic so convection would not
be expected, a basic state with no flow is impossible (see e.g. Zhang and Gubbins 1996). A thermal wind
is set up which might lead to a baroclinic instability. The possibility that the core is stably stratified just
below the core-mantle boundary was originally suggested by Braginsky (1993). While we do not currently
know whether the core heat flux is low enough for such a subadiabatic region to exist, estimates of the
thermal conditions in the core suggest it is a realistic possibility (Anufriev et al. 2005).

The aim of this paper is to examine the effect of a thermal wind on the onset of convection, and to
examine whether baroclinic instabilities can arise in rapidly rotating systems when the fluid is stably
stratified. As we see below, as the thermal wind is gradually increased, convective modes evolve into
baroclinic modes. The critical Rayleigh number can therefore become negative when the thermal wind
flow is large enough that baroclinicity becomes important. This can occur at conditions which are realistic
for the core. To elucidate the fundamental mechanisms involved, we consider here a simple plane layer
model, which allows some asymptotic limits to be explored. This simple model is most relevant to the
polar regions in the core, since we are taking gravity and rotation to be parallel. More realistic geometries
for core convection will be explored subsequently.

The onset of rotating convection in a plane layer in the absence of a thermal wind was comprehensively
studied by Chandrasekhar (1961). Baroclinic instability in a stably stratified layer forms the basis of the
Eady problem, discussed in detail in the meteorological context by Pedlosky (1987) and Drazin and Reid
(1981). Here we combine these two classical problems by examining the stability of a simple thermal wind
state when diffusion is present and when the vertical temperature gradient, specified by the Rayleigh
number, can be either positive or negative.

2 Description of the model

We consider a plane layer of depth d rotating about the vertical axis with angular velocity Ω. We choose
a Cartesian coordinate system with the origin situated at the centre of the layer so that the boundaries
are located at z = ±d/2. In this geometry x and y are playing the role of the azimuthal and latitudinal
coordinates respectively. The static temperature gradient in the absence of the zonal flow is such that
T = βd and T = 0 at z = −d/2 and z = d/2 respectively. Gravity, g, acts downwards in the negative
z-direction. This type of setup is appropriate for polar regions of the Earth’s core where gravity is near
parallel to the rotation axis and the zonal flows are expected to depend on z.

The equation of motion in a rotating frame whilst assuming the Boussinesq approximation is

∂U
∂t

+ (U · ∇)U + 2Ωẑ×U = − 1
ρ0
∇P + gαT ẑ + ν∇2U, (1)

and the temperature equation is

∂T

∂t
+ (U · ∇)T = κ∇2T, (2)

where α, ν and κ are the coefficient of thermal expansion, the kinematic viscosity and the thermal diffusivity
respectively, P being the pressure and ρ0 the density. Also, the Boussinesq continuity equation is simply

∇ ·U = 0. (3)
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2.1 Basic state

In many models the basic state has a velocity field set to zero and we have hydrostatic balance in the
momentum equation between the pressure gradient and the buoyancy. When this is the case taking the
curl of (1) results in a T that can only vary in the direction parallel to gravity. However if the basic state
temperature varies in the x or y direction we must have a balance between the pressure gradient, buoyancy
and Coriolis force in the momentum equation. By taking the curl of (1) in this case we obtain the thermal
wind equation

2Ω
∂U
∂z

= gαẑ×∇T, (4)

which generates an azimuthal zonal flow, the thermal wind, when T has y-dependence.
Since we want a thermal wind in our basic state, we set U, T and P as u0, T0 and p0 respectively, and

let

u0 = u′zx̂, (5)

T0 = β

(
d

2
− z
)
− 2Ωu′

gα
y, (6)

p0 = gαβρ0

(
zd

2
− z2

2

)
− 2ρ0Ωu′yz + pconstant, (7)

which is a solution to the system of equations (1) - (4), where β is the static temperature gradient in
the absence of the zonal flow. Here u′ is the constant shear defining the strength of the zonal flow. These
equations define the basic state. Of particular note here is the fact that the temperature distribution
depends on a coordinate other than the coordinate parallel to the rotation axis, so the basic state is
baroclinic, that is ∇p0 is not parallel to ∇ρ = −αρ0∇T0.

2.2 Perturbed state

In order to analyse linear stability we now add small perturbations to the basic state so that U = u0 + u,
P = p0 + p and T = T0 + θ. Since the perturbations are small we are able to ignore nonlinear terms so
that equations (1) and (2), using the definition of the basic state, give

∂u
∂t

+ u′z
∂u
∂x

+ u′uzx̂ + 2Ωẑ× u = − 1
ρ0
∇p+ gαθẑ + ν∇2u, (8)

∂θ

∂t
+ u′z

∂θ

∂x
− βuz −

2Ωu′

gα
uy = κ∇2θ. (9)

We proceed by eliminating the pressure to leave four equations for four unknowns. We denote the
vorticity by ω and then the z-components of the curl and double curl of equation (8) are

∂ωz

∂t
+ u′z

∂ωz

∂x
− u′∂uz

∂y
− 2Ω

∂uz

∂z
= ν∇2ωz, (10)

∂∇2uz

∂t
+ u′z

∂∇2uz

∂x
+ 2Ω

∂ωz

∂z
= gα∇2

Hθ + ν∇4uz, (11)

respectively. Here ∇2
H = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian. Then by employing the identity
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∂ωz/∂x− ∂2uz/∂y∂z = ∇2
Huy, equation (9) can be written

∇2
H

(
∂θ

∂t
+ u′z

∂θ

∂x
− βuz − κ∇2θ

)
=

2Ωu′

gα

(
∂ωz

∂x
− ∂2uz

∂y∂z

)
. (12)

We now have three equations (10) - (12) for three unknowns, namely: uz, ωz and θ. Next we non-
dimensionalise these equations using length scale d, time scale d2/ν and temperature scale βνd/κ. Then
equations (10) - (12) become

(
∂

∂t
+Rez

∂

∂x
−∇2

)
ωz −Re

∂uz

∂y
− E−1∂uz

∂z
= 0, (13)(

∂

∂t
+Rez

∂

∂x
−∇2

)
∇2uz + E−1∂ωz

∂z
= Ra∇2

Hθ, (14)

P

(
∂

∂t
+Rez

∂

∂x
− P−1∇2

)
∇2

Hθ = ∇2
Huz +

PRe

ERa

(
∂ωz

∂x
− ∂2uz

∂y∂z

)
, (15)

where the Ekman number, E, Prandtl number, P , Rayleigh number, Ra, and Reynolds number, Re, are
defined as

E =
ν

2Ωd2
, P =

ν

κ
, Ra =

gαβd4

νκ
, Re =

u′d2

ν
. (16)

Equations (13) - (15) are the finite Ekman number equations for rapidly rotating plane layer convection
with zonal flow. Our system is defined so that when β > 0 we have cold fluid sitting on top of hot fluid and
thus the layer is buoyantly unstable. Therefore, as is usually the case when considering thermal convection,
we require a positive Rayleigh number above some critical value, Rac, for convective motions to begin.
In the case where β < 0 the system is buoyantly stable since hot fluid sits on top of cold fluid and with
a basic state temperature distribution only dependent on z no convection is possible. However, since the
basic state temperature distribution we have defined in section 2.1 depends on y as well as z it is not
immediately clear if motion is forbidden when Ra < 0 in our setup.

3 Numerics

The solutions were assumed to take the form: exp(σt+i(kxx+kyy)) where the growth rate, σ, is in general,
complex. The resulting equations are

(
σ + ikxRez + k2 − d2

dz2

)
ωz − ikyReuz − E−1 duz

dz
= 0, (17)(

σ + ikxRez + k2 − d2

dz2

)(
d2

dz2
− k2

)
uz + E−1 dωz

dz
= −k2Raθ, (18)(

σP + ikxPRez + k2 − d2

dz2

)
θ = uz −

iPRe
ERak2

(
kxωz − ky

duz

dz

)
, (19)

where k2 = k2
x + k2

y. In addition to demanding that there be no penetration (uz=0) and a constant surface
temperature (θ=0) at the boundaries, we considered two cases, namely stress-free and no-slip boundary
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(a) Stress-free boundaries. (b) No-slip boundaries.

Figure 1. Contour plots of the numerical results for the Rayleigh number at onset for Re against kx with E = 10−4, P = 1, ky = kyc = 0.
The colour scales denote the value of the Rayleigh number at onset, Ra∗. The green curves divide the regions of steady modes and
oscillatory modes, onset being oscillatory to the right of these curves.

conditions on both the upper and lower boundaries so that

d2uz

dz2
=0 =

dωz

dz
at z = ±1

2
for the stress-free case, (20)

duz

dz
=0 = ωz at z = ±1

2
for the no-slip case. (21)

We solved equations (17) - (19) using a simple eigenvalue solver. The system has the following six input
parameters: kx, ky, Re, P , E and Ra, which can be varied to obtain the growth rate. Given values for the
other five parameters we are interested in finding the Rayleigh number, Ra∗, at the onset of convection.
Hence for various values of the input parameters we searched for marginal modes, where <[σ] = 0, and
recorded the value of Ra∗ for which the mode appeared. To reduce the parameter space we worked with
typical values of the Ekman number (E ∼ 10−3 − 10−5) and Prandtl number (P ∼ 0.1− 10).

Figure 1 shows how the onset of convection changes as the azimuthal wavenumber and the zonal wind
are varied for a particular choice of the Ekman number, Prandtl number and the latitudinal wavenumber,
for both choices of boundary conditions. It should be noted that the data in figure 1 is represented on a
log-log plot due to the varying magnitudes involved, and a log scale is necessary for the values of Ra∗ also.
Since we have positive and negative Rayleigh numbers, we plot only contours with |Ra∗| > 1, but this
excludes only a tiny region in figures 1(a) and 1(b). Also of note is the fact that the quantity which has
been plotted, Ra∗, is not the same as the critical Rayleigh number, Rac, since the latter is minimised over
the wavenumbers, kx and ky. We plot Ra∗ here rather than the critical Rayleigh number due to reasons
discussed in section 3.2. Plots for Rac are displayed later. The initial striking feature of both sets of results
is the appearance of marginal modes with negative Rayleigh number. We see that these modes only appear
under certain parameter regimes, namely for sufficiently large Re and sufficiently small kx. Hence we are
able to divide the parameter space into two regimes driven by different types of instability: the convective
regime and the baroclinic regime. In the convective/baroclinic regime it is the buoyancy/shear, which is
driving the instability. The form of the eigenfunctions in xz-space for the points marked in figure 1 is
shown in figure 2.
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Figure 2. Eigenfunction plots corresponding to points marked on figure 1. Stress-free cases: ×1 : Re = 5, Ra = Rac ≡ 1.8889×106, kx =
kxc ≡ 27.9610. ×2 : Re = Re∗ ≡ 10.9599, Ra = −106, kx = 0.1. ×3 : Re = 4000, Ra = Ra∗ ≡ −1.3571× 1011, kx = 0.1. No-slip cases:
×4 : Re = 5, Ra = Rac ≡ 1.5193 × 106, kx = kxc ≡ 24.5630. ×5 : Re = Rec ≡ 43.4458, Ra = −106, kx = kxc ≡ 3.8551. ×6 : Re =
4000, Ra = Ra∗ ≡ 3.1259× 107, kx = 30. ky = kyc = 0 for all points.
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Figure 3. Plots of the numerical results for the onset parameters in the convective regime against kx with E = 10−4, P = 1, ky = kyc = 0.
The onset parameter is the Rayleigh number in the convective regime.

3.1 Convective regime

For low values of the zonal wind we expect to find the usual convective columnar roll solutions as de-
scribed by Chandrasekhar (1961), which we refer to as the ‘convective modes’. Convective modes with the
z-vorticity antisymmetric about the equator are expected as the most unstable modes in plane layer con-
vection; the converse is true in the case of the full sphere as originally noted by Busse (1970). Indeed for the
point marked ×1 we find the mode to be of this form, as shown by figure 2(a). The structure has tall thin
cells with hot fluid rising and cold fluid sinking as expected. This is the case for both types of boundary
conditions as is evident from the similarity of figure 2(d), point ×4, for the no-slip case. We also note that
for Re = 0 if we minimise the Rayleigh number at onset over k, to find the critical Rayleigh number, the
preferred values are Rac ∼ 1.8970× 106 with kc ∼ 28.0243 for the stress-free case and Rac ∼ 1.5251× 106

with kc ∼ 24.6366 for the no-slip case, for the values of E and P used in figure 1. This is in agreement
with Chandrasekhar (1961). These critical values of the wavenumbers do however depend on Re. In the
case of Re = 0 the system has complete symmetry in the x and y directions, so all wavenumbers kx and
ky satisfying k2

x + k2
y = k2

c onset at Rac. However as the zonal wind strength is increased from zero we
found there is immediately a preference for two-dimensional modes with kyc

= 0. This is the case for
all modes with Re 6= 0. We also find that the value of the critical Rayleigh number decreases, for both
types of boundary conditions, as shown by figure 3. Hence the zonal wind has a destabilising effect on the
system and aids the onset of convection. The critical azimuthal wavenumber, kxc

, also decreases as Re is
increased for both types of boundary conditions as shown by figure 3. The two plots of eigenfunctions in
the convective regime, ×1 and ×4 are for critical values of kx and Ra∗ with Re = 5.

As Re is increased we move into the baroclinic regime and hence the values of Re chosen for the plot
in figure 3 are relatively low in order to remain in the convective regime. For the modes in the convective
regime the main energy balance is between the buoyancy and the viscous stresses. However as Re is
increased, the baroclinic basic state means that buoyancy can do work at lower critical Rayleigh number,
and indeed even at negative Rayleigh number. This is discussed in section 3.4.

3.2 Baroclinic regime

As the zonal wind strength is increased further we find a second type of mode, which is interesting as
it allows for instability regardless of how negative the Rayleigh number is. In other words this mode can
be unstable no matter how stably stratified the system is. For this reason we refer to them as ‘baroclinic
modes’, which are distinct from the convective modes that are usually found as the most unstable modes.
They are related to the unstable modes of the Eady problem (Pedlosky 1987). This suggests that we should
consider a critical Reynolds number, rather than a critical Rayleigh number, for the baroclinic modes since
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Figure 4. Plots of the numerical results for the onset parameters in the baroclinic regime against kx with E = 10−4, P = 1, ky = kyc = 0.
The onset parameter is the Reynolds number in the baroclinic regime.

it is the shear that is driving this instability. Hence we introduce a critical Reynolds number, Rec, and
corresponding critical wavenumbers, kxc

and kyc
for the baroclinic regime. For a given Ekman number,

Prandtl number and Rayleigh number Rec is the value of the Reynolds number for which a marginal
baroclinic mode can appear (analogous to the critical Rayleigh number in the convective regime). As with
all modes with a non-zero Reynolds number we find that kyc

= 0. From figure 4 we see how Re∗ varies
with kx for several negative values of the Rayleigh number for both types of boundary conditions.

For stress-free boundaries we see from figure 4(a) that in all cases kxc
= 0 and Rec ∼ 10.95. Therefore

reducing kx allows for instability with an ever more negative Rayleigh number as shown by table 1. It is
for this reason that Ra∗ rather than Rac is plotted in figure 1. An asymptotic theory highlighting these
results and which obtains a value of Rec for any given Ra and P in the small E limit, is discussed in
section 4.1. The form of a typical baroclinic mode at onset is shown in figure 2(b), point ×2. We see that
the vorticity is independent of z and that θ has flipped signs for this type of mode so that the hot fluid is
sinking and the cold fluid is rising. This is directly related to the change in sign of the Rayleigh number
and is due to the fact that the baroclinic basic state allows buoyancy to fully balance the viscous stresses
even at negative Rayleigh number (see section 3.4). However the magnitude of the vertical velocity is small,
indicating that the shear is dominating the flow in these modes. The form of the eigenfunctions suggest
that an asymptotic analysis may be possible for small kx, which is developed in section 4. The general
form of the eigenfunctions remains similar to that shown in figure 2(b) as kx is reduced towards the true
critical value namely kxc

= 0.
For no-slip boundaries we see from figure 4(b) that there is a non-zero critical azimuthal wavenumber,

which varies with Ra. As the Rayleigh number is made more negative the critical azimuthal wavelength
lengthens and the critical Reynolds number increases. Figure 2(e), point ×5, shows the form of the eigen-
functions at critical for Ra = −106. As with the stress-free case the sign of θ has changed from the
convective regime and the magnitude of uz is small. However the vorticity now takes a more complicated

Ra∗

kx E = 10−3 E = 10−4 E = 10−5

0.01 −9.6562× 1010 −9.6578× 1012 −9.6577× 1014

0.05 −3.8618× 109 −3.5057× 1011 −3.8624× 1013

0.1 −9.6496× 108 −9.6511× 1010 −9.6511× 1012

0.5 −3.7972× 107 −3.7980× 109 −3.7980× 1011

1 −9.0591× 106 −9.0636× 108 −9.0637× 1010

Table 1. Numerically computed values of Ra∗ for various E and kx in the case Re = 100, P = 1 and ky = kyc = 0 for stress-free boundaries.
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Re∗

E = 10−4 E = 10−5

kx P = 0.1 P = 1 P = 10 P = 20 P = 0.1 P = 1 P = 10 P = 20
0.1 34.871848 10.961025 3.464601 1.538575 34.694565 10.955008 3.464401 1.538771
0.5 35.028908 11.073052 3.470478 1.505469 34.932575 11.025471 3.468142 1.510741
1.0 36.362040 11.626575 3.526367 1.428312 36.309677 11.612943 3.520017 1.426985
5.0 64.790420 19.831849 5.088978 1.591699 64.777473 19.829615 5.088115 1.591423
10.0 115.463528 35.190378 10.557187 4.845180 114.698854 35.120826 10.512839 4.806599

Table 2. Numeric results showing the position of the transition region, the point where Ra∗ = 0, in Re-space for various values of kx, E and P

in the case ky = kyc = 0 for stress-free boundaries.

slanted structure, which is asymmetric in z, in contrast to the stress-free case where ωz was independent
of z.

The baroclinic modes are only found for certain parameter regimes as highlighted by figure 1. For stress-
free boundaries we must have kx . 30 and Re & 10 for these modes to appear and as such this is a
constraint on the existence of the baroclinic modes. For no-slip boundaries the parameter regime for the
existence of the baroclinic modes is altered slightly but we still require a sufficiently large Re and sufficiently
small kx. Outside of these regimes we recover the convective modes, which have positive Rayleigh number.
This is demonstrated by considering the Re = 1 line in figure 1(a), which has solely positive Ra∗. In the
stress-free case, for a sufficiently large Re, the Rayleigh number is negative and depends on kx and E
such that reducing either of these parameters towards zero makes the Rayleigh number more negative,
thus making the system less stable. In fact from table 1 it is clear that the magnitude of Ra∗ is inversely
proportional to both k2

x and E2. This remains true for different values of Re. In this way we see that it is
possible to have instability regardless of how negative the Rayleigh number is by choosing a small enough
kx and sufficiently large Re.

3.3 Further numeric results

Between the regions of positive and negative Rayleigh number there is a sharp transition region where the
Rayleigh number passes through zero in a relatively small region of Re-space. The Rayleigh number varies
smoothly from positive to negative values across the transition region. The values of the Reynolds number
at onset, in the case of stress-free boundaries, for a given kx, Re∗, for the transition region at which Ra∗ = 0
are given in table 2. As E is reduced Re∗ at transition converges to a value independent of the Ekman
number. From table 2 we also notice that reducing kx lowers the Reynolds number at onset suggesting
once again that the minimising kx is zero (i.e. kxc

= 0) and Rec is converging to a value dependent on the
Prandtl number.

The modes described so far have all been steady. Steady modes are usually preferred for the onset of
convection in a plane layer at P = 1, unsteady modes being possible at lower P (Chandrasekhar 1961).
However by increasing Re further we also found unsteady modes appearing at onset even at P = 1. These
modes are found in the region of parameter space shown in figures 1(a) and 1(b) to the right of the dividing
curve, the solid line in both figures. We see that these unsteady modes can onset with either positive or
negative Rayleigh number. Figure 2(c), point ×3, shows the eigenfunctions for such an oscillatory mode
in the case of stress-free boundaries. These modes onset as pairs of travelling wall modes with frequencies
which are equal but opposite in sign. Oscillatory modes are found at larger kx and Re for the no-slip
case, an example being shown in figure 2(f), point ×6. If the domain is infinite in the x and y directions,
all wavenumbers kx and ky are allowed, and the critical mode is always steady, either at fixed Ra as Re
is gradually increased or at fixed Re as Ra is gradually increased. However, if the domain is finite, and
for example periodic boundary conditions in x and y are imposed, thus restricting the possible choice of
wavenumbers to a discrete set, then it is possible for oscillatory modes to be preferred.

In the work displayed so far we have varied the parameters of most interest: kx, Re and Ra whilst looking
at specific values for P and E. We have also found that kyc

= 0 for the modes of interest (i.e. modes with
Re 6= 0). Although instability is possible with ky 6= 0 in both the convective and baroclinic regimes, we
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Figure 5. Plot showing how the Reynolds number at onset varies with kx for P = 50, E = 10−4, Ra = −1 and ky = kyc = 0 with
stress-free boundaries.

find that increasing ky from zero only serves to stabilise the system by increasing the Rayleigh number or
Reynolds number for which onset occurs. Here we consider the effects of varying the Ekman and Prandtl
numbers.

We first look at two further values for the Ekman number: 10−3 and 10−5. We find that changing E
alters the magnitude of the Rayleigh number at onset but does not affect the position of the baroclinic
parameter regime in kx − Re space. The results in table 1 highlight the fact that for the baroclinic mode
Ra∗ is inversely proportional to E2. Therefore if we increase the Rayleigh number from −∞ changing the
Ekman number controls how soon the instability occurs. However we still require the same sufficiently
large Re and small values of kx.

We considered further values of the Prandtl number: P = 0.1 and P = 10. In a way the effect of changing
the Prandtl number was opposite to that of altering the Ekman number. This is because although the
Rayleigh number remains largely unaffected for various P , the position of the baroclinic regime in kx − Re
space changes. This can be seen in table 2 where the transition region occurs at a higher/lower value of
Re∗ for a lower/higher value of P . We see that for P = 10 the baroclinic modes are able to appear at a
lower value of the zonal wind (Re ∼ 3.5), compared to the P = 1 case. The converse is true when P = 0.1
where the baroclinic modes cannot appear until Re ∼ 35. The behaviour of the critical parameters at
moderate values of the Prandtl number (P = 0.1− 10) remains largely the same with kxc

= 0 continuing
to be preferred in the stress-free baroclinic regime. However we note that there is a non-zero miminising
kx for larger values of P so long as the magnitude of Ra is not too large. An example of this can be seen in
table 2 when P = 20, for both values of the Ekman number. Another case, with Ra non-zero, is displayed
in figure 5 where we find kxc

∼ 2.7 for P = 50 with Ra = −1. The critical value of the Reynolds number
is ∼ 1.2603, which is smaller than for the other Prandtl numbers considered, as expected. The asymptotic
theory in section 4.1 is able to explain this dependence of kxc

on P .

3.4 Thermodynamic equation

To form the energy equation we consider the dot product of u with equation (8) and integrate over the
volume of the layer. In the limit ky = 0, the situation most favourable to baroclinic instability, the only
terms that remain are the balance of the work done by buoyancy and the rate of working of the viscous
forces,

Ra

∫
uzθ dV =

∫
∂ui

∂xj

∂ui

∂xj
dV, (22)

where we have non-dimensionalised using the same scales as earlier. Following chapter 2 of Chandrasekhar
(1961), we now multiply the temperature equation (9) by θ and eliminate the rate of working of the
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buoyancy force to obtain the thermodynamic equation

Ra

∫
(∇θ)2dV − PE−1Re

∫
θuydV −

∫
∂ui

∂xj

∂ui

∂xj
dV = 0, or I1 + I2 + I3 = 0. (23)

The second integral, I2, is related to the heat flux carried in the y direction, and is only non-zero when the
zonal flow is non-zero. The third term, I3, is the rate of viscous dissipation. We can write this equation
in terms of the real and imaginary parts of uz, ωz and θ and their derivatives, all of which have been
calculated in the numerics above. Figure 6 shows how the three terms in equation (23) vary as a function
of Re for a specific choice of kx. Plots for other kx where baroclinic modes exist are similar with the
position of the transition region changing accordingly.

Since the integral in the first term is positive definite, and that in the third term is negative definite, we
must also have Ra > 0 in the case Re = 0. This is the well understood case where the Rayleigh number
must be positive for the system to be convectively unstable. At low Re this remains the predominant
balance and the Rayleigh number remains positive. However with Re 6= 0 the baroclinic term can now
partially balance the viscous stresses and thus as Re is increased the Rayleigh number is reduced to
allow equation (23) to balance. This can be seen in figure 6 where the I2 contribution slowly increases in
magnitude as Re increases.

As Re is increased further and we enter the transition region (located at Re ∼ 19.86 for kx = 5.0119)
we see that both I1 and the baroclinic flux, I2, change sign. In the transition region the main balance is
between these two terms as the magnitude of the rate of working of the viscous stresses is small. However
the sum of I1 and I2 must still balance the always negative I3 term. The transition region represents the
point in Re-space where I2 becomes large enough in magnitude to solely overcome I3 without the need
for a contribution from I1. Hence I1 can change sign, so that Ra must change sign also. This explains
why a sufficiently large value of the zonal wind is required to allow for modes with negative Rayleigh
number to appear. It also indicates that the term, I1 or I2, in equation (23) which is positive, and thus
is able to balance I3, contains the parameter that is driving the instability. In other words it is the
Rayleigh/Reynolds number and thus the work done by buoyancy/baroclinic heat flux, which is balancing
the viscous dissipation in the convective/baroclinic regime.

Equation (23) can also explain the results of changing the Prandtl number given by table 2. Since I2 in
the thermodynamic equation is proportional to P , increasing or decreasing the Prandtl number requires
a lower or higher value of Re respectively. This is slightly crude since it assumes that the values of the
integrals in equation (23) do not change with P . This is not the case, which is why increasing the Prandtl
number by an order of magnitude does not result in the zonal wind decreasing by the same amount. For
example the position of the transition region for P = 10 in table 2 has only moved from Re ∼ 10 (in the
P = 1 case) to Re ∼ 3.5 rather than Re ∼ 1. Despite this the form of I2 in the thermodynamic equation
serves to explain the general dependency of the transition region on P .

4 Asymptotics

Here we develop asymptotic theories, which predict the numeric results with stress-free boundaries very
well. In the numerical work previously discussed we have been considering low but finite values of the
Ekman number since these are of particular physical interest. Hence the first limit to take is that of
asymptotically small E. Guided by the numerics we rescale the dependent variables as ωz = ω̃z, uz = Eũz,
θ = Eθ̃, and Ra = −R̃/E2 and then we find that the leading order equations from (17) - (19) in the limit
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Figure 6. Plot showing how the integrals in the thermodynamic equation (23) vary with Re, at E = 10−4. There are stress-free
boundaries and P = 1, kx = 5.0119 and ky = kyc = 0.

E → 0 are (
σ + ikxRez + k2 − d2

dz2

)
ω̃z =

dũz

dz
, (24)

dω̃z

dz
= k2R̃θ̃, (25)(

σ + ikxPRez + k2 − d2

dz2

)
θ̃ = ũz +

ikxPRe

k2R̃
ω̃z. (26)

From these equations we are able to easily eliminate θ̃ by taking the double-derivative of equation (25)
and substituting into equation (26) to give

d3ω̃z

dz3
= (σ + ikxPRez + k2)

dω̃z

dz
− ikxPReω̃z − R̃k2ũz. (27)

We use equations (24) - (27) in each of our asymptotic theories and thus they are only accurate for low
Ekman numbers. These equations are related to the quasi-geostrophic equations used by atmospheric
scientists, see section 4.3 below, though here diffusion is still included.

4.1 Low wavenumber asymptotics 1: Fixed Rayleigh number

In this theory we obtain an expression for the critical Reynolds number in terms of the Prandtl and
Rayleigh numbers. We set σ = 0 because we are considering steady marginal modes and since the critical
latitudinal wavenumber vanishes for all modes of interest we also set ky = kyc

= 0 so that k = kx. The
numerics suggest that the critical azimuthal wavenumber is zero for baroclinic modes and thus we expand
ω̃z, ũz and Re in powers of the small parameter k as follows:

ω̃z = 1 + kω1 + k2ω2 + · · · , (28)

ũz = k(u0 + ku1 + k2u2 + · · · ), (29)

Re = Re0 + kRe1 + k2Re2 + · · · . (30)

We have chosen ω0 = 1 to satisfy normalisation conditions and in this theory we apply the stress-free
boundary conditions given by equation (20). It is also useful to take the integral of equation (24) across
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the layer since the boundary conditions eliminate two of the resulting terms to leave

∫ 1/2

−1/2
(ikRez + k2)ω̃zdz = 0. (31)

We now proceed by considering the equations at increasing order (i.e. powers of k). Equations (27) and
(24) at order O(k) give

d3ω1

dz3
= −iPRe0, (32)

iRe0z −
d2ω1

dz2
=

du0

dz
(33)

respectively, which when applying the boundary conditions gives

ω1 = −iPRe0

(
z3

6
− z

8

)
, (34)

u0 = iRe0(1 + P )
(
z2

2
− 1

8

)
. (35)

Next we consider equations (31) and (27) at O(k2) to give

∫ 1/2

−1/2
(iRe0zω1 + iRe1z + 1)dz = 0, (36)

d3ω2

dz3
= iPRe0z

dω1

dz
− iPRe0ω1 − iPRe1 (37)

and by using the definition of ω1 we can evaluate the integral in equation (36) to acquire

Re0 =

√
120
P
. (38)

We can also find ω2 from equation (37) by inserting the definition of ω1 and using the boundary conditions
to get

ω2 = P 2Re2
0

(
z6

360
− z2

1920

)
− iPRe1

(
z3

6
− z

8

)
. (39)

Once again considering equations (31) and (27), now at O(k3), we obtain

∫ 1/2

−1/2
(iRe0zω2 + iRe1zω1 + iRe2z + ω1)dz = 0, (40)

d3ω3

dz3
= iPRe0z

dω2

dz
+ iPRe1z

dω1

dz
+

dω1

dz
− iPRe0ω2 − iPRe1ω1 − iPRe2 − R̃u0 (41)



September 3, 2010 10:32 Geophysical and Astrophysical Fluid Dynamics paper6

14 Robert J. Teed, Chris A. Jones & Rainer Hollerbach

respectively whereby Re1 = 0 to satisfy equation (40). By inserting the definitions of ω1, ω2 and u0 into
equation (41) we find

ω3 = iP 3Re3
0

(
z9

36288
− z5

115200
+

z

573440

)
− iRe0(P + R̃(1 +P ))

(
z5

120
− z3

48
+

5z
384

)
− iPRe2

(
z3

6
− z

8

)
.

(42)
We are now able to find an expression for Re2 using equation (31) at O(k4), which is∫ 1/2

−1/2
(iRe0zω3 + iRe2zω1 + iRe3z + ω2)dz = 0. (43)

We insert the expressions for ω1, ω2 and ω3 into equation (43) and evaluate the integral to find

Re2 =

√
30
P

[
17
168

(
1 +

R̃(1 + P )
P

)
− 5P

792

]
. (44)

Hence from equation (30) we find

Re ≈ Re0 + k2Re2 =

√
120
P

+ k2

√
30
P

[
17
168

(
1 +

R̃(1 + P )
P

)
− 5P

792

]
, (45)

which yields an approximation to the Reynolds number given P , R̃ and a small k. The form of this
expression for Re is able to explain the dependence of the critical wavenumber on P as seen in section 3.3.
For a given Prandtl number the Re0 term in the expression for Re given by (45) gives an approximation
to the critical Reynolds number. For example with P = 1 this term is ∼ 10.9545, which is in excellent
agreement with the numerics discussed in section 3.2. The second term of equation (45) then gives an
adjustment to the the leading order value for Re. The sign of this term determines whether kc = 0 or
not. If, for a given P and R̃, the value of Re2 is positive then the adjustment to Re0 can only serve to
increase the Reynolds number and hence the preferred value of k to minimise Re is k = 0 as expected
given the numeric results from section 3.2. However if the value of Re2 is negative (again for given P and
R̃) a non-zero k must be preferred as the inclusion of this term now lowers the Reynolds number from the
Re0 value.

Table 3 displays quantities for Re0 and Re2 for various values of P and R̃. Since Re0 is independent of
R̃ this only varies with P and the values predicted for the Reynolds number match the numerics of table
2 very well. For most combinations of P and R̃ the value of Re2 is positive, confirming that kc = 0 and
Rec = Re0. However for certain choices of the parameters we obtain negative values for Re2 indicating
that there is a non-zero minimising value of k. This was seen in the numerics where we recall from figure 5
that there was a non-zero kc for P = 50 and Ra = −1. The equivalent values of the Prandtl and Rayleigh
numbers in the asymptotic theory (P = 50 and R̃ = 1) give a negative value of Re2 agreeing with the
numerics that there is a non-zero minimising k.

This theory is unable to predict the critical wavenumber and critical Reynolds number when Re2 < 0
without including higher order terms, which would give an O(k4) term in equation (45). However it does

Re2

P Re0 R̃ = 0 R̃ = 1 R̃ = 10 R̃ = 1000
0.1 34.64102 1.74174 21.02111 194.53549 19281.11679
1 10.95445 0.51966 1.62815 11.60453 1109.00579
10 3.46410 0.065920 0.25871 1.99386 192.85967
50 1.54919 −0.16612 −0.086175 0.63337 79.78332
100 1.09545 −0.29036 −0.23438 0.26943 55.68819

Table 3. Table displaying values for Re0 and Re2 for various Prandtl and Rayleigh numbers as given by the expression in equation (45).
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indicate which values of the Prandtl and Rayleigh numbers we would expect to find a non-zero critical
wavenumber for and it predicts Rec very accurately for the kc = 0 cases.

We are also able to solve equations (24) and (27) numerically without the assumption of small k. Using
stress-free boundary conditions and the normalisation and symmetry conditions of the eigenfunctions
(known from the numerics) we have a fourth order complex BVP with nine real boundary conditions,
including a normalisation condition,

ωr(0) = 1, ωi(0) = ω′r(0) = ω′′i (0) = ur(0) = 0, ω′r(0.5) = ω′i(0.5) = ur(0.5) = ui(0.5) = 0. (46)

Here the primes and subscripts indicate the derivatives and the real and imaginary parts of the eigenfunc-
tions respectively. The system defined by (24), (27) and (46) is an eighth order homogeneous system in
the real variables, with eight homogeneous boundary conditions and a normalisation condition, so it has
an eigenvalue, Re. Hence given specific values of k, P and R̃ we can find a value for Re. We solved this
system using a simple BVP solver in Maple and some results for the case of R̃ = 0 are displayed in table
4(a). By comparing the values of Re in table 4(a) with the location of the transition region from figure
1(a) and table 2 we see that the asymptotic theory predicts the location of the transition region very well.
In particular, we see that the position of the transition region is converging, as we reduce E, to a value
similar to that predicted by the asymptotics in all cases. Also of note is that for P = 20 and P = 50 there
are minimising values of the azimuthal wavenumber due to the fact that the Rayleigh number is small
enough to allow this to occur. In fact this can be checked by evaluating Re2 as given by equation (45)
with R̃ = 0 where we indeed find that Re2 < 0 for P = 20 and P = 50, indicating a non-zero critical
wavenumber is preferred.

4.2 Low wavenumber asymptotics 2: Fixed Reynolds number

Here we shall develop an asymptotic theory for the onset of instability at low kx with stress-free boundaries,
which predicts the large negative Rayleigh numbers and eigenfunctions very well. Our starting point is
equations (24) - (26) with the boundary conditions given by (20). We set σ = 0 for the same reason as
in section 4.1. The numerics inform us that the baroclinic modes exist for small kxRe and that we should
rescale the Rayleigh number as R̃ = −R̂/k2

x. The equations (24) - (26) become

(a)

Re
kx P = 0.1 P = 1 P = 10 P = 20 P = 50

0.01 34.64108 10.95447 3.46410 2.44948 1.54917
0.10 34.65831 10.95961 3.46475 2.44918 1.54754
0.50 35.07369 11.08347 3.48056 2.44245 1.51100
1.00 36.34019 11.46042 3.52963 2.42794 1.42646
1.50 38.35637 12.05843 3.61070 2.42013 1.34371
2.00 41.00963 12.84220 3.72316 2.43154 1.28719
2.50 44.18317 13.77610 3.86686 2.46939 1.26193
3.00 47.77158 14.82920 4.04217 2.53699 1.26634
5.00 64.77836 19.83002 5.08823 3.14797 1.59143
10.0 114.69132 35.11997 10.51240 7.57080 4.80621

(b)

Re ky/kx R0

10
0 0.8983

0.001 0.8987
0.01 0.9377

100
0 -9.6578

0.001 -9.5599
0.01 -4.7143

1000
0 -9.8903

0.001 -4.9440
0.01 -0.09560

10000
0 -9.8926

0.001 -0.09792
0.01 -9.6568×10−4

Table 4. Tables displaying results from the two asymptotic theories described in section 4. 4(a): Values for the Reynolds number for various kx

and P in the case R̃ = 0 found by solving the BVP described by equations (24) and (27). 4(b): Values for R0 found by solving equation (66) for

various values of Re and ky/kx with P = 1.
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(
ikxRez + k2 − d2

dz2

)
ω̃z −

dũz

dz
= 0, (47)

dω̃z

dz
= −R̂θ̃, (48)(

ikxPRez + k2 − d2

dz2

)
θ̃ = ũz −

ikxPRe

R̂
ω̃z. (49)

We introduce a small parameter ε, measuring the magnitude of the horizontal wavenumbers, and let

ω̃z = ω(0)
z + εω(1)

z + ε2ω(2)
z + · · · , (50)

ũz = ε(u(0)
z + εu(1)

z + ε2u(2)
z + · · · ), (51)

θ̃ = ε(θ(0) + εθ(1) + ε2θ(2) + · · · ), (52)

R̂ = R0 + εR1 + ε2R2 + · · · , (53)

kx = εk̃x, ky = εk̃y, (54)

where we assume that R0 < 0 since we are considering the stably stratified modes in this asymptotic
expansion.

We insert these expansions into equations (47) - (49) and consider the resulting equations in powers of
ε since kx � 1. Hence we first take each equation at O(1), which yields

ω(0)
z = 1. (55)

This choice of ω(0)
z satisfies this set of equations and is chosen to be unity to satisfy normalisation conditions.

Also note that this form for ω(0)
z satisfies the stress-free boundary conditions on ωz given by (20), and so

no thin boundary layer to match these conditions is required.
Next we consider the first order equations, which are equations (47) - (49) at O(ε) and we find:

ik̃xRezω
(0)
z −

d2ω
(1)
z

dz2
=

du(0)
z

dz
, (56)

dω(1)
z

dz
= −R0θ

(0), (57)

−d2θ(0)

dz2
= u(0)

z −
ik̃xRePω

(0)
z

R0
. (58)

We integrate (56) and apply the no penetration and zero temperature boundary conditions, using (48), to
obtain the constant of integration, and insert the expression for u(0)

z into (58) to obtain

d2θ(0)

dz2
+R0θ

(0) = − ik̃xRez
2

2
+

ik̃xRe

8
+

ik̃xReP

R0
. (59)

The solution to this inhomogeneous second order ODE in θ(0) is

θ(0) = A sinh
(√
−R0z

)
+B cosh

(√
−R0z

)
− ik̃xRez

2

2R0
+ γ. (60)
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Due to the symmetry of the boundary conditions A = 0 so in fact

θ(0) = B cosh
(√
−R0z

)
− ik̃xRez

2

2R0
+ γ, (61)

u(0)
z = BR0 cosh

(√
−R0z

)
+

ik̃xRe

R0
(1 + P ), (62)

ω(1)
z = B

√
−R0 sinh

(√
−R0z

)
+

ik̃xRez
3

6
−R0γz, (63)

where the expressions for u(0)
z and ω

(1)
z have been found via equations (58) and (57) respectively. Any

constant of integration in (63) can be absorbed in the normalisation condition (55). We can also determine
B and γ by considering the no penetration and zero temperature boundary conditions on these expressions
for u(0)

z and θ(0). We find that both B and γ are purely imaginary:

B =
−ik̃xRe(1 + P )

R2
0 cosh

(√
−R0/2

) and γ = ik̃xRe

(
1 + P

R2
0

+
1

8R0

)
. (64)

With these expressions for B and γ we have acquired the complete expressions for ω(1)
z , u(0)

z and θ(0).
Thus we now look at the next order of equation (47). At O(ε2) we find

ik̃xRezω
(1)
z + k̃2

x + k̃2
y −

d2ω
(2)
z

dz2
=

du(1)
z

dz
. (65)

When taking the boundary conditions on the integral of this equation the final two terms will vanish
since dωz/dz = 0 = uz on the boundary. Therefore if we consider the integral of this equation over the
layer, substitute for ω(1)

z and B and γ from equations (63) and (64) respectively and apply the boundary
conditions we obtain

1 + P

R2
0

−
2(1 + P ) tanh

(√
−R0/2

)
√
−R0R2

0

+
1 + P

12R0
+

1
120

+
1
Re2

(
1 +

k2
y

k2
x

)
= 0. (66)

Equation (66) can be solved numerically for R0 using given values of the parameters, P , Re and ky/kx.
If we first consider the case P = 1, ky/kx = 0 and Re = 100 we can compare the numeric results given by

table 1 with those of table 4(b). We find that the asymptotics predict the numerics very well. For example
at asymptotically small azimuthal wavenumber table 1 predicts that the Rayleigh number at onset will
tend towards the value −9.6577E−2k−2

x . We see from table 4(b) that this gives excellent agreement. For
modes with ky/kx = 0 the asymptotics predict that R0 is converging to approximately −9.9 with increasing
zonal flow, which is also in excellent agreement with the numerics. Also of note is that equation (66) has
no negative R0 solutions for Re < 10.9496. As a result of this the asymptotic results, in table 4(b), predict
only modes with R0 > 0 for Re = 10. This is in excellent agreement with the numerics as the baroclinic
modes were found to ‘switch-off’ for approximately Re < 10.95.

We can also see that the asymptotics of table 4(b) predict that increasing ky only serves to stabilise the
system by increasing the Rayleigh number at onset in all cases. This matches the numerics as described
in section 3.3. In figure 7 we have plotted the eigenfunctions predicted by the lowest order asymptotics
as given by equations (55), (61) and (62) scaled using uz = Eũz, θ = Eθ̃ in order to compare with the
equivalent parameter values at point ×2 from figure 1(a). By comparing this plot with that of 2(b) we can
clearly see that the low wavenumber asymptotic theory is also predicting the correct form and magnitude
of the eigenfunctions. The asymptotics continue to predict the correct form of the eigenfunctions for larger
values of the Reynolds number where the onset parameter becomes the Rayleigh number, Ra∗.
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Figure 7. Eigenfunction plots as predicted by the low wavenumber asymptotic theory. This is the equivalent of point ×2 from figure
1(a) where E = 10−4, P = 1, Ra = −106, Re = Re∗ ≡ 10.9599, kx = 0.1 and ky = kyc = 0.

4.3 Relation to the Eady problem

The low wavenumber equations (47) - (49) are related to the quasi-geostrophic (QG) equations used
in atmospheric science (see e.g. Pedlosky 1987). The geostrophic component of the velocity is given by
2Ω(uG

x , u
G
y ) = (−∂p/∂y, ∂p/∂x), so ωz = −k2p/2Ω, and the pressure perturbation is simply proportional to

the vertical vorticity, and so equation (48) is simply the hydrostatic equation used in the QG approximation,
where vertical accelerations are neglected. The y-derivative terms in equations (10) and (12) are also
dropped in the Eady problem (see e.g. Drazin and Reid 1981, p333) because of the low Rossby number
assumption, here ReE << 1. If we take the z-derivative of (49) and eliminate ũz and θ̃ using (47) and
(48), we obtain (

σP + ikxPRez + k2 − d2

dz2

)
d2ω̃z

dz2
+
(
σ + ikxRez + k2 − d2

dz2

)
R̂ω̃z = 0. (67)

In the QG approximation, diffusion is usually ignored, and so the terms k2 − d2/dz2 are dropped in (67),
leading to the classical Eady equation

(σ + ikxRez)

(
d2ω̃z

dz2
+
R̂

P
ω̃z

)
= 0, (68)

see e.g. equation (4.5.28) of Drazin and Reid (1981). The only boundary condition to survive the neglect
of diffusion is ũz = 0, which leads to

(σ + ikxRez)
dω̃z

dz
= ikxPReω̃z, on z = ±1

2
, (69)

equivalent to equation (4.5.30) of Drazin and Reid (1981). Instability occurs as an oscillatory mode,
=[σ] 6= 0. The relevant part of our parameter space is where Re is large, since the viscosity is small, and
there we found oscillatory baroclinic modes as in figure 2(c), point ×3.

5 Conclusions

The way in which convective instability and baroclinic instability interact in rapidly rotating systems
has been elucidated. We found that the thermal wind destabilises convective modes, lowering the criti-
cal Rayleigh number at which they onset. We also find that the critical azimuthal wavelength at onset
lengthens. At a sufficiently large Reynolds number, which in view of the very small viscosity occurring
in many geophysical systems can correspond to a rather small thermal wind, instability becomes pre-
dominantly baroclinic, and the preferred azimuthal wavenumber tends to zero. In our ideal plane layer
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geometry, there is no restriction on possible wavelengths, but in more realistic spherical geometries, the
boundaries will provide a limit. Slightly to our surprise, we found that convective modes and baroclinic
modes are smoothly connected, going through a transition region which can be studied asymptotically
(section 4.1) where the critical Rayleigh number smoothly goes between positive and negative values. At
the low azimuthal wavenumbers preferred by baroclinic modes, an asymptotic analysis is possible (section
4.2) which gives good agreement with the numerics in the stress-free case, and illuminates which terms
are important for instability. We also found that generally waves with non-zero latitudinal wavenumber
ky are not preferred in this problem, onset occurring in all cases examined at the lowest Ra when ky = 0.

At moderate Prandtl numbers, the onset of convection in this rotating Bénard configuration occurs with
steady modes, but we find that at large Reynolds number oscillatory modes are preferred. This result
links our finite diffusion work with the quasi-geostrophic shallow layer approximation used in atmospheric
science, and in particular with the Eady problem (section 4.3).

The existence of baroclinic instability in the physical conditions obtaining in planetary interiors raises
an interesting question of whether dynamo action could be driven by a heterogeneous core-mantle heat
flux even if the core is stably stratified. This has also been investigated by Sreenivasan (2009) where lateral
variations were found to support a dynamo even when convection is weak. It is widely believed that the
heat flux passing from the Earth’s core to its mantle can vary by order one amounts with latitude and
longitude, as a result of cool slabs descending through the mantle and reaching the CMB from above. It
is also generally believed that the key criterion for the existence of a dynamo is that convection should be
occurring, and that the core is at least on average unstably stratified. However, this analysis has raised the
possibility that instabilities leading to fluid motion driven by lateral temperature gradients can occur even
when the fluid is strongly stably stratified. Of course, it is not yet known whether the resulting nonlinear
motions would be suitable for driving a dynamo. In the plane layer geometry used here, the preferred motion
appears to be two-dimensional and therefore will not drive a dynamo. However, in spherical geometry, and
when secondary instabilities may occur, dynamo action may become possible, in which case the view that
convection driven by an unstable temperature gradient is essential for dynamo action might have to be
revised.
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