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Abstract. In this paper we demonstrate that the framework of non-
linear spectral decompositions based on total variation (TV) regulariza-
tion is very well suited for image fusion as well as more general image
manipulation tasks. The well-localized and edge-preserving spectral TV
decomposition allows to select frequencies of a certain image to trans-
fer particular features, such as wrinkles in a face, from one image to
another. We illustrate the effectiveness of the proposed approach in sev-
eral numerical experiments, including a comparison to the competing
techniques of Poisson image editing, linear osmosis, wavelet fusion and
Laplacian pyramid fusion. We conclude that the proposed spectral TV
image decomposition framework is a valuable tool for semi- and fully-
automatic image editing and fusion.

Keywords: Nonlinear spectral decomposition, total variation regular-
ization, image fusion, image composition, multiscale methods

1 Introduction

Since the rise of digital photography people have been fascinated by the possi-
bilities of manipulating digital images. In this paper we present an image ma-
nipulation and fusion framework based on the recently proposed technique of
nonlinear spectral decompositions [13, 14, 5] using TV regularization. By defin-
ing spectral filters that extract features corresponding to particular frequencies,
we can for instance transfer wrinkles from one face to another and create visually
convincing fusion results as shown in Figure 1.

∗These authors contributed equally to this work.



Fig. 1: Example of a facial image fusion result obtained by the proposed frame-
work. The left image of Reagan and right image of Obama were used as an input,
while the two middle images are synthesized using nonlinear spectral TV filters.

Classical multiscale methods such as Fourier analysis, sine or cosine trans-
formations, or wavelet decompositions represent an input image as a linear su-
perposition of a given set of basis elements. In many cases, these basis elements
are given by the eigenfunctions of a suitable linear operator. For instance, the
classical Fourier representation of a function as a superposition of sine and co-
sine functions arises from the eigenfunctions of the Laplace operator, i.e. from
functions vλ with ‖vλ‖ = 1 and ∆vλ = λvλ, with periodic boundary conditions.
Interestingly, the condition for vλ being an eigenfunction can be written in terms
of the regularization functional J(v) = 1

2‖∇v‖
2
2 as

λvλ ∈ ∂J(vλ), (1)

where ∂J(v) = {p ∈ X ∗ | J(u)−J(v)−〈p, u−v〉 ≥ 0} denotes the subdifferential
of the functional J : X → R, with X being a suitable function space, typically
a Banach space. Since inclusion (1) makes sense for arbitrary convex regulariza-
tion functions (e.g. for TV regularization), it provides a natural definition for
generalizing the concept of eigenfunctions, cf. [3].

The idea of nonlinear spectral decompositions [13, 14, 5] (which we will recall
in more detail in Section 3.1) is built upon the idea that an eigenfunction in the
spatial domain, i.e. an element meeting (1), should be represented as a single
peak in the spectral domain. Decompositions with respect to TV regularization
have been shown to provide a highly image-adaptive way to represent different
features and scales, see [13].

In this paper we will demonstrate that the nonlinear spectral image decom-
position framework is very well suited for several challenging image fusion tasks.
Our contributions include

– Proposing a nonlinear spectral image editing and fusion framework.
– Providing a robust pipeline for the automatic fusion of human faces, includ-

ing face and landmark detection, registration, and segmentation.
– Illustrating state-of-the-art results evaluated against Laplacian pyramid fu-

sion, wavelet fusion, Poisson image editing, and linear osmosis.
– Demonstrating the flexibility of the proposed framework beyond the fusion of

facial images by considering applications such as object insertion and image
style manipulation.



Copyright remark: All photographs used in this paper were taken from
the Wikipedia Commons page, https://commons.wikimedia.org/, or from the
free images site https://commons.pixabay.com/. The photo of Barack Obama
was made by Pete Souza - Creative Commons Attribution 3.0 Unported license,
see https://creativecommons.org/licenses/by/3.0/deed.en

2 Image Fusion

The most common image fusion techniques use a multiscale approach such as
wavelet decompositions [30] or a Laplacian pyramid [9] to decompose two or
more images, combine the decompositions differently on different scales, and
reconstruct an image from the fused multiscale decomposition. Applications of
the aforementioned fusion techniques include generating an all-in-focus image
from a stack of differently focused images (e.g. [20]), multi- and hyperspectral
imagery (cf. [1]), or facial texture transfers [28].

It was shown in [5, 15] that the nonlinear spectral decomposition framework
actually reduces to the usual wavelet decomposition when the TV regularization
is replaced by J(u) = ‖Wu‖1, where W denotes the linear operator conducting
the (orthogonal) wavelet transform. We, however, are going to demonstrate that
the image-adaptive nonlinear decomposition approach with TV regularization is
significantly better suited for image manipulation and fusion tasks.

Several other sophisticated nonlinear image multiscale decompositions have
been proposed including techniques based on bilateral filtering (e.g. [12]), weighted
least-squares [11], local histograms [19], local extrema [27], or Gaussian structure–
texture decomposition [26]. Applications of the aforementioned methods include
image equalization and abstraction, detail enhance or removal, and tone map-
ping/manipulation. While [26] briefly discusses applications in texture transfer,
the potential of a complete image fusion by combining different frequencies of
different images has not been exploited sufficiently yet.

For various image editing tasks related to inserting objects from one image g
into another image f , the seminal work of Perez, Gangnet and Blake on Poisson
image editing [23], provides a valuable tool. The authors proposed to minimize
E(u) = ‖∇u − ∇g‖2 subject to u coinciding with f outside of the region the
object is to be inserted into.

Recent improvements of the latter have been made with osmosis image fusion,
cf. [18, 17]. Linear osmosis filtering for image fusion is achieved by solving a drift-
diffusion PDE; here the drift vector field is constructed by combining the two
vector fields ∇ ln(g) and ∇ ln(f); parts of ∇ ln(g) are inserted into ∇ ln(f), and
averaged across the boundary. The initial value of the PDE is set to f , or the
mean of f . A detailed description of the procedure is given in [18, Section 4.3].
For a general overview of image fusion techniques in different areas of application
we also refer the reader to [25].



3 Nonlinear Spectral Fusion

The starting point and motivation for extending linear multiscale methods such
as Fourier or wavelet decompositions into a nonlinear setting are basis elements,
which often originate as eigenfunctions of a particular linear operator. As shown
in Section 1, Fourier analysis can be recovered by decomposing a signal into a
superposition of elements vλ meeting the inclusion (1).

As mentioned in the introduction, the disadvantage of conventional decompo-
sition techniques is the lack of adaptivity of the basis functions. In the following,
we recall the definition of more general, nonlinear spectral transformations that
allow to create more adaptive decompositions of images.

3.1 Nonlinear Spectral Decomposition

The idea of nonlinear spectral decompositions of [13, 14, 5] is to consider (1) for
one-homogeneous functionals J (such as TV) instead of quadratic ones, which
give rise to classical multiscale image representations. Since eigenvectors of one-
homogeneous functionals are difficult to compute numerically (cf. [3]), the prop-
erty one aims to preserve is that input data given in terms of an eigenfunction
is decomposed into a single peak when being transformed into its corresponding
(nonlinear) frequency representation.

Let us consider an eigenfunction f = vλ, ‖vλ‖2 = 1, obeying (1), and consider
the behavior of the gradient flow

∂tuGF (t) = −pGF (t), pGF (t) ∈ ∂J(uGF (t)), uGF (0) = f, (2)

for a one-homogeneous functional J . It follows almost directly from [3, Theorem
5] that the solution to this problem is given by

uGF (t) =

{
(1− tλ)f if tλ ≤ 1,
0 else.

(3)

Since uGF (t) behaves piecewise linear in t, one can consider the second derivative
to obtain a δ-peak. One defines

φGF (t) = t∂ttuGF (t) (4)

to be the spectral decomposition of the input data f , even in the case where f
is not an eigenfunction of J . The additional normalization factor t admits to the
reconstruction formula

f =

∫ ∞
0

φGF (t) dt+ f, (5)

with f := minf̃∈kernel(J) ‖f̃ − f‖2, for arbitrary f . We refer the reader to [14] for

more details on the general idea, and to [7] for a mathematical analysis of the
above approach.



As we can see in (3), peaks of eigenfunctions in φGF appear at t = 1
λ ,

i.e. earlier the bigger λ is. Therefore, one can interpret φGF as a wavelength
decomposition, and motivate wavelength based filtering approaches of the form

û =

∫ ∞
0

H(t) φGF (t) dt+H f, (6)

where the filter function H (along with the weight H) can enhance or suppress
selected parts of the spectrum.

As discussed in [5], there exists an alternative formulation to the gradient
flow representation defined in (2). One can also consider the inverse scale space
flow (see [8, 6])

∂tpIS(t) = f − uIS(t), pIS(t) ∈ ∂J(uIS(t)), pIS(0) = 0. (7)

For certain regularizations J , the two approaches are provably equivalent (cf.
[7]); hence, we use the approaches interchangeably based on the numerical conve-
nience, as we also empirically observe very little difference between the numerical
realisations of (2) and (7).

Note that we use the total variation as the regularizer J throughout the
remainder of this paper; however, other choices for J are possible (see [5]).

3.2 Numerical Implementation

Spectral Decomposition For the numerical implementation of our spectral
image fusion we use both the gradient flow as well as the inverse scale scale
flow formulation. The former is implemented in the exact same way as described
in [14]. Formulation (7) is discretized via Bregman iterations (cf. [22]). More
precisely, we compute

uk+1 = arg min
u

τk+1

2
‖u− f‖22 + (TV (u)− 〈pk, u〉), (8)

pk+1 = pk + τk+1(f − uk+1), (9)

starting with p0 = 0. We then define

ψk =

{
u1 if k = 1,
uk − uk−1 else,

(10)

to be the frequency decomposition of the input data f .
From the optimality condition of equation (8) we conclude that pk ∈ ∂TV (uk)

for all k. Furthermore, note that equation (9) can be rewritten as

pk+1 − pk

τk+1
= f − uk+1 (11)

and can therefore be interpreted as the discretization of the inverse scale space
flow. In our numerical implementation we use the adaptive step size 1

τk = 30 ·



Fig. 2: Example of a nonlinear frequency decomposition. The left image is the
input image to be decomposed, the following images illustrate selected spectral
components with increasing associated frequencies. This type of decomposition
is the main tool for our proposed image fusion framework.

0.6k−1 to better resolve significant changes of the flow. With this adaptation, we
found 15 iterations to be sufficient to approximately converge to u15 = f and to
still obtain a sufficiently detailed frequency decomposition. Figure 2 illustrates a
generalized frequency representation using the above method on an input image
of a bee.

To solve the minimization problem of equation (8) numerically we use the
primal-dual hybrid gradient method with diagonal preconditioning [24] and the
adaptive step size rule from [16].

Image Fusion The general idea of the spectral image fusion is to apply the
nonlinear spectral image decomposition to two images or regions therein, com-
bine the coefficients at different scales, and reconstruct an image from the fused
coefficients.

Let v be a registration function that aligns a part of the second image with
the location in the first image where the object is to be inserted into. Given the
corresponding spectral decompositions φ1 and φ2, we compute the fused image
ufused via

ufused(x) =

∫ ∞
0

H1(x, t)φ1(x, t) +H2(x+ v(x), t)φ2(x+ v(x), t) dt, (12)

where the two filter functions H1 and H2 determine the amount of spectral
information to be included in the fused image. Finally, we add a weighted linear
combination of the constant parts f1 and f2 of the two input images f1 and f2

to ufused. Note that – opposed to the original spectral representation framework
from [13, 14, 5] – we are considering x-dependent, i.e. spatially varying filters, to
adapt the filters in different regions of the images.

4 Results

4.1 Automatic Image Fusion of Human Faces

To illustrate the concept of using nonlinear spectral decompositions for image
editing, we consider the problem of fusing two images of human faces. The latter



Fig. 3: Illustration of the pipeline for facial image fusion using nonlinear spectral
decompositions.

has attracted quite some attention in the literature before, see e.g. [4, 28]. Note
that in contrast to [4, 28] our fusion process does not depend on a 3d model
of a face (which naturally means our framework does not handle changes of
perspective).

For the presented image fusion, we have developed a fully automatic image
fusion pipeline illustrated in Figure 3. It consists of face detection using the
Viola-Jones algorithm [29], facial landmark detection using [2], determining the
non-rigid registration field v that has a minimal Dirichlet energy ‖∇v‖2 among
all

possible maps that register the detected landmarks, a face segmentation using
the approach in [21] with additional information from the landmarks to distin-
guish between the face, mouth, and eye region, and finally the decomposition
and fusion steps described in Section 3, where we restrict the decomposition to
the regions of interest to be fused. Upon acceptance of this paper we will make
the source code available in order to provide more details of the implementation.

The segmentation into the subregions allows us to define spatially varying
spectral filters that treat the eye, mouth, and remaining facial regions differently,
where fuzzy segmentation masks are used to blend the spectral filters from one
region into the next to create smooth and visually pleasing transitions. Effects
one can achieve by varying the spectral filters in the eye and mouth regions are
illustrated in Figure 4.

Figure 5 shows the filters we used to fuse the faces of the presidents Obama
and Reagan for the introductory example in Figure 1. As illustrated, the spectral
filters may also differ for each of the color channels and can therefore also be



Fig. 4: The sub-segmentation of each image into a face, a mouth and an eye region
allows to define spatially varying filters. The above images illustrate effects of
incorporating eyes or the mouth from one or the other image.

applied to images decomposed into luminance and chrominance channels. In
our examples we used the (L,CG/M , CR/B) color transform which has shown
a promising performance e.g. for image demosaicking in [10]. As we can see in
Figure 5, one might want to keep more chrominance values of the target image
to retain similar color impressions. Furthermore, the filter responses do not have
to sum to one. In the high frequencies we keep a good amount of both images,
which – in our experience – leads to sharper and more appealing results with
skin-textures from both images.
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(a) Face filter for first image
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(b) Face filter for second image

Fig. 5: Illustration of the fusion filters to generate the images in Figure 1.

To illustrate the robustness of the proposed framework, we ran the fully auto-
matic image fusion pipeline on an image set of US presidents gathered from the
Wikipedia Commons page. The results are shown in the supplementary material
accompanying this manuscript. The proposed nonlinear image fusion approach
is robust enough to work with a great variety of different images and types of



photos. The supplementary material contains further examples of fusing people
with statues, and fusing a bill with a painting.

Finally, we want to highlight that the nonlinear image fusion framework
has applications beyond facial image manipulation. Similar to Poisson image
editing [23], one can insert objects from one image into the other by keeping low
frequencies (colors and shadows) from one image and using higher frequencies
(shapes and texture) from another image. Figure 6 shows an example of fusing
the images of a shark and a swimmer.

Fig. 6: Inserting the shark from the left image into the middle image via spectral
image fusion yields the image on the right: by keeping low frequencies from
the middle image, one obtains highly believable colors in the fusion result. A
smooth transition between the inserted object and the background image by
a fuzzy segmentation mask (alpha-matting) was used to further avoid fusion
artifacts.

4.2 Comparison to Other Techniques

To illustrate the advantages of the image-adaptive nonlinear spectral decompo-
sition we compare our algorithm to the classical multiscale methods of wavelet
fusion, Laplacian pyramid fusion, and to the fotomontage techniques of Poisson
image editing [23] as well as linear osmosis image editing [18, 17]. We compare
all methods on the challenging example of fusing a photo of Reagan with the
painting of Mona Lisa, see Figure 7. All methods use the identical registration-
and segmentation-results from the automatic fusion pipeline described in Sec-
tion 4.1. As we can see, Poisson and osmosis imaging transfer too many colors
of the reference images and require more sophisticated methods for generating a
guidance gradient field to also incorporate fine scale details of the target image
such as the scratches on the painting. Wavelet image fusion generates unnatural
colors and the Laplacian pyramid approach contains some halos. In particular,
the texture of Reagans cheeks makes the Laplacian pyramid fusion look unnat-
ural. By damping the filter coefficients of the nonlinear spectral decomposition,
one can easily generate a result which is subtle enough to look realistic but still
have clearly visible differences.

4.3 Artistic Image Transformations

Another application that demonstrates the variety of possibilities using nonlinear
spectral decompositions for image manipulation is transforming an image such



(a) Original (b) Spectral (c) Laplacian

(d) Wavelet (e) Poisson (f) Osmosis

Fig. 7: Comparing the spectral image fusion (b) for the example of injecting
details from the Reagan image into the image of Mona Lisa (a) with Laplacian
pyramid fusion (c), wavelet image fusion (d), Poisson editing (e), Osmosis (e).

that the transformed image has a new look and feel. This means the image
still keeps the same salient objects or features of the original image after the
manipulation process, but they now seem as if they were composed in a different
way.

As a first example we consider transferring an image of a real world scene
into a painting. To accomplish the latter, we extensively enhance medium fre-
quency bands to acquire some characteristics associated with oil paintings: a
small smearing effect and high contrast between different objects. To further
increase the painting effect we borrow brush stroke qualities from an actual
painting (Figure 8 left) and combine them with the original photo. The right
image in Figure 8 illustrates the result of such a procedure.

Figure 9 demonstrates a different type of manipulation enabled by nonlinear
spectral decomposition. In this case we keep only very low frequencies from a
fish image, and import all other frequencies from a mosaic image, leading to the
impression of a fish-mosaic in the fused image.



Fig. 8: Example of transforming a photo such that it gives the impression of
being an impressionist painting. Using the spectral decomposition, we extract
the brush stroke features of the painting (very left) from high frequency bands
at a certain area (marked in red) and embedded them into the photo image. The
result is shown on the right.

Fig. 9: Example of transforming ceramic art such that it gives the impression of
being a mosaic. Low frequencies from the ceramic art (left) are extracted and
combined with the high frequencies from the mosaic image (right).

5 Conclusions and Future Research

In this paper we demonstrated the potential of nonlinear spectral decomposi-
tions using TV regularization for image fusion. In particular, our facial image
fusion pipeline produces highly realistic fusion results transferring facial details
such as wrinkles from one image to another. It provides a high flexibility, leading
to results superior to methods such as Poisson image editing, osmosis, wavelet
fusion or Laplacian pyramids on challenging cases like the fusion of a photo
and a painting. Furthermore, it easily extends to several other image manipu-
lation tasks, including inserting objects from one image into another as well as
transforming a photo into a painting.

Note that the proposed image fusion framework is not only complementary
to other image fusion techniques, but can also be combined with those, e.g.
by applying them on individual bands of the spectral decomposition, which is
a direction of future research we would like to look into. Further directions of
future research include learning a regularization that is possibly even better
suited at separating facial expressions and wrinkles from the image than the
total variation.

Data Statement: the corresponding programming codes are available at
https://doi.org/10.17863/CAM.8305
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