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Introduction 26 

Dynamic cross-interaction, also known as Structure-Soil-Structure Interaction (SSSI), among adjacent 27 

structures has received considerable attention in recent decades. Imperative works of Warburton 28 

(Warburton et al. 1971), Lee and Wesley (Lee and Wesley 1973), Luco and Contesse (Luco and 29 

Contesse 1973), Kobori et al (Kobori and Kusakabe 1980; Kobori and Minai 1974; Kobori et al. 1973; 30 

Kobori et al. 1977) and Qian and Beskos (Qian and Beskos 1995) have demonstrated the need to 31 

include cross-interaction effects in the seismic analysis of buildings located in close proximity. In fact, 32 

a Soil-Structure Interaction (SSI) analysis is not considered complete unless it takes into account the 33 

mutual interaction between adjacent structures via the underlying soil medium (Zaman 1982).  34 

The analysis of problems involving ground and structure interaction, such as SSI and SSSI, are 35 

conducted predominantly via two approaches, (Stewart et al. 1998) and (Wolf 1985). The first is 36 

referred to as the direct methodology where the whole interacting system, i.e. structure and semi-37 

infinite soil, is analysed in one step using numerical discretisation procedures such as the Finite 38 

Element Method (FEM) or Boundary Element Method (BEM) or a combination of both. One advantage 39 

of using such methods is the possibility to model complex geometries and system nonlinearities, 40 

especially that of the soil continuum. However, because of the large number of degrees of freedom 41 

(dofs) involved, these analyses are computationally costly and time consuming, and in addition are 42 

sensitive to changes in soil constitutive model parameters. The second and more popular technique 43 

is the substructure or impedance method where each interacting component is dealt with in a separate 44 

step then assembled to form the final solution taking advantage of the superposition principle. The 45 

method starts with the evaluation of the design input motion, i.e. kinematic interaction, followed by 46 

determination of the system’s impedance function which is a complex valued function that describes 47 

the force/moment-displacement/rotation relationship. Next, dynamic analysis of the structure resting 48 

on the impedances from step two and subjected to the input motion from step one is conducted. The 49 

latter method is a convenient and reliable tool for both time and frequency domains analyses, (Wolf 50 

1994), (Bowles 1996), (Barros and Luco 1990) and (Dutta and Roy 2002). This approach allows a swift 51 
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calculation of system properties, conducting parametric studies, examining different design schemes 52 

and the appreciation of the essential features of the problem.  53 

Although the substructure method has an advantage that is the ability of breaking down the complex 54 

SSI problem into more manageable components that could be easily verified, the analysis using this 55 

method is essentially linear and time invariant which is a simplification. The equivalent linear method, 56 

(Idriss and Seed 1967), is commonly used to approximate the soil nonlinearity during the site response 57 

analysis stage. On the other hand, using the direct method, time domain nonlinear and hysteretic soil 58 

models could be implemented which is in theory more rigorous representation. However, in addition 59 

to the computational expense, thorough understanding and expertise in using such soil models and 60 

parameter selection are required for engineering practice. 61 

Results predicted using simplified models have been demonstrated to approximate physical 62 

observations, for example (Kobori et al. 1977) and (Aldaikh et al. 2016; Aldaikh et al. 2015) hence, such 63 

models could serve as a practical civil engineering analysis tool and provide preliminary estimates of 64 

the effects of complex interaction problems until the need for more sophisticated analyses is 65 

determined. Simplified discrete models with limited numbers of degrees of freedom have been well 66 

recognized and applied to the substructure method for the analysis of static and dynamic soil-67 

structure interaction problems. In these mechanical models, a lumped parameter system treats all 68 

masses, springs and dashpots as if they were lumped into a single mass, single spring and single 69 

damping constant for each mode of vibration. Original works such as (Bycroft 1956) described how to 70 

define the characteristics of discrete models by matching the resulting impedance functions with 71 

those resulting from the use of continuum models, i.e. rigid foundations resting on an elastic half-72 

space. Many imperative subsequent works on vertically loaded foundations were based on the same 73 

methodology, (Barkan 1962) and (Lysmer and Richart 1966).  74 

Some numerical results, for example (Dobry and Gazetas 1986) showed that the impedance function 75 

of the discrete system, i.e. dynamic stiffness and damping characteristics, exhibited a dependency on 76 
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excitation frequency. This dependency is a result of the influence that frequency has on inertia rather 77 

than on soil properties, particularly (Gazetas 1993). As a result, linear Soil-Structure Interaction 78 

calculations cannot be directly used in time domain analyses and are usually performed in the 79 

frequency domain. By choosing representative frequency independent parameter values, the 80 

frequency dependency of the dynamic properties of the springs and dashpots can be reasonably 81 

approximated. It is suggested that these properties remain nearly constant within the frequency range 82 

of interest for typical building structures subjected to earthquakes, (Jennings and Bielak 1973) and 83 

(ATC 1978). Lumped parameter models have been used by some researchers to model the adjacent 84 

structures problem, i.e. SSSI in a 3D representation as in the work described by (Lee and Wesley 1973). 85 

Of particular mention are the studies presented by Mulliken and Karabalis (Karabalis and Mulliken 86 

1995; Mulliken and Karabalis 1998) where it has been illustrated that this kind of modelling with 87 

frequency independent lumped parameters can be successfully applied in the evaluation of 88 

interaction between rigid massive adjacent two and three identical surface foundations supported by 89 

a homogenous linear elastic half space subjected to various loadings including impulsive force, 90 

moment, sinusoidal and random signals. The coupling effect was incorporated into the solution by 91 

means of empirical stiffness and damping coupling coefficients which were calculated replacing 92 

numerical constants of static coefficients of stiffness and damping evaluated by Wolf (Wolf 1988) with 93 

functions of a dimensionless inter-foundation distance ratio. More recently, (Mykoniou et al. 2016) 94 

have used the same approach and utilised the coupling coefficients in (Mulliken and Karabalis 1998) 95 

to study the interaction of adjacent liquid-storage tanks.  96 

Based on the above discussion, the aim for this paper is to introduce the theoretical background and 97 

mathematical formulations of the problem of adjacent surface footings within the linear elastic 98 

domain. The formulation is algebraically solved and simplified in order to obtain closed form solutions 99 

for the frequency-independent rotational foundation and coupling spring coefficients that could be 100 

used in recently developed simplified discrete analyses of SSSI problems (Aldaikh 2013). Only cases of 101 

two and three identical equispaced footings are considered. The paper also will examine if the 102 
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proposed formulae are comparable to a novel application of Boussinesq’s point loaded half-space 103 

solution and more sophisticated Finite Element analyses. In addition, an analogue experimental 104 

procedure examining the case of two adjacent foundations is described and results are used to 105 

validate the analytical and numerical analyses.  106 

Objectives 107 

The objectives of this paper are  108 

1. To clarify the formulae for rotational coupling spring coefficients for the case of multi-109 

footing interaction. These formulae are provided as an alternative to a full continuum 110 

model.  111 

2. To theoretically demonstrate why the rotational coupling springs between adjacent and 112 

alternate footings must have negative values.  113 

3. To derive a theoretical estimate based on a novel application of Boussinesq’s surface 114 

displacement of a half-space subjected to a point load. The accuracy of this theoretical 115 

estimate is compared with an empirical numerical/experimental fits for rotational 116 

coupling springs between adjacent footings. 117 

4. To determine the validity of a previous assumption, (Aldaikh et al. 2015), in which the 118 

rotational coupled-interaction springs between alternate footings were ignored in SSSI 119 

analyses.   120 

5. To determine whether it is sufficiently accurate to make use of the coupled interaction 121 

formulae derived originally in (Alexander et al. 2013) for two adjacent structures for the 122 

case of multiple adjacent footings (i.e. greater than two structures)?  123 

Model description 124 

Prior to developing the analytical formulations the following simplifying assumptions are initially 125 

outlined: 126 
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1. The analyses are limited to the linear elastic domain for both rigid foundations and underlying 127 

half-space. Linear analysis is commonly adopted for the analysis of critical structures such as 128 

nuclear power plants, also for machine foundation problems, (Wolf 1991). 129 

2. Only cases of two and three identical equispaced (i.e. equal inter-building spacing) footings 130 

are considered. 131 

3. Foundation and coupling stiffnesses are independent of loading frequency, hence static 132 

analysis is justified. 133 

Reduced order models and mechanical analogue systems 134 

The static analysis of any linearly elastic mechanical system can be defined by the following algebraic 135 

equations: 136 

   (1) 137 

where  is the vector of ‘master’ degrees of freedom (in this paper these will be the rotations at 138 

footings) and is the vector of ‘slave’ degrees of freedom (which are all other displacement and 139 

rotation dofs). Similarly  is the vector actions applied at the ‘master’ dofs (in this paper these will be 140 

applied moments at footings) and  is vectors actions at all other dofs. Block matrices  141 

are classical stiffness matrices. Eq.(1) can be condensed, (by partitioning or sub-structuring see Guyan 142 

(Guyan 1965.)) to achieve the following reduced order model which is a reduced rank system:  143 

   (2) 144 

where matrices are defined as follows  145 

   (3) 146 
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Note that if actions are only applied at ‘master’ degrees of freedom then  and the action vector 147 

. If the displacement/rotations at ‘slave’ dofs are required then the following equation, Eq.(4), 148 

could be employed although this equation would be equivalent to solving Eq.(1) directly.   149 

   (4) 150 

From energy considerations (Zienkiewicz et al. 2013) the global stiffness matrix of the system in Eq.(1) 151 

is symmetric, hence the block matrices  and  must also be symmetric. Matrix  is not, in 152 

general, symmetric.  153 

A question arises as to whether the reduced order model stiffness matrix is necessarily symmetric. 154 

It may be assumed from energy considerations that this should be true. Nevertheless, the following 155 

simple proof demonstrates this. Two matrix theorems are employed (Petersen and Pedersen 2008), 156 

first  which states that the inverse of a symmetric matrix is symmetric; hence  is 157 

symmetric. Second, using  it can be concluded that is also symmetric. 158 

Hence it is known, without any loss of generality, that any reduced order model stiffness matrix is 159 

symmetric.  160 

While the reduced order system in Eq.(2) has been obtained from a condensed system in Eq.(1) it can 161 

also be obtained from an independent system of three dofs interconnected with three springs. Fig.1(a) 162 

displays a system of three static moments applied to a linear elastic half-space. This can be analysed 163 

using the finite element method; which generally results in a large set of linear algebraic equations. In 164 

the case at hand here it is desirable to define ‘master’ degrees of freedom as . The 165 

reduced order model of this system has the form of Eq.(2) and in this particular case is a set of three 166 

linear algebraic equations in terms of just the rotational degrees of freedom  and  . 167 

It is clear mathematically that the mechanical system in Fig.1(b) is a completely identical analogue to 168 

the condensed version of the system in Fig.1(a). If appropriate stiffness coefficients are assigned to 169 

the springs in Fig.1(b) then its stiffness matrix (which is a general diagonal matrix) mathematically 170 

0s f

mf f
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equals the condensed stiffness matrix of the system in Fig.1(a). This is because both stiffness 171 

matrices are arbitrary symmetric matrices.  172 

However, while the reduced order model and mechanical analogue system have identical stiffness 173 

matrices it may not be possible to ensure that the stiffness coefficients of all springs in the mechanical 174 

analogue system are positive. In the case herein it turns out that all the coupled interaction springs 175 

 that cross-couple the footings must be negative. By physical reasoning, (i.e. by 176 

considering applied moments at the surface) it is clear that an anticlockwise rotation of a footing is 177 

likely to produce a clockwise rotation of an adjacent footing. Therefore a ‘spring’ connecting these 178 

two footings must have a negative stiffness. Thus, it is not easy to envisage a physical incarnation of 179 

the mechanical analogue system Fig.1(b). It exists principally as a mathematical abstraction.  180 

The potential energy of the system Fig.1(b) is given in Eq.(5) and its Euler-Lagrange equations are given 181 

in Eq.(6) 182 

   (5) 183 

                                                  (6) 184 

Using Eq.(6) (which are ) for any given set of moments (and their associated surface 185 

rotation field) the stiffness coefficients  and  can be evaluated. Castigliano’s theorem states that 186 

more than one load regime may be required to determine all stiffness coefficients in a general case. 187 

However, not all combinations of load cases result in a rank sufficient system in terms of the stiffness 188 

coefficients  and  as variables, so care is required. Here, an analysis of the system in Fig.1(a) is 189 

used to obtain the associated surface moments  and rotations . Thus, the 190 

spring stiffnesses for the mechanical analogue system can be derived.  191 

K
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Surface displacement field caused by applied surface moments 192 

To determine the stiffness coefficients in Eq.(6) the surface moment-rotation relationship must be 193 

determined. In this paper, two approaches are presented: (i) an analytic approximation based on a 194 

combination of the application of the Boussinesq solution (Poulos and Davis 1974) and (M I Gorbunov-195 

Possadov et al. 1961) results and (ii) an empirical fit of finite element and experimental results.  196 

For small deflections, the surface displacement field  is defined in Eq.(7) in terms of a decay 197 

function  (see Fig.2 ), where x is an arbitrary horizontal coordinate in the free surface plane 198 

   (7) 199 

where  is the rotation of the rigid footing and b is the actual width of the footing. This equation is 200 

non-dimensionalised by the introduction of the non-dimensional length  (where  is a non-201 

dimensional horizontal coordinate) and non-dimensional surface vertical displacement  (where 202 

).  Hence Eq. (7) becomes.  203 

   (8) 204 

By differentiating Eq.(8), an expression for the surface rotation field is obtained. 205 

  ,  (9) 206 

The prime notation in this equation is defined as . 207 

Boussinesq approximation for surface rotation field 208 

Boussinesq (Poulos and Davis 1974) suggested that the vertical surface displacement field due to a 209 

vertical point load P applied to a linear elastic half-space is given by the following equation 210 

   (10) 211 
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where v is the Poison’s ratio and E is the elastic modulus of the half space. The ordinate x is any radial 212 

distance from the point load in the surface plane. If this formula, Eq.(10), is applied to the case of a 213 

couple of equal and opposite forces one located at x = -b/2 and the other at x = +b/2 an estimate of 214 

the surface vertical displacement function U(x) due to an applied moment m = Pb can be obtained by 215 

superposition, as follows: 216 

   (11) 217 

The simplification above is easily obtained by assuming two cases one where and the other 218 

when . These two cases can be combined into equation (11) by employing the Signum 219 

function. The Signum function used above is defined as .  Note that this expression is 220 

not valid in the range  where we assume that the footing imposes a linear 221 

displacement field. Introducing the non-dimensional coordinate  and displacements 222 

 223 

   (12) 224 

The rotation of the surface is given by differentiation for the case of small deflection theory, (Boas 225 

2006)  226 

    (13) 227 

Note that the derivative of  is a Dirac delta  hence we would expect to see this in 228 

equation (13). However, since the range of analysis here is limited to  the derivate terms 229 

involving can be safely neglected as it is zero for . This result is reasonably accurate away 230 
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from the application of the point loads but is, unfortunately, singular (infinite) at the edge of the 231 

foundation, i.e. , due to the limitation of Boussinesq’s conjecture. So the formula suggested by 232 

(M I Gorbunov-Possadov et al. 1961) is used instead for the rotation  at the footing itself.  233 

   (14) 234 

The term  in Eq.(12) is assumed to be the rotational stiffness of the footing; G is the elastic shear 235 

modulus of the half-space. Therefore expressing  in terms of  and recalling the form of Eq.(8), 236 

an estimate of the surface displacement at any point a non-dimensional distance  away from a 237 

footing subject to a rotation  is obtained: 238 

   (15) 239 

It should be noted that this formula (15) gives  rather than 1. This is a consequence of the 240 

singularity embedded in Boussinesq’s result. By differentiation an estimate of the surface rotation 241 

function  is obtained:  242 

  (16) 243 

Empirical fit surface decay function using finite element analysis (FEA) 244 

The weakness of Eq.(16) is that its accuracy is likely to reduce as reduces i.e. as the footings get 245 

closer together, and this is when it needs to be most accurate. Additionally, it does not include the 246 

constraining effects of the footing itself, that is a footing applies a moment but also constrains 247 

displacements locally. Finally, Eq.(16) is only applicable for a very simple case of a linearly elastic, 248 

homogeneous isotropic half-space. For more complex cases finite element analysis is required.   249 
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From a finite element (PLAXIS2D, (PLAXIS-BV 2012)) solution of the problem of this single moment 250 

applied to an isotropic linear elastic half-space, (Aldaikh 2013), a good least squares match (R2=0.99) 251 

to the decay function  is obtained by using the following inverse square relationship  252 

   (17) 253 

The FE model is a two-dimensional (2-D) plane strain model (i.e. results are represented per unit length 254 

in the out of plane direction) with linear elastic underlying material conditions which have the elastic 255 

properties of the Polyurethane foam hereinafter described, Fig.3. Adjacent footings were modelled 256 

using 2-D plate elements of 1m unit width, composed of beam elements with three degrees of 257 

freedom: two translational dofs and one rotational dof in the x-y plane. The beam elements are 258 

perfectly rigid and based on Mindlin’s beam theory (See PLAXIS2D reference manual). The soil was 259 

modelled using an unstructured mesh of 15 node triangular elements with finer mesh coarseness in 260 

regions close to the foundation plates. It has been recommended that finite element mesh for shallow 261 

foundations of width r on isotropic homogeneous soil usually includes an area extending to about 5r 262 

laterally and 8r vertically, an area within most of the stresses variation are expected to occur, (Azizi 263 

2000). 264 

Thus, by differentiating Eq.(17) we obtain an estimate of the surface rotation function   265 

   (18) 266 

This empirical curve-fit in Eq.(17) is an inverse quadratic and as such is of the same order as Eq.(15). It 267 

should be noted, however, that this equation, Eq.(17), is also constrained to give  which is 268 

the correct value and so it differs at small  from the Boussinesq derived Eq. (15) which is singular. 269 

Fig.4(a) and Fig.4(b) respectively display comparisons between the surface decay function and surface 270 
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rotation function using the Boussinesq results, Eq.(15) and Eq.(16), with the FEA fitted functions, 271 

Eq.(17) and Eq.(18). It can be seen that the form of both functions in Eq.(15) and Eq.(17) is very similar.  272 

Example applications 273 

In this section, two example cases are considered: (i) two identical footings, and (ii) three equispaced 274 

footings. These are considered here to conjecture whether simple formulae for rotational spring 275 

stiffnesses can be determined, that are sufficiently accurate (for practising engineering 276 

analyses/design) for a range of different system geometries, (i.e. for a different number of footings 277 

and non-identical ones).  278 

Analysis case 1: two identical rigid footings with interaction 279 

Consider Fig.1(b), where  and . For a load case it is assumed that a single 280 

moment  is applied to rigid footing 1, and . According to Eq.(9) the rotations of 281 

the footings are, for this load case, , and . Hence, Eq.(6) can be 282 

solved to determine the unknown stiffness coefficients  and   283 

   (19) 284 

It should be noted that  would be the rotational spring stiffness of a single, completely isolated, 285 

rigid footing; that is to say, the  value could be obtained directly from Eq.(14) (M I Gorbunov-286 

Possadov et al. 1961). The rotational spring stiffness ≠ ks as it includes the additional stiffening effect 287 

of the adjacent footing. 288 
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Analysis case 2: three identical, equispaced, rigid footings with interaction  289 

In this symmetrical case with identical rigid footings,  and . For this problem, there are 290 

four unknown stiffness coefficients . Hence two load cases are required. First, a 291 

moment  is applied to rigid footing 1 and . According to Eq. (9) the rotations of 292 

the footings are, for this load case, ,  and . In the second load case, 293 

a moment  is applied to rigid footing 2 and . According to Eq. (9) the rotations 294 

of the footings are, for this load case, , . Hence Eq. (6) can be solved to 295 

determine the unknown stiffness coefficients .  296 

   (20) 297 

   (21) 298 

Experimental Evaluation of Spring Coefficients  299 

To physically validate the theoretical expressions proposed for the rotational coupling and foundation 300 

springs, a simple experiment was performed for the case of two identical adjacent rigid foundations 301 

as described in the following paragraphs. The aim here is to produce physical similitude of the 302 

analytical method used to evaluate the rotational springs stiffnesses, i.e.  and . 303 
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Setup and Procedure 304 

The two foundations were modelled with square Perspex plates (width B= 80 mm and t=5 mm thick) 305 

and were firmly glued using an epoxy adhesive to the surface of a Polyurethane foam block 306 

(dimensions: 1000x1000x750 mm, Young’s modulus 120 kN/m2; Poisson's ratio 0.11 and density 50 307 

kg/m3). The foam block proved suitable as a representation of the linear elastic half-space, (Aldaikh et 308 

al. 2015), (Aldaikh et al. 2016) and (Soubestre et al. 2012). The experiment setup is depicted in Fig.5. 309 

A moment was applied at the centre of one plate (active plate) and the resulting rotations of the active 310 

plate itself and at the second plate (passive plate) were measured. This procedure was followed for 311 

different spacing intervals z, as shown in Table A.1, between the two plates to eventually derive a 312 

function between rotational springs stiffnesses and spacing. It was not, however, experimentally 313 

straightforward to apply a moment at the centre of the active plate, hence, an aluminium rod of 314 

negligible weight was fixed at the middle of the active plate which was pulled by a wire running 315 

through a pulley. The wire carried weights which would generate a tension force pulling the aluminium 316 

bar and creating a moment at the centre of the first plate. 317 

The moment was equivalent to the tension force T multiplied by the lever arm l. Vertical displacements 318 

at the edges of each plate were recorded using Linear Variable Differential Transformer (LVDT) 319 

transducers, two per plate as shown in Fig. 5. Values of rotations  and  (Appendix A) at the centre 320 

of each plate were calculated as follows:  321 

  (22) 322 

where  and  are the vertical displacements at the edges of the active plate (ends 1 and 2) where 323 

the moments were applied while  and  are the vertical displacements at the edges of the second 324 
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plate (ends 3 and 4). By rearranging Eq.(6) the formulae for and as functions of and  are as 325 

follows: 326 

  (23) 327 

where  is the experimentally determined foundation stiffness of an isolated footing (with no 328 

neighbouring footing).  329 

Results 330 

Analysis case 1: results 331 

Fig.6(a) and Fig.6(b) respectively present the variation of foundation rotational stiffness  332 

(normalised by ks) and interaction (coupling) rotational stiffness (normalised by k1) with the non-333 

dimensional inter-footing spacing for the case of two identical adjacent footings. It can be seen from 334 

Fig.6(a) and Fig.6(b) that the increase in the rotational stiffness of a single foundation (i.e. separation 335 

distance independent) could reach up to 25% when there is a negligible distance between the edges 336 

of the adjacent foundations. Similarly, it can be seen that as the inter-foundation spacing increases 337 

the interaction effect diminishes. At a spacing of approximately 2.5 times the foundation’s width, the 338 

rotational coupling stiffness is negligible. It can also be observed that results from the proposed 339 

formulation for both individual foundation and coupling interaction stiffness coefficients agree very 340 

well with both FEA and experimental data. Moreover, the current results for the coupling coefficients, 341 

Fig6.(b), are compared to those resulted from the logarithmic curve fitting formula proposed by 342 

Mulliken and Karabalis (Mulliken and Karabalis 1998). However, using the Boussinesq approximate 343 

Eq.(15) resulted in a slightly stiffer estimate of stiffness coefficients. It should be noted that the 344 
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experimental stiffness ratios shown in Fig.6(a) and Fig.6(b) are the average values resulted from all 345 

applied bending moment levels. 346 

Analysis case 2: results  347 

In this section, the following questions are considered: (i) in the case where there are more than two 348 

adjacent foundations, would adjacent footing coupling springs and be sufficient to model the 349 

mutual interaction i.e. is the additional alternate footing coupling spring necessary? (ii) are the 350 

resultant numerical values for  significantly different in the two and three footings case? (iii) are 351 

stiffness coefficients and significantly different in the two and three footings case?    352 

These questions are examined in Fig.7(a) and Fig.7(b) where they respectively present the variation of 353 

foundation rotational stiffness and interaction (coupling) rotational stiffness with the inter-footing 354 

centre-to-centre spacing for the case of two adjacent footings in comparison to that where a third 355 

foundation is present.  356 

The value of the alternate footing coupling spring coefficient  decreases as the footing spacing 357 

increases and it approximately equals one-quarter of that of the adjacent footing coupling  at 358 

spacing where footings touch, i.e. at , (see Fig.7(b)). Given other epistemic uncertainty present 359 

in the application of this theory to physical problems (e.g. due to the site characterisation of soil) it 360 

appears that the alternate footing coupling spring coefficient may be neglected without significant 361 

error, as was done in (Aldaikh et al. 2015). 362 

The values of the adjacent coupling spring coefficient are almost identical for the case of two and 363 

three footings; i.e. formulae Eq.(19) and Eq.(21) for  produce almost identical results regardless of 364 

centre-to-centre footing spacing . This suggests that Eq.(19) for adjacent coupling spring coefficients 365 

is a reasonable and simple approximation for a more general case.  366 
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Finally, the values of spring coefficients  and   for the two and three footing cases show very 367 

similar qualitative forms. However, these coefficients in the three footing case are slightly stiffer than 368 

the two footing case. Fig.8 displays these relative stiffening effects graphically when moving from two 369 

to three closely spaced footings. The central spring is generally greater than the outer spring  in 370 

this case. It should be noted here that these small relative stiffening effects were neglected in (Aldaikh 371 

et al. 2015). 372 

Relative errors in employing the two footing formulation more generally 373 

Eq.(19) along with the surface slope decay function, Eq.(18) are simple and easy to adopt for a more 374 

general case of multiple footings (greater than 2). The results in Analysis case 2 section suggest that 375 

the Eq.(19) estimate of adjacent footing coupling rotational springs  are almost exactly the same 376 

as the more complex and accurate Eq.(21). Additionally, these results suggest that there is an 377 

argument to completely neglect alternate footing coupling rotational springs . However, the 378 

same results also suggest that if the estimate of foundation springs  from Eq.(19) is employed for a 379 

more general case of multiple footings (greater than 2) then it tends to underestimate the stiffnesses 380 

(see Fig.8 ).  381 

Therefore the question remains if formulation in Eq.(19) is used for three footings (with  382 

and ) rather than Eq.(20) and Eq.(21), what errors would be introduced? 383 

For any given rotations of footings,  the resulting norm of moments  can be evaluated using 384 

Eq.(6). This analysis is performed for both cases (a) stiffness from Eq.(19) with  and  385 

and (b) stiffness from Eq.(20) and Eq.(21). Therefore the relative percentage error  of using 386 

formulation Eq.(19) in expressed as follows. 387 

   (24) 388 
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The relative percentage error must be evaluated for a random set of footing rotations  , 389 

i.e. a range of different load cases. Fig.9 displays the results of such an analysis, plotting the relative 390 

error, Eq.(24), as a function of the centre to centre footing spacing .The mean error μ(ε) at a touching 391 

distance ( ) is approximately -7%. Given other epistemic uncertainties present (e.g. in site soil 392 

classification) in the application of this theory to physical problems, this is a small error. 393 

Conclusions  394 

The current study presented a simplified analytical formulation for the evaluation of frequency-395 

independent stiffness coefficients for the problem of adjacent identical footings resting on a linear 396 

elastic half-space. A derivation of the formulae was presented for the case of two and three adjacent 397 

foundations. Boussinesq’s solution for the surface displacement field caused by a point load is 398 

extended to the case of a moment and combined with the Gorbunov-Possadov moment-rotation 399 

relationship for an isolated footing.  400 

The extended Boussinesq’s solution, along with a rigorous finite element model and analogue physical 401 

model, showed excellent agreement with the proposed formulae for both foundation rotational and 402 

coupling spring stiffness coefficients. Contrary to the common assumption in past literature, the 403 

dependency of rocking stiffness of individual foundations on the inter-foundation spacing has been 404 

demonstrated which indicates that reliance on such spacing-independent rocking stiffness could lead 405 

to over-conservative analyses. Results have also shown that there exists only a small difference in the 406 

value of adjacent footing rotational stiffnesses when more than two foundations are considered in the 407 

analysis. Hence, omitting springs connecting alternate footings is permissible given the other 408 

epistemic uncertainties in a physical setting. Bearing in mind this limiting assumption, the formulae 409 

proposed in Eq. (18) and Eq.(19) are simple and straightforward to adopt for a more general case of 410 

multiple footings (greater than two). These can be directly used in the straight-forward 411 

implementation of discrete lumped parameter modelling of adjacent structure interaction problems 412 

which could save considerable computational effort in preliminary design.  413 
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Appendix A 

Table A.1 Foundations rotations in radians 

Spacing z [mm] 

Moment 

m1 [N.mm] 

8 16 24 32 40 48 56 64 72 80 

68 
 0.00355 0.0053 0.0057 0.0058 0.006113 0.00465 0.00485 0.0049 0.00497 0.005 

 -0.0006 -0.00042 -0.00042 -0.0005 -0.00017 -0.00013 -0.00013 -0.00013 -0.00017 -0.00013 

98 
 0.0071 0.0079 0.0083 0.0083 0.0091 0.0071 0.00751 0.0069 0.00764 0.0072 

 -0.0009 -0.00066 -0.00063 -0.00063 -0.0003 -0.0002 -0.0003 -0.00013 -0.00023 -0.00017 

173 
 0.0126 0.0144 0.0149 0.0153 0.0185 0.0128 0.0132 0.012 0.0128 0.0130 

 -0.0016 -0.00126 -0.00099 -0.00099 -0.00053 -0.0004 -0.0005 -0.00037 -0.00027 -0.00023 

248 
 0.0197 0.0215 0.0239 0.0261 0.0287 0.0191 0.0185 0.0186 0.0186 0.0191 

 -0.0026 -0.00126 -0.00143 -0.00133 -0.0008 -0.00059 -0.00063 -0.0006 -0.00043 -0.00036 

323 
 0.027 0.031 0.0356 0.0389 0.0399 0.0257 0.0254 0.0255 0.0255 0.0257 

 -0.0034 -0.00253 -0.00193 -0.00169 -0.00106 -0.0008 -0.00086 -0.00076 -0.00063 -0.00049 

473 
 0.0413 0.046 0.0539 0.0596 0.0597 0.0385 0.0392 0.0385 0.0385 0.0406 

 -0.0049 -0.0038 -0.0026 -0.00243 -0.00159 -0.00133 -0.00123 -0.0011 -0.001 -0.00083 

773 
 0.0777 0.088 0.0931 0.0912 0.0906 0.0744 0.0769 0.0750 0.0760 0.077 

 -0.008 -0.00624 -0.0042 -0.0035 -0.00238 -0.00229 -0.00199 -0.00175 -0.00149 -0.0015 
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Response to Reviewers 

 

Reviewer #1: The paper deals with the evaluation of rocking and coupling rotational stiffness of 

adjacent surface foundations. The paper is really interesting and well written. The following minor 

comments might benefit the authors in the revised version of the paper. 

1) In the introduction would be meritorious also to mention pros and cons of direct and impedance 

methods in the case of nonlinear cases. 

A paragraph has been added to the introduction briefly mentioning some of the pros and cons of 

direct and impedance methods in nonlinear analysis, (page 2, starting line 54). 

2) Model description. Is also necessary to mention that the footings are identical? It seems it is 

not a condition but both numerical and experimental analyses are dealing with identical footings.  

We agree with the reviewer. The word “identical” has been added to the text to indicate that the 

analysis is limited to the case of identical foundations. However, the formulation presented could 

in fact be extended to the case of two or more surface foundation of dissimilar widths. 

3) Figure 2 and Equation 7: "b" is not defined 

Thank you. A clarification has been added to the text, (page 8, line 198). 

4) Equation 7:  does x needs to be in absolute value? 

Yes, please see Boussinesq’s formula.  

5) Equation 11: the idea to determine the displacement function from the principle of 

superposition is interesting, but in the reviewer opinion comments are necessary regarding the 

difference between this solution unconstrained between -b/2 and b/2 and the case of the footing 

that will impose constraints in the displacement field. 

Thanks for the suggestion. The suggested solution (eqn 11) is only valid for the cases |x|>> b/2. 

So it cannot and does not provide a solution for the constrained displacements under the footing 

itself. This displacement field in range b/2>x>-b/2 for a rigid footing is linear so is easily obtained.   
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6) Equation 11: few algebra might also help the readers to derived it 

Textual comments and a little further algebra have been added to explain this simplification more 

clearly, (highlighted in page 9). 

7) Equation 13: it might be pedantic but the derivative of the sign(x) should be also added. If it is 

defined through the Heaviside (Unit step function) it might will lead to a Dirac's delta function. 

Clearly it depends how the unit step function is defined. 

Some textual comments have been added to clarify the math, (highlighted in page 9).  

8) Again in the Conclusions it needs to be clearly state if the analytical formulation is valid for 

identical footings or if it can be extended to different ones. 

A note has been added to the conclusion. 

 

Reviewer #2: This paper presents closed form expressions for rocking spring stiffnesses and 

coupling-interaction rotational spring stiffnesses for closely spaced two or three surface footings. 

In general, this paper is expected to be beneficial to the geotechnical and structural engineering 

communities. In addition, the topic fits within the scope of this Journal. However, some concerns 

need to be addressed before acceptance for publication. 

 

1. Line 242: As the reference Aldaikh (2013) [PhD dissertation] cannot be easily obtained by 

readers, it is suggested to add details of the finite element (FE) model in PLAXIS2D, e.g. structural 

geometry and material, ground stiffness (elastic modulus of the half-space), out-of-plain thickness 

of the plain-strain element, mesh properties, boundary conditions, etc. 

We thank the reviewer for pointing this out. More information on the FE model has been added, 

(page 11 lines 252 to 262). 

2. Line 243: Again a concern on the FE model. In the paper, the authors compare the FE analysis 

(FEA) results with the experimental results. So I guess, in the FE model, you adopted the same 

parameters as the experiment, isn't it? Also, it is suggested to address the influence of the 
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structural and ground stiffnesses (or their ratio) on the empirical Equations (17) and (18)? Please 

clarify. 

Yes, the same parameters as the experiment were used in the FE model. This has been clarified 

as per the preceding response to comment 1. Although not thoroughly, both issues (1) different 

ground (soil) stiffnesses and (2) structure to ground stiffness (represented through sets of 

frequency ratios) have been previously considered in other publications by the authors, 

(Alexander 2013 and Aldaikh 2015). It was found that SSSI is most pronounced on smaller 

structures and on weaker soils (i.e. loose sand). These issues will be further considered in future 

research by the authors. 

3. Line 254: At this stage, the FEA empirical equation has not been validated by experimental 

results. Therefore, it is not appropriate to say "accurate" when discussing the result at smaller 

inter-footing spacing. Please revise. 

We agree with the reviewer. The sentence has been omitted.   

4. In Figure 6: How to obtain the Experimental Results (square marks) based on the test data listed 

in Table 1? By which bending moment level? or in average? Please clarify. 

We thank the reviewer again for pointing this out. Yes, the experimental results of stiffness ratios 

(k1/ks) and (k12/k1) presented in Figure 6 are the average values of all stiffnesses ratios resulted 

from different moment levels. A clarification has been added, (page 15, line 343). 

5. Line 347: For the result of k_{13}/k_{1} in Fig. 7(b), the authors mentioned that it does not 

exceed "one quarter" of that of the adjacent footing coupling at spacing where footings touch. 

However, from Fig. 7(b), it seems to be 0.05 rather than "one quarter". 

What is intended to be said here is that the value of (k13/k1) to that of (k12/k1) at zero separation 

distance approximately equals ≈0.05/0.2 = 0.25. This has been clarified in the text, (page 16, line 

356). 

6. In Section 5.3: The authors should detail the considered parameters of the analyzed cases, i.e., 

what is the considered range of the given rotations of footings; I believe it will impact the mean 

and standard deviation shown in Figure 9. 
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As the problem in question is a linear elastic one, the magnitude of the rotations is not deemed 

to be important. However, in the authors’ opinion, exploring a range of positive and negative 

rotations is needed. A note has been added, (page 15, line 388).  

7. Line 380: Minor mistake. The authors mentioned "… for both case (a) stiffness Eqs(19) with 

k_1=k_2=k_3 and k_{13}=0 and …". Here, in case (a), it should be k_3=0 and k_{23}=0 as well. 

Figure 9 compares the case of 3 adjacent foundations when the outer (connecting alternate 

foundations) spring, k13 , is taken into account with that when only internal (connecting adjacent 

foundation) springs, k12 and k23 , are considered (i.e. only k13=0). 

 

Response to Editorial Comments 

The authors thank the editorial team for their comments. All comments 1 to 5 by the Editorial 

Coordinator have been addressed in the revised version of the paper.  
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