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On the necessary conditions for bursts of convection within the rapidly rotating

cylindrical annulus

Robert J. Teed,>® Chris A. Jones,! and Rainer Hollerbach?
Department of Applied Mathematics, University of Leedgdse LS2 9JT,
UK

Zonal flows are often found in rotating convective systemst dhly are these jet-flows
driven by the convection, they can also have a profound effiedche nature of the con-
vection. In this work the cylindrical annulus geometry ipkited in order to perform

nonlinear simulations seeking to produce strong zonal flmesmultiple jets. The param-
eter regime is extended to Prandtl numbers that are not WMiitiple jets are found to be

spaced according to a Rhines scaling based on the zonal femd spot the convective ve-
locity speed. Under certain conditions the nonlinear cotiwa appears in quasi-periodic
bursts. A mean field stability analysis is performed arourmsic state containing both
the zonal flow and the mean temperature gradient found fremdimlinear simulations.

The convective growth rates are found to fluctuate with béth@se mean quantities sug-

gesting that both are necessary in order for the burstinggrhenon to occur.

AR.J.Teed@leeds.ac.uk



l. INTRODUCTION

Aninterestin zonal flows originates from a desire to bettptan various phenomena observed
in geophysical and astrophysical bodies. These large d@zahilows found in the atmospheres of
the gas giants as well as planetary cores are thought toveEndry the interaction of convection
and rotation. Jupiter, for example, has a clear bandedtsteiof jets, made up of alternating
prograde and retrograde zonal fldws This pattern extends over the whole planet and the zonal
flows are considerably stronger than the radial convectAthough the convection in both the
deep Jovian atmosphere and the Earth’s outer core will leetafi by their respective magnetic
fields, an understanding of the non-magnetic problem carigeansight to the physical structures
observed. The depth to which the zonal flows extend in Jup#émosphere is not known, though
there is evidence to suggest that flows are considerably aveakhe core compared with the
surfacé. Bussé suggested a model for convection in the Jovian atmosphegeendonal flows
are not confined to the surface. The difficulties in modelhmgyinteriors of the major planets has

been discussed by Yaho

The linear theory of convection in spheres and sphericdlsshas now been comprehensively
investigated. Robertsand Bussé derived some of the basic principles and the rapid rotation
limit was discussed by Jones et®%and Dormy et aP. However, performing three-dimensional
nonlinear simulations in spherical geometry can be contjounally expensive. Quasi-geostrophic
modelg1%1tassume that the rapid rotation leads to columnar structutbdittle z-dependence,
leading to two-dimensional models. The Busse anrfttfa&is one such quasi-geostrophic model.
It replicates several key aspects of convection in sphegeametry; for example, convection
occurs in the form of tall thin columns which onset as therRassby waves. Of particular
relevance is the nonlinear model’s ability to develop lazgeal flows which may have a multiple

jet structuré®.

Zonal flows have been found both in laboratory experimiénfsand nonlinear simulations in
the annulu¥?%?1and in the more physically realistic spherical shell geoytét®. Simulations
of rotating convection in spherical shells were undertakgrGilmar?®>2” and Zhang* which
produced zonal flows. More recent simulatit€"2°-30:323have produced strong zonal flows,
driven by the Reynolds stresses, with Rossby numbers ofdtreat order of magnitude. Inter-
estingly, both steady and oscillatory solutions were foresilting in the discovery of a ‘bursting

phenomenorf®. The bursting phenomenon, investigated within the annulodel by Rotvig and
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Joneg!, and in a quasi-geostrophic model taking account of theature of the boundaries by
Morin and Dormy?* refers to the observation that convection can occur as-$ilied bursts rather
than the system evolving into a quasi-steady equilibriutrese bursts of convection are currently
thought to be a result of a competition between the zonal fleshvtae convection. The convection
drives up the zonal flow strongly, but this zonal flow eventudisrupts the convection, which
then cannot sustain the zonal flow. The zonal flow dies awkyyaig convection to occur again,
and repeat the cycle.

The three-dimensional simulations discussed above oftamotiproduce a multiple jet struc-
ture of the zonal flow. The reason is that to get multiple jets/\arge rotation rates (very low
Ekman numbers) are requiféd Due to numerical difficulties the fully three-dimensiomabd-
els have often been unable to achieve the rotation raterestjuihough in some exceptionally
high-resolution three-dimensional simulations multijeles have been fousdl®2,

One of the attractions of the annulus model, as a simplifiedehfor convection in the Jovian
atmosphere, lies in its ability to produce both multiplejehd the bursts of convection. However,
these properties are dependent on the boundary conditiorgeneral, stronger zonal flows and
bursting are produced when stress-free top and bottom lasi@scare imposéf>2’whereas no-
slip boundaries are able to generate a multiple jet strettuSimilar results were found in the
quasi-geostrophic model by Morin and Dorfiy The work of Rotvig and Jonés shows that
multiple jets and bursting appear to be mutually exclusihemthe Prandtl number is unity.

The aims of this paper are three-fold. Firstly we wish to edtéhe simulations performed by
Rotvig and Jone® to parameter regimes where the Prandtl number is not unigoigily, we
wish to check the consistency of our results with the Rhiceatirsg theory®. Thirdly, we wish to
investigate what role the nonlinear interaction of temperafluctuations have in the generation
of bursts of convection since a mean temperature gradiekrtas/n to evolve when performing
simulations. Note that the zonal flow in this work is genettdig the nonlinear Reynolds stress,
rather than by a thermal wind, for which the dynamics is nathi#erent’. To aid the reader we

summarize in table | several quantities that appear in tihaer

. MATHEMATICAL SETUP

We consider a fluid filled cylindrical annulus with inclinedunding surfaces for the top and

bottom lids, see figure 1. The mean radius of the annulug the gap between the two cylinders,
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Quantities Section Definition Explanation

Uly) I (Ug) x-averaged velocity (zonal flow) from nonlinear simulations
O(y) 0 (0) x-averaged (mean) temperature from nonlinear simulations
0'(y) 1] ("),  x-averaged (mean) temperature gradient from nonlinearlations
Unax ~ ID  max(U(y)) Maximum value that/ (y) takes in the domain

Unin ND min(U(y)) Minimum value that/ (y) takes in the domain

0l D max(0'(y)) Maximum value tha?’(y) takes in the domain

- NID  min(f(y)) Minimum value tha#’(y) takes in the domain

Uo(y) v Zonal flow included in the basic state of the linear theory
Go(y) v Mean temperature included in the basic state of the litieaory

TABLE I. Definition and explanation of quantities used insthirticle along with the section for which they

first appeatr.

referred to as the width, i®, and the height of the annulus at the outer cylindrical wall.i The
annulus rotates about the axial direction with angularsigld) and a temperature difference of
AT is maintained between the two walls such that the outer amek iwalls are at temperatures
T = 0andT = AT respectively. We also take the gravity force to be actingathdinward and
the annular end walls make an angléo the horizontal.

The natural choice of coordinate system for the annulus iveal@ld be cylindrical polar coor-
dinates:(r, ¢, z). However, by making the small-gap approximation/®fr, < 1, the curvature
terms of cylindrical polars can be neglected and Cartessandinates can be used. The azimuthal
coordinate isc and it increases eastwardly (acting likpand0 < y < D is the radial coordinate
(acting like—7). The axial coordinate;, remains unchanged from cylindrical polars and ranges
from —L/2 to /2. Consequently, gravity acts in the positiyelirection and the direction of ro-
tation is in thez-direction so thag = gy and(2 = Qz. The no penetration condition at the sloped

end walls of the annulus is dependent on the inclinatigiso that
cos(x)u, Fsin(x)u, FUg =0 on z=+L/2. (1)

Here U is an Ekman suction or ‘bottom friction’ term derived usirge ttheory described by
Greenspa#f. The purpose of the term is to replicate the effects of the &kboundary layer that
arises when rigid boundaries are implemented. Héhgces presenbnly when no-slip rather than

stress-free boundaries are required.



FIG. 1. Diagram depicting the physical setup of the Busseiasnreproduced from Abdulrahman et3l.

The linear theory of the annulus model was originally diseasand solved by Bus$&. We

use thez-component of the vorticity equation, which is

oc
ot

Ju or
= —ga + YV, @)

SV — 203 -
+u-V(¢ V/ pe

where( is thez-component of the vorticity. Here we have neglected theV )u term that usually
appears in the vorticity equation since we are interestéagarsmall Rossby number limit of rapid
rotation where the planetary vorticif¢2 dominates over the fluid vorticity. This is the standard
practice in the annulus model as well as other quasi-ggusitanodel’. In the annulus model
the term is of ordery, which is taken to be much smaller than unity, while the otmamlinear
terms are of order 1 as discussed by Busse ariéd Or

We perturb around the basic state to acquire a similar sequdtens to those of Busse, in-
cluding nonlinear terms. We write = Tj, + 0, whereT, = yAT/d is the conduction state profile,
and assume that < 1. Hence the boundaries are nearly flat, the flow is nearly ggaisic and
the z-component of the velocity is small compared with the hartabcomponents. This allows

us to make the ansatz

U=~V x ()2 + u.z, 3)

where the vertical velocityy., is a small ageostrophic part of the flow of orderWe substitute
the perturbed forms of the the fields into equation (2) as a®lthe relevant heat equation and
integrate over applying the conditions of equation (1) at the sloped boueda We also non-

dimensionalize using the length scdle the viscous timescal®?/v and the temperature scale
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vAT/k. This gives

oV O, VR) 0y 00 e 4
Pr (_815 + 8(:E,y)) = -S4V, (5)

where the Jacobiard)(A, B)/0(z,y) = (0,A4)(0,B) — (0,B)(9,A) for some functions4 and
B, has been introduced. We have eliminated the vorticity byngathat( = V?¢. The beta

parameterg, Prandtl numberPr, and Rayleigh numbeRa, are defined as

v

4O D3 AT D3
X , Pr=—, Ra = il
vL K VK

& (6)

In the annulus model the beta parameter effectively acts awarse Ekman number and therefore
in the limit of rapid rotation we expect to be large. The small angle assumption has allowed us
to write U, = —D%/2((x/BL)"/? for the Ekman suctidf and the term (in equation (4)) resulting
from this bottom friction contains the parametér= (D/Ly)"?. Since the bottom friction is a
phenomenon associated only wrigid boundaries we explicitly se’ = 0 when implementing

stress-free boundary conditions.

Since we have used the boundary conditions on the sloped elsl iw order to integrate
out of the problem, the only boundaries left to consider hosé at the inner and outer walls of
the cylinders. Equations (4 - 5) form a sixth order systemqfagions and thus we require six
boundary conditions af = 0 andy = 1. As well as there being no penetration we also demand
these boundaries to be stress-free and have constantestefaperature so that
oY Oug 82_1/) B

=0=——=0 =0=
Hy Ox ’ oy Oy?

0, 0=0, )

aty = 0 andy = 1.

[ll.  NONLINEAR RESULTS

We perform nonlinear simulations of the equations (4-5k $ystem has four input parameters:
Pr, 3, Ra andC. We integrate these nonlinear equations forward in timeguaipseudo-spectral

collocation methott. We expand) and# using a Fourier and sine expansion in thandy-
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directions respectively. We therefore write

N, Ny—1

(w,y,1) Z > (b)) sin(mry), )

— Nz m=1
Ny Nl/_l

)= 5 3 D ) 5 i) ©)

—Nz m=1
where we note that the choice of a sine expansion implicétisSes the boundary conditions of
equation (7). Since is real, we have tha,fz_lm = zﬁ;‘m, wherex denotes complex conjugate.

The simulations are performed by implementing the Cranteldon method to all but the
nonlinear terms and a second-order Adams-Bashforth scheethe nonlinear terms. Hence we
use a semi-implicit method with only the nonlinear termageatalculated explicitly. We define
‘mean quantities’ as follows. The zonal flow, is thez-average of the azimuthal component of

the velocity, and is the mean temperature so

and 0= (0),. (10)

Thez-average is defined dsl), = (1/L,) [, Adz, for a scalar quantityd. The only contribu-

tion to the mean quantities comes from modes With( so that

Ny—1 Ny—1
_ J - S
U= —3 m§:1 mmibg,, cos(mmy) and 0= 3 2 Oom sin(mmy). (11)
Zonal flow generation is governed By
-2 — 12
o =~ g e)a — CIBPA0 + 5 (12)

We note that zonal flow can be created by the Reynolds foradiraung thatU is a nonlinear
phenomenon, and destroyed by the friction terms. The addf the bottom friction term is
expected therefore to dampen the zonal flow; however, asigisd in section I, we expect it to
increase the likelihood of multiple jet solutions arisiidso of interest are the total kinetic energy

and the zonal part of the kinetic energy, defined by

Ny Ny—1 272
B =1 [(Vopas =53 % (47” e[ and @9

=0 m=1

L Nt

Br= 7. [(90ras =g 3 miwlim (14)



respectively.

In table Il we list the runs performed, which lie in the rarige < Pr < 5and10® < 8 <
108. L, is set at2r, which is sufficiently large since the structures in thdirection have short
wavelengths. In the previous wdfé! only Prandtl number unity was considered. We perform
runs with the Rayleigh number 2.5, 2.75, 5 and 10 times thttetritical Rayleigh number for a
given Pr andg as indicated in table Il. The rapid rotation approximatido the critical Rayleigh

number for the Busse annulus
364/3PT4/3

e = 2301+ pryirs

(15)

is adequate at these high

Each of the runs displayed in table Il is integrated until asitsteady or quasi-periodic state has
evolved from the initial condition. A random initial stateused for each run. For the parameter
values considered, we find that the final state is indeperafaht initial conditions. The quan-
tity 7, appearing in table II, represents the total number of timésuhat the particular run was
integrated over. Also in table 1l we display., which denotes the time-averaged dominant radial
wavenumber. The value of, determines whether multiple jets are present; a solutismhat 1
jets and we define:, > 3 to denote a multiple jet solution. In table Il we also indecétte range
of the maxima ofU/ and#’ in order to show typical flow strength and temperature gradiéor
each run. Runs where bursting occurs are noted, burstimg lbefined as solutions having quasi-
periodic time-dependence. We have predominantly usede@ution(V,, N,) = (256, 128)
although runs VIII, XIV, XVI and XVII have(N,, N,) = (384,128) and runs XV, XVIII, XIX,
XX, XXIV and XXV have (N, N,) = (512,128).

A. Previous work

We briefly review previous work, runs I-VI being for paramsteegimes examined by Jones
et al.'® and Rotvig and Joné& As 3 is increased, disturbances become smaller inrtb@ection
in line with the scaling: ~ 5'/3 predicted by the linear thedt¥ However, linear theory predicts
thin disturbances with a simpkén 7y dependence in thg-direction, whereas nonlinear effects
make the dominant wavenumbergrsimilar to that inz, see figure 2. There is also an increase in
the strength of the zonal flow akis increased; compare the magnitudé/ah table Il for runs Ill
and Il whereC' = 0 or alternatively for runs V and VI, wher€ # 0. Recall from equation (12)

that the magnitude of the zonal flow is determined by the le@af the Reynolds forcing against
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Run Pr B C  Ra/Ra. T m, Range ofmax Range off),,, Bursting
I 1 7.07 x10° 0.316 2.5 1312 2 2—37 1.2 -3.2 No
I 1 7.07 x 10° 0 2.5 1.65 2 587 — 679 09-19 Yes
11 1 7.07 x 10* 0 2.5 3.63 1 319-—534 0.2-3.2 Yes
IV 1 7.07 x10*0.00316 2.5 1.23 2 210 — 298 0.5—25 Yes
V 1 7.07 x 10* 0.316 2.5 8.08 3 12 — 156 22—-4.1 No
VI 1 7.07 x10° 0.316 2.5 2.68 5 401 — 521 2.2—-33 No
VI 1 5x10° 0 275 329 2 834 -—1176 0.4 —3.2 Yes
VIl 1 5x10° 0 ) 0.93 2 2591 — 4701 1.0-"7.7 Yes
IX 1 5x10° 0.05 275 144 3 764 — 921 0.85—2.9 No
X 1 5x10° 0.5 275 338 5 371 —430 3.4—5.0 No
Xl 05 5x10° 0 275 2,69 2 903—-1046 0.35—1.05 No
Xl 0.5 5x10° 0 ) 0.25 1 3993 —-5489 0.1 —6.5 Yes
Xl 0.5 5x10° 0.5 2.75  2.64 4 372 — 570 1.5—-2.5 No
XV 2 5x10° 0 275 211 2 646 — 873 0.9—-4.6 No
XV 2 5x10° 0 5 1.03 1422 — 2387 1.3 —12.6 Yes
XVI 2 5x10° 0.05 2775 242 3 580 — 678 28 —-4.4 Yes
XVII 2 5x10° 0.5 275 247 7 40 — 134 6.5 — 8.1 No
XVII 5 5x10° 0 2.75  4.69 2 321 —385 6.0 — 8.5 No
XIX 5 5x10° 0 ) 0.56 2 1094 — 1167 8.0—12.1 No
XX 02 5x10° 0 275 2.01 1 897 — 1089 0.1 -0.7 No
XXl 0.2 5x10° 0.05 275 275 4 162 — 241 0.3 —-0.6 No
XXl 0.2 5x10° 0.5 275 220 6 201 —294 0.5—0.8 No
XX 0.2 5 x10° 0 ) 043 1 3004-3389 0.1-—-1.1 Yes
XXIV 1 5x10° 0 10 0.56 1 8467 — 11784 0.1 —19.6 Yes
XXV 0.5 5x10° 0 10 0.29 1 947 — 1203 0.1 —16.9 Yes

TABLE Il. Table displaying the parameter sets used for th&ows nonlinear runs. Also indicated are: the

total integration timer, the dominant wavenumber,,. and the ranges of the maxima of the zonal flow and

mean temperature gradient, and whether bursting is seast.or n



the frictional terms. At larges the streamlines slope more and give rise to an increasedoRisyn
forcing and larger zonal flow even though the magnitudes,cindw, in equation (10) are not
much increased. The general increase in the magnitude afotie flow must saturate at some
large value of3 since the sloping of the streamlines cannot continue indieijn

The introduction of the bottom friction has two main conseages. Firstly, the zonal flow is
weakened as expected from equation (12). For runs lll andhi¢whave the same value gfbut
different values of”' the flow is much weaker in the case whére# 0 (see table II). The zonal
flow has depleted in strength froma 400, in run lll, to ~ 70 in run V. Secondly, the introduction
of the Ekman layer drastically improves the likelihood ofltiple jet solutions. The only runs,
of these first six, where multiple jets are presented are Yuasd VI. These two runs both have
C = 0.316, which is the largest value @f tested, for these initial runs. For runs whére= 0 we
also do not find any evidence of multiple jets since runs Il Bihare dominated by wavenumbers
m = 2 andm = 1 respectively (see table Il). The possibility of multiplégarising also increases
as/ is increased. Thus, relatively large values’oénd s are preferred for multiple jets resulting
in run VI having the most jets (six in total) of any of thesetfsix runs. The number of jets found
for each run can be compared directly with those of table tfdones et at® and table 1 from

Rotvig and Jone®, where we see excellent agreement.

B. Runs VIl to XXV

We explore the parameter space further, and the resultshavensin runs VII to XXV. The
parameter regimes used for these runs can, again, be fouallénll, where we see that all have
B = 5 x 10°. We have considered further values of the Prandtl numberRaydeigh number,
whilst continuing to varyC'. In figure 2 we plot the state of the simulation for four partas
runs that display differing behavior. Each plot is displdyt? = 7, once a final state has been
achieved. We should note that the plots for figures 2(b) aopa€ onlysnapshotst a particular
time since the final state of these solutions is time depdan@amversely, the plots of figures 2(a)
and 2(d) are typical of the final state since the solution esggteady for runs X and XVII.

Three plots are displayed in each subfigure of figure 2. Theatoplots display the)-contours
and thed-contours at time, respectively. In the case of thecontours, positive and negative val-
ues represent clockwise and counter-clockwise motiorectsely. In the third plot of each figure

we plot four quantities: the zonal flow], the mean temperature profilg, thetotal temperature
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profile, T = T, + 6, and the mean temperature gradiéhtThe values ot/ have been normalized
usingmax(|U|) and likewisef’ has been normalized usingax(|¢’|). Also, the exact value of

T has been plotted, where@shas been amplified by a factor of five in order to be more clearly
displayed. The range over which the quantities vary aregpites beneath the third plot.

For runs withm, = 2 a net eastward zonal flow is producedyat 1/2 (see, for example,
figure 2(b)). This is caused by the interaction of the preaamily clockwise motions foy < 1/2
with the predominantly counter-clockwise motions for 1/2. The resultant negativegradient
in ¢ produces an eastward zonal floi (> 0) as expected from equation (10). In some plots,
for example the)-plot of figure 2(c), the zonal flow is strong enough to domentie dynamics
so much that convective cell patterns are no longer visiblsuch cases, the correlation between
regions of strong zonal flow and regions of stréhg/ dy is very clear.

Many of the runs display a striking correlation of thecontours with the slope df’. The
f-contours show the local slope of the flow because temperaiadvected with the flow. This
slope then gives the sign of the Reynolds stress, which wiatean (12) determines the form of
the zonal flow. Run X, displayed in figure 2(a), shows a mudtijelt solution; in this case five
jets are apparent located at the edges of the bands displayteely-plot. Thed-contours show
a ‘herring-bone’pattern, as the slope of the convectioeradites in direction as the zonal flow
alternates in sign.

The final states achieved by runs VII and XV are much the samegidenced by the similarity
of the first and third plots of figures 2(b) and 2(c). The diéfece in the)-plot is a result of the
unsteady nature of these solutions. Both runs have seftttedhibursting solution, however the
snapshots of figures 2(b) and 2(c) are taken at differentgshias bursting cycle. We shall discuss
this further in section Il D.

The pattern of the fields are also be affected by the Prandtbea The convection rolls are
larger at small Prandtl number and decrease in size at |Bmg&dtl number, which is consistent
with the preferred wavenumber at onset in the limit of rapightiort®: k, ~ (Pr /(14 Pr))Y/3. It
is interesting that even in this strongly nonlinear, tinegendent convection, the convection rolls
follow the predicted wavenumber of linear theory. The Ptandmber still plays an important
role in the pattern of convection found.

A larger Prandtl number is also beneficial to multiple jetdarction. Runs X, XIII and XVII
each have the same (large) value(obut table 1l shows that between four and seven jets are

produced depending on the value Bf. However, as we see from figure 2(d), the appearance
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of the seven jets in run XVII whe®r = 2 is associated with a weak zonal flow. This results
in the y-contours lacking a clear banded structure unlike in thevadgnt case forPr = 1 (see
figure 2(a)). Thus it seems that increasing the Prandtl nugteses the system to lose its banded
structure at a lower value @f.

The mean zonal flow is larger at small Prandtl number, and aresakt large Prandtl number.
At large Prandtl number the Reynolds number of the convedlbw is reduced, and this leads to
a smaller zonal flow, see equation (12). The mean tempergtadgents behave in the opposite
manner, being weaker at low Prandtl number, because theliffizdion is then relatively more
important than advection, see equation (5). This deperdenevidenced in table II; the most

clear example is by comparing the range#/gfx and?d’, ., for runs VIIl, Xl and XV.

C. Rhines scaling theory

We now briefly consider the implications of the Rhines seplineory® on our results. By
suggesting that the predominant balance is between thigaireend Coriolis force terms, Rhines
found that the length scale of the flow should scalélas 3)'/? for a typical flow strength of/*,
and some evidence for this scaling in the context of the attiweeannulus has been fouidThe
value forU* that should be used has been a topic of considerable debate the existence of two
main typical flow strengths: the convective velocity andzbeal flow strength. Rhines originally
envisaged the turbulent eddy velocity, corresponding toetige convective velocity would be used
and some models of Jupiter’s jets still use this apprFa¢towever an alternative view is that the
zonal flow strength should be used, rather than the eddyitglaad this has experimentaland
numerical suppotf3

Here we consider the applicability of the scaling theory tio kesults for each type of veloc-
ity separately. The convective velocitl/, acts in the radial direction and thus we $&t =
(max{u,} —min{u,})/2 as a measure of the convective flow strength. Similarly wéhseronal
velocity, Uz, asUy; = (max{U} — min{U})/2. In each case the relevant quantity is also aver-

aged over an appropriate period of time. The scaling thegyylates that the number of jet&],
3 1/2
M = = 16
() (16)
for some constant scaling facter, Hence for each run VII to XXV (wherg = 5 x 10°) we are

satisfies

able to calculate the number of jets predicted by insertitigeeU- or U, for U*. The value of
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FIG. 3. Plots of the true number of jets found from the simata, m. against the predicted number of jets

from the Rhines scaling theory/, for runs VIl to XXV.

c is chosen in order to best fit the actual results for the nurabgats found from the numerical

simulations; that is, the value oi..

In figure 3 we plot the number of jets predicted using the Rhisealing theory against the
actual number of jets for the two casés: = U, andU* = Us. The value of the scaling factor
used is given in the caption of each plot. Exact agreememtdsst the theory and the simulation
results would result in a line of best fit withi = m,. Figure 3(a) shows a reasonably good fit
indicating that the scaling theory may well be predicting torrect length scale when the zonal
velocity is used. However, it is clear from figure 3(b) tha #ame is not true when the convective
velocity is entered as the typical flow strength. In parécuthe theory is unable to predict the
number of jets accurately for simulations with a large numifgets. In fact, even at lown,
the agreement is not as consistent as figure 3(a). Conségueatfind that zonal velocities
must be used in the Rhines scaling theory in order to bestegplthe number of jets observed.
However, due to the limited range @fthat we have tested, this conclusion really must be tested

for simulations with larger rotation rates. We hope to perfohis in future work.

Whengj is held constant, equation (16) indicates that the typioat 8trength must reduce in
order to acquire a larger number of jets. As previously notedltiple jets are associated with
solutions that have weak zonal flow and hence the correctndiemee on the flow strength is
possible wher/* = U,. Conversely, the convective velocity remains at a neaston strength

regardless of the number of jets. Thus the line of best fit off&é@(b) satisfied/ ~ constant and
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poor agreement is found between the predicted and actudieruoh jets.

We should note that Jones and Kuzanfeand Christensett found that implementing no-slip
boundary conditions had the effect of removing multiple jiitat were present under stress-free
conditions. This is the opposite effect to that observea halthough a key difference is that
their domain was spherical. Jones and Kuzariyand Christensett actually found that no-slip
boundary conditions reduced zonal flow to the extent thaag imdistinguishable from convective
velocities, so that not only were multiple jets removed ltao wasanylarge scale zonal flow.
Zonal flow production is more efficient in the annulus modehpared with a spherical model. In
the annulus model we have found that zonal flow is so stronlg stiess-free boundaries that the
Rhines length fills the whole domain, precluding multipltsjeln the stress-free spherical shell
models the zonal flow is relatively weaker, so according eoRhines scaling theotythe Rhines
length is smaller allowing multiple jets to form. Bottomdtion in the annulus model reduces
the zonal flow, and hence the Rhines length, so that multgtéegan fit into the domain. No-slip
boundaries in the spherical shell models weaken the zonaldtomuch that it is impossible to
distinguish it from the chaotic convection. It is possilflattmultiple jets may reappear in the no-
slip spherical shell models if the Ekman number is reducetigithere is less bottom friction, but
sufficiently small Ekman numbers are currently out of reammmgutationally. Similarly, multiple
jets may appear in the stress-free annulus model at verg tassnd moderatdia, as the Rhines
length scales ad’/3)'/2. We have however been unable, so far, to reach the valugthalt may

be required to observe this.

The Rhines scaling only applies when the convection is fd#yeloped. At lower Rayleigh
numbers, the bottom friction may allow multiple jets to appbecause the Ekman friction term
introduced whenC' # 0 is a scale-independent damping term. Therefore, unlikarttegior
viscous diffusion which dampens the small-scales moretlgréd@an large-scale structures, the
Ekman friction ‘hits’ all scales equally. This increases tfkelihood of small-scale structures,
such as multiple jets, appearing rather than just one Iacgée equatorial jet. At Rayleigh numbers
below twice critical with no bottom friction, multiple jetre damped out by the interior viscosity,

even though the zonal flow is small enough that equation (béiidvpredict multiple jets.
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D. The bursting phenomenon

For runs XllI, VII, XV and XVII we plot, in figure 4, several morguantities as they evolve.
In each figure 4(a) to 4(d) the top plot displays the variowsgies: the total kinetic energ¥,
the zonal kinetic energyy,, and the difference between the twio, (effectively the convective
energy), which were defined by equations (13 - 14). The reimgtwo plots contain the extremum
values (that is, the maxima and minima) of the mean quastiieeach timestep. Figures 4(a) to

4(d) allow us to observe the bursting phenomenon.

Figure 4(b), which is for run VII, perhaps best showcasedbthets of convection, with several
bursts apparent. A clear quasi-periodic phenomenon isrooguwith all quantities displaying
an oscillatory nature. The zonal flow is oscillating over aga of approximately 500. At times
when there is a sharp increase in the energy and the extrethatbé zonal flow is driven up by
the convection. However, the strong shear of the zonal flem thhibits the convection, which
depletes the source of energy for the zonal flow. Note thati#wema of the zonal energy occurs
shortly after the maximum values of the extremd/ofThe zonal energy then decreases to a level

that allows the convection to build up and a new burst canroccu

The physical mechanism by which the zonal flow actually segges the convection has not
been much discussed. We have performed a linear stabibtlysia for the annulus model with a
linear flow pattern imposed in the basic state in a similar manor &b ¢fi Teed et aP’. We find
that the critical Rayleigh number always increases witldgasing flow strength confirming that
zonal flow inhibits convection. We also find that the critisslvenumber is substantially reduced,
so longer waves are preferred. The temperature perturbattighort wavelength cells is disrupted
by the shear. In mathematical terms, the large zonal flow steat the temperature perturbation
6 in equation (5) must be small for the tefiidd /Ox to balance the advection down the mean tem-
perature gradient 9+ /0 and the temperature diffusidn’d, but small temperature perturbations
require very largeRa to provide sufficient buoyancy. In practice, the systemaeasis by choos-
ing a longer wavelength parallel to the zonal flow (snidlto reduce the effect of th&06/0x
term, but this is not optimal for rapidly rotating convectiohich prefers largé. So the critical
Rayleigh number is increased in the presence of shear. Natdhis argument only applies to
modes which are buoyancy driven, as modes which are drivéimeoshear itself do not rely on the
temperature perturbation. However, modes driven by shearifistability do not seem to play a

big role in our simulations. Note also that it is shear whidrupts the temperature perturbation.
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If there is a large constant zonal fldy then waves with phase velocity U can happily grow, but
if the large velocityU varies with position, it is not possible for a single phaseesf: to cancel
out U everywhere in equation (5).

Table Il indicates the runs for which bursting was observét the range of the zonal flow
also displayed. We find that &sis increased from zero, in runs IX and X, bursting ceaseslaad t
range of the oscillations of the zonal flow is smaller (conepaith run VII). Therefore, we can
conclude that the bottom friction hinders the bursting mmeenon, which is in agreement with
the previous work?%. For the runs where bursting occurs fr = 1 (that is, runs VII, VIl and
XXIV) the period of the bursting is found to e 0.02 of a diffusion time. This can be observed
from figure 4(b).

When Pr = 0.5 we see, from table Il that the strength and range of the zooal i small
for run Xl whereRa = 2.75Ra.. However, when the Rayleigh number is increased to five times
critical in figure 4(a), for run XIl, the zonal energy formsetimajority of the kinetic energy in
the system. There is also evidence of the bursting phenomeitbh a gradual decline in all of
the quantities in the three plots before a sharp increase-al.48. Bursting also continues to be
found in run XXV whereRa/Ra. = 10. Therefore the possibility of convective bursts exists at
Pr = 0.5 so long as the driving is large enough.

In figures 4(c) and 4(d) we plot the energy and mean quantitgea plots for runs XV and
XVIlI where Pr = 2. Figure 4(c) once again shows clear evidence of burstingtitihe at five
times critical, with significant fluctuations in both mearagtities. The maximum values &f,
andd;

max

occur shortly before the peaks i, and —Unin. The period of time between bursts
has also remained constant=at0.02 despite the increase in the Prandtl and Rayleigh numbers
compared with run VII. This suggests that the period of thestsumay not be strongly dependent
on eitherPr or Ra. From figure 4(c) it is clear that the snapshot for this rure (Bgure 2(c))

is taken during a time of strong zonal flow; that is a post-eative burst. The convection in
figure 2(c) is also localized due to the strong zonal flow. This contrast to figure 2(b) which

is takenduring a burst. This shows that during a bursting cycle there arb petiods where
convection occurs everywhere and where convection isilamil This is a common attribute of
all bursting runs. Also of note is that the range of the flutturein the maximum value of the mean
temperature gradientis larger than in the cases of lowerdBnaumber (compare with figure 4(a)).
Figure 4(d), for run XVII where”' = 0.5, again shows that increasing the bottom friction causes

the bursting to halt, as well as reducing the magnitude ottmal flow itself.
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At Pr = 5 we find that, despite the zonal energy forming the majorithefkinetic energy, the
bursting ceases. The extremely small range of the zonal @ovuh XVIII in table Il indicates that
the values of these quantities are nearly constant oveggiernod of time. The same situation was
found for run XIX, which has a larger Rayleigh number so bhagstioes not occur even for values
of Ra that are several times critical. No bursting was observeduns with Ra/Ra. = 2.75
and Pr = 0.2. With the non-zero values af' used in runs XXI and XXII, the zonal flow is
weak, so bursting would not be expected. In run XX= 0 and the zonal flow is quite strong,
but no bursting was found. However, increasing the Raylaiginber to five times critical in run
XXIII, produces bursting although the oscillations arengfigantly weaker than those found for
equivalent parameters in thié- = 0.5 case. This suggests that the onset of bursting is delayed as
the Prandtl number is decreased.

In the annulus problem, bursting can be thought of as tenhpatermittency, but in other
geometries spatial intermittency can also occur. Spattatmittency is sometimes referred to as
‘nests of convectiorf®. Spatial intermittency can occur in two different ways. ancoccur with
temporal intermittency, that is when the burst occurs ietepreferentially in the neighborhood
of a particular longitude. We see this happening in the arswrodel, but typically the burst soon
spreads out throughout the whole domain. More localizedtbirave been seen in spherical shell
geometry®4”. However, in spherical shell geometry persistent nestewiection can occur, both
in Boussines®f and in anelastic convectith In this configuration, convection only occurs in
patches which drift azimuthally in longitude, while indiial convection columns drift through
the patch, growing as they enter the patch and decaying gdeee it. We have not seen this
phenomenon in the annulus model. In spherical geometnRdssby waves propagate faster in
the outer parts of the shell, where the boundary slope ipsteand more slowly in the deep
interior where the slope is shallower. In the annulus moldelldoundary slope is constant, so
this differential propagation speed with radius does neugovhich maybe why we did not find

persistent nests of convection in the annulus.

IV. MEAN FIELD STABILITY THEORY

In the previous section, we saw how large zonal flows and nmexapérature gradients readily
appeared under many parameter regimes. It is desirabl@lorexhe disruptive effects that these

mean quantities have on the convection in order to bettdagxpow the bursts occur. Perhaps
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the most informative method is to consider a linear theomy wie mean quantities derived from
the nonlinear code used to define a basic state from whichrtvetly rates of convection can be
observed. This is what we analyze in this section.

We consider a zonal flongy = Uy(y)% and a mean temperature profilg, + Go(y), to be
included in the basic staté:,(y) measures the departure of the mean temperature from the con-

duction state. Perturbationsandé around this basic state satisfy

) a0 . 5
—(B+ ReUg)a—i = —Raz- - C|B'*V2) + Ve, (17)
Pr <% + Rer% + 81&@) = ov + V70, (18)

OV21)
ox

OV21)
ot

+ RGUO

ot dr = Or dy oz

with the introduction of terms involvind/, and G. Disturbances havexp(ikz) dependence,
k being the wavenumber in the-direction. We have non-dimensionalized the zonal flow by

assuming that it has a typical velocity;, to give a Reynolds number

D*
Re = U.

(19)

v

This linear problem is solved using the same method as in @eal?’. No assumption has yet
been made regarding the form Gf or G,. However, now we use the runs discussed in section
Il to provide the mean quantities to be entered into thedirteeory. Of course, as the system is
evolved during these runs the zonal flow and mean temperettiarege at each timestep. In order to
fully analyze the effects of the mean quantities on the linle@ory we perform the linear stability
analysisat each timestepwhich allows us to see how the growth rates of the linearesystary
as the dynamics of the nonlinear system evolve. Thereforaddea subroutine to the nonlinear
code, which solves the linear stability problem at each ste@ With the same parameter set as
that being used in the nonlinear run and wiff(y) andG(y) set equal td/ andd respectively,
the subroutine outputs the largest growth rate, as well axtihresponding frequency,, and
wavenumberk. We setRe = 1 so that the magnitude of the zonal flow comes solely from the
nonlinear simulations. We expect that the growth rate velldyge when a burst arises. Conversely,
when the zonal flow is strong the expectation is that the droate will attain a minimum due to
the disruption of convection by zonal flow as we discusseeédatisn Il D. In order for convection
to cease we expect to findarginalgrowth rates at times of largé. The idea we explore is that
it is the small scale convection which drives the zonal flow #re mean temperature gradient,

but for much of the time these mean quantities are such tmaective instability is suppressed.
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When these mean quantities have weakened through diffeffirets, we expect to see positive
growth rates for convective instability, and the onset ofiesbof convection.

In the plots that we shall discuss, the growth rate, waverairabd frequency will be functions
of time. We are primarily interested in the growth rate of fastest growing mode and how it
varies as the nonlinear system is evolved. This is becausdsieo ascertain if the magnitude of
growth is at all correlated with the mean quantities. Conset]y, we primarily look at the linear
outputs for runs of section Il where the bursting phenonmewas witnessed. In particular, we
discuss results from the linear theory for the same timevate and runs as those taken for the

plots in figure 4, in order to ease comparison.

A. Linear results with nonlinear zonal flow

We begin with the case wheomly the zonal flow,UU, is included in the linear theory. Hence
in this subsection we séfy(y) = U(y) andGy(y) = 0 in the linear equations (17-18). Figure 5
shows how the growth rate, frequencyw, and wavenumbe¥;, vary as the nonlinear system is
evolved, for the runs for which plots were produced in figure 4

Figure 5(a), for run XIl, can be compared with the plots of fegd(a). The zonal energy of
figure 4(a) is shown as a dotted line to aid comparison. As tmalzflow strength gradually
decreases the quantities plotted in figure 5(a) remairyfaohstant. However, there is a sudden
increase inv andk att ~ 0.247, which is whereFE; attains its minimum. This is expected as
the growth of convection should occur when the zonal flow iakest. Although the range of the
growth rate is quite large, we notice thats never less thar: 1500. Therefore the zonal flow
reduces the growth of the convection but does not completalige it to cease. The zonal fldvy
increases strongly following the burst of convection after 0.247, and the growth rate begins to

decrease again due to the disruption of the convection bgdt#ional strength of the zonal flow.

Unlike in the case for run XllI, the growth rate in figure 5(bjn&@ns relatively constant. The
correlation withE'; in figure 4(b) is also far less obvious, so it seems again ieegdnal flow is not
sufficiently affecting the growth of convection. There isebent correlation however between the
frequencyw, and the zonal flow strength. The frequency is smallest inmitagde when the zonal
flow is weakest. Peaks ialso coincide with locations of strong zonal flow althougé tAnge of

the wavenumber is small. Run XV also displays bursting amdretpere is correlation between the
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guantities of figures 5(c) and 4(c). Once again the minimuow rate is attained when the zonal
energy is largest but the zonal flow is unable to reduce thetyroate to marginal or decaying
modes. When comparing figures 5(d) and 4(d) we immediatelicadhe lack of correlation
between quantities that was present for the previous ristusised and thus the departure from
theU, = 0 case is minimal. This is to be expected since run XVII is notissting solution and is
included here simply as an example of a non-bursting run.

We can conclude from this subsection that the zonal flows @fibnlinear theory certainly
have a profound effect on the linear growth rates of congactdHowever, the zonal flow is unable
to halt the growth of convection altogether as evidencedheylack of negative growth rates in
figure 5. Therefore another process, at least in part, musdpensible for the sufficient reduction

in convective growth.

B. Linear results with nonlinear mean temperature gradient

We now consider the linear stability results in the abser@ap zonal flow but with the mean
temperature profile], included. Thus, in this subsection we 8gt= 0 andG, = f in the linear
equations (17-18). Figure 6 contains plots displaying how andk vary as the nonlinear system
is evolved when only the mean temperature gradient is ieclud the linear system. We show
also the zonal flow energy, which varies smoothly and is wetrelated with the mean temperature
gradient.

All three of the quantities in figure 6(a) remain near-consta begin with since the extrema
of the mean temperature gradient are also approximatelstaonfort < 0.247 (compare with
figure 4(a)). The sudden increaseffp,, att ~ 0.247 is accompanied by an abrupt reduction in
the growth rate. This is to be expected since if the mean tesyoe gradient is able to partially
(or indeed, fully) cancel out the static temperature gnaidlitne overall gradient will be less ad-
verse. Thus the system will be less eager to convect, regutiia lowering of the growth rate.
However, even when the mean temperature gradient is sthengrowth rate is only reduced by
approximatelyl0%. In fact, this is a smaller reduction of the growth rate thaswresent in the
previous subsection. Associated with the region of stroegmtemperature gradient, there is a
reduction injw| and the wavelengths of the modes.

The plots in figure 6(b), for run VII, show clear correlatiortinv4(b). The growth rate oscillates,

though again does not reduce significantly. The correlatiothe frequency and wavenumber
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FIG. 6. Time evolution of the growth rate, frequency and waaweber plots for runs with only nonlin-
ear mean temperature gradient. The dotted line is the erértihe zonal flow, included since the mean

temperature gradient is well correlated with the zonal flow.
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is also clear with the same dependence as seen before. le figcy, for run XV, we again
see the same pattern of correlation by comparing with figce 4Peaks of), ,, att ~ 1.012
andt¢ =~ 1.029 are associated with weak growth and short wavelengths wthigsintermediate
period has increasing growth. The plots for run XVII, dig@é in figure 6(d), display only small
fluctuations ino, w andk. This is to be expected since the values of the extrema of &enm
temperature gradient are near-constant in this non-bgrsbolution (see figure 4(d)).

We have found that a strong mean temperature gradient caedneéduce the growth rate of
convection due to a reduction in the overall adverse tenypergradient present. However, the
growth rate does not become marginal or negative even dtinreg of strong mean temperature

gradient.

C. Linear results with both nonlinear mean quantities

We now finally consider the linear stability results with batean quantitieg/ andé, included
in the basic state since we expect that both a zonal flow andam teenperature gradient are
necessary to produce the bursting phenomenon. Thereftinésiaubsection we séf, = U and
Gy = f in the linear equations (17-18).

The comparison of figure 7(a), for run XIl, with figure 4(a) slsothat there is again correla-
tion between the linear quantities and the nonlinear easrdn fact, the plots of figure 7(a) are
extremely similar to those of figure 5(a) where only a basateszronal flow was included. Strong
growth of the same order of magnitude remains possible @&stiwhen the zonal flow and mean
temperature gradient are weak. However, the key differ&ete@een these sets of plots is that,
for the case where both mean quantities are included, thvetigrate is approximately zero when
the mean quantities are large. This was not the case préy@oud therefore including both mean
guantities has given the desired result which is the ceasitige convection.

The correlation ot in figure 7(b), for run VII, with the quantities plotted in figr4(b) is strik-
ing. As with figure 6(b) there is strong growth located whéezonal flow and mean temperature
gradient are weak. However, unlike figures 5(b) and 6(b)gtoe/th rate becomes negative when
it attains its minimum values. Hence when the mean quastie large the convective modes of
the linear theory decay. Figure 7(c), for run XV, also appéarshow that both mean quantities
are necessary for bursting. There is an initial period afregrgrowth at ~ 1.010 where we see

from figure 4(c) that the mean quantities are weak. Followeithe strong growth there is a period
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whereo = 0 coinciding with the time between whidh, reduces from its maxima to its minima.
After the zonal energy attains its minimum value, the zormal i weak enough to allow a second
period of strong growth located at= 1.026. Also of interest in both figures 7(b) and 7(c) is that
k andw tend to zero during periods of weak growth. The marginal rsptteind when the mean
guantities are strong, are therefore steady in these casesplots displayed in figure 7(d) are
similar to those found for the non-bursting run XVII in theepious subsections. Once again all
three quantities take (non-zero) near-constant valuespested, due to the weak mean quantities
for run XVII.

We can conclude from this subsection that it appears thahéisessary condition for bursts
of convection is the existence bbtha zonal flow and a mean temperature gradient. We have
observed marginal growth rates in all three runs that adorgting. The Rayleigh number in all
runs is several times critical. Thus, when the mean quastére strong and of the correct form,

they are able to reduce the system to near-onset behavior.

V. CONCLUSIONS

The results of our nonlinear annulus model produced goosbagent with previous simulatiols
and zonal flows were found to readily occur. Multiple jets angeriodic nature of convection
appearing in bursts can be found under certain parameteneésgHowever, bursting multiple jet
solutions were not observed at any Prandtl number, extgridaidea that multiple jets and bursts
are likely to be mutually exclusive phenoméhto cases withPr # 1. Rigid top and bottom
boundaries are preferable for multiple jets whereas bofstsnvection certainly prefer stress-free
boundaries. Zonal flows are also found to be weaker with dgidndaries implemented. We
also found fluctuations in the mean temperature gradient @imaar timescale to the bursts of
convection which have not been addressed in the previaratitre. We found reasonable agree-
ment with the Rhines scaling thedfyonly when the zonal velocity was using in the scaling. It
seems that the convective velocity is unable to predict timeect number of jets although further
parameter regimes, including with larger valuegipghould be tested confirm this result.

As an extension to the previous work, we performed runs With# 1. In general, increasing
the Prandtl number depletes the strength of the zonal flow. blinsts of convection appear to be
a phenomenon most frequently observed@at= 1 agreeing with previous wofk Although we

found that bursts were possible at a range of Prandtl numbiersonset of bursting appears to
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be delayed to larger Rayleigh numbers if the Prandtl nungeot unity. This was most notably
confirmed atPr = 0.2 by the lack of bursts aka/Ra. = 2.75 and the appearance of only very
weak bursting aRRa/Ra. = 5. At even larger Rayleigh numbers the convection becomesyhig
chaotic. Therefore it appears that the bursting phenomseraynbe restricted to an ever shrinking
window of parameter space as the Prandtl number is redudgddwAenough Prandtl number the
bursting regime may be omitted altogether restricting thien@menon to a finite range Bf-. This

will have to be tested in future work.

Physically, the zonal flow certainly disrupts the convettas expected and as observed in
section IV A. Similarly, the introduction of a strong meamigerature gradient can result in the
reduction of the overall temperature gradiéiit= AT/D +¢'. The adverse temperature gradient
must exceed some value in order for convection to be benefidigo, the steeper the adverse
temperature gradient the stronger the resulting conveetitt be. Hence a partial cancellation
of the static temperature gradient7’/ D, will also weaken the convection. We believe that the
shearing of the zonal flow, coupled with the partial balag@hthe adverse temperature gradient,
is the requirement to halt convection. This is in contragbri@vious work on the subject where
it was believed that the zonal flow could sufficiently disrthe convection to cause bursts. Both
the zonal flow strength and the mean temperature gradieritatagsexceed some critical value
in order for the convection to cease. In the case of the zooal the shearing must be great
enough and in the case of the mean temperature gradientahe tetmperature gradient must
be sufficiently balanced. When this occurs, the driving éoof both of the mean quantities is
removed. Consequently, there is a depletion in the stresfgtie zonal flow and the temperature
gradient reverts to approximately that of the static cag@abconvection is once again beneficial
and a burst occurs. This argument also offers an explanatida why bursting is preferentially
observed at Prandtl number of order unity. At high Prandthbar, the zonal flow is too weak for
bursting, and at low Prandtl number, although the zonal fl®stiong, the mean temperature is

too close to its conduction state value.

It is not currently known if the jets of the gas giants possepsriodic nature. The parameter
regimes we have tested suggest it may be unlikely that théipteu)et structure of the Jovian
atmosphere can coexist with bursts of convection. Howekéne high latitude jets are driven
by a different process to that of the strong equatoriafjésit may be that some but not all jets
display an oscillation in the zonal flow strength. Furthesatations of the wind speeds of the

jets of the gas giants over time is required. The Juno misslooh launched in August 2011 will
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be placed in a polar orbit of Jupiter in order make furthereobations of the planet including their

jet speed¥.

ACKNOWLEDGMENTS

RJT is grateful to STFC for a PhD studentship.

REFERENCES

1S.S. Limaye. Jupiter: new estimates of the mean zonal flowmeatkoud level. Icarus, 65:
335-352, 1986.

2C.C. Porco, R.A. West, A. McEwan, A.D. Del Genio, A.P. InggksP. Thomas, S. Squyres,
L. Dones, C.D. Murray, T.V. Johnson, J.A. Burns, A. Brahic, \&eukum, J. Veverka, J.M.
Barbara, T. Denk, M. Evans, J.J. Ferrier, P. Geissler, HeHslein, T. Roatsch, H. Throop,
M. Tiscareno, and A.R. Vasavada. Cassini imaging of Jupi@mosphere, satellites and rings.
Science299:1541-1547, 2003.

3S. Starchenko and C.A. Jones. Typical velocities and magfieid strengths in planetary inte-
riors. Icarus, 157:426—-435, 2002.

4F.H. Busse. A simple model of convection in the Jovian atrhesp.Icarus, 29:255-260, 1976.
5J.-I. Yano. Deep convection in the interiors of the majonpla: a review.Aust. J. Phys.51:
875-889, 1998.

5P.H. Roberts. On the thermal instability of a rotating flysthere containing heat source®hil.
Trans. Roy. Soc.,A263:93-117, 1968.

’F.H. Busse. Thermal instabilities in rapidly rotating ®yses.J. Fluid Mech, 44:441-460, 1970.
8C.A. Jones, A.M. Soward, and A.l. Mussa. The onset of comvednh a rapidly rotating sphere.
J. Fluid Mech, 405:157-179, 2000.

°E. Dormy, A.M. Soward, C.A. Jones, D. Jault, and P. Cardine ®hset of thermal convection
in rotating spherical shellsl. Fluid Mech, 501:43-70, 2004.

1ON. Gillet and C.A. Jones. The quasi-geostrophic model fpidig rotating spherical convection
outside the tangent cylinded. Fluid Mech, 554:343-369, 2006.

113, Rotvig. Multiple zonal jets and drifting: Thermal contiea in a rapidly rotating spherical

shell compared to a quasigeostrophic mo@dlys. Rev. E76:046306 (9 pages), 2007.

29



12F H. Busse. Asymptotic theory of convection in a rotatingindrical annulus.J. Fluid Mech,
173:545-556, 1986.

13F H. Busse and A. Or. Convection in a rotating cylindricahalus: thermal Rossby waves.
Fluid Mech, 166:173-187, 1986.

1A, Or and F.H. Busse. Convection in a rotating cylindricatalus. Part 2. Transitions to asym-
metric and vacillating flowJ. Fluid Mech, 174:313-326, 1987.

M. Schnaubelt and F.H. Busse. Convection in a rotating dyial annulus. Part 3. Vacillating
and spatially modulated flowd. Fluid Mech, 245:155-173, 1992.

16C.A. Jones, J. Rotvig, and A. Abdulrahman. Multiple jets andal flow on JupiterGeophys.
Res. Lett.30:1731, 2003.

173. Aubert, D. Brito, H.C. Nataf, P. Cardin, and J.P. MassonsyAtematic experimental study
of spherical shell convection in water and liquid galliuRhys. Earth Planet. Int.128:51-74,
2001.

18F H. Busse and C.R. Carrigan. Laboratory simulation ofrttarconvection in rotating planets
and starsScience.191:81-83, 1976.

193 -B. Manneville and P. Olson. Banded convection in rogafinid spheres and the circulation
of the Jovian atmospheré&arus, 122:242—-250, 1996.

20N.H. Brummell and J.E. Hart. High Rayleigh numbgconvection. Geophys. and Astrophys.
Fluid Dynam, 68:85-114, 1993.

213, Rotvig and C.A. Jones. Multiple jets and bursting in theidly rotating convecting two-
dimensional annulus model with nearly plane-parallel loawies.J. Fluid Mech, 567:117-140,
2006.

22F H. Busse. Convection flows in rapidly rotating sphefisys. Fluids,. 14:1301-1314, 2002.

23U.R. Christensen. Zonal flow driven by deep convection inrttagor planets.Geophys. Res.
Lett, 28:2553-2556, 2001.

24U.R. Christensen. Zonal flow driven by strongly supercaiticonvection in rotating spherical
shells.J. Fluid Mech, 470:115-133, 2002.

25p A, Gilman. Nonlinear dynamics of Boussinesq convectiva deep rotating spherical shell i.
Geophys. Astrophys. Fluid Dynar8:93-135, 1977.

26p A, Gilman. Nonlinear dynamics of Boussinesq convectioa deep rotating spherical shell ii:
Effects of temperature boundary conditiorGeophys. Astrophys. Fluid Dynam.1:157-179,
1978.

30



27p.A. Gilman. Nonlinear dynamics of Boussinesq convection deep rotating spherical shell iii:
Effects of velocity boundary condition&eophys. Astrophys. Fluid Dynart1:181-203, 1978.

28E. Grote and F.H. Busse. Dynamics of convection and dynamagating spherical fluid shells.
Fluid Dynam. Re$28:349-368, 2001.

2°M. Heimpel, J. Aurnou, and J. Wicht. Simulation of equatiaiad high-latitude jets on Jupiter
in a deep convection modeaNature 438:193-196, 2005.

30A, Tilgner and F.H. Busse. Finite-amplitude convection atating spherical fluid shellsJ.
Fluid. Mech, 332:359-376, 1997.

31K, Zhang. Spiralling columnar convection in rapidly rotafispherical shellsJ. Fluid Mech,
236:535-556, 1992.

323. Aurnou and P. Olson. Strong zonal winds from thermal cotime in a rotating spherical shell.
Geophys. Res. Let28:2557-2559, 2001.

33M. Heimpel and J. Aurnou. Turbulent convection in rapidlyating spherical shells: A model
for equatorial and high latitude jets on Jupiter and Satlearus, 187:540-557, 2007.

34y, Morin and E. Dormy. Time dependegitconvection in rapidly rotating spherical shelRhys.
Fluids, 16:1603-1609, 2004.

35V. Morin and E. Dormy. Dissipation mechanisms for convatiiorapidly rotating spheres and
the formation of banded structureBhys. Fluids 18:068104, 2006.

36p.B. Rhines. Waves and turbulence on a beta-plan€éluid Mech, 69:417-443, 1975.

3’R.J. Teed, C.A. Jones, and R. Hollerbach. Rapidly rotatiageplayer convection with zonal
flow. Geophys. Astrophys. Fluid Dynam04:457-480, 2010.

38H4.P. GreensparThe theory of rotating fluidsCambridge University Press, 1968.

39A. Abdulrahman, C.A. Jones, M.R.E. Proctor, and K. Juliearge wavenumber convection in
the rotating annulusGeophys. Astrophys. Fluid Dyngr83:227-252, 2000.

40C.A. Jones. Thermal and compositional convection in theradre. In P. Olson, editofreatise
on geophysics, vol. 8: core dynami&dsevier, 2007.

41].B. Boyd.Chebyshev and Fourier spectral metho@®ver, 2001.

42T, Schneider and J. Liu. Formation of jets and equatoriaésapation on Jupiterd. Atmos Scj.
66:579-601, 2009.

“3N. Gillet, D. Britto, D. Jault, and H.-C. Nataf. Experimehaad numerical studies of convection
in a rapidly rotating spherical shell. Fluid Mech, 580:83-121, 2007.

44C.A. Jones and K.M. Kuzanyan. Compressible convection éndidep atmospheres of giant

31



planets.Icarus 204:227-238, 2009.

45B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, and J. To®. Rapidly rotating suns and
active nests of convectiolstrophys. J.689:1354-1372, 2008.

4M. Heimpel and J. Aurnou. Convective bursts and the couptih§aturn’s equatorial storms
and interior rotationAstrophys. J.746:51 (14pp), 2012.

473, Ballot, A.S. Brun, and S. Turck-Chiéze. Simulationsusbtilent convection in rotating young
solarlike stars: differential rotation and meridionalccitation. Astrophys. J.669:1190-1208,
2007.

483, Matousek. The Juno New Frontiers missidista Astronaut.61:932—-939, 2007.

32



