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Abstract

Emergency management and long-term planning in coastal areas depend on de-
tailed assessments (meter scale) of flood and erosion risks. Typically, models of
the risk chain are fragmented into smaller parts, because the physical processes
involved are very complex and consequences can be diverse. We developed a
Bayesian network (BN) approach to integrate the separate models. An impor-
tant contribution is the learning algorithm for the BN. As input data, we used
hindcast and synthetic extreme event scenarios, information on land use and vul-
nerability relationships (e.g., depth-damage curves). As part of the RISC-KIT
(Resilience-Increasing Strategies for Coasts toolKIT) project, we successfully
tested the approach and algorithm in a range of morphological settings. We
also showed that it is possible to include hazards from different origins, such as
marine and riverine sources. In this article, we describe the application to the
town of Wells-next-the-Sea, Norfolk, UK, which is vulnerable to storm surges.
For any storm input scenario, the BN estimated the percentage of affected re-
ceptors in different zones of the site by predicting their hazards and damages.
As receptor types, we considered people, residential and commercial properties,
and a saltmarsh ecosystem. Additionally, the BN displays the outcome of dif-
ferent disaster risk reduction (DRR) measures. Because the model integrates
the entire risk chain with DRR measures and predicts in real-time, it is useful
for decision support in risk management of coastal areas.
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1. Introduction

About 10% of the world’s population lives in low-lying coastal areas, where
they are vulnerable to extreme events generated by the combined impact of
waves, surges and tides [1]. For example, if the sea surface elevation is higher
than a coastal defense, water overtops [2] or overflows [3] the structure and floods5

the hinterland. Moreover, engineered flood defenses may fail catastrophically
under extreme loading conditions [4, 5]. Similarly, beach and dune erosion at
sandy coasts can threaten structures close to the shoreline or result in breaches
and inundation [6, 7]. As a consequence, coastal communities may suffer from
material damages, economic, political and social disruption, health issues, or10

damaged ecosystems [8].
Under extreme circumstances, coastal storms can lead to societal disasters.

For example, around 1100 lives were lost when Hurricane Katrina made landfall
in New Orleans in 2005 [9]. More recently, 47 people died in La Faute-sur-Mer,
France, during storm Xynthia in 2010 [10]. These events emphasize a continuing15

need for effective coastal risk management; this is all the more important as
risks are projected to increase globally, due to growing populations and assets,
accelerated sea level rise and potential increases in storminess (both tropical
and extra-tropical) [11].

Coastal risk management essentially includes two types of activities: tak-20

ing prompt actions in the face of an impending storm and long-term planning.
Accordingly, we distinguish between a hot phase and a cold phase. In the hot
phase, emergency managers depend on real-time and reliable predictions of the
expected conditions in the coastal zone, as they attempt to select mitigation
measures and allocate limited resources minimizing the total sum of negative25

impacts. In the cold phase, multiple actors, including politicians, local stake-
holders and scientists, cooperate to determine sensible strategies for reducing
risks in an uncertain future [12]. To evaluate these strategies against historical
and conceivable future storms, they turn to impact assessments of the various
scenarios.30

Cutting across numerous disciplines, including oceanography, coastal sci-
ence and engineering, statistics, economics, and social and political science,
coastal risk assessment is highly challenging. Each field has complex models
which target individual elements of the risk process. For example, multivariate
probability models estimate the return periods of extreme storms [13, 14], while35

numerical models, based on, for instance, hydro- and morphodynamic processes,
determine the respective natural responses of the coast and extent of flooding
[15, 16, 17, 18]. Finally, behavioral or statistical models estimate the diverse
and complex consequences onshore [19, 20, 9, 21]. However, risk management
requires a framework that integrates the individual elements of the risk process.40

[22].
Two primary issues arise when attempting to incorporate offshore sea con-

ditions with their expected onshore hazards and impacts into a single model
for operational use. Numerical models, being computationally expensive, often
have a long run time, while instant assessments are needed for any conceivable45
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hazard scenario during both the hot and cold management phases. On the other
hand, the spatial and temporal scales of numerical and impact models differ from
one another and need to be integrated. Whereas numerical models have grids
whose sizes depend on the physical properties of the area under consideration,
impact models usually operate on the level of individual receptors.50

In the Netherlands, Jonkman et al. [8] assessed the flood hazard and corre-
sponding damages to the built environment, loss of life, as well as indirect eco-
nomic impacts (e.g., the interruption of production flows) for one hypothetical
extreme event. The fundamental element of this approach is a spatial database
through which they connect output and input of the individual models accord-55

ing to a common spatial attribute. While addressing the challenges of different
scales, the approach was limited to a single storm scenario. In principle, other
storms could be assessed similarly, but the computational time is determined
by the underlying numerical models. For this reason, the approach may not
be suitable to predict flood hazards and damages for an impending storm or to60

compare multiple hypothetical storm scenarios during round-table discussions
of stakeholders.

In contrast, Poelhekke et al. [23] integrated a wide range of simulated storm
scenarios in a discrete Bayesian network (BN) and assessed related onshore
hazards in Praia de Faro, Portugal. A BN is a graphical model that describes65

system relations in probabilistic terms and can give instantaneous predictions.
Nevertheless, Poelhekke’s approach did not estimate impacts nor does it provide
insight into the effectiveness of risk reduction measures. As far as we know, no
model has been proposed which renders instant assessments for various possible
storm scenarios and captures the entire risk chain from sea conditions to onshore70

impacts.
In this article, we design a decision support system (DSS) for the hot and cold

phases of coastal risk management as a BN. We build on the widely recognized
source-pathway-receptor (SPR) concept and attempt to extend and generalize
the work of Poelhekke et al. [23]. The DSS is part of a suite of tools, developed in75

the RISC-KIT project, whose purpose is to help effective disaster risk reduction
(DRR) management at coasts [24]. For different extreme event scenarios, the BN
predicts percentages of affected receptors in terms of the hazards experienced
and their impacts in real-time. Moreover, the BN can evaluate the effects of
potential DRR measures. Although our focus is on marine storms, which are the80

primary threat to coastline stability, the approach is broader. It is also possible
to include, or even solely concentrate on, other types of natural disasters, such
as extreme river discharges or exceptional rainfall events in this model.

The remainder of the paper is organized as follows. In Section 2, we introduce
the methodological background. We explain the SPR-concept and provide the85

basic theory of discrete BNs. In Section 3, we describe the design of the DSS,
followed by examples from the case study site of Wells-next-the-Sea, Norfolk,
UK, in Section 4. Finally, in Section 5, we discuss limitations and potential of
the approach and, in Section 6, we present our conclusions.
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2. Methodological Background90

In this section we provide an overview of models for the different elements
in the risk chain, following the logic of the source-pathway-receptor concept, as
well as an approach to quantitatively assess the effect of DRR measures. After
that we describe the method we use to integrate the various models and DRR
measures: BNs.95

2.1. The Source-Pathway-Receptor concept

The source-pathway-receptor (SPR) concept is a high-level framework to
evaluate risks. It was first used to describe the possible movements of a pollutant
from its source to a receptor [25] and is now well established in coastal risk
management [26, 27, 28, 29].100

In its basic form, the framework characterizes a causal chain of processes
and events in terms of sources, pathways and receptors (Figure 1). When con-
sidering coastal storms, the chain reaches from offshore to onshore. The source
is the offshore marine environment. Typical source variables, or boundary con-
ditions, are peak water level, maximum wave height and peak period, and storm105

duration. The storm threat can affect onshore areas through pathways. They
are the interaction of water levels and waves with coastal landforms and ecosys-
tems, coastal infrastructure and low-lying coastal hinterlands. Finally, receptors
are the entities at risk, such as people, built environments or ecosystems.

Figure 1: Illustration of the source-pathway-receptor (SPR) concept for coastal storms

Sometimes, the framework explicitly includes consequences (C) as a fourth110

term. Any receptor can experience them, if affected by a hazard. Gouldby and
Samuels [30] have defined a hazard as the triple: source, pathway and receptor.
However, we consider a hazard to be a local condition directly affecting the
receptors. Examples are flood depth, flow velocity and erosion, which can, for
instance, cause structural damage or injuries.115

Coastal risk assessments often follow this concept. The general idea is to
generate a set of representative extreme event scenarios, model the pathways,
and estimate the resultant impact [e.g., 31]. More specifically, detailed and
specific models are applied to various individual processes in the SPRC chain
and then linked together. However, to the best of our knowledge, a single model120

that captures the entire chain does not exist yet.
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2.1.1. Source Models

A set of scenarios that are representative for the storm climate at a given
site can be derived from a statistical analysis. Often, storms are characterized
by the values of hydraulic variables in deep water at the peak of the storm125

along with its duration. In the past decade, copula-based models have become
increasingly popular to estimate dependencies between (some) such variables
[e.g., 13, 32, 33, 14]. Copula models are a specific type of probability distri-
bution that characterizes the dependence structure between random variables
irrespective of their marginal behavior. The temporal evolution of the variables,130

which is typically required as input for pathway models, is often idealized as a
so-called equivalent triangle [34] . Nonetheless, a couple of studies model times
series explicitly [35, 36].

2.1.2. Pathway Models

The response of coasts to storms and the extent of flooding can be assessed135

with computational models, which numerically solve the physical equations that
govern the motion of water and sediment in the nearshore and the hinterland.

A number of different models [e.g., 15, 16, 17, 18], varying in their numerical
solutions, spatial dimensions and the range of physical processes included, have
been successfully applied to the problem of hazard modeling in different coastal140

settings [e.g., 37, 38, 39]. The models are driven by time series of meteorological
or hydraulic variables at the offshore boundary of their domain. Their output
contains time series of hydraulic or morphological variables, which are potential
hazards at the shore and in the hinterland, on a structured or unstructured
numerical grid.145

2.1.3. Consequence Models for Receptors

Diverse and complex consequences can arise from flooding or erosion. Sepa-
rate approaches can estimate economic, political, social, cultural, environmen-
tal or health-related consequences. In general, these approaches operate on the
receptor level. Most commonly, they are functions, often referred to as vulner-150

ability relationships, which map one or multiple hazards to consequences for a
specific type of receptor. Literature reviews on vulnerability relationships exist,
for instance, for economic damage [21], health impacts [19, 20], and the loss of
life [40] due to flooding.

2.2. Disaster Risk Reduction Measures in Models155

According to the terminology of the United Nations Office for Disaster Risk
Reduction, DRR measures reduce the exposure to hazards or lessen the vulner-
ability of receptors [41]. For modeling, a similar categorization into three types
is useful, as we explain below. Exposure-reducing measures move receptors out
of high risk areas, for instance, by temporarily evacuating people or perma-160

nently relocating residential areas. Pathway-obstructing measures change the
bathymetry and hence its interactions with waves and water levels. Examples
are beach or dune nourishment, revetments and floodwalls. The third type are
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vulnerability reducing measures, which include for instance flood protection for
individual receptors. Also raising the awareness of potential flooding and flood165

impacts amongst inhabitants belongs to this category.
Modeling the effect of DRR measures belonging to one of the first two types

is straightforward. For exposure-reducing measures, receptors are excluded from
the model or different types of land-use can be assumed for high risk areas. For
pathway-obstructing measures, the pathway models can be modified and the170

effect simulated. Modeling vulnerability-reducing measures is more intricate.
In principle, their effect is assessed by modifying consequence models [e.g., 42].
Some such measures such as early warning or awareness raising, depend on
effective uptake or operation by people. To accommodate this, Cumiskey et al.
[43] developed a methodology to quantify and aggregate factors that influence175

uptake and operation.

2.3. Bayesian Networks

In this section we explain the basic theory of BNs, as we will use them to
integrate the individual approaches into a homogeneous framework. BNs rep-
resent a joint probability distribution over a set of random variables. If one or180

more variables are observed, the BN evaluates the influence of this new evidence
on the distributions of all other variables. If the model is “small enough”, it
can predict changes in distributions instantly and can be interpreted intuitively.
For this reason, BNs have been used as early warning systems for natural haz-
ards [23, 44, 45] and as input for negotiations and discussions between experts,185

managers, stakeholders and citizens [46, 47, 48]. In coastal settings, such models
have been shown to successfully predict erosion and shoreline retreat [49, 50, 51].
BNs have also proved to be valuable for estimating damages to residential build-
ings after hurricanes [52] and to evaluate the risk to nuclear facilities from coastal
hazards [53].190

A discrete1 BN represents the joint probability mass function of a set of
random variables X = {X1, ..., Xn} as a directed acyclic graph [54, 55]. Each
variable constitutes a node in the graph. The nodes are connected by arcs which
indicate potential dependence between variables. The direction of an arc, from
so-called parent to child, signifies the direction of influence. The arcs must not195

form a cycle; no path Xi → · · · → Xi may exist for any i = 1, ..., n. Figure 2
illustrates such a graph structure.

The semantics of the graph stipulate that each Xi is conditionally indepen-
dent of all predecessors given its parents. Therefore, a joint probability dis-
tribution P (X1, ..., Xn) can be economically factorized through the chain rule:

P (X1, ..., Xn) =

n∏
i=1

P (Xi | pa(Xi)), (1)

1We do not consider continuous BNs in this article.

6



X1

X2

X3 X4 X5

X6

Figure 2: Example of a directed acyclic graph on six variables

where pa(Xi) denotes the set of parent nodes of Xi. The factors P (Xi | pa(Xi))
on the right hand side of the equation are stored as conditional probability tables
(CPTs), or in case of no parents as probability tables (PTs), and associated with200

each node Xi. Together, the graph semantics and all CPTs uniquely specify the
joint probability mass function of X.

A BN’s computing algorithm uses Bayes’ theorem. Lauritzen and Spiegelhal-
ter [56] developed exact algorithms for high dimensions, which are implemented
in most BN software. In two dimensions the theorem is given by

P (X1 | X2) =
P (X2 | X1)P (X1)

P (X2)
. (2)

P (X2 | X1) is the CPT of node X2. P (X1|X2), which is computed, is called the
posterior distribution, and can be interpreted as the updated distribution of X1

taking into account new evidence on X2.205

The CPTs and PTs can be learned from data, specified based on experts’
estimates or derived from equations. In the next section, we describe the general
structure of the DSS and explain how we quantified the CPTs and PTs.

3. Design of the Decision Support System

3.1. Overview210

The BN that we designed as a DSS for coastal risk management has five cat-
egories of variables: Boundary condition (BC), receptor type (R), hazard (H),
consequence (C), and DRR measure (M). Figure 3 shows a high-level frame-
work of the DSS and illustrates the influences from variables of one category
onto another. If in an application each category had only one variable, then this215

representation would correspond to the BN graph. There are no arcs between
variables of the same category. As a consequence, all boundary conditions, re-
ceptor types and DRR measures are mutually independent, while hazards and
consequences are conditionally independent of each other given their parents.
Admittedly, this assumption may appear unnatural for boundary conditions220

and DRR measures. We reflect on this issue when describing those categories
in Sections 3.3 and 3.4.1.
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BC

R

H

C

M

Figure 3: High-level framework of the DSS for coastal risk management illustrating the influ-
ences between boundary conditions (BC), receptors (R), hazards (H), consequences (C), and
risk reduction measures (M). The solid arc indicates that all variables of the parent category
influence all variables of the child category. If this is not the case, the arc is dashed.

All boundary conditions influence all hazards, which is indicated by the solid
arc in Figure 3. In contrast, each type of receptor (e.g., people, buildings, in-
frastructure, and ecosystems) has a sub-module in the BN. It consists of an R225

node (representing the locations of receptors on the site) as well as H nodes
(representing the hazards given the receptors’ locations) and C nodes (repre-
senting the consequences given (some of) the receptors’ hazards). The dashed
arcs in Figure 3 represent the fact that the sub-modules are not directly inter-
connected. Nevertheless, dependencies arise from the common parents, which230

are boundary conditions and, possibly, DRR measures.
While the high-level representation is generic, the BN is tailored to case

study sites through the choice of variables and the supplied training data, based
on the characteristics of the site under investigation. Owing to the generic
structure, the process of constructing the BN can be automated and, if de-235

sired, integrated with open shell systems that manage forecasting processes,
such as Delft-FEWS [57]. We developed specific file formats in which vari-
able definitions and training data need to be provided, as well as a C++ pro-
gram to read them and create a BN. The source code is open and available
at https://github.com/openearth/coastal-dss. An executable for Windows and240

documentation is also provided. The core of our program builds on SMILE,
which is a reasoning engine for graphical models. It is available free of charge for
academic research and teaching use from BayesFusion, LLC, http://www.bayesfusion.com/.

3.2. Training Data

In essence, the training data comprises a set of storm simulations, cadastral245

information on the case study site, and vulnerability relationships (cf. section
2.1.3). Additional data may be required to include risk reduction measures, as
described in Section 3.3.

The set of simulations should reflect the storm climate of the site. Each storm
is defined by an offshore time series of waves and water levels, which is typically250

assumed to be uniform along the offshore boundary, and the simulation shows its
propagation into the hinterland. For simplicity, we use statistics of the offshore
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time series, such as maxima and averages, to characterize the storm. In our
decision support framework, these statistics are the variables of the BC category.
Ideally, the storm scenarios are derived from a multivariate statistical analysis of255

measured wave and water level time series [e.g., 23, 35] and can be a combination
of historical and synthetic events. However, if adequate data or analysis tools
are not available, the scenarios can also be derived from expert opinion (e.g.,
with the classical model for structured expert judgment and extensions thereof
[58, 59].260

As the BC category is related to input of the simulations, the H category is
related to output. Statistics of the gridded time series of hydraulic or morpho-
logical variables in the hinterland constitute the H variables. Finally, the data
for the R variables stem from the cadastral information and the data for the C
variables are estimated from the H variables using vulnerability relationships.265

In each category, the CPTs or PTs of the variables are learned differently, as
will be explained in the following section.

3.3. Including DRR Measures

DRR measures do not have PTs. They are implemented as decision nodes2

and not as random nodes, because their states represent the actions of decision270

makers. For the same reason, measures are not interconnected with arcs. To
avoid situations in which incompatible measures are simultaneously selected,
they can be treated as different states of the same variable. When there are no
conflicts, the variables typically have two states (“in place” and “not in place”).

The three types of measures described in Section 2.2 can be incorporated275

into the BN. To demonstrate the outcome from exposure-reducing measures,
we conceptually move receptors to a safe zone. To show the effect the pathway
obstructing measures, we simulate different storm scenarios with the original
and the adapted bathymetry. Finally, we modify vulnerability relationships
and, if applicable, include a measure effectiveness factor to account for effective280

uptake and operation of vulnerability-reducing measures.

3.4. Quantification of (Conditional) Probability Tables

3.4.1. Boundary Conditions

The BN learns the PTs of BC nodes from storm simulations. The PT entries
are set to the relative frequencies of observed values in all simulations. Although285

there may be notable dependencies between hydraulic boundary conditions (cf.
Section 2.1.1), these are not modeled with the current version of the program;
boundary conditions do not have parents. We reflect on the implications of this
assumption in the discussion (Section 5).

2While we include decision nodes, our model is not an influence diagram, because it does
not solve for an optimal decision in terms of a maximum expected utility.
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3.4.2. Receptors290

Each receptor type, such as building, people or infrastructure, is associated
with a node that characterizes the location of a randomly selected object or
individual. To this end, the case study site is divided into zones (including
the external safe area, if applicable). A division is subjective and depends on
features of the site; natural topological or political boundaries can be used. The295

zones are identical for all receptor types.
Figure 4 shows an illustration site with 26 houses across two zones: the

beachfront and inland. We denote the node for the receptor type house as
Xhouse. To understand why we consider the location of an individual house as
uncertain, imagine selecting one of them randomly, just like drawing a ball from300

an urn. The probability for a house to be within a given zone is proportional to
the total number of houses in that zone. Because 10 houses are located at the
beachfront and 16 inland at the illustration site, P (Xhouse = beachfront) = 5/13
and P (Xhouse = inland) = 8/13. The same entries of the PT can be thought of
as a spatial distribution of the houses in terms of the zones.305

Note that the number of receptors in a zone could change for different com-
binations of exposure influencing DRR measures. In that case Xhouse would
have a CPT and not a PT, because DRR measure variables would be parent
nodes.

Beachfront	 Inland	

Se
a	

21 3

Figure 4: Illustration site with 26 houses distributed across 2 zones. The color of a house
indicates its degree of flooding: none is white, medium is white-blue, and high is blue.

3.4.3. Hazards310

The BN learns the CPTs of hazards from storm simulations as well, however
in a different manner than the PTs of boundary conditions. Now, the CPT
entries represent, for each degree of hazard severity, an estimate for the pro-
portion of affected objects or individuals. They can also be interpreted as the
probability of degree of hazard severity for a randomly selected receptor. Of315

course the proportions vary depending on the zone, the boundary conditions
and the DRR measures in place.

We illustrate the learning with an example and refer the reader to Appendix
A for the precise algorithm. Consider again the illustration in Figure 4. We
call the combination of boundary conditions and DRR measures a scenario.320

The hazard variable, flood depth, has three states: none, medium and high.
The flood depth at each house is indicated by its color: white, white-blue or
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blue. In the beachfront zone, 3/10 houses experience a high flood depth, 6/10 a
medium depth, and 1/10 none. These three numbers are the CPT entries given
the scenario and for the zone beachfront. Similarly, the entries are 3/16, 6/16 and325

7/16, for the zone inland under the same scenario.
Because the local features of a site influence the flood flow, the degree to

which a receptor is affected depends on its exact location. Without resolving to
the spatial scale of individual receptors, this is reflected by the above fractions.
As other types of receptors have a different spatial configuration (and total330

number), their fractions are different. Therefore, we model hazards separately
for each receptor type.

Finally, due to the discretization, it is not possible to distinguish storms
whose boundary conditions fall into the same pre-defined states. In such cases,
we average the observed fractions.335

3.4.4. Consequences

Consequences have truth tables, which are a special case of CPT. In a truth
table each combination of parent states corresponds to a single child state with
probability 1. Hence, the relationship of consequences to their parents is deter-
ministic. In this BN, we use vulnerability relationships, which are commonly340

used in the field (cf. section 2.1.3), to compute consequences as a function of
hazards and DRR measures.

4. Application to North Norfolk, UK

4.1. Case Study Site

The North Norfolk coast is a north-facing coastline, characterized by both345

gravel and sand barriers, with an extensive (>2000ha) saltmarsh area behind
barrier islands, spits and areas of low gradient sand flats on open coasts. In this
area the natural environment is a major source of revenue for the local economy
via its contribution to nature-based tourism and recreational uses. Analysis of
coastal hazards along this stretch of coast has highlighted Wells-next-the-Sea as350

a risk hot spot [60].
Wells is a small coastal town (population 2165, 2011 Census). It is the

largest urban center on the North Norfolk coast. The main industry of Wells
is tourism, but there is also a small fishing and a wind farm servicing industry.
The town has a long history of flooding due to storm surges. As such, the355

coastal defenses have been improved over time. The embankment forming the
western side of the Wells Harbour Channel breached in the catastrophic storm
of 1953 [61] and again in the storm surge of 1978 [62], leading to considerable
areas being flooded on the western side of the town. Following the storm surge
of 1978, this embankment was re-built to a much higher specification and, as360

a consequence, withstood the December 2013 surge with minimal damage [63].
In addition, the raising of the flood wall to the south of this embankment and
the construction of a movable barrier between this defense and the building line
at the back of the Wells Quay has reduced the risk of flooding to the low-lying
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western part of the town. Some individual residential and commercial properties365

have also implemented property level protection measures.

4.2. BN Specification

Following the general structure introduced in Figure 3, the BN for Wells
has boundary conditions, DRR measures, receptors, hazards and consequences.
Figure 5 shows the graph of the BN. The boundary conditions are maximum370

water level and maximum wave height. There are four receptor types, each with
its own hazards and consequences. For residential and commercial properties
we include flood depth and absolute monetary damage. For people we assess
the maximum depth-velocity product experienced and the risk to life. For the
saltmarsh, we include flood depths and wave height, and damage in terms of an375

ecosystem vulnerability indicator (cf. Table 2). Finally, there are two pathway
obstructing measures (extending the sea wall and increasing its height) and a
vulnerability reducing measure (raising awareness through display boards).

The BN is trained with 85 storm scenarios representing the range of poten-
tial extreme event conditions, which are generated from coastal scale modeling.380

They include historical storms (8 scenarios), climate change (18 scenarios) and
synthetic events (59 scenarios).

4.2.1. Boundary Conditions

We defined the extreme events at Wells in terms of the peak water level and
maximum significant wave height. We calculated the boundary conditions from385

a model train (Figure 6), which transforms coarse external model conditions to
detailed model results at the BN boundary condition location (Wells harbour
channel entrance, 52.993N 0.853E) and generates the input conditions for the
model train to calculate the subsequent flooding.

The model train uses predicted hindcast data at 12 locations from the CS3390

(before 2007) and CS3X (post 2007) tidal surge model run by the National
Oceanography Centre, UK (NOC). The model predicts hourly tide and surge
residual data with a resolution of approximately 12km which are used to drive a
2D TELEMAC model [16]. The TELEMAC model extends 50km offshore from
the case study site, over an area of 4750km2. The unstructured grid consists395

of 10,704 elements with 5759 nodes. The largest elements have a resolution of
12km but the grid resolution becomes finer towards the coast with the smallest
resolutions in the Wells Harbour channel of approximately 15m.

The wave conditions are generated at the entrance to the harbour channel by
2 nested SWAN models [64]. The nested SWAN models are driven by 2D spectra400

from the UK Met Office Wavewatch III (WWIII) North Atlantic European
model with a resolution of approximately 12km. The Met Office model has a
spectral resolution of 25 frequency bins and 24 directional bins. It is forced by
a 10m wind field from the Met Office Numerical Weather Prediction models
and the Global Wave Model. The wind characteristics are obtained from the405

10m wind field from the Met Office Numerical Weather Prediction model. The
water level and flow velocities are obtained from the TELEMAC model and
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Figure 5: Framework of the Bayesian Network for Wells-next-the-Sea
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Figure 6: Framework of the Model train to assess the flood hazard in Wells-next-the-Sea,
North Norfolk, UK.

interpolated onto the the nested SWAN model grids. The largest of those grids
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covers an area of 90 x 60km with a resolution of 5km, the smaller grid covers
an area of 32 x 13km with a resolution of 500m. Wave growth from wind,410

whitecapping, quadruplets, breaking waves, diffraction, triad interactions and
setup are included in the models using the present default settings (SWAN
version 41.01 [65]).

The historic storm events were generated by external model hindcast storms
selected where boundary conditions were available from external models. In415

total eight historic storm surge events were selected: 20-21 February 1993, 10
January 1995, 19-20 January 1996, 14 December 2003, 31 October-3 November
2006, 17-20 March 2007, 7-10 November 2007, and 4-7 December 2013. Syn-
thetic storm events were generated to produce a fuller range of potential storms
based on historic surge and wave conditions. The synthetic storms were gener-420

ated using a typical spring tide, with length of 55 hours, with the addition of
a storm surge residual from one of eight historic storm surges. The peak storm
surge residual coincided with the peak tidal water level. To create a greater
range of synthetic storms the spring tide or storm surge residuals were multi-
plied by a factor (0.7 - 1.3). Analysis of the historic surge events found no clear425

dependencies between the surge and wave characteristics. At this location it
is clear that it is the high water levels, usually caused by the coincidence of a
surge event with high water on a high spring tide, which generates the flooding.
In order to create representative wave conditions which are likely to occur with
a surge, the synthetic storm wave and wind conditions were taken from the430

historic storm events. The synthetic storms cover a range of conditions up to
a return period of 400 years, based on peak water level. Only those synthetic
storms which had an impact are included in the BN.

Climate change scenarios were generated by modifying the boundary condi-
tions from the historical storm event hindcast model to include a sea level rise435

prediction. The climate change scenario sea level and surge data were based
on the IPCC (2013) RCP8.5 (Representative Concentration Pathway) projec-
tions for 2060. The future extreme storm surge levels (SSL) along the European
coasts have been predicted by Vousdoukas et al. [66], using a DELFT3D-Flow
model forced by an 8 member climate model ensemble. The authors predict440

the RCP8.5 2060 relative sea level rise (RSLR) at the case study site (52.98N
1.228E) to be +39cm and the predicted change in surge height in 2060 for a 20
year return period is -4cm, giving an overall climate effect of +35cm.

4.2.2. Receptors

We divided the case study site into 6 zones, based on topographic features445

and key current flood prevention measures, such as the flood wall and movable
flood barrier. The receptor types are residential property, commercial property,
people and saltmarsh. Their locations are shown in Figure 7. We did not
include caravans as receptors themselves, but we did include the people living
inside the caravans in the analysis. We considered people to be inside their450

homes/caravans at the time of the flooding impact. The model assumed a ratio
of 3:1 for the number of people in houses to caravans.

14



Figure 7: Defined zones in Wells-next-the-Sea and receptor locations

4.2.3. Hazards

We obtained detailed hazard values (inundation depth, flow velocity, wave
height) by modeling the flood inundation in the study area and by mapping the455

receptor locations at their nearest grid point.
A small SWAN model (4 x 4km with a resolution of 15m) calculates the wave

height within the harbor channel. It includes the wave energy dissipation due
to the saltmarsh vegetation adjacent to the Wells Harbor (plant height=0.11m,
field data from Stiffkey, North Norfolk [67]; plant diameter=0.00125m [68], plant460

density=1061 plants per m2, field data at Tillingham, Essex [69]). From the
SWAN model we obtained water level and wave conditions at 64 locations along
the Wells Harbor Channel. We calculated overtopping rates at transects at these
64 locations using EurOtop [70] and used the resulting overtopping discharge to
drive a flood inundation model for the town. The inundation model covers an465

area of 7.5km2, the whole of Wells-next-the-Sea and some of the surrounding
countryside. The landward margin of the flood grid is defined by the 10m
Ordnance Datum Newlyn (ODN) contour. The majority of the grid has an
approximately 12.5m resolution. A finer resolution is needed to represent the
current flood wall and DRR measures in the mesh; therefore a resolution of470

0.5m is used at the wall.

4.2.4. Consequences

We determined the impact of the flooding with vulnerability relationships.
For residential properties, we estimated the potential absolute damage from the
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inundation depth. To do that, we applied UK depth-damage curves for semi-475

detached houses [71], the most common property type in Wells. The residential
properties are divided into those with flood protection and those without pro-
tection. From a site and Google Street View survey only 17 of 960 houses below
10m ODN were found to have any form of property level protection measures in
place. We assumed that if flood resistance measures are present the house had480

up to date protection to the current standards. UK industry standards assume
that resistance measures protect up to 0.6m above the threshold of the house
[71]. The depth-damage curves were therefore modified for properties with flood
protection, so that no damage occurred below 0.6m.

Commercial properties are also divided into those that have flood resistance485

measures and those that are unprotected (surveys found 10 properties with
flood protection out of a total of 140 surveyed). Commercial properties within
the case study site are typically small shops, restaurants, pubs, cafés and small
warehouses. We assumed that the depth-damage curve data for retail adequately
represents the commercial properties in the case study site. We obtained the490

depth-damage curve data from Penning-Rowsell et al. [71] for retail properties
with no cellar, a short duration flood and a mean area of 140.45m2. We modified
the curve following the same principle as for the residential properties with flood
resistance measures.

As is common in the field, we calculated risk to life through the matrix495

developed by Priest et al. [72], which is based on the depth velocity product
experienced and the vulnerability of the area (Table 1). Vulnerability of the
area is based on the type of buildings and the construction methods at three
levels: low vulnerability is applied to masonry, concrete and brick buildings;
medium vulnerability is applied to mixed building types and high vulnerability500

is applied to caravans, campsites, bungalows and poorly constructed buildings.
We assumed that the area is largely medium vulnerability, as it is a typical
residential area with mixed type of properties. An exception is zone 1 to the
west of the earthen embankment at the edge of the Wells Channel, which we
defined as a high vulnerability area due to the large number of caravans (568505

caravans in zone 1).

Nature of the Area
Depth Velocity product m2s−1 Low Vulnerability Medium Vulnerability High vulnerability
<0.25 Low risk Low risk Low risk
0.25-0.50 Low risk Medium risk Medium risk
0.50-1.10 Medium risk Medium risk High risk
1.10-7 Medium risk High risk Extreme risk
>7 Extreme risk Extreme risk Extreme risk

Table 1: Risk to Life matrix [72], relating the depth-velocity product experienced during a
flood event and the area vulnerability to the risk to life.

We estimated the damage to the saltmarsh by a ecosystem vulnerability
indicator (Table 2), which relates damage to inundation depth and maximum
wave height. We developed the saltmarsh vulnerability indicator from the work
of Woodroffe [73] and Möller et al. [68]. We assumed the saltmarsh at the case510
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study site is an open coast marsh in a mesotidal area. For inclusion in the BN,
the saltmarsh was divided into 372 individual units, based on the grid node
locations of the TELEMAC model.

Wave Height (m)
Depth (m) <0.3 0.3-0.6 0.6-1 1-2 >2
0 to 1 0 2 2 3 3
1 to 2 0 1 2 2 3
2 to 3 0 1 1 2 2
3 to 4 0 0 1 1 2

0: No effect
1: Changes within normal seasonal variation
2: Changes beyond normal seasonal variation,

but partial/total recovery
3: Irreversible change

Table 2: Saltmarsh Ecosystem Vulnerability Indicator [74]

4.2.5. DRR Measures

We tested two structural DRR measures: i) an extended flood wall and ii)515

increasing the height of the flood wall in combination with a movable barrier.
We ran modified versions of the TELEMAC flood model to assess the change
in the hazard experienced by the receptors. The extended flood wall lengthens
the existing wall along the front of the harbor quay, protecting the properties
in Area 3. The higher flood wall was chosen as water levels for the recent 2013520

storm surge event almost reached the top of the existing defenses.
Additionally, we included iii) a vulnerability influencing DRR measure in the

BN. This takes the form of a series of display boards containing cartographic
information on former shoreline positions to demonstrate coastal dynamics, and
images of flood markers along the coast to indicate elevations reached by historic525

storm surges. The aim of the display boards is to increase awareness of flood
risk, with a hoped-for increase in property level protection.

To determine the effectiveness of the display boards we employed the method
of Cumiskey et al. [43], which assumes that the effectiveness of DRR measure
depends on three factors: uptake, operator and performance. The values for530

each of these factors are displayed in Table 3. Uptake is the percentage of the
population who will adopt the measure. We calculated a value of 9% based on
50% of the population will see the display board, 30% of the population will
want to take action as the threat and coping appraisal level are high and 60%
of the population can afford the measures due to an above average income level.535

The operator factor is the percentage of the population that will operate the
measure before a flood, calculated as 77.3%. The Environment Agency [75] gives
an operator value of 86.1%, which was adjusted down as 24% of the population
within the North Norfolk Area of Natural Beauty (AONB) are second home
owners. We assumed that a third of the second homes would have someone540

available to operate the flood protection (due to the probability of an event
occurring at a weekend or holiday when second home owners are more likely to
be in residence) (72.3% operator value). With the use of the display boards it
is expected that more of the population will be reminded to check they know
how to operate the measures they have, giving a post DRR operation measure545

of 77.3%. The performance factor is the percentage of the population who
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will operate the measure effectively. We calculated a value of 73% from the
assumptions that 5% of equipment are lost or misplaced, 95% of the product
are in good working order, 90% of the population receive a flood warning, and
that there is a 90% chance that flood heights do not exceed flood protection550

level [76].
By combining the factors, we estimate an increase of property level protec-

tion with the display board DRR of 5.08%. While it is possible to include the
increase in protection as a measure effectiveness node, in this instance, we have
directly modified the vulnerability relationships accordingly.555

Influencing Factors Post DRR measure
Uptake: % of the population who will adopt the measure 9%
Operator: % of the population that will operate the measure before a flood 77.3%
Perfomance: % of the population who will operate the measure effectively 73%

Table 3: Influencing factors for the effectiveness of the display board DRR measure

4.3. Results

We could predict hazards and impacts in Wells with the BN in real-time
without the need for further detailed flood modeling, as the BN is trained with a
range of potential storms. The BN also allowed the impact and cost-effectiveness
of the DRR measures to be studied. The quantified model with its prior prob-560

abilities can be seen in Figure B.10 in Appendix B. In this section, we describe
the BN results for a storm of 4.41 m water level and 2.17 m significant wave
height. This storm was calculated as the 1 in 100 year return period storm
based on the maximum water level only. For reference, the BN constraint on
these bins is given in Figure B.11 in Appendix B.565

The majority, 93.55%, of residential properties had no flood inundation and
therefore sustained no damages (Figure 8a). Maximum inundation depths with
an associated absolute damage of £30,000-55,000 reached 0.49% of the proper-
ties. The higher sea wall had little effect on the absolute damage distribution
(Figure 8c). The extended sea wall shifted the distribution of damage to lower570

values (Figure 8b). Display boards can be applied together with any of the
structural measure options. Whilst the display boards had little influence on
the largest damage bins, due to the property level protection only protecting
up to 0.6m, the distribution of damage shifted to lower levels below 0.6m (Fig-
ure 8d, 8e, 8f).575

Commercial properties were at a greater risk in this scenario with 36.6%
of commercial properties experiencing some flooding with no DRR measures
in place (Figure 9a). 5.91% of commercial properties were inundated by 1-3m
resulting in absolute damage of £120,000 to 200,000. Again, the higher sea wall,
showed little damage reduction, suggesting that this is not a suitable measure580

for this storm scenario (Figure 9c). The extended sea wall reduced the number
of commercial properties experiencing the highest levels of absolute damage
(Figure 9b). The Display Board showed a shift to lower levels of damage for
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all the scenarios tested. However, they had no influence on the higher damage
levels due to the flood protection height limit (Figure 9d, 9e, 9f).585

Figure 8: Absolute Residential Damage values for the 1 in 100 year return period storm with
a) No DRR measures, b) Extended sea wall c) Higher sea wall d) Display Boards e) Display
Boards and Extended sea wall and f) Display Boards and Higher sea wall

Figure 9: Absolute Commercial Damage values for the 1 in 100 year return period storm with
a) No DRR measures, b) Extended sea wall c) Higher sea wall d) Display Boards e) Display
Boards and Extended sea wall and f) Display Boards and Higher sea wall
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97.6% of the people were not at risk to life, 2.3% at a low risk and 0.1% at
a medium risk. The risk to life changed through the hazard influencing DRR
measures, as the measures modified the maximum depth-velocity product in
Wells. With an extended sea wall, risk to life was reduced compared to the
no DRR case. 98.3% of the population was at no risk and 1.6% at a low risk.590

The higher sea wall had negligible influence on the risk to life. 97.5% of the
population was at no risk, 2.3% at low and 0.1% at medium risk.

The saltmarsh was not influenced by the DRR measures due to its location
seaward. For this 1 in 100 year storm, 98.4% of saltmarsh was undamaged,
while 1.54% of the saltmarsh experienced changes within the normal seasonal595

variation of saltmarsh condition.
We observed similar effects of the DRR measures across all the storm scenar-

ios of the BN. The higher sea wall showed a very similar distribution of damage
to the no DRR measure option for all the storm scenarios, suggesting that the
higher sea wall is not a suitable DRR measure at this location. The extended600

sea wall led to a slight reduction in damage to residential properties, a slight re-
duction in risk to life and a larger reduction in damage to commercial property.
The display board DRR measure showed a general reduction in commercial and
property damage for those properties with low inundation depth, however, at
large flood depths this DRR measure had no effect.605

5. Discussion

In this section we reflect on a number of aspects related to limitations and
potential of the approach. A main advantage of the BN framework is that we
can immediately predict what proportions of receptors experience hazards and
consequences in distinct spatial zones of a site, when we impose evidence for610

the offshore boundary conditions of a storm scenario. This property is useful in
operational forecasting and early warning systems3. Many of them rely on en-
semble forecasting to account for (some of the) uncertainties in initial conditions
and model formulations of numerical weather predictions and regional hydro-
dynamics and wave models (e.g., see references in [77]). Hence, the boundary615

conditions that the BN should evaluate in the hot phase could be an ensemble
instead of a point forecast. The BN could deal with such forecasts.

To explain how, we first consider the simple case of a single boundary condi-
tion variable influencing a single hazard variable. We recall that given a regular
point estimate for the boundary condition, the BN predicts a distribution for620

the hazard. In the present application, the distribution can be interpreted as
the proportions of receptors in the area that are affected. Thus, an ensemble
of boundary conditions would link to an ensemble of hazard distributions. In
the BN, we can set the distribution of the boundary condition node so that it
represents the ensemble members. The updated hazard distribution would then625

3For technical details on integrating the BN into forecasting systems see Bogaard et al.
[57]. They describe the integration into Delft-FEWS, a generic tool to set up such systems
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be an estimate of the ensemble mean hazard distribution. Additionally, we can
obtain a worst-case and best-case hazard distribution, by conditioning on the
lightest and the most severe boundary conditions, respectively.

In principle, the ensemble mean can be estimated for multiple boundary
conditions as well, but we might introduce error, because they are modeled as630

independent in the BN. This model assumption is generally unproblematic for
predictions based on fixed values of all boundary conditions. However, neglect-
ing those dependencies can limit the BN’s applicability for other purposes. In
particular, this simplification can introduce error to the estimates of uncondi-
tional hazard and consequence probabilities, as the BN evaluates the law of total635

probability. These probabilities would be necessary for risk assessments and to
find the most economical suite of DRR measures [e.g., 78, 79]. The situation is
similar for hazard and consequence probabilities that are computed for updated
distributions of boundary conditions, for instance to represent an ensemble fore-
cast. Finally, the assumption could also have effects on the diagnostic reasoning640

(i.e., in opposite arc direction) of the BN, because then the unconditional hazard
and impact probabilities appear in the denominator of Bayes’ theorem.

To expand the BN’s potential for wider applications, the graph structure
dictated by the framework should be adapted so that it can represent the multi-
variate distribution of boundary conditions at case study sites more realistically.645

We also recommend, to investigate the influence of different discretizations on
the dependence structure and, if necessary, to optimize it per site. Of course,
a prerequisite for these extensions would be a multivariate statistical analysis
of available boundary condition measurements or hindcast for the location of
interest, for instance with copula-based approaches [13, 14].650

Finally, a general limitation of the proposed BN approach is its reliance on
synthetic data. While we need modeled data to gain insight into hazards and
impacts of storms when field observations are lacking, the validity of the BN
depends on the validity of the underlying data-generating models. At present,
we do not account for imperfections in those models, but future research should655

explore the sensitivity of BN predictions to errors or uncertainties in the data
generation process.

6. Conclusion

We developed a BN approach to support decision making in coastal risk
management. An important contribution is the learning algorithm for the BN,660

which integrates output from storm simulations with land use data, vulnerability
relationships and DRR measures. The algorithm is programmed in C++ and
openly available at https://github.com/openearth/coastal-dss. We described
the application to a small town in North Norfolk, UK, which is a risk hot spot
during coastal storms.665

The case study demonstrates how information flows through the BN and
how it can predict onshore hazards and impacts, when provided with evidence
of the offshore boundary conditions of a storm scenario. Because detailed data
of severe storms including their hazards and impacts are almost never available,
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the BN learns from a database of hindcast and synthetic events. Each event670

in the data-base is simulated with a 2D physics-based numerical model that
covers the hot spot area. This way, the training data set captures the depen-
dence between boundary conditions and various hazards, such as erosion and
flood velocity, and reflects the complex influence of the local bathymetry. At
this stage, we take the precise locations of receptors into account. We include675

the dependence between hazards and impacts via vulnerability relationships,
such as depth-damage-curves. Finally, we can also incorporate DRR measures.
If they are structural, they are added through additional simulations with al-
tered bathymetry. Otherwise, we assign them modified spatial distributions of
receptors or vulnerability relationships.680

The resulting BN forms a comprehensive and concise representation of risk
propagation in a complex system of physical, ecological and human components.
From a practical point of view, this integrative character, together with the ca-
pability to predict in real-time, makes the BN a helpful tool for decision makers.
From a scientific point of view, the model development approach emphasizes how685

results from multiple disciplines must be connected in order to understand risks
and can provide an objective basis for choosing DRR measures.
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Appendix A. Learning Algorithm for the Conditional Probability Ta-
bles of Hazard Nodes930

Let Xhr denote a hazard node for receptor type r with states shr = 1, ..., Shr .
We denote DRR measures, boundary conditions and receptors analogously using
the subscripts m, bc and r (cf. Table A.4).

Before learning the CPT, we introduce an experience matrix, E, of size
Sbc×Sm∈pa(hr). Sbc is the vector of number of states of all boundary conditions
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Table A.4: Nomenclature for CPT learning

Super- or Subscripts
n simulation index
bc boundary condition index
m DRR measure index
r receptor type index
h hazard index
pa parent set

Variables
Xbc boundary condition bc
Xm DRR measure m
Xr receptor type r
Xhr hazard h for receptor type r
E experience matrix

Constants
Sbc number of states of Xbc

Sm number of states of Xm

Sr number of states of Xr

Shr number of states of Xhr

and Sm∈pa(hr) is the vector of the number of states of DRR measures in the
parent set of Xhr

. Before learning, all entries are 0. For each simulation n we
set

E(n)[s
(n)
bc , s

(n)
m∈pa(hr)

] = E(n−1)[s
(n)
bc , s

(n)
m∈pa(hr)

] + 1. (A.1)

Here, s
(n)
bc and s

(n)
m∈pa(hr)

denote the states of X
(n)
bc and X

(n)
m∈pa(hr)

in simulation

n. Then, we compute, for each sr and shr ,

Pr(n)(Xhr = shr | Xbc = s
(n)
bc ,X

(n)
m∈pa(hr)

= s
(n)
m∈pa(hr)

, Xr = sr)

=

m(n)
sr,shr

mr
+ p

(n−1)
Xhr |X

(n)
bc ,X

(n)

m∈pa(hr)
,Xr

· E(n−1)[s
(n)
bc , s

(n)
m∈pa(hr)

]

E(n)[s
(n)
bc , s

(n)
m∈pa(hr)

]
,

(A.2)

where m
(n)
sr,shr

is the number of receptors of type r in zone sr that experience

hazard Xhr
in state shr

in simulation n. Further, we used p
(n−1)
Xhr |X

(n)
bc ,X

(n)

m∈pa(hr)
,Xr

935

to denote Pr(n−1)(Xhr
= shr

| Xbc = s
(n)
bc ,X

(n)
m∈pa(hr)

= s
(n)
m∈pa(hr)

, Xr = sr).

Thus, according to equation A.2, the CPT entries represent average proportions
of receptors of type r subjected to shr

over all simulations with identical states
for boundary conditions and DRR measures.
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Special character Meaning
p +
m −

.
to

Table B.5: Special characters used in state names in GeNIe

Appendix B. BN for Wells-next-the-Sea in GeNIe940

As graphical user interface for the BNs we used GeNIe, which is available
free of charge for academic research and teaching use from BayesFusion, LLC,
http://www.bayesfusion.com/. Because the state names of the nodes in GeNIe
must be strings with no spaces and no symbols, we resorted to special characters
to represent positive or negative values, decimals and ranges (Table B.5).945

Figure B.10 shows the quantified BNs with its prior distributions and Fig-
ure B.11 shows the quantified BN conditioned on the states corresponding to a
1 in 100 year return storm (water level =4.41m; wave height =2.17m).
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Figure B.10: Bayesian Network for Wells-next-the-Sea with prior distributions
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Figure B.11: Bayesian Network for Wells-next-the-Sea showing a 100 year return period event
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