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HALL ALGEBRAS AND DONALDSON-THOMAS
INVARIANTS

TOM BRIDGELAND

Abstract. This is a survey article about Hall algebras and their appli-

cations to the study of motivic invariants of moduli spaces of coherent

sheaves on Calabi-Yau threefolds. The ideas presented here are mostly due

to Joyce, Kontsevich, Reineke, Soibelman and Toda.

1. Introduction

Our aim in this article is to give a brief introduction to Hall algebras, and

explain how they can be used to study motivic invariants of moduli spaces

of coherent sheaves on Calabi-Yau threefolds. In particular, we discuss gen-

eralized Donaldson-Thomas (DT) invariants, and the Kontsevich-Soibelman

wall-crossing formula, which describes their behaviour under variations of sta-

bility parameters. Many long and difficult papers have been written on these

topics: here we focus on the most basic aspects of the story, and give pointers

to the literature.
We begin our introduction to Hall algebras in Section 2. In this introductory

section we will try to motivate the reader by discussing some of the more

concrete applications. The theory we shall describe applies quite generally to

motivic invariants of moduli spaces of sheaves on Calabi-Yau threefolds, but

some of the most striking results relate to curve-counting invariants, and for

the sake of definiteness we will focus on these.

1.1. Motivic invariants. Since the word motivic has rather intimidating

connotations in general, let us make clear from the start that in this context

it simply refers to invariants of varieties which have the property that

χ(X) = χ(Y ) + χ(U),

whenever Y ⊂ X is a closed subvariety and U = X \ Y . A good example is

the Euler characteristic: if X is a variety over C we can define

e(X) =
∑

i∈Z
(−1)i dimC H

i(Xan,C) ∈ Z,
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2 TOM BRIDGELAND

where the cohomology groups are the usual singular cohomology groups of X

equipped with the analytic topology.

Of crucial importance for the theory we shall describe is Behrend’s discovery

[2] of the motivic nature of DT invariants. If M is a fine projective moduli

scheme parameterizing stable coherent sheaves on a Calabi-Yau threefold X ,

there is a corresponding DT invariant [42]

DT(M) =

∫

Mvir

1 ∈ Z,

defined to be the degree of the virtual fundamental class ofM . Behrend proved

that this invariant can also be computed as a weighted Euler characteristic

DT(M) = e(M ; ν) :=
∑

n∈Z
n · e(ν−1(n)) ∈ Z,

where ν : M → Z is a certain constructible function, depending only on the

singularities of the scheme M .

Surprisingly, it turns out that for most of the applications described below

one can equally well consider naive DT (or ‘Euler-Thomas’) invariants

DTnaive(M) = e(M) ∈ Z,

and the reader unfamiliar with virtual fundamental classes and the Behrend
function will not miss anything by restricting to this case. Nonetheless, the

genuine invariants are more important for several reasons: they are unchanged

by deformations of X , they have subtle integrality properties, and they are

directly relevant to physics.

1.2. Example: Toda’s flop formula. Let X be a smooth projective Calabi-

Yau threefold over C. We always take this to include the condition that

H1(X,OX) = 0.

Fix β ∈ H2(X,Z) and n ∈ Z and consider the Hilbert scheme

Hilb(β, n) =

{

closed subschemes C ⊂ X of dim 6 1
satisfying [C] = β and χ(OC) = n

}

.

This can be viewed as a fine moduli space for rank one torsion-free sheaves

on X by mapping C ⊂ X to its ideal sheaf IC (at the level of C-valued

points this identification is easy, see e.g. [8, Lemma 2.2], and for the motivic
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statements here this suffices; the full scheme-theoretic isomorphism is covered

in [33, Section 2]). We can consider the corresponding naive DT invariants

DTnaive(β, n) = e(Hilb(β, n)) ∈ Z,

or by introducing the Behrend function, their more genuine cousins.

Let us now consider two smooth projective Calabi-Yau threefoldsX± related

by a flop:

X+

f+ ��
❁❁

❁❁
❁❁

❁
X−

f−��✂✂
✂✂
✂✂
✂

Y

It seems very natural to ask how the DT invariants are affected by this bira-

tional transformation.

Theorem 1 (Toda, [46]). The expression

∑

(β,n)DTnaive(β, n) xβyn
∑

(β,n):f∗(β)=0 DTnaive(β, n) xβyn

is the same on both sides of the flop, after making the natural identification

H2(X+,Z) ∼= H2(X−,Z)

induced by strict transform of divisors.

The result was extended to genuine DT invariants using a different argument

by Calabrese [9], and Toda’s argument now also applies to this case [43]. In

the case when the flopped curves have normal bundle O(−1)⊕2 the result was

proved earlier by Hu and Li [16] using different techniques.

1.3. Example: the DT/PT correspondence. Pandharipande and Thomas

[33] introduced an ‘improved’ version of the moduli space Hilb(β, n) which

eliminates the problem of free-roaming points. A stable pair on X is a map

f : OX → E

of coherent sheaves such that

(a) E is pure of dimension 1, (b) dim supp coker(f) = 0.

Fixing a class β ∈ H2(X,Z) and n ∈ Z as before, there is a fine moduli

scheme Pairs(β, n) parameterizing stable pairs with ch(E) = (0, 0, β, n). We



4 TOM BRIDGELAND

can then consider naive stable pair invariants

PTnaive(β, n) = e(Pairs(β, n)) ∈ Z.

Genuine stable pair invariants are obtained by weighting with the Behrend

function as before.

Theorem 2 (Toda, [44]). (i) For each β ∈ H2(X,Z) there is an identity

∑

n∈Z
PTnaive(β, n)yn =

∑

n∈Z DTnaive(β, n)yn
∑

n>0DTnaive(0, n)yn
.

(ii) This formal power series is the Laurent expansion of a rational function

of y, invariant under y ↔ y−1.

These results have since been shown to hold for genuine invariants [6, 43].

Part (i) had previously been conjectured by Pandharipande and Thomas [33,

Sect. 3]; part (ii) then becomes part of the famous MNOP conjectures [32,

Conj. 2]. See also [40] for a generalization of Theorem 2 to arbitrary threefolds.

1.4. General strategy. The basic method for proving the above results (and

many more like them) is taken from Reineke’s work on the cohomology groups

of moduli spaces of quiver representations [35]. One can thus view the whole

subject as a showcase for the way in which techniques pioneered in the world of

representations of quivers can solve important problems in algebraic geometry.

The strategy consists of three steps:

(a) Describe the relevant phenomenon in terms of wall-crossing: a change

of stability condition in an abelian or triangulated category C.
(b) Write down an appropriate identity in the Hall algebra of C.
(c) Apply a ring homomorphism I : Hall(C) → Cq[K0(C)] to obtain the

required identity of generating functions.

The first two steps are completely general, but the existence of the map I
(known as the integration map) requires either

(i) C is hereditary: ExtiC(M,N) = 0 for i > 1,

(ii) C satisfies the CY3 condition: ExtiC(M,N) ∼= Ext3−i
C (N,M)∗.

Hall algebras and an example of a Hall algebra identity will be introduced

in Section 2. Integration maps are discussed in Section 3. The most basic
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wall-crossing identity, resulting from the existence and uniqueness of Harder-

Narasimhan filtrations, will be discussed in Section 4. The application of the

above general strategy to Theorems 1 and 2 will be explained in Section 5.

1.5. Some history. It is worth noting the following pieces of pre-history

which provided essential ideas for the results described here.

(1) Computation of the Betti numbers of moduli spaces of semistable bun-

dles on curves using the Harder-Narasimhan stratification (Harder-

Narasimhan [14], Atiyah-Bott [1]).

(2) Wall-crossing behavior of moduli spaces with parameters, e.g. work of

Thaddeus [41] on moduli of stable pairs on curves.

(3) Use of derived categories and changes of t-structure to increase the

flexibility of wall-crossing techniques, e.g. threefold flops [4].

(4) Systematic use of Hall algebras: Reineke’s calculation of Betti numbers

of moduli spaces of representations of quivers [35].

(5) Behrend’s interpretation of Donaldson-Thomas invariants as weighted

Euler characteristics [2].

The credit for the development of motivic Hall algebras as a tool for studying

moduli spaces of sheaves on Calabi-Yau threefolds is due jointly to Joyce and

to Kontsevich and Soibelman. Joyce introduced motivic Hall algebras in a

long series of papers [17, 18, 19, 20, 21, 22]. He used this framework to

define generalizations of the naive Donaldson-Thomas invariants considered

above, which apply to moduli stacks containing strictly semistable sheaves.

He also worked out the wall-crossing formula for these invariants and proved

a very deep no-poles theorem. Kontsevich and Soibelman [27] constructed an

alternative theory which incorporates motivic vanishing cycles, and therefore

applies to genuine DT invaraints and motivic versions thereof. They also

produced a more conceptual statement of the wall-crossing formula. Some

of their work was conjectural and is still being developed today. Joyce and

Song [24] later showed how to directly incorporate the Behrend function into

Joyce’s framework, and so obtain rigorous results on DT invariants.

Notes. There are quite a few survey articles on the topics covered here.

For a survey of curve-counting invariants we recommend [34]. Joyce [23] and

Kontsevich-Soibelman [28] produced surveys of their work in this area. Toda

[45] also wrote a survey of wall-crossing techniques in DT theory.
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2. Hall algebras

The aim of this section is to introduce the idea of a Hall algebra in gen-

eral, and introduce the particular kind ‘motivic Hall algebras’ which will be

important for our applications to moduli spaces. As a warm-up we begin

by discussing finitary Hall algebras. From our point-of-view these are rather

simplified models, but one of the important features of this subject is that

‘back-of-the-envelope’ calculations can be easily made in the finitary case be-

fore being generalized to the more realistic motivic setting.

2.1. Finitary Hall algebras. Suppose that A is an essentially small abelian

category satisfying the following strong finiteness conditions:

(i) Every object has only finitely many subobjects.

(ii) All groups ExtiA(E, F ) are finite.

Of course these conditions are never satisfied for categories of coherent

sheaves but there are nonetheless plenty of examples: let A be any finite

dimensional algebra over a finite field k = Fq, and take A = mod(A) to be

the category of finite dimensional left A–modules.

Definition 2.1. The finitary Hall algebra of A is defined to be the set of all

complex-valued functions on isomorphism classes of A

Hall∧fty(A) =
{

f : (Obj(A)/∼=) −→ C
}

,

equipped with a convolution product coming from short exact sequences:

(f1 ∗ f2)(B) =
∑

A⊂B

f1(A) · f2(B/A).

This is an associative, but usually non-commutative, unital algebra. We also

define a subalgebra

(1) Hallfty(A) ⊂ Hall∧fty(A),

consisting of functions with finite support.

Before going further the reader should prove that the Hall product indeed

gives an associative multiplication, and that multiple products are given by

the formula

(f1 ∗ · · · ∗ fn)(M) =
∑

0=M0⊂M1⊂···⊂Mn=M

f1(M1/M0) · · ·fn(Mn/Mn−1).
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Finally one should check that the the characteristic function δ0 of the zero

object is the multiplicative unit.

For each object E ∈ A we consider an element δE ∈ Hallfty(A) which is the

characteristic function of the isomorphism class of E, and the closely related

element

κE = |Aut(E)| · δE ∈ Hallfty(A).
The following Lemma was first proved by Riedtmann.

Lemma 2.2. For any objects A,C ∈ A we have an identity

κA ∗ κC =
∑

B∈A

|Ext1(C,A)B|
|Hom(C,A)| · κB,

where Ext1(C,A)B ⊂ Ext1(C,A) denotes the subset of extensions whose mid-

dle term is isomorphic to B.

Proof. This is another very good exercise. See [38, Lemma 1.2]. �

One more piece of notation: we define an element δA ∈ Hall∧fty(A) by setting

δA(E) = 1 for all E ∈ A.

This should not be confused with the identity element 1 = δ0 ∈ Hall∧fty(A).

2.2. Example: category of vector spaces. Let A = Vectk be the category

of finite dimensional vector spaces over Fq. Let

δn ∈ Hallfty(A)

denote the characteristic function of vector spaces of dimension n. The defi-

nition immediately gives

δn ∗ δm = |Grn,n+m(Fq)| · δn+m.

The number of Fq-valued points of the Grassmannian appearing here is easily

computed: it is the q-binomial coefficient

|Grn,n+m(Fq)| =
(qn+m − 1) · · · (qm+1 − 1)

(qn − 1) · · · (q − 1)
=

(

n+m

n

)

q

.

It then follows that there is an isomorphism of algebras

I : Hallfty(A)→ C[x], I(δn) =
qn/2 · xn

(qn − 1) · · · (q − 1)
,
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where the factor qn/2 is inserted for later convenience. This is in fact a first

example of an integration map: in this special case it is an isomorphism,

because the isomorphism class of an object of A is completely determined by

its numerical invariant n ∈ Z>0.

The isomorphism I maps the element δA =
∑

n>0 δn to the series

Eq(x) =
∑

n>0

qn/2 · xn

(qn − 1) · · · (q − 1)
∈ C[[x]].

This series is known as the quantum dilogarithm [11, 25, 26], because if we

view q as a variable, then

logEq(x) =
1

(q − 1)
·
∑

n>1

xn

n2
+O(1),

as q → 1−. This identity will be very important later: it gives rise to the

multiple cover formula in Donaldson-Thomas theory.

2.3. Quotient identity. The beauty of the Hall algebra construction is the

way that it allows one to turn categorical statements into algebraic identities.

As we shall see in Sections 4.4 and 4.5 (which can also be read now), this is

the basis for the Kontsevich-Soibelman wall-crossing formula. Here we give a

different example, which is the basis of our approach to Theorems 1 and 2.

Let A be an abelian category satisfying the finiteness assumptions as above,

and let us also fix an object P ∈ A. Introduce elements

δPA ∈ Hall∧fty(A), QuotPA ∈ Hall∧fty(A),

by defining, for any object E ∈ A,

δPA(E) = |HomA(P,E)|, QuotPA(E) = |Hom։
A (P,E)|,

where Hom։
A (P,E) ⊂ HomA(P,E) is the subset of surjective maps. The

following is a variant of [10, Lemma 5.1].

Lemma 2.3. There is an identity

δPA = QuotPA ∗ δA
in the Hall algebra Hall∧fty(A).

Proof. Evaluating on an object E ∈ A gives

|HomA(P,E)| =
∑

A⊂E

|Hom։
A (P,A)| · 1,
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which holds because every map f : P → E factors uniquely via its image. �

It is a fun exercise to apply this result in the case when A = Vectk and

P = k⊕d, to obtain an identity involving the quantum dilogarithm Eq(x).

2.4. Hall algebras in general. A given abelian category A may have many

different flavours of Hall algebra associated to it: finitary Hall algebras, Hall

algebras of constructible functions, motivic Hall algebras, cohomological Hall

algebras, etc. In this section we shall make some general (and intentionally

vague) remarks relevant to any of these: our point-of-view is that the differ-

ent types of Hall algebra should be thought of as different ways to take the

‘cohomology’ of the moduli stack of objects of A.
For definiteness we take A to be the category of coherent sheaves on a

smooth projective variety X . Consider the stackM of objects of A, and the

stack M(2) of short exact sequences in A. There is a diagram of morphisms

of stacks

(2) M×M (a,c)←−−− M(2) b−−−→ M
where the morphisms a, b, c take a short exact sequence in A to its constituent

objects, as in the following diagram.

0→ A→ B → C → 0

b
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

(a,c)ww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

(A,C) B

It is fairly easy to see that the morphism (a, c) is of finite type, but not repre-

sentable, whereas b is representable but only locally of finite type. Moreover

(i) The fibre of (a, c) over (A,C) ∈ M×M is the quotient stack
[

Ext1X(C,A)/HomX(C,A)
]

.

(ii) The fibre of b over B ∈M is the Quot scheme QuotX(B).

The idea now is to apply a suitable ‘cohomology theory’ to our stacks and

use the correspondence (2) to obtain a product operation

m : H∗(M)⊗H∗(M) −→ H∗(M).

The crucial associativity property follows from the existence of certain Carte-

sian squares involving stacks of two-step filtrations. See [7, Section 4] for an

explanation of this.
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By a ‘cohomology theory’ here, we simply mean a rule that assigns a vector

space to each stack in such a way that

(a) For every morphism of stacks f : X → Y , there should exist functorial
maps

f ∗ : H∗(Y )→ H∗(X), f∗ : H
∗(X)→ H∗(Y ),

when f is of finite type or representable respectively, and satisfying

base-change around all suitable 2-Cartesian squares.

(b) Given two stacks X and Y , there should exist functorial Künneth maps

H∗(X)⊗H∗(Y )→ H∗(X × Y ).

We shall see examples of such ‘cohomology theories’ below. Note that the

maps in the diagram (2) will not usually be smooth, which makes applying

familiar cohomology theories such as singular cohomology problematic. It

seems likely that hidden smoothness results in derived algebraic geometry will

be important in future developments.

2.5. Grothendieck groups. The Grothendieck group K(Var/C) is defined

to be the free abelian group on the set of isomorphism classes of complex

varieties, modulo the scissor relations

[X ] ∼ [Y ] + [U ],

whenever Y ⊂ X is a closed subvariety and U = X \ Y . Cartesian product of

varieties gives K(Var /C) the structure of a commutative ring:

[X ] · [Y ] = [X × Y ].

One can of course define Grothendieck rings of complex schemes in the same

way. However if one allows arbitrary schemes over C, an Eilenberg swindle

argument using the decomposition

Z× Spec(C) ∼=
(

Z× Spec(C)
)

⊔

SpecC

will force the ring to be trivial. On the other hand, if one restricts to schemes

of finite type over C, the result will be isomorphic to K(Var /C), because any

such scheme has a stratification by varieties.

One can similarly consider relative Grothendieck groups of schemes. Thus

given a base scheme S over C we define K(Var /S) to be the free abelian
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group on the set of isomorphism classes of S-schemes f : X → S, where X is

assumed to be of finite type over C, modulo relations

[X
f−−→ S] ∼ [Y

f |Y−−−→ S] + [U
f |U−−−→ S],

for Y ⊂ X a closed subscheme and U = X \ Y . Fibre product over S gives a

ring structure as before. Given a map of schemes φ : S → T there is a group

homomorphism

φ∗ : K(Var /S)→ K(Var /T ), [f : X → S] 7→ [φ ◦ f : X → T ].

If the map φ is of finite type we also get a ring homomorphism

φ∗ : K(Var /T )→ K(Var /S), [g : Y → T ] 7→ [g ×T S : Y ×T S → S].

There is an obvious Künneth type map

[f : X → S]⊗ [g : Y → T ] 7→ [f × g : X × Y → S × T ].

Together these maps satisfy the basic properties of a ‘cohomology theory’

referred to in Section 2.4 (although ‘homology theory’ would perhaps be a

more appropriate term in this context).

2.6. Motivic Hall algebra. The motivic Hall algebra is defined by taking

the ‘cohomology theory’ which assigns to a stack S the relative Grothendieck

ring of stacks over S. From now on, all stacks will be assumed to locally of

finite type over C with affine diagonal.

Given a stack S we define the relative Grothendieck group K(St /S) to be

the free abelian group on the set of isomorphism classes of S-stacks f : X → S,

where X is assumed to be of finite type over C, modulo relations

[X
f−−→ S] ∼ [Y

f |Y−−−→ S] + [U
f |U−−−→ S],

for Y ⊂ X a closed substack and U = X \ Y . These relative Grothendieck

groups have functorial properties exactly as in the last section.

The motivic Hall algebra is defined to be the relative Grothendieck group

Hallmot(A) := K(St /M),

with product defined by the correspondence (2). Explicitly we have

[Y1
f1−−→M] ∗ [Y2

f2−−→M] = [Z
b◦h−−−→M],
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where h is defined by the Cartesian square

(3)

Z
h−−−→ M(2) b−−−→ M





y





y

(a,c)

Y1 × Y2
f1×f2−−−→ M×M

Thus, to a first approximation, an element of the Hall algebra is a family of

objects of A over some base stack Y , and the Hall product of two such families

is given by taking their universal extension.

One remaining problem is how to define a larger Hall algebra Hall∧mot(A)
analogous to the algebra Hall∧fty(A) in the finitary case. This is important

because one would like to consider stacks f : X → M which are not of finite

type, such as the open substack of semistable objects with respect to some

stability condition. As explained above, we cannot simply drop the finite type

condition since this will lead to the trivial algebra.

The usual solution is rather messy and context-dependent (see e.g. [6,

Sections 5.2–5.3]) , and we do not explain it here: the basic idea is to consider

the decomposition M =
⊔

αMα according to Chern character, and impose

the condition that each f−1(Mα) is of finite type, together with restrictions

on which of the f−1(Mα) are allowed to be non-empty.

2.7. Motivic quotient identity. We now give a rough example of a motivic

Hall algebra identity, and explain the sort of reasoning that is required to

prove it. We take A = Coh(X) to be the category of coherent sheaves on a

complex projective variety X , and look for a version of the identity of Lemma

2.3 in the case that P = OX .

Introduce a stackMO parameterizing sheaves E ∈ Coh(X) equipped with

a section OX → E. Note that the Hilbert scheme is an open substack

Hilb ⊂MO

corresponding to surjective sections. The analogue of the element δP is the

obvious morphism f : MO → M forgetting the section. The analogue of

QuotP is the induced map f : Hilb→M. Finally, the analogue of the element

1A is the identity mapM→M.

The following result should be taken with a pinch of salt. In particular, we

work in an unspecified completion Hall∧mot(A). Rigorous results of a similar

kind can be found in [6, Section 6].
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Theorem 3. There is an identity

[MO f−−→M] = [Hilb
f−−→M] ∗ [M id−−→M],

in some suitable completion Hall∧mot(A).

Sketch proof. The product on the RHS is defined by the Cartesian square

T h−−−→ M(2) b−−−→ M




y





y

(a1,a2)

Hilb×M f×id−−−→ M×M
The points of the stack T over a scheme S are therefore diagrams

OS×X

δ

  

γ

��

0 // A α
// B

β
// C // 0

of S-flat sheaves on S ×X , with γ surjective. Sending such a diagram to the

map δ defines a morphism of stacks

φ : T →MO

commuting with the required maps toM. This map φ is not an isomorphism

of stacks, but it does induce an equivalence on C-valued points, because if

S = Spec(C), every map δ factors uniquely via its image: this is the same

argument we used in the finitary case. It follows from this that we can stratify

the stackMO by locally-closed substacks such that φ is an isomorphism over

each piece. This then gives the required identity

[T b◦h−−−→M] = [MO f−−→M]

in the Grothendieck group K(St /M). �

Notes. The Hall product seems to have been first discovered by Steinitz

[39] in 1901 and rediscovered by P. Hall [12] in 1959. In both cases the cate-

gory A was the category of finite abelian p-groups. The next step was taken

by Ringel [36] who constructed positive parts of quantized enveloping algebras

of simple Lie algebras, using Hall algebras of categories of quiver representa-

tions over finite fields. Lusztig [30, 31] used Hall algebras of constructible

functions in characteristic zero to prove his famous results on canonical bases
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of quantized enveloping algebras. Schiffmann’s lecture notes [37, 38] cover

these developments and much more. Motivic Hall algebras as described above

were first introduced by Joyce [19, 20, 22], see also Toën [47, Section 3.3.3],

and featured prominently in the work of Kontsevich and Soibelman [27]. The

survey article [7] covers the basics of this theory.

3. Integration map

We have seen in the last section an example of how a basic categorical

truth can be translated into an algebraic identity in the Hall algebra, and

we will see other important examples below. These identities, while rather

aesthetically pleasing, are not usually particularly useful in and of themselves,

because the motivic Hall algebra is such a huge and mysterious ring. What

makes the theory powerful and applicable is the existence, in certain cases,

of ring homomorphisms from the Hall algebra to much more concrete skew-

polynomial rings. These homomorphisms go under the name of ‘integration

maps’, since they involve integrating a cohomology class over the moduli space.

3.1. The virtual Poincaré invariant. We start by stating the basic prop-

erties of the virtual Poincaré invariant constructed by Joyce [21, Sections

4.1–4.2]. This is an algebra homomorphism

χt : K(St /C)→ Q(t),

uniquely defined by the following two properties:

(i) If V is a smooth, projective variety then

χt(V ) =
∑

dimCH
i(V an,C) · (−t)i ∈ Z[t].

(ii) If V is a variety with an action of GL(n) then

χt([V/GL(n)]) = χt(V )/χt(GL(n)).

The existence of a virtual Poincaré polynomial for finite-type schemes over

C follows from the existence of Deligne’s mixed Hodge structure on the co-

homology groups (see for example [15]). A different proof relying on weak

factorization can be given using the presentation of the Grothendieck group

due to Bittner [3]. The extension to stacks follows from Kresch’s result [29]

that any finite type stack over C with affine stabilizers has a stratification by

global quotient stacks [V/GL(n)].
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Remarks 3.1. (a) If V is a variety then

lim
t→1

χt(V ) = e(V ) ∈ Z,

but when V is a stack this limit need not exist, since

χt(GL(n)) = tn(n−1) · (t2 − 1)(t4 − 1) · · · (t2n − 1).

Often in the theory we shall describe one can construct invariants which

are rational functions in t. It is then an important and subtle question

to determine the behaviour of these invariants as t → 1. This relates
to the question of whether the corresponding elements of the motivic

Hall algebra can be represented by varieties rather than stacks.

(b) If a variety V is defined over Z, and is cellular in the sense that it has

a stratification by affine spaces, then

|V (Fq)| = χt(V )|t=√
q,

just because both sides are motivic and agree on Ak. In fact this

equality holds whenever |V (Fq)| is a polynomial in q [15, Appendix].

Thus, setting q = t2, one can expect to compare point counts over Fq

in the finitary world with Poincaré invariants in the motivic world.

3.2. Grothendieck group and charge lattice. Let A be an abelian cat-

egory. From now on we shall assume that A is linear over a field k, and

Ext-finite, in the sense that for all objects A,B ∈ A

dimk

⊕

i∈Z
ExtiA(A,B) <∞.

The most important invariant of such a category is the Euler form

χ(−,−) : K0(A)×K0(A)→ Z,

defined by the alternating sum

χ(E, F ) =
∑

i∈Z
(−1)i dimk Ext

i(E, F ).

It is often convenient to fix a group homomorphism

ch: K0(A)→ N

to a free abelian group N of finite rank. We refer to N as the charge lattice,

and ch as the character map. We shall always assume that this data satisfies

the following two properties:



16 TOM BRIDGELAND

(i) The Euler form descends to a bilinear form χ(−,−) : N ×N → Z.

(ii) The character ch(E) is locally constant in families.

Note that there is then a decomposition

M =
⊔

α∈N
Mα,

into open and closed substacks, and this induces a grading

Hallmot(A) =
⊕

α∈N
K(St /Mα).

Examples 3.2. (a) WhenA = Rep(Q) is the category of finite-dimensional

representations of a quiver Q, we can take the dimension vector

d : K0(A)→ ZQ0 .

(b) If X is a smooth complex projective variety we can take

ch : K0(A)→ N = im(ch) ⊂ H∗(X,Q),

to be the Chern character. The Riemann-Roch theorem shows that
the Euler form descends to N .

3.3. Quantum torus. Given a lattice N ∼= Z⊕n equipped with an integral

bilinear form (−,−), we define a non-commutative algebra over the field C(t)

by the rule

Ct[N ] =
⊕

α∈N
C(t) · xα, xα ∗ xγ = t−(γ,α) · xα+γ .

This ring is called the quantum torus algebra for the form (−,−). It is a

non-commutative deformation of the group ring C[N ], which can be identified

with the co-ordinate ring of the algebraic torus

T = HomZ(N,C∗) ∼= (C∗)n.

Choosing a basis (e1, · · · , en) for the group N gives an identification

C[N ] = C[x±1
1 , · · · , x±1

n ].

The basis elements (e1, · · · , en) span a positive cone N+ ⊂ N , and we often

need the associated completion

C[[N+]] ∼= C[[x1, · · · , xn]].

We define the completed quantum torus algebra Cq[[N+]] in the same way.
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3.4. Integration map: hereditary case. The existence of integration maps

is completely elementary when the category A is hereditary, that is when

ExtiA(M,N) = 0, i > 1.

We first consider the case of finitary Hall algebras, and hence assume that A
satisfies the finiteness conditions of Section 2.1. The following result was first

proved by Reineke [35, Lemma 6.1] in the case of representations of quivers.

Lemma 3.3. When A is hereditary there is an algebra homomorphism

I : Hallfty(A)→ Ct[N ]|t=√
q, I(f) =

∑

E∈A

f(E)

|Aut(E)| · x
ch(E),

whose codomain is the quantum torus for the form 2χ(−,−), specialised at

t =
√
q.

Proof. Recall the elements κE = |Aut(E)| · δE , and the identity

κA ∗ κC =
∑

B

|Ext1(C,A)B|
|Hom(C,A)| · κB

of Lemma 2.2. Since I(κE) = xch(E), the result follows immediately from the

identity

(4) dimk Ext
1(C,A)− dimk Hom(C,A) = −χ(C,A),

which is implied by the hereditary assumption. �

Similar results hold in the motivic case. For example Joyce proved [19,

Theorem 6.1] that when A = Rep(Q) is the category of representations of a

quiver without relations, or when A = Coh(X) with X a curve, there is an

algebra map

I : Hallmot(A)→ Cq[N ], I
(

[S →Mα]
)

= χt(S) · xα,

to the quantum torus algebra for the form 2χ(−,−). The basic reason is as

for the previous result: the identity (4) implies that the fibres of the map

(a, c) : M(2) → M ×M in the crucial diagram (3) have Poincaré invariant

t−2χ(γ,α) over points in the substackMα ×Mγ.

Remark 3.4. In the hereditary case it is often more convenient to skew-

symmetrise the Euler form by writing

〈α, β〉 = χ(α, β)− χ(β, α).
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Twisting the integration map by defining

I(f) =
∑

E∈A
tχ(E,E) · f(E)

|Aut(E)| · x
ch(E)

then gives a ring homomorphism to the quantum torus algebra defined by the

form 〈−,−〉. In the finitary case, when A = Vectk is the category of vector

spaces, the resulting map coincides with that of Section 2.2.

3.5. Integration map: CY3 case. Suppose that A = Coh(X) is the cate-

gory of coherent sheaves on a complex projective Calabi-Yau threefold. Note

that the Euler form is skew-symmetric in this case. Kontsevich and Soibelman

[27, Section 6] construct an algebra map

(5) I : Hallmot(A)→ Ct[N ],

whose target is the quantum torus for the Euler form. In fact, much more

generally, Kontsevich and Soibelman define an integration map whose target

is a version of the quantum torus based on a ring of motives, but we shall

completely ignore such generalizations here. The definition of this map in-

volves motivic vanishing cycles, which are beyond the author’s competence to

explain. There are also some technical problems, for example the existence of

orientation data [27, Section 5].

Joyce developed a less ambitious but completely rigorous framework which

is sufficient for applications to classical DT invariants. This was repackaged

in [7] in terms of a morphism of Poisson algebras, which can be thought of as

the semi-classical limit of Kontsevich and Soibelman’s map. In fact, there are

two versions of the story, depending on a choice of sign ǫ ∈ {±1}. The sign

+1 leads to naive DT invariants, whereas −1 gives genuine DT invariants.

We first introduce the semi-classical limit of the algebra Ct[N ] at t = ǫ: this

is a commutative Poisson algebra

Cǫ[N ] =
⊕

γ

C · xγ

with product and bracket given by

xα · xγ = lim
t→ǫ

(

xα ∗ xγ
)

= ǫ〈α,γ〉 · xα+γ ,

{xα, xγ} = lim
t→ǫ

(xα ∗ xγ − xγ ∗ xα

t2 − 1

)

= 〈α, γ〉 · xα · xγ .
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The next step is to introduce a similar semi-classical limit of the motivic

Hall algebra [7, Section 5]. One first defines a subalgebra of ‘regular’ elements

(6) Hallreg(A) ⊂ Hallmot(A).

To a first approximation it is the subspace spanned by the symbols [X →M]

in which X is a scheme, rather than a stack. The limit as t → ǫ can then

be taken exactly as above to give a commutative Poisson algebra called the

semi-classical Hall algebra Hallsc(A).
One can now define a morphism of Poisson algebras

(7) Iǫ : Hallsc(A)→ Cǫ[N+]

by the formula

I
(

[S
f−−→Mα]

)

=

{

e(S) · xα if ǫ = +1,

e(S; f ∗(ν)) · xα if ǫ = −1,

where ν :M→ Z is the Behrend function appearing in the definition of DT

invariants.
When ǫ = 1, the fact that Iǫ is a Poisson map just requires the identity

χ(A,C) =
(

dimC Ext
1
A(C,A)− dimCHomA(C,A)

)

−
(

dimC Ext
1
A(A,C)− dimC HomA(A,C)

)

,

which follows from the CY3 assumption. In the case ǫ = −1, one also needs

some identities involving the Behrend function proved by Joyce and Song [24,

Theorem 5.11].

Notes. The first occurrence of an integration map is perhaps in Reineke’s

paper [35]. This was generalised to the setting of motivic Hall algebras by

Joyce [19, Section 6]. Joyce also constructed an integration map in the CY3

case that is a map of Lie algebras. It was Kontsevich and Soibelman’s re-

markable insight [27] that incorporating vanishing cycles could lead to an

integration map which is a homomorphism of algebras. Following this, Joyce

and Song [24] were able to incorporate the Behrend function into Joyce’s Lie

algebra map. The interpretation in terms of semi-classical limits and Poisson

algebras can be found in [7].



20 TOM BRIDGELAND

4. Generalized DT invariants

One of the most important aspects of the work of Joyce, and of Kont-

sevich and Soibelman, is the generalization of Donaldson-Thomas invariants

associated to moduli spaces of stable sheaves developed in [42] to the case

when there exist strictly semistable objects. The resulting invariants satisfy a

wall-crossing formula which controls their behaviour under change of stability

condition. Here we give a brief outline of these constructions and explain the

simplest examples.

4.1. The problem. Let X be a smooth projective Calabi-Yau threefold, and

set A = Coh(X). Fix a polarization of X and a class α ∈ N , and consider

the stack

Mss(α) =
{

E ∈ Coh(X) : E is Gieseker semistable with ch(E) = α
}

.

We also consider the unions of these stacks given by sheaves of a fixed slope

Mss(µ) =
{

E ∈ Coh(X) : E is Gieseker semistable of slope µ(E) = µ
}

.

Note that we consider the zero object to be semistable of all slopes µ.

In the case when α is primitive, and the polarization is general, the stack

Mss(α) is a C∗-gerbe over its coarse moduli space M ss(α), and we can set

DTnaive(α) = e(M ss(α)) ∈ Z.

Genuine DT invariants, as defined by Thomas [42], are defined using virtual

cycles, or by a weighted Euler characteristic as before. The problem is then to

generalize these invariants to arbitrary classes α ∈ N . It turns out that even

if one is only interested in the invariants DT(α) for primitive α, to understand

the behaviour of these invariants as the polarization ℓ is varied, one in fact

needs to treat all α simultaneously.

For a general class α ∈ N , the moduli stack Mss(α) at least has a well-

defined Poincaré function

q-DTnaive(α) = χt(Mss(α)) ∈ Q(t),

which we can view as a kind of naive quantum DT invariant. When α is

primitive, the fact that Mss(α) is a C∗-gerbe over the coarse moduli space

M ss(α), together with Remark 3.1(a), implies that

DTnaive(α) = lim
t→1

(t2 − 1) · q-DTnaive(α) ∈ Z.



HALL ALGEBRAS AND DONALDSON-THOMAS INVARIANTS 21

In general however, q-DTnaive(α) has higher-order poles at t = 1, so it is not

immediately clear how to define DTnaive(α).

4.2. The solutions. Joyce [22] worked out how to define invariants

DTnaive(α) ∈ Q

for arbitrary classes α ∈ N , and showed that they satisfy a wall-crossing

formula as the polarization is varied. Incorporating the Behrend function

into Joyce’s framework leads to generalized DT invariants DT(α) ∈ Q also

satisfying a wall-crossing formula [24]. These results rely on a very deep

result [20, Theorem 8.7] known as the no-poles theorem, which implies that

the element

[C∗] · log
(

[Mss(µ) ⊂M]
)

∈ Hall∧mot(A),
obtained by applying the Taylor expansion of log(1+x), lies in the subalgebra

Hall∧reg(A) ⊂ Hall∧mot(A) discussed above. (Recall thatMss(µ) includes a com-

ponent corresponding to the zero object). Applying the Poisson integration

map (7) to this element then leads to a generating function

DTµ = lim
q→1

(q − 1) · log q-DTµ ∈ C[[N+]]

whose coefficients are the required invariants.

In a different approach, Kontsevich and Soibelman [27] use motivic vanish-

ing cycles to define genuine quantum DT invariants, which are again rational

functions
q-DT(α) ∈ Q(t).

In fact they do much more: they define motivic invariants lying in the ring

K(St /C), but we shall suppress this extra level of complexity here. Note how-

ever that these results rely on the currently unproven existence of orientation

data. In terms of the map (5), one first considers

q-DTµ = I
(

[Mss(µ) ⊂M]
)

∈ Ct[[N+]],

and sets q-DT(α) to be the coefficient of xα. Kontsevich and Soibelman [27,

Section 7] also formulated a conjecture, closely related to Joyce’s no-poles

theorem, which states that

DTµ = (t2 − 1) · log q-DTµ ∈ Ct[[N+]]

should be regular at t = 1. Assuming this, one can recover Joyce’s invariants

by setting t = 1.
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Conjugation by the quantum DT generating function give rise to an auto-

morphism of the quantum torus algebra

q-Sµ = Adq-DT(µ)(−) ∈ AutCt[[N+]].

The no-poles conjecture implies that this automorphism has a well-defined

limit at t = 1 which is the Poisson automorphism

Sµ = exp
{

DTµ,−
}

∈ AutC[[N+]].

Geometrically, this can be thought of as the action of the time 1 flow of the

Hamiltonian vector field generated by the DT generating function DTµ.

4.3. Example: a single spherical bundle. Suppose we are in the simplest

possible situation when there is a unique stable bundle E of slope µ, which is

moreover rigid, i.e. satisfies Ext1X(S, S) = 0. Serre duality implies that S is in

fact spherical. The category of semistable sheaves of slope µ is then equivalent

to the category of finite-dimensional vector spaces, so

Mss(µ) = {E⊕n : n > 0} ∼=
⊔

n>0

BGL(n,C).

The Kontsevich-Soibelman integration map for this category is closely related

to the ring homomorphism I considered in Section 2.2. Setting α = ch(E) ∈ N

we can compute

(a) The quantum DT generating function is

q-DTµ =
∑

n>0

qn/2 · xnα

(qn − 1) · · · (q − 1)
∈ Cq[[N+]],

where q = t2. We recognise the quantum dilogarithm Eq(x
α).

(b) The classical DT generating function is

DTµ = lim
t→1

(t2 − 1) · logEq(x
α) =

∑

n>1

xnα

n2
,

and we conclude that DT(nα) = 1/n2.

(c) The Poisson automorphism Sµ ∈ AutC[[N+]] is

(8) Sµ(x
β) = exp

{

∑

n>1

xnα

n2
,−

}

(xβ) = xβ · (1± xα)〈α,β〉.
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Z(A)

Z(E)

φ(A)
φ(E)

Figure 1. Central charges and phases

The right-hand side of this identity (8) should be expanded as a power

series to give an element of C[[N+]]. However we can also view Sµ as defining

a birational automorphism of the Poisson torus T. Viewed this way, it is the

basic example of a cluster transformation.

4.4. Stability conditions. We shall now move on to discussing the behaviour

of DT invariants under changes of stability parameters. Although the results

apply perfectly well to the context of Gieseker stability, the picture is perhaps

clearer for stability conditions in the sense of [5] which we now review. We fix

an abelian category A throughout.

Definition 4.1. A stability condition on A is a map of groups Z : K0(A)→ C

such that

0 6= E ∈ A =⇒ Z(E) ∈ H̄,

where H̄ = H ∪ R<0 is the semi-closed upper half-plane.

The phase of a nonzero object E ∈ A is

φ(E) =
1

π
argZ(E) ∈ (0, 1],

A nonzero object E ∈ A is said to be Z-semistable if

0 6= A ⊂ E =⇒ φ(A) 6 φ(E).

We let P(φ) ⊂ A be the full additive subcategory of A consisting of the

nonzero Z-semistable objects of phase φ, together with the zero objects.

We say that a stability condition Z has the Harder-Narasimhan property if

every object E ∈ A has a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ E

such that each factor Fi = Ei/Ei−1 is nonzero and Z-semistable and

φ(F1) > · · · > φ(Fn).
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Existence of such filtrations is a fairly weak condition: for example if A is

of finite length (Artinian and Noetherian) it is automatic. When they ex-

ist, Harder-Narasimhan filtrations are necessarily unique, because the usual

argument shows that if F1, F2 are Z-semistable then

φ(F1) > φ(F2) =⇒ HomA(F1, F2) = 0,

and another standard argument then gives uniqueness.

4.5. Wall-crossing identity. Let us consider the wall-crossing formula in

the finitary context. So assume that A is an abelian category satisfying the

strong finiteness conditions of Section 2.1. Let us also equip A with a stability

condition Z having the Harder-Narasimhan property. Let

δss(φ) ∈ Hall∧fty(A)

be the characteristic function of the subcategory P(φ) ⊂ A. We define the

element δA ∈ Hall∧fty(A) as in Section 2.1. The following crucial result was

first proved by Reineke [35].

Lemma 4.2. There is an identity

δA =
→
∏

φ∈R
δss(φ)

in the Hall algebra Hall∧fty(A), where the product is taken in descending order

of phase.

Proof. To make sense of the infinite product, we first write δss(φ) = 1+δss(φ)+

where δss(φ)+ is the characteristic function of the set of nonzero semistable

objects of phase φ. Then we can rewrite the infinite product as an infinite
sum

→
∏

φ∈R
δss(φ) =

→
∏

φ∈R
(1 + δss+(φ)) = 1 +

∑

k>1

∑

φ1>···>φk

δss+(φ1) ∗ · · · ∗ δss+(φk).

Using the formula (1) for multiple products in the Hall algebra, it is clear that

evaluating the right-hand side on any object M ∈ A produces a sum over the

finitely many filtrations of M , each taken with coefficient 0 or 1. Moreover,

a filtration has coefficient 1 precisely if its factors are Z-semistable with de-

scending phase. The identity thus follows from existence and uniqueness of

Harder-Narasimhan filtrations. �
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The left-hand side of the identity of Lemma 4.2 is independent of the sta-

bility condition Z. Thus given two stability conditions on A we get a wall-

crossing formula

(9)
−→
∏

φ∈R
δss(φ, Z1) =

−→
∏

φ∈R
δss(φ, Z2).

If A is moreover hereditary we can then apply the integration map of Lemma

3.3 to get an identity in the corresponding completed quantum torus algebra

Ct[[N+]]. Considering the automorphisms of Ct[[N+]] given by conjugation of

the two sides of (9), and taking the limit as t→ 1, we also obtain an identity

in the group of automorphisms of the Poisson algebra C[[N+]]. We will work

through the simplest non-trivial example of this in the next subsection.

4.6. Example: the A2 quiver. Let Q be the A2 quiver: it has two vertices

1 and 2, and a single arrow from 1 to 2. Let A be the abelian category of

finite-dimensional representations of Q over the field k = Fq. This category

has exactly three indecomposable representations, which fit into a short exact
sequence

0 −→ S2 −→ E −→ S1 −→ 0.

Here S1 and S2 are the simple representations at the vertices 1 and 2 respec-

tively, and E is the unique indecomposable representation of dimension vector

(1, 1). We have N = K0(A) = Z⊕2 = Z[S1] ⊕ Z[S2]. As in Remark 3.4 we

consider the skew-symmetrised Euler form

〈(m1, n1), (m2, n2)〉 = m2n1 −m1n2.

The corresponding quantum torus algebra is

Ct[[N+]] = C〈〈x1, x2〉〉/(x2 ∗ x1 − t2 · x1 ∗ x2),

and its semi-classical limit at t = 1 is the Poisson algebra

C[[N+]] = C[[x1, x2]], {x1, x2} = x1 · x2.

A stability condition on A is determined by the pair (Z(S1), Z(S2)), so the

space of all such stability conditions is Stab(A) ∼= H̄2. There is a single wall

W = {Z ∈ Stab(A) : ImZ(S2)/Z(S1) ∈ R>0},

where the object E is strictly semistable. The complement of this wall consists

of two chambers: in one E is strictly stable, in the other it is unstable.
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Z(S1)Z(S2)

Z(E)

W

E unstable E stable

Z(S2)Z(S1)

Z(E)

Figure 2. Wall-crossing for the A2 quiver.

The wall-crossing formula in Ct[[N+]] becomes the identity

Eq(x2) ∗ Eq(x1) = Eq(x1) ∗ Eq(t · x1 ∗ x2) ∗ Eq(x2),

where q = t2 as usual. This is known as the pentagon identity for the quantum

dilogarithm: see [26, Section 1] for references. The semi-classical version of

the wall-crossing formula is the cluster identity

C(0,1) ◦ C(1,0) = C(1,0) ◦ C(1,1) ◦ C(0,1).

Cα : x
β 7→ xβ · (1 + xα)〈α,β〉 ∈ AutC[[x1, x2]].

It can be viewed in the group of birational automorphisms of (C∗)2 which

preserve the invariant symplectic form.

Notes. The crucial observation that the existence and uniqueness of Harder-

Narasimhan filtrations leads to an identity in the Hall algebra is due to Reineke

[35]. This idea was taken up by Joyce to give a wall-crossing formula for naive

Donaldson-Thomas invariants [22, Theorem 6.28]. Joyce’s formula is combi-

natorially messy, although perfectly usable [44, 46]. It was Kontsevich and

Soibelman [27] who uncovered the connection with cluster transformations.

We recommend Keller’s article [26] for more on the wall-crossing formula in

the context of representations of quivers.

5. Framed invariants and tilting

It often happens that the invariants in which one is interested relate to

objects of an abelian category equipped with some kind of framing. For ex-

ample, the Hilbert scheme parameterizes sheaves E ∈ Coh(X) equipped with

a surjective map

f : OX ։ E.
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· · · · · ·A[1] A A[−1]

D

Figure 3. The ‘film-strip’ picture of a t-structure.

One immediate advantage is that the framing data eliminates all stabilizer

groups, so the moduli space is a scheme, and therefore has a well-defined

Euler characteristic. On the other hand it is less obvious how to consider wall-
crossing in this framework: what is the stability condition which we should

vary? In fact wall-crossing can often be achieved in this context by varying the

t-structure on the derived category DbCoh(X). This has the effect of varying

which maps f are considered to be surjective.

5.1. T-structures and hearts. We recall the definition of a bounded t-
structure. Let D be a triangulated category.

Definition 5.1. A heart A ⊂ D is a full subcategory such that:

(a) Hom(A[j], B[k]) = 0 for all A,B ∈ A and j > k.

(b) for every object E ∈ D there is a finite filtration

0 = Em → Em+1 → · · · → En−1 → En = E

with factors Fj = Cone(Ej−1 → Ej) ∈ A[−j].

In condition (b) the word filtration really means a finite sequence of triangles

0 Em−1
// Em

��☎☎
☎☎
☎☎
☎

//

��☎☎
☎☎
☎☎
☎

· · · // En−1
// En

��✝✝
✝✝
✝✝
✝

E

Fm

__❃
❃
❃
❃

Fn

^^❁
❁
❁
❁

with Fj ∈ A[−j].
It would be more standard to say that A ⊂ D is the heart of a bounded

t-structure on D. But any such t-structure is determined by its heart. The

basic example is A ⊂ Db(A). In analogy with that case we define

Hj
A(E) := Fj [j] ∈ A.

It follows from the above definition that A is in fact an abelian category.

The short exact sequences in A are precisely the triangles in D all of whose
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T F T [−1]F [1] F [−1] · · ·· · ·

A♯

A

Figure 4. Tilting a heart A ⊂ D at a torsion pair (T ,F) ⊂ A.

terms lie in A. Finally, the inclusion functor gives a canonical identification

K0(A) ∼= K0(D).

5.2. Tilting at torsion pairs. We now explain how to tilt a heart at a

torsion pair [13]. This is an important method for obtaining new t-structures

from old.

Definition 5.2. Let A be an abelian category. A torsion pair (T ,F) ⊂ A is

a pair of full subcategories such that:

(a) HomA(T, F ) = 0 for T ∈ T and F ∈ F .
(b) for every object E ∈ A there is a short exact sequence

0 −→ T −→ E −→ F −→ 0

for some pair of objects T ∈ T and F ∈ F .

Suppose A ⊂ D is a heart, and (T ,F) ⊂ A a torsion pair. We can define a

new heart A♯ ⊂ D such that an object E ∈ D lies in A♯ ⊂ D precisely if

H0
A(E) ∈ F , H1

A(E) ∈ T , H i
A(E) = 0 otherwise.

This process is illustrated in Figure 4. The heart A♯ is called the right tilt of

the heart A at the torsion pair (T ,F). The left tilt is the subcategory A♯[1].

5.3. Examples of tilts. Let us consider the right tilt of the standard heart

A = Coh(X) ⊂ Db Coh(X)

with respect to the torsion pair

T = {E ∈ Coh(X) : dim supp(E) = 0},

F = {E ∈ Coh(X) : HomX(Ox, E) = 0 for all x ∈ X}.
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Thus T consists of zero-dimensional sheaves, and F consists of sheaves with

no zero-dimensional torsion. Note that

OX ∈ F ⊂ A♯.

We claim that the stable pairs moduli space of Section 1.3 is the analogue of

the Hilbert scheme in this tilted context.

Lemma 5.3. The stable pairs moduli space Pairs(β, n) parameterizes quotients

of OX in the tilted category A♯:

Pairs(β, n) =

{

quotients OX ։ E in A♯ with
ch(E) = (0, 0, β, n)

}

.

Proof. Given a short exact sequence in the category A♯

0 −→ J −→ OX
f−−→ E −→ 0,

we can take cohomology with respect to the standard heart A ⊂ D to get a

long exact sequence in the category A

(10) 0→ H0
A(J)→ OX

f−−→ H0
A(E)→ H1

A(J)→ 0→ H1
A(E)→ 0.

It follows that E ∈ A∩A♯ = F and coker(f) = H1
A(J) ∈ T . This is precisely

the condition that f : OX → E defines a stable pair.

For the converse, take a stable pair and embed it in a triangle

(11) J −→ OX
f−−→ E −→ J [1].

By definition E ∈ F ⊂ A♯. The same long exact sequence (10) then shows

that J ∈ A♯. It follows that (11) defines a short exact sequence in A♯. �

Tilting also allows to give a precise description of the effect of a threefold

flop

X+

f+ ��
❁❁

❁❁
❁❁

❁
X−

f−��✂✂
✂✂
✂✂
✂

Y

on the derived category. Suppose for simplicity that each map f± contracts a

single rational curve C±. Introduce subcategories

F+ = 〈OC+
(−i)〉i>1 ⊂ Coh(X+), F− = 〈OC−

(−i)〉i>2 ⊂ Coh(X−),

where the angular brackets denote extension-closure. These subcategories turn

out to be torsion-free parts of torsion pairs on the categories Coh(X±) [48].
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F+[1] T+ F+ · · ·· · · Db(X+)

Coh(X+)

Per+(X+/Y )

F
−
[1] T

−
F

−

∼=

· · ·· · · Db(X
−
)

∼=

Per−(X
−
/Y )

Coh(X
−
)

X
−

Y

X+

Figure 5. Effect of a flop on the derived category.

Moreover, the equivalence D(X+) ∼= D(X−) constructed in [4] induces an

exact equivalence between the corresponding tilted categories Per±(X±/Y ).

This is illustrated in Figure 5.

5.4. Sketch proof of the DT/PT identity. Comparing the identites of

Theorems 1 and 2 with the tilts described in the last section, one starts to

see that one would like to turn the categorical decompositions coming from

torsion pairs into identities involving generating functions of DT invariants.

In this section, abandoning all pretence at rigour, we shall explain roughly

how this works in the case of Theorem 1. For a rigorous treatment see [6].

Take notation as in the last subsection. For any suitable subcategory C of

A, we consider the elements

δC, δOC , QuotC ∈ Hall∧mot(A),

defined by the stack of objects E of C, the stack of objects E of C equipped

with a section OX → E, and the stack of objects E of C equipped with a

surjective map OX → E, respectively, each of these stacks being considered

with the obvious forgetful map to the stackM of objects of A. We will allow
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ourselves to similarly use elements of the motivic Hall algebra of A♯, although

in reality one can make all calculations in the algebra Hall∧mot(A).
We proceed in three steps:

(i) Every object E ∈ A fits into a unique short exact sequence

0 −→ T −→ E −→ F −→ 0

with T ∈ T and F ∈ F . Similarly every E ∈ A♯ sits in a unique short
exact sequence

0 −→ F −→ E −→ T [−1] −→ 0.

This gives rise to a torsion pair identities

δA = δT ∗ δF , δA♯ = δF ∗ δT [−1].

Applying H0(X,−) to the above short exact sequences gives short

exact sequences of vector spaces: this is due to cohomology vanishing

conditions such as H i(X,F ) = 0 for i /∈ {0, 1} and H i(X, T ) = 0 for

i 6= 0. This gives rise to further identities

δOA = δOT ∗ δOF and δOA♯ = δOF ∗ δOT [−1].

(ii) Exactly as in Section 2.7 we have quotient identities

δOA = QuotOA ∗δA, δOA♯ = QuotOA♯ ∗δA♯ , δOT = QuotOT ∗δT .

On the other hand H0(X, T [−1]) = 0 implies that δOT [−1] = δT [−1].

Putting all this together gives

QuotOA ∗δT = QuotOT ∗δT ∗QuotOA♯ .

(iii) We have restricted to sheaves supported in dimension 6 1. The Euler

form is trivial so the quantum torus is commutative. Thus

I(QuotOA) = I(QuotOT ) ∗ I(QuotOA♯).

Setting t = ±1 then gives the required identity
∑

β,n

DT(β, n)xβyn =
∑

n

DT(0, n)yn ·
∑

β,n

PT(β, n)xβyn.

Notes. The tilting operation was introduced in [13]. Its application to

threefold flops was explained by Van den Bergh [48], following work of the au-

thor [4]. The approach to Theorem 2 sketched above comes from [6]. A similar

proof of Theorem 1 was given by Calabrese [9]. Toda had previously proved
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both results for naive DT invariants [44, 46] using Joyce’s wall-crossing for-

mula for rank 1 objects in the derived category. Following technical advances

[43] his results now also apply to genuine DT invariants.
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