
Generic theorem proving using hol2p: a

Category Theory inspired approach

Masters of Philosophy Thesis

of

Keisha Harriott

born on the 17th of July 1979 in Kingston Jamaica

February 12, 2014

Supervisor:

Dr. N. Voelker

University of Essex, Computer Science and

Electronic Engineering, School of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/132207455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Integrating formal program veri�cation into mainstream software development has

proven to be quite challenging, due to the level of abstract mathematical machinery

needed. Although there have been some successes, most existing methods do not

adequately support the mechanical veri�cation of generic programs. This thesis seeks

to �ll this gap by presenting a formalisation and implementation of a category theory

inspired approach to generic program speci�cation. Theorems to simplify veri�cation

of generic programs are developed along with a formal framework for reasoning. The

result is theorem proving support based on type quanti�cation and type operator

variables in HOL, HOL2P. This is demonstrated by the veri�cation the Yoenda

Lemma.

i

Acknowledgment

I would like to thank Norbert Völker for his supervision during this research and

for his invaluable comments, suggestions and countless reviews during during this

research. The author would also like to thank the IFUW for part funding of this

research. For my family for their support especially to my husband. I must also

mention my son who kept my company for the entire time.

ii

CONTENTS

Abstract . i

Acknowledgment . ii

CHAPTER 1. BACKGROUND AND MOTIVATION 1

1.1. Motivation . 2

1.2. Background . 4

1.2.1. Category Theory . 5

1.2.2. Higher Order Logic . 12

1.2.3. Higher Order Logic provers . 15

1.2.4. HOL2P . 22

CHAPTER 2. AUTOMATED CATEGORY-THEORY INSPIRED TYPES . 27

2.1. Introduction . 28

2.1.1. Program construction using initial algebras 28

2.1.2. Problem statement and our goals . 29

2.2. Singleton types . 30

2.3. Type Combinators - Products and Co-products 31

2.3.1. Products . 31

2.3.2. The Co-product . 33

2.3.3. Polynomial Functors . 34

2.4. Category of F-Algebras . 34

2.5. Deriving catamorphisms from type speci�cations 39

2.5.1. Deriving initial algebras . 42

iii

2.5.2. Deriving base functors . 45

2.5.3. Catamorphism . 50

2.5.4. Deriving type functors . 52

2.6. Universal Extension Principle . 55

2.6.1. Deriving fold combinator from primitive recursion 58

2.6.2. Universality of fold . 60

2.6.3. Universality of catamorphisms . 62

2.7. Conclusions . 63

2.7.1. Contributions . 63

2.7.2. Related Work . 64

2.7.3. Future work . 64

REFERENCES . 65

iv

CHAPTER 1. BACKGROUND AND MOTIVATION

Theorem provers have been used in various disciplines as a proof assistant. Mathe-

maticians use these powerful tools to assist in proving theorems which would otherwise

be laborious. Researchers in these �elds have realized the upshot of automated

reasoning; increased reassurance and reliability leading to renewed con�dence in both

users and developers.

The use of theorem provers in software veri�cation and speci�cation has had mixed

fortunes. Although clearly bene�cial in the overall goal of achieving correct and

reliable software, theorem proving practices remain more or less an esoteric practice as

most developers �nd the process too di�cult and costly to incorporate in mainstream

development.

There are many theorem provers available, built on a range of logical framework

including First Order and Higher Order Logic [49]. Higher order logic extends �rst

order predicate calculus in three non trivial ways:

1. variables are allowed to range over functions and predicates

2. functions can take functions as arguments and yield functions as results

3. the notation of the λ-calculus can be used to write terms which denote functions

Theorem provers for higher order logic such as Isabelle/HOL [43], Coq [53], PVS [51]

and HOL Light [22] have all been used to solve non-trivial problems. Notwithstanding

these achievements there is still much that needs to be done for theorem provers to

be viewed as a software developer's companion.

The underlying set and type theory serves as the core of provers but is just one aspect

1

of the entire software development process. In order to encourage the successful

incorporation of provers, in mainstream development, one has to provide higher level

facilities that uses the underlying logic; software developers should not have to work

on low levels. This has to be a two step process, it is not su�cient to be able to express

concepts logically, reasonable simple mechanisms must be provided for reasoning with

these logical concepts. To some extent, such mechanism already exists; there are

mechanisms for introducing some mathematical concepts, for instance inductive types

and recursive function de�nitions.

The association of functional programs with categories has sparked a considerable

amount of research interest in incorporating category theory inspired concepts in

functional programming and theorem proving. This is due to the high level of

abstraction that category theory has to o�er; a de�nite requirement for generic

programming and reasoning. The correlation of datatypes as objects of a category

and operations as morphisms, means that reasoning on the level of objects and

morphisms can be instantiated to particular types and corresponding operations.

Generics would make it possible to reason about types and methods that are di�erent

only in type structure speci�cation. This will maximize code reuse, type safety and

hence reliability, and performance.

While �rst-order logic has syntactic categories for individuals, functions, and predi-

cates, only quanti�cation over individuals is permitted. Many concepts when trans-

lated into logic are, however, naturally expressed using quanti�ers over functions

and predicates. Higher-order logics o�er a natural representation of higher-order

quanti�cation [28].

1.1. Motivation

2

Generic programming is a style of functional programming where programs are param-

eterized with respect to datatypes. The Generic Programming process focuses on the

commonality among similar implementations of the same functions, then providing

suitable abstractions so that a single, generic function can cover many concrete

implementations. The abstractions themselves are expressed as requirements on the

parameters to the generic function. Generic Programming has had some success,

for instance, Jansen has developed a preprocessor for PolyP [27] where programs are

parameterized with base functors. However the theorem proving counterpart has been

lacking. Our research is therefore motivated by this lack of theorem proving support

for generic program development.

To accomplish our goal of providing support for generic program development we

identify a suitable mathematical representation of datatypes and functions. The

Bird-Meertens formalism provided the algebraic theory for this style of programming

[39, 4] and has origins in category theory. The �rst step would be to specify a

logical framework based on this abstraction so as to achieve a readable formalism of

category theory that seamlessly supports proof automation. The second step is the

mechanisation of this logical framework using a theorem prover that can adequately

support the formalism. We now motivate the logic and corresponding theorem prover

used in its mechanisation.

Logical formalism - There are many theorem provers available, built on a range of

logical framework including �rst order logic and higher order logic (HOL). In general

the predicate calculus, de�nes which statements of logic are provable and consists

of: formation rules, and a proof theory - axioms and transformation rules used for

deriving theorems, and semantics. The most prominent provers, to date, are built on

�rst order logic. First order logic is restrictive in its expressiveness, as there is really

3

no interesting type system. First order logic would therefore not adequately represent

generic programs. As a result there is a heighten interest in a logical framework that

o�ers the opportunity to express a wider range of problems. Higher order logic (HOL)

o�ers this expressiveness, and is the reason for our logic of choice.

Mechanizing category theory - Categories have been mechanized in HOL provers

most popular of which uses a dependent type theory [13, 1, 50, 26]. Peter Aczel

led the project, Galois [1], whose aim is to "formalise some abstract algebra in a

predicative style". Formalisms based on dependent types are however very di�cult

to follow without specialist knowledge of dependent type theory and as such we aim

to contribute a more readable formalism of category theory.

The most prevalent area of research that uses the Bird-Meertens Formalism is pro-

gram optimization. Research on the veri�cation of program transformations using

higher order theorem provers, based on the use of category theory has been scarce.

Although category theory inspired approaches have been used in compiler optimiza-

tion in functional programming languages, majority of which is based on Haskell

[37, 17, 30, 44], to my knowledge, this represent the �rst attempt at semi-automatic

generic program transformation techniques using HOL-based provers. Our approach

is further distinguished in that our transformational tool is built on generic theories,

and therefore performs transformations on generic programs.

1.2. Background

To successfully develop theorem proving support for generic program development

one needs to know Category Theory and Higher order logic. This section provides

background knowledge of the concepts used in this research. For more a more in

depth treatment the reader will be referred to a relevant source.

4

1.2.1. Category Theory

The material described in this section is well documented and may be found in

several texts [11, 5, 48, 55, 3]. The paradigm of datatype de�nition used is due

to Hagino [19], an important aspect of which is that datatypes are characterized by

a universal property. This universal property prescribes the construction of speci�c

recursive functions on the de�ned datatype. The universal property by means of

which datatypes are characterized provides a conciseness that gives this approach its

charm. These recursive functions are called catamorphisms. Catamorphisms play a

prominent role in the theory of datatypes introduced in this chapter. The data types

that can be de�ned using this paradigm are �nite datatypes such as list and tree and

are initial objects in a speci�c category of algebras.

This section introduces the applicable parts of category theory along with the adopted

notation. Most of our notational conventions are standard. Deviations from stan-

dard notation occur when standard notation is not well suited for calculation and

manipulation. Most of the notational conventions we adopt have been introduced

by Bird [7, 8, 11]. In this section, Categories, Functors, F-Algebras and Natural

Transformations are de�ned.

A category, C, is an algebraic structure consisting of a class of objects, denoted using

upper case letters, A, B , C etc., and a class of arrows, denoted by lower case letters

f , g , h etc., together with three total operations and one partial operation.

De�nition 1.1. (Category) A category C can be described as a set, whose members

are the objects of C, satisfying the following three conditions:

1. Morphism : For every pair X , Y of objects, there is a set HOM(X ,Y), called

5

the morphisms from X to Y in C. If f is a morphism from X to Y , we write

f : X → Y .

2. Identity : For every object X , there exists a morphism idX in HOM(X ,X),

called the identity on X .

3. Composition : The partial operation, composition, takes two arrows to another.

For every triple X , Y and Z of objects, the composition is de�ned if and only

if f : X → Y and g : Y → Z . The composition of f and g is notated

(g ; ; f) : X → Z .

Identity, morphisms, and composition satisfy two axioms:

1. Associativity : If f : X → Y , g : Y → Z and h : Z →W , then

h; ; (g ; ; f) = (h; ; g); ; f (1)

2. Identity : If f : X → Y , then

(idY ; ; f) = f and (f ; ; idX) = f (2)

.

FUN is the category whose objects are sets and whose arrows are total functions

with the usual composition of functions for ; ; and the identity function from S to S

for idS . f is an arrow from A to B if A contains the range of f and the set B is the

domain of f .

REL is the category whose objects are sets and whose arrows are relations. An

arrow r : A → B where r is a subset of the Cartesian product A × B where A is

6

the source and B is the target. The identity arrow idA : A → A is the relation

idA = {(a, a) |a ∈ A} and the composition of arrows r : A → B and s : B → C is

the arrow t : A→ C , where t = {(a, c)|(∃b : (a, b) ∈ r ∧ (b, c) ∈ s)}.

A subcategory of a category C is a category D whose objects are objects in C and

whose morphisms are morphisms in C with the same identities and composition

of morphisms. Intuitively, a subcategory of C is a category obtained from C by

"removing" some of its objects and arrows.

De�nition 1.2. (Sub-category) A subcategory D of a category C is a category for

which:

1. All the objects of D are objects of C and all the arrows of D are arrows of C

2. The source and target of an arrow of D are the same as its source and target in C

(in other words, the source and target maps for D are the restrictions of those for

C). It follows that for any objects A and B of D, HOMD(A,B) ⊆ HOMC(A,B)

3. If A is an object of D then its identity arrow idA in C is in D

4. If f : A→ B and g : B → C in D, then the composite (in C) g ; ; f is in D and

is the composite in D

We also have a relation between two categories through what is called a functor. A

functor is a structure preserving map, a homomorphism, between categories. That is

given two categories C and D, a functor consist of two mappings: one maps objects

of C to objects of D and the other maps arrows of C to arrows of D.

7

De�nition 1.3. (Functor) A Functor F : C → D from a category C to D is a

morphism of categories; consisting of a pair of mappings F0 : C0 → D0 and F1 : C1 →

D1 for which the following holds:

1. If f : A→ B in C, then F1 : F0(A)→ F0(B) in D

2. For any object A of C, then F1(idA) = idF0(A)

3. If g ; ; f is de�ned in C, then F1(g); ;F1(f) = F1(g ; ; f)

An Endofunctor of a category C, is a functor from C to C.

One example of a functor is the identity functor id : C → C, which leaves objects and

arrows unchanged. Another example of a functor is the product functor. The product

functor × : C × C → C on a category C is de�ned by taking the arrows f and g into

the Cartesian product of f and g and taking objects A and B into the binary product

of A and B. Type constructors may also be interpreted as functors. The following

example illustrate the list type constructor when viewed as a functor.

Example 1.1. Let A, B , list A and list B be objects in a category C. There is a the

functor F that can be described as the pair of mappings, F0 and F1 . Now F0 maps

the object A to object list A and maps the object B to list B . This is called list type

constructor in functional programming. The function F1, takes the arrow A → B,

denoted f in the diagram below, and maps it to the arrow list A → list B, denoted

F (f). This is the type functor, known more popularly as map.

A
f−−−→ B

F0(A)

y yF0(B)

listA −−−→
F1(f)

ListB

8

F-Algebras Type constructors are a special class of functors that speci�es initial

algebras. We examine the use of functors in the speci�cation of a category of F-

Algebras. These de�nitions will be useful later when we formalise the concept of

catamorphisms.

De�nition 1.4. (F-Algebra) Let C be a category and F : C → C be an endofunctor.

An F-Algebra is a pair (F, a) where a : FA → A is an arrow of the category C. The

object A is the carrier of the algebra and the functor F is the signature of the algebra.

De�nition 1.5. (Algebra homomorphisms) A homomorphism between F-Algebras

(A, a) and (B , b) is an arrow f : A → B of A such that the diagram commutes

i.e. such that

a; ; f = F ◦ b f

FA
a−−−→ A

Ff

y yf
FB −−−→

b
B

This construction gives a category (F : A) of F-Algebras.

Example 1.2. (Category of Algebras) The category of F-algebras over F is de�ned

by:

• Objects: pairs (F,a) i.e. arrows a of F such that source a = F (target a).

• Arrows: triples (a, b, f) : a → b where a and b are F-algebras and f : target a →

b is a homomorphism from a to b.

• Identity: ida = (idtarget a, a, a).

• Composition: (g, a1, a2); ; (f, a2, a3) = (g; ; f, a1, a3).

9

• Source: Given arrow f : a→ b then source f = a

• Target: Given arrow f : a→ b then target f = b

De�nition 1.6. (Isomorphims)

Let C be a category, and let X , be objects of C. A morphism f : X → Y is an

isomorphism if there exists a morphism g : Y → X such that the follow holds:

g; ; f = idY (3)

f ; ; g = idX (4)

where idX denotes the identity morphism on X .

Example 1.3. Consider the endofunctor F : SET → SET which takes S into 1 + S.

The natural numbers N form an algebra for F. The F-structure is given by the function

(zero, succ) : 1 + N → N where zero is the function picking out 0 and succ is the

successor function. This is also the algebra for F. N has many subsets which are all

�xed up to isomorphism for F. Initial objects are determined uniquely up to a unique

isomorphism.

De�nition 1.7. (Initial Object) An object I in a category C is initial if for each

object A of C there is exactly one arrow of type I → A. Inital objects, often denoted

α, are unique up to unique ismorphisms.

De�nition 1.8. (Catamorphism) The Catamorphism, h is de�ned as a homomor-

phism from an initial algebra, α to h, and is denoted by (|h|).

Natural Transformations Let F,G : A → B be functors between two categories

A and B. By de�nition, a natural transformation to F from G is a collection of arrows

10

φB : FB → GB , one for each object B of B. These arrows are called the components

of φ. A transformation is called natural if

Fh; ;φB = Fh; ;φA (5)

for all arrows h : A→ B in B. In a diagram, this equation can be pictured as

FB
φB−−−→ GB

Fh

y yGh
FA −−−→

φA
GA

We write φ : F→ G to indicate that a transformation φ to F from G is natural.

Example 1.4. For example consider the function inits that returns all pre�xes of its

arguments:

inits [a1, a2, . . . , an] = [[], [a1], [a1, a2], . . . , [a1, a2, . . . , an]] (6)

For each set A there is an arrow initsA : list A→ list (list A). Now,

map (map f) ◦ inits = inits ◦map f and therefore inits is a natural transformation.

11

Category Theory Notation We follow the general notations used in category

theory literature with one exception. In general ◦ is used for morphisms composition.

We use ◦ to represent function composition and therefore when referring to composi-

tions of morphisms at the abstract category level we choose to use ; ;. For a full list

of notations used for category theory please refer to table 1 below:

Table 1: Category Theory Notation

English Category Theory Notation

Set S S
Category C C
Objects A, B , C · · ·
Arrow f , g , h, · · · or f : A→ B
Composition in Categories ;;
Functor F, G
Catamorphism of h (|h|)
Natural transformation φ

1.2.2. Higher Order Logic

We now turn to detail the logic of choice Higher Order Logic (HOL). Key fea-

tures needed for our formalism are discussed such as syntax, language and type

system.

Syntax The syntax of HOL is that of simple-typed λ-calculus. Types are either

variables α, or applications (τ1, ..., τn)t. There are two primitive types, ind denoting

the set of individuals (a set with in�nitely many distinct elements) and bool denoting

the two element set of boolean values. There is also the primitive type operator

fun(→). All new types are de�ned using the two primitive types and the primitive

type operator fun. Terms are either typed constants cτ or variables xτ , applications

(e1e2) and abstractions λx : T.e. Terms must be well typed according to typing rules.

12

There are two primitive constant =: α → α → bool and Hilbert's choice operator

ε : (α→ bool)→ α.

Notation Table 2 below summaries the standard notation used in HOL.

Table 2: HOL Notation

English HOL Notation

True T
False F
not ¬
and ∧
or ∨
implication ⇒
equivalence ⇔
there exists ∃
there exists unique ∃!
for all ∀
Proposition that x has the property speci�ed by P P [x]
function from x to y λx.y
function composition f ◦ g
some x such that P εx.P

Types Every well-formed term must have a type that is consistent with the types of

its sub terms. HOL have a set-theoretic semantics in which types are mapped to sets

and terms to elements. Writing tm : ty indicates explicitly that the term tm has type

ty. HOL uses Milner's type inferencing algorithm [42] to assign consistent types to

logical terms. The user of HOL therefore is rarely required to explicitly provide type

information for terms. Types are very important as they prevent programmers from

writing �awed code thereby improving reliability. Grouping the data manipulated

by programs into types, is one way of preventing operations from being applied to

scenarios in which they are not de�ned such as, returning the head or tail of an

13

integer. Type restrictions are also very e�ective at thwarting basic attacks on security

vulnerabilities such as the infamous bu�er over�ows attacks.

Types in higher order logic may be categorised as one of the following: type constants,

type variables, and compound types. Type constants are identi�ers that name sets

of values. Examples are the two primitive types bool and ind , which denote the

set of booleans and the set of "individuals" (an in�nite set) respectively. Another

example is the type constant num, which denotes the set of natural numbers. The

type num is not primitive but is de�ned in terms of ind . Type variables are used

to stand for "any type"; they are written α, β, γ, etc. Types that contain "type

variables" are called polymorphic types. A substitution instance of a polymorphic

type ty is a type obtained by substituting types for all occurrences of one or more of

the type variables in ty . Compound types are expressions built from other types using

type operators. They have the form: (ty1 , ty2 , · · · , tyn)op, where ty1 through tyn are

types and op is the name of an n− ary type operator. An example is the binary type

operator fun, which denotes the function space operation on types. The compound

type (num, bool)fun (also written as num → bool), is the type of all functions from

num to bool .

Formally, all proofs in higher order logic can be formulated using type variables, the

primitive type constants bool and ind , and the primitive type operator fun. In keeping

with the aim of making theorem proving accessible to everyday software developers, it

is desirable to extend this syntax of types to facilitate the addition new type constants

and type operators, this is achieved using type de�nitions.

Hilbert's ε-operator The syntax and informal semantics are as follows. If P [x : ty]

is a boolean term involving a variable x of type ty then εx.P [x] denotes some value,

14

v say, of type ty such that P [v] is true. If there is no such value (i.e. P [v] is false for

each value v of type ty) then x.P [x] denotes some �xed but arbitrarily chosen value

of type ty . Thus, for example, εn.4 < n∧n < 6 denotes the value 5, εn.(∃m.n = 2m)

denotes an unspeci�ed even natural number, and εn.n < n denotes an arbitrary

natural number. Hilbert's ε − operator is formalised in higher order logic by the

following theorem:

∀P.(∃x.Px)⇒ P (εx.Px) (7)

Therefore if P is a predicate and ∃x.Px is a theorem of the logic, then so is P (εx.Px).

The ε-operator can therefore be used to obtain a logical term which provably denotes

a value with a given property P from a theorem merely stating that such a value exists

[32]. As consequence of the use of ε choice operator in type speci�cation emptiness is

not allowed, i.e. logical types must denote non-empty sets.

1.2.3. Higher Order Logic provers

HOL-Light HOL Light is a prover whose implementation of the underlying logic is

accessible and simple. HOL Light is open source and was coded in metalanguage

often called ML. This presents an opportunity for relatively easy modi�cation. There

are also special-purpose tools that are available to aid in overall theory development.

For example there is code to automate the de�nition of inductive relations and types

as well as to de�ne recursive functions with arbitrary well-founded measures. There

are also domain-speci�c tools such as decision procedures for linear arithmetic, over

naturals, integers and reals [24, 21]. HOL traditional type system does not directly

facilitate type parameterization. This is desirable for our work as it would add

additional level of genericity.

15

Notation The HOL Light syntax for higher order logic is straightforward. For

example the principle of induction on the natural numbers

∀P : P (0) ∧ (∀n : P (n)⇒ P (S(n)))⇒ (∀n.P (n)) (8)

would be written as

Listing 1: Principle of induction on the natural numbers

!P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n)

where SUC is a prede�ned constant, ∀ is written as ! and ∧ is written as /\.Table 3

summarises conventional notations used for propositional (or Boolean) connectives,

together with HOL's ASCII approximations and their approximate English read-

ing.

Table 3: HOL Light Notation

English HOL Light Notation

True T
False F
not ~
and /\
or \/
implication ==>
equivalence <=>
there exists ?
there exists unique ?!
for all !
Proposition that x has the property speci�ed by P P(x) or P x
function composition f ◦ g
Lambda expressions λx.x+ 1 \x.x+1
some x such that P @x.P

16

Terms In HOL Light, mathematical expressions in higher order logic are enclosed

in backquotes. These expressions have the OCaml type term. For example, if you

enter `x + 1` at the OCaml toplevel (followed by two semicolons and return):

Listing 2: Term x + 1

`x + 1`;;

val it : term = `x + 1`

HOL theorem prover provides a number of operations for manipulating terms. For

example subst will replace one term by another at all its occurrences in another

term, e.g. replace `1` by `2` in the term `x + 1`. The syntax is analogous to the logical

notation [2 = 1](x+ 1) or (x + 1)[2 = 1] that one often sees:

Listing 3: subst

subst [`2`,`1`] `x + 1`;;

val it : term = `x + 2`

subst [`y + 2`,`x:num`] `x + 5 ∗ x`;;

val it : term = `(y + 2) + 5 ∗ (y + 2)`

The reason for entering `x:num` rather than just `x` lies in HOL's type system,

explained next.

Types A powerful feature of HOL is that every term must be have a well de�ned

type. The type indicates what kind of object the term represents (a number, a set,

a function, etc). The possible types of terms are represented using another symbolic

datatype hol_type, and these will similarly be automatically parsed and printed

within backquotes with a colon as the �rst character.

Listing 4: Types in HOL Light

17

`:num`;;

val it : hol_type = `:num`

The type of a term can be obtained by applying the type_of operator to it.

Listing 5: type_of

type_of `1`;;

val it : hol_type = `:num`

type_of `x + 1`;;

val it : hol_type = `:num`

type_of `x + 1 < x + 2`;;

val it : hol_type = `:bool`

The type of the terms `1` and `x + 1` is :num, meaning that they represent natural

numbers, i.e. nonnegative whole numbers. (In mathematical syntax we would write

1 ∈ N and 1 + n ∈ N and to capture the information in HOL's type assignment.) On

the other hand, the term `x + 1 < x + 2` is of type bool (Boolean), meaning that it

is an assertion that may be true or false (in this case it happens to be true). If HOL

is able to assign a type to a term, but it is not determined uniquely, a general type

will be assigned automatically:

Listing 6: Automatic yype assignment

`x`;;

Warning: inventing type variables

val it : term = `x`

type_of it;;

val it : hol_type = `:?48538`

One the other hand a type can be imposed on any term by writing `:<type>` after

it:

18

Listing 7: Forced type assignment

`x:num`;;

val it : term = `x`

`x:bool`;;

val it : term = `x`

Variables may share the same name yet have di�erent types and are considered to

be completely di�erent.) No annotations were needed in the composite term `x +

1` because HOL automatically allocates type `num` to the constant 1, and infers the

same type for x because the two operands to the addition operator must have the

same type. But you can attach type annotations to sub-terms of composite terms

where necessary or simply desired for emphasis:

Listing 8: type matching

`(x:num) = y`;;

val it : term = `x = y`

`(x:num) + 1`;;

val it : term = `x + 1`

Theorems A boolean term may be proved true by applying a well de�ned set of

syntactic rules and initial axioms. A special type thm, for theorems, is used to

represent such terms. HOL Light de�nes a set of axioms and inference rules. An

inference rule is an ocaml function returning something of type thm. For example

consider the simplest inference rule, the refelexivity of equality.

Listing 9: type matching

REFL `x:real`;;

val it : thm = |− x = x

19

let th1 = REFL `x + 1`;;

val th1 : thm = |− x + 1 = x + 1

A slightly more complicated primitive inference rule is INST (instantiation), which

sets the variable(s) in a theorem to some particular term(s). This is a logically

valid step because a HOL theorem with (free) variables holds for all values they may

have:

Listing 10: type matching

let th3 = INST [`2`,`x:num`] th1;;

val th3 : thm = |− 2 + 1 = 2 + 1

Moreover INST, will refuse to substitute for non-variables, which in general is not a

logically valid step. For example, the fact that 2n = n + n does not imply that we

can substitute n for 2n while remaining valid:

Listing 11: type matching

INST [`2`,`2 ∗ n`] th2;;

Exception: Failure "dest_var: not a variable".

A theorem can only be constructed by proving it. Proving non-trivial theorems at this

low level is rather painful therefore, HOL Light comes with a variety of more powerful

inference rules that can prove some classes of non-trivial theorems automatically. We

now describe these proof methods.

Proof Methods Proofs in HOL-Light are semi-automatic which means automatic

search procedures can be combined with manual proofs. Proofs in HOL Light are

typically developed interactively at the OCaml toplevel. Proofs operate on goals

which may be broken down into sub goals during the proof process. A goal captures

20

a claim of the form p1, · · · , pn ` q that we are currently trying to prove but have not

proved yet. HOL-Light keeps track of the goals and subgoals on using a goalstack.

A tactic is a function that (essentially) takes a goal and produces a list of subgoals,

such that a proof of all subgoals produces a proof of the original goal. Di�erent proof

styles are supported. Through a simple set of forward inferences, one can construct

various high-level proofs. One can prove theorem in a backward fashion using tactics,

use more orthodox mathematical proof style. This proof process is also simpli�ed by

the inclusion of special-purpose procedures. HOL Light already contains prede�ned

tactics that deals with many complicated proof steps.

Example 1.5. Suppose we want to prove the following x 6= 0⇒ 1 ≤ x.

We set up our goal with the ocaml function g.

Listing 12: The goal stack

g `~(x=0) ==> 1 <= x`;;

Warning: Free variables in goal: x

val it : goalstack = 1 subgoal (1 total)

`~(x = 0) ==> 1 <= x`

Proofs take the form of natural deduction and one can introduce and eliminate

assumptions with introduction and elimination rules [21]. In addition there are

simpli�cation and rewrite rules. These are equations, sometimes conditional, which

can be used to substitute equal terms in a goal. Rewriting can be optionally done using

higher order uni�cation and matching [23]. Higher order matching attempts to �nd

a common substitution for the two term, and where successful makes the appropriate

substitutions. The proof process is also simpli�ed by the inclusion of special purpose

procedures. The above goal may be proved immediately with the tactic ARITH_TAC.

21

This is a tactic for proving arithmetic goals needing basic rearrangement and linear

inequality reasoning only.

Listing 13: Arithmetic tactic

e ARITH_TAC[];;

val it : goalstack = No subgoals

As another example, consider MESON, a powerful automated tool call that is very

useful and convenient. Although, deciding validity in quanti�cation theory is an

undecidable problem, MESON uses an automated proof search method called `model

elimination` [33, 52] that often succeeds on valid formulas. MESON is very useful tool

in automating the proof of quite intricate but essentially straightforward reasoning

with quanti�ers, such as in the following puzzle:

Listing 14: Theorem proving in HOL-Light

MESON[]

`((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=>

((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;;

val it : thm =

|− ((?x. !y. P x <=> P y) <=> (?x. Q x) <=> (!y. Q y)) <=>

(?x. !y. Q x <=> Q y) <=>

(?x. P x) <=>

(!y. P y)

1.2.4. HOL2P

HOL Light is suitable for a fair number of theorem proving applications. However

there are limitations with regards to generic reasoning as there are no built in facility

to easily manipulate type parameterisation. This means that HOL Light would not be

suitable for generic program veri�cation. As an example consider a predicate functor

22

which asserts that a HOL function φ is a functor from the category of HOL functions

to itself. From the de�nition of functor the following holds:

φ id = id (9)

φ(f ◦ g) = φ f ◦ φ g (10)

An example of a functor is the list map map_list :: (α→ β)→ αlist→ βlist

map_list f [] = [] (11)

map_list f (consxxs) = cons (fx) (map_list f xs) (12)

map_list id = id (13)

map_list f ◦ g = map_list f ◦map_list g (14)

There are two problems if one tries to de�ne a general HOL predicate functor :

1. From abstracting the type constructor list in the map_list example, one would

expect functor to be parameterised with a unary type operator variable. There

are no type operator variables in HOL.

2. In general, the three occurrences of φ in equation (2) all have di�erent types.

It is not possible to have di�erently typed instances of one variable in HOL.

23

HOL Light is therefore not expressive enough to reason about generic programs.

Type quanti�cation was added to the HOL-Light theorem prover by Voelker [54] and

called HOL2P. This means that HOL2P has the necessary constructs for us to build

our framework for generic reasoning. We now brie�y discuss the HOL2P theorem

prover.

HOL2P Type system - The type system of HOL2P extends simple typed HOL

with:

• Universal types (Πα.T) which bind a type variable α in a type T .

• Type variables with an arity greater than zero, these are referred to as "type

operator variables"

Universal types allows for the parameterization of functions with polymorphic argu-

ments that can be parameterized with types. The syntax of HOL2P types are as

follows (n ≥ 0):

T ::= (α :: rank) - type variable (rank = large or rank = small)

| (T1, · · · , Tn)τ - type constructor application

| (T1, · · · , Tn)θ - type operator variable application

| Π(α :: small).T - universal type

The rank of a type is either large or small. A small type does not contain any

large types and universal types. Small HOL2P types correspond to the normal HOL

types.

24

HOL2P Terms - HOL2P extends HOL terms with type abstraction and type

applications:

t ::= (v : T) - variable

| (c : T) - constant

| t t - application

| λ(v : T). t - abstraction

| Λα.t - type abstraction

| t [T] - type application

There are two important restrictions on the formation of terms:

• R1 - the type variable α must not occur freely in the type of any free variable

of t in the formation of a type abstraction term Λα.t

• R2 - in a type application term t[T], T must be a small type

R2 is vital to avoiding inconsistencies such as those created by Russell's paradox.

Strati�cation of types by ranks according to the depth of universal types was imple-

mented in HOL− ω [25]. This strati�cation allows terms to contain universal types

of lower ranks.

A direct upshot of parameterization of terms with type operators is genericity. This

expressiveness allows categorical concepts, such as initial algebras, to be applied on

the level of polymorphic HOL functions. This level of abstraction is necessary for

generic reasoning and is used extensively in our formalisation.

25

Explicit type (operator) instantiation for parsing - When entering terms

that involve (possibly implicit) type operator variables, it is often necessary to add

explicit type (operator) variable instantiations or type annotations; this is achieved

using TYINST. TYINST is purely an auxiliary device that guides type inference. This

is so because the automatic type inference and term instantiation will match a type

operator variable only with a type constructor or another type operator variable.

Proofs - HOL2P theorem prover extends the proof tactics of HOL-Light with

specialized tactics aim at automatically reasoning with type operator variables. For

instance universal types and type operator variables in the goal can be automatically

removed and assumptions placed in the list of assumptions using TY_ALL_E_TAC.

This in essence rewrites the goal in a form that is more readily manipulated by existing

HOL-Light tactics.

Listing 15: Type quanti�cation elimination

example will be inserted

Notation We shall omit type information when this can be determined from con-

text. Table 4 below summaries some general notation used in this thesis. Further

notation will be stated at the point of introductions:

Table 4: General Notation

English Thesis Notation

HOL2P (OCAML) function sq
HOL2P theorem proving methods ARITH

Function type constructor ⇒
Type assignment :
Lambda abstraction λxyz.body

26

CHAPTER 2. AUTOMATED CATEGORY-THEORY

INSPIRED TYPES

The general approach used to implement recursive type de�nition packages, in higher

order logic, is to �rst accept as input some informal speci�cation of the recursive

type by the user. The package then automatically generates the type de�nition and

characteristic theorems, and adds them to the current theory. There are variants

to the approach used in implementation of the type de�nitional packages. All the

various existing approaches may be categorized as one of the following:

• Axiomatic The theorems and properties are generated syntactically only and

introduced into the current theory as axioms. This approach is used in the PVS

prover [45]

• Inherent The underlying logic is extended in order to support the new con-

struct e.g. [47]

• De�nitional The new construct is expressed in terms of existing objects and

concepts, and the desired properties are derived from existing de�nitions and

theories the Isabelle/HOL prover [41]

We introduce another approach, one based on categories. Our category theory frame-

work, presented in Chapter (??), is extended to include a treatment of datatypes.

Firats we review of the use of initial algebra semantics used in program construction

as discussed in [38]. This serves to provide an understanding of the starting point

of our automation. Datatypes are represented as algebras where the datatype is

the carrier of the algebra. This algebra is interpreted categorically, that is they are

viewed as functors, see section 1 example 1.1. This has the advantage over other

representations as it is well suited for generic reasoning. The objectives of this chapter

27

are to:

1. to automate the algebraic representation of recursive types from their speci�-

cations

2. to automate type functor construction using catamorphisms

3. to automatically generate datatype speci�c theorems from type speci�cations

4. to provide a rigorous formalism of the categorical initial algebra semantics as

presented in [11]

The structure of this chapter is summarize below:

• Section 2.2 Discusses singleton types as initial objects of categories

• Section 2.3 De�nes the product and coproduct type combinators

• Section 2.4 Formalises the category of F-Algebras

• Section 2.5 Describes the automatic generation of catamorphisms from type

speci�cation

• Section 2.6 Discuses the Universal Extension Principle as a proof principle

• Section 2.7 Summarizes contributions, related work and future research

2.1. Introduction

2.1.1. Program construction using initial algebras

The idea of using initiality to reason about programs can be traced back to 1969 [12] to

work done by Burstall and Landin. Goguen cemented this by using initial algebras to

28

specify the formal semantics of programming languages [18]. The project CIP evolved

after and was motivated by the search of a common semantic basis for programming

languages. Algebraic abstract types was used for the formulation of formal problem

speci�cations and demonstrated with a real-life, large-scale application, the (formal)

speci�cation of the (kernel of the) program transformation system CIP-S [6].

Around the same time the notion of F-Algebras appeared in the category theory

research and several researchers demonstrated the advantages of its use in program

semantics in [29, 36] and later on in [31]. Hagino in his PhD thesis [19] presented a

detailed construction of a categorical interpretation of a datatype. Malcom has been

credited with unifying the category theory and the programming semantics research

community [34]. Fokkinga has a detailed treatment of types as algebras [14] and

subsequently described the categorical treatment of types that satis�es equational

laws [15]. An alternative approach to types with laws is also presented in [35]. The

focus has been on programming language semantics and program derivation. One

noticeable omission is research on mechanized reasoning using initial algebras. We

aim to �ll this gap.

2.1.2. Problem statement and our goals

This chapter is geared towards specifying a suitable representation of types that for

our category theory framework described in chapter (??). We will focus only on

�nite types such as list and trees which are called regular types. We will also

consider regular nested types such as rtree. In�nite types nor types with laws will

not be included in our discussion. Our focus is on automation and as such we aim

to automate the initial algebraic representation, catamorphisms, type functors and

associated theorems such as fusion laws. We begin with a discussion on the simplest

datatype, that with just one element.

29

2.2. Singleton types

There is one datatype with only one element, namely, initial object that is of interest

when specifying �nite algebraic types. Our formalism of initial objects is also speci�ed

at both layers of our framework. We start our formalism with initial objects in 6-tuple

categories. The initial object predicate takes two parameters, the 6-tuple representing

the layer-1 category, and an object type (α T). This might not be what one would

expect as an alternative would be to use a HOL2P polymorphic function as the second

parameter. The main reason for using an object as this represent actual objects of the

category as oppose to a class of objects represented by the a polymorphic function.

This however means that when one comes to representing the algebras then one would

not directly be able to represent the polymorphic list function, for instance and in that

regard this de�nition falls short. This is not detrimental as (T) can be instantiated

to a universal type when needed. An object I is initial if for each object A of C there

is exactly one arrow of type I → A.

De�nition 2.1. IOBJ1

(obj : (Λα. α T→ bool),

hom : (Λα β. (α, β) H→ bool),

id : (Λα. α T→ (α, α) H),

; ; : (Λα β γ. (α, β) H→ (β, γ) H→ (α, γ) H), src : (Λα β. (α, β) H→ α T),

tgt : (Λα β. (α, β) H→ β T))

(alpha : (Λα. α T))

=

(Πα. obj(alphaα)) ∧

30

(Πβ.∀ B : β T. obj b⇒ (∃! z : (α, β) H.hom z ∧ src z = alphaα ∧ tgt z = b))

Isomorphisms are de�ned as follows chapter (1) section 1.6:

De�nition 2.2. ISO1

(obj : (Λα. α T→ bool),

hom : (Λα β. (α, β) H→ bool),

id : (Λα. α T→ (α, α) H),

; ; : (Λα β γ. (α, β) H→ (β, γ) H→ (α, γ) H), src : (Λα β. (α, β) H→ α T),

tgt : (Λα β. (α, β) H→ β T))

(i : (α, β)H)

=

hom i ∧

(∃z : (β, α)H.hom z ∧ src i = tgt z ∧ tgt i = src z ∧ i; ; z = id(src i)∧ z; ; i = id(tgt i)))

Initial objects are unique up to unique isomorphism.

Listing 16: Initial objects are unique up to unique isomorphism

val (IOBJ1_ISOM1) : thm =

|− CTGY1 (obj,hom,id,(;;),src,tgt) /\

IOBJ1 (obj,hom,id,(;;),src,tgt) a /\

IOBJ1 (obj,hom,id,(;;),src,tgt) b

==> (?h. ISOM1 (obj,hom,id,(;;),src,tgt) h /\

src[:'A][:'B] h = a /\ tgt[:'A][:'B] h = b)

2.3. Type Combinators - Products and Co-products

2.3.1. Products

31

In category theory, the product of two objects A and B consists of an object and two

arrows. The object is written A × B and the arrows are written fst : A × B → A

and snd : A × B → B. In HOL, products in the FUN are de�ned as FST and

SND respectively and the morphism component of the product functor as <*>. These

three things are required to satisfy the following universal property: for each pair of

arrows f : C → A and g : C → B there exists an arrow 〈f, g〉 : C → A×B such that

fst · 〈f, g〉 = f and snd · 〈f, g〉 = g. In our formalisation below 〈f, g〉 is called SPLIT

f g.

Listing 17: Product functor

val (PROD_FUN) : thm = |− f <∗> g = (\(x,y). f x,g y)

val (FST) : thm = |− FST (x,y) = x

val (SND) : thm = |− SND (x,y) = y

val (SPLIT_DEF) : thm = |− SPLIT f g = (\x. f x,g x)

val (SPLIT_CANCEL) : thm = |− FST o SPLIT f g = f /\ SND o SPLIT f g = g

The following are some useful properties of products that are often used in proofs.

Listing 18: Properties of products

val (PROD_ID) : thm = |− ID <∗> ID = ID

val (PROD_FUSION) : thm = |− f1 <∗> g1 o f2 <∗> g2 = (f1 o f2) <∗> (g1 o g2)

val (PROD_EQ_PROD) : thm = |− f1 <∗> g1 = f2 <∗> g2 <=> f1 = f2 /\ g1 = g2

val (PROD_CANCEL) : thm = |− FST o f1 <∗> g1 = f1 o FST /\ SND o f1 <∗> g1 = g1 o SND

We also obtain some useful properties of SPLIT and formalise its relationship to

products:

val (SPLIT_COMP) : thm = |− SPLIT f g o h = SPLIT (f o h) (g o h)

val (PROD_SPLIT) : thm = |− f <∗> g = SPLIT (f o FST) (g o SND)

32

val (PROD_COMP_SPLIT) : thm = |− f1 <∗> g1 o SPLIT f2 g2 = SPLIT (f1 o f2) (g1 o g2)

val (SPLIT_FST_SND) : thm = |− SPLIT FST SND = ID

val (FST_AND_SND_EQ_IMP_EQ) : thm =

|− FST o f = FST o g /\ SND o f = SND o g ==> f = g

2.3.2. The Co-product

In category theory, then Co-products also consists of one object and two arrows for

each A and B. The object is denoted A+B� and the two arrows inl and inr. Given

f and g, there is a unique arrow [f, g] satisfying the following universal property:

[f, g] · inl = f and [f, g] · inr = g. inl and inr. In HOL, products in the category

FUN are de�ned as INL and INR and in our formalisation below [f, g] is called CASE

f g.

Listing 19: De�nition of CASE and <+>

let SUM_FUN = new_recursive_de�nition sum_RECURSION

`(f <+> g) (INL x) = INL (f x) /\

(f <+> g) (INR y) = INR (g y)`;;

let CASE = new_recursive_de�nition sum_RECURSION

`CASE f g (INL x) = f x /\

CASE f g (INR y) = g y`;;

The cancellation properties are formalised below:

Listing 20: Theorems relating <+> and CASE

let CASE_CANCEL = prove (

`CASE f g o INL = f /\ CASE f g o INR = g`);;

let CASE_FUSION = prove (

`f o CASE g h = CASE (f o g) (f o h)`);;

33

The relationship between CASE and the sum functor is formalised by the following

theorems:

Listing 21: Theorems relating CASE and <+>

val (SUM_CASE) : thm = |− f <+> g = CASE (INL o f) (INR o g)

val (CASE_COMP_SUM) : thm =

|− CASE f1 g1 o f2 <+> g2 = CASE (f1 o f2) (g1 o g2)

Listing 22: Relationship between SPLIT and CASE

val (SPLIT_CASE) : thm =

|− SPLIT (CASE f1 g1) (CASE f2 g2) = CASE (SPLIT f1 f2) (SPLIT g1 g2)

2.3.3. Polynomial Functors

Functors built up from constants, products and co-products are said to be polynomial.

The class of polynomial functors are de�ned inductively by the following,

• The identity functor id and the constant functors KA for varying A are poly-

nomial

• If F and G are polynomial, then so are their composition F ; ;G, their point

wise sum F +G and their point wise product F ×G. These point wise functors

are de�ned by (F +G)h = Fh+Gh and (F ×G)h = Fh×Gh

2.4. Category of F-Algebras

An algebra is a endomorphism of a category, C of the form FA → A, where F is

the endofunctor. This is of particular interest as algebras can be used to represent

type constructors. The category of F-Algebras provides a rich playground for the

modeling of primitive recursive types and primitive recursive functions. The existence

34

of an initial F-Algebra, alpha, means that for any other F-Algebra f : FA→ A, there

is a unique homomorphism to f from alpha. This is characterized by the universal

property h = (|f |)⇐⇒ h; ; alpha = f ; ; (F h).

We begin by formulating the category of F-Algebras. Our �rst approach was to

de�ne this directly as a layer-1 category. This was inevitable as the objects of

the this category are a sub-set of HOL2P types, and therefore we need the type

operator variable (T) to ensure that objects of this category are only F-Algebras.

This approach was quite cumbersome and we decided to de�ne the 6-tuple indirectly,

using CTGY and a functor, F. The FALG_CTGY takes two parameters, a 3-tuple

layer-2 category and a layer-2 functor F:

• layer-2 category.

• layer-2 functor.

De�nition 2.3. FALG_CTGY

(hom : (Λα β.(α, β) H→ bool),

id : (Λα.(α, α) H),

; ; : (Λα β γ.(α, β) H→ (β, γ) H→ (α, γ) H),

(F : (Λαβ.(α, β) H→ (α F, β F) H)))

=

((Πα. ∀a : (α F, α) H. hom a),

(Πα β. ∀f : (α F, α) H.∀g : (β F, β) H.∀h : (α, β) H.f ; ;h = (Fh); ; g),

(Πα. ∀a : (α F, α) H.(a, a, idα)),

(Πα β χ. ∀a : (α F, α)H.∀b : (β F, β)H.∀x : (α, β)H.∀s : (β F, β)H.∀c : (χF, χ)H.∀y :

(β F, χ) H.(a, c, x; ; y)),

(Πα β. ∀a : (α F, α) H.∀b : (β F, β) H.∀c : (α, β) H. a),

35

(Πα β. ∀a : (α F, α) H.∀b : (β F, β) H.∀c : (α, β) H. b))

The category of F-Algebras is de�ned on the 6 parameters as follows:

• Predicate obj : Λα. ∀a : (α F, α) H ensures that only F-Algebras are objects of

the sub-category. This objects are also homorphisms of the parent category

• Predicate hom : Λα β. ∀f : (α F, α) H.∀g : (β F, β) H.∀h : (α, β) H determines

which elements of (α, β) H are morphisms of the sub-category F-Algebras. We

are forced to use a triple to represent homomorphism as we need to make explicit

the source and target algebras.

• Function id : Λα. ∀a : (α F, α) H denotes the identity morphism.

• Operator ; ; : Λαβχ.∀a : (αF, α)H.∀b : (βF, β)H.∀x : (α, β)H.∀s : (βF, β)H.∀c :

(χ F, χ) H.∀y : (β F, χ) H denotes morphism composition.

• Function src : Λα β. ∀a : (α F, α) H.∀b : (β F, β) H.∀c : (α, β) H associates a

morphism with its source object.

• Function tgt : Λα β. ∀a : (α F, α) H.∀b : (β F, β) H.∀c : (α, β) H associates a

morphism with its target object.

We now de�ne the universal property homomorphisms. The all important catamor-

phism is de�ned as a homomorphism from the initial algebra.

Listing 23: De�nition of homomorphism

val (FHOMO_THM) : thm =

|− !hom id g (;;) F h f.

FHOMO_THM (hom,id,(;;)) F (g,f,h) <=>

(;;)[:('A)_F][:'A][:'B] g h =

(;;)[:('A)_F][:('B)_F][:'B] (F[:'A][:'B] h) f

36

If f is a homomorphism from alpha then f is a catamorphism. Catmorphisms uses

hilberts choice operator to select some homomorphism that statis�es the universal

property above, where g is the initial algebra.

Listing 24: De�nition of catamorphisms

val (CATA) : thm =

|− !hom id (;;) f F alpha.

cata (hom,id,(;;)) F alpha f =

(@h. (;;)[:('Z)_F][:'Z][:'Y] alpha h =

(;;)[:('Z)_F][:('Y)_F][:'Y] (F[:'Z][:'Y] h) f /\

hom[:'Z][:'Y] h)

When insantated with Fun we have the following theorem

Listing 25: De�nition of catamorphisms in Fun

val (CATA_FUN) : thm =

|− !f F alpha. cata CATFUN F alpha f = (@h. h o alpha = f o F[:'Z][:'Y] h)

We also need to de�ne what it means for an algebra to be initial in the category of

F-Algebras.

Listing 26: Initial algebras

val (IALG) : thm =

|− !hom id (;;) F alpha.

IALG (hom,id,(;;)) F alpha <=>

hom[:('Z)_F][:'Z] alpha /\

(!! 'B. !f. hom[:('B)_F][:'B] f

==> (?!h. (;;)[:('Z)_F][:'Z][:'B] alpha h =

(;;)[:('Z)_F][:('B)_F][:'B] (F[:'Z][:'B] h) f /\

hom[:'Z][:'B] h))

37

This is also instantiated to the Fun.

IALG_FUN;;

val it : thm =

|− !F alpha.

IALG CATFUN F alpha <=>

(!! 'B. !f. ?!h. h o alpha = f o F[:'Z][:'B] h)

We can now proceed to verify the universal property, we show that alpha; ;h ⇒

(F h); ; f ⇒ h = (|f |)

Listing 27: Universal property of catamorphism

val (EQ_CATA) : thm =

|− CTGY (hom,id,(;;)) /\

FNCTR (hom,id,(;;)) F /\

IALG (hom,id,(;;)) F alpha /\

hom[:('G)_F][:'G] f /\

hom[:'T][:'G] h /\

(;;)[:('T)_F][:'T][:'G] alpha h =

(;;)[:('T)_F][:('G)_F][:'G] (F[:'T][:'G] h) f

==> cata (hom,id,(;;)) F alpha f = h

And this is also instantiated to the Fun

Listing 28: EQ_CATA instantatied to

EQ_CATA_FUN;;

val it : thm =

|− !F alpha f h.

FNCTR CATFUN F /\

IALG CATFUN F alpha /\

38

h o alpha = f o F[:'T][:'G] h

==> cata CATFUN F alpha f = h

Proof of the contrapositive of the universal property of catamorphisms is given as

Listing 29: Universal property of catamorphism

CATA_IALG;;

val it : thm =

|− IALG (hom,id,(;;)) F alpha /\ hom[:('B)_F][:'B] f

==> hom[:'T][:'B] (cata (hom,id,(;;)) F alpha f) /\

(;;)[:('T)_F][:'T][:'B] alpha (cata (hom,id,(;;)) F alpha f) =

(;;)[:('T)_F][:('B)_F][:'B]

(F[:'T][:'B] (cata (hom,id,(;;)) F alpha f))f

CATA_IALG_FUN;;

val it : thm =

|− !F alpha f.

IALG CATFUN F alpha

==> cata CATFUN F alpha f o alpha =

f o F[:'T][:'B] (cata CATFUN F alpha f)

2.5. Deriving catamorphisms from type speci�cations

The general speci�cation in HOL for inductive datatypes is of the general form:

(α1, · · · , αn)rty ::= C1ty
1
1 · · · ty

k1
1 | · · · |Cmty1m · · · tykmm (15)

where the αi are type variables and rty is the name of the type constant or type

operator being de�ned , constructors Ci are distinct, and tykm, are admissible types

39

containing at most the type variables (α1, · · · , αn). Now tykm is admissible if tykm is

one of the following:

• An existing non-recursive type

• A recursive occurrence

• A nested recursion involving existing types

In HOL-Light Harrison's de�ned a ML function, define_type that automatically

de�ne user-speci�ed recursive types [23]. This function takes as input an informal

type speci�cation. in the form of equation (15). A string of this form describes an

n-ary type operator rty; if n is zero then rty is a type constant. Each constructor Ci

are identi�ers whose arguments are types, tykm. The type tykm is either a (logical)

type expression valid in the current theory, in which case tykm must not contain

(α1, · · · , αn)rty), or just the identi�er (α1, · · · , αn)rty itself. If one or more of the

type expressions tykm is the type (α1, · · · , αn)rty itself, then the equation speci�es

a recursive data type. In any speci�cation, at least one constructor must be non-

recursive, a base case, i.e. all its arguments must have types which already exist in

the current theory. Each of the types tykm above may be built from the type being

de�ned using other recursive type operators already de�ned, e.g. list. Moreover,

one can actually have a mutually recursive family of types, where the format is a

sequence of speci�cations in the above form separated by semicolons:

40

op1 = C11ty...ty|C12ty...ty|...|C1n1ty...ty;

op2 = C21ty...ty|...|C2n2ty...ty;

...

opk = Ck1ty...ty|...|...|Cknkty...ty

Before including the new type in the current theory, the ML function checks if the

user input string respects the rules stated above. Once the type speci�cation is

checked and is correct the corresponding type de�nition for the type operator or

type operators is added to the current type theory (or type context, Γ). It makes

appropriate de�nitions for the constructors Ci and automatically proves and returns

two theorems, inductive and recursive theorems. Roughly, the �rst theorem allows

one to prove properties over the new (family of) types by (mutual) induction, while

the latter allows one to de�ned functions by recursion.

There are two general approaches used in the implementation of recursive datatypes

packages in HOL provers. One developed by Melham [40] and the other is based on

Knsater-Tarski's �x point theorem [2, 46].

Now that we have de�ned a catamorphism, the process of deriving the catamorphism

for each speci�c datatype becomes a matter of putting the correct pieces together.

What this means is that we need to derive the initial algebra and the corresponding

base functor for each speci�ed type. We also need to derive the correct type instan-

tiation for the functor type operator variable F. Once we have these pieces then we

can instantiate the general theorem to automatically derive the catamorphism of each

initial type. The catamorphim is then used to automatically derive the type functor.

41

We now describe the process of automatically deriving the catamorphism for each

type, and type functors, from the type speci�cation.

2.5.1. Deriving initial algebras

Before we demonstrate the process of deriving initial algebras we give some examples.

The most common recursive type is the list type, and this is de�ned as follows:

Listing 30: list type speci�cation

let list_INDUCT, list_RECURSION =

de�ne_type "list = NULL | CONS A list";;

This declares [NULL, CONS] of type : FA list A → list A to be an initial algebra.

The list base functor denoted FA is de�ned by FA(B) = 1 + (A×B) and FA(f) =

id1 + (idA× f), a pair of morphisms, one on the objects and the other on morphisms.

The list type is parameterised with only one type variable A. We can also declare

types with more than one type variables.

Listing 31: De�nition of recursive type with more than one type variable (R

let (ex1_INDUCTION, ex1_RECURSION) =

de�ne_type "ex1 = C1 R | C2 S ex1";;

Datatypes may also be de�ned using previously de�ned datatypes and in these cases

they are called nested types. There are two types of nesting non-regular and regular

nested types. A non-regular nested datatype is a parametrised datatype whose

declaration involves di�erent instances of the accompanying type parameters, for

example bush A = BNUL | BCONS A bush(bush A) [9]. These types are not

currently admissible in HOL-Light. The regular datatype on the other hand where the

nested datatype is parametrised with an instance of the currently de�ned recursive

42

type. This is permissible, and the example of the rose tree is de�ned.

Listing 32: rtree type speci�cation

let rtree_INDUCT, rtree_RECURSION =

de�ne_type "rtree = NODE_RTREE A (rtree)list";;

We only discuss regular nested types in this thesis and may often drop the "regular".

Harrison already checks that the type speci�cation is admissible and creates the con-

structors as constants in the current theory. We use these constants to automatically

derive the initial algebraic representation. The initial algebra is expressed, as a case

wise polynomial expression over these constructors, that is C1 + C2 · · ·+ Cn. We

however have to ensure that the expression is in a form suitable for CASE as de�ned

in our framework see Listing 19. We use the following method to achieve this:

function format(constructors)

for each constructor do

if constructor is nullary then

de�ne a lambda abstraction, parameterised with a variable of type : 1

else

for each constructor argument do

create a new appropriately typed variable an

end for

create a lambda abstraction (curried) over the variables a1 · · · an

end if

end for

end function

The formatted constructors are the used as parameters for the CASE. Therefore the

initial algebra for the list algebra is given below.

43

Listing 33: list algebra

fst (create_initial_alpha `:('A)list`);;

val it : term ∗ hol_type = (`CASE (\e:1. []) (\(a0,a1). CONS a0 a1)`

This algorithm also correctly derives the initial algebra for types parameterised with

more than one type variable.

Listing 34: ex1 algebra

fst (create_initial_alpha `:('R,'S)ex1`);;

val it : term = `CASE (\a. C1 a) (\(a0,a1). C2 a0 a1)`

As well as for nested types

Listing 35: rtree algebra

fst (create_initial_alpha `:('A)rtree`);;

val it : term ∗ hol_type = `\(a0,a1). NODE_RTREE a0 a1`

To verify the initiallity condition for these types we must prove that they satisfy the

the initial algebra theorem. This states that for all morphisms f there exist a unique

morphism h from list_ALPHA to f . This theorem is given below for the case of

list

Listing 36: Initial algebra theorem for list

IALG_THM `:('A)list`;;

val it : thm =

|− IALG CATFUN list_IFUN list_ALPHA <=>

(!! 'B. !f. ?!h. h o list_ALPHA = f o ID <+> ID <∗> h)

We can show that each admissible type is initial in the category of F-Algebra. The

proof of this is based on simpli�cation using the base functor and the universal

44

property of catamorphisms along with some standard �rst order logic that is handled

by MESON_TAC.

Listing 37: list is initial

ALPHA_IS_INITAL `:('A)list`;;

val it : thm = |− IALG CATFUN list_IFUN list_ALPHA

2.5.2. Deriving base functors

The generic method create_initial_alpha returns a pair, a HOL term and a

HOL type. The second argument a HOL2P type and models the base functor mapping

on objects. This provides the type instantiation for the type operator variable (F).

We discuss the automatic derivation of �rst the object component of the base functor

followed by the morphism component. As an illustrative example, consider the

derivation the object mapping of the base functor for list given below

Listing 38: list base functor object mapping

snd (create_initial_alpha `:('A)list`);;

val it : term ∗ hol_type = (`:(% 'T .1+'A1#'T)`)

This is derived using the following procedure:

function baseFunctorObjectMapping(constructors)

for each constructor do

if constructor is nullary then

type of the functor expression is : 1

else

for each constructor argument do

if type variable say : A then

create a new free type variable say : A1

45

end if

if recursive type then

create a new bond type variable say : T

end if

end for

end if

end for

end function

Applying this procedure to our example with more than one type variable results in

a newly created type variable each type variable, for example.

Listing 39: ex1 base functor object mapping

snd (create_initial_alpha `:('R,'S)ex1`);;

val it : hol_type = `:(% 'T .'R1+'S1#'T)`

One notices a slight complication, the presence of a nested recursion. As we are only

considering simple nesting, these types are always parameterised with the recursive

type that is currently being de�ned. Therefore by rewrite rule (??) we obtain the

following additional rule.

• If type of argument is a nested type say ty then create a new type (T)ty

We can able to derive the base functor for our rose tree example

Listing 40: rtree base functor object mapping

fst (create_initial_alpha `:('A)rtree`);;

val it : term ∗ hol_type = `:(% 'T .'A1#('T)list)`)

46

The �nal result is then type that is universally quanti�ed over the currently de�ned

recursive type. We can now formally state the procedure for the derivation of the

object mapping of the type base functor.

function baseFunctorObjectMapping(constructors)

for each constructor do

if constructor is nullary then

type of the functor expression is : 1

else

for each constructor argument do

if type variable say : A then

create a new free type variable say : A1

end if

if recursive type then

create a new bond type variable say : T

end if

if nested type say ty then

create a new type (T)ty

end if

end for

end if

end for

end function

The morphism mapping of the base functor is also very important as it encodes the

type's structural information. This is derived by the generic method create_base_functor.

This method returns a pair of HOL2P terms, the �rst of which is the base func-

tor.

47

Listing 41: list base functor morphsim mapping

fst(create_base_functor `:('A)list`);;

val it : term ∗ term = `(\\ 'B 'C. (\f. (ID:1−>1) <+> (ID:'A−>'A) <∗> (f:'B−>'C)))`

function baseFunctorMorphismMapping(constructors)

for each constructor do

if constructor is nullary then

type of the functor morphsim id : 1→ 1

else

for each constructor argument do

if type variable say : A then

create a morphsim id : A→ A

end if

if recursive type then

create a morphsim f : B → C

end if

end for

end if

end for

end function

This procedure is also su�cient for deriving the base functor for types with more

than one type variable as shown in our example below.

Listing 42: ex1 base functor morphsim mapping

fst (create_base_functor `:('R,'S)ex1`);;

val it : term = `(\\ 'B 'C. (\f. ID <+> ID <∗> f))`

48

This method however fails in the case of nested types. In this instance the morphism

is actually embedded into the structure of the nested type. We will therefore need the

corresponding a nested type functor before we can map of this morphism. Therefore

our procedure must be modi�ed with the following case:

• If (nested type) ty then create a morphism tymap f

Listing 43: rtree base functor morphsim mapping

fst (create_base_functor `:('A)rtree`);;

val it : term ∗ term = `(\\ 'B 'C. (\f. ID <∗> list_TYPE_FUNCTOR f))`

It is noted that the type functor derivation has not yet been discussed. At this point

it is su�cient to note that the type functor is automatically generated when the

algebraic list type is de�ned, see section (2.5.4) for further clari�cation. We can

note state the process used to automatically derive the morphism mappings of the

base functors.

function baseFunctorMorphismMapping(constructors)

for each constructor do

if constructor is nullary then

type of the functor morphsim id : 1→ 1

else

for each constructor argument do

if type variable say : A then

create a morphsim id : A→ A

end if

if recursive type then

create a morphsim f : B → C

end if

49

if nested type say ty then

create a morphsim tymap f : B → C

end if

end for

end if

end for

end function

We also show that the base functor is a funcor and with some renaming have the

following generic theorem.

Listing 44: list base functor is a functor

BASEFUN_FUNCTOR `:('A)list`;;

val it : thm = |− FNCTR CATFUN list_IFUN

2.5.3. Catamorphism

The derivation of the catamorphism for each type now becomes a matter of instanti-

ating de�nitional axiom in listing (25), initial algebra, alpha, and its associated base

functor. These instantiations are carried out by the method CATA_DEF. This method

actually returns a pair of HOl2P terms and the �rst of this which is of interest.

Listing 45: De�nition of catamorphisms

fst(CATA_DEF `:('A)list`);;

val it : term =

(`cata CATFUN (\\ 'B 'C. (\f. ID <+> ID <∗> f)) (CASE (\e. []) (\(a0,a1). CONS a0 a1)) f`

By means of some renaming we are able to rewrite the above in a form that is more

human readable.

50

Listing 46: catamorphisms

CATA_THM `:('A)list`;;

val it : thm = |− list_CATA = (\f. cata CATFUN list_IFUN list_ALPHA f)

And to reinforce what we have just done we shall use the list_CATA to write the

sum function for list.

Listing 47: catamorphisms

let list_SUM = `list_CATA (CASE (\e:1.0) (UNCURRY (+)))`;;

val list_SUM : term = `list_CATA (CASE (\e. 0) (UNCURRY (+)))`

type_of list_SUM ;;

val it : hol_type = `:(num)list−>num`

Some programmers might �nd it impossible to write programs categorically. Fortu-

natly the catamorphic de�nition of a recursive function can be automatically derived

and this is dicussed of Chapter (??).

There are some powerful theorems that can be derived from catamorphism. Take for

instance the re�ection law. This theorem states that the catamorphism of an initial

algebra is equivalent to the identity morphism.

Listing 48: The re�ection law

val (REFLECTION_LAW) : thm =

|− !hom id (;;) alpha F.

CTGY (hom,id,(;;)) /\

FNCTR (hom,id,(;;)) F /\

IALG (hom,id,(;;)) F alpha

==> cata (hom,id,(;;)) F alpha alpha = id[:'T]

When instantiated to the Fun this is simpli�ed to the following.

51

Listing 49: The fusion law

val (REFLECTION_LAW) : thm =

|− !alpha F.

FNCTR CATFUN F /\ IALG CATFUN F alpha

==> cata CATFUN F alpha alpha = (\r. r)

Now for each type we have shown that is alpha is initial and that the base functor is

a functor. It follows that by instantating the following and further simpli�cation we

are able to automatically derive the re�ection law for each type. This can then be

used in proofs generically by type parameterisation.

Listing 50: The fusion law

REFLECTION_DEF `:('A)list`;;

val it : thm = |− list_CATA list_ALPHA = (\r. r)

2.5.4. Deriving type functors

Type functors are derived using catamorphisms. Previously we introduced base func-

tors denote FA(B). In this de�nition A is �xed on the de�niton. If we parameterise A

then we can write F(A,B), in which case F is a bi-functor with the collection of initial

algebras αA : F(A,TA)→ TA. The type functor T is de�ned by Tf = (α; ;F(f, id)).

This means that once the bi-functor is de�ned for each type then the type functor

de�nition will follow.

Deriving bi-functors We mentioned earlier that create_base_functor re-

turned a pair of HOL2P terms the �rst of which is the morphism mapping of the

base functor. The second term is the base bifunctor. This is formed by a lambda

abstraction the identity morphisms on the type variables in addition to those in the

52

functor. Therefore the list bi-functor is given by

Listing 51: list base bi-functor type functor

snd (create_base_functor `:('A)list`);;

val it : term = `(\\ 'A' 'B 'A 'C. (\f0 f. ID <+> (f0:'A−>'A) <∗> f))`

Recall that each type variable resulted in a corresponding identity morphism and

therefore if the following example where there are two type variables there is actually

three parameters.

Listing 52: list base bi-functor type functor

snd (create_base_functor `:('R, 'S)ex1`);;

val it : term = `(\\ 'R 'R' 'C 'S 'B 'S'. (\f1 f0 f. (f0:'R−>'R) <+> (f1:'S−>'S) <∗> f))`

Bi-functors in the case of rtree also follows directly from this additional parame-

terisation.

Listing 53: list base bi-functor type functor

snd (create_base_functor `:('A)rtree`);;

val it : term = `(\\ 'A' 'B 'A 'C. (\f0 f. (f0:'A −> 'A) <∗> list_TYPE_FUNCTOR f))`

Deriving type functors Let F be a bi-functor with the collection of algebras

αA : F(A,T A)→ TA. The construction of the map functor is de�ned by

T f = (|α ◦ F(f, id)|) (16)

Listing 54: list type functor

val it : thm =

53

|− list_TYPE_FUNCTOR =

(\f0. list_CATA

(list_ALPHA o list_BIFUN[:'A'][:('A')list][:'A][:('A')list] f0 ID))

Listing 55: ex1 type functor

TYPE_FUNCTOR `:('R,'S)ex1`;;

val it : thm =

|− ex1_TYPE_FUNCTOR =

(\f1 f0.

ex1_CATA

(ex1_ALPHA o ex1_BIFUN[:'R][:'R'][:('R','S')ex1][:'S][:('R','S')ex1][:'S'] f1 f0 ID))

Listing 56: rtree type functor

TYPE_FUNCTOR `:('A)rtree`;;

val it : thm =

|− rtree_TYPE_FUNCTOR = (\f0. rtree_CATA (rtree_ALPHA o rtree_BIFUN f0 ID))

To prove that the type functor is a functor we must prove the following:

Listing 57: list type functor is a functor

TYPE_FUNCTOR_FUNCTOR_THM `:('A)list`;;

val it : thm =

|− FNCTR CATFUN (\\ 'A 'A'. list_TYPE_FUNCTOR) <=>

(!! 'A. list_TYPE_FUNCTOR ID = ID) /\

(!! 'A 'B 'C. !f g.

list_TYPE_FUNCTOR (g o f) =

list_TYPE_FUNCTOR g o list_TYPE_FUNCTOR f)

To prove this we instantiate the FNCTR_ID_FUN and theorem with the type functor

and we obtain the following

54

Listing 58: list type functor preserves identity

TYPE_FUNCTOR_ID_THM `:('A)list` ;;

val it : thm =

|− FNCTR CATFUN (\\ 'A 'A'. list_TYPE_FUNCTOR)

==> (!! 'A. list_TYPE_FUNCTOR ID = ID)

We also instantiate the corresponding FNCTR_COMP_FUN theorem.

Listing 59: list type functor preserves composition

TYPE_FUNCTOR_COMP_THM `:('A)list`;;

val it : thm =

|− FNCTR CATFUN (\\ 'A 'A'. list_TYPE_FUNCTOR)

==> (!! 'A 'B 'C. !f g.

list_TYPE_FUNCTOR (g o f) =

list_TYPE_FUNCTOR g o list_TYPE_FUNCTOR f)

The proof that the type functor is a functor is a matter of simpli�cation using the

two theorems above.

Listing 60: list type functor preserves composition

TYPE_FUNCTOR_IS_FUNCTOR_THM `:('A)list`;;

val it : thm = |− FNCTR CATFUN (\\ 'A 'A'. list_TYPE_FUNCTOR)

2.6. Universal Extension Principle

To introduce the universality principle we will start o� with a recursively de�ned

datatype that does not use type variables. We will speak only of a simple recursive

datatype formed by the naturals and called num and its corresponding fold. The

num datatype is de�ned by:

55

data num = zero | succ num

This introduces a type num that is parameterized with two constructors: a nullary

constructor zero and the constructor succ that takes one argument. The argument

to succ is a non-negative number n. This is recursively de�ned as the argument is

the same type as the type being declared.

Take for instance the well-known function sum , which sums two numbers.

sum : num → num→ num

sum (m, 0) = m ∧

sum (m, (succ n)) = succ(sum(m,n))

This recursive de�nition reads quite easily. It says, whenever the number m is sum

with zero, the result is m. Whenever m is sum with the succ of n the result is

the succ of the sum(m,n). The function sum is an instance of a general family of

functions that may de�ned on num. If we abstract over the general pattern we have

the following equations, parameterized by a recursively de�ned function F ,

∆(F) =: F ◦ 0 = z ∧ F ◦ succ = s ◦ F (17)

F is parameterized by the constructors of num. Notice the introduction of two

function variables; a variable z and a unary function variable s : num → num.

In the instance of sum . These speci�c bindings of (s, z) for sum in the categorical

sense represent a homomorphism from the initial algebra num to the algebra sum.

Furthermore, lets say another function plus was de�ned with these bindings z and

s = (λv. succ v) then the functions sum and plus are equal.

56

Now this may be abstracted one step further. The function variables, z and s : A→ A

where A is some type. Given bindings for s and z, a function satisfying Π is a

homomorphism from the initial algebra (Fnum, num) of the functor FA = 1 + A

with signature (succ, 0) to the algebra on (FB,B) with signature (s, z). Since the

algebra of naturals is de�ned as the initial algebra in this category, there exists-

by the de�nition of "initial" - exactly one such homomorphism for each choice of

(s, z). Recall that a unique homomorphism is called a catamorphism. Therefore this

is a means for de�ning functions on the naturals. Moreover, given two functions

f, g : num→ A, the following holds

∆(f) = ∆(g)⇒ f = g (18)

This is the Unique Extension Property for the naturals. We now use induction to

verify this property

Proof. base case:

f(0) = g (0)

≡ {Π(f) and Π(g)}

z = z

≡ {reflexivity of (=)}

true

inductive case:

f ◦ succ ◦ n = g ◦ succ ◦ n

≡ {Π(f) and Π(g)}

s ◦ f ◦ n = s ◦ g ◦ n

57

⇐ {Leibniz}

f ◦ n = g ◦ n

≡ {Induction Hypothesis}

true

The list fold is common and is de�ned as standard in many functional programming

languages. Harrison also de�nes list fold as apart of HOL-Light. Below we describe a

method to automatically derive the fold combinator from the structure of the recursive

type.

2.6.1. Deriving fold combinator from primitive recursion

The above sum example was used to present an informal guide to the UEP. The keen

reader would also be quick to point out the informal use of fold in the presentation.

We now describe the automatic derivation of the fold combinator from the recursion

theorem. The general speci�cation in HOL for recursive datatypes is of the general

form ??: The general recursion theorem is given by the following:

∀f1 · · · fn.∃!fn : (α1, · · · , αn)rty → bool.

∀x11 · · ·x
k1
1 .fn(C1x

1
1 · · ·x

k1
1) = f1(fnx

1
1 · · · (fnx

k1
1)x11 · · ·x

k1
1 ∧

...

∀x1m · · · xkmm .fn(Cmx
1
m · · ·xkmm) = fm(fnx1m · · · (fnxkm)x1m · · ·xkmm ∧

In order to derive the fold operator from the recursion theorem we �rst reduce

the above to Skolem normal form, in order to remove the existential quanti�ca-

tion of the fold operator, this is performed as the �rst step in the automation of

58

fold de�nition from the recursion theorem. As an example, the logical statement

∀x∃y∀z.P (x, y, z) is not in Skolem normal form because it contains the existential

quanti�er ∃y. The process of reducing this formula to skolem normal form replaces

y with f(x), where f is a new function symbol, and removes the quanti�cation over

y. That is ∀x∀z.P (x, f(x), z) "for every x there exists a y such that P(x,y,z)" is

converted into the equivalent form "there exists a function f mapping every x into a

y such that, for every x it holds R(x,f(x),z)". The result of skolemizing the recursion

theorem is shown below

∃fn.

∀f1 · · · fn.

∀x11 · · ·x
k1
1 .fnf1 · · · fn(C1x

1
1 · · ·x

k1
1) = f1(fnx

1
1 · · · (fnx

k1
1)x11 · · ·x

k1
1 ∧

...

∀x1m · · ·xkmm .fnf1 · · · fn(Cmx
1
m · · ·xkmm) = fm(fnx1m · · · (fnxkm)x1m · · ·xkmm ∧

We can now specialize the fn and from here on refer to this as foldα thus removing

the existential quanti�cation, and also the universal quanti�ers.

fold(α1,...,αn)rtyf1 · · · fn(C1x
1
1 · · ·x

k1
1) = f1(fnx

1
1 · · · (fnx

k1
1)x11 · · ·x

k1
1 ∧

...

fold(α1,...,αn)rtyf1 · · · fn(Cmx
1
m · · ·xkmm) = fm(fnx1m · · · (fnxkm)x1m · · · xkmm ∧

This form of full primitive recursion, is called paramorphisms in the category world.

We �rst focus on the more popular catamorphic form and describe how to derive

the a special class of paramorphic functions, catamorphisms. The de�nition of the

fold combinator from the corresponding recursion theorem is generated from by

FOLD_DEF parameterized by the recursive type. For instance the following is 61

59

shows the fold combinator for lists.

Listing 61: list fold from primitive recursion

FOLD_DEF `:('A)list`;;

val it : thm =

|− list_FOLD NIL' CONS' [] = NIL' /\

(!a0 a1. list_FOLD NIL' CONS' (CONS a0 a1) =

CONS' a0 (list_FOLD NIL' CONS' a1))

The fold combinator for a binary tree is similarly generated by a function call to

FOLD_DEF.

Listing 62: ex1 fold from primitive recursion

FOLD_DEF `:('R, 'S)ex1`;;

val it : thm =

|− (!a. ex1_FOLD f0 f1 (C1 a) = f0 a) /\

(!a0 a1. ex1_FOLD f0 f1 (C2 a0 a1) = f1 a0 (ex1_FOLD f0 f1 a1))

Listing 63: rtree fold from primitive recursion

FOLD_DEF `:('A)rtree`;;

val it : thm =

|− (!a0 a1.

rtree_FOLD f0 f1 f2 (NODE_RTREE a0 a1) =

f0 a0 (rtree_list_FOLD f0 f1 f2 a1)) /\

rtree_list_FOLD f0 f1 f2 [] = f1 /\

(!a0 a1.

rtree_list_FOLD f0 f1 f2 (CONS a0 a1) =

f2 (rtree_FOLD f0 f1 f2 a0) (rtree_list_FOLD f0 f1 f2 a1))

2.6.2. Universality of fold

60

The universal property of fold can be stated as the following equivalence of the

recursive de�nition and fold(α1, , αn)rty

Theorem 2.1. The characteristic equation, i.e the recursion theorem is equivalent to

fold(α1, , αn)rty

h(C1x
1
1 · · ·x

k1
1) = f1(fnx

1
1 · · · (fnx

k1
1)x11 · · ·x

k1
1 ∧

h(C2x
1
2 · · ·x

k2
2) = f2(fnx

1
2 · · · (fnx

k2
1)x12 · · ·x

k2
2 ∧

...

h(Cmx
1
m · · ·xkmm) = fm(fnx1m · · · (fnxkm)x1m · · ·xkmm ∧

⇔

h = fold f1 f2 · · · fm

The proof is conceptually simple and based in a proof by induction [10]. If one

examines closely, this process converts the recursion into two explicit assumptions;

the inductive cases. Therefore by verifying these two assumptions, and this need not

be by induction, we are able to capture the inductive proof process once, and reuse it

many times. One can say the universal principle is the counterpart to fold. The fold

operator encapsulates recursion on recursive types; in the same manner the universal

principle encapsulates proofs by induction on recursive types.

We generalise this proof by parameterizing the recursive type in the induction tac.

The universal

Listing 64: Universality of fold for list

FOLD_UNIVERSAL `:('A)list`;;

val it : thm =

|− h [] = NIL' /\

61

(!a0 a1. h (CONS a0 a1) = CONS' a0 (h a1)) <=>

h = list_FOLD NIL' CONS'

Listing 65: Universality of fold for list

FOLD_UNIVERSAL `:('R, 'S)ex1`;;

val it : thm =

|− (!a. h (C1 a) = f0 a) /\ (!a0 a1. h (C2 a0 a1) = f1 a0 (h a1)) <=>

h = ex1_FOLD f0 f1

2.6.3. Universality of catamorphisms

There is a relationship between the parameters to fold and the casewise expression

that parameterises catamorphism. Informally each fi of fold corresponds to the i+ 1

expression of CASE. So for instance with list the following follows:

Theorem 2.2. h ◦ (α1 · · ·αn)rty = f ◦ F C(α1···αn)rty
(id, h) ⇐⇒

h = foldC(α1···αn)rty
((f ◦ inl)x11 · · · x

k1
1) ((f ◦ inr ◦ inl)x12 · · ·x

k2
2) · · · ((f ◦ inr)x1n · · ·xknn)

This theorem states that for any arbitrary initial algebraic type the function fold f1 f2 · · · fn

is a unique solution to the de�ning catamorphism. This theorem underpins the

CATA_UNIVERSAL method, which is automatically generated by our datatype pack-

age.

Listing 66: list catamorphism universal principle

CATA_UNIVERSAL `:('A)list`;;

val it : thm =

|− h o list_ALPHA = f o list_IFUN <=>

h = list_FOLD ((f o INL) one) (\a0 a1. (f o INR) (a0,a1))

The main use of the universal property is as a proof principle of fold as it encapsulates

a common pattern of induction. As well as being an alternative for recursive proofs

62

the universal extension property can also be used to guide the transformation of

recursive functions to their equivalent catamorphic form. We describe the automatic

derivation of catamorphisms from the primitive recursion theorem [20]

2.7. Conclusions

We �rst start with the simplest datatype, one with only one element then proceed to

brie�y discuss the tupling of existing datatypes to form new types. This is achieved

by taking the product and sum of existing types.

We use a paradigm of datatype de�nition attributed to Hagino [19], an important

aspect of which is that datatypes are characterized by a universal property. We

can use this property, called catamorphisms, as a de�nitional property of recursive

functions. Catamorphisms play a prominent role in the theory of datatypes used in

this paper. The datatypes that can be de�ned using this paradigm are �nite datatypes

such as list and tree and are expressed as initial objects in a the category of

algebras.

2.7.1. Contributions

We presented a categorically inspired datatype package that automates the repre-

sentation of recursive datatypes as initial algebras. Our treatment includes regular

datatypes as well as regular nested types. We automatically de�ne the catamorphsim

for each type as categorical method of de�ning recursive functions. Using catamor-

phisms, we subsequently de�ne type functors, and also some associated laws, such as

fusion and re�ection laws. In addition to this automation, our main contribution is in

the approach. Our theorems and laws are parameterised with the type and is therefore

generic by de�nition. We achieve this using type quanti�cation. Our formalism and

associated proofs also provides a rigorous veri�cation of the initial algebra semantics

63

using type quanti�cation in the HOL2P theorem prover. We are unaware of any other

veri�cation of this kind using HOL provers.

2.7.2. Related Work

Owre and Shankar describes their implementation of an abstract datatype mechanism

in PVS [45].

2.7.3. Future work

• One immediate extension to this work is the relational treatment of datatypes

in this framework.

• Our presentation deals with the treatment of regular types as well as regular

nested types. One possible area of research is the treatment of non-regular

nested types [9]

• We have only dealt with initial algebras but terminal objects can also be

formalised in this framework with not much e�ort. One would however need to

research the automation of such types and associated theorems and its use in

mechanized reasoning.

• One can also research the categorical treatment of types with laws again with

a focus on automation and its bene�t to mechanized reasoning

• One could also investigate the extent to which types that are not initial algebras

can �t into our categorical framework. Gibbons seems to suggest that there

might be some sort of representation is possible, see [16]

64

REFERENCES

[1] Peter Aczel. Notes towards a formalisation of constructive galois theory. Tech-

nical report, 1994.

[2] Flemming Andersen and Kim Dam Petersen. Recursive boolean functions in

HOL. In 1991 International Workshop on the HOL Theorem Proving System

and its Applications, pages 367�377. IEEE Computer Society, August 1991.

[3] M. A. Arbib and E. G. Manes. Arrows, Structures, and Functors: The

Categorical Imperative. Academic Press, 1975.

[4] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming

� an introduction. In LNCS, volume 1608, pages 28�115. Springer-Verlag, 1999.

Revised version of lecture notes for AFP'98.

[5] M. Barr and C. Wells. Category theory for computing science. Prentice Hall

International, 1990.

[6] F. L. Bauer et al. The Munich project CIP. Volume 1: The Wide Spectrum

Language CIP-L, volume 183 of Lecture Notes in Computer Science. Springer-

Verlag, 1985.

[7] R. S. Bird. An introduction to the theory of lists. F36:5�42, 1987. NATO ASI

Series.

[8] R. S. Bird. Lectures on constructive functional programming. (PRG-69), 1988.

[9] Richard Bird and Lambert Meertens. Nested datatypes. Lecture Notes in

Computer Science, 1422:52�??, 1998.

65

[10] Richard J. Bird. Introduction to Functional Programming using Haskell.

Prentice-Hall Series in Computer Science. Prentice-Hall Europe, London, UK,

second edition, 1998.

[11] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall,

1997.

[12] R. M. Burstall and J. Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24:44�67, 1977.

[13] Peter Dybjer and Verónica Gaspes. Implementing a category of sets in alf.

Technical report, 1994.

[14] M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of

Twente, Dept INF, Enschede, The Netherlands, 1992.

[15] Maarten M. Fokkinga. Datatype laws without signatures. Mathematical Struc-

tures in Computer Science, 6(1):1�32, 1996.

[16] J. Gibbons. An initial-algebra approach to directed acyclic graphs. Lecture Notes

in Computer Science, 947:282�??, 1995.

[17] Andy Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to

deforestation. Technical report, University of Glasgow, October 1993.

[18] J. A. Goguen. Initial algebra semantics and continuous algebras. Journal of the

Association for Computing Machinery (JACM), 24(1):68�95, January 1977.

[19] Tatsuya Hagino. A category theoretic approach to data types. Master's thesis,

University of Edinburgh, Department of Computer Science, 1987. CST-47-87

(also published as ECS-LFCS-87-38).

66

[20] J. Harrison. Inductive de�nitions: Automation and application. Lecture Notes

in Computer Science, 971:200�??, 1995.

[21] John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas

and Albert Camilleri, editors, Proceedings of the First International Conference

on Formal Methods in Computer-Aided Design (FMCAD'96), volume 1166 of

Lecture Notes in Computer Science, pages 265�269. Springer-Verlag, 1996.

[22] John Harrison. Floating point veri�cation in HOL light: The exponential

function. Formal Methods in System Design, 16(3):271�305, 2000.

[23] John Harrison. The HOL Light manual, 2000. Version 1.1.

[24] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nip-

kow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the 22nd

International Conference on Theorem Proving in Higher Order Logics, TPHOLs

2009, volume 5674 of Lecture Notes in Computer Science, pages 60�66, Munich,

Germany, 2009. Springer-Verlag.

[25] Peter V. Homeier. The HOL-omega logic. In Stefan Berghofer, Tobias Nipkow,

Christian Urban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of

Lecture Notes in Computer Science, pages 244�259. Springer, 2009.

[26] Gérard Huet and Amokrane Saïbi. Constructive category theory. In In Proceed-

ings of the joint clics-types workshop on categories and type theory, Goteborg.

MIT Press, 1998.

[27] Patrik Jansson. Functional polytypic programming use and implementation,

May 21 1997.

67

[28] J. Lambek and P. J. Scott. Introduction to higher order categorical logic, 1986.

[29] Joachim Lambek. Deductive systems and categories � I. syntactic calculus and

residuated categories. Mathematical Systems Theory, 2(4):287�318, 1968.

[30] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas from

recursive de�nitions, November 10 1995.

[31] Daniel J. Lehmann and Michael B. Smyth. Algebraic speci�cation of data types:

A synthetic approach. Mathematical Systems Theory, 14:97�139, 1981.

[32] A. C. Leisenring. Mathematical Logic and Hilbert's ε-Symbol. Gordon and Breach

Science Publishers, New York, 1969.

[33] Donald W. Loveland. Erratum: �mechanical theorem-proving by model elimina-

tion�. J. ACM, 16(1):646, 1969.

[34] G. Malcolm. Algebraic data types and program transformation. PhD thesis,

Groningen University, 1990.

[35] E. G. Manes, editor. Proceedings of the AAAS Symposium on Category Theory

Applied to Computation and Control (San Francisco, California), number 25 in

Lecture Notes in Computer Science. Springer-Verlag, 1975.

[36] Ernest Manes and Michael Arbib. Algebraic Approaches to Program Semantics.

Springer-Verlag, 1986.

[37] Simon David Marlow. Deforestation for higher-order functional programs, 1995.

[38] Ursula Martin and Tobias Nipkow. Automating Squiggol. In M. Broy and

C.B. Jones, editors, Programming Concepts and Methods, pages 233�247. North-

68

Holland, 1990.

[39] Lambert Meertens. Calculate polytypically!, September 03 1996.

[40] Thomas F. Melham. Automating recursive type de�nitions in higher order

logic. Technical Report 146, Computer Laboratory, University of Cambridge,

September 1988.

[41] Thomas F. Melham. A package for inductive relation de�nitions in HOL. In

Myla Archer, Je�rey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors,

TPHOLs, pages 350�357. IEEE Computer Society, 1991.

[42] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348�375, 1978.

[43] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL � A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag,

2002.

[44] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system

HYLO, March 31 1997.

[45] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Nasa/cr-97-

206264, 1997.

[46] L. C. Paulson. A �xedpoint approach to implementing (co)inductive de�nitions.

Lecture Notes in Computer Science, 814:148�??, 1994.

[47] Frank Pfenning and Christine Paulin-Mohring. Inductively de�ned types in the

calculus of constructions. Technical report CMU-CS-89-209, School of Computer

Science, Carnegie-Mellon Univ., Pittsburgh, CA, 1989.

69

[48] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press,

Cambridge, Mass., 1991.

[49] S. Agerholm. A HOL Basis for Reasoning about Functional

Programs. Brics rs-94-44, issn 0909-0878, Department of Com-

puter Science, University of Aarhus, Denmark, December 1994.

http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/BRICS-RS-

94-44.html.

[50] Supervised Am'ilcar Sernadas, Alexandra Carvalho, and Paulo Mateus. Category

theory in coq, June 15 1998.

[51] N. Shankar. PVS: Combining speci�cation, proof checking, and model checking.

Lecture Notes in Computer Science, 1166:257�??, 1996.

[52] Mark E. Stickel. A prolog technology theorem prover: Implementation by an

extended prolog compiler, September 15 1987.

[53] The Coq Development Team. The coq proof assistant reference manual, version

6.2. Technical report, INRIA, Roquencourt, France, 1998.

[54] Norbert Völker. HOL2P - A system of classical higher order logic with second

order polymorphism. In Klaus Schneider and Jens Brandt, editors, TPHOLs,

volume 4732 of Lecture Notes in Computer Science, pages 334�351. Springer,

2007.

[55] R. Walters. Categories and Computer Science. Cambridge University Press,

Cambridge, 1986.

70

