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ABSTRACT  267 

To characterise type 2 diabetes (T2D) associated variation across the allele frequency 268 

spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D 269 

cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes 270 

multi-ethnic reference panel. Promising association signals were followed-up in additional 271 

data sets (of 14,545 or 7,397 T2D cases and 38,994 or 71,604 controls). We identified 13 272 

novel T2D-associated loci (p<5×10
-8

), including variants near the GLP2R, GIP, and HLA-273 

DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 274 

distinct signals at 113 loci. Despite substantially increased sample size and more complete 275 

coverage of low-frequency variation, all novel associations were driven by common SNVs. 276 

Credible sets of potentially causal variants were generally larger than those based on 277 

imputation with earlier reference panels, consistent with resolution of causal signals to 278 

common risk haplotypes. Stratification of T2D-associated loci based on T2D-related 279 

quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in 280 

pancreatic islet enhancers for loci influencing insulin secretion, and in adipocytes, monocytes 281 

and hepatocytes for insulin action-associated loci. These findings highlight the predominant 282 

role played by common variants of modest effect and the diversity of biological mechanisms 283 

influencing T2D pathophysiology.  284 

  285 
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MAIN TEXT  286 

Type 2 diabetes (T2D) has rapidly increased in prevalence in recent years and represents a 287 

major component of the global disease burden (1). Previous efforts to use genome-wide 288 

association studies (GWAS) to characterise the genetic component of T2D risk have largely 289 

focused on common variants (minor allele frequency [MAF]>5%). These studies have 290 

identified close to 100 loci, almost all of them currently defined by common alleles 291 

associated with modest (typically 5-20%) increases in T2D risk (2–6). Direct sequencing of 292 

whole genomes or exomes offers the most comprehensive approach for extending discovery 293 

efforts to the detection of low-frequency (0.5%<MAF<5%) and rare (MAF<0.5%) risk and 294 

protective alleles, some of which might have greater impact on individual predisposition. 295 

However, extensive sequencing has, thus far, been limited to relatively small sample sizes (at 296 

most, a few thousand cases), restricting power to detect rarer risk alleles, even if they are of 297 

large effect (7–9). Whilst evidence of rare variant associations has been detected in some 298 

candidate gene studies (10,11), the largest study to date, involving exome sequencing in 299 

~13,000 subjects, found little trace of rare variant association effects (9).  300 

Here, we implement a complementary strategy that makes use of imputation into existing 301 

GWAS samples from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) 302 

Consortium with sequence-based reference panels (12). This strategy allows the detection of 303 

common and low-frequency (but not rare) variant associations in extremely large samples 304 

(13), and facilitates the fine-mapping of causal variants. We performed a European ancestry 305 

meta-analysis of GWAS with 26,676 T2D cases and 132,532 controls, and followed up our 306 

findings in additional independent European ancestry studies of 14,545 T2D cases and 38,994 307 

controls genotyped using the Metabochip (4). All contributing studies were imputed against 308 

the March 2012 multi-ethnic 1000 Genomes Project (1000G) reference panel of 1,092 whole-309 

genome sequenced individuals (12). Our study provides near-complete evaluation of common 310 
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variants with much improved coverage of low-frequency variants, and the combined sample 311 

size considerably exceeds that of the largest previous T2D GWAS meta-analyses in 312 

individuals of European ancestry (4). In addition to genetic discovery, we fine-map novel and 313 

established T2D-associated loci to identify regulatory motifs and cell types enriched for 314 

potential causal variants, and pathways through which T2D-associated loci increase disease 315 

susceptibility. 316 

RESEARCH DESIGN AND METHODS 317 

Research participants. The DIAGRAM stage 1 meta-analyses is comprised of 26,676 T2D 318 

cases and 132,532 controls (effective sample size, Neff=72,143 individuals, defined as 319 

4/[(1/Ncases)+(1/Ncontrols)]) from 18 studies genotyped using commercial genome-wide single-320 

nucleotide variant (SNV) arrays (Supplementary Table 1). The Metabochip stage 2 follow 321 

up is comprised of 14,545 T2D cases and 38,994 controls (Neff=38,645) from 16 non-322 

overlapping stage 1 studies (4,14). We performed additional follow-up in 2,796 T2D cases 323 

and 4,601 controls from the EPIC-InterAct (15) and 9,747 T2D cases and 61,857 controls 324 

from the GERA study (16) (Supplementary Material).  325 

Statistical analyses. We imputed autosomal and X chromosome SNVs using the all 326 

ancestries 1000G reference panel (1,092 individuals from Africa, Asia, Europe, and the 327 

Americas [March, 2012 release]) using miniMAC (17) or IMPUTE2 (18). After imputation, 328 

from each study we removed monomorphic variants or those with imputation quality r
2
-329 

hat<0.3 (miniMAC) or proper-info<0.4 (IMPUTE2, SNPTEST). Each study performed T2D 330 

association analysis using logistic regression, adjusting for age, sex, and principal 331 

components for ancestry, under an additive genetic model. We performed inverse-variance 332 

weighted fixed-effect meta-analyses of the 18 stage 1 GWAS (Supplementary Table 1). 333 

Fifteen of the 18 studies repeated analyses also adjusting for body mass index (BMI). SNVs 334 

reaching suggestive significance p<10
-5

 in the stage 1 meta-analysis were followed-up. Novel 335 
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loci were selected using the threshold for genome-wide significance (p<5×10
-8

) in the 336 

combined stage 1 and stage 2 meta-analysis. For the 23 variants with no proxy (r
2
≥0.6) 337 

available in Metabochip with 1000G imputation in the fine-mapping regions, the stage 1 338 

result was followed-up in EPIC-InterAct and GERA (Neff=40,637), both imputed to 1000G 339 

variant density (Supplementary Material). 340 

Approximate conditional analysis with GCTA. We performed approximate conditional 341 

analysis in the stage 1 sample using GCTA v1.24 (19,20). We analysed SNVs in the 1Mb-342 

window around each lead variant, conditioning on the lead SNV at each locus 343 

(Supplementary Material) (21). We considered loci to contain multiple distinct signals if 344 

multiple SNVs reached locus-wide significance (p<10
-5

), accounting for the approximate 345 

number of variants in each 1Mb window (14).  346 

Fine-mapping analyses using credible set mapping. To identify 99% credible sets of causal 347 

variants for each distinct association signal, we performed fine-mapping for loci at which the 348 

lead independent SNV reached p<5×10
-4

 in the stage 1 meta-analysis. We performed credible 349 

set mapping using the T2D stage 1 meta-analysis results to obtain the minimal set of SNVs 350 

with cumulative posterior probability>0.99 (Supplementary Material).  351 

Type 1 diabetes (T1D)/T2D discrimination analysis. Given the overlap between loci 352 

previously associated with T1D and the associated T2D loci, we used an inverse variance 353 

weighted Mendelian randomisation approach (22) to test whether this was likely to reflect 354 

misclassification of T1D cases as individuals with T2D in the current study (Supplementary 355 

Material).  356 

Expression quantitative trait locus (eQTL) analysis. To look for potential biological overlap 357 

of T2D lead variants and eQTL variants, we extracted the lead (most significantly associated) 358 

eQTL for each tested gene from existing datasets for a range of tissues (Supplementary 359 
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Material). We concluded that a lead T2D SNV showed evidence of association with gene 360 

expression if it was in high LD (r
2
>0.8) with the lead eQTL SNV (p<5×10

-6
). 361 

Hierarchical clustering of T2D-related metabolic phenotypes. Starting with the T2D 362 

associated SNVs, we obtained T2D-related quantitative trait Z-scores from published 363 

HapMap-based GWAS meta-analysis for: fasting glucose, fasting insulin adjusted for BMI, 364 

homeostasis model assessment for beta-cell function (HOMA-B), homeostasis model 365 

assessment for insulin resistance (HOMA-IR) (23); 2-hour glucose adjusted for BMI (24); 366 

proinsulin (25); corrected insulin response (CIR) (26); BMI (27); high density lipoprotein 367 

cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, and 368 

triglycerides (28). When an association result for a SNV was not available, we used the 369 

results for the variant in highest LD and only for variants with r
2
>0.6. We performed 370 

clustering of phenotypic effects using Z-scores for association with T2D risk alleles and 371 

standard methods (Supplementary Material) (29).  372 

Functional annotation and enrichment analysis. We tested for enrichment of genomic and 373 

epigenomic annotations using chromatin states for 93 cell types (after excluding cancer cell 374 

lines) from the NIH Epigenome Roadmap project, and binding sites for 165 transcription 375 

factors (TF) from ENCODE (30) and Pasquali et al. (31). Using fractional logistic regression, 376 

we then tested for the effect of variants with each cell type and TF annotation on the variant 377 

posterior probabilities (πc) using all variants within 1Mb of the lead SNV for each distinct 378 

association signal from the fine-mapping analyses (Supplementary Material). In each 379 

analysis, we considered an annotation significant if it reached a Bonferroni-corrected 380 

p<1.9×10
-4 

(i.e. 0.05/258 annotations).  381 

Pathway analyses with DEPICT. We used the Data-driven Expression Prioritized Integration 382 

for Complex Traits (DEPICT) tool (32) to (i) prioritize genes that may represent promising 383 

candidates for T2D pathophysiology, and (ii) identify reconstituted gene sets that are 384 
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enriched in genes from associated regions and might be related to T2D biological pathways. 385 

As input, we used independent SNVs from the stage 1 meta-analysis SNVs with p<10
-5

 and 386 

lead variants at established loci (Supplementary Material). For the calculation of empirical 387 

enrichment p values, we used 200 sets of SNVs randomly drawn from entire genome within 388 

regions matching by gene density; we performed 20 replications for false discovery rate 389 

(FDR) estimation.  390 

RESULTS 391 

Novel loci detected in T2D GWAS and Metabochip-based follow-up. The stage 1 GWAS 392 

meta-analysis included 26,676 T2D cases and 132,532 controls and evaluated 12.1M SNVs, 393 

of which 11.8M were autosomal and 260k mapped to the X chromosome. Of these, 3.9M 394 

variants had MAF between 0.5% and 5%, a near fifteen-fold increase in the number of low-395 

frequency variants tested for association compared to previous array-based T2D GWAS 396 

meta-analyses (2,4) (Supplementary Table 2). Of the 52 signals showing promising 397 

evidence of association (p<10
-5

) in stage 1, 29 could be followed up in the stage 2 398 

Metabochip data. In combined stage 1 and stage 2 data, 13 novel loci were detected at 399 

genome-wide significance (Table 1, Figure 1, Supplementary Figure 1A-D, 400 

Supplementary Table 3).  401 

Lead SNVs at all 13 novel loci were common. Although detected here using 1000G imputed 402 

data, all 13 were well captured by variants in the HapMap CEU reference panel (2 directly, 403 

10 via proxies with r
2
>0.8, and one via proxy with r

2
=0.62) (Supplementary Materials). At 404 

all 13, lead variants defined through 1000G and those seen when the SNP density was 405 

restricted to HapMap content, had broadly similar evidence of association and were of similar 406 

frequency (Supplementary Figure 2; Supplementary Table 3). Throughout this 407 

manuscript, loci are named for the gene nearest to the lead SNV, unless otherwise specified 408 

(Table 1, Supplementary Materials: Biology box). 409 
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Adjustment for BMI revealed no additional genome-wide significant associations for T2D 410 

and, at most known and novel loci, there were only minimal differences in statistical 411 

significance and estimated T2D effect size between BMI-adjusted and unadjusted models. 412 

The four signals at which we observed a significant effect of BMI adjustment 413 

(pheterogeneity<4.4×10
-4

; based on 0.05/113 variants currently or previously reported to be 414 

associated with T2D at genome-wide significance) were FTO and MC4R (at which the T2D 415 

association is known to reflect a primary effect on BMI), and TCF7L2 and SLC30A8 (at 416 

which T2D associations were strengthened after BMI-adjustment) (Supplementary Figure 417 

3; Supplementary Table 4).  418 

Insights into genetic architecture of T2D. In this meta-analysis, we tested 3.9M low-419 

frequency variants (r
2
≥0.3 or proper-info≥0.4; minor allele present in ≥3 studies) for T2D 420 

association, constituting 96.7% of the low-frequency variants ascertained by the 1000G 421 

European Panel (March 2012) (Supplementary Table 2). For variants with risk-allele 422 

frequencies (RAF) of 0.5%, 1%, or 5%, we had 80% power to detect association (p<5×10
-8

) 423 

for allelic ORs of 1.80, 1.48, and 1.16, respectively, after accounting for imputation quality 424 

(Figure 1, Supplementary Table 5). Despite the increased coverage and sample size, we 425 

identified no novel low-frequency variants at genome-wide significance (Figure 1).  426 

Since we had only been able to test 29 of the 52 promising stage 1 signals on the Metabochip, 427 

we investigated whether this failure to detect low-frequency variant associations with T2D 428 

could be a consequence of selective variant inclusion on the Metabochip. Amongst the 429 

remaining 23 variants, none reached genome-wide significance after aggregating with GWAS 430 

data available from EPIC-InterAct. Six of these 23 SNVs had MAF<5%, and for these we 431 

performed additional follow-up in the GERA study. However, none reached genome-wide 432 

significance in a combined analysis of stage 1, EPIC-InterAct and GERA (a total of 39,219 433 

cases and 198,990 controls) (Supplementary Table 6). Therefore, despite substantially 434 
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enlarged sample sizes that would have allowed us to detect low-frequency risk alleles with 435 

modest effect sizes, the overwhelming majority of variants for which T2D-association can be 436 

detected with these sample sizes are themselves common.  437 

To identify loci containing multiple distinct signals, we performed approximate conditional 438 

analysis within the established and novel GWAS loci and detected two such novel common 439 

variant signals (Supplementary Table 7) (19,20). At the ANKRD55 locus, we identified a 440 

previously-unreported distinct (pconditional<10
-5

) association signal led by rs173964 441 

(pconditional=3.54×10
-7

, MAF=26%) (Supplementary Table 7, Supplementary Figure 4). We 442 

also observed multiple signals of association at loci with previous reports of such signals 443 

(4,14), including CDKN2A/B (3 signals in total), DGKB, KCNQ1 (6 signals), HNF4A, and 444 

CCND2 (3 signals) (Supplementary Table 7, Supplementary Figure 4). At CCND2, in 445 

addition to the main signal with lead SNV rs4238013, we detected: (i) a novel distinct signal 446 

led by a common variant, rs11063018 (pconditional=2.70×10
-7

, MAF=19%); and (ii) a third 447 

distinct signal led by a low-frequency protective allele (rs188827514, MAF=0.6%; 448 

ORconditional=0.60, pconditional=1.24×10
-6

) (Supplementary Figure 5A, Supplementary Table 449 

7), which represents the same distinct signal as that at rs76895963 (pconditional=1.0) reported in 450 

the Icelandic population (Supplementary Figure 5B) (7). At HNF4A, we confirm recent 451 

analyses (obtained in partially-overlapping data) (14) that a low-frequency missense variant 452 

(rs1800961, p.Thr139Ile, MAF=3.7%) is associated with T2D, and is distinct from the known 453 

common variant GWAS signal (which we map here to rs12625671).  454 

We evaluated the trans-ethnic heterogeneity of allelic effects (i.e. discordance in the direction 455 

and/or magnitude of estimated odds ratios) at novel loci on the basis of Cochran’s Q statistics 456 

from the largest T2D trans-ancestry GWAS meta-analysis to date (2). Using reported 457 

summary statistics from that study, we observed no significant evidence of heterogeneity of 458 

effect size (Bonferroni correction pCochran’s Q<0.05/13=0.0038) between major ancestral 459 
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groups at any of the 13 loci (Supplementary Table 8). These results are consistent with 460 

these loci being driven by common causal variants that are widely distributed across 461 

populations. 462 

1000G variant density for identification of potentially causal genetic variants. We used 463 

credible set fine-mapping (33) to investigate whether 1000G imputation allowed us to better 464 

resolve the specific variants driving 95 distinct T2D association signals at 82 loci 465 

(Supplementary Material). 99% credible sets included between 1 and 7,636 SNVs; 25 466 

included fewer than 20 SNVs, 16 fewer than 10 (Supplementary Tables 9 and 10). We 467 

compared 1000G-based credible sets with those constructed from HapMap SNVs alone 468 

(Figure 2B, Supplementary Table 9). At all but three of the association signals (two at 469 

KCNQ1 and rs1800961 at HNF4A), 1000G imputation resulted in larger credible sets 470 

(median increase of 34 variants) spanning wider genomic intervals (median interval size 471 

increase of 5kb) (Figure 2B, Supplementary Table 9). The 1000G-defined credible sets 472 

included >85% of the SNVs in the corresponding HapMap sets (Supplementary Table 9). 473 

Despite the overall larger credible sets, we asked whether 1000G imputation enabled an 474 

increase in the posterior probability afforded to the lead SNVs, but found no evidence to this 475 

effect (Figure 2C).  476 

Within the 50 loci previously associated with T2D in Europeans (4) which had at least 477 

modest evidence of association in the current analyses (p<5x10
-4

), we asked whether the lead 478 

SNV in 1000G-imputed analysis was of similar frequency to that observed in HapMap 479 

analyses. Only at TP53INP1, was the most strongly associated 1000G-imputed SNV  480 

(rs11786613, OR=1.21, p=1.6x10
-6

, MAF=3.2%) of substantially lower frequency than the 481 

lead HapMap-imputed SNV (3) (rs7845219, MAF=47.7%, Figure 2A). rs11786613 was 482 

neither present in HapMap, nor on the Metabochip (Supplementary Figure 6). Reciprocal 483 

conditioning of this low-frequency SNV and the previously identified common lead SNV 484 
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(rs7845219: OR=1.05, p=5.0x10
-5

, MAF=47.5%) indicated that the two signals were likely to 485 

be distinct but the signal at rs11786613 did not meet our threshold (pconditional<10
-5

) for locus-486 

wide significance (Supplementary Figure 4).  487 

Pathophysiological insights from novel T2D associations. Among the 13 novel T2D-488 

associated loci, many (such as those near HLA-DQA1, NRXN3, GIP, ABO and CMIP) 489 

included variants previously implicated in predisposition to other diseases and traits (r
2
>0.6 490 

with the lead SNV) (Supplementary Table 3, Supplementary Materials: Biology box). For 491 

example, the novel association at SNV rs1182436 lies ~120Kb upstream of MNX1, a gene 492 

implicated in pancreatic hypoplasia and neonatal diabetes (34–36).  493 

The lead SNV rs78761021 at the GLP2R locus, encoding the receptor for glucagon-like 494 

peptide 2, is in strong LD (r
2
=0.87) with a common missense variant in GLP2R (rs17681684, 495 

D470N, p=3×10
-7

). These signals were strongly dependent and mutually extinguished in 496 

reciprocal conditional analyses, consistent with the coding variant being causal and 497 

implicating GLP2R as the putative causal gene (Supplementary Figure 7). While previously 498 

suggested to regulate energy balance and glucose tolerance (37), GLP2R has primarily been 499 

implicated in gastrointestinal function (38,39). In contrast, GLP1R, encoding the GLP-1 500 

receptor (the target for a major class of T2D therapies (40)) is more directly implicated in 501 

pancreatic islet function and variation at this gene has been associated with glucose levels and 502 

T2D risk (41).  503 

We also observed associations with T2D centred on rs9271774 near HLA-DQA1 (Table 1), a 504 

region showing a particularly strong association with T1D (42). There is considerable 505 

heterogeneity within, and overlap between, the clinical presentations of T1D and T2D, but 506 

these can be partially resolved through measurement of islet cell autoantibodies (43). Such 507 

measures were not uniformly available across studies contributing to our meta-analysis 508 

(Supplementary Table 1). We therefore considered whether the adjacency between T1D- 509 
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and T2D-risk loci was likely to reflect misclassification of individuals with autoimmune 510 

diabetes as cases in the present study.  511 

Three lines of evidence make this unlikely. First, the lead T1D-associated SNV in the HLA 512 

region (rs6916742) was only weakly associated with T2D in the present study (p=0.01), and 513 

conditioning on this variant had only modest impact on the T2D-association signal at 514 

rs9271774 (punconditional=3.3x10
-7

; pconditional=9.1x10
-6

). Second, of 52 published genome-wide 515 

significant T1D-association GWAS signals, 50 were included in the current analysis: only six 516 

of these reached even nominal association with T2D (p<0.05; Supplementary Figure 8), and 517 

at one of these six (BCAR1), the T1D risk-allele was protective for T2D. Third, in genetic 518 

risk score (GRS) analyses, the combined effect of these 50 T1D signals on T2D risk was of 519 

only nominal significance (OR =1.02[1.00, 1.03], p=0.026), and significance was eliminated 520 

when the 6 overlapping loci were excluded (OR =1.00[0.98, 1.02], p=0.73). In combination, 521 

these findings argue against substantial misclassification and indicate that the signal at HLA-522 

DQA1 is likely to be a genuine T2D signal.  523 

Potential genes and pathways underlying the T2D loci: eQTL and pathway analysis. Cis-524 

eQTLs analyses highlighted four genes as possible effector transcripts: ABO (pancreatic 525 

islets), PLEKHA1 (whole blood), HSD17B12 (adipose, liver, muscle, whole blood) at the 526 

respective loci, and HLA-DRB5 expression (adipose, pancreatic islets, whole blood) at the 527 

HLA-DQA1 locus (Supplementary Table 11).  528 

We next asked whether large-scale gene expression data, mouse phenotypes, and protein-529 

protein interaction (PPI) networks could implicate specific gene candidates and gene sets in 530 

the aetiology of T2D. Using DEPICT (32), 29 genes were prioritised as driving observed 531 

associations (FDR<0.05), including ACSL1 and CMIP among the genes mapping to the novel 532 

loci (Supplementary Table 12). These analyses also identified 20 enriched reconstituted 533 

gene sets (FDR<5%) falling into 4 groups (Supplementary Figure 9; complete results, 534 
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including gene prioritisation, can be downloaded from 535 

https://onedrive.live.com/redir?resid=7848F2AF5103AA1B!1505&authkey=!AIC31supgUwj536 

ZVU&ithint=file%2cxlsx). These included pathways related to mammalian target of 537 

rapamycin (mTOR), based on co-regulation of the IDE, TLE1, SPRY2, CMIP, and MTMR3 538 

genes (44).  539 

Overlap of associated variants with regulatory annotations. We observed significant 540 

enrichment for T2D-associated credible set variants in pancreatic islet active enhancers 541 

and/or promoters (log odds [β]=0.74, p=4.2x10
-8

) and FOXA2 binding sites (β=1.40, 542 

p=4.1×10
-7

), as previously reported (Supplementary Table 13) (14). We also observed 543 

enrichment for T2D-associated variants in coding exons (β=1.56, p=7.9x10
-5

), in EZH2-544 

binding sites across many tissues (β=1.35, p=5.3x10
-6

), and in binding sites for NKX2.2 545 

(β=1.73, p=4.1x10
-8

) and PDX1 (β=1.46, p=7.4x10
-6

) in pancreatic islets (Supplementary 546 

Figure 10).  547 

Even though credible sets were generally larger, analyses performed on the 1000G imputed 548 

results produced stronger evidence of enrichment than equivalent analyses restricted to SNVs 549 

present in HapMap. This was most notably the case for variants within coding exons (β=1.56, 550 

p=7.9x10
-5

 in 1000G compared to β=0.68, p=0.62 in HapMap), and likely reflects more 551 

complete capture of the true causal variants in the more densely imputed credible sets. Single 552 

lead SNVs overlapping an enriched annotation accounted for the majority of the total 553 

posterior probability (πc>0.5) at seven loci. For example, the lead SNV (rs8056814) at 554 

BCAR1 (πc=0.57) overlaps an islet enhancer (Supplementary Figure 11A), while the newly-555 

identified low-frequency signal at TP53INP1 overlaps an islet promoter element 556 

(rs117866713; πc=0.53) (Figure 2D) (31).  557 

We applied hierarchical clustering to the results of diabetes-related quantitative trait 558 

associations for the set of T2D-associated loci from the present study, identifying three main 559 
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clusters of association signals with differing impact on quantitative traits (Supplementary 560 

Table 9). The first, including GIPR, C2CDC4A, CDKAL1, GCK, TCF7L2, GLIS3, THADA, 561 

IGF2BP2, and DGKB involved loci with a primary impact on insulin secretion and 562 

processing (26,29). The second cluster captured loci (including PPARG, KLF14, and IRS1) 563 

disrupting insulin action. The third cluster, showing marked associations with BMI and lipid 564 

levels, included NRXN3, CMIP, APOE, and MC4R, but not FTO, which clustered alone.  565 

In regulatory enhancement analyses, we observed strong tissue-specific enrichment patterns 566 

broadly consistent with the phenotypic characteristics of the physiologically-stratified locus 567 

subsets. The cluster of loci disrupting insulin secretion showed the most marked enrichment 568 

for pancreatic islet regulatory elements (β=0.91, p=9.5×10
-5

). In contrast, the cluster of loci 569 

implicated in insulin action was enriched for annotations from adipocytes (β=1.3, p=2.7×10
-

570 

11
) and monocytes (β=1.4, p=1.4×10

-12
), and that characterised by associations with BMI and 571 

lipids showed preferential enrichment for hepatic annotations (β=1.15, p=5.8×10
-4

) (Figure 572 

3A-C). For example, at the novel T2D-associated CMIP locus, previously associated with 573 

adiposity and lipid levels (28,45), the lead SNV (rs2925979, πc=0.91) overlaps an active 574 

enhancer element in both liver and adipose tissue, among others (Supplementary Figure 575 

11B).  576 

DISCUSSION  577 

In this large-scale study of T2D genetics, in which individual variants were assayed in up to 578 

238,209 subjects, we identify 13 novel T2D-associated loci at genome-wide significance and 579 

refine causal variant location for the 13 novel and 69 established T2D loci. We also provide 580 

evidence for enrichment in regulatory elements at associated loci in tissues relevant for T2D, 581 

and demonstrate tissue-specific enrichment in regulatory annotations when T2D loci were 582 

stratified according to inferred physiological mechanism. 583 
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Together with loci reported in other recent publications (9), we calculate that the present 584 

analysis brings the total number of independent T2D associations to 128 distinct signals at 585 

113 loci (Supplementary Table 3). Lead SNVs at all 13 novel loci were common (MAF > 586 

0.15) and of comparable effect size (1.07≤OR≤1.10) to previously-identified common variant 587 

associations (2,4). Associations at the novel loci showed homogeneous effects across diverse 588 

ethnicities, supporting the evidence for coincident common risk alleles across ancestry groups 589 

(2). Moreover, we conclude that misclassification of diabetes subtype is not a major concern 590 

for these analyses and that the HLA-DQA1 signal represents genuine association with T2D, 591 

independent of nearby signals that influence T1D. 592 

We observed a general increase in the size of credible sets with 1000G imputation compared 593 

to HapMap imputation. This is likely due to improved enumeration of potential causal 594 

common variants on known risk haplotypes, rather than resolution towards low-frequency 595 

variants of larger effect driving common variant associations. These findings are consistent 596 

with the inference (arising also from the other analyses reported here) that the T2D-risk 597 

signals identified by GWAS are overwhelmingly driven by common causal variants. In such 598 

a setting, imputation with denser reference panels, at least in ethnically restricted samples, 599 

provides more complete elaboration of the allelic content of common risk haplotypes. Finer 600 

resolution of those haplotypes that would provide greater confidence in the location of causal 601 

variants will likely require further expansion of trans-ethnic fine-mapping efforts (2). The 602 

distinct signals at the established CCND2 and TP53INP1 loci point to contributions of low-603 

frequency variant associations of modest effect, but indicate that even larger samples will be 604 

required to robustly detect association signals at low frequency. Such new large datasets 605 

might be used to expand the follow-up of suggestive signals from our analysis. 606 

The discovery of novel genome-wide significant association signals in the current analysis is 607 

attributable primarily to increased sample size, rather than improved genomic coverage. 608 
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Although we queried a large proportion of the low-frequency variants present in the 1000G 609 

European reference haplotypes, and had >80% power to detect genome-wide significant 610 

associations with OR>1.8 for the tested low-frequency risk variants, we found no such low-611 

frequency variant associations in either established or novel loci. Whilst low-frequency 612 

variant coverage in the present study was not complete, this observation adds to the growing 613 

evidence (2,4,9,46) that few low-frequency T2D-risk variants with moderate to strong effect 614 

sizes exist in European ancestry samples, and is consistent with a primary role for common 615 

variants of modest effect in T2D risk. The present study reinforces the conclusions from a 616 

recent study which imputed from whole-genome sequencing data - from 2,657 European T2D 617 

cases and controls, rather than 1000G - into a set of GWAS studies partially overlapping with 618 

the present meta-analysis. We demonstrated that the failure to detect low frequency 619 

associations in that study is not overcome by a substantial increase in sample size (9). It is 620 

worth emphasising that we did not, in this study, have sufficient imputation quality to test for 621 

T2D associations with rare variants and we cannot evaluate the collective contribution of 622 

variants with MAF<0.5% to T2D risk.  623 

The development of T2D involves dysfunction of multiple mechanisms across several 624 

distinct tissues (9,29,31,47,48). When coupled with functional data, we saw larger effect 625 

estimates for enrichment of coding variants than observed with HapMap SNVs alone, 626 

consistent with more complete recovery of the causal variants through imputation using a 627 

denser reference panel. The functional annotation analyses also demonstrated that the 628 

stratification of T2D-risk loci according to primary physiological mechanism resulted in 629 

evidence for consistent and appropriate tissue-specific effects on transcriptional regulation. 630 

These analyses exemplify the use of a combination of human physiology and genomic 631 

annotation to position T2D GWAS loci with respect to the cardinal mechanistic components 632 

of T2D development. Extension of this approach is likely to provide a valuable in silico 633 
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strategy to aid prioritisation of tissues for mechanistic characterisation of genetic 634 

associations. Using the hypothesis-free pathway analysis of T2D associations with DEPICT 635 

(32), we highlighted a causal role of mTOR signalling pathway in the aetiology of T2D not 636 

observed from individual loci associations. The mTOR pathway has previously been 637 

implicated in the link between obesity, insulin resistance, and T2D from cell and animal 638 

models (44,49).  639 

The current results emphasize that progressively larger sample sizes, coupled with higher 640 

density sequence-based imputation (13), will continue to represent a powerful strategy for 641 

genetic discovery in T2D, and in complex diseases and traits more generally. At known T2D-642 

associated loci, identification of the most plausible T2D causal variants will likely require 643 

large-scale multi-ethnic analyses, where more diverse haplotypes, reflecting different patterns 644 

of LD, in combination with functional (31,50,51) data allow refinement of association signals 645 

to smaller numbers of variants (2).  646 
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DESCRIPTION OF SUPPLEMENTAL DATA 647 

Supplemental Data include eleven figures and thirteen tables.  648 
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FIGURE TITLES AND LEGENDS 830 

Figure 1. The effect sizes of the established (blue diamonds, N=69, p<5×10
-4

, 831 

Supplementary Material), novel (red diamonds, N=13), and additional distinct (sky blue 832 

diamonds, N=13, Supplementary Table 7) signals according to their risk allele frequency 833 

(Supplementary Table 3). The additional distinct signals are based on approximate 834 

conditional analyses. The distinct signal at TP53INP1 led by rs11786613 (Supplementary 835 

Table 7) is plotted (sky blue diamond). This signal did not reach locus-wide significance, but 836 

was selected for follow-up because of its low frequency and absence of LD with previously 837 

reported signal at this locus. The power curve shows the estimated effect size for which we 838 

had 80% power to detect associations. Established common variants with OR>1.12 are 839 

annotated. 840 

Figure 2. A) The number of SNVs included in 99% credible sets when performed on all 841 

SNVs compared to when analyses were restricted to those SNVs present in HapMap. B) The 842 

cumulative πc of the top 3 SNVs among all 1000G SNVs and after restriction to HapMap 843 

SNVs is shown. While the low frequency SNV at TP53INP1 (rs11786613) did not reach the 844 

threshold for a distinct signal in approximate conditional analyses, we fine-mapped both this 845 

variant and the previous common signal separately after reciprocal conditioning, which 846 

suggested they were independent. C) The minor allele frequency of the lead SNV identified 847 

in current analyses compared to that identified among SNVs present in HapMap. D) The 848 

association of the low frequency variant rs11786613 (blue) and that of the previous lead 849 

variant at this locus, rs7845219 (purple). The low frequency variant overlaps regulatory 850 

annotations active in pancreatic islets, among other tissues, and the sequence surrounding the 851 

A allele of this variant has a in silico recognition motif for a FOXA1:AR (androgen receptor) 852 

protein complex.  853 

Figure 3. Type 2 diabetes loci stratified by patterns of quantitative trait (e.g. glycaemic, 854 

insulin, lipid, and anthropometric) effects show distinct cell-type annotation patterns. We 855 

hierarchically clustered loci based on endophenotype data and identified groups of T2D loci 856 

associated with measures of A) insulin secretion, B) insulin resistance, and C) BMI/lipids. 857 

We then tested the effect of variants in cell-type enhancer and promoter chromatin states on 858 

the posterior probabilities of credible sets for each group. We identified most significant 859 

effects among pancreatic islet chromatin for insulin secretion loci, CD14+ monocyte and 860 

adipose chromatin for insulin resistance loci, and liver chromatin for BMI/lipid loci.  861 

 862 

 863 
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Table 1. Novel loci associated with T2D from the combination of 1000G-imputed GWAS meta-analysis (stage 1) and Metabochip follow-

up (stage 2).  
 Stage 1 Stage 2 Stage1+Stage2 

Locus name* Chr:Position SNV† EA/ 

NEA 

EAF OR 

(CI 95%) 

P-value Chr:Position SNV‡ r2 

with 

lead 

SNV 

EA/ 

NE

A 

EAF OR 

(95% CI) 

P-value OR 

(95% CI) ¢ 

P-value 

ACSL1 4:185708807 rs60780116 T/C 0.84 1.09 

(1.06-1.13) 

7.38x10-8 4:185714289 rs1996546 0.62 G/T 0.86 1.08 

(1.03-1.13) 

5.60x10-4 1.09 

(1.06-1.12) 

1.98x10-10 

HLA-DQA1 6:32594309 rs9271774 C/A 0.74 1.10 
(1.06-1.14) 

3.30x10-7 6:32594328 rs9271775 0.91 T/C 0.80 1.08 
(1.03-1.13) 

7.59x10-4 1.09 
(1.06-1.12) 

1.11x10-9 

SLC35D3 6:137287702 rs6918311 A/G 0.53 1.07 

(1.04-1.10) 

6.67x10-7 6:137299152 rs4407733 0.92 A/G 0.52 1.05 

(1.02-1.08) 

1.63x10-3 1.06 

(1.04-1.08) 

6.78x10-9 

MNX1 7:157027753 rs1182436 C/T 0.80 1.08 

(1.05-1.12) 

8.30x10-7 7:157031407 rs1182397 0.92 G/T 0.85 1.06 

(1.02-1.11) 

4.38x10-3 1.08 

(1.05-1.10) 

1.71x10-8 

ABO 9:136155000 rs635634 T/C 0.18 1.08 
(1.05-1.12) 

3.59x10-7 9:136154867 rs495828 0.83 T/G 0.20 1.06 
(1.01-1.10) 

1.23x10-2 1.08 
(1.05-1.10) 

2.30x10-8 

PLEKHA1 10:124186714 rs2292626 C/T 0.50 1.09 

(1.06-1.11) 

1.75x10-12 10:124167512 rs2421016 0.99 C/T 0.50 1.05 

(1.02-1.08) 

2.30x10-3 1.07 

(1.05-1.09) 

1.51x10-13 

HSD17B12 11:43877934 rs1061810 A/C 0.28 1.08 

(1.05-1.11) 

5.29x10-9 11:43876435 rs3736505 0.92 G/A 0.30 1.05 

(1.01-1.08) 

4.82x10-3 1.07 

(1.05-1.09) 

3.95x10-10 

MAP3K11 11:65364385 rs111669836 A/T 0.25 1.07 

(1.04-1.10) 

7.43x10-7 11:65365171 rs11227234 1.00 T/G 0.24 1.05 

(1.01-1.08) 

8.77x10-3 1.06 

(1.04-1.09) 

4.12x10-8 

NRXN3 14:79945162 rs10146997 G/A 0.21 1.07 

(1.04-1.10) 

4.59x10-6 14:79939993 rs17109256 0.98 A/G 0.21 1.07 

(1.03-1.11) 

1.27x10-4 1.07 

(1.05-1.09) 

2.27x10-9 

CMIP 16:81534790 rs2925979 T/C 0.30 1.08 

(1.05-1.10) 

2.72x10-8 16:81534790 rs2925979 1.00 T/C 0.31 1.05 

(1.02-1.08) 

3.06x10-3 1.07 

(1.04-1.09) 

2.27x10-9 

ZZEF1 17:4014384 rs7224685 T/G 0.30 1.07 

(1.04-1.10) 

2.00x10-7 17:3985864 rs8068804 0.95 A/G 0.31 1.07 

(1.03-1.11) 

4.11x10-4 1.07 

(1.05-1.09) 

3.23x10-10 

GLP2R 17:9780387 rs78761021 G/A 0.34 1.07 
(1.05-1.10) 

5.49x10-8 17:9791375 rs17676067 0.87 C/T 0.31 1.03 
(1.00-1.07) 

3.54x10-2 1.06 
(1.04-1.08) 

3.04x10-8 

GIP 17:46967038 rs79349575 A/T 0.51 1.07 

(1.04-1.09) 

2.61x10-7 17:47005193 rs15563 0.78 G/A 0.54 1.04 

(1.01-1.07) 

2.09x10-2 1.06 

(1.03-1.08) 

4.43x10-8 

*The nearest gene is listed; this does not imply this is the biologically relevant gene; †Lead SNV types: all map outside transcripts except 

rs429358 (missense variant) and rs1061810 (3’UTR); ‡Stage 2: proxy SNV (r
2
>0.6 with stage 1 lead SNV) was used when no stage 1 SNV was 

available. 
¢
The meta-analysis OR is aligned to the Stage 1 SNV risk allele. Abbreviations: Chr – chromosome, CI – confidence interval, EA - 

effect allele, EAF – effect allele frequency, OR – odds ratio, NEA – non-effect allele. 
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Figure 1. The effect sizes of the established (blue diamonds, N=69, p<5×10-4, Supplementary Methods), 
novel (red diamonds, N=13), and additional distinct (sky blue diamonds, N=13, Supplementary Table 7) 
signals according to their risk allele frequency (Supplementary Table 3). The additional distinct signals are 

based on approximate conditional analyses. The distinct signal at TP53INP1 led by rs11786613 
(Supplementary Table 7) is plotted (sky blue diamond). This signal did not reach locus-wide significance, but 
was selected for follow-up because of its low frequency and absence of LD with previously reported signal at 

this locus. The power curve shows the estimated effect size for which we had 80% power to detect 
associations. Established common variants with OR>1.12 are annotated.  
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Figure 2. A) The number of SNVs included in 99% credible sets when performed on all SNVs compared to 
when analyses were restricted to those SNVs present in HapMap. B) The cumulative πc of the top 3 SNVs 
among all 1000G SNVs and after restriction to HapMap SNVs is shown. While the low frequency SNV at 

TP53INP1 (rs11786613) did not reach the threshold for a distinct signal in approximate conditional analyses, 
we fine-mapped both this variant and the previous common signal separately after reciprocal conditioning, 
which suggested they were independent. C) The minor allele frequency of the lead SNV identified in current 

analyses compared to that identified among SNVs present in HapMap. D) The association of the low 
frequency variant rs11786613 (blue) and that of the previous lead variant at this locus, rs7845219 (purple). 

The low frequency variant overlaps regulatory annotations active in pancreatic islets, among other tissues, 
and the sequence surrounding the A allele of this variant has a in silico recognition motif for a FOXA1:AR 

(androgen receptor) protein complex.  
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Figure 3. Type 2 diabetes loci stratified by patterns of quantitative trait (e.g. glycaemic, insulin, lipid, and 
anthropometric) effects show distinct patterns of tissue-specific epigenomic annotation. We hierarchically 

clustered loci based on endophenotype data and identified groups of T2D loci associated with measures of A) 

insulin secretion, B) insulin resistance, and C) BMI/lipids. We then looked for enrichment of credible set 
posterior probabilities for variants mapping to tissue-specific chromatin state annotations. We identified the 
most significant effects among pancreatic islet annotations for insulin secretion loci, CD14+ monocyte and 

adipose annotations for insulin resistance loci, and hepatic annotations for BMI/lipid loci.  
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SUPPLEMENTARY MATERIAL 
 

Research participants  

The DIAGRAM stage 1 analyses comprised a total of 26,676 T2D cases and 132,532 control participants 
from 18 GWAS. The Metabochip stage 2 follow up comprised 16 studies (D2D2007, DANISH, DIAGEN, 
DILGOM, DRsEXTRA, EMIL-Ulm, FUSION2, NHR, IMPROVE, InterACT-CMC, Leipzig, METSIM, 
HUNT/TROMSO, SCARFSHEEP, STR, Warren2/58BC) with Metabochip data (1), in which the 
participants did not overlap those included in stage 1. Stage 1 study sizes ranged between 80 and 7,249 T2D 
cases and from 455 to 83,049 controls. The study characteristics are described in detail in Supplementary 

Table 1. The Metabochip follow-up study sizes ranged from 101 and 3,553 T2D cases and from 586 to 6,603 
controls. Details of Metabochip replication cohorts have been described in detail previously (1,2). For SNVs 
not captured on Metabochip directly or by proxy, we performed follow-up in 2,796 individuals with T2D and 
4,601 controls from the EPIC-InterAct study (3). In addition, we used 9,747 T2D cases and 61,857 controls 
from the GERA study (4) to follow-up six low frequency variants not captured on Metabochip. All study 
participants were of European ancestry and were from the United States and Europe. All studies were 
approved by local research ethic committees, and all participants gave written informed consent. 

Overview of Study Design and Analysis Strategy 

We performed inverse-variance weighted fixed-effect meta-analyses of 18 stage 1 GWAS (Supplementary 

Table 1). Following imputation to the 1000G multi-ethnic reference panel, each study performed T2D 
association analysis using logistic regression, adjusting for age, sex, and study-specific covariates, under an 
additive genetic model. Fifteen of the 18 studies repeated analyses also adjusting for body mass index (BMI). 
A total of 40 loci reached genome-wide significance (p=5x10-8) in the stage 1 meta-analysis, of which four 
mapped >500kb from previously-known T2D-associated loci, and were therefore considered likely to 
represent novel signals. At a lesser level of significance (p<10-5), we identified 48 additional putative novel 
signals. In stage 1, we identified fifty-two regions in which the most strongly associated SNP had a p<10-5, 
was greater than 500kb distant from the nearest known T2D associated variant and was in r2 <.02 with all 
known T2D associated variants. Of the combined set of 52 putative novel signals, 46 featured a lead SNV 
with MAF >5%. From each of these 52 regions, we selected the most strongly-associated variant for follow-
up in stage 2. As the stage 1 meta-analysis had exhausted most European-ancestry studies with available 
GWAS data, stage 2 was primarily based on 16 independent European-ancestry studies (2) genotyped on the 
Metabochip custom array (5). Of the 52 putative lead variants from stage 1, 29 variants or their LD proxies 
(r2≥0.6) were present in MetaboChip. Specifically, four SNVs were themselves present on the Metabochip, 
20 were represented by a proxy (r2>0.8) and an additional 5 by a proxy in lower linkage disequilibrium (LD) 
(0.8>r2>0.6) (Table 1, Supplementary Table 6, Supplementary Figure 1A-C). Novel loci were defined 
using the threshold for genome-wide significance in the combined stage 1 and stage 2 meta-analysis or in 
stage 1 alone, when no suitable proxy was available. The remaining 23 variants were followed-up in EPIC-
InterAct study. We neither observed any additional signals attaining genome-wide significance threshold, 
nor detected any nominally significant effects in this follow-up stage alone. Six low-frequency variants were 
followed-up additionally in the GERA study (Supplementary Table 6). 

Genotyping, imputation and quality control 

Genotyping of individual stage 1 studies was carried out using commercial genome-wide single-nucleotide 
variant (SNV) arrays as detailed in Supplementary Table 1. We excluded samples and SNPs as described in 
Supplementary Table 1. We imputed autosomal and X chromosome SNVs using the all ancestries 1000 
Genomes Project (1000G) reference panel (1,092 individuals from Africa, Asia, Europe, and the Americas, 
(March, 2012 release)) using miniMAC (6) or IMPUTE2 (7). EPIC-InterAct was genotyped on the Illumina 
HumanCoreExome chip and imputed using the 1000G reference panel (March, 2012 release). The 
imputation parameters are given in Supplementary Table 1. Insertion/deletion variants were not analysed 
due to the lower quality of their calls in the 1000G reference panel release used as compared to later panel 
releases. After imputation, from each study we removed monomorphic imputed variants or those with study-
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specific imputation quality r2-hat<0.3 (miniMAC) or proper-info<0.4 (IMPUTE2, SNPTEST). Metabochip 
studies were imputed using with the same 1000G panel (1,2) as used in Stage 1. 

To compare the variant imputation quality and distribution of minor allele frequency (MAF) for variants 
imputed using the 1000G March 2012 reference panel to those imputed using the HapMap2 reference panel 
European individuals, we also imputed into the WTCCC sample using HapMap2 reference panel European 
individuals. We independently binned the SNVs from the two imputation panels by allele frequency and 
computed the per-bin SNP number and the average proper_info score. 

Statistical analyses 

In stage 1, in each study we performed logistic regression association analysis of T2D with genotype dosage 
using an additive genetic model including as covariates age, sex and principal components derived from the 
genetic data to account for population stratification. We further applied genomic control (GC) correction to 
study-level association summary statistics to correct for residual population structure not accounted for by 
principal components adjustment. We combined the association results using inverse variance-weighted 
fixed effect meta-analysis using both GWAMA (8) and METAL (9) , and observed identical results. The 
stage 1 meta-analysis had 11.7M autosomal and 260k chromosome X SNVs that 1) had a total minor allele 
count >5 and 2) were present in ≥3 studies. The lambda (GC) value was 1.08, while inflation estimates from 
LDscore regression (10) showed no evidence of population stratification suggesting lambda (GC)=1. We 
performed inverse variance weighted fixed-effects meta-analysis of the 16 stage 2 Metabochip studies 
(lambda GC correction applied based on QT-interval variant set (1)) and the 18 stage 1 studies using 
GWAMA (8) and METAL (9) software. Heterogeneity was assessed using the I2 index from the complete 
study-level meta-analysis. We combined stage 1 and stage 2 results by inverse variance-weighted fixed-
effect meta-analysis. 

We performed a secondary T2D association analysis by modelling body mass index (BMI) as covariate in 15 
studies (not including DGDG, GoDARTS and WTCCC). The total sample size for this analysis was 21,440 
T2D cases and 97,052 controls, (Neff=70,242). The lambda (GC) was 1.05. Genetic effect sizes (beta 
coefficients) estimated from models with and without BMI adjustments were compared using a matched 

analysis within the same subset of 15 studies:  
(�����������)


��(������)
���(����)
���×��(������)×��(����) , where ���� 
and ������ are the estimated genetic effect from models with and without BMI adjustment, ��(�) is the 

estimated standard error of the estimates, and ρ is the estimated correlation between ���� and ������ 
obtained from all genetic variants (ρ =0.90). 

Comparison between HapMap and 1000G reference variant sets  

We made LocusZoom(11) regional plots of the Stage 1 meta-analysis results indexed by lead SNV for the 13 
novel loci, and estimated LD using the EUR 1000G March 2012 variant set (Supplementary Figure 2). We 
also made regional plots indexed by the lead 1000G SNV, but otherwise only including SNVs present in the 
previous HapMap2-imputed analyses(1,12). 

Power calculations  

We performed power calculations10 over a range of odds ratios (ORs), using the corresponding genotype 
relative risk (GRR) in the power calculation, to (i) determine the effect size that would yield 80% power 
based on a grid search and (ii) to provide power estimates for pre-specified ORs, for specified risk allele 
frequency (RAF). The RAF is defined as the frequency of the allele that increases T2D risk in the stage 1 
meta-analysis. We determined power as a function of the GRR, RAF, alpha=5×10-8, and the average 
weighted effective case sample size, assuming a 1:1 ratio of cases and controls. For each variant, we defined 
weighted effective case sample size as the product of the variant-specific effective case sample size and the 
average variant-specific imputation quality (based on r2 hat or info measures available from each included 
study). To calculate the average weighted effective case sample size, for each RAF we selected the 10,000 
stage 1 meta-analysis variants with RAF closest to the target RAF (taking equal proportions of variants 
above and below the RAF), and took the average of the 10,000 weighted effective case sample sizes. 
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Approximate conditional analysis with GCTA  

To identify if multiple statistically independent signals were present in known and novel T2D associated 
regions, we performed approximate conditional analysis in the stage 1 sample using GCTA (v1.24) (13). 
Among 70 established T2D-associated and 13 novel loci (p<5×10-4), we analysed SNVs in the 1Mb-window 
around each lead variant, conditioning on the lead SNV at each locus. We ran the GCTA analysis using three 
separate genotype reference panels for estimation of LD between variants (14): UK10K project (N=3,621), 
Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS (15)) study (3,298 T2D cases and 
3,708 controls) and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS (16)) study 
(n=949). We considered loci as containing distinct signals (in the initial and further rounds of analysis) if a 
SNV reached locus-wide significance after accounting for region-specific multiple testing (p<10-5) in all 
three reference panels. Where we observed distinct signals, we then conditioned on the original lead SNV, 
and the newly observed distinct SNV(s) to detect further signals, until no additional signal was identified at 
p<10-5. We identified six regions with more than one independent signal (18 distinct signals). In each region 
with multiple signals, for each independent variant we conditioned on all other independent variants in the 
region and used these results were used for finemapping (below). At KCNQ1, we performed conditioning 
using GCTA model selection which better handles the large number of independent signals (using the 
UK10K reference panel).  

Finemapping analyses using credible set mapping 

The goal of finemapping was to identify sets of 99% credible causal variants for the lead independent 
variants at known and novel loci. We used credible set fine-mapping (17) within 95 distinct signals (at 82 
loci) with T2D-association signals p<5x10-4 in the present stage 1 to investigate whether 1000G-imputation 
allowed us to better resolve the specific variants driving these associations (Supplementary Tables 3 and 

9). We included in the credible set analysis all signals where the lead independent SNV reached p<5x10-4 in 
the stage 1 meta-analysis, as SNVs with weak association, mostly those identified in non-European GWASs, 
generally yield very large credible SNP sets. In regions with multiple independent variants, we used the 
signal remaining following approximate conditional analysis on all other independent variants in the region 
(see above). To define the locus boundaries, for each lead SNV we identified the outermost variants from the 
set of variants in r2 ≥ .2 with the lead SNV and added an additional flanking region of .02 cM to each side. 
To perform credible set mapping, the T2D stage 1 meta-analysis results were converted to Bayes’ factors 
(BF) for each variant within the variant/locus boundary (17). The posterior probability that SNVj was causal 
was defined by:  

�� =	
���

∑ ��!!
 

where, BFj denotes the BF for the jth SNV, and the denominator is the sum of all included BFs. A 99% 
credible set of variants was created by ranking the posterior probabilities from highest to lowest and 
summing them until the cumulative posterior probability exceeded 0.99. To estimate the credible set sizes we 
would have observed with HapMap imputation-based meta-analysis results, we recomputed the posterior 
probabilities after first restricting to variants observed in previous HapMap-imputed analyses.  

T1D/T2D discrimination analysis 

Given the overlap between loci previously associated with T1D and the newly associated T2D loci, we used 
an inverse variance weighted Mendelian randomisation approach (18) to test whether this was likely to 
reflect misclassification of T1D cases as individuals with T2D in the current study. Briefly, using 50 SNVs 
associated with T1D at genome-wide significance (19), we tested the association of genetic predisposition to 
T1D with T2D in the present analysis. If some proportion of T2D cases in the current study actually are T1D, 
we would expect that the T1D risk variants to consistently predict T2D risk. We performed analysis with and 
without the lead SNVs showing associations with both T1D and T2D (p<0.05 for T2D).  
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Expression quantitative trait loci (eQTL) analysis 

Lead SNVs at all 13 novel loci mapped to non-coding sequence, leaving uncertain the identities of the 
effector transcripts through which the T2D-risk effects are mediated. To highlight potential effectors, we first 
considered RNA expression data, focusing on data from pancreatic islets, adipose, muscle, liver, and whole 
blood, and seeking coincidence (r2>0.8) between the lead T2D-associated SNVs and drivers of regional cis-
eQTLs (p<5x10-6) (Supplementary Table 10). To look for potential biological overlap of T2D lead variants 
and eQTL variants, we extracted the lead (most significantly associated) eQTL for each tested gene from 
existing datasets for pancreatic islets (20), skeletal muscle (21,22), adipose tissue(22–26), liver (22,24,27–
30) and whole blood (which has the largest sample size of available eQTL studies) (22,23,26,31–47) . 
Additional eQTL data was integrated from online sources including ScanDB 
(http://www.scandb.org/newinterface/about.html), the Broad Institute GTEx Portal 
(http://www.gtexportal.org/home/), and the Pritchard Lab (eqtl.uchicago.edu). Additional liver eQTL data 
was downloaded from ScanDB and cis-eQTLs were limited to those with p<10-6.We considered that a lead 
T2D SNV showed potential evidence of influencing gene expression if it was in high LD (r2>0.8) with the 
lead eQTL SNP, and if the lead eQTL SNP had p< 5 x 10-6   

Hierarchical clustering of T2D-related metabolic phenotypes 

Starting with the T2D associated SNV variants in the finemapping set, we identified sets of variants with 
similar patterns of T2D related quantitative trait association. For the T2D associated SNVs, we obtained 
T2D-related quantitative trait z scores from published HapMap-based GWAS meta-analysis for: fasting 
glucose (FG (48)), fasting insulin adjusted for BMI (FIadjBMI (48)), homeostasis model assessment for 
beta-cell function (HOMA-B (48)), homeostasis model assessment for insulin resistance (HOMA-IR (48)), 
2-h glucose adjusted for BMI (2hGluadjBMI (49)), proinsulin (PR (50)), corrected insulin response (CIR 
(51)), body mass index (52), high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), total 
cholesterol (TC), triglycerides (TG), all from the Global Lipids Genetics Consortium (53). When the result 
for a SNV was not available, we used the results from the variant in highest r2 (r2>0.6). We coded the z-
scores such that a positive sign indicated that the trait value was higher for the T2D risk allele, a negative 
sign that the trait value was lower for the T2D risk allele. We performed complete linkage hierarchical 
clustering and used the Euclidian distance dissimilarity measure L2=15% as a threshold to define the loci 
clusters. We tested the validity of groups through multi-scale bootstrap resampling with 50,000 bootstrap 
replicates, as described previously(54). All distances, clustering analyses and statistical calculations were 
done using stats, gplots, pvclust, fpc and vegan packages in the R programming language (R Core Team 
(2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL http://www.R-project.org/).  

Functional annotation and enrichment analysis  

We tested for enrichment of genomic and epigenomic annotations obtained from two sources. First, we 
obtained chromatin states for 93 cell types (after excluding cancer cell lines) from the NIH Epigenome 
Roadmap project. For each cell type, we collapsed active enhancer (EnhA) and promoter (TssA) states into 
one annotation for that cell type. Secondly, we obtained binding sites for 165 transcription factors (TF) from 
ENCODE (55) and Pasquali et al. (56). We first sought to extend these analyses to the denser variant 
coverage and expanded number of GWAS signals in the present meta-analysis (Supplementary Table 9). 
Across credible sets for the 95 distinct signals with p<5x10-4 in the present stage 1 European analysis 
(Supplementary Tables 3 and 9), we used a fractional logistic regression model to compare a binary 
indicator of variants overlapping a total of 261 functional annotations to the posterior probabilities for 
association derived from the fine-mapping analysis (πc) (Supplementary Table 12). For each TF, we 
collapsed all binding sites into one annotation. We then tested for the effect of variants with each cell type 
and TF annotation on the variant posterior probabilities (πc) using all variants in the 95 credible regions (ie 
100% credible sets). We used a generalized linear model where the dependent variable is πc value for each 
variant and the predictor variable is a binary indicator of overlap of the variant and the annotation, a (1 if 
yes, 0 if no). We included several additional binary indicators for generic gene-based annotations in the 
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model for each annotation - 3UTR (u), 5UTR (v), coding exon (c), and within 1kb upstream of GENCODE 
Tss (t) - as well as a categorical variable for locus membership (l). 

log % π'
1 − π'* = 	�+ + �-. +	��/ +	�01 + �23 +	�45 +	�67		, π' 	~	�:;<=:.7 

For each annotation, we obtained the estimated effect size and standard error from this model. We then re-
calculated the standard error using the sandwich variance estimator (R package sandwich). We calculated a 
z-score by dividing the effect size by the re-estimated standard error, and calculated a two-sided p-value 
from the z-score. We also applied this model to the three subsets of loci visually identified from the 
hierarchical clustering as having similar T2D-related trait association patterns. In each analysis, we 
considered an annotation significant if it reached a Bonferroni-corrected p-value threshold of 2x10-4 (.05/256 
annotations).  

Pathway analyses with DEPICT 

We used the Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool (57) to i) 
prioritize genes that may represent promising candidates for T2D pathophysiology, and (ii) identify 
reconstituted gene sets that are enriched in genes from associated regions and might be related to T2D 
biological pathways. As input we used independent SNVs (LD-pruning parameters: r2<0.05 in the 1000 
Genomes project phase 1 reference panel including 268 unrelated individuals from CEU, GBR and TSI 
populations; release date 2011-05-21; physical distance threshold=500kb) selected from the set including 
stage1 meta-analysis SNVs with p<10-5 and lead variants at established loci. We then used the DEPICT 
method (57) to construct associated regions by mapping genes to independently associated SNVs, if they 
overlapped or resided within LD window (r2 >.0.5) with the independently associated SNV. Variants within 
the major histocompatibility complex region (chromosome 6, base pairs 25,000,000 through 35,000,000) 
were excluded. This gave 206 independent regions covering 328 genes for the analysis with DEPICT.  For 
the calculation of empirical enrichment p values, we used 200 sets of SNVs randomly drawn from entire 
genome within regions matching by gene density; we performed 20 replications for FDR estimation. For 
each significantly enriched reconstituted gene set, we plotted the five genes that most strongly mapped to the 
given gene sets and resided within an associated T2D locus. The mapping strength between a gene and a 
reconstituted gene set was denoted by a Z-score shown in parenthesis after the gene identifier in 
Supplementary Table 10. After the gene set enrichment analysis, we omitted reconstituted gene sets for 
which genes in the original gene set were not nominally enriched (Wilcoxon rank-sum test). By design, 
genes in the original gene set are expected to be enriched in the reconstituted gene set; lack of enrichment 
complicates interpretation of the reconstituted gene set because the label of the reconstituted gene set will be 
inaccurate. Using this procedure the “Megacephaly” reconstituted gene set was removed from the results. To 
visualize the 20 reconstituted gene sets with p<10-5 in Cytoscape (58) (Supplementary Figure 10), we 
estimated their overlap by computing the pairwise Pearson correlation coefficient r between each pair of 
gene sets followed by discretization into one of three bins; 0.3≤ρ<0.5 as low overlap, 0.5≤ρ<0.7 as medium 
overlap, and ρ≥0.7 as high overlap. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1. QQ- and Manhattan plots of the discovery association meta-analysis results. 
A) QQ-plot of all the signals. B) QQ-plot of previously established signals. C) QQ-plot of novel signals. D) 
Manhattan plot. Signals of association reaching genome-wide significance for the first time in the present 
study (p<5x10-8) are colored in red; blue dots represent previously established loci (Supplementary Table 

3). The Y-axis was trimmed at –log10(p-value)=40 for easier visualisation; the TCF7L2 association signal 
(p=1.35×10-81) falls far beyond this range (Supplementary Table 3).  
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Supplementary Figure 2. Regional plots for the thirteen novel T2D loci. In the left panel, the plot is 
based using all 1000 Genomes March 2012 multi-ethnic SNV set, whereas in the right panel the plot is 
restricted to SNVs present in HapMap CEU reference set. 
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Supplementary Figure 3. QQ-plot of the expected vs. observed P-values for heterogeneity between 

BMI-adjusted and unadjusted association analysis models for established and novel T2D loci. The 
FTO, TCF7L2, MC4R and SLC30A8 loci show large differences between models (pheterogeneity=5.70x10-29, 
3.51x10-13,  5.54x10-6 and 6.94x10-5, respectively). 
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Supplementary Figure 4. Regional plots for T2D loci showing additional distinct signals (p<10
-5
) in the 

approximate conditional analysis. First, unconditional analysis results are shown, followed by results 
conditioned on the lead SNV and other distinct signals. In the last plot for each locus the results for lead 
SNV conditional on the distinct signal(s) are shown. 
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Supplementary Figure 5. Forest plots of the A) putative low frequency distinct signal (rs188827514) 

and B) previously established (Steinthorsdottir et al.) low-frequency variant (rs76895963) at CCND2 for 

their associations with T2D. Odds ratios (OR) with their 95% confidence intervals (CI) are shown from 
unconditioned models. 
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Supplementary Figure6. Regional architecture of TP53INP1 locus. In the right panel the figure is plotted 
using all 1000 Genomes SNVs and highlights the new lead SNV (rs11786613) independent from the 
previous lead variant, signal visible in the left panel the plot is restricted to SNVs present in HapMap. 

 

 

 

Supplementary Figure 7. Association of variation in GLP2R with T2D after approximate conditional 

analyses on either A) the lead SNV (rs78761021), or B) D470N.  
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Supplementary Figure 8. Effects on T2D of 50 established T1D variants. All effects are aligned to T1D 
risk-raising allele. Loci are sorted from top to bottom by the magnitude of association with T1D.  
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Supplementary Figure 9. Significantly enriched reconstituted gene sets by DEPICT. We report 20 
significantly enriched reconstituted gene sets (FDR<0.05, Supplementary Table 11). Reconstituted gene 
sets are represented by nodes and their overlap by edges. Reconstituted gene sets are colour-coded based on 
their degree of enrichment in genes at the associated T2D loci (darker means more significant). DEPICT 
identified 21 significantly enriched reconstituted gene sets; one gene set was omitted due to a potential 
mismatch between the reconstituted gene set identifier and the reconstituted gene set (see Methods). For each 
gene set, the three genes exhibiting the highest likelihood within the given gene set and being within 
associated T2D loci are shown. Pairwise overlap between reconstituted gene sets were estimated by 
computing the Pearson correlation coefficient r between two reconstituted gene sets followed by 
discretization into one of three bins; 0.3≤ r <0.5 denotes low overlap, 0.5≤ r <0.7 denotes medium overlap, 
and r≥0.7 denotes high overlap. Edges representing overlap corresponding to r <0.3 are not shown. 
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Supplementary Figure 10. Type 2 diabetes credible sets are enriched for genomic annotations. We 
calculated the posterior probability of causality for all variants at 95 established T2D loci. We then tested the 
effect of variants annotated with protein-coding genes, cell type chromatin state, and transcription factor 
binding on the posterior probabilities across all loci. We identified significant effects among coding exons 
and pancreatic islet chromatin, and for binding sites of the FOXA2, NKX2.2, PDX1, and EZH2 transcription 
factors.  
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Supplementary Figure 11. Genomic annotation at credible sets of novel loci. A) The T2D signal at the 
BCAR1 locus contains a variant rs8056814 with a 57% probability of being causal for the signal. This variant 
overlaps an enhancer active in pancreatic islets proximal to the CTRB1 gene. B) The novel T2D signal at the 
CMIP locus is also associated with BMI and lipid phenotypes. The variant rs2925979 has a 91% probability 
of being causal for the CMIP signal and overlaps an enhancer active in liver, which is the most enriched cell 
type in the BMI/lipid physiology group.  
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BIOLOGY BOX  
 

ACSL1: chr4:185708807 (rs60780116) is an intronic variant in acyl-CoA synthetase long chain family 
member 1 coding gene (ACSL1), an isozyme that converts free long-chain fatty acids into fatty acyl-CoA 
esters, playing a key role in lipid biosynthesis and fatty acid degradation. ACSL1 is highly expressed in 
adipose, liver, skeletal muscle tissue and in whole blood, but expressed at lower levels in pancreas(1). Recent 
reports have implicated ACSL1 in regulating systemic glucose homeostasis(2), potentially via an effect on 
metabolic flexibility and capacity to switch between fatty acid and glucose metabolism. Variants in ACSL1 
have previously been associated with Kawasaki disease(3) (r2=0.12).    

HLA-DQA1:  Variation in the HLA region has been strongly associated with T1D(4) (r2=0.08) and other 
autoimmune diseases, including multiple sclerosis(5) (r2=0.47) and inflammatory bowel disease(6) (r2=0.13). 
Associations with total cholesterol and LDL cholesterol have also been reported(7) (r2=0.06). The lead SNV 
for T2D association in the HLA region (chr6:32594309; rs9271774) lies ~2kb upstream of HLA-DQA1. It is 
in high LD (r2=0.82) with a SNV strongly associated with expression of HLA-DRB5 in pancreatic islets(8). 
Analyses (see main text) suggest that the T2D association is not the result of misclassification of individuals 
with T1D as T2D cases in the present study.  

SLC35D3: Index variant chr6:137287702 (rs6918311) is located ~20kb downstream of the RNA gene 
NHEG1 (neuroblastoma highly expressed 1), which has no well characterized function. Also proximal to the 
lead SNV are: (1) SLC35D3, which is a member of the solute carrier family 35 and a regulator of the 
biosynthesis of platelet-dense granules with possible role in carbohydrate transport; (2) PEX7,  (peroxisomal 
biogenesis factor 7) encoding for the cytosolic receptor for the set of peroxisomal matrix enzymes, which is 
involved in cell metabolism and is associated with peroxisome biogenesis disorders and implicated in 
autism; and (3) IL20RA, which encodes for a subunit of the receptor for interleukin 20, and is a cytokine 
suggested to be involved in epidermal function. 

MNX1: chr7:157027753 (rs1182436) is an intronic variant in UBE3C, which encodes for a ubiquitin protein 
ligase. The lead SNV in the locus lies ~100kb upstream of MNX1, which is highly expressed in pancreas(1)  
containing coding mutations recently implicated in neonatal diabetes(9).  

ABO: chr9:136155000 (rs635634) variant lies ~5kb upstream of ABO gene, which determines blood group 

by modifying the oligosaccharides on cell surface glycoproteins. Variation in or near ABO has been 

associated with a very wide range of phenotypes, including glycaemic(10), lipid traits (7) (r2=1), coronary 

artery disease(11) and stroke(12) (r2=0.83). The lead variant at this locus is in low LD (r2<0.05) with blood 

group-defining markers(13).  

PLEKHA1: chr10:124186714 (rs2292626) is an intronic variant in PLEKHA1 (pleckstrin homology domain 
containing, family A member 1). The encoded protein localises to the plasma membrane where it specifically 
binds phosphatidylinositol 3,4-bisphosphate. This protein may be involved in the formation of signalling 
complexes in the plasma membrane. Variants in modest LD (rs10490924; r2=0.27) have been associated with 
age-related macular degeneration(14). 

 

HSD17B12: chr11:43877934 is a 3’UTR variant of HSD17B12 encoding the enzyme 17-beta 

hydroxysteroid dehydrogenase-12.  HSD17B12 encodes 17beta-hydroxysteroid dehydrogenase, involved in 

fatty acid metabolism(15) and estrogen sex steroid hormone formation. HSD17B12 has been identified as 

central to adipocyte differentiation(16), and a correlated variant (rs2176598; r2=0.68) was recently associated 

with BMI(17). However, rs1061810 remained associated with T2D after adjustment for BMI, and we found 

only a nominal difference in the association of rs1061810 with T2D in meta-analyses with or without 

adjustment for BMI (Supplementary Table 4), potentially indicating a role for HSD17B12 in risk of 
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diabetes independently of associations with adiposity. Other associations from this locus have been reported 

with forced vital capacity(18) (r2=0.59) and neuroblastoma(19) (r2=0.24).  

MAP3K11: chr11:65364385 (rs111669836) is located next to KCNK7 (potassium channel, subfamily K, 
member 7) gene, a member of the superfamily of potassium channel proteins. MAP3K11 encodes the 
Mitogen-activated protein kinase 11, part of the serine/threonine kinase family. MAP3K11 has been 
implicated in regulation  of pancreatic beta-cell death(20). Variation at this locus has previously been 
associated with e.g. height(21) (r2=0.02)  and lipid levels(7) (r2=0.08). 

NRXN3: chr14:79945162 (rs10146997) is an established variant associated with waist circumference(22), 
BMI(23)  and obesity(24). It is an intronic variant in the NRXN3 (Homo sapiens neurexin 3) gene, which is 
part of a family of central nervous adhesion molecules It is expressed in the same sub-cortical regions where 
reward training neuronal pathways are expressed. 

CMIP: chr16:81534790 (rs2925979). This gene encodes a c-Maf inducing protein that plays a role in the T-
cell signalling pathway. C-mip down-regulates NF-κB activity and promotes apoptosis in podocytes(25)  in 
cases of idiopathic nephrotic syndrome (INS). Associations with WHR(26), adiponectin(27)  and HDL 
cholesterol(7) levels have been reported for this same variant. 

ZZEF1: chr17:4014384 (rs7224685) is an intronic variant in the ZZEF1 (zinc finger, ZZ-type with EF-hand 
domain 1) gene related to calcium ion binding. This locus was previously implicated in functional 
impairment in major depressive disorder, bipolar disorder and schizophrenia(28).  

GLP2R: chr17:9780387 (rs78761021) is an intronic variant in the glucagon-like peptide 2 receptor (GLP2R) 
gene belonging to a G protein-coupled receptor superfamily. It is closely related to the glucagon receptor 
(GCGR) and GLP1R. Glucagon-like peptide-2 (GLP2) is a 33-amino acid proglucagon-derived peptide 
produced by intestinal enteroendocrine cells.  

GIP: the nearest gene to the detected signal (chr17:46967038, rs12941263) in this region is ATP5G1, coding 

for a subunit of mitochondrial ATP synthase and involved in “energy production”, in lipid transports and in 

cellular metabolism. Another gene within locus, GIP encodes an incretin hormone that belongs to the 

glucagon superfamily and is gastric inhibitory polypeptide. GIP is a potent stimulator of insulin secretion 

from pancreatic beta-cells following food ingestion and nutrient absorption via its G protein-coupled receptor 

activation of adenylyl cyclase and other signal transduction pathways(29). Variants (rs46522, rs318095) in 

high LD (r2=0.97) with our identified SNV at GIP have been associated with susceptibility to coronary heart 

disease(11) and  height(30). Variation in the receptor for GIP (GIPR) have previously been associated with 

glycemic traits and T2D(31,32). 
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Supplementary Table 6. Novel signals with suggestive association in Stage 1 (P<10-5) but with no replication (P>5x10-8) in Stage 2 or Independent InterAct/Interact+GERA study analysis.

Stage1 Stage2*

Chr Position SNV EA/NEA EAF OR (95% CI) P-value Chr

5 3048750 rs16870903 T/C 0.0021 2.98 (1.9-4.68) 2.10E-06

8 64660127 rs187357831 T/G 0.009 1.46 (1.25-1.72) 3.10E-06

17 73841419 rs3893328 A/G 0.0097 0.59 (0.48-0.74) 2.26E-06

8 17730962 rs145953760 A/G 0.0169 1.27 (1.14-1.41) 8.56E-06

13 86575869 rs7329157 T/C 0.0283 1.18 (1.1-1.27) 9.72E-06 13

4 129526996 rs4975241 C/G 0.0607 1.14 (1.08-1.2) 1.32E-06

18 77548685 rs28620500 A/G 0.071 0.85 (0.79-0.91) 3.40E-06

4 83563582 rs4693043 A/G 0.144 1.08 (1.05-1.12) 3.16E-06

6 65590847 rs7774169 A/G 0.1927 0.93 (0.9-0.96) 4.85E-06 6

7 30728452 rs917195 T/C 0.2349 0.93 (0.9-0.96) 1.91E-06

12 21752108 rs10841855 T/G 0.2496 0.93 (0.9-0.96) 1.54E-06

5 101620174 rs2548724 T/C 0.2554 1.07 (1.04-1.1) 4.77E-07

17 48632401 rs898453 A/G 0.274 0.94 (0.91-0.96) 2.05E-06 17

3 170727351 rs1879442 A/G 0.2767 0.94 (0.92-0.97) 4.76E-06 3

17 27613677 rs12452857 A/G 0.2882 1.06 (1.04-1.09) 5.60E-06 17

1 219771721 rs4846569 T/C 0.2943 0.93 (0.9-0.95) 8.83E-09 1

17 17649172 rs11655029 T/C 0.3223 1.06 (1.03-1.09) 6.08E-06 17

15 54776716 rs11858061 A/G 0.3752 1.06 (1.04-1.09) 1.70E-06 15

8 145536056 rs62530366 G/A 0.38 1.08 (1.05-1.11) 1.90E-08

12 133683261 rs905226 T/C 0.4508 0.95 (0.92-0.97) 8.80E-06

9 126123009 rs2491353 T/C 0.4528 0.94 (0.92-0.97) 1.99E-06 9

4 95109078 rs1509946 T/G 0.4776 0.94 (0.92-0.96) 4.16E-07 4

22 50435480 rs5771069 A/G 0.4837 0.94 (0.91-0.96) 1.85E-07 22

18 40772286 rs816750 C/G 0.5046 1.06 (1.03-1.08) 2.55E-06

20 45757655 rs4809627 T/C 0.5223 1.06 (1.03-1.08) 4.85E-06

7 13894939 rs7801928 T/C 0.5413 1.06 (1.04-1.09) 1.29E-06 7

2 65642097 rs6731993 A/T 0.6107 1.07 (1.04-1.09) 2.60E-07 2

5 112823768 rs1057827 T/C 0.651 1.06 (1.04-1.09) 2.99E-06 5

3 73633701 rs9847947 C/G 0.7371 1.07 (1.04-1.1) 1.69E-06

3 31176875 rs1625526 A/G 0.7496 1.07 (1.04-1.1) 1.11E-06

3 114913508 rs6438234 A/G 0.763 0.93 (0.91-0.96) 1.79E-06 3

12 77398721 rs17815608 A/T 0.8276 1.08 (1.05-1.12) 6.20E-06

6 148963919 rs150268806 T/C 0.8292 0.93 (0.9-0.96) 3.93E-06

8 82343438 rs182719694 A/G 0.8546 1.1 (1.06-1.14) 3.07E-07

7 121954105 rs62476011 T/C 0.8628 0.92 (0.89-0.95) 4.28E-06 7

1 88416590 rs6691335 T/C 0.9016 0.9 (0.87-0.94) 2.34E-06

8 105560821 rs13268287 A/G 0.929 1.13 (1.07-1.19) 7.37E-06

5 142172314 rs80020232 T/G 0.9819 0.58 (0.46-0.73) 6.41E-06

19 22530857 rs191030109 T/C 0.9984 0.38 (0.25-0.57) 3.17E-06

* - Stage 2 SNPs available on Metabochip are reported by their position and rsID. Other 22 variants were either directly available in the InterAct and GERA GWAS, or proxies were used in GERA as follows: for 

rs187357831 variant rs185032206 (r
2
=0.75), for rs3893328 variant rs75830455 (r2=0.53), for rs80020232 variant rs71587235  (r2=1.0), for rs191030109 variant rs146989164 (r2=0.60), for rs62530366 variant 

rs13268508 (r2=0.85).
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Supplementary Table 6. Novel signals with suggestive association in Stage 1 (P<10-5) but with no replication (P>5x10-8) in Stage 2 or Independent InterAct/Interact+GERA study analysis.

Stage1+Stage2

Position SNV r2 with lead SNVEA/NEA EAF OR (95% CI) P-value OR (95% CI)

T/C 0.006 1.03 (0.86-1.23) 0.74 1.19 (1.01-1.40)

T/G 0.009 0.88 (0.72-1.08) 0.23 1.20 (1.06-1.36)

A/G 0.0097 0.95 (0.83-1.08) 0.40 0.84 (0.75-0.94)

A/G 0.015 1.02 (0.91-1.14) 0.79 1.15 (1.06-1.24)

86575869 rs7329157 1 T/C 0.031 0.93 (0.84-1.02) 0.12 1.08 (1.02-1.15)

C/G 0.057 1.11(0.95-1.28) 0.19 1.14 (1.08-1.19)

A/G 0.060 1.17(0.95-1.46) 0.15 0.88 (0.82-0.94)

A/G 0.156 0.96(0.87-1.05) 0.39 1.07 (1.03-1.10)

65533066 rs10498828 0.94 T/C 0.180 0.97 (0.94-1.01) 0.16 0.95 (0.93-0.97)

T/C 0.215 0.95 (0.87-1.05) 0.33 0.93 (0.90-0.96)

T/G 0.237 0.91 (0.83-1.01) 0.07 0.93 (0.90-0.96)

T/C 0.232 1.07 (0.99-1.17) 0.10 1.07 (1.04-1.10)

48636534 rs989128 0.60 A/G 0.359 0.98 (0.95-1.01) 0.11 0.95 (0.93-0.97)

170724883 rs8192675 0.97 C/T 0.295 0.95 (0.92-0.99) 0.01 0.95 (0.93-0.97)

27647630 rs797973 0.84 G/T 0.267 1.03 (1.00-1.07) 0.04 1.05 (1.03-1.07)

219771721 rs4846569 1.00 T/C 0.284 0.99 (0.94-1.04) 0.61 0.94 (0.92-0.96)

17654319 rs11656775 0.95 A/G 0.332 1.04 (1.01-1.08) 0.03 1.05 (1.03-1.08)

54756628 rs4776231 0.91 A/C 0.382 1.02 (0.99-1.05) 0.25 1.04 (1.02-1.06)

G/A 0.362 1.04 (0.99-1.04) 0.32 1.05 (1.03-1.07)

T/C 0.421 0.95 (0.89-1.03) 0.20 0.95 (0.93-0.97)

126112812 rs10760280 0.66 T/C 0.571 0.99 (0.97-1.02) 0.70 0.96 (0.95-0.98)

95012684 rs1904096 0.82 C/A 0.516 1.00 (0.94-1.07) 0.98 0.95 (0.93-0.97)

50440296 rs137848 0.97 T/C 0.487 0.97 (0.94-1.00) 0.02 0.95 (0.93-0.97)

C/G 0.535 1.07 (0.99-1.15) 0.08 1.06 (1.04-1.08)

T/C 0.546 0.99 (0.92-1.07) 0.89 1.05 (1.03-1.08)

13894276 rs1019029 0.66 G/A 0.479 1.02 (0.99-1.05) 0.20 1.05 (1.03-1.07)

65627406 rs2661796 0.60 T/C 0.576 1.00 (0.97-1.03) 0.84 1.04 (1.02-1.06)

112809728 rs367943 1.00 C/T 0.660 1.03 (1.00-1.07) 0.03 1.05 (1.03-1.07)

C/G 0.741 0.98 (0.90-1.07) 0.65 1.06 (1.03-1.09)

A/G 0.742 1.01 (0.93-1.10) 0.80 1.06 (1.04-1.09)

114913508 rs6438234 1.00 A/G 0.747 0.97 (0.94-1.01) 0.12 0.95 (0.93-0.97)

A/T 0.839 1.04 (0.93-1.15) 0.49 1.08 (1.04-1.11)

T/C 0.829 1.08 (0.98-1.18) 0.14 0.94 (0.92-0.97)

A/G 0.855 0.94 (0.85-1.05) 0.30 1.08 (1.05-1.12)

122017812 rs1859351 0.83 C/T 0.843 0.98 (0.94-1.02) 0.30 0.95 (0.92-0.97)

T/C 0.896 1.03 (0.90-1.18) 0.67 0.91 (0.88-0.94)

A/G 0.920 1.14 (0.98-1.32) 0.08 1.13 (1.08-1.19)

T/G 0.982 1.012(0.85-1.21) 0.89 0.83 (0.72-0.95)

T/C 0.998 0.99 (0.84-1.17) 0.95 0.87 (0.75-1.01)

* - Stage 2 SNPs available on Metabochip are reported by their position and rsID. Other 22 variants were either directly available in the InterAct and GERA GWAS, or proxies were used in GERA as follows: for 

=0.75), for rs3893328 variant rs75830455 (r2=0.53), for rs80020232 variant rs71587235  (r2=1.0), for rs191030109 variant rs146989164 (r2=0.60), for rs62530366 variant 
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P-value

4.06E-02

3.75E-03

1.82E-03

5.50E-04

1.05E-02

4.70E-07

1.25E-04

3.28E-05

9.02E-06

7.28E-06

1.99E-06

5.67E-07

4.27E-06

1.05E-07

1.60E-06

1.24E-07

6.50E-07

1.00E-05

8.98E-06

6.02E-05

8.45E-05

2.17E-06

6.00E-08

3.06E-07

5.43E-06

5.56E-06

1.33E-04

6.07E-07

1.47E-05

5.16E-06

3.41E-06

3.04E-06

2.04E-04

5.83E-06

3.72E-05

5.39E-07

1.38E-06

9.33E-03

7.12E-02

* - Stage 2 SNPs available on Metabochip are reported by their position and rsID. Other 22 variants were either directly available in the InterAct and GERA GWAS, or proxies were used in GERA as follows: for 

=0.75), for rs3893328 variant rs75830455 (r2=0.53), for rs80020232 variant rs71587235  (r2=1.0), for rs191030109 variant rs146989164 (r2=0.60), for rs62530366 variant 
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