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Abstract

Objective

The in utero environment plays an important role in shaping development and later life

health of the fetus. It has been shown that maternal genetic factors in the metabolic pathway

of vitamin D associate with type 1 diabetes in the child. In this study we analyzed the genetic

determinants of serum 25-hydroxyvitamin D (25OHD) concentration during pregnancy in

mothers whose children later developed type 1 diabetes and in control mothers.

Study design

474 mothers of type 1 diabetic children and 348 mothers of non-diabetic children were included

in the study. We previously selected 7 single nucleotide polymorphisms (SNPs) in four genes

in the metabolic pathway of vitamin D vitamin based on our previously published data demon-

strating an association between genotype and serum 25OHD concentration. In this re-analy-

sis, possible differences in strength in the association between the SNPs and serum 25OHD

concentration in mothers of type 1 diabetic and non-diabetic children were investigated.

Serum 25OHD concentrations were previously shown to be similar between the mothers of

type 1 diabetic and non-diabetic children and vitamin D deficiency prevalent in both groups.

Results

Associations between serum 25OHD concentration and 2 SNPs, one in the vitamin D receptor

(VDR) gene (rs4516035) and one in the group-specific component (GC) gene (rs12512631),
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were stronger during pregnancy in mothers whose children later developed type 1 diabetes

than in mothers whose children did not (pinteraction = 0.03, 0.02, respectively).

Conclusions

We show for the first time that there are differences in the strength of genetic determinants

of serum 25OHD concentration during pregnancy between the mothers of type 1 diabetic

and non-diabetic children. Our results emphasize that the in utero environment including

maternal vitamin D metabolism should be important lines of investigation when searching

for factors that lead to early programming of type 1 diabetes.

Introduction

Type 1 diabetes is an autoimmune disease where the insulin-producing β-cells in the pancreas

are destroyed leading to a life-long external insulin dependency. Type 1 diabetes is one of the

most common chronic diseases in children, but it can be diagnosed at any age [1,2]. Type 1

diabetes is a result of complex interplay between genes and environment. The fast raise in the

incidence of type 1 diabetes especially in the western world during the past decades [3] empha-

size the role of the environmental factors in the development of the disease. Environmental

triggers that have led to this increase have not been revealed [4].

According to the “Barker Hypothesis”, also referred to as the “Fetal Origin Hypothesis”, dis-

eases occurring in different stages of life may have their origin in the fetal or neonatal environ-

ment [5]. The fact that type 1 diabetes-related autoantibodies that precede the diagnosis can be

detected sometimes only months after birth [6], suggests fetal programming of type 1 diabetes.

Also, maternal infections such as rubella and enterovirus infections [7,8], high maternal age and

high birthweight of the infant have been associated with an increased risk for the disease [9,10].

Vitamin D is produced in the skin through sunlight exposure and obtained from dietary

sources and supplements. It regulates mineral and bone metabolism and has various functions

in the immune system [11]. 25-hydroxyvitamin D (25OHD) is the major circulating vitamin D

metabolite and a good indicator of the vitamin D status of a person [12].

For decades, vitamin D has been suspected to modify the risk for type 1 diabetes. The first

indication was that type 1 diabetes tends to be more common in areas with less sunlight and

thus lower amounts of vitamin D produced in the skin [13]. Experiments in a murine model

of type 1 diabetes, non-obese diabetic (NOD) mice, strengthened the link between vitamin D

and type 1 diabetes. In the NOD-mice vitamin D deficiency significantly increases the inci-

dence of diabetes and administration of vitamin D is able to protect from the disease [14].

Low maternal serum 25OHD concentration or inadequate intake of vitamin D from food

or supplements during pregnancy or infancy has been associated with an increased risk for

type 1 diabetes in the child, but the results have been partly conflicting [15–22]. The inconsis-

tency may result from the fact that the amount of vitamin D supplementation may have been

too low to produce significant effects (mainly 10 μg/day) [23]. An exception is a Finnish study

where a daily dose of 50 μg of vitamin D supplementation was recommended (in 1960s) for

the infants [15] leading presumably to a marked difference in vitamin D status between the

supplement users and the non-users. In the Finnish study it was shown that the risk for type 1

diabetes was reduced by 88% in children who received vitamin D supplementation regularly

compared with those who did not receive vitamin D supplementation.

In our previous study we did not see difference in serum 25OHD concentrations during the

first trimester of pregnancy between Finnish mothers whose children later on developed type
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1 diabetes, compared with mothers whose children did not [17]. In a similar study setting in

Norway, higher maternal serum 25OHD concentration during the last trimester of pregnancy

associated with a decreased risk for type 1 diabetes in the offspring [16]. Vitamin D deficiency

was more prevalent among pregnant women in Finland than in Norway, although the meth-

odological differences in vitamin D analytics need to be taken into account when comparing

the results.

Genetic factors are known to modify serum 25OHD concentration. The heritability of

serum 25OHD concentration has been estimated to be at least 30% [24,25]. Several single

nucleotide polymorphisms (SNPs) in the metabolic pathway of vitamin D contribute in the

genetic component of serum 25OHD concentration [26–31].

SNPs in the metabolic pathway of vitamin D have been associated also with type 1 diabetes

[32–37]. For example, SNPs in NAD synthetase 1/ 7-dehydrocholesterol reductase (NAD-
SYN1/DHCR7) gene locus and SNPs in CYP27B1,CYP2R1 genes and have been associated

with type 1 diabetes or with type 1 diabetes related autoantibodies [33,35,38]. In the metabolic

pathway of vitamin D, NADSYN1/DHCR7 controls the availability of 7-dehydrocholesterol that

is needed for the vitamin D synthesis in the skin and CYP2R1 encode (along with CYP27A1)
enzymes that produce 25OHD. In the circulation, 25OHD is bound to the vitamin D binding

protein (DBP) (encoded by the group-specific component GC gene) and hydroxylated to the

active form of vitamin D, 1,25-dihydroxyvitamin D (1,25OHD), by CYP27B1. The active form

of vitamin D acts through the vitamin D receptor (VDR) encoded by the VDR gene. The VDR
regulates the expression of at least 500 genes [39].

We found earlier that the genotype frequency of certain SNPs in the VDR gene differed

between mothers of type 1 diabetic and non-diabetic children [40]. We found also that certain

SNPs in genes in the metabolic pathway of vitamin D associate with serum 25OHD concentra-

tion in all pregnant mothers analyzed as one group [40]. In this study we have re-analysed the

data and report differences in the strength of genetic associations between serum 25OHD con-

centration and SNPs in the metabolic pathway of vitamin D in mothers of type 1 diabetic and

non-diabetic children.

Materials and methods

Study population

A detailed description of the study population has been previously published [17,40]. Briefly,

751 families with type 1 diabetic child and 751 families with non-diabetic child of same age

were invited to participate in the study. Serum samples were derived from the Finnish Mater-

nity Cohort (FMC). The FMC collects serum samples from almost all (98%) pregnancies in

Finland during the end of first trimester of pregnancy. Serum samples used in the present

study were collected during 1993–2000.

In this study we included all mothers (474 mothers of type 1 diabetic children and 348

mothers of non-diabetic children) that had both SNP genotyping and serum 25OHD concen-

tration results available. The problem of possible uneven distribution of sample collection

month between mothers of type 1 diabetic and non-diabetic children was addressed by includ-

ing sample collection month in the model in the analyses. Written informed consent was col-

lected from all women. The ethics committee of the Hospital District of Helsinki and Uusimaa

approved the study.

DNA extraction, SNP selection and genotyping

Saliva samples were collected using Oragene kits (Oragene Inc., Ottawa, Ontario, Canada) for

DNA extraction. The DNA extraction and the genotyping have been described in detail in our
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previously published study [40]. Briefly, DNA was isolated using Oragene kits (DNA Genotek,

Ottawa, Ontario, Canada). Genotyping was done using TaqMan (Applied Biosystems, Paisley,

United Kingdom).

Initially a total of 31 SNPs in the metabolic pathway of vitamin D were selected on basis of

previously shown association with serum 25OHD concentration. All SNPs that associated

(p<0.05) with serum 25OHD concentration in all mothers (mothers of type 1 diabetic and

non-diabetic children as one group) in our previous study [40], were selected for further analy-

ses (13 SNPs). Five SNPs in NADSYN1/DHCR7 (rs4945008, rs12785878, rs7944926, rs3794060,

rs12800438) and two SNPs in the VDR (rs731236 and rs154410) were in strong linkage dis-

equilibrium and thus had similar associations with serum 25OHD concentration. Results of

only one SNP of these SNP groups are presented resulting in the final number of 7 SNPs in the

present study.

Serum 25OHD concentrations

Serum 25OHD concentration measurement has been described in detail in our previously

published study [17]. Briefly, serum 25OHD concentration was determined with an enzyme

immunoassay method with IDS OCTEIA 25-Hydroxy Vitamin D kit, (Immunodiagnostic Sys-

tems Ltd., Boldon, UK). The intra- and inter-assay CVs were 3.57% and 3.68%, respectively.

The analytical reliability of 25OHD assay was assured by participation in the vitamin D Exter-

nal Quality Assessment Scheme i.e. DEQAS (Charing Cross Hospital, London UK).

Statistical methods

Statistical analyses were performed using Intercooled Stata10 for Windows (StataCorp. 2007.

Stata Statistical Software: Release 10. College Station, TX: StataCorp LP) and SAS 9.3 (SAS

Institute Inc., Cary, NC). Linear regression modelling was used to analyse the effect of pres-

ence of an allele in each SNP on the serum 25OHD concentration. Due to the known seasonal

difference in serum 25OHD concentrations on Finland, all analyses were adjusted for the

month of sample collection. In order to test the difference between mothers of type 1 diabetic

and mothers of non-diabetic children, interaction term between the two mother types and

allele dosage in each SNP was incorporated into the models. The interaction was significant in

the SNPs rs12512631 and rs4516035 indicating a difference in the effect of allele dosage for

mother type. Therefore in the second stage the effect of the presence of C allele in rs12512631

and T allele in rs4516035 on the serum 25OHD concentrations were studied separately in

mothers of type 1 diabetic and non-diabetic children, and seasonally adjusted mean serum

25OHD concentrations were estimated.

Results

Differences in the strength of the association between serum 25OHD concentration and two

SNPs in the metabolic pathway of vitamin D were found. These SNPs associated stronger with

serum 25OHD concentration during pregnancy in mothers of type 1 diabetic children than in

mothers of non-diabetic children.

In mothers of type 1 diabetic children the presence of each C allele of rs12512631 located in

the GC gene was associated with a rise of 3.9 nmol/l in serum 25OHD concentration (p = 0.002;

i.e. CC genotype compared with CT +3.9 nmol/l and with TT +7.8 nmol/l). In mothers of non-

diabetic children the mean serum 25OHD concentrations between the different genotypes of

rs12512631 were similar (p = 0.64) (pinteraction = 0.02) (Table 1, Fig 1).

Similarly, in mothers of type 1 diabetic children the presence of each T allele in the geno-

type of rs4516035 located in the promoter region of the VDR gene was associated with a rise of

Genetic control of maternal vitamin D status and type 1 diabetes
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4.1 nmol/l in serum 25OHD concentration (p = 0.0002; i.e. TT genotype compared with CT

+4.1 nmol/l and with CC +8.1 nmol/l), while in mothers of non-diabetic children the mean

serum 25OHD concentrations between the different genotypes of rs4516035 were similar

(p = 0.83) (pinteraction = 0.03) (Table 1, Fig 2).

Including mother´s age in the statistical model did not change the conclusion. Also, the

associations between serum 25OHD concentration and SNPs were similar in strength between

younger and older mothers.

Discussion

The existing evidence of an association between vitamin D and type 1 diabetes is inconsis-

tent. Identification of vitamin D metabolism or vitamin D genetics-related differences

between patients and controls and between their mothers will help revealing the mechanism

explaining the possible association. We found for the first time that during pregnancy the

associations between serum 25OHD concentration and two polymorphisms in the VDR and

Table 1. Association of 25-hydroxyvitamin D concentration with SNPs in the metabolic pathway of vitamin D in all mothers and separately for

mothers of type 1 diabetic and non-diabetic children, and according to the presence of the effect allele (EA). All analyses were adjusted for month of

sample collection.

SNP Gene All mothers Mothers of type 1 diabetic

children

Mothers of non-diabetic

children

Effect of presence of the effect

allele

p (n) p (n) p (n) EA* pCases pControls pinteraction

rs4945008 NADSYN1/

DHCR7

0.03 (766) 0.20 (445) 0.05 (325) G 0.09 0.03 0.89

rs4516035 VDR Prom 0.02 (764) 0.004 (445) 0.93 (321) T 0.0002 0.83 0.03

rs1544410 VDR Bsm1 0.03 (747) 0.09 (427) 0.32 (326) A 0.04 0.20 0.58

rs10783219 VDR 0.02 (751) 0.04 (437) 0.55 (317) T 0.008 0.35 0.23

rs12512631 GC 0.03 (755) 0.02 (435) 0.67 (324) C 0.002 0.64 0.02

rs4588 GC 0.05 (737) 0.05 (419) 0.65 (322) C 0.02 0.50 0.26

rs17470271 CYP27A1 0.03 (750) 0.05 (428) 0.49 (325) T 0.03 0.86 0.21

*The effect allele (EA) is the allele that increases the 25-hydroxyvitamin D concentration

https://doi.org/10.1371/journal.pone.0184942.t001

Fig 1. In mothers of type 1 diabetic children the presence of C allele in the genotype is associated

with an average difference of 3.9 nmol/l in serum 25OHD concentration (p = 0.002) while in mothers of

non-diabetic children such an association was not found (p = 0.64) (pinteraction = 0.02). All analyses were

adjusted for the month of sample collection.

https://doi.org/10.1371/journal.pone.0184942.g001
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GC genes are stronger in mothers of type 1 diabetic children than in mothers of non-dia-

betic children.

We had the possibility to select the study groups and use samples collected from the moth-

ers during pregnancy, when already known which of the children later developed type 1 diabe-

tes. We were therefore able to retrospectively investigate differences between mothers of type 1

diabetic and non-diabetic children or between pregnancies of the mothers.

Stronger associations during pregnancy of mothers of type 1 diabetic children between

serum 25OHD concentration and SNPs were seen in two out of four gene loci that were stud-

ied. This decreases the possibility of false positive findings. Nevertheless, our results need to be

confirmed. In our study vitamin D status was available only from the mothers. In the future it

should be investigated whether the genetic control of serum 25OHD concentrations differs

also between type 1 diabetic patients and controls.

No previous studies exist with a similar study setting. However, in a Finnish Population-

based health survey (FIN-D2D 2007), it was recently found that age and possibly also gender

modify the strength of associations between serum 25OHD concentration and SNPs in the

metabolic pathway of vitamin D. One of the SNPs that showed difference in strength of an

association with serum 25OHD concentration between younger and older adults in the

FIN-D2D Health Survey 2007, was the same that showed difference in strength of an associa-

tion with serum 25OHD concentration between mothers of type 1 diabetic children and moth-

ers of non-diabetic children in the present study (rs12512631 in the GC).

In the search for genetic risk factors for type 1 diabetes, the main focus has been on the

patient. The human leukocyte antigen (HLA) region accounts for most of the genetic risk and

genome-wide association studies (GWAS) have identified over 50 additional genetic regions

that also affect the risk for developing type 1 diabetes [41].

However, the in utero environment seems also to contribute in the risk for type 1 diabetes.

High birthweight, high maternal age or infections during pregnancy have associated with an

increased risk for type 1 diabetes in the child [6–10]. Maternal gluten-free diet has been shown

to reduce diabetes incidence in the offspring of NOD mice [42]. In our previous study it was

Fig 2. In mothers of type 1 diabetic children the presence of T allele is associated with an average

difference of 4.1 nmol/l l in serum 25OHD concentration (p = 0.0002) while in mothers of non-diabetic

children such an association was not found (p = 0.83) (pinetraction = 0.03). All analyses were adjusted for

the month of sample collection.

https://doi.org/10.1371/journal.pone.0184942.g002
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shown that mothers of type 1 diabetic and mothers of non-diabetic mothers have genetic dif-

ferences in the VDR gene, irrespective of the corresponding genetic variants in the patients

and control children [40]. Since the VDR is known to regulate the expression of at least 500

genes [39], some of these genes may influence the development of the immune system and

therefore early programming of type 1 diabetes. Thus, the stronger association between SNPs

and serum 25OHD concentration in mothers of type 1 diabetic patients that was seen in the

present study may not associate directly with type 1 diabetes, but may be a marker of a differ-

ence in vitamin D metabolism and /or in the function of the VDR.

The fact that strength of genetic association of a certain polymorphism can vary consider-

ably between subgroups stratified according to life-style factor or host characteristics has not

yet been thoroughly studied. It has been shown though, that several polymorphisms associate

stronger with fat distribution in women than in men [43]. Also, a certain polymorphism has

been shown to associate with juvenile idiopathic arthritis only in women [44]. Several poly-

morphisms have shown stronger associations with body mass index in younger than older

people [45]. Smoking can change the direction of a genetic association: A certain polymor-

phism has been found to associate with low body mass index in smokers, but with high body

mass index in non-smokers [46]. These results suggest that part of the associations cannot be

detected in GWAS [47] and therefore, the genetic differences between subpopulations may

prove to be highly significant when searching for the genetic determinants of a disease or phys-

iological trait.

We show for the first time that there are differences in the strength of genetic determinants

of serum 25OHD concentration during pregnancy between the mothers of type 1 diabetic and

non-diabetic children. Our results emphasize that the in utero environment including mater-

nal vitamin D metabolism should be important lines of investigation when searching for fac-

tors that lead to early programming of type 1 diabetes.
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Surcel.

Methodology: Maija E. Miettinen, Leena Kinnunen, Valma Harjutsalo, Heljä-Marja Surcel,
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berg-Allardt, Graham A. Hitman, Jaakko Tuomilehto.

References
1. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2017 Jan;

40(Suppl 1):S11–S24. https://doi.org/10.2337/dc17-S005 PMID: 27979889

2. Gale EA. Type 1 diabetes in the young: the harvest of sorrow goes on. Diabetologia. 2005 Aug; 48

(8):1435–8. https://doi.org/10.1007/s00125-005-1833-0 PMID: 16021415
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