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Abstract 

Many genotoxic cancer treatments activate AMP-activated protein kinase (AMPK), but the 

mechanisms of AMPK activation in response to DNA damage, and its downstream consequences, have 

been unclear. In this study, etoposide activates the α1 but not the α2 isoform of AMPK, primarily 

within the nucleus. AMPK activation is independent of ataxia-telangiectasia mutated (ATM), a DNA 

damage-activated kinase, and the principal upstream kinase for AMPK, LKB1, but correlates with 

increased nuclear Ca
2+

 and requires the Ca
2+

/calmodulin-dependent kinase, CaMKK2. Intriguingly, 

Ca
2+

-dependent activation of AMPK in two different LKB1-null cancer cell lines caused G1-phase cell 

cycle arrest, and enhanced cell viability/survival after etoposide treatment, with both effects being 

abolished by knockout of AMPK-α1 and -α2. The CDK4/6 inhibitor palbociclib also caused G1-arrest 

in G361 but not HeLa cells and, consistent with this, enhanced cell survival after etoposide treatment 

only in G361 cells. These results suggest that AMPK activation protects cells against etoposide by 

limiting entry into S-phase, where cells would be more vulnerable to genotoxic stress. 

Implications 

These results reveal that the α1 isoform of AMPK promotes tumorigenesis by protecting cells against 

genotoxic stress, which may explain findings that the gene encoding AMPK-α1 (but not -α2) is 

amplified in some human cancers. Furthermore, α1-selective inhibitors might enhance the anti-cancer 

effects of genotoxic-based therapies. 

Introduction 

The wild mandrake or May Apple (Podophyllum peltatum), which was used in traditional native 

American medicine, contains the natural product podophyllotoxin (1). Podophyllotoxin itself proved to 

be too toxic for human use, but the synthetic derivative etoposide (also known as VP-16) was approved 

for cancer treatment in 1983. Etoposide acts by binding to topoisomerase II (2), an enzyme that can 

relax DNA supercoiling, insert or remove knots, and catenate or decatenate DNA. It catalyzes an ATP-

dependent cycle in which both strands of one DNA helix are broken, followed by passage through this 

break of a second helix and religation of the breaks in the first. By inhibiting the religation step, 
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etoposide and other anti-cancer agents such as doxorubicin create double-strand breaks. They can also 

cause trapping of complexes in which tyrosine residues of the topoisomerase II homodimer remain 

covalently attached to phosphate groups of the nucleotide at the 5' end of a DNA break, interfering with 

subsequent DNA replication and transcription (3). Since topoisomerase II function is particularly 

crucial during S phase when DNA is being replicated, rapidly proliferating cells (including tumor cells) 

are more susceptible to cell death induced by etoposide than quiescent cells. 

 The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status expressed in 

essentially all eukaryotic cells, which occurs universally as heterotrimeric complexes comprising 

catalytic  subunits and regulatory  and  subunits (4-6). AMPK is activated by phosphorylation of a 

conserved threonine residue within the activation loop of the kinase domain on the  subunit, usually 

referred to as Thr172. Thr172 is phosphorylated in vivo by a complex containing the tumor suppressor 

kinase LKB1, or by Ca
2+

/calmodulin-dependent protein kinase kinases (CaMKKs), especially 

CaMKK2 (4-6). The LKB1 complex appears to be constitutively active, but displacement of ATP by 

AMP at two or more sites on the regulatory  subunit of AMPK leads to increased net Thr172 

phosphorylation. This occurs because AMP binding triggers conformational changes that promote 

Thr172 phosphorylation by LKB1 and inhibit Thr172 dephosphorylation by protein phosphatases, with 

these effects being mimicked by ADP (7, 8); binding of AMP (but not ADP) also causes further 

allosteric activation (9). Because increases in the cellular ADP:ATP ratio (signifying energy deficit) are 

always accompanied by even larger increases in the AMP:ATP ratio, these three effects allow AMPK 

to act as an ultrasensitive sensor of cellular energy status. The CaMKK2-AMPK pathway appears to be 

activated solely by increases in intracellular Ca
2+

, which can be caused by addition to cells of Ca
2+

 

ionophores such as A23187, or by hormones or cytokines that increase intracellular Ca
2+

 (4-6). 

 Each AMPK subunit exists as multiple isoforms (1/2, 1/2, 1/2/3) encoded by multiple genes 

(PRKAA1/2, PRKAB1/2, PRKAG1/2/3). Intriguingly, while the PRKAA2 gene (encoding 2) is quite 

often mutated in human cancers, consistent with the idea that it helps to exert the tumor suppressor role 

of LKB1, the PRKAA1 and PRKAB2 genes (encoding 1 and 2) are frequently amplified instead, 

suggesting that their amplification may be selected for because they promote tumor formation (5, 10). 
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The reason for the distinct behaviors of these AMPK-encoding genes in human cancers has been 

unclear. 

 Fu et al (11) reported that etoposide activated AMPK, and claimed that the effect was dependent on 

the protein kinase ataxia-telangiectasia mutated (ATM), because it appeared to be absent in ATM-

deficient cells. ATM is a member of the phosphatidylinositol 3-kinase-like kinase (PIKK) family, with 

the genetic disorder ataxia-telangiectasia being caused by loss-of-function mutations in the ATM gene. 

ATM is activated in normal cells by double strand breaks in DNA, such as those induced by etoposide. 

Once activated, ATM autophosphorylates on Ser1981, and phosphorylates downstream targets such as 

the histone variant, H2AX, and Structural Maintenance of Chromosomes Protein-1 (SMC1); these 

events can be used as biomarkers both for ATM activation and for DNA damage (12). ATM also 

phosphorylates LKB1 at Thr366 (13), and it was reported that activation of AMPK by etoposide in 

prostate cancer cells was reduced by shRNA-mediated knockdown of either ATM or LKB1 (14), 

suggesting the existence of a kinase cascade from ATM to LKB1 to AMPK. Arguing against this, 

however, etoposide still activated AMPK in the LKB1-null HeLa cell line (11), while ionizing radiation 

(which causes double stranded DNA breaks and also activates ATM) activates AMPK in another 

LKB1-null tumor line, A549 cells (15). 

 To address these discrepancies, we investigated the mechanism by which etoposide activates 

AMPK. We show that activation of AMPK is restricted to the 1 isoform within the nucleus, and does 

not require ATM or LKB1 but is dependent on CaMKK2 and triggered by increases in nuclear Ca
2+

. 

We also show that prior activation of either isoform enhances cell survival during etoposide treatment. 

These results not only provide a potential explanation for the findings that the gene encoding AMPK-

1 (but not –2) is amplified in some human cancers, but also suggest that pharmacological inhibitors 

of AMPK might make tumor cells more sensitive to death induced by DNA-damaging treatments, and 

might therefore be useful adjuncts to chemotherapy or radiotherapy. If these inhibitors were 1-

selective, this might avoid potential systemic side effects caused by inhibition of 2 complexes. 
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Material and Methods 

Materials 

A23187, nocodazole, propidium iodide , etoposide, palbociclib, STO609 and KU-5593 were from 

Sigma-Aldrich. Antibodies against actin (A5441) were from Sigma-Aldrich, against p-AMPK (pT172; 

A2535), p-ATM (pS1981; 4526) and total ATM (2631) were from Cell Signaling, against phospho-

SMC1 (S966-P; A300-050A) and total SMC1 (A300-055A) were from Bethyl labs. Antibodies against 

AMPK-α1 and -α2, the phosphorylated form of acetyl-CoA carboxylase (pACC) and total ACC have 

been described previously (16, 17). Secondary antibodies were from Li-Cor Biosciences. 

Cell culture 

All cell lines were from the European Collection of Authenticated Cell Cultures (ECACC), except 

immortalized mouse embryo fibroblasts (MEFS), which were a gift from Dr Benoit Viollet, INSERM, 

Paris (18). HeLa and G361 cells were re-validated during the project by STR profiling (Public Health 

England, certificate dated 08/14/2015); HEK-293 cells used in Fig. 2C and Supplementary Fig. S2 

were purchased from ECACC in January 2016. G361 cells were cultured in McCoy’s 5A medium 

containing 1% (v/v) glutamine, 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) 

penicillin/streptomycin. HeLa and HEK-293 cells and MEFs were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin. 

AMPK assays 

Endogenous AMPK isoforms were assayed by immunoprecipitate kinase assays as described (19, 20) 

using the AMARA peptide (21) as substrate. AMPK-1 or –2 were assayed by immunoprecipitation 

with 1- or 2-specific antibodies, whereas total AMPK was assayed by immunoprecipitation with an 

equal mixture of 1- and 2-specific antibodies. 

Construction of AMPK knockout cells 

Knockout of AMPK-α1 and -α2 (PRKAA1 and PRKAA2) in G361 and HeLa cells was carried out using 

the CRISPR-Cas9 method, as described previously for G361 cells (22). 
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Immunofluorescence microscopy 

Cells were grown on glass coverslips in 6 well dishes until 40-80% confluent and then treated with 

drugs or vehicle control. The coverslips were washed 3x in PBS, fixed in 4% paraformaldehyde in PBS 

for 20 min, and washed again 3x with PBS. The cells were then permeabilised in 0.2% Triton X-100 in 

PBS for 5 min, and washed again 3x with PBS. They were then placed in blocking buffer (PBS with 

0.2% fish skin gelatin) for 1 hr and stained with primary antibody (1:300- 1:1000 in blocking buffer) 

for 30 min. After further washing in blocking buffer, the coverslips were incubated with fluorescent 

secondary antibody (1:200 dilution in blocking buffer) for 30 min. They were then mounted on slides 

using Vectashield and sealed with nail varnish. The slides were imaged on the Deltavision 

deconvolution microscope and images acquired and deconvolved using the SoftWorx program. 

Live cell imaging with Fluo4 

Cells were grown on glass bottom dishes (Willco Wells) until 40-80% confluent. They were then 

loaded with Fluo4-AM dye (1 μM) plus Hoechst 33342 for 20-30 min. The cells were then washed 

with PBS and fresh medium added. The Willco dish was mounted onto a stage pre-heated to 37
o
C and 

enclosed with a lid to deliver 5% CO2 to the cells. Calcium flux was measured using the DeltaVision 

OMX system with fluorescence measured at 488 nm using a 63x objective. Image analysis and 

quantification was performed using ImageJ software. 

siRNA knockdown of CaMKK2 

Reverse transfection of siRNA constructs against CaMKK2 were carried out according to protocols 

detailed in the Ambion™ siRNA starter kit. Briefly, transfection reagent (siPORT) was diluted 1 in 20 

in Opti-MEM medium and allowed to incubate for 10 min. Meanwhile, cells were trypsinised for 5 

minutes and the trypsin quenched with complete media. siRNA (Ambion, Life Technologies) was 

diluted in Opti-MEM to a final concentration of 5 nM. siRNA and diluted transfection reagent were 

then mixed and incubated for 10 min. The siRNA- siPORT mixture was added to 6 well plates and 

cells were seeded into the 6 well plates. The plates were returned to the incubator for 24 hr, after which 

treatment with vehicle or drugs was carried out. Knockdown was confirmed by Western blotting. 
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Clonogenic and MTT survival assays 

For clonogenic survival assays, cells were seeded into 6 well plates at equal density and treated at 40-

80% confluence with vehicle control or different concentrations of drug for 24 hr. Cells were 

trypsinized in 0.5 ml of trypsin:EDTA for 5 min and then diluted with 1 ml of complete medium. The 

cells in the control flask were counted using a hemocytometer under a microscope and 2000 cells 

seeded in triplicate into 10 cm dishes containing 10 ml of medium. The same volume of cell suspension 

was aspirated from the treated flasks and seeded in triplicate into 10 cm dishes also containing 10 ml of 

medium. The dishes were placed at 37 ºC in an incubator for 10-15 days. On last day, the medium was 

aspirated; the cells were fixed with ice-cold methanol for 10 min and stained with 0.3% w/v methylene 

blue in methanol for 10 min. The dishes were washed with de-ionised water and the number of colonies 

counted manually. 

 For MTT assays, cells were seeded in 12 well plates until 40-80% confluence and treated for 48 hr. 

The cells were then incubated with 0.5% of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 

bromide (MTT) for 3 hr. The growth medium was aspirated off and formazan crystals were dissolved 

in 500 µl of acidified isopropanol. The intensity was measured by spectrophotometry at 570 nm. 

Cell cycle analysis 

Cells were seeded in 6 cm dishes until 40-80% confluence and treated for 16-18 hr. Cells were 

trypsinized and the cells were pelleted, transferred into 5 ml Falcon tubes and washed with PBS 

containing 1% fetal calf serum and 0.1 mM EDTA. The cells were then fixed with ice-cold 70% 

ethanol for >2 hr. The cells were washed twice in the PBS buffer and stained with propidium iodide 

(diluted 1 in 20 in the PBS buffer) with RNAse added to digest RNA. Cell cycle analysis was 

performed on the Calibur flow cytometer and analysis performed using Flow Jo software. 

Additional analytical procedures 

SDS-PAGE was performed using precast Bis-Tris 4–12% gradient polyacrylamide gels in the MOPS 

buffer system (Invitrogen). Proteins were transferred to nitrocellulose membranes (BioRad) using the 

Xcell II Blot Module (Invitrogen). Membranes were blocked for 1 hr in Tris-buffered saline (TBS) 

containing 5% (w/v) non-fat dried skimmed milk. The membranes were probed with appropriate 
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antibody (0.1–1 μg/ml) in TBS-Tween and 2% (w/v) non-fat dried skimmed milk. Detection was 

performed using secondary antibody (1 g/ml) coupled to IR 680 or IR 800 dye, and the membranes 

scanned using the Li-Cor Odyssey IR imager.  

Presentation of data and statistical analysis 

Significances of differences were estimated using GraphPad Prism 6 for Mac OSX, using Student’s t 

test, 1-way or 2-way ANOVA as appropriate. Unless stated otherwise, Sidak’s multiple comparison test 

was used for post-hoc analysis. Numbers of replicates (n) refer to biological replicates, i.e. the number 

of independent cell cultures analyzed. Significance of differences are indicated as follows: *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001 or †P<0.05, ††P<0.01, †††P<0.001, ††††P<0.0001; ns, not 

significant. 

Results 

AMPK activation by etoposide does not require LKB1 

We initially studied the effects of etoposide in cell lines expressing LKB1, including the human 

embryonic kidney cell line, HEK-293. Surprisingly, we could not detect significant AMPK activation 

in these cells using kinase assays, although it could be readily observed in two LKB1-null tumor cell 

lines, i.e. HeLa (cervical cancer) and G361 (melanoma) cells. We could also observe AMPK activation 

in immortalized mouse embryo fibroblasts (MEFs), which do express LKB1 (Fig. 1A). 

 In HeLa cells, AMPK activation following addition of 30 µM etoposide was quite slow and 

relatively modest in extent, becoming significant by 6-9 hours and reaching a maximum of 2- to 3-fold 

after 18 hours (see Fig. 5A). Infusion of high-dose etoposide in humans results in peak plasma 

concentrations ranging from 50-200 µM (23), and AMPK activation after 16 hr treatment of HeLa cells 

occurred at etoposide concentrations from 30 to 300 µM (Fig. 1B). AMPK activation was associated 

with increased Thr172 phosphorylation, by 1.8 ± 0.3-fold (n.s.), 2.2 ± 0.3-fold (P <0.05) and 2.3 ± 0.3-

fold (P <0.05) at 30, 100 and 300 µM etoposide respectively (mean ± SEM, n = 6), and with 

phosphorylation of the ATM substrate SMC1, although phosphorylation of the latter appeared to be 

saturated at 30 µM (Fig. 1B). As expected, activation and Thr172 phosphorylation of AMPK was also 
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observed following treatment of HeLa cells with the Ca
2+

 ionophore A23187 (which activates the 

upstream kinase CaMKK2) although the degree of activation was larger than that obtained with 

etoposide. However, A23187 treatment did not lead to phosphorylation of SMC1, suggesting that ATM 

was not activated by increasing cellular Ca
2+

 (Fig. 1B). Very similar effects of etoposide and A23187 

were observed in G361 cells (Fig. 1C), where the effects of etoposide on Thr172 phosphorylation were 

2.1 ± 0.1-fold (n.s.), 3.5 ± 0.4-fold (P <0.001) and 3.7 ± 0.5-fold (P <0.001) at 30, 100 and 300 µM 

respectively (mean ± SEM, n = 4). 

AMPK activation by etoposide occurs primarily within the nucleus 

Fig. 2A shows fluorescence micrographs of HeLa cells treated with vehicle (DMSO), etoposide (100 

µM) or A23187. The cells were fixed and labeled with antibodies recognizing ATM phosphorylated at 

Ser1981 (pATM) or AMPK phosphorylated at Thr172 (pT172). Quantification of the nuclear and 

cytoplasmic fluorescence is shown in Fig. 2B, left-hand panels (n = 10). As expected, large increases 

(13-fold) in nuclear staining were obtained with the anti-pATM antibody after treatment with 

etoposide, but not A23187. By contrast, large increases in nuclear staining were obtained with anti-

pT172 antibody after treatment with either etoposide (13-fold) or A23187 (9-fold). Although A23187 

also appeared to increase cytoplasmic pT172 staining in HeLa cells, this was not statistically 

significant. Similar results were obtained with G361 cells, although in these cells A23187 did cause a 

significant increase in cytoplasmic pT172 staining (Supplementary Fig. S1; quantification in Fig, 2C, 

right). These results show that etoposide activates AMPK primarily in the nucleus, in both HeLa and 

G361 cells. 

 Using the anti-pT172 antibody to detect AMPK activation in HeLa cells, fluorescence could be 

observed in most nuclei after treatment for 18 hr with 100 µM etoposide, but was still observed in some 

nuclei even at much lower etoposide concentrations (250 nM, Supplementary Fig. S2, arrows); these 

invariably corresponded with nuclei that were also positive for pATM, indicating the occurrence of 

DNA damage. 

 Because basal Thr172 phosphorylation and AMPK activity is much higher in the cytoplasm of cells 

that express LKB1 such as HEK-293 cells (24), we hypothesized that this might have been masking 
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changes in the small pool of AMPK in the nucleus, explaining why we had not been able to initially 

detect effects of etoposide in HEK-293 cells. Consistent with this, in control HEK-293 cells treated 

with DMSO for 18 hr there was a diffuse cytoplasmic and nuclear fluorescence detected using anti-

pT172 antibodies, such that it was difficult to distinguish the two compartments. Most cells also 

displayed at least one perinuclear patch with more intense fluorescence; these appear to represent the 

Golgi apparatus, since they stained with antibodies against the Golgi maker, GM130 (data not shown). 

In cells treated with low etoposide concentrations (3 µM) the nuclei were more fluorescent than the 

cytoplasm in some cells, once again corresponding with cells where the signal for nuclear pATM was 

increased (Supplementary Fig. S3, arrows). Fig. 2C shows quantification of results from a large number 

of cells (n = 18). The mean absolute fluorescence appeared to increase in response to etoposide in the 

nucleus and decrease in the cytoplasm, while remaining constant when averaged across the whole cell, 

although these effects were not statistically significant (left-hand panel). However, when the results 

were expressed as nuclear:cytoplasmic ratios there was a significant increase in response to 3 µM 

etoposide (right-hand panel). Thus, etoposide appears to activate AMPK within the nuclei of HEK-293 

cells, although this is difficult to detect because it can be masked by the high basal activity in the larger 

pool of AMPK in the cytoplasm. 

AMPK activation by etoposide is specific for the 1 isoform 

Because the sequences around Thr172 are identical in 1 and 2, the anti-pT172 antibody does not 

distinguish the two AMPK catalytic subunit isoforms. However, human 1 (predicted mass 64,009 Da) 

is slightly larger than 2 (62,319 Da), and the two isoforms can be resolved by SDS-PAGE. In Fig. 3A 

we analyzed lysates from triplicate dishes of control and etoposide-treated HeLa cells by dual label 

Western blotting using anti-pT172 antibodies labeled with IRDye 680 (red), and either 1- or 2-

specific antibodies labeled with IRDye800 (green). In the upper blot (probed with anti-pT172 and anti-

1) a single band appears predominantly green in the control lanes but becomes more yellow 

(indicating increased Thr172 phosphorylation) after etoposide treatment. In the lower blot  (probed 

with anti-pT172 and anti-2) two bands are evident, an upper red band (1) that becomes more intense 

after etoposide treatment, and a lower green band (2) whose intensity or color does not change. The 
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intensity in the pT172 (red) channel for 1 increased by 2.1 ± 0.1-fold (P <0.0001, n = 3) and 2.0 ± 

0.1-fold (P = 0.0001, n = 3) in the upper and lower panels respectively, but was unchanged for 2. 

These results show that Thr172 phosphorylation in response to etoposide occurs exclusively with the 

1 isoform. To confirm this, we immunoprecipitated complexes from cell lysates of HeLa, G361 and 

A549 cells using 1- or 2-specific antibodies, and measured kinase activity. The results (Fig. 3B-D) 

showed that 30-300 µM etoposide caused progressive activation of 1 complexes in all three cell types. 

In HeLa and A549 cells etoposide failed to activate 2 complexes (Figs. 3B, 3D), while in G361 cells 

the activity of 2 complexes was too low to measure reliably (Fig. 3C). As a positive control, the Ca
2+

 

ionophore A23187 markedly activated both 1 and 2 complexes in HeLa and A549 cells, and 1 

complexes in G361 cells. We also performed Western blots in A549 cells (Fig. 3E), which showed, 

similar to the results in HeLa and G361 cells (Figs. 1B/1C), that pSMC1 phosphorylation was 

increased by etoposide but not A231787, whereas there were small increases in Thr172 

phosphorylation in response to etoposide and a larger increase in response to A23187, correlating with 

the changes in AMPK activity. Interestingly, phosphorylation of the downstream target of AMPK, 

acetyl-CoA carboxylase (ACC), did not appear to increase in response to etoposide, although it clearly 

increased in response to A23187 (Fig. 3E). 

AMPK activation by etoposide requires CaMKK2 but not ATM 

Since AMPK activation by etoposide in HeLa, G361 and A549 cells occurs in the absence of LKB1, 

we examined whether it required the other well-established upstream kinase for AMPK, CaMKK2. Fig. 

4A shows that the CaMKK2 inhibitor STO609 had no effect on etoposide-induced phosphorylation of 

SMC1 (which is catalyzed by ATM), but did inhibit basal AMPK activity and Thr172 phosphorylation, 

as well as the increases induced by etoposide (although at the concentration used it did not block the 

effects of etoposide completely). Fig. 4A shows that (as in A549 cells, Fig. 3E), etoposide did not 

increase phosphorylation of the classical AMPK target acetyl-CoA carboxylase (ACC), although in 

other experiments  (Fig. 4C) it was phosphorylated in response to A23187. Since STO-609 is not 

completely selective for CaMKK2 (17), we also assessed the requirement for CaMKK2 via siRNA 

knockdown. Western blots show that we obtained effective CaMKK2 knockdown that blocked AMPK 
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activation and Thr172 phosphorylation in response to both etoposide (Fig. 4B) and A23187 (Fig. 4C). 

As expected, CaMKK2 knockdown did not affect etoposide-induced phosphorylation of the ATM 

target SMC1 (Fig. 4B), although it prevented phosphorylation of ACC in response to A23187 (Fig. 

4C). 

 To examine the involvement of ATM, we used the ATM-selective inhibitor KU-55933 (25). As 

expected, KU-55933 blocked the phosphorylation of the ATM target SMC1 in response to etoposide. 

However, although it appeared to cause a modest reduction in basal activity and Thr172 

phosphorylation of AMPK, it did not prevent the increased AMPK activity and Thr172 

phosphorylation caused by etoposide (Fig. 4D). Thus, in these cells the regulation of AMPK by 

etoposide is ATM-independent. 

AMPK activation is associated with increases in nuclear [Ca2+] 

Since activation and Thr172 phosphorylation of AMPK in response to etoposide required CaMKK2, 

we suspected that it might be associated with increases in nuclear Ca
2+

 concentration. Fig. 5A shows a 

time course of AMPK activation after addition of etoposide in HeLa cells. After a lag of around 3 

hours, AMPK activation became evident by 6 hours and increased further up to 18 hours. We used the 

Ca
2+

-sensitive dye fluo-4, administered to cells in the form of the acetoxymethyl ester fluo-4 AM, to 

estimate changes in Ca
2+

 within the nucleus and cytoplasm at 3 hr intervals. The ratio of fluorescence at 

the time of measurement and at time zero (F/F0), was used as an index of [Ca
2+

]. Interestingly, slow, 

progressive increases in nuclear [Ca
2+

] were observed which followed a similar time course to changes 

in AMPK activity, becoming significant at 6 hours and continuing to increase up to about 18 hours. 

Cytoplasmic Ca
2+

 did not exhibit such significant changes over the same time points (Fig. 5B). 

A23187 enhances cell survival during etoposide treatment via AMPK activation 

Using the CRISPR-Cas9 system, we generated HeLa and G361 cells with single (1KO or 2KO) or 

double (DKO) knockouts of the AMPK catalytic subunits. Fig. 6A shows that 1 and/or2 were 

absent from the knockout HeLa cells as expected. Interestingly, 2 expression was markedly up-

regulated in 1KO HeLa cells. We were unable to detect 2 by Western blotting in the G361 cells 

(Fig. 6B), consistent with our failure to detect it using kinase assays (see above). Also consistent with 
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this, phosphorylation of the AMPK target ACC in response to the AMPK activator H2O2 (26) was 

abolished in G361 cells by knockout of 1 only, although in HeLa cells this required knockout of both 

1 and 2 (Fig. 6A/B). 

 We next used two types of cell survival assay to assess the effect of prior AMPK activation by 

A23187 on cell death induced by etoposide treatment of HeLa cells. Using MTT assays and treatment 

for 48 hours (Fig. 6C), 10 or 30 µM etoposide reduced cell survival to 21% and 7% of the DMSO 

control, respectively. However, prior treatment with A23187 for 6 hours to activate AMPK 

significantly enhanced cell survival to 47% and 14% of control, respectively. Similar protective effects 

of A23187 were seen in 1KO and 2KO cells although the basal levels of survival appeared to be 

slightly higher in these cells. However, the protective effect of A23187 treatment was completely 

abolished in DKO cells at both etoposide concentrations. Similar results were obtained using the more 

sensitive clonogenic survival assays (Fig. 6D), although much lower concentrations of etoposide (100 

and 250 nM) and shorter incubation times (18 hours) were used in these assays. One other difference 

was that clonogenic survival was significantly lower in DKO cells at both 100 and 250 nM etoposide 

even in cells not treated with A23187, an effect not seen using the MTT assays. Fig. 6E confirms using 

anti-pSMC1 blots that ATM was activated to a similar extent at all four concentrations of etoposide 

used in Figs. 6C and 6D, and that this was unaffected by single or double knockouts of the two AMPK 

catalytic subunit isoforms. 

 We suspected that the protection against cell death provided by AMPK activation might be due to 

G1 cell cycle arrest, which would reduce entry of cells into S phase where they would be more 

vulnerable to DNA damage induced by etoposide. To confirm that A23187 induced G1 arrest in HeLa 

cells, we treated them with or without A23187 in the presence of nocodazole (which prevents cells that 

have already traversed the G1:S boundary from progressing through into the subsequent G1 phase). 

Fig. 6F shows that A23187 caused a >10-fold increase in G1:G2 ratio in WT cells, as expected for an 

agent causing G1 arrest. Similar results were obtained in 1KO or 2KO cells, showing that either 

isoform is capable of causing cell cycle arrest. However, a significant increase in G1:G2 ratio was not 

observed in DKO cells. 
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Other treatments causing G1 arrest provided similar protection against etoposide 

To test whether other treatments that caused G1 arrest would provide protection against etoposide-

induced cell death, we initially used palbociclib (PBC, also known as PD332991), an inhibitor of the 

cyclin-dependent kinases CDK4/CDK6 (27, 28). Interestingly, PBC did not cause cell cycle arrest in 

HeLa cells (Fig. 7A). However, in G361 cells PBC from 0.1 to 10 nM caused a progressive increase in 

the proportion of G361 cells in G1 phase, with corresponding decreases in the proportions in S and 

G2/M phases (Fig. 7B). Tellingly, PBC did not protect against cell death induced by etoposide in 

clonogenic survival assays in HeLa cells (Fig. 7C), but provided marked protection in G361 cells (Fig. 

7D). We have shown previously that A23187 treatment of G361 cells causes a G1 arrest that is 

abolished in AMPK DKO cells (22). Supplementary Fig. S4 confirms that, similar to HeLa cells, prior 

treatment with A23187 protected G361 cells against cell death induced by etoposide in clonogenic 

survival assays, with the effect being abolished in DKO cells. 

 To confirm that another agent that caused cell cycle arrest would protect HeLa cells against 

etoposide, we used aphidicolin, which causes arrest in early S phase by inhibiting DNA polymerase- 

(29). Unlike palbociclib, aphidicolin cause a marked arrest at the G1/S boundary (Fig. 7E) and also 

provided significant protection against cell death induced by etoposide in clonogenic survival assays 

(Fig. 7F). 

Discussion 

We have confirmed that the DNA-damaging agent etoposide activates AMPK in several different cell 

lines as reported previously (11, 14), but also present new findings that AMPK activation by etoposide 

occurs primarily in the nucleus, and is specific for complexes containing the 1 isoform of the catalytic 

subunit even when 2 was also expressed, as in HeLa and A549 cells. Since these cells do not express 

LKB1, our results rule out a role for that kinase. We show instead that the effect is catalyzed by the 

alternate upstream kinase CaMKK2, since it was reduced either by the CaMKK inhibitor STO-609, or 

by knocking down CaMKK2 using siRNA. The correlation between AMPK activation and nuclear 

[Ca
2+

] (Fig. 5) suggests that activation of AMPK by etoposide may be mediated by increases in nuclear 

[Ca
2+

] rather than any intrinsic change in CaMKK2 activity, although the source of the increased 
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nuclear Ca
2+

, and the mechanism by which it is released in response to etoposide and/or DNA damage, 

remains unclear. 

 We were initially unable to detect significant Thr172 phosphorylation or activation of AMPK by 

etoposide in HEK-293 cells, which express normal levels of LKB1.  However, we subsequently 

observed increased Thr172 phosphorylation in the nuclei of HEK-293 cells by immunofluorescence 

microscopy. We believe that we could not detect changes in global Thr172 phosphorylation or AMPK 

activation in these cells because the high basal levels of these parameters in the cytoplasm (due to the 

high basal activity of LKB1) were obscuring changes in the small pool of AMPK within the nucleus. 

 It was previously reported that AMPK activation by etoposide in a prostate cancer cell line (C4-2) 

was reduced by knocking down ATM or LKB1 using RNAi (14). Since ATM had been previously 

shown to phosphorylate LKB1 at Thr366 (13), it was proposed (14) that there was a kinase cascade 

from ATM to LKB1 to AMPK. However, Thr366 phosphorylation has been reported to have no effect 

on either the activity or the localization of LKB1 in G361 cells (13). Moreover, this mechanism cannot 

explain the effects in the cells we studied because: (i) in HeLa cells, etoposide activated AMPK via a 

mechanism that required CaMKK2, but not LKB1; (ii) although etoposide activated ATM in HeLa 

cells, the ATM inhibitor KU-55933 did not prevent increased AMPK activity and Thr172 

phosphorylation in response to etoposide, despite blocking phosphorylation of a known ATM target, 

SMC1.  

 One interesting question raised by our study is why AMPK activation by etoposide is restricted to 

nuclear 1 complexes. LKB1 is only catalytically active when it forms a complex with the accessory 

subunits STRAD and MO25 (30), and association with these subunits causes its exclusion from the 

nucleus (31), implying that LKB1 may only be able to activate cytoplasmic AMPK. Consistent with 

this, using a FRET-based reporter that can monitor AMPK activity in real time in single cells (32), 

AMPK activation by 2-deoxyglucose [an inhibitor of glycolysis that activates AMPK by increasing 

cellular AMP, and is therefore LKB1-dependent (33)] occurred only in the cytoplasm, whereas 

activation by A23187 [a Ca
2+

 ionophore that works via the Ca
2+

/CaMKK2 pathway independently of 

AMP (33)] occurred initially in the cytoplasm and then in the nucleus. These results suggest that 

CaMKK2 must be present in the nucleus, since if the effect was due to translocation of activated 
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AMPK, it should work equally well after treatment with 2-deoxyglucose or A23187. There is also 

evidence that 2-containing complexes are activated primarily by the AMP- and LKB1-dependent 

mechanism rather than the Ca
2+

/CaMKK2 mechanism in vivo. For example, conditional LKB1 

knockout in skeletal and cardiac muscle prevented activation of 2-containing complexes in response 

to contraction in skeletal muscle or ischemia in cardiac muscle, while having little or no effect on the 

activity of 1-containing complexes (34, 35). The reasons for this apparent selectivity of upstream 

kinases for 1 or 2-containing complexes in vivo remain unclear, because the LKB1:STRAD:MO25 

complex  (24) and CaMKK2 (36) phosphorylate and activate both 1- or 2-containing complexes in 

cell-free assays, while treatment with the Ca
2+

 ionophore A23187 can activate 2 complexes in intact 

cells (Fig. 2B). One possibility is that this isoform selectivity is due to different subcellular locations of 

the upstream kinases and the AMPK complexes containing the different  isoforms. Both 1 and 2 

contain well-defined nuclear export sequences (37), while nuclear localization sequences are less well-

defined, although a short conserved basic sequence in 2 (also present in 1) has been proposed to 

fulfill that role (38). If 1 complexes were more abundant than 2 complexes in the nuclei of 

unstimulated HeLa or G361 cells, this might explain why only the former were activated by etoposide. 

Arguing against this possibility, however, is evidence that it is 2 rather than 1 that is enriched in the 

nucleus (39), although that was obtained using different cell types. Interestingly, etoposide treatment 

did not cause phosphorylation of ACC at the AMPK site Ser79, unlike A23187 (Figs. 3E, 4A, 4C). 

ACC phosphorylation is a universally used biomarker for AMPK activation, and etoposide is the first 

AMPK activator we have studied that does not trigger it. The obvious explanation is that etoposide 

activates AMPK primarily in the nucleus, from which ACC (a large cytoplasmic protein) is excluded. 

 Another novel finding in our study was that prior elevation of intracellular Ca
2+

 for 6 hours using the 

Ca
2+

 ionophore A23187 protected against cell death induced by etoposide, both in short-term MTT 

assays and in clonogenic survival assays. In both cases, the effect was AMPK-dependent, because it 

was eliminated in HeLa and G361 cells when both catalytic subunit isoforms (1 and 2) were 

knocked out using the CRISPR-Cas9 system. Single knockouts did not abolish the effect in HeLa cells, 

suggesting that either isoform is capable of exerting the protective effect, although we have found that 

only 1 complexes are activated by etoposide. A caveat here, however, is that knockout of AMPK-1 
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caused a marked up-regulation of AMPK-2 expression (Fig. 6A), raising the possibility that over-

expressed AMPK-2 might perform functions that endogenous levels might not. A notable difference 

between the MTT and the clonogenic survival assays is that effects of etoposide on cell survival were 

observed in clonogenic assays at much lower concentrations (100-250 nM, as opposed to 10-30 µM for 

MTT assays). This is a common finding, and may occur because a low level of DNA damage, which 

may be quite difficult to detect, is nevertheless sufficient to prevent clonal growth of single cells. 

 These findings to some extent turn the original view on the role of AMPK in cancer on its head. 

Because AMPK is immediately downstream of, and activated by, the tumor suppressor LKB1, because 

it inhibits cell growth and proliferation and switches off the growth-promoting target-of-rapamycin 

complex-1 (TORC1) when activated (5, 40), and because use of the AMPK-activating drug metformin 

is associated with a lower risk of cancer in diabetics (41), it had been widely assumed that AMPK was 

a tumor suppressor. Although AMPK may indeed initially suppress the development of rapidly 

growing tumors and there may therefore be selection pressure for the LKB1-AMPK pathway to be 

down-regulated (42), complete loss-of-function of AMPK in human cancers appears to be rare. In fact, 

there is increasing evidence that AMPK can under some circumstances enhance the growth of tumor 

cells, perhaps by protecting solid tumors against the environmental and nutritional stresses that occur 

before their new blood supply has been fully established (5, 10, 43, 44). For example, a double 

knockout of 1 and 2 isoforms in immortalized MEFs prevented their growth as xenografts in 

immunodeficient mice (18). However, while knocking out 2 alone accelerated growth of H-RasV12-

transformed MEFs in vivo, knocking out 1 completely prevented growth, suggesting that 1 but not 

2 is required for tumor growth in vivo (45). These results are also consistent with results of recent 

data mining from the human cancer genome projects, which revealed that while the PRKAA1 gene 

(encoding 1) is frequently amplified in human cancers (suggesting that this is a genetic change for 

which positive selection has occurred), the PRKAA2 gene (encoding 2) undergoes quite frequent 

mutations instead, more consistent with it being a tumor suppressor (5, 10). The results shown in Fig. 6 

provide the novel finding that AMPK activation using A23187 in LKB1-null tumor cells protects them 

against cell death induced by the DNA damaging agent, etoposide, and that this is abolished in the 

absence of AMPK. Since etoposide treatment activates AMPK on its own, the presence of AMPK 



Vara-Ciruelos et al Etoposide-induced AMPK Activation Enhances Cell Survival 18 

should be sufficient to protect the cells against etoposide, even in the absence of A23187. This was 

indeed the case in clonogenic survival assays in HeLa cells, where cell death was enhanced in the DKO 

cells not treated with A23187 (Fig. 6D). These results suggest that an AMPK inhibitor (particularly if 

selective for 1 complexes) might be a useful adjunct to treatment with etoposide, and perhaps other 

cancer therapies that damage DNA, such as doxorubicin or radiotherapy. 

 What is the mechanism by which AMPK protects tumor cells against the effects of DNA-damaging 

agents such as etoposide? AMPK activation using the pharmacological activator 5-aminoimidazole-4-

carboxamide ribonucleoside (46), or by glucose deprivation or over-expression of a mutant (T172D) 

AMPK kinase domain (47), causes cell cycle arrest in G1 phase. We have recently confirmed that these 

effects of AMPK activators, which are associated with increased expression of the cyclin-dependent 

kinase inhibitor p21 (CDKN1A), are AMPK-dependent since they were abolished by a double 

knockout of AMPK (22). A cell cycle arrest in G1 phase would limit the entry of cells into S phase, 

where they are particularly vulnerable to the generation of double-stranded DNA breaks induced by 

etoposide while DNA is being replicated. Supporting this proposal, palbociclib, a potent and selective 

inhibitor of the G1 cyclin-dependent kinases CDK4/CDK6 (27, 28), caused G1 arrest in G361 cells 

while not arresting HeLa cells and, correlating with this, prior treatment of G361 but not HeLa cells 

with palbociclib provided marked protection against cell death induced by etoposide. By contrast, 

aphidicolin caused a G1:S phase cycle arrest in HeLa cells and also protected them against cell death 

induced by etoposide. Sensitivity of different tumor cell lines to palbociclib has been shown to be 

inversely correlated with the expression of the CDK inhibitor p16 (CDKN2A) (48, 49). This may 

explain why the effect of the inhibitor differs between these two cell lines, since p16 is expressed at 

much higher levels in HeLa than in G361 cells (50). 

 In summary, DNA-damaging treatments such as etoposide (11) and ionizing radiation (15) have 

been previously reported to activate AMPK, and it was suggested that the effect of etoposide occurred 

via a kinase cascade from ATM to LKB1 to AMPK (14). However, we show that the effect of 

etoposide is independent of ATM and LKB1, and involves instead an increase in nuclear Ca
2+

 that 

causes activation of CaMKK2. AMPK activation is restricted to the 1 isoform and occurs within the 

nucleus, so that phosphorylation of ACC, the classical marker for AMPK activation, is not observed. 
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Moreover, prior AMPK activation using A23187 in two different LKB1-null tumor cell lines protects 

against cell death induced by etoposide, and this was AMPK-dependent because the effect was 

abolished when both isoforms of AMPK were knocked out. Taken together with findings that AMPK-

1 is required for growth of transformed mouse embryo fibroblasts as tumors in vivo (45), and that the 

gene encoding AMPK-1 is frequently amplified in human tumors (5, 10), this suggests that AMPK 

inhibitors, and particularly selective inhibitors of AMPK-1, might be useful adjuncts to cytotoxic 

drugs, and perhaps also radiotherapy, in human cancer. 
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FIGURE LEGENDS 

Figure 1: Activation of AMPK by etoposide in different cell types. (A) HeLa cells, G361 cells and 

immortalized mouse embryo fibroblasts (MEFs) were incubated with 30 µM etoposide for 

18 hr (HeLa, G361) or with 20 µM etoposide for 2 hr (MEFs). Cell lysates were 

immunoprecipitated with anti-AMPK-1 and –2 antibodies for AMPK assay. Results are 

expressed relative to the mean activity (± SEM) in incubations without etoposide; results 

significantly different from the DMSO control by t test are indicated (HeLa and G361 cells, 

n = 4; MEFs, n = 3). (B) HeLa cells were incubated with increasing concentrations of 

etoposide, or with 10 µM A23187, for 18 hr. Upper panel: lysates were immunoprecipitated 

with a mixture of anti-AMPK-1 and –2 antibodies for AMPK assay. Results are 

expressed relative to the mean activity (± SEM) in incubations without etoposide or 

A23187 (n = 3). Results significantly different from the DMSO control by 1 way ANOVA 

are indicated. Equal amounts of protein from lysates from two of the three experiments 

were analyzed by Western blotting using anti-pSMC1, total SMC1, anti-pT172 (phospho-

AMPK) and a mixture of anti-1 and –2 antibodies. (C) As (B), but using G361 cells. 
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Figure 2: Etoposide activates AMPK in the nucleus. (A) Fluorescence micrographs of HeLa cells 

treated for 18 hr with DMSO (control), 100 µM etoposide or 10 µM A23187. Cells were 

fixed, permeabilized, and stained with 4',6-diamidino-2-phenylindole (DAPI, blue), anti-

pATM labelled with FITC (green) and anti-pT172 labelled with Texas red. In the right-

hand images the green and red channels have been merged to assess the co-localization of 

pATM and pT172. Arrows show nuclei prominently labelled with anti-pT172 antibody. (B) 

Quantification of nuclear and cytoplasmic staining with anti-pATM and anti-pT172 in 

HeLa cells (left) and G361 cells (right). Using ImageJ software, the total cell area was 

defined, as was the area of the nuclei defined by DAPI staining. The mean fluorescence 

intensity in the nucleus and the cytoplasm of the etoposide- or A23187-treated cells are 

expressed relative to that of DMSO controls. Results are mean ± SEM (n = 10) and 

statistical significance of differences from DMSO controls are indicated (ns, not 

significant). (C) Quantification of effects of etoposide on nuclear and cytoplasmic 

localization of pAMPK in HEK-293 cells; analysis as in (B). Results are mean ± SEM (n = 

18); ns, not significant. 

Figure 3: Activation of AMPK by etoposide is specific for the 1 isoform. (A) HeLa cells were 

treated in triplicate with DMSO (control) or with 30 µM etoposide for 18 hr. Lysates were 

prepared and equal protein loadings analyzed by SDS-PAGE and Western blotting using 

anti-pT172 labelled with IRDye 680 (red), together with either anti-AMPK-1 (top panel) 

or anti-AMPK-2 (bottom panel) labeled with IRDye 800 (green). (B) HeLa cells were 

treated as in Fig. 1B, except that 1- or 2-containing complexes were immunoprecipitated 

separately before AMPK assay. (C), as (B), but using G361 cells; the activity of 2-

containing complexes was too low to measure reliably. (D), as (B), but using A549 cells. In 

(B) - (D), results are mean ± SEM (n = 4 in B, n = 6-9 in C, n = 7-10 in D); statistical 

significnce of differences from DMSO controls are indicated. 
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Figure 4: Etoposide effects on AMPK require CaMKK2 but not ATM. (A) HeLa cells were 

treated with 30 µM etoposide for 18 hr with or without pre-treatment for 1 hr with 25 µM 

STO-609. Total AMPK was immunoprecipitated and assayed (top panel; mean ± SEM, n = 

3) and Western blots of duplicate dishes of cells analyzed using various antibodies (bottom 

panel). (B) HeLa cells were treated with scrambled siRNA or siRNA targeted at CaMKK2 

for 24 hr, prior to treatment with or without 30 µM etoposide for 18 hr; other analyses as in 

(A). (C) HeLa cells were treated with scrambled siRNA or siRNA targeted at CaMKK2 for 

24 hr, prior to treatment with or without 10 µM A23187 for 1 hr; other analyses as in (A). 

(D) HeLa cells were treated with 30 µM etoposide for 18 hr with or without pre-treatment 

for 1 hr with 10 µM KU-55933. Total AMPK was immunoprecipitated and assayed (top 

panel; mean ± SEM, n = 3) and Western blots of duplicate dishes of cells analyzed using 

various antibodies (bottom panel). 

Figure 5: The effect of etoposide on AMPK correlates with an increase in nuclear Ca
2+

. (A) 

Time course of AMPK activation in HeLa cells during treatment with 30 µM etoposide; 

results are mean ± SEM (n = 3); values significantly different from zero time value are 

indicated. (B) Time course of changes in nuclear and cytoplasmic Ca
2+

 in HeLa cells during 

treatment with 30 µM etoposide. Results (F/Fo, i.e. fluorescence as a ratio of mean 

fluorescence at time zero) are expressed as mean ± 95% confidence intervals (n = 12) with 

significant differences between etoposide-treated and control indicated at each time point. 
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Figure 6: HeLa and G361 cells are protected against etoposide-induced cell death by prior 

AMPK activation using A23187. (A) Parental HeLa cells (WT) or HeLa cells with 

CRISPR-Cas9 knockouts of AMPK-1 (1KO), AMPK-2 (2KO) or both (DKO) were 

treated in duplicate with 1 mM H2O2 for 10 min. Cell lysates were then analysed by 

Western blotting using the indicated antibodies. (B) As (A), but using G361 cells. (C) 

Survival of WT, single or double knockout HeLa cells assessed using MTT assays, 

following treatment with 10 or 30 µM etoposide for 18 hr, with or without prior treatment 

with 10 µM A23187 for 6 hr. Results are mean ± SEM (n = 12). Where appropriate, 

statistical significance is indicated by asterisks for differences between treatments with and 

without A23817; ns = not significant. (D) Survival of WT, single or double knockout HeLa 

cells assessed using clonogenic assays, following treatment with 100 or 250 nM etoposide 

for 18 hr, with or without prior treatment with 10 µM A23187 for 6 hr. Results are numbers 

of colonies counted (mean ± SEM; n = 4) expressed as a percentage of colony numbers in 

controls without etoposide. Where appropriate, statistical significance is indicated by 

asterisks for differences between treatments with and without A23817, and by daggers (†) 

for differences between WT and  DKO; ns = not significant. (E) Phosphorylation of SMC1 

in HeLa cells treated with or without different concentrations of etoposide as in (C) and 

(D); (F) Cell cycle arrest in WT, single or double knockout HeLa cells treated with or 

without 3 µM A23187 for 6 hr and then 70 ng/ml nocodazole for a further 18 hr. The cells 

were then fixed, stained and analyzed by flow cytometry to determine DNA content and 

hence cell cycle phase. Results are expressed as ratios of cells in G1:G2 phase (mean ± 

SEM; n = 4). Asterisks indicate the significance of differences between cells treated with 

and without A23187; ns, not significant. 
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Figure 7: Protection against cell death using the CDK4/6 inhibitor palbociclib (PBC) correlates 

with its ability to cause a G1 cell cycle arrest. (A) HeLa cells were treated with the 

indicated concentrations of PBC for 6 hr and then with nocodazole (70 ng/ml) for 18 hr, 

after which cells were fixed, stained with propidium iodide and subject to cell cycle 

analysis by flow cytometry. Results (mean ± SEM; n = 4) show the proportion of cells in 

each cell cycle phase; none of the differences between PBC treatment and controls were 

significant. (B) as (A), but using G361 cells; asterisks show statistically significant 

differences from controls without PBC. (C) Clonogenic survival of HeLa cells after 

treatment with or without PBC (3 µM for Hela cells; 500 nM for G361) for 6 hr, followed 

by treatment for a further 18 hr with vehicle (DMSO), or 100 or 250 µM etoposide. Results 

are numbers of colonies counted (mean ± SEM; n = 4) expressed as a percentage of 

survival in controls without etoposide. None of the effects of PBC were significant. (D) As 

(C), but using G361 cells; asterisks represent statistical significance of effects of PBC. (E) 

Effect of different concentrations of aphidicolin (Aph) on the cell cycle of HeLa cells, 

analyzed as in Figs. 7A and 7B. Asterisks indicate significant differences from the control 

without aphidicolin for each cell cycle phase. (F) Effect of 5 µM aphidicolin on clonogenic 

survival of HeLa cells treated with etoposide, analysed as in Figs 7C and 7D. Asterisks 

indicate significant differences from controls without etoposide. 
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