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Abstract 

There has been a number of discrete facility location models that deal with the use of some 

equality measures of the distances between the facility and the users. They have been used 

in order to guarantee a similar level of equity among the users that may be affected in a 

positive or in a good way from a facility. These models have been formulated trying to adapt 

equality measures taken from context different from the location one. This way, every 

measure is very specific to the particular application and it is not highlighted why a measure 

should be selected and what is the contribution to the equity distribution among the users 

that can provide. In this paper, we propose a Facility Location Problem (FLP) in which we 

have to locate a given number of facilities among a set of potential facilities, optimizing an 

equality measure. We propose a computational study in order to test the similarity and the 

differences of a good number of measures with more than a single facility to locate and we 

point out which measures produce similar results and how they depend on each other.  
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1 Introduction   

Facility Location Problems (FLPs) consist in defining the position of a set of facilities, within 

a given location space, on the basis of a distribution of demand to be allocated to the facilities. 

The field is wide and evolving, and many FLPs can be formulated according to different 

criteria (e.g. number of facilities, facility/demand space, service competition, objectives, and 

application fields). For several applications it is appropriate to search for “fair” solutions with 

so-called “balancing objectives” i.e. objectives that balance the consequences of positioning 

facilities in order to guarantee a measure of equality in the distribution of costs and/or benefits 

(Eiselt and Laporte, 1995). More precisely, the level of equality in decision of choosing new 

sites for facilities can be evaluated comparing the consequences, both positive and negative, 

resulting for the groups that benefit or suffer it (Marsh and Shilling, 1994). In practice, if each 

group receives an equal share, then equality is guaranteed. Following Eiselt and Laporte 

(1995), in a FLP a balancing objective consists in a measure of the level of equality in the 

distribution of distances between users, located in demand points, and facilities.  

Several papers deal with the problem of having fair solutions for FLPs.  Typically, in the 

applications or case studies an equality measures is adopted as optimizing criterion without 

any justification of the choice or implication of it. For example, Burkey et al., (2012) uses the 

Gini coefficient to evaluate the equality of the distances for the patient to the nearest hospital. 

In the same perspective, Smith et al. (2013) proposes to use equity objective as weighted 

positive and negative deviation from a defined distance in hierarchical models for the location 

of facility in the public sector.  Recently, the Gini coefficient has been used by Romero et al. 

(2016) to model the risk associated with the decision on the location and routing of a 

transportation railway for hazardous products. 

Indeed, the majority of the papers list some measures that could or have been used in FLPs 

(i.e., Erkut 1993, Marsh and Shilling 1994, López-de-los-Mozos and Mesa 2001, López-De-
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Los-Mozos et al. 2008, Miyagawa 2014 and Kalcsics e al. 2015). They attempt to complete 

an exhaustive list of equality measures and to define some properties that show the 

differences among the several measures. Even so, these analyses present several weak 

points. First, all the measures have been adapted from other contexts and some of them 

have never been used in a FLP. Moreover, the properties that should help to choose which 

measure adopting are a transformation of general properties that have been taken from other 

fields (Marsh and Shilling, 1994) with only some attempts to particularize them for the location 

context (Barbati and Piccolo, 2016). Furthermore, even if theoretical properties have been 

proposed, these are related to only some of the measures as in Drezner et al. (2009) for the 

Gini coefficient and the maximum absolute deviation, or in Foul (2006) for the center 

measure. These theoretical results are related only to a single facility problem, without 

considering the case in which more facilities have to be located. In addition to focus on a 

single measure for a single facility location problem, they also deal with some particular 

configurations of the location space as in López-de-los-Mozos and Mesa (2001) for the 

maximum absolute deviation on a network or the variance problem in a discrete space as in 

Drezner and Drezner (2007) and Bruno et al. (2010).  

We propose a computational study in order to evaluate existing correlations in using different 

equality measures in the context of FLPs.  For small problems with just one facility to locate, 

it has been showed (Erkut, 1993) that applying different equality measures can bring to a 

different selection of the facility located. Thus, we aim to show that even when we have more 

facilities the choice of the equality measures is influencing the preferred position for the 

facilities to locate. In this sense, it is fundamental to understand if the use of different 

measures will imply that the set of facilities chosen is related or even the same when adopting 

a different measure. Furthermore, considerations on the computational efforts are required. 

Indeed, these two factors can determine which equality measure optimizing.  
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The problem stands because several measures have been defined to describe the same 

concept of the equality of the distances from the facilities to the demand points. Other 

classical objectives do not present several measures for the same concept as for example 

the median problem that adopts as objective function the minimization of the sum of the 

distances (Hakimi, 1965).  

Our study addresses these challenges by comparing a big number of measures, never being 

analyzed before in a computational study. The similarities of the selected position for the 

facilities and the different computational effort required are factors that influence the choice 

of the measure to optimize. For example, if a measure requires huge computational times 

and the optimal set of facilities  is related to the one obtained adopting a different measure 

that takes less computational time, then this last measure could be preferred to the first one.  

On the other hand, if a measure is not related to other ones, then its adoption could be 

justified referring to some of the properties indicated in the literature (Barbati and Piccolo, 

2016).  

At the best of our knowledge, in only one paper equality measures have been compared in a 

computational study (Drezner, 2004); the authors found the best location of casualty 

collection points that are expected to become operational in case of a human-made or natural 

disaster with mass casualties, such as a high-magnitude earthquake. They suggested and 

analyzed five objective functions including the Variance and the Gini Coefficient. In addition, 

a multi-objective model has been proposed also applied to a scenario based on a large 

earthquake hitting Orange County (Drezner et al., 2006). The authors after having used the 

five different measures have concluded that some of them are not useful in this particular 

application without further exploiting why the measures were not appropriate or which was 

their grade of similarity.  
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Let us justify our approach through the following comparison of two different applications of 

FLPs. In the first problem, we have to locate a new plant for the disposal of waste residual of 

a city. Let us suppose that this city is quite far from other cities. Our objective is obtaining 

equality in the distances from the households and the plant. In the second problem we have 

to determine the location of a given number of ambulances for each time cluster in which 

significant changes in demand pattern occur. In this case we want equality in the distances 

between the household and the ambulances. Both these problems have been studied in the 

literature adopting several different objectives (e.g., Erkut et al. 2008 and Rajagopalan et al. 

2008). Clearly, a huge difference emerges in terms of the strategic decision. While the 

decision of the plant will be a long-term decision, the decision for the location of the 

ambulances is a short term decision that may require changes several times during the same 

day.  This way, while for the location of the plant even measures with long computational 

times could be used, for the location of the ambulances measure with short computational 

times should be preferred. Moreover, the choice of the plant will have a huge impact on the 

population and it is likely that will cause concerns among the people; thus, it could require a 

better and more solid justification from the authorities. If the decision maker choses a very 

particular measure that implies a very particular position for the facility, not similar to other 

ones it is very difficult to justify the choice of that measure in order to guarantee equality by 

the decision maker. Whereas, in the case of the ambulances, given that their locations 

change quite often it is more unlikely to get obstruction from the population even a measure 

not related to others could be accepted. Another aspect of the decision concerns if the facility 

should be located inside or outside the city. In fact, it has been verified that a drawback of 

using equality measures is that solutions can be not efficient (e.g., Smith et al. 2013).  In 

particular, if we assume that our city could be approximated with a uniform distribution of 

demand points, some measures are minimized when the facility is located outside the city, 
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while other when the facility is located inside the city (Barbati and Piccolo 2016). In our 

example, the adoption of the first group of measures could be more useful for the first 

problem. Whereas, for the second problem, given that is a public and desirable service it is 

more useful to locate the ambulances inside the boundary of the city.  Evidently, it remains 

the problem of choosing among the measures which one is most appropriate considering if 

we want a ‘consistent’ measure, in the sense that the results will be replicated adopting 

another measure. Moreover, we need to verify that the measure adopted can be calculated 

in adequate computational times. Our computational study permits to investigate all these 

aspects.  We use an ad-hoc defined correlation coefficient to verify the similarities of the 

measures. Indeed, a correlation analysis can help to understand if the choice of the indicator 

would have resulted in a different outcome as showed in different fields such as social science 

(Kawachi and Kennedy, 1997), signal processing (Hu and Loizou, 2008) or economics 

(Geyer, 2010).   

The remainder of the paper is organized as follows. In the next section, we illustrate the most 

meaningful measures selected from the literature. Afterwards we describe the characteristics 

of the performed empirical analysis. Then the obtained results are shown and discussed. 

Finally, conclusions and directions for further researches are drawn. 

 

 

 

2 Equality Measures for FLPs 

The list of possible measures has been described in three fundamental surveys on the topic 

(Erkut 1993, Marsh and Schilling 1994, Eiselt and Laporte 1995). 

To provide useful indications about the appropriateness of measures to represent balancing 

objectives, in the literature different methodologies have been used. The first attempt in this 
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field was performed by Halpern and Maimon (1983) who studied the behavior of four goals 

on a tree networks to determine the degree of agreement or disagreement between the 

analyzed measures. Marsh and Schilling (1994), as well as Eiselt and Laporte (1995), 

indicated some properties that a measure should reasonably satisfy. Erkut (1993) presented 

some axioms for the appropriateness of equality measures. He also calculated some 

statistics occurring among a set of four measures for a single location problem solved on ten-

node randomly generated instances on a square. Drezner et al. (2009) conducted a specific 

analysis on one of the most widely used equality measures, the Gini Coefficient, highlighting 

its behavior for a single facility problem with demand points uniformly distributed.  Similar 

analysis has been proposed also for a new measure called the Quintile Share Ratio (Drezner 

et al. 2014). Recently Barbati and Piccolo (2016), proposed new properties that better 

specified the usefulness of every equality measure directly in the context of a location 

problem. Their analysis highlighted the typical behaviour of the most popular measures in 

presence of a uniform distribution of demand points in a regular circular location space.   

Our paper aims at providing, in our opinion, a useful empirical sensitivity that may represent 

a support in the choice of an appropriate and consistent measure. In the following we describe 

the analysis performed on a significant number of the mentioned measures and we show and 

discuss the obtained results. 
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Table 1 Equality Measures for FLP 

Code Measure Formulation 
Erkut 

(1993) 

Marsh 

Shilling 

(1994) 

Eiselt 

Laporte 

(1995) 

CEN Centre max
𝑖∈𝐼

𝑑𝑖 • • • 

RG Range max
𝑖∈𝐼

𝑑𝑖 − min
𝑗∈𝐼

𝑑𝑗  • • 

MAD 
Mean Absolute 

Deviation 

∑|𝑑𝑖 − �̅�|

𝑖∈𝐼

 • • • 

MD 
Maximum Absolute 

Deviation 

max
𝑖∈𝐼 

|𝑑𝑖 − �̅�| • • • 

VAR Variance ∑(𝑑𝑖 − �̅�)

𝑖∈𝐼

2

 • • • 

AD Absolute Difference ∑ ∑|𝑑𝑐 − 𝑑𝑑|

𝑑∈𝐼𝑐∈𝐼

 • • • 

SMDA 
Sum Maximum 

DifferenceAbsolute 

∑ max
𝑑∈𝐼

|𝑑𝑐 − 𝑑𝑑|

𝑐∈𝐼

 •   

MMDA 
Maximum Maximum 

Difference Absolute 

max
𝑖∈𝐼

max
𝑗∈𝐼 

|𝑑𝑖 − 𝑑𝑗| •   

MSDA 
Maximum Sum 

Difference Absolute 

max
𝑐∈𝐼

∑|𝑑𝑐 − 𝑑𝑑|

𝑑∈𝐼

 •   

LOGVAR Variance of Logarithms 
1

𝑛
∑(log 𝑑𝑖 − log �̅�)

𝑖∈𝐼

2

  • • 

GC Gini Coefficient 
1

2 × 𝑛 × �̅�
∑ ∑|𝑑𝑐 − 𝑑𝑑|

𝑑∈𝐼𝑐∈𝐼

 • • • 

THE 
Theil’s entropy 

Coefficient 

1

𝑛𝑑
∑(𝑑𝑖 × log 𝑑𝑖 − 𝑑̅ × log �̅�)

𝑖∈𝐼

2

  • • 

SI Schutz’s Index 
1

2 × 𝑛 × �̅�
∑|𝑑𝑖 − �̅�|

𝑖∈𝐼

  • • 

VC Coefficient of Variation 
1

�̅�
∑ (𝑑𝑖 − �̅�)

2
𝑖∈𝐼,    • • 

ATK Atkinson’s coefficient 1 − 𝑛1/(𝛿−1) × [∑ (
𝑑𝑖

�̅�
)

1−𝛿

𝑖∈𝐼

]

1 (1−𝛿)⁄

  • • 
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3 The formulation of a p-FLP with equality objective  

Our analysis is oriented to determine relationships and correlations between pairs of 

measures when used as objective function to solve FLPs with balancing objectives. In other 

words, when we adopt a specific measure as objective function it could be useful to analyse 

what it would happen to the other measures. 

To this aim we introduced a formulation of a mathematical model to describe a general 

problem of location of 𝑝 facilities with the objective of minimizing an equality measure. In 

order to do that, we considered the following notation: 

𝐼  the set of  n demand points indexed by i; 

𝐽  the set of  m potential facility locations indexed by j; 

𝑑𝑖𝑗  the distance between demand point i and facility j; 

𝑥𝑖𝑗  a binary variable equal to 1 if the demand point 𝑖 is allocated to the facility j (0 

otherwise); 

𝑦𝑗  a binary variable defined equal to 1 if in 𝑗 a facility is located (0 otherwise); 

�̅�  the average distance between demand points and the patronized facilities defined as 

              ∑ 𝑑𝑖𝑗 ×𝑖 𝑥𝑖𝑗/𝑛; 

M  a large integer number such that 𝑀 ≥ max
𝑖∈𝐼,𝑗∈𝐽

𝑑𝑖𝑗. 

The formulation of the mathematical model is: 

min 𝑓𝑘  (𝑑𝑖𝑗,𝑥𝑖𝑗 )           (1) 

subject to: 

∑ 𝑥 𝑖𝑗𝑗∈𝐽 =  1        ∀ 𝑖 ∈ 𝐼      (2) 

𝑦𝑗 − 𝑥𝑖𝑗 ≥ 0       ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽         (3) 

∑ 𝑦𝑗𝑗∈𝐽 = 𝑝           (4) 

∑ 𝑑𝑖𝑗𝑗∈𝐽 𝑥𝑖𝑗 + (𝑀 − 𝑑𝑖𝑗)𝑦𝑗 ≤ 𝑀      ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽    (5) 
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𝑥𝑖𝑗 = 0/1      ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽                  (6) 

𝑦𝑗 = 0 1⁄             ∀ 𝑗 ∈ 𝐽     (7) 

Constraints (2) assure that all the demand points are allocated. Constraints (3) indicate that 

a point may receive allocation only if it is active. Constraint (4) fixes the number of facilities 

to p. Constraints (5), as pointed out by Espejo et al. (2009), permit to allocate each demand 

point to the closest facility. Constraints (6) and (7) indicate that variables are binary. 

The objective function 𝑓k(𝑑𝑖𝑗,𝑥𝑖𝑗)  represents a possible equality measure k chosen to 

represent a balancing objective. In practice, it can be expressed by any of the measures 

indicated in Table 1 where each term 𝑑𝑖𝑗 is replaced by 𝑑𝑖𝑗𝑥𝑖𝑗. For instance, the expression 

of Variance (VAR) becomes ∑ ∑ (𝑑𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽 − �̅�)𝑖∈𝐼,
2
. 

The objective function 𝑓k(𝑑𝑖𝑗,𝑥𝑖𝑗)  is then linearized used the procedure proposed by Chang 

(2001). The linear versions of our model for the measures Schutz’s Index, Coefficient 

Variation and Gini Coefficient are reported in the Appendix. For the measures Atkinson’s 

Coefficient, Theil’s Entropy Coefficient and Variance of Logartihms we use an enumeration 

procedure to find out the optimal location for the facilities to open. 

 

4 The empirical analysis 

To evaluate the degree of similarity between pairs of measures we solved the model 

considering each single equality measure. In particular, denoting with 𝑣, a label associated 

to a specific equality measure, for a given instance we indicate with 𝑋𝑣
∗ the optimal solution 

obtained by solving the model (1) through (7) using objective function v and with 𝑓𝑣
∗ the 

corresponding value of the objective function solution v. Then we denote with 𝑓𝑢
𝑣 the value of 

the measure u associated with the solution 𝑋𝑣
∗. For instance, if u is the label of the Absolute 

Deviation (AD) and v that of the measure Mean Absolute Deviation (MAD), 𝑓𝐴𝐷
𝑀𝐴𝐷 represents 
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the value of the Absolute Difference (AD) associated to optimal solution of the model (1) 

through (7), obtained by using Mean Absolute Deviation (MAD) as objective function.  

This way considering a set of instances, for each pair (𝑣, 𝑢) of measures, it is possible to 

consider the two data sets: the first one representing the objective values 𝑓𝑣
∗ of the solutions 

𝑋𝑣
∗; the second one the corresponding values, 𝑓𝑢

𝑣. The analysis of these data sets provides 

interesting results in terms of relationship between each pair of measures. 

The correlation coefficient 𝑟𝑢
𝑣 can be viewed as a measure or the degree of similarity of the 

measures (𝑢, 𝑣) when a problem is solved. For example, in case 𝑟𝑢
𝑣= 1, it means that if we 

used 𝑢 or 𝑣 as objective functions, we would systematically find the same optimal solution. 

Then high values of 𝑟𝑢
𝑣 indicate that by optimizing measure 𝑣 we would obtain values very 

close to the optimum ones for the measure 𝑢. In practice 𝑟𝑢
𝑣 indicates how much a measure 

can be considered a good "proxy" for another measure. Furthermore, it has to be noticed 

that, due to its definition, generally the correlation coefficient 𝑟𝑢
𝑣  is not symmetrical. 

In our analysis we considered randomly generated test problems in which the set I of n 

demand points and the set J of m potential facility locations have been positioned according 

to a uniform distribution in a unit square. Figure 1 shows an example of instance with m=n=20.  

 

Fig. 1 An Example of randomly generated instance with m=n=20 

For testing the similarities of the measures we considered two set of simulations: 
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• m=n=10 and m=n=20 for 100 randomly generated instances assuming 𝑝=2, 3, 4, 5 for 

the 10x10 problems and 𝑝=2, 4, 6, 8, 10 for the 20x20 problems.  

• m=n=20, m=n=40 and m=n=60 for 100 randomly generated instances assuming 𝑝=2. 

For each pair of selected measures, we calculated:  

• the number of instances out of 100, 𝑛𝑢
𝑣  (occurrences) in which it is obtained the same 

optimal solution for measures v and u; 

• the correlation coefficient 𝑟𝑢
𝑣 i.e. for each pair (𝑣, 𝑢) of measures, we considered the 

correlation coefficient of a linear regression model between 𝑓𝑢
𝑣 and  𝑓𝑣

∗ obtained on the 

100 instances. 

 

5 Analysis of the results 

We first proposed some considerations on the computational times to solve the model with 

the different measures. We solved our model for up to m=n=60 assuming 𝑝=2 and 𝑝=10. We 

used five random generated instances for each value of m = n. We reported in Table 2 the 

average computational times in seconds. We assumed a time limit of 2 hours. In the Table 2 

N/A means that we could not find an optimal solution for at least one of the instances within 

the time limit. The test was performed by using Cplex v 12.00 on a Pentium IV with 2.40 

GigaHertz and 4.00 GigaBytes of RAM. Please note that two of the measures in Table 1 and 

included in Erkut (1993), have been excluded as they are directly proportional to the SMDA 

measure.  

The analysis of the computational times suggests several considerations. First for small 

values of m and n the computational times are very similar for all the measures. The 

normalized measures (SI, VC, GC) have slightly larger computational times especially when 

p=10. Increasing the size of the instances means an increase in the computational times. 

Already with instances with m=n=40 we can see that for the normalized measures Cplex 
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could not find the optimal solution within the time limit. Indeed, they seem to be very difficult 

to compute and only some relatively small instances can be solved. The not normalized 

measures require significant lower computational times. In particular, the measures CEN and 

RG present very short computational times, even smaller when more facilities need to be 

located. In addition, for some of these measures some specific algorithm can be found in the 

literature (e.g., López-De-Los-Mozos et al. 2008) and the process may be faster. We do not 

use these algorithms because we want to compare under the same conditions all the 

measures.  

Table 2 Computational times in seconds for randomly generated instances  

 m=n=20 m=n=40 m=n=60 
 p=2 p=10 p=2 p=10 p=2 p=10 

CEN <1 <1 16 4 43 20 

RG 1 4 17 21 464 269 

MAD <1 <1 24 264 166 N/A 

VAR 3 <1 205 810 1206 N/A 

MD 3 <1 7 6 143 N/A 

AD 6 2 46 2656 1123 N/A 

SMDA 13 3 56 767 1004 N/A 

SI 3 3 81 N/A 1033 N/A 

VC 4 22 130 N/A 1588 N/A 

GC 5 7 182 N/A 4022 N/A 
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Table 3 Number of instances where two measures obtained the same optimal solution with m=n=10 and p=2 

 CEN RG MAD VAR MD AD SMDA SI VC GC LOGVAR THE 

RG 49            

MAD 48 48           

VAR 42 58 75          

MD 45 65 39 50         

AD 41 64 78 87 45        

SMDA 45 81 63 77 62 71       

SI 12 28 50 40 25 40 62      

VC 42 56 61 72 43 67 67 55     

GC 15 36 43 43 29 44 41 71 62    

LOGVAR 12 39 40 50 34 47 44 55 61 63   

THE 17 37 64 54 29 54 49 75 64 57 49  

ATK 11 42 39 50 38 39 45 50 62 59 90 44 

 
 

 

 

Table 4 Correlation coefficients for the 10x10 instances with m=n=10 and p=2 

 CEN RG MAD VAR MD AD SMDA SI VC GC LOGVAR THE ATK 

CEN - 0.68 0.59 0.63 0.61 0.62 0.67 0.16 0.40 0.14 0.08 0.39 0.05 

RG 0.60 - 0.80 0.87 0.97 0.94 0.97 0.62 0.83 0.66 0.54 0.74 0.58 

MAD 0.49 0.76 - 0.93 0.63 0.97 0.81 0.74 0.87 0.71 0.40 0.90 0.49 

VAR 0.59 0.89 0.95 - 0.79 0.97 0.93 0.65 0.88 0.65 0.52 0.84 0.50 

MD 0.58 0.95 0.75 0.80 - 0.82 0.93 0.60 0.78 0.61 0.53 0.72 0.58 

AD 0.57 0.84 0.97 0.97 0.67 - 0.86 0.71 0.89 0.71 0.45 0.88 0.52 

SMDA 0.60 0.97 0.88 0.94 0.92 0.93 - 0.66 0.87 0.68 0.58 0.81 0.59 

SI 0.10 0.45 0.47 0.40 0.38 0.48 0.44 - 0.78 0.97 0.40 0.87 0.50 

VC 0.39 0.83 0.83 0.79 0.76 0.85 0.85 0.85 - 0.86 0.63 0.94 0.57 

GC 0.18 0.51 0.54 0.48 0.42 0.56 0.50 0.95 0.80 - 0.68 0.84 0.64 

LOGVAR 0.12 0.54 0.55 0.51 0.49 0.56 0.56 0.91 0.81 0.93 - 0.83 0.97 

THE 0.35 0.68 0.81 0.70 0.59 0.80 0.69 0.90 0.90 0.88 0.34 - 0.43 

ATK 0.03 0.45 0.54 0.45 0.36 0.52 0.47 0.86 0.74 0.87 0.97 0.79 - 

 

 

Next, in Tables 3 we report the  𝑛𝑢
𝑣   and in Table 4 the 𝑟𝑢

𝑣 for the set of instances with m=n=10 

and p=2. We highlight (in grey) the cases in which the minimum values of 𝑛𝑢
𝑣  is at least 50 or 

𝑟𝑢
𝑣 is at least 0.80. The values of  𝑛𝑢

𝑣  are quite high for a significant number of pairs of 
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measures, apart from the CEN measure. We have also very high values for the correlations 

coefficients, especially when considering normalized measures and in particular the measure 

THE. Nevertheless, the measure ATK, does not present high values of 𝑟𝑢
𝑣 compared to the 

other normalized measures. The not normalized measures appear very high correlated 

among them. 

To continue, results obtained on the randomly generated instances for the first set of 

simulation, are then summarized in Tables 5 up to 8. In this case we only include the results 

deriving from the optimization of the model. 

 

 

 

Table 5 Number of instances where two measures obtained the same optimal solution on 10X10 instances 
  CEN RG MAD VAR MD AD SMDA SI VC GC 

RG 
Max 
Avrg 
Min 

55 
52 
49 

-        
 

MAD 
Max 
Avrg 
Min 

56 
44 
37 

48 
35 
26 

-       
 

VAR 
Max 
Avrg 
Min 

59 
48 
42 

58 
45 
37 

75 
68 
63 

-      
 

MD 
Max 
Avrg 
Min 

48 
46 
44 

65 
52 
40 

39 
30 
23 

50 
39 
32 

-     
 

AD 
Max 
Avrg 
Min 

56 
46 
40 

57 
43 
31 

78 
72 
66 

87 
79 
72 

45 
33 
26 

-    
 

SMDA 
Max 
Avrg 
Min 

57 
50 
45 

71 
57 
49 

63 
52 
45 

77 
68 
61 

62 
52 
43 

71 
58 
49 

-   
 

SI 
Max 
Avrg 
Min 

28 
20 
12 

40 
36 
28 

52 
47 
41 

45 
42 
38 

25 
21 
16 

47 
43 
38 

38 
36 
34 

-  
 

VC 
Max 
Avrg 
Min 

59 
48 
42 

63 
60 
56 

63 
56 
47 

72 
67 
60 

43 
36 
31 

67 
63 
52 

67 
61 
58 

63 
57 
54 

- 
 

GC 
Max 
Avrg 
Min 

28 
20 
15 

45 
42 
36 

48 
42 
37 

43 
41 
38 

29 
24 
20 

45 
43 
39 

41 
39 
37 

75 
72 
71 

63 
62 
61 

 
- 
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Table 6 Number of instances where two measures obtained the same optimal solution on 20X20 instances 
  CEN RG MAD VAR MD AD SMDA SI VC GC 

RG 
Max 
Avrg 
Min 

65 
50 
36 

-        
 

MAD 
Max 
Avrg 
Min 

59 
33 
14 

20 
7 
2 

-       
 

VAR 
Max 
Avrg 
Min 

73 
44 
22 

34 
16 
4 

57 
45 
39 

-      
 

MD 
Max 
Avrg 
Min 

67 
46 
30 

50 
23 
3 

18 
6 
1 

32 
13 
2 

-     
 

AD 
Max 
Avrg 
Min 

71 
42 
20 

47 
36 
30 

66 
54 
46 

80 
71 
60 

24 
10 
2 

-    
 

SMDA 
Max 
Avrg 
Min 

76 
52 
33 

71 
69 
65 

35 
23 
13 

57 
41 
29 

52 
24 
6 

47 
34 
24 

-   
 

SI 
Max 
Avrg 
Min 

28 
13 
4 

11 
5 
3 

32 
27 
23 

24 
20 
16 

11 
4 
1 

31 
23 
19 

19 
14 
8 

-  
 

VC 
Max 
Avrg 
Min 

73 
44 
22 

32 
15 
6 

42 
32 
22 

63 
51 
40 

26 
11 
2 

59 
46 
35 

45 
36 
30 

39 
33 
26 

- 
 

GC 
Max 
Avrg 
Min 

33 
15 
4 

18 
8 
4 

31 
24 
19 

33 
28 
22 

17 
5 
1 

40 
30 
23 

21 
17 
9 

63 
53 
46 

55 
53 
50 

 
- 

Table 7 Correlation coefficients for the 10x10 instances 

  CEN RG MAD VAR MD AD SMDA SI VC GC 

CEN 
 

Max 
Avrg 
Min 

- 
0.93 
0.83 
0.68 

0.88 
0.74 
0.59 

0.89 
0.77 
0.63 

0.91 
0.80 
0.61 

0.90 
0.78 
0.62 

0.94 
0.83 
0.67 

0.43 
0.26 
0.08 

0.79 
0.60 
0.40 

0.43 
0.27 
0.11 

RG 
 

Max 
Avrg 
Min 

0.81 
0.68 
0.60 

- 
0.91 
0.86 
0.80 

0.94 
0.91 
0.87 

0.99 
0.97 
0.92 

0.96 
0.96 
0.94 

0.99 
0.98 
0.97 

0.62 
0.52 
0.45 

0.83 
0.81 
0.79 

0.66 
0.55 
0.48  

MAD 
 

Max 
Avrg 
Min 

0.71 
0.60 
0.49 

0.87 
0.79 
0.75 

- 
0.95 
0.93 
0.91 

0.79 
0.71 
0.63 

0.98 
0.97 
0.96 

0.90 
0.85 
0.81 

0.74 
0.60 
0.51 

0.87 
0.82 
0.79 

0.71 
0.59 
0.52  

VAR 
 

Max 
Avrg 
Min 

0.77 
0.65 
0.58 

0.94 
0.92 
0.89 

0.96 
0.95 
0.95 

- 
0.88 
0.85 
0.79 

0.98 
0.98 
0.97 

0.96 
0.95 
0.93 

0.65 
0.54 
0.45 

0.88 
0.85 
0.82 

0.65 
0.55 
0.45  

MD 
 

Max 
Avrg 
Min 

0.81 
0.71 
0.58 

0.97 
0.97 
0.95 

0.86 
0.80 
0.75 

0.89 
0.86 
0.80 

- 
0.90 
0.86 
0.82 

0.96 
0.94 
0.93 

0.60 
0.46 
0.34 

0.82 
0.76 
0.71 

0.61 
0.50 
0.37  

AD Max 
Avrg 
Min 

0.74 
0.64 
0.57 

0.92 
0.89 
0.84 

0.98 
0.97 
0.96 

0.97 
0.97 
0.97 

0.82 
0.78 
0.67 

- 
0.93 
0.91 
0.86 

0.71 
0.59 
0.52 

0.89 
0.86 
0.84 

0.71 
0.60 
0.52 

 

SMDA Max 
Avrg 
Min 

0.81 
0.68 
0.60 

0.99 
0.98 
0.97 

0.95 
0.91 
0.88 

0.96 
0.96 
0.94 

0.96 
0.94 
0.92 

0.97 
0.96 
0.93 

- 
0.66 
0.54 
0.46 

0.87 
0.85 
0.82 

0.68 
0.56 
0.48 

 

SI Max 
Avrg 
Min 

0.21 
0.12 
0.08 

0.49 
0.44 
0.41 

0.63 
0.55 
0.47 

0.49 
0.44 
0.40 

0.47 
0.39 
0.35 

0.60 
0.53 
0.48 

0.53 
0.46 
0.43 

- 
0.79 
0.77 
0.73 

0.97 
0.97 
0.96 

 

VC Max 
Avrg 
Min 

0.51 
0.40 
0.33 

0.84 
0.82 
0.78 

0.89 
0.85 
0.83 

0.88 
0.84 
0.79 

0.79 
0.76 
0.73 

0.90 
0.87 
0.85 

0.87 
0.85 
0.82 

0.85 
0.81 
0.79 

- 
0.86 
0.84 
0.82 

 

GC Max 
Avrg 
Min 

0.26 
0.18 
0.11 

0.56 
0.52 
0.45 

0.64 
0.57 
0.54 

0.52 
0.49 
0.48 

0.48 
0.43 
0.38 

0.64 
0.58 
0.56 

0.56 
0.51 
0.47 

0.97 
0.96 
0.95 

0.83 
0.82 
0.80 

-  
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More precisely, Tables 5 and 6 indicate 𝑛𝑢
𝑣  respectively for problems 10x10 and 20x20 

reporting the minimum (min), the average (avrg) and the maximum (max) value considering 

the different assumed values of p. In Tables 7 and 8 we show the obtained values of 𝑟𝑢
𝑣, with 

the same meaning for min, avrg and max.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 Correlation coefficients for the 20x20 instances 
  CEN RG MAD VAR MD AD SMDA SI VC GC 

CEN 
 

Max 
Avrg 
Min 

- 
0.98 
0.95 
0.88 

0.92 
0.86 
0.77 

0.94 
0.90 
0.83 

0.96 
0.90 
0.77 

0.94 
0.89 
0.82 

0.97 
0.94 
0.87 

0.56 
0.52 
0.49 

0.85 
0.81 
0.73 

0.60 
0.55 
0.48  

RG 
 

Max 
Avrg 
Min 

0.91 
0.75 
0.59 

- 
0.89 
0.81 
0.67 

0.94 
0.90 
0.81 

0.99 
0.97 
0.92 

0.96 
0.88 
0.78 

0.99 
0.98 
0.95 

0.71 
0.58 
0.43 

0.91 
0.82 
0.72 

0.73 
0.62 
0.51  

MAD 
 

Max 
Avrg 
Min 

0.75 
0.60 
0.40 

0.78 
0.69 
0.54 

- 
0.95 
0.92 
0.87 

0.73 
0.61 
0.42 

0.99 
0.97 
0.94 

0.83 
0.76 
0.63 

0.66 
0.64 
0.62 

0.87 
0.83 
0.78 

0.67 
0.63 
0.59  

VAR 
 

Max 
Avrg 
Min 

0.84 
0.69 
0.53 

0.91 
0.86 
0.80 

0.95 
0.92 
0.87 

- 
0.88 
0.78 
0.67 

0.98 
0.98 
0.97 

0.95 
0.92 
0.87 

0.68 
0.58 
0.52 

0.90 
0.87 
0.86 

0.68 
0.61 
0.54  

MD 
 

Max 
Avrg 
Min 

0.89 
0.73 
0.56 

0.99 
0.98 
0.96 

0.94 
0.85 
0.73 

0.96 
0.91 
0.82 

- 
0.96 
0.90 
0.81 

0.99 
0.97 
0.94 

0.63 
0.56 
0.53 

0.90 
0.83 
0.75 

0.65 
0.60 
0.58  

AD Max 
Avrg 
Min 

0.78 
0.63 
0.44 

0.86 
0.77 
0.69 

0.98 
0.96 
0.92 

0.97 
0.97 
0.95 

0.77 
0.67 
0.57 

- 
0.87 
0.83 
0.77 

0.69 
0.62 
0.54 

0.88 
0.86 
0.83 

0.67 
0.63 
0.56 

 

SMDA Max 
Avrg 
Min 

0.89 
0.72 
0.46 

0.99 
0.97 
0.95 

0.90 
0.85 
0.80 

0.95 
0.94 
0.92 

0.97 
0.94 
0.90 

0.95 
0.92 
0.90 

- 
0.63 
0.54 
0.43 

0.91 
0.85 
0.81 

0.65 
0.58 
0.48 

 

SI Max 
Avrg 
Min 

0.47 
0.25 
0.03 

0.65 
0.49 
0.31 

0.71 
0.59 
0.44 

0.69 
0.54 
0.36 

0.67 
0.46 
0.23 

0.70 
0.58 
0.43 

0.70 
0.52 
0.32 

- 
0.87 
0.80 
0.70 

0.98 
0.97 
0.96 

 

VC Max 
Avrg 
Min 

0.73 
0.44 
0.16 

0.89 
0.78 
0.68 

0.91 
0.84 
0.78 

0.92 
0.86 
0.80 

0.84 
0.70 
0.55 

0.93 
0.87 
0.81 

0.92 
0.83 
0.74 

0.86 
0.83 
0.80 

- 
0.88 
0.86 
0.85 

 

GC Max 
Avrg 
Min 

0.37 
0.19 
0.17 

0.61 
0.49 
0.28 

0.69 
0.54 
0.37 

0.67 
0.51 
0.30 

0.57 
0.44 
0.22 

0.69 
0.55 
0.36 

0.65 
0.51 
0.29 

0.98 
0.97 
0.96 

0.89 
0.82 
0.71 

-  
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The analysis of the results suggests various comments that we synthesize in the following 

points. 

• Even if, for smaller problems (10x10), the values of  𝑛𝑢
𝑣  are quite high for a significant 

number of pairs of measures, they tend to decrease in not negligible way with larger 

problems. However it is immediate to notice the existence of various pairs of measures 

whose optimal solutions rarely coincide.  

• Correlation values are very high among pairs of not-normalized measures (RG, MAD, 

VAR, MD, AD, SMDA) and pairs of normalized measures (SI, VC, GC). This means 

that even when the coincidence of optimal solutions is not frequent, their values may 

be very close. In any case, high correlations between these pairs of measures may 

suggest that a fundamental choice in the selection of the measure to be adopted lies 

in the distinction between not-normalized and normalized measures.  

• The Center measure (CEN) appears very weakly correlated with all the other 

measures. This result seems to contradict the opinion of some researchers (e.g., 

Hodgart 1980, Lei 2016 ) which sustained that one method to assure equity is 

improving the condition of those who are worst-off. 

• Among the selected measures, the Coefficient of Variation (VC) shows a very high 

correlation with all the other measures, apart from the CEN.  

In the second part of our computational study we consider bigger instance with up m=n=60 

and p=2. In Tables 9, 10 and 11 we reported the values of the 𝑟𝑢
𝑣. We can notice that the 

results are showing quite interesting aspects. 
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Table 9  Correlation coefficients for the 20x0 instances 

 CEN RG MAD VAR MD AD SMDA SI VC GC 

CEN - 0.50 0.36 0.50 0.49 0.46 0.53 -0.04 0.28 -0.06 

RG 0.55 - 0.63 0.88 0.97 0.78 0.99 0.48 0.82 0.45 

MAD 0.35 0.66 - 0.95 0.64 0.98 0.76 0.57 0.82 0.55 

VAR 0.32 0.84 0.96 - 0.82 0.99 0.92 0.40 0.89 0.45 

MD 0.44 0.94 0.60 0.78 - 0.66 0.95 0.44 0.76 0.48 

AD 0.40 0.82 0.99 0.99 0.78 - 0.89 0.50 0.88 0.53 

SMDA 0.48 0.98 0.76 0.94 0.96 0.86 - 0.49 0.88 0.51 

SI 0.28 0.52 0.74 0.62 0.51 0.65 0.58 - 0.86 0.99 

VC 0.36 0.82 0.94 0.95 0.83 0.94 0.92 0.81 - 0.88 

GC 
0.26 0.58 0.75 0.66 0.58 0.68 0.65 0.99 0.91 - 

 

 

 

Table 10  Correlation coefficients for the 40x40 instances  
CEN RG MAD VAR MD AD SMDA SI VC GC 

CEN 
- 0.58 0.37 0.44 0.44 0.43 0.56 -0.07 0.17 -0.08 

RG 
0.44 - 0.45 0.59 0.81 0.45 0.91 0.29 0.51 0.35 

MAD 
0.29 0.38 - 0.84 0.28 0.94 0.48 0.66 0.70 0.59 

VAR 
0.27 0.49 0.90 - 0.45 0.98 0.69 0.65 0.85 0.63 

MD 
0.52 0.94 0.50 0.66 - 0.63 0.90 0.33 0.56 0.40 

AD 
0.19 0.31 0.95 0.97 0.20 - 0.48 0.70 0.80 0.64 

SMDA 
0.39 0.89 0.65 0.76 0.74 0.74 - 0.48 0.67 0.51 

SI 
-0.05 0.08 0.23 0.14 0.05 0.23 0.10 - 0.50 0.96 

VC 
0.06 0.36 0.78 0.81 0.31 0.83 0.50 0.88 - 0.90 

GC 
0.04 0.14 0.30 0.21 0.10 0.29 0.16 0.97 0.49 - 
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Table 11  Correlation coefficients for the 60x60 instances 

 CEN RG MAD VAR MD AD SMDA SI VC GC 

CEN - 0.65 0.38 0.45 0.34 0.44 0.62 0.06 0.28 0.13 

RG 0.54 - 0.49 0.61 0.83 0.59 0.91 0.33 0.52 0.39 

MAD 0.30 0.28 - 0.82 0.24 0.92 0.38 0.54 0.64 0.49 

VAR 0.37 0.42 0.89 - 0.26 0.99 0.58 0.49 0.80 0.49 

MD 0.56 0.92 0.47 0.59 - 0.58 0.87 0.35 0.52 0.40 

AD 0.32 0.35 0.90 0.95 0.25 - 0.45 0.53 0.74 0.53 

SMDA 0.52 0.92 0.60 0.73 0.79 0.70 - 0.30 0.55 0.34 

SI 0.06 0.10 0.22 0.17 0.08 0.20 0.12 - 0.32 0.91 

VC 0.17 0.32 0.75 0.78 0.24 0.79 0.46 0.80 - 0.81 

GC 
0.11 0.15 0.23 0.21 0.11 0.22 0.16 0.92 0.38 - 

 

First, the correlation coefficients are decreasing when instances with a bigger amount of 

demand points and facilities are considered. In some cases, we find negative values for 𝑟𝑢
𝑣 

(e.g., SI with CEN) or very low. In particular, this happens when considering the CEN 

measure that presents very low values for 𝑟𝑢
𝑣. Indeed, when dealing with bigger instances the 

CEN measure takes into account only one of the distances so it is not completely representing 

an equal distribution for all the demand points. Second, we noticed that when optimizing SI 

and GC even if we have high values for 𝑟𝑢
𝑣 we do not have correspondent high values for 𝑟𝑣

𝑢. 

For example, if we consider the measure SI, when we optimise SI the 𝑟𝑢
𝑆𝐼 are very low when 

𝑢 is any of the other measures apart from the other two normalized measures VC and GC. 

Instead, the 𝑟𝑆𝐼
𝑣  are all very high apart from the measure CEN.  Thus, optimizing SI or GC we 

get solutions that are not very much correlated with the not normalized measures, but these 

solutions are instead correlated with the normalized measures. Third, we pointed out that 

optimizing not normalized measures we found solutions that are correlated even to the not 

normalized ones, even if the values of correlation coefficient are not among the highest ones. 
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Moreover, increasing the size of the instances the 𝑟𝑢
𝑣 values decrease. Finally, the other 

normalized measure VC, instead, has high values of correlation coefficient with all the 

measures even for medium size instances. 

 

6 Conclusions 

In this paper we analysed a specific class of Facility Location Problems in which equality 

measures are used as objective function. The analysis of the literature about these problems 

shows a relevant interest of the scientific community with the proposals of models and 

methods oriented to solve FLPs by adopting a variety of equality measures as objective 

functions. However, it is not often clear which criteria drive the choice of a specific measure 

among those proposed in the literature. For this reason, we have proposed an empirical 

analysis based on the solution of a general mathematical formulation of a location problem 

of p facilities with an equality measure as objective function, which we solved considering 

each equality measure. In order to investigate about similarities existing between pairs of 

equality measures, two indicators were introduced: the number of occurrences in which, 

solving the instance with two different equality measures, we obtained the same optimal 

solution, and a correlation coefficient measure able to capture similarities between pairs of 

equality measures. The analysis of these indicators has fostered some interesting indications 

about the characteristics of equality measures and which one to choose. In particular, the 

Center measure presents very low correlations with all the other measures. The reason 

seems to be that is the only measure that considers not the whole distribution of demand 

points but only the most disadvantageous user. This insight seems to be confirmed by the 

Range measure that presents low value of correlation given that takes into account only two 

users. Furthermore, a fundamental distinction should be done between normalized and not 

normalized measures, as they generally found distinct solutions and also with low level of 
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correlation in value. The not normalized measures are faster to compute and it is possible to 

compute them also for bigger instances. For this reason, they can be adopted when a lot of 

users are considered or, for smaller instances, when a solution is required in short 

computational times. For the same reason these measures seem to be appropriate even in 

a multiobjective problem when the complexity of the problem requires to obtain solutions in 

fast way. For example, the CEN measure it is among the most common one and with Cplex 

is possible to solve instances up to 200 demand points (Dantrakul et al. 2014). Nevertheless, 

depending on the application the decision maker could choose to adopt measures for which 

algorithms and their complexity are known (Mesa et al. 2003).  

On the other hand, the normalised measures can be adopted for small size problems or when 

facilities that will operate in the long term needs to be located. Furthermore, given their high 

level of correlation they are very much consistent and decision makers can use them as a 

tool to show the consistency of the decision.  

Moreover, we have verified that increasing the number of demand points the measures are 

less correlated in value.  In addition, the measures SI and GC seems to be not correlated to 

the other measures, while VC seems to keep the trend even for bigger instances.  

Additionally, we have analysed the measures LOGVAR, THE and ATK for small instances. 

These measures are extremely complex to calculate and for their nature it is not possible to 

introduce them in a combinatorial optimization model. In particular, the measure THE seems 

to be very promising with very high correlation values and it could be worth further 

investigating the implication of its adoption in the location context.  

These first significant results coming from an extensive computational study, should be 

confirmed by additional experiments, also considering different versions of FLPs, in order to 

attempt to generalize the conclusions. Experiments could be carried on bigger instances if 

specialised algorithms will be used or a more efficient formulation will be proposed.  
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Appendix 

We propose the linear version of the model (1) through (7) for measures SI, VC and GC using 

the procedure introduced by Chang (2001). 

To the notation introduced in Section 2 we add: 

t a positive continuous variable; 

uij a positive variable defined ∀ i ∈ I, j ∈ J; 

 

The formulation of the linear mathematical model for measure SI is: 

min ∑ |∑ 𝑑𝑖𝑗𝑢𝑖𝑗 − ∑
𝑑𝑖𝑗𝑢𝑖𝑗

𝑁𝑖∈𝐼,   𝑗∈𝐽𝑗∈𝐽 |i∈I         

   

subject to: 

∑ xijj∈J =  1         ∀ i ∈ I     

yj − xij ≥ 0       ∀ i ∈ I, ∀ j ∈ J    

∑ yjj∈J = p            

∑ dijj∈J xij + (M − dij)yj ≤ M    ∀ i ∈ I, ∀ j ∈ J  

(∑ dijj∈J,   i∈I uij)/N = 1        

uij ≥ M(xij − 1) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ M(1 − xij) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ Mxij       ∀ i ∈ I, ∀ j ∈ J    
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xij = 0/1      ∀ i ∈ I, ∀ j ∈ J   

yj = 0 1⁄       ∀ j ∈ J    

uij ≥ 0       ∀ i ∈ I, ∀ j ∈ J 

t > 0        

 

To the previous notation we add: 

lcd a variable defined ∀ c ∈ I, d ∈ I 

The formulation of the linear mathematical model for measure GC is: 

min ∑ lcdc∈I            

subject to: 

lcd ≥  ∑ dcjj∈J ucj − ∑ ddjj∈J udj   ∀ d ∈ I, ∀ d ∈ I 

lcd ≥ −( ∑ dcjj∈J ucj − ∑ ddjj∈J udj)   ∀ d ∈ I, ∀ d ∈ I 

∑ xijj∈J =  1         ∀ i ∈ I     

yj − xij ≥ 0       ∀ i ∈ I, ∀ j ∈ J    

∑ yjj∈J = p            

∑ dijj∈J xij + (M − dij)yj ≤ M    ∀ i ∈ I, ∀ j ∈ J  

(∑ dijj∈J,   i∈I uij)/N = 1        

uij ≥ M(xij − 1) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ M(1 − xij) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ Mxij       ∀ i ∈ I, ∀ j ∈ J    
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xij = 0/1      ∀ i ∈ I, ∀ j ∈ J   

yj = 0 1⁄       ∀ j ∈ J    

uij ≥ 0       ∀ i ∈ I, ∀ j ∈ J 

lij ≥ 0       ∀ i ∈ I, ∀ j ∈ J  

t > 0  

 

The formulation of the linear mathematical model for measure VC is: 

min ∑ (∑ uijdij
2xij − 2 × ∑ dijj∈J xij + ∑ dijxij)i∈I,j∈Jj∈Ji∈I       

 subject to: 

∑ xijj∈J =  1         ∀ i ∈ I     

yj − xij ≥ 0       ∀ i ∈ I, ∀ j ∈ J    

∑ yjj∈J = p            

∑ dijj∈J xij + (M − dij)yj ≤ M    ∀ i ∈ I, ∀ j ∈ J  

(∑ dijj∈J,   i∈I uij)/N = 1        

uij ≥ M(xij − 1) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ M(1 − xij) + t      ∀ i ∈ I, ∀ j ∈ J    

uij ≤ Mxij       ∀ i ∈ I, ∀ j ∈ J 

xij = 0/1      ∀ i ∈ I, ∀ j ∈ J   

yj = 0 1⁄       ∀ j ∈ J   

uij ≥ 0       ∀ i ∈ I, ∀ j ∈ J 
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t > 0   
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